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Chapter 1

Introduction
CGAL Editorial Board

The goal of the CGAL Open Source Project is to provide easy access to efficient and reliable geometric algo-
rithms in the form of a C++ library.

The Computational Geometry Algorithms Library offers data structures and algorithms like triangulations,
Voronoi diagrams, Boolean operations on polygons and on polyhedra, arrangements of curves, mesh gener-
ation, geometry processing, convex hull algorithms, to name just a few.

All these data structures and algorithms operate on geometric objects like points and segments, and perform
geometric tests on them. These objects and predicates are regrouped in CGAL Kernels.

Finally, the CGAL Support Library offers geometric object generators and spatial sorting functions, as well as
a matrix search framework and a solver for linear and quadratic programs. It further offers interfaces to third
party software such as the GUI libraries Qt, Geomview, and the Boost Graph Library.

1.1 Organization of the Manual

This manual is organized in several parts covering the many domains of computational geometry. Each part
consists of several chapters, and each chapter is split into a user manual and a reference manual. The user
manual gives the general idea and comes with examples. The reference manual presents the API of the various
classes and functions.

The manual has a table of contents, and an index, as well as a package overview, which gives a short paragraph
what the package is about, what license it has, and on which other packages it depends. It further provides links
to precompiled demo programs for the Windows platform.

1.2 Demos and Examples

In the distribution of the library you find the two directories demo and examples. They contain subdirectories
for the CGAL packages. The demos use third party libraries for the graphical user interface. The examples don’t
have this dependency and most examples are refered to in the user manual.
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1.3 Hello World

In this section we will take a closer look at three CGAL example programs, all of them computing the 2D convex
hull of a set of points.

1.3.1 Points in a built-in array

In the first example we have an array of five points. As the convex hull of these points is a subset of the input it
is safe to provide an array for storing the result which has the same size.� �
#include <iostream>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/convex_hull_2.h>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_2 Point_2;

int main()
{

Point_2 points[5] = { Point_2(0,0), Point_2(10,0), Point_2(10,10),
Point_2(6,5), Point_2(4,1) };

Point_2 result[5];

Point_2 *ptr = CGAL::convex_hull_2( points, points+5, result );
std::cout << ptr - result << " points on the convex hull" <<
std::endl;

return 0;
}� �
File: examples/Convex_hull_2/array_convex_hull_2.cpp

All CGAL header files are in the subdirectory “include/CGAL”. All CGAL classes and functions are in the
namespace “CGAL”. The geometric primitives, like the point type, are defined in a kernel. CGAL comes with
several kernels, and as the convex hull algorithm only makes comparisons of coordinates and orientation tests
of input points, we can choose a kernel that provides exact predicates, but no exact geometric construction.

The convex hull function takes three arguments, the start and past-the-end pointer for the input, and the start
pointer of the array for the result. The function returns the pointer into the result array just behind the last
convex hull point written, so the pointer difference tells us how many points are on the convex hull.

1.3.2 Points in a STL vector

In the second example we replace the built-in array by a std::vector of the Standard Template Library.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/convex_hull_2.h>

#include <vector>

4



typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_2 Point_2;
typedef std::vector<Point_2> Points;

int main()
{

Points points, result;
points.push_back(Point_2(0,0));
points.push_back(Point_2(10,0));
points.push_back(Point_2(10,10));
points.push_back(Point_2(6,5));
points.push_back(Point_2(4,1));

CGAL::convex_hull_2( points.begin(), points.end(),
std::back_inserter(result) );

std::cout << result.size() << " points on the convex hull" <<
std::endl;

return 0;
}� �
File: examples/Convex_hull_2/vector_convex_hull_2.cpp

We put some points in the vector calling the push back() method of the std::vector class.

We then call the convex hull function. The first two arguments, points.begin() and points.end() are iterators,
which are a generalization of pointers: they can be dereferenced and incremented. The convex hull function is
generic in the sense that it takes as input whatever can be dereferenced and incremented.

The third argument is where the result gets written to. In the previous example we provided a pointer to
allocated memory. The generalization of such a pointer is the output iterator, which allows to increment and
assign a value to the dereferenced iterator. In this example we start with an empty vector which grows as
needed. Therefore, we cannot simply pass it result.begin(), but an output iterator generated by the helper
function std::back inserter(result). This output iterator does nothing when incremented, and calls result.push
back(..) on the assignment.

1.3.3 Points in Streams

The last example program reads a sequence of points from standard input std::cin and writes the points on the
convex hull to standard output std::cout.

Instead of storing the points in a container such as an std::vector, and passing the begin/end iterator of the vector
to the convex hull function, we use helper classes that turn file pointers into iterators.� �
#include <iostream>
#include <iterator>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/convex_hull_2.h>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_2 Point_2;
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int main()
{

std::istream_iterator< Point_2 > input_begin( std::cin );
std::istream_iterator< Point_2 > input_end;
std::ostream_iterator< Point_2 > output( std::cout, "\n" );
CGAL::convex_hull_2( input_begin, input_end, output );
return 0;

}� �
File: examples/Convex_hull_2/iostream_convex_hull_2.cpp

In the example code you see input and output stream iterators templated with the point type. A std::istream
iterator<Point 2> hence allows to traverse a sequence of objects of type Point 2, which come from standard
input as we pass std::cin to the constructor of the iterator. The variable input end denotes end-of-file.

A std::ostream iterator<Point 2> is an output iterator, that is an iterator to which, when dereferenced, we can
assign a value. When such an assignment to the output iterator happens somewhere inside the convex hull
function, the iterator just writes the assigned point to standard output, because the iterator was constructed with
std::cout.

The call to the convex hull function takes three arguments, the input iterator range, and the output iterator to
which the result gets written.

If you know the STL, the Standard Template Library, the above makes perfect sense, as this is the way the STL
decouples algorithms from containers. If you don’t know the STL, you maybe better first familiarize yourself
with its basic ideas.

1.4 Further Reading

We also recommend the standard text books by Josuttis [Jos99], or Austern [Aus98] for the STL and its notion
of concepts and models.

Other resources for CGAL are the tutorials at http://www.cgal.org/Tutorials/ and the user support page
at http://www.cgal.org/.
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Introduction
Reference Manual
CGAL Editorial Board

This chapter contains no Reference Manual pages.
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Chapter 2

Preliminaries
CGAL Editorial Board

This chapter lists the licenses under which the CGAL datastructures and algorithms are distributed. The chapter
further explains how to control inlining, thread safety, code deprecation, checking of pre- and postconditions,
and how to alter the failure behavior.

2.1 License Issues

CGAL is distributed under a dual license scheme, that is under the GPL/LGPL open source license, as well as
under commercial licenses.

CGAL consists of different parts covered by different open source licenses. In this section we explain the essence
of the different licenses, as well as the rationale why we have chosen them.

The fact that CGAL is Open Source software does not mean that users are free to do whatever they want with
the software. Using the software means to accept the license, which has the status of a contract between the user
and the owner of the CGAL software.

2.1.1 GPL

The GPL is an Open Source license that, if you distribute your software based on GPLed CGAL data struc-
tures,you are obliged to distribute the source code of your software under the GPL.

The exact license terms can be found at the Free Software Foundation web site: http://www.gnu.org/
copyleft/gpl.html.

2.1.2 LGPL

The LGPL is an Open Source license that obliges you to distribute modifications you make on CGAL software
accessible to the users. In contrast to the GPL , there is no obligation to make the source code of software you
build on top of LGPLed CGAL data structures
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The exact license terms can be found at the Free Software Foundation web site: http://www.gnu.org/
copyleft/lesser.html.

2.1.3 Rationale of the License Choice

We have chosen the GPL and the LGPL as they are well known and well understood open source licenses. The
former restricts commercial use, and the latter allows to promote software as de facto standard so that people
can build new higher level data structures on top.

Therefore, the packages forming a foundation layer are distributed under the LGPL, and the higher level pack-
ages under the GPL. The package overview states for each package under which license it is distributed.

2.1.4 Commercial Licenses

Users who cannot comply to the Open Source license terms can buy individual data structures under various
commercial licenses from GeometryFactory: http://www.geometryfactory.com/. License fees paid by
commercial customers are reinvested in R&D performed by the CGAL project partners, as well as in evolutive
maintenance.

2.2 Marking of Special Functionality

In this manual you will encounter sections marked as follows.

2.2.1 Advanced Features

Some functionality is considered more advanced, for example because it is relatively low-level, or requires
special care to be properly used.

advanced

Such functionality is identified this way in the manual.

advanced

2.2.2 Debugging Support Features

Usually related to advanced features that for example may not guarantee class invariants, some functionality is
provided that helps debugging, for example by performing invariants checks on demand.

debugging support

Such functionality is identified this way in the manual.

debugging support
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2.2.3 Deprecated Code

Sometimes, the CGAL project decides that a feature is deprecated. This means that it still works in the current
release, but it will be removed in the next, or a subsequent release. This can happen when we have found a
better way to do something, and we would like to reduce the maintenance cost of CGAL at some point in the
future. There is a trade-off between maintaining backward compatibility and implementing new features more
easily.

In order to help users manage the changes to apply to their code, we attempt to make CGAL code emit warnings
when deprecated code is used. This can be done using some compiler specific features. Those warnings can
be disabled by defining the macro CGAL NO DEPRECATION WARNINGS. On top of this, we also provide a
macro, CGAL NO DEPRECATED CODE, which, when defined, disables all deprecated features. This allows
users to easily test if their code relies on deprecated features.

deprecated

Such functionality is identified this way in the manual.

deprecated

2.3 Namespace CGAL

All names introduced by CGAL, especially those documented in these manuals, are in a namespace called CGAL,
which is in global scope. A user can either qualify names from CGAL by adding CGAL::, e.g., CGAL::Point 2<
CGAL::Exact predicates inexact constructions kernel >, make a single name from CGAL visible in a scope via
a using statement, e.g., using CGAL::Point 2;, and then use this name unqualified in this scope, or even make
all names from namespace CGAL visible in a scope with using namespace CGAL;. The latter, however, is likely
to give raise to name conflicts and is therefore not recommended.

2.4 Inclusion Order of Header Files

Not all compilers fully support standard header names. CGAL provides workarounds for these problems in
CGAL/basic.h. Consequently, as a golden rule, you should always include CGAL/basic.h first in your programs
(or CGAL/Cartesian.h, or CGAL/Homogeneous.h, since they include CGAL/basic.h first).

2.5 Thread Safety

CGAL is progressively being made thread-safe. The guidelines which are followed are:

• it should be possible to use different objects in different threads at the same time (of the same type or not),

• it is not safe to access the same object from different threads at the same time, unless otherwise specified
in the class documentation.

If the macro CGAL HAS THREADS is not defined, then CGAL assumes it can use any thread-unsafe code
(such as static variables). By default, this macro is not defined, unless BOOST HAS THREADS or OPENMP
is defined. It is possible to force its definition on the command line, and it is possible to prevent its default
definition by setting CGAL HAS NO THREADS from the command line.
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2.6 C++11 Support

CGAL is based on the C++ standard released in 1998 (and later refined in 2003). A new major version of this
standard has been released, and is refered to as C++11. Some compilers and standard library implementations
already provide some of the functionality of this new standard. For example, g++ provides a command-line
switch (-std=c++0x or -std=c++11 depending on the compiler version) which enables some of those features.

CGAL attempts to support this mode progressively, and already makes use of some of these features if they are
available, although no extensive support has been implemented yet.

2.7 Functor Return Types

CGAL functors support the result of protocol. If a functor F has the same return type across all overloads of
operator(), the nested type F::result type is defined to be that type. Otherwise the return type of calling the
functor with an argument of type Arg can be accessed through boost::result of<F(Arg)>::type.

2.8 Checks

Much of the CGAL code contains checks. For example, all checks used in the kernel code are prefixed by
CGAL KERNEL. Other packages have their own prefixes, as documented in the corresponding chapters. Some
are there to check if the kernel behaves correctly, others are there to check if the user calls kernel routines in an
acceptable manner.

There are five types of checks. The first three are errors and lead to a halt of the program if they fail. The fourth
only leads to a warning, and the last one is compile-time only.

Preconditions check if the caller of a routine has called it in a proper fashion. If such a check fails it is the
responsibility of the caller (usually the user of the library).

Postconditions check if a routine does what it promises to do. If such a check fails it is the fault of this routine,
so of the library.

Assertions are other checks that do not fit in the above two categories.

Warnings are checks for which it is not so severe if they fail.

Static assertions are compile-time assertions, used e.g. to verify the values of compile-time constants or com-
pare types for (in)equality.

By default, all of these checks are performed. It is however possible to turn them off through the use
of compile time switches. For example, for the checks in the kernel code, these switches are the follow-
ing: CGAL KERNEL NO PRECONDITIONS, CGAL KERNEL NO POSTCONDITIONS, CGAL KERNEL
NO ASSERTIONS and CGAL KERNEL NO WARNINGS. So, in order to compile the file foo.cpp with the
postcondition checks off, you can do:
CC -DCGAL_KERNEL_NO_POSTCONDITIONS foo.cpp

This is also preferably done by modifying your makefile by adding -DCGAL KERNEL NO
POSTCONDITIONS to the CXXFLAGS variable.
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The name KERNEL in the macro name can be replaced by a package specific name in order to control assertions
done in a given package. This name is given in the documentation of the corresponding package, in case it exists.

Note that global macros can also be used to control the behavior over the whole CGAL library:

• CGAL NO PRECONDITIONS,

• CGAL NO POSTCONDITIONS,

• CGAL NO ASSERTIONS,

• CGAL NO WARNINGS and

• CGAL NDEBUG.

Setting the macro CGAL NDEBUG disables all checks. Note that the standard flag NDEBUG sets CGAL
NDEBUG, but it also affects the standard assert macro. This way, adding -DCGAL NDEBUG to your com-
pilation flags removes absolutely all checks. This is the default recommended setup for performing timing
benchmarks for example.

Not all checks are on by default. The first four types of checks can be marked as expensive or exactness checks
(or both). These checks need to be turned on explicitly by supplying one or both of the compile time switches
CGAL KERNEL CHECK EXPENSIVE and CGAL KERNEL CHECK EXACTNESS.

Expensive checks are, as the word says, checks that take a considerable time to compute. Considerable is an
imprecise phrase. Checks that add less than 10 percent to the execution time of the routine they are in are
not expensive. Checks that can double the execution time are. Somewhere in between lies the border line.
Checks that increase the asymptotic running time of an algorithm are always considered expensive. Exactness
checks are checks that rely on exact arithmetic. For example, if the intersection of two lines is computed, the
postcondition of this routine may state that the intersection point lies on both lines. However, if the computation
is done with doubles as number type, this may not be the case, due to round off errors. So, exactness checks
should only be turned on if the computation is done with some exact number type.

By definition, static assertions are both inexpensive and unaffected by precision management. Thus, the cate-
gories do not apply for static assertions.

2.8.1 Altering the Failure Behavior

As stated above, if a postcondition, precondition or assertion is violated, an exception is thrown, and if nothing
is done to catch it, the program will abort. This behavior can be changed by means of the following function.

#include <CGAL/assertions behaviour.h>

Failure behaviour set error behaviour( Failure behaviour eb)

The parameter should have one of the following values.

enum Failure behaviour { ABORT, EXIT, EXIT WITH SUCCESS, CONTINUE, THROW EXCEPTION};

The THROW EXCEPTION value is the default, which throws an exception.

If the EXIT value is set, the program will stop and return a value indicating failure, but not dump the core. The
CONTINUE value tells the checks to go on after diagnosing the error. Note that since CGAL 3.4, CONTINUE
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has the same effect as THROW EXCEPTION for errors (but it keeps its meaning for warnings), it is not possible
anymore to let assertion failures simply continue (except by totally disabling them).

advanced

If the EXIT WITH SUCCESS value is set, the program will stop and return a value corresponding to successful
execution and not dump the core.

advanced

The value that is returned by set error behaviour is the value that was in use before.

For warnings there is a separate routine, which works in the same way. The only difference is that for warnings
the default value is CONTINUE.

Failure behaviour set warning behaviour( Failure behaviour eb)

2.8.2 Control at a Finer Granularity

The compile time flags as described up to now all operate on the whole library. Sometimes you may want to
have a finer control. CGAL offers the possibility to turn checks on and off with a bit finer granularity, namely
the module in which the routines are defined. The name of the module is to be appended directly after the
CGAL prefix. So, the flag CGAL KERNEL NO ASSERTIONS switches off assertions in the kernel only, the
flag CGAL CH CHECK EXPENSIVE turns on expensive checks in the convex hull module. The name of a
particular module is documented with that module.

advanced

2.8.3 Customizing how Errors are Reported

Normally, error messages are written to the standard error output. It is possible to do something different with
them. To that end you can register your own handler. This function should be declared as follows.

void my failure function(
const char *type,
const char *expression,
const char *file,
int line,
const char *explanation)

Your failure function will be called with the following parameters. type is a string that contains one of the words
precondition, postcondition, assertion or warning. The parameter expression contains the expression that was
violated. file and line contain the place where the check was made. The explanation parameter contains an
explanation of what was checked. It can be NULL, in which case the expression is thought to be descriptive
enough.

There are several things that you can do with your own handler. You can display a diagnostic message in a
different way, for instance in a pop up window or to a log file (or a combination). You can also implement a
different policy on what to do after an error. For instance, you can throw an exception or ask the user in a dialog
whether to abort or to continue. If you do this, it is best to set the error behavior to CONTINUE, so that it does
not interfere with your policy.
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You can register two handlers, one for warnings and one for errors. Of course, you can use the same function
for both if you want. When you set a handler, the previous handler is returned, so you can restore it if you want.

#include <CGAL/assertions.h>

Failure function set error handler( Failure function handler)

Failure function set warning handler( Failure function handler)

Example

#include <CGAL/assertions.h>

void my failure handler(

const char ∗type,
const char ∗expr,
const char∗ file,

int line,

const char∗ msg)

{

/∗ report the error in some way. ∗/
}

void foo()

{

CGAL::Failure function prev;

prev = CGAL::set error handler(my failure handler);

/∗ call some routines. ∗/
CGAL::set error handler(prev);

}

advanced

2.9 Identifying the Version of CGAL

#include <CGAL/config.h>

Every release of CGAL defines the following preprocessor macros:

CGAL VERSION – a textual description of the current release (e.g., or 3.3 or 3.2.1 or 3.2.1-I-15), and

CGAL VERSION STR – same as CGAL VERSION but as a string constant token, and

CGAL VERSION NR – a numerical description of the current release such that more recent releases have higher
number.

More precisely, it is defined as 1MMmmbiiii, where MM is the major release number (e.g. 03), mm is the
minor release number (e.g. 02), b is the bug-fix release number (e.g. 0), and iiii is the internal release
number (e.g. 0001). For public releases, the latter is defined as 1000. Examples: for the public release
3.2.4 this number is 1030241000; for internal release 3.2-I-1, it is 1030200001. Note that this scheme
was modified around 3.2-I-30.
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CGAL VERSION NUMBER(M,m,b) – a function macro computing the version number macro from the
M.m.b release version. Note that the internal release number is dropped here. Example:
CGAL VERSION NUMBER(3,2,4) is equal to 1030241000.

advanced

2.10 Compile-time Flags to Control Inlining

Making functions inlined can, at times, improve the efficiency of your code. However this is not always the case
and it can differ for a single function depending on the application in which it is used. Thus CGAL defines a set
of compile-time macros that can be used to control whether certain functions are designated as inlined functions
or not. The following table lists the macros and their default values, which are set in one of the CGAL include
files.

macro name default
CGAL KERNEL INLINE inline
CGAL KERNEL MEDIUM INLINE
CGAL KERNEL LARGE INLINE
CGAL MEDIUM INLINE inline
CGAL LARGE INLINE
CGAL HUGE INLINE

If you wish to change the value of one or more of these macros, you can simply give it a new value when compil-
ing. For example, to make functions that use the macro CGAL KERNEL MEDIUM INLINE inline functions,
you should set the value of this macro to inline instead of the default blank.

Note that setting inline manually is very fragile, especially in a template context. It is usually better to let the
compiler select by himself which functions should be inlined or not.

advanced
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3.1 Introduction

This document describes how to install CGAL on Windows, Unix-like systems, and MacOS X.

Ideally, setting up CGAL amounts to:

cd CGAL-4.1 # go to CGAL directory
cmake . # configure CGAL
make # build the CGAL libraries

Compiling an example shipped with CGAL is similar simple:

cd examples/Straight_skeleton_2 # go to an example directory
cmake -DCGAL_DIR=$HOME/CGAL-4.1 . # configure the examples
make # build the examples

Compiling an own non-shipped program is also close:

cd /path/to/program
cgal_create_CMakeLists -s executable
cmake -DCGAL_DIR=$HOME/CGAL-4.1 .
make

where the second line creates a CMakeLists.txt file (check its options in Section 3.15.1 for various details).

In a less ideal world, you probably have to install CMake, a makefile generator, and third party libraries. That
is what this manual is about.

3.2 Prerequisites

Installing CGAL requires a few components to be installed ahead: a supported compiler (see Section 3.5, CMake,
BOOST, and at least GMP, and MPFR; see Section 3.8 for more details on essential third party software.
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3.3 OS-shipped CGAL

Some operating systems with package managers offer CGAL and its essential third party software through the
manager, for instance, Mac OS X, or some Linux distribution (e.g. Debian).

3.3.1 CGAL on MAC OS X

For instance, use macports in the following way:

sudo port install cgal

or if Qt4 demos are desired

sudo port install cgal +qt4 +universal +demos

The setup is similar for homebrew.

3.3.2 CGAL on Linux

For instance in debian/Ubuntu, use apt-get in the following way:

sudo apt-get install libcgal-dev

To get the demos use

sudo apt-get install libcgal-demo

Check the CGAL-FAQ for source repository of newest releases.

On other distributions, please consult your package manager documentation.

3.4 Downloading CGAL

You can obtain the CGAL library from http://www.cgal.org/download.html and install it yourself.

After you have downloaded the file CGAL-4.1.tar.gz containing the CGAL sources, you have to unpack it.
Under a Unix-like shell, use the command:

tar xzf CGAL-4.1.tar.gz
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When you are on Windows you may download and run CGAL-4.1-Setup.exe. It is a self extracting executable
that installs the CGAL source, and that allows you to select and download some precompiled third party libraries.

In both cases the directory CGAL-4.1 will be created. This directory contains the following subdirectories:

directory contents

auxiliary precompiled GMPand MPFR for Windows

cmake/modules modules for finding and using libraries

config configuration files for install script

demo demo programs (most of them need QT, geomview or other third-party products)

doc html documentation (HTML)

examples example programs

include header files

scripts some useful scripts (e.g. for creating CMakeLists.txt files)

src source files

The directories include/CGAL/CORE and src/CGALCore contain a distribution of the CORE library1 version 1.7
for dealing with algebraic numbers. CORE is not part of CGAL and has its own license.

The directory include/CGAL/OpenNL contains a distribution of the Open Numerical Library which provides
solvers for sparse linear systems, especially designed for the Computer Graphics community. OPENNL is not
part of CGAL and has its own license.

The only documentation shipped with CGAL sources is the present installation manual. The CGAL manual must
be downloaded separately from http://www.cgal.org/download.html.

3.5 Supported Compilers

In order to build the CGAL libraries, you need a C++ compiler. CGAL 4.1 is supported for the following
compilers/operating systems:

compiler operating system

GNU g++ 3.4 or later1 Linux / MacOS X

MS Windows 95/98/2000/XP/NT4

INTEL C++ 11.0 or later2 Linux

MS Visual C++ 9.0, 10.0 (VISUAL STUDIO 2008 AND 2010)3 MS Windows 95/98/2000/XP/NT4/Vista/7

1http://www.cs.nyu.edu/exact/
1http://gcc.gnu.org/
2http://software.intel.com/en-us/intel-compilers/
3http://msdn.microsoft.com/en-us/vstudio/
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3.6 Configuring CGAL with CMake

In order to configure, build, and install the CGAL libraries, examples and demos, you need CMake,
a cross-platform “makefile generator”. If CMake is not installed already you can obtain it from
http://www.cmake.org/. CMake version 2.6.2 or higher is required. On Windows, CMake version 2.8.6
or higher is required, for a proper support of DLL’s generation. This manual explains only those fea-
tures of CMake which are needed in order to build CGAL. Please refer to the CMake documentation at
http://www.cmake.org/ for further details.

Before building CGAL you have to choose the compiler/linker, set compiler and linker flags, specify which
third-party libraries you want to use and where they can be found, and which CGAL libraries you want to build.
Gathering all this information is called configuration. The end of the process is marked by the generation of a
makefile or a Visual C++ solution and project file that you can use to build CGAL.

3.6.1 Configuring CGAL with the CMake GUI

The simplest way to start the configuration is to run the graphical user interface of CMake. We recommend to
use cmake-gui. It is available on many platforms as of CMake version 2.6. You must pass as argument the root
directory of CGAL. For example:

cd CGAL-4.1
cmake-gui . # Notice the dot to indicate the current directory.

After cmake-gui opens, press ’Configure’. A dialog will pop up and you will have to choose what shall gets
generated. After you have made your choice and pressed ’Finish’, you will see the output of configuration tests
in the lower portion of the application. When these tests are done, you will see many red entries in the upper
portion of the application. Just ignore them and press ’Configure’. By now CMake should have found many
libraries and have initialized variables. If you still find red entries, you have to provide the necessary informa-
tion. This typically happens if you have installed software at non-standard locations. Providing information and
pressing ’Configure’ goes on until all entries are grayed. You are now ready to press ’Generate’. Once this is
done, you can quit cmake-gui.

3.6.2 Configuring CGAL with the cmake command-line tool

Alternatively, you can run the command-line tool called cmake. You pass as argument the root directory of
CGAL. For example:

cd CGAL-4.1
cmake . # Notice the dot to indicate the current directory.

The very first thing CMake does is to detect the compiler to use. This detection is performed by a special
CMake module called a generator. A CMake generator understands the build requirements for a particular
compiler/linker and generates the necessary files for that. For example, the UNIX Makefiles generator under-
stands the GNU chain of tools (g++, ld etc.) and produces makefiles, which can be used to build a target by a
simple call to make. Likewise, the Visual Studio 2010 generator produces solution and project files and can be
manually launched in the VS IDE to build the target.
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Each platform has a default generator, so you only need to select one when the default is not what you want. For
example, under Windows, it is possible to generate NMakefiles instead of Visual Studio project files in order to
build the library with nmake. Running cmake with no parameters in a command-line prints the list of available
generators supported by your platform and CMake version. If the generator you need is not listed there, you can
try a newer CMake version, as generators are hardcoded into CMake, and additional generators are added with
each release.

Since the choice of the generator determines the type of build files to generate, in some cases you choose
a particular generator as a mean to choose a specific compiler (because they use different build files). For
example, the following generates solution files for use in Visual C++ 11.0 on a 64bit machine:

cd CGAL-4.1
cmake -G"Visual Studio 11 Win64" .

In other cases, however, the generator doesn’t directly identify a specific compiler but a chain of tools. For exam-
ple, the UNIX Makefiles generator produces makefiles that call some auto-detected command-line compiler,
like g++. If you need the makefiles to use a different compiler, you need to specify the desired compiler in the
call to CMake, as in this example:

cd CGAL-4.1
cmake -DCMAKE_CXX_COMPILER:FILEPATH=g++-4.7 .

CMake maintains configuration parameters in so-called cmake variables, like the CMAKE CXX COMPILER in the
example above. These variables are not environment variables but CMake variables. Some of the CMake
variables represent user choices, such as WITH examples or CMAKE BUILD TYPE=Release, while others in-
dicate the details of a third-party library, such as Boost INCLUDE DIR or the compiler flags to use, such as
CMAKE CXX FLAGS.

The command line tool cmake accepts CMake variables as arguments of the form -D<VAR>:<TYPE>=<VALUE>,
as in the example above, but this is only useful if you already know which variables need to be explicitly defined.

advanced

CMake keeps the variables that a user can manipulate in a so-called CMake cache, a simple text file named
CMakeCache.txt, whose entries are of the form VARIABLE:TYPE=VALUE. Advanced users can manually
edit this file, instead of going through the interactive configuration session.

advanced

The configuration process not only determines the location of the required dependencies, it also dynamically
generates a compiler config.h file, which encodes the properties of your system and a special file named
CGALConfig.cmake, which is used to build programs using CGAL. The purpose of this file is explained below.

3.7 CGAL Libraries

CGAL is split into five libraries. During configuration, you can select the libraries that you would like to build
by setting a CMake variable of the form WITH <library>. By default all are switched ON. All activated libraries
are build after configuration; see 3.11

We next list the libraries and essential 3rd party software (see 3.8) for each library:
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library CMake variable functionality dependencies

CGAL none Main library GMP, MPFR, BOOST (headers)

and Boost.Thread (library)

CGAL Core WITH CGAL Core The CORE library for algebraic numbers.15 GMP and MPFR

CGAL ImageIO WITH CGAL ImageIO Utilities to read and write image files OPENGL, ZLIB, VTK(optional)

CGAL Qt3 WITH CGAL Qt3 CGAL::Qt widget used by QT3-based demos QT3 and OPENGL

CGAL Qt4 WITH CGAL Qt4 QGraphicsView support for QT4-based demos QT4 and OPENGL

3.7.1 Debug vs. Release

The CMake variable CMAKE BUILD TYPE indicates how to build the libraries. It accepts the values Release or
Debug. The default is Release and should be kept, unless you want to debug your program.

This is not an issue for solution/project files, as there the user selects the build type from within the IDE.

3.7.2 Static vs. Shared Libraries

Shared libraries, also called dynamic-link libraries, are built by default (.dll on Windows, .so on Linux,
.dylib on MacOS). You can choose to produce static libraries instead by setting the CMake variable
BUILD SHARED LIBS to FALSE. If you use cmake-gui, a tick box for that variable is available to set it.

These setting affect the variants of third-party libraries (see next section) selected whenever the choice is avail-
able.

3.8 Essential Third Party Libraries

The focus of CGAL is on geometry, and we rely on other highly specialized libraries and software for non-
geometric issues, for instance, for numeric solvers, or visualization. We first list software that is essential to
build (all) libraries of CGAL, that is, this software must be found during the configuration of CGAL for an
actived library of CGAL (i.e. WITH <library>=ON); see 3.16.4 to specify the location of 3rd party software.

The libraries STL (shipped with any compiler) and BOOST are essential to all components (i.e. libCGAL,
libCGAL Core, libCGAL imageIO, libCGAL Qt3 and libCGAL Qt4).

3.8.1 Standard Template Library (STL)

CGAL heavily uses the STL, and in particular adopted many of its design ideas. You can find online
documentation for the STL at various web sites, for instance, http://www.sgi.com/tech/stl/, http://
www.cplusplus.com/reference/, or http://msdn.microsoft.com/en-us/library/1fe2x6kt(VS.100)
.aspx.

15CGAL Core is not part of CGAL, it is a custom version the CORE library distributed by CGAL for the user convenience and it has it’s
own license.
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The STL comes with the compiler, so there is nothing to install.

3.8.2 BOOST

The BOOST libraries are a set of portable C++ source libraries. Most of BOOST libraries are header-only, but a
few of them need to be compiled or installed as binaries.

CGAL requires the BOOST libraries. In particular the header files and the threading library (Boost.Thread and
Boost.System binaries). Version 1.39 (or higher) are needed.

On Windows, as auto-linking is used, you also need the binaries of Boost.Serialization and
Boost.DateTime, but the dependency is artificial and used only at link-time: the CGAL libraries do not depend
on the DLL’s of those two libraries.

In CGAL some demos and examples depend on Boost.Program options.

In case the BOOST libraries are not installed on your system already, you can obtain
them from http://www.boost.org/. For Windows you can download an installer from
http://www.boostpro.com/download/. Since Boost.Thread is required, make sure to either install
the precompiled libraries for your compiler or build libboost-thread and libboost-system.

As on Windows there is no canonical directory for where to find BOOST, we recommend that you define the
environment variable BOOST ROOT and set it to where you have installed BOOST, e.g., C:\boost\boost_1_
41_0.

3.8.3 GMP and MPFR

The components libCGAL, libCGAL Core, libCGAL Qt3 and libCGAL Qt4 require GMP and MPFR which
are libraries for multi precision integers and rational numbers, and for multi precision floating point numbers.

CGAL combines floating point arithmetic with exact arithmetic, in order to be efficient and reliable. CGAL has
a built-in number type for that, but GMP and MPFR provide a faster solution, and we recommend to use them.

Having GMP version 4.2 or higher and MPFR version 2.2.1 or higher installed is recommended. These libraries
can be obtained from http://gmplib.org/ and http://www.mpfr.org/, respectively.

As Visual C++ is not properly supported by the GMP and MPFR projects, we provide precompiled versions of
GMP and MPFR, which can be downloaded with the installer CGAL-4.1-Setup.exe.

3.8.4 ZLIB

ZLIB is a data compression library, and is essential for the component libCGAL ImageIO.

In CGAL this library is used in the examples of the Surface Mesh Generation (Page ??) package.

If it is not already on your system, for instance, on Windows, you can download it from
http://www.zlib.net/.
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3.8.5 OPENGL

OPENGL (Open Graphics Library) provides an API for applications that produce 2D and 3D computer graphics.

In CGAL the library is essential for the components libCGAL Qt3 and libCGAL Qt4, as well as libC-
GAL ImageIO and for various demos.

Typically, OPENGL is preinstalled on systems; if not, it can be downloaded from http://www.opengl.org/.

3.8.6 QT3 and QT4

Qt is a cross-platform application and UI framework.

The component libCGAL Qt3 requires QT3 installed on your system, while the component libCGAL Qt4 re-
quires QT4 installed on your system. In case QT is not yet installed on your system, you can download it from
http://qt.nokia.com/.

Older demos of CGALuse libCGAL Qt3 and QT3, while newer and newly developed demos require libC-
GAL Qt4 and QT4.

Having QT4 version 4.3.0 or higher is recommended.

3.9 CGAL Examples and Demos

CGAL is distributed with a large collection of examples and demos. By default, these are not configured along
with the CGAL libraries, unless you set the variables WITH examples=ON and/or WITH demos=ON.

Nevertheless, even when configured with CGAL, they are not automatically built along with the libraries. You
must build the examples or demos targets (or IDE projects) explicitly.

If you do not plan to compile any demos, you might skip some of the essential libraries (as QT or OPENGL), as
the corresponding CGAL-libraries are not linked. But for your own demos you might need these CGAL-libraries.

3.10 Optional Third Party Libraries

Optional 3rd party software can be used by CGAL for various reasons: Usually certain optional libraries are
required to build examples and demos shipped with CGAL or to build your own project using CGAL. Another
reason is to speed up basic tasks. In order to support these goals, all optional libraries can be prepared to be
used with CGAL while configuring CGAL, just in the same way as essential libraries are configured. Whenever
building an example or a demo (or your own executable), these preconfigured libraries are available when using
CGAL.

3.10.1 LEDA

LEDA is a library of efficient data structures and algorithms. Like CORE, LEDA offers a real number data type.
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In CGAL this library is optional, and its number types can be used as an alternative to GMP, MPFR, and CORE.

Free and commercial editions of LEDA are available from http://www.algorithmic-solutions.com/leda/index.html.

3.10.2 MPFI

MPFI provide arbitrary precision interval arithmetic with intervals represented using MPFR reliable floating-
point numbers. It is based on the GMP library and on the MPFR library. In the setting of CGAL it is mainly used
in sync with Rs. The library is optional and needed in certain algebraic kernels.

MPFI can be downloaded from http://mpfi.gforge.inria.fr/. Version 1.4 or higher is recommended.

3.10.3 Rs and Rs3

Rs (Real Solutions) is devoted to the study of the real roots of polynomial systems with a finite number of
complex roots (including univariate polynomials).

In CGAL, Rs is used by one model of the Algebraic Kernel (Page ??).

Rs is freely distributable for non-commercial use. You can download it from http://vegas.loria.fr/rs/.
The library Rs needs MPFI, which can be downloaded from http://mpfi.gforge.inria.fr/. Version 1.4 or
higher is recommended.

The successor of Rs is called Rs3. It less restrictive when it comes to licencing and also contains improved and
more efficient interfaces. Mainly parts in CGAL’s algebraic kernel require Rs3.

3.10.4 NTL

NTL provides data structures and algorithms for signed, arbitrary length integers, and for vectors, matrices, and
polynomials over the integers and over finite fields. The optional library NTL is used by CGAL to speed up
operations of the Polynomial package, such as GCDs. It is recommended to install NTL with support from
GMP.

NTL can be downloaded from http://www.shoup.net/ntl/. Version 5.1 or higher is recommended.

3.10.5 EIGEN

EIGEN is a C++ template library for linear algebra. EIGEN supports all matrix sizes, various matrix decomposi-
tion methods and sparse linear solvers.

In CGAL, EIGEN provides sparse linear solvers in the Surface Reconstruction from Point Sets (Page ??) and the
Planar Parameterization of Triangulated Surface Meshes (Page ??) packages.

In addition, EIGEN also provides singular value decomposition for the Estimation of Local Differential Proper-
ties (Page ??) and the Approximation of Ridges and Umbilics (Page ??) packages.

The EIGEN web site is http://eigen.tuxfamily.org.
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3.10.6 libQGLViewer

libQGLViewer is a 3D widget based on QT 4’s QGLWidget.

In CGAL some 3D demos are based on libQGLViewer.

It can be downloaded from http://www.libqglviewer.com/.

3.10.7 COIN3D

COIN3D is an implementation of Open Inventor.

In CGAL, COIN3D is used in the demo of the Kinetic Data Structures (Page ??) package.

You can download it from http://www.coin3d.org/.

3.10.8 ESTBL

The ESTBL (Easy Structural Biology Template Library) is a library that allows the handling of PDB data.

In CGAL the ESTBL is used in an example of the 3D Skin Surface Meshing (Page ??) package.

It can be downloaded from http://esbtl.sourceforge.net/.

3.11 Building CGAL

The results of a successful configuration are build files that control the build step. The nature of the build files
depends on the generator used during configuration, but in all cases they contain several targets, one per library,
and a default global target corresponding to all the libraries.

For example, in a UNIX-like environment the default generator produces makefiles. You can use the make
command-line tool for the succeeding build step as follows:

cd CGAL-4.1

# build all the selected libraries at once

make

The resulting libraries are placed in the subdirectory lib under <CMAKE BINARY DIR> (which is CGAL-4.1 in
case you run an in-source-configuration).

With generators other than UNIX Makefiles the resulting build files are solution and project files which should
be launched in an IDE, such as Visual Studio or KDevelop3. They will contain the targets described above,
which you can manually build as with any other solution/project within your IDE.
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Alternatively, you can build it with the command line version of the VISUAL STUDIO IDE:

devenv CGAL.sln /Build Debug

The ”Debug” argument is needed because CMake creates solution files for all four configurations, and you need
to explicitly choose one when building (the other choices are Release, RelWithDebInfo and MinSizeRel).

advanced

The build files produced by CMake are autoconfigured. That is, if you change any of the dependencies, the build
step automatically goes all the way back to the configuration step. This way, once the target has been configured
the very first time by invoking cmake, you don’t necessarily need to invoke cmake again. Rebuilding will call
itself cmake and re-generate the build file whenever needed. Keep this in mind if you configure CGAL for the
Visual Studio IDE since a build could then change the solution/project file in-place and VS will prompt you to
reload it.

advanced

If you have turned on the configuration of examples (-DWITH examples=ON) and/or demos (-DWITH demos=ON),
there will be additional targets named examples and demos, plus one target for each example and each demo
in the build files. None of these targets are included by default, so you need to build them explicitly after the
CGAL libraries have been successfully built. The targets examples and demos include themselves all the targets
for examples and demos respectively.

# build all examples at once
make examples

# build all demos at once
make demos

# build only the Straight Skeleton demo
make Straight_skeleton_2_demo

advanced

When using UNIX Makefiles you can find out the exact name of the example or demo target of a particular
package by typing make help | grep <package>.

advanced

3.12 Installing CGAL

On many platforms, library pieces such as headers, docs and binaries are expected to be placed in specific
locations. A typical example being /usr/include and /usr/lib on UNIX-like operating systems or C:/
Program Files/ on Windows. The process of placing or copying the library elements into its standard location
is sometimes referred to as Installation and it is a postprocessing step after the build step.
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CMake carries out the installation by producing a build target named install. The following example shows a
typical session from configuration to installation in a UNIX-like environment:

cd CGAL-4.1

cmake . # configure
make # compile
make install # install

If you use a generator that produces IDE files (for Visual Studio for instance) there will be an optional INSTALL
project, which you will be able to “build” to execute the installation step.

advanced

The files are copied into a directory tree relative to the installation directory determined by the CMake variable
CMAKE INSTALL PREFIX. This variable defaults to /usr/local under UNIX-like operating systems and C:\
Program Files under Windows. If you want to install to a different location, you must override that CMake
variable explicitly at the configuration time and not when executing the install step.

advanced

The file CGALConfig.cmake is installed by default in $CMAKE INSTALLED PREFIX/lib/CGAL-4.1.

3.13 Example Configuration

Below is an example output on a linux machine with g++4.4 installed, using CMake 2.8.5, and the following
command-line call to cmake:

cmake -DWITH_examples=OFF -DWITH_demos=OFF -DCMAKE_BUILD_TYPE=Release
/path/to/unpacked/CGAL-tarball/

-- The CXX compiler identification is GNU
-- The C compiler identification is GNU
-- Check for working CXX compiler: /usr/bin/g++-4.4
-- Check for working CXX compiler: /usr/bin/g++-4.4 -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Check for working C compiler: /usr/bin/gcc-4.4
-- Check for working C compiler: /usr/bin/gcc-4.4 -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
== Setting paths ==
== Build CGAL from release: CGAL-4.1 ==
-- Packagenames: CGAL-4.1
== Setting paths (DONE) ==

== Generate version files ==
-- CGAL_MAJOR_VERSION=4
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-- CGAL_MINOR_VERSION=1
-- CGAL_BUGFIX_VERSION=0
-- CGAL_SONAME_VERSION=10
-- CGAL_SOVERSION =10.0.0
-- CGAL_REFERENCE_CACHE_DIR=
-- Building shared libraries
-- Targetting Unix Makefiles
-- Using /usr/bin/g++-4.4 compiler.
-- USING CMake version: 2.8.5
-- System: Linux
-- USING GCC_VERSION = ’4.4.5’
-- Using gcc version 4 or later. Adding -frounding-math
== Generate version files (DONE) ==

== Detect external libraries ==
-- Build type: Release
-- USING CXXFLAGS = ’ -frounding-math -O3 -DNDEBUG’
-- USING LDFLAGS = ’ ’
-- External libraries supported: GMP;GMPXX;MPFR;zlib;OpenGL;LEDA;MPFI;RS;RS3;OpenNL;TAUCS;EIGEN3;BLAS;LAPACK;QGLViewer;ESBTL;NTL
-- Preconfiguring library: GMP ...
-- GMP has been preconfigured:
-- CGAL_UseGMP-file:
-- GMP include: /usr/include/
-- GMP libraries: /usr/lib/libgmp.so
-- GMP definitions:
-- USING GMP_VERSION = ’4.3.2’
-- Preconfiguring library: GMPXX ...
-- GMPXX has been preconfigured:
-- CGAL_UseGMPXX-file:
-- GMPXX include: /usr/include
-- GMPXX libraries: /usr/lib/libgmpxx.so
-- GMPXX definitions:
-- Preconfiguring library: MPFR ...
-- MPFR has been preconfigured:
-- CGAL_UseMPFR-file:
-- MPFR include: /usr/include/
-- MPFR libraries: /usr/lib/libmpfr.so
-- MPFR definitions:
-- USING MPFR_VERSION = ’3.0.0’
-- Boost version: 1.39.0
-- Found the following Boost libraries:
-- thread
-- Boost include: /usr/include/boost_1_39_0/include/boost-1_39
-- Boost libraries: /usr/lib/libboost_thread-mt.so;pthread
-- Boost definitions:
-- USING BOOST_VERSION = ’1.39.0’
== Detect external libraries (DONE) ==

== Write compiler_config.h ==
-- Performing Test CGAL_CFG_ARRAY_MEMBER_INITIALIZATION_BUG - Success
-- Performing Test CGAL_CFG_DENORMALS_COMPILE_BUG - Success
-- Performing Test CGAL_CFG_FPU_ROUNDING_MODE_UNWINDING_VC_BUG - Success
-- Performing Test CGAL_CFG_IEEE_754_BUG - Success
-- Performing Test CGAL_CFG_ISTREAM_INT_BUG - Success
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-- Performing Test CGAL_CFG_LONGNAME_BUG - Success
-- Performing Test CGAL_CFG_MATCHING_BUG_5 - Success
-- Performing Test CGAL_CFG_MATCHING_BUG_6 - Success
-- Performing Test CGAL_CFG_NESTED_CLASS_FRIEND_DECLARATION_BUG - Success
-- Performing Test CGAL_CFG_NO_CPP0X_ARRAY - Failed
-- Performing Test CGAL_CFG_NO_CPP0X_AUTO - Failed
-- Performing Test CGAL_CFG_NO_CPP0X_COPY_N - Failed
-- Performing Test CGAL_CFG_NO_CPP0X_DECLTYPE - Failed
-- Performing Test CGAL_CFG_NO_CPP0X_DEFAULT_TEMPLATE_ARGUMENTS_FOR_FUNCTION_TEMPLATES - Failed
-- Performing Test CGAL_CFG_NO_CPP0X_DELEGATING_CONSTRUCTORS - Failed
-- Performing Test CGAL_CFG_NO_CPP0X_DELETED_AND_DEFAULT_FUNCTIONS - Success
-- Performing Test CGAL_CFG_NO_CPP0X_INITIALIZER_LISTS - Failed
-- Performing Test CGAL_CFG_NO_CPP0X_ISFINITE - Success
-- Performing Test CGAL_CFG_NO_CPP0X_LAMBDAS - Failed
-- Performing Test CGAL_CFG_NO_CPP0X_LONG_LONG - Success
-- Performing Test CGAL_CFG_NO_CPP0X_NEXT_PREV - Failed
-- Performing Test CGAL_CFG_NO_CPP0X_RVALUE_REFERENCE - Failed
-- Performing Test CGAL_CFG_NO_CPP0X_STATIC_ASSERT - Failed
-- Performing Test CGAL_CFG_NO_CPP0X_TUPLE - Failed
-- Performing Test CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES - Failed
-- Performing Test CGAL_CFG_NO_LIMITS - Success
-- Performing Test CGAL_CFG_NO_LOGICAL_OPERATORS_ALTERNATIVES - Success
-- Performing Test CGAL_CFG_NO_MESSAGE_PRAGMA_BUG - Success
-- Performing Test CGAL_CFG_NO_NEXTAFTER - Success
-- Performing Test CGAL_CFG_NO_STATEMENT_EXPRESSIONS - Success
-- Performing Test CGAL_CFG_NO_STL - Success
-- Performing Test CGAL_CFG_NO_TR1_ARRAY - Success
-- Performing Test CGAL_CFG_NO_TR1_TUPLE - Success
-- Performing Test CGAL_CFG_NO_WARNING_CPP_DIRECTIVE_BUG - Success
-- Performing Test CGAL_CFG_NUMERIC_LIMITS_BUG - Success
-- Performing Test CGAL_CFG_OUTOFLINE_MEMBER_DEFINITION_BUG - Success
-- Performing Test CGAL_CFG_TEMPLATE_IN_DEFAULT_PARAMETER_BUG - Success
-- Performing Test CGAL_CFG_TYPENAME_BEFORE_DEFAULT_ARGUMENT_BUG - Success
-- Performing Test CGAL_CFG_USING_BASE_MEMBER_BUG_2 - Success
== Write compiler_config.h (DONE) ==

== Generating build files ==
-- Configure libCGAL
-- GMP include: /usr/include/
-- GMP definitions:
-- GMP libraries: /usr/lib/libgmp.so
-- Configured GMP in standard way
-- MPFR include: /usr/include/
-- MPFR definitions:
-- MPFR libraries: /usr/lib/libmpfr.so
-- Configured MPFR in standard way
-- libCGAL is configured
-- Sources for CGAL component library ’Core’ detected
-- Configure libCGALCore
-- GMP include: /usr/include/
-- GMP definitions:
-- GMP libraries: /usr/lib/libgmp.so
-- Configured GMP in standard way
-- MPFR include: /usr/include/
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-- MPFR definitions:
-- MPFR libraries: /usr/lib/libmpfr.so
-- Configured MPFR in standard way
-- libCGALCore is configured
-- Sources for CGAL component library ’Qt3’ detected
-- Sources for CGAL component library ’Qt4’ detected
-- Configure libCGALQt4
-- Looking for Q_WS_X11
-- Looking for Q_WS_X11 - found
-- Looking for Q_WS_WIN
-- Looking for Q_WS_WIN - not found.
-- Looking for Q_WS_QWS
-- Looking for Q_WS_QWS - not found.
-- Looking for Q_WS_MAC
-- Looking for Q_WS_MAC - not found.
-- Looking for XOpenDisplay in /usr/lib/libX11.so;/usr/lib/libXext.so
-- Looking for XOpenDisplay in /usr/lib/libX11.so;/usr/lib/libXext.so - found
-- Looking for gethostbyname
-- Looking for gethostbyname - found
-- Looking for connect
-- Looking for connect - found
-- Looking for remove
-- Looking for remove - found
-- Looking for shmat
-- Looking for shmat - found
-- Looking for IceConnectionNumber in ICE
-- Looking for IceConnectionNumber in ICE - found
-- Found X11: /usr/lib/libX11.so
-- USING QT4_VERSION = ’4.6.3’
-- OpenGL include: /usr/include
-- OpenGL libraries: /usr/lib/libGLU.so;/usr/lib/libGL.so;/usr/lib/libSM.so;/usr/lib/libICE.so;/usr/lib/libX11.so;/usr/lib/libXext.so
-- OpenGL definitions:
-- Qt4 include: /usr/include/qt4
-- Qt4 libraries: /usr/lib/libQtOpenGL.so;/usr/lib/libQtGui.so;/usr/lib/libQtCore.so
-- Qt4 definitions:
-- moc executable: /usr/bin/moc-qt4
-- uic executable: /usr/bin/uic-qt4
-- GMP include: /usr/include/
-- GMP definitions:
-- GMP libraries: /usr/lib/libgmp.so
-- Configured GMP in standard way
-- MPFR include: /usr/include/
-- MPFR definitions:
-- MPFR libraries: /usr/lib/libmpfr.so
-- Configured MPFR in standard way
-- libCGALQt4 is configured
-- Sources for CGAL component library ’ImageIO’ detected
-- Configure libCGALImageIO
-- Found OpenGL: /usr/lib/libGL.so
-- Found ZLIB: /usr/lib/libz.so (found version "1.2.3.4")
-- OpenGL include: /usr/include
-- OpenGL libraries: /usr/lib/libGLU.so;/usr/lib/libGL.so;/usr/lib/libSM.so;/usr/lib/libICE.so;/usr/lib/libX11.so;/usr/lib/libXext.so
-- USING ZLIB_VERSION = ’1.2.3.4’
-- libCGALImageIO is configured
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-- Sources for CGAL component libraries ’CGAL;Core;ImageIO;Qt3;Qt4’ detected
== Generating build files (DONE) ==

-- Configuring done
-- Generating done
-- Build files have been written to: /home/user/CGAL/4.1/

3.14 Multiple Variants of makefiles (out-of-source build)

While you can choose between release or debug builds, and shared or static libraries, it is not possible to generate
different variants during a single configuration. You need to run CMake in a different directory for each variant
you are interested in, each with its own selection of configuration parameters.

CMake stores the resulting makefiles and project files, along with several temporary and auxiliary files such as
the variables cache, in the directory where it is executed, called CMAKE BINARY DIR, but it takes the source files
and configuration scripts from CMAKE SOURCE DIR.

The binary and source directories do not need to be the same. Thus, you can configure multiple variants by
creating a distinct directory for each configuration and by running CMake from there. This is known in CMake
terminology as out-of-source configuration, as opposite to an in-source configuration, as showed in the previous
sections.

You can, for example, generate subdirectories CGAL-4.1/cmake/platforms/debug and
CGAL-4.1/cmake/platforms/release for two configurations, respectively:

mkdir CGAL-4.1/cmake/platforms/debug
cd CGAL-4.1/cmake/platforms/debug
cmake -DCMAKE_BUILD_TYPE=Debug ../../..

mkdir CGAL-4.1/cmake/platforms/release
cd CGAL-4.1/cmake/platforms/release
cmake -DCMAKE_BUILD_TYPE=Release ../../..

3.15 Configuring and Building Programs Using CGAL

Ideally, configuring and compiling a demo/example/program amounts to

cd CGAL-4.1/examples/Straight_skeleton_2
cmake -DCGAL_DIR=$HOME/CGAL-4.1 .
make

In this ideal world, as for all shipped examples and demos of CGAL, the required CMakeLists.txt is already
provided.
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CMake can also be used to configure and build user programs via such CMake-scripts. In this less ideal world,
one has to provide the CMakeLists.txt script either manually, or with the help of a shell-script that is intro-
duced below.

For a user program executable.cpp, the ideal world looks like this:

cd /path/to/program
cgal_create_CMakeLists -s executable
cmake -DCGAL_DIR=$HOME/CGAL-4.1 .
make

In both examples we specify the CGAL DIR: During configuration of the CGAL libraries a file named
CGALConfig.cmake is generated in CGAL’s root directory (in contrast to CGAL’s source directory that has
been used for installation). This file contains the definitions of several CMake variable that summarize the con-
figuration of CGAL. In order to configure a program, you need to indicate the location of that config file in the
CMake variable CGAL DIR (as indicated in the example above). CGAL DIR can also be an environment variable.
Setting CGAL DIR makes particular sense if having multiple out-of-source builds of CGAL as in Section 3.14.

If you have installed CGAL, CGAL DIR must afterwards be set to $CMAKE INSTALLED PREFIX/lib/CGAL. Note
that CGAL is recommended to be installed in release mode when using it to build programs.

3.15.1 Creating a cmake script for a program using CGAL

For compiling a non-shipped program, it is recommended, to also rely on a CMake-supported configuration
using a CMakeLists.txt used for configuration.

Use the following Bourne-shell script for programs that are relatively simple to configure:

cgal create CMakeLists

The Bourne-shell script cgal create CMakeLists.txt resides in the CGAL-4.1/scripts directory.
It can be used to create CMakeLists.txt files for compiling CGAL applications. Executing
cgal create CMakeLists.txt in an application directory creates a CMakeLists.txt containing rules to build
the contained application(s). Three command line options determine details of the configuration.

-s source If this parameter is given the script will create a single executable for ’source’ linked with com-
pilations of all other source files (*.cpp). This behaviour is usually needed for (graphical) demos.
If the parameter is not given, the script creates one executable for each given source file.

-c com1:com2:... Lists components (“com1”, “com2”) of CGAL to which the executable(s) should be
linked. Valid components are CGAL’s libraries (i.e. “Core”, “ImageIO”, “Qt3” and “Qt4”; note that it
only make sense to either pick “Qt3” or “Qt4”) and all preconfigured 3rd party software, such as “MPFI”
or “RS3” ). An example is -c Core:GMP:RS3:MPFI

-b boost1:boost2:... Lists components (“boost1”, “boost2”) of BOOST to which the executable(s)
should be linked. Valid options are, for instance, “filesystem” or “program options”.

This options should suffice to create CMakeLists.txt script for most directories containing programs. How-
ever, in some special cases, it might still be required to create the script manually, for instance, if some source
files/executables need a different linking than other source files.
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deprecated

cgal create cmake script

For backward-compatibility we still provide the Bourne-shell script cgal create cmake script that is con-
tained in the CGAL-4.1/scripts directory. It can be used to create CMakeLists.txt files for compiling CGAL
applications. Executing cgal create cmake script in an application directory creates a CMakeLists.txt
containing rules for every *.cpp file there. The script is deprecated, as it only works for applications with a
single course file that only need libCGAL and libCGAL Core.

deprecated

Such a shell-script simply creates a CMake script. Processing it with CMake, searches for CGAL using
find package. If found, the variable CGAL USE FILE is set to a compilation environment CMake file. In-
cluding this file within a CMake script sets up include paths and libraries to link with CGAL and essential
third party libraries. Beyond, find package can demand for COMPONENTS of CGAL, that is, all CGAL libraries
libCGAL Core (“Core”), libCGAL imageIO (“ImageIO”) , libCGAL Qt3 (“Qt3”) and libCGAL Qt4 (“Qt4”)
or optional 3rd party software such as “MPFI” or “RS3”. A user is free to create the CMakeLists.txt without
calling the script (manual creation).

3.15.2 Custom flags in the programs using CGAL

Normally, programs linked with CGAL must be compiled with the same flags used by the compilation of CGAL
libraries. For this reason, the very first time a program is configured, all the flags given by the CMake variables
CMAKE * FLAGS are locked in the sense that the values recorded in CGALConfig.cmake are used to override any
values given by CMake itself or yourself.

This does not apply to the additional flags that can be given via CGAL * FLAGS.

Such inherited values are then recorded in the current CMake cache for the program. The flags are then unlocked
in the sense that at any subsequent configuration you can provide your own flags and this time they will not be
overridden.

When using the interactive cmake-gui the first press on Configure unlocks the flags, so that you can edit them
as needed.

advanced

The locking of flags is controlled by the variable CGAL DONT OVERRIDE CMAKE FLAGS which starts out FALSE
and is toggled right after the flags have been loaded from CGALConfig.cmake.

If you use the command line tool you can specify flags directly by setting the controlling variable right up front:

cd CGAL-4.1

cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_FLAGS=-g .

cd CGAL-4.1/examples/Straight_skeleton_2

cmake -DCGAL_DIR=CGAL-4.1 -DCMAKE_BUILD_TYPE=Debug -DCMAKE_CXX_FLAGS=-O2 -DCGAL_DONT_OVERRIDE_CMAKE_FLAGS=TRUE .
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advanced

3.16 Summary of CGAL’s Configuration Variables

Most configuration variables are not environment variables but CMake variables. They are given in the com-
mand line to CMake via the -D option, or passed from the interactive interface of cmake-gui. Unless indicated
differently, all the variables summarized below are CMake variables.

3.16.1 Component selection

The following boolean variables indicate which CGAL components to configure and build. Their values can be
ON or OFF.

Variable Default value

WITH examples OFF

WITH demos OFF

WITH CGAL Core ON

WITH CGAL Qt3 ON

WITH CGAL Qt4 ON

WITH CGAL ImageIO ON

3.16.2 Compiler and Linker Flags

The following variables specify compiler and linker flags. Each variable holds a space-separated list of
command-line switches for the compiler and linker and their default values are automatically defined by CMake
based on the target platform.

Have in mind that these variables specify a list of flags, not just one single flag. If you provide your own
definition for a variable, you will entirely override the list of flags chosen by CMake for that particular variable.

The variables that correspond to both debug and release builds are always used in conjunction with those for the
specific build type.

Program Both Debug and Release Release only Debug Only

C++ Compiler CMAKE CXX FLAGS CMAKE CXX FLAGS RELEASE CMAKE CXX FLAGS DEBUG

Linker (shared libs) CMAKE SHARED LINKER FLAGS CMAKE SHARED LINKER FLAGS RELEASE CMAKE SHARED LINKER FLAGS DEBUG

Linker (static libs) CMAKE MODULE LINKER FLAGS CMAKE MODULE LINKER FLAGS RELEASE CMAKE MODULE LINKER FLAGS DEBUG

Linker (programs) CMAKE EXE LINKER FLAGS CMAKE EXE LINKER FLAGS RELEASE CMAKE EXE LINKER FLAGS DEBUG

Additional Compiler and Linker Flags

The following variables can be used to add flags without overriding the ones defined by cmake.
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Program Both Debug and Release Release only Debug Only

C++ Compiler CGAL CXX FLAGS CGAL CXX FLAGS RELEASE CGAL CXX FLAGS DEBUG

Linker (shared libs) CGAL SHARED LINKER FLAGS CGAL SHARED LINKER FLAGS RELEASE CGAL SHARED LINKER FLAGS DEBUG

Linker (static libs) CGAL MODULE LINKER FLAGS CGAL MODULE LINKER FLAGS RELEASE CGAL MODULE LINKER FLAGS DEBUG

Linker (programs) CGAL EXE LINKER FLAGS CGAL EXE LINKER FLAGS RELEASE CGAL EXE LINKER FLAGS DEBUG

3.16.3 Miscellaneous Variables

Variable Description Type Default value

CMAKE BUILD TYPE Indicates type of build. Possible values are ’Debug’ or ’Release’ CMake Release

CMAKE CXX COMPILER Full-path to the executable corresponding to the C++ compiler to use. CMake platform-dependent

CXX Idem Environment Idem

Variables used only when building programs (such as demos or examples)

Variable Description Type Default value

CGAL DIR Full-path to the binary directory where CGAL was configured Either CMake or Environment none

3.16.4 Variables providing information about 3rd-party libraries

The following variables provide information about the availability and location of the 3rd party libraries used
by CGAL. CMake automatically searches for dependencies so you need to specify these variables if CMake was
unable to locate something. This is indicated by a value ending in NOTFOUND.

Since 3rd-party libraries are system wide, many of the CMake variables listed below can alternatively be given
as similarly-named environment variables instead. Keep in mind that you must provide one or the other but
never both.

BOOST libraries

In most cases, if BOOST is not automatically found, setting the BOOST ROOT variable is enough. If it is not, you
can specify the header and library directories individually. You can also provide the full pathname to a specific
compiled library if it cannot be found in the library directory or its name is non-standard.

By default, when BOOST binary libraries are needed, the shared versions are used if present. You can set the
variable CGAL Boost USE STATIC LIBS to ON if you want to link with static versions explicitly.

On Windows, if you link with BOOST shared libraries, you must ensure that the .dll files are found by the
dynamic linker, at run time. For example, you can add the path to the BOOST .dll to the PATH environment
variable.
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Variable Description Type

BOOST ROOT16 Root directory of your BOOST installation Either CMake or Environment

Boost INCLUDE DIR Directory containing the boost/version.hpp file CMake

BOOST INCLUDEDIR Idem Environment

Boost LIBRARY DIRS Directory containing the compiled BOOST libraries CMake

BOOST LIBRARYDIR Idem Environment

Boost (xyz) LIBRARY RELEASE Full pathname to a release build of the compiled ’xyz’ BOOST library CMake

Boost (xyz) LIBRARY DEBUG Full pathname to a debug build of the compiled ’xyz’ BOOST library CMake

GMP and MPFR libraries

Under Windows, auto-linking is used, so only the directory containing the libraries is needed and you would
specify GMP|MPFR LIBRARY DIR rather than GMP|MPFR LIBRARIES. On the other hand, under Linux the actual
library filename is needed. Thus you would specify GMP|MPFR LIBRARIES. In no case you need to specify both.

CGAL uses both GMP and MPFR so both need to be supported. If either of them is unavailable the usage of
GMP and of MPFR will be disabled.

Variable Description Type

WITH GMP Indicates whether to search and use GMPMPFR or not CMake

GMP DIR Directory of GMP default installation Environment

GMP INCLUDE DIR Directory containing the gmp.h file CMake

GMP INC DIR Idem Environment

GMP LIBRARIES DIR Directory containing the compiled GMP library CMake

GMP LIB DIR Idem Environment

GMP LIBRARIES Full pathname of the compiled GMP library CMake

MPFR INCLUDE DIR Directory containing the mpfr.h file CMake

MPFR INC DIR Idem Environment

MPFR LIBRARIES DIR Directory containing the compiled MPFR library CMake

MPFR LIB DIR Idem Environment

MPFR LIBRARIES Full pathname of the compiled MPFR library CMake

Under Linux, the GMPXX is also searched for, and you may specify the following variables:

Variable Description Type

GMPXX DIR Directory of GMPXX default installation Environment

GMPXX INCLUDE DIR Directory containing the gmpxx.h file CMake

GMPXX LIBRARIES Full pathname of the compiled GMPXX library CMake

QT3 library

In most cases, if QT3 is not automatically found, setting the QTDIR environment variable is sufficient. If it is
not, you can specify the directory containing the header files and the full pathnames of the QT3 libraries.

16The environment variable can be spelled either BOOST ROOT or BOOSTROOT
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Variable Description Type

QTDIR Root directory of the QT3 library Environment

QT3 INCLUDE DIR Directory containing the qt.h file CMake

QT3 QT LIBRARY Full pathname to the qt library of QT3 CMake

QT3 QTMAIN LIBRARY Full pathname to the qtmain library of QT3 CMake

QT3 QASSISTANTCLIENT LIBRARY Full pathname to the qassistantclient library of QT3 CMake

QT3 MOC EXECUTABLE Full pathname to the moc executable of QT3 CMake

QT3 UIC EXECUTABLE Full pathname to the uic executable of QT3 CMake

QT4 library

The CMake scripts that search for QT4 can use the introspection feature of the tool qmake included in QT4
distributions. If QT4 is not automatically found, it is sufficient to set the PATH environment variable, so that
QT4 qmake tool is in the path, and before QT3 qmake if that one exists. One can alternatively set the CMake
variable QT QMAKE EXECUTABLE. The following variables should be then assigned automatically by CMake.

Variable Description Type

QT INCLUDE DIR Directory containing the QtCore/qglobal.h file CMake

QT LIBRARY DIR Directory containing the compiled QT4 libraries CMake

QT (xyz) LIBRARY Full pathname to the compiled ’xyz’ QT4 library17 CMake

QT QMAKE EXECUTABLE Full pathname to the qmake executable of QT4 CMake

QT MOC EXECUTABLE Full pathname to the moc executable of QT4 CMake

QT UIC EXECUTABLE Full pathname to the uic executable of QT4 CMake

LEDA library

When the LEDA libraries are not automatically found, yet they are installed on the system with base names ’leda’
and ’ledaD’ (for the release and debug versions resp.), it might be sufficient to just indicate the library directory
via the LEDA LIBRARY DIRS variable. If that doesn’t work because, for example, the names are different, you
can provide the full pathnames of each variant via LEDA LIBRARY RELEASE and LEDA LIBRARY DEBUG.

The variables specifying definitions and flags can be left undefined if they are not needed by LEDA.

17If both release and debug versions are available, this variable contains a list of the following form:
’optimized;<fullpath-to-release-lib>;debug;<fullpath-to-debug-lib>’, where the ’optimized’ and ’debug’ tags should
appear verbatim.
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Variable Description Type

WITH LEDA Indicates whether to search and use LEDA or not CMake

LEDA DIR Directory of LEDA default installation Environment

LEDA INCLUDE DIR Directory containing the file LEDA/system/basic.h CMake

LEDA LIBRARIES Directory containing the compiled LEDA libraries CMake

LEDA INC DIR Directory containing the file LEDA/system/basic.h Environment

LEDA LIB DIR Directory containing the compiled LEDA libraries Environment

LEDA LIBRARY RELEASE Full pathname to a release build of the LEDA library Either CMake

LEDA LIBRARY DEBUG Full pathname to a debug build of the LEDA library Either CMake

LEDA DEFINITIONS Preprocessor definitions Either CMake

LEDA CXX FLAGS Compiler flags Either CMake

LEDA LINKER FLAGS Linker flags Either CMake

MPFI library

CGAL provides a number type based on this library, but the CGAL library itself does not depend on MPFI. This
means that this library must be configured when compiling an application that uses the above number type.

When MPFI files are not on the standard path, the locations of the headers and library files must be specified by
using environment variables.

Variable Description Type

MPFI DIR Directory of MPFI default installation Environment

MPFI INCLUDE DIR Directory containing the mpfi.h file CMake

MPFI INC DIR Idem Environment

MPFI LIBRARIES DIR Directory containing the compiled MPFI library CMake

MPFI LIB DIR Idem Environment

MPFI LIBRARIES Full pathname of the compiled MPFI library CMake

Rs and Rs3 library

As said before, only the CGAL univariate algebraic kernel depends on the library Rs. As the algebraic kernel is
not compiled as a part of the CGAL library, this library is not detected nor configured at installation time.

CMake will try to find Rs in the standard header and library directories. When it is not automatically detected,
the locations of the headers and library files must be specified using environment variables.

Rs needs GMP 4.2 or later and MPFI 1.3.4 or later. The variables related to the latter library may also need to
be defined.
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Variable Description Type

RS DIR Directory of Rs default installation Environment

RS INCLUDE DIR Directory containing the rs exports.h file CMake

RS INC DIR Idem Environment

RS LIBRARIES DIR Directory containing the compiled Rs library CMake

RS LIB DIR Idem Environment

RS LIBRARIES Full pathname of the compiled Rs library CMake

Similar variables exist for Rs3.

Variable Description Type

RS3 DIR Directory of Rs3 default installation Environment

RS3 INCLUDE DIR Directory containing the rs exports.h file CMake

RS3 INC DIR Idem Environment

RS3 LIBRARIES DIR Directory containing the compiled Rs library CMake

RS3 LIB DIR Idem Environment

RS3 LIBRARIES Full pathname of the compiled Rs library CMake

NTL library

Some polynomial computations in CGAL’s algebraic kernel are speed up when NTL is available. As the al-
gebraic kernel is not compiled as a part of the CGAL library, this library is not detected nor configured at
installation time.

CMake will try to find NTL in the standard header and library directories. When it is not automatically detected,
the locations of the headers and library files must be specified using environment variables.

Variable Description Type

NTL DIR Directory of NTL default installation Environment

NTL INCLUDE DIR Directory containing the NTL/ZZX.h file CMake

NTL INC DIR Idem Environment

NTL LIBRARIES DIR Directory containing the compiled NTL library CMake

NTL LIB DIR Idem Environment

NTL LIBRARIES Full pathname of the compiled NTL library CMake

EIGEN library

EIGEN is a header-only template library. Only the directory containing the header files of EIGEN 3.1 (or greater)
is needed.

Variable Description Type

EIGEN3 DIR Directory of EIGEN default installation Environment

EIGEN3 INCLUDE DIR Directory containing the file signature of eigen3 matrix library CMake

EIGEN3 INC DIR Idem Environment
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QGLViewer library

Some demos require the GLViewer library.

In most cases, if QGLViewer is not automatically found, setting the QGLVIEWERROOT environment variable is
sufficient. If it is not, you can specify the directory containing the header files and the full pathnames of the
release and debug libraries

Variable Description Type

QGLVIEWERROOT Root directory of the QGLViewer library Environment

QGLVIEWER INCLUDE DIR Directory containing the QGLViewer/qglviewer.h file CMake

QGLVIEWER LIBRARY RELEASE Full pathname to a release build of the QGLViewer library CMake

QGLVIEWER LIBRARY DEBUG Full pathname to a debug build of the QGLViewer library CMake

ESBTL library

One skin surface example requires the ESBTL library in order to read PDB files.

If ESBTL is not automatically found, setting the ESBTL INC DIR environment variable is sufficient.

Variable Description Type

ESBTL DIR Directory of ESTBL default installation Environment

ESBTL INC DIR Directory containing the ESBTL/default.h file Environment

ESBTL INCLUDE DIR Directory containing the ESBTL/default.h file CMake

3.17 Compiler Workarounds

A number of boolean flags are used to workaround compiler bugs and limitations. They all start with the
prefix CGAL CFG. These flags are used to work around compiler bugs and limitations. For example, the flag
CGAL CFG NO CPP0X LONG LONG denotes that the compiler does not know the type long long.

For each installation a file <CGAL/compiler config.h> is defined, with the correct settings of all flags. This
file is generated automatically by CMake, and it is located in the include directory of where you run CMake.
For an in-source configuration this means CGAL-x.y/include.

The test programs used to generate the compiler config.h file can be found in config/testfiles. Both
compiler config.h and the test programs contain a short description of the problem. In case of trouble with
one of the CGAL CFG flags, it is a good idea to take a look at it.

The file CGAL/compiler config.h is included from <CGAL/config.h>. which is included by all CGAL header
files.

3.18 Compiler Optimizations

By default CMake generates makefiles for Release mode, with optimization flags switched on, and vcproj files
for Release and Debug modes.
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4.1 Introduction

CGAL is targeting towards exact computation with non-linear objects, in particular objects defined on algebraic
curves and surfaces. As a consequence types representing polynomials, algebraic extensions and finite fields
play a more important role in related implementations. This package has been introduced to stay abreast of
these changes. Since in particular polynomials must be supported by the introduced framework the package
avoids the term number type. Instead the package distinguishes between the algebraic structure of a type and
whether a type is embeddable on the real axis, or real embeddable for short. Moreover, the package introduces
the notion of interoperable types which allows an explicit handling of mixed operations.

4.2 Algebraic Structures

The algebraic structure concepts introduced within this section are motivated by their well known counterparts
in traditional algebra, but we also had to pay tribute to existing types and their restrictions. To keep the interface
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minimal, it was not desirable to cover all known algebraic structures, e.g., we did not introduce concepts for
such basic structures as groups or exceptional structures as skew fields.

IntegralDomainWithoutDivision

IntegralDomain

Field UniqueFactorizationDomain

FieldWithSqrt

FieldWithKthRoot

FieldWithRootOf

EuclideanRing

Figure 4.1: Concept Hierarchy of Algebraic Structures

Figure 4.1 shows the refinement relationship of the algebraic structure concepts. IntegralDomain, UniqueFac-
torizationDomain, EuclideanRing and Field correspond to the algebraic structures with the same name. Field-
WithSqrt, FieldWithKthRoot and FieldWithRootOf are fields that in addition are closed under the operations
’sqrt’, ’k-th root’ and ’real root of a polynomial’, respectively. The concept IntegralDomainWithoutDivision
also corresponds to integral domains in the algebraic sense, the distinction results from the fact that some im-
plementations of integral domains lack the (algebraically always well defined) integral division. Note that Field
refines IntegralDomain. This is because most ring-theoretic notions like greatest common divisors become triv-
ial for Fields. Hence we see Field as a refinement of IntegralDomain and not as a refinement of one of the more
advanced ring concepts. If an algorithm wants to rely on gcd or remainder computation, it is trying to do things
it should not do with a Field in the first place.

The main properties of an algebraic structure are collected in the class Algebraic structure traits. In particular
the (most refined) concept each concrete model AS fulfills is encoded in the tag Algebraic structure traits<AS>
::Algebraic category. An algebraic structure is at least Assignable, CopyConstructible, DefaultConstructible
and EqualityComparable. Moreover, we require that it is constructible from int. For ease of use and since their
semantic is sufficiently standard to presume their existence, the usual arithmetic and comparison operators are
required to be realized via C++ operator overloading. The division operator is reserved for division in fields. All
other unary (e.g., sqrt) and binary functions (e.g., gcd, div) must be models of the well known STL-concepts
AdaptableUnaryFunction or AdaptableBinaryFunction concept and local to the traits class (e.g., Algebraic
structure traits<AS>::Sqrt()(x)). This design allows us to profit from all parts in the STL and its programming
style and avoids the name-lookup and two-pass template compilation problems experienced with the old design
using overloaded functions. However, for ease of use and backward compatibility all functionality is also
accessible through global functions defined within namespace CGAL, e.g., CGAL::sqrt(x). This is realized
via function templates using the according functor of the traits class. For an overview see Section 4.8 in the
reference manual.
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4.2.1 Tags in Algebraic Structure Traits

Algebraic Category

For a type AS, Algebraic structure traits<AS> provides several tags. The most important tag is the Algebraic
category tag, which indicates the most refined algebraic concept the type AS fulfills. The tag is one of;
Integral domain without division tag, Integral domain tag, Field tag, Field with sqrt tag, Field with kth
root tag, Field with root of tag, Unique factorization domain tag, Euclidean ring tag, or even Null tag in
case the type is not a model of an algebraic structure concept. The tags are derived from each other such that
they reflect the hierarchy of the algebraic structure concept, e.g., Field with sqrt tag is derived from Field tag.

Exact and Numerical Sensitive

Moreover, Algebraic structure traits<AS> provides the tags Is exact and Is numerical sensitive, which are both
Boolean tags.
An algebraic structure is considered exact, if all operations required by its concept are computed such that a
comparison of two algebraic expressions is always correct.
An algebraic structure is considered as numerically sensitive, if the performance of the type is sensitive to the
condition number of an algorithm. Note that there is really a difference among these two notions, e.g., the
fundamental type int is not numerical sensitive but considered inexact due to overflow. Conversely, types as
leda real or CORE::Expr are exact but sensitive to numerical issues due to the internal use of multi precision
floating point arithmetic. We expect that Is numerical sensitive is used for dispatching of algorithms, while
Is exact is useful to enable assertions that can be check for exact types only.

Tags are very useful to dispatch between alternative implementations. The following example illustrates a
dispatch for Fields using overloaded functions. The example only needs two overloads since the algebraic
category tags reflect the algebraic structure hierarchy.� �
#include <CGAL/basic.h>
#include <CGAL/IO/io.h>
#include <CGAL/Algebraic_structure_traits.h>

template< typename NT > NT unit_part(const NT& x);
template< typename NT >
NT unit_part_(const NT& x, CGAL::Field_tag);
template< typename NT >
NT unit_part_(const NT& x, CGAL::Integral_domain_without_division_tag);

template< typename NT >
NT unit_part(const NT& x){

// the unit part of 0 is defined as 1.
if (x == 0 ) return NT(1);

typedef CGAL::Algebraic_structure_traits<NT> AST;
typedef typename AST::Algebraic_category Algebraic_category;
return unit_part_(x,Algebraic_category());

}

template< typename NT >
NT unit_part_(const NT& x, CGAL::Integral_domain_without_division_tag){

// For many other types the only units are just -1 and +1.
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return NT(int(CGAL::sign(x)));
}

template< typename NT >
NT unit_part_(const NT& x, CGAL::Field_tag){

// For Fields every x != 0 is a unit.
// Therefore, every x != 0 is its own unit part.
return x;

}

int main(){
// Function call for a model of EuclideanRing, i.e. int.
std::cout<< "int: unit_part(-3 ): " << unit_part(-3 ) <<
std::endl;
// Function call for a model of FieldWithSqrt, i.e. double
std::cout<< "double: unit_part(-3.0): " << unit_part(-3.0) <<
std::endl;
return 0;

}

// Note that this is just an example
// This implementation for unit part won’t work for some types, e.g.,
// types that are not RealEmbeddable or types representing structures

that have
// more units than just -1 and +1. (e.g. MP_Float representing Z[1/2])
// From there Algebraic_structure_traits provides the functor Unit_part.� �
File: examples/Algebraic_foundations/algebraic_structure_dispatch.cpp

4.3 Real Embeddable

Most number types represent some subset of the real numbers. From those types we expect functionality to
compute the sign, absolute value or double approximations. In particular we can expect an order on such a type
that reflects the order along the real axis. All these properties are gathered in the concept RealComparable. The
concept is orthogonal to the algebraic structure concepts, i.e., it is possible that a type is a model of RealEm-
beddable only, since the type may just represent values on the real axis but does not provide any arithmetic
operations.

As for algebraic structures this concept is also traits class oriented. The main functionality related to RealEm-
beddable is gathered in the class Real embeddable traits. In particular, it porivdes the boolean tag Is real
embeddable indicating whether a type is a model of RealEmbeddable. The comparison operators are required
to be realized via C++ operator overloading. All unary functions (e.g. sign, to double) and binary functions
(e.g. compare ) are models of the STL-concepts AdaptableUnaryFunction and AdaptableBinaryFunction and
are local to Real embeddable traits.

In case a type is a model of IntegralDomainWithoutDivision and RealEmbeddable the number represented by
an object of this type is the same for arithmetic and comparison. It follows that the ring represented by this type
is a superset of the integers and a subset of the real numbers and hence has characteristic zero. In case the type
is a model of Field and RealEmbeddable it is a superset of the rational numbers.
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4.4 Real Number Types

Every CGAL Kernel comes with two real number types (number types embeddable into the real numbers). One
of them is a FieldNumberType, and the other a RingNumberType. The coordinates of the basic kernel objects
(points, vectors, etc.) come from one of these types (the FieldNumberType in case of Cartesian kernels, and the
RingNumberType for Homogeneous kernels).

The concept FieldNumberType combines the requirements of the concepts Field and RealEmbeddable, while
RingNumberType combines IntegralDomainWithoutDivision and RealEmbeddable. Algebraically, the real num-
ber types do not form distinct structures and are therefore not listed in the concept hierarchy of Figure 4.1.

4.5 Interoperability

This section introduces two concepts for interoperability of types, namely ImplicitInteroperable and ExplicitIn-
teroperable. While ExplicitInteroperable is the base concept, we start with ImplicitInteroperable since it is the
more intuitive one.

In general mixed operations are provided by overloaded operators and functions or just via implicit constructor
calls. This level of interoperability is reflected by the concept ImplicitInteroperable. However, within template
code the result type, or so called coercion type, of a mixed arithmetic operation may be unclear. Therefore,
the package introduces CGAL::Coercion traits giving access to the coercion type via CGAL::Coercion traits<
A,B>::Type for two interoperable types A and B.

Some trivial example are int and double with coercion type double or CGAL::Gmpz and CGAL::Gmpq with
coercion type CGAL::Gmpq. However, the coercion type is not necessarily one of the input types, e.g. the
coercion type of a polynomial with integer coefficients that is multiplied by a rational type is supposed to be a
polynomial with rational coefficients.

CGAL::Coercion traits is also required to provide a functor CGAL::Coercion traits<A,B>::Cast(), that converts
from an input type into the coercion type. This is in fact the core of the more basic concept ExplicitInteroperable.
ExplicitInteroperable has been introduced to cover more complex cases for which it is hard or impossible to
guarantee implicit interoperability. Note that this functor can be useful for ImplicitInteroperable types as well,
since it can be used to void redundant type conversions.

In case two types A and B are ExplicitInteroperable with coercion type C they are valid argument types for all
binary functors provided by Algebraic structure traits and Real embeddable traits of C. This is also true for
the according global functions.

4.5.1 Examples

The following example illustrates how two write code for ExplicitInteroperable types.� �
#include <CGAL/basic.h>
#include <CGAL/Coercion_traits.h>
#include <CGAL/IO/io.h>

// this is an implementation for ExplicitInteroperable types
// the result type is determined via Coercion_traits<A,B>
template <typename A, typename B>
typename CGAL::Coercion_traits<A,B>::Type
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binary_func(const A& a , const B& b){
typedef CGAL::Coercion_traits<A,B> CT;

// check for explicit interoperability
CGAL_static_assertion((CT::Are_explicit_interoperable::value));

// CT::Cast is used to to convert both types into the coercion type
typename CT::Cast cast;
// all operations are performed in the coercion type
return cast(a)*cast(b);

}

int main(){
// Function call for the interoperable types
std::cout<< binary_func(double(3), int(5)) << std::endl;
// Note that Coercion_traits is symmetric
std::cout<< binary_func(int(3), double(5)) << std::endl;
return 0;

}� �
File: examples/Algebraic_foundations/interoperable.cpp

The following example illustrates a dispatch for ImplicitInteroperable and ExplicitInteroperable types. The
binary function (that just multiplies its two arguments) is supposed to take two ExplicitInteroperable arguments.
For ImplicitInteroperable types a variant that avoids the explicit cast is selected.� �
#include <CGAL/basic.h>
#include <CGAL/Coercion_traits.h>
#include <CGAL/Quotient.h>
#include <CGAL/Sqrt_extension.h>
#include <CGAL/IO/io.h>

// this is the implementation for ExplicitInteroperable types
template <typename A, typename B>
typename CGAL::Coercion_traits<A,B>::Type
binary_function_(const A& a , const B& b, CGAL::Tag_false){

std::cout << "Call for ExplicitInteroperable types: " << std::endl;
typedef CGAL::Coercion_traits<A,B> CT;
typename CT::Cast cast;
return cast(a)*cast(b);

}

// this is the implementation for ImplicitInteroperable types
template <typename A, typename B>
typename CGAL::Coercion_traits<A,B>::Type
binary_function_(const A& a , const B& b, CGAL::Tag_true){

std::cout << "Call for ImpicitInteroperable types: " << std::endl;
return a*b;

}

// this function selects the correct implementation
template <typename A, typename B>
typename CGAL::Coercion_traits<A,B>::Type
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binary_func(const A& a , const B& b){
typedef CGAL::Coercion_traits<A,B> CT;
typedef typename CT::Are_implicit_interoperable
Are_implicit_interoperable;
return binary_function_(a,b,Are_implicit_interoperable());

}

int main(){
CGAL::set_pretty_mode(std::cout);

// Function call for ImplicitInteroperable types
std::cout<< binary_func(double(3), int(5)) << std::endl;

// Function call for ExplicitInteroperable types
CGAL::Quotient<int> rational(1,3); // == 1/3
CGAL::Sqrt_extension<int,int> extension(1,2,3); // == 1+2*sqrt(3)
CGAL::Sqrt_extension<CGAL::Quotient<int>,int> result =
binary_func(rational, extension);
std::cout<< result << std::endl;

return 0;
}� �
File: examples/Algebraic_foundations/implicit_interoperable_dispatch.cpp

4.6 Fractions

Beyond the need for performing algebraic operations on objects as a whole, there are also number types which
one would like to decompose into numerator and denominator. This does not only hold for rational numbers as
Quotient, Gmpq, mpq class or leda rational, but also for compound objects as Sqrt extension or Polynomial
which may decompose into a (scalar) denominator and a compound numerator with a simpler coefficient type
(e.g. integer instead of rational). Often operations can be performed faster on these denominator-free multiples.
In case a type is a Fraction the relevant functionality as well as the numerator and denominator type are provided
by CGAL::Fraction traits. In particular CGAL::Fraction traits provides a tag Is fraction that can be used for
dispatching.

A related class is CGAL::Rational traits which has been kept for backward compatibility reasons. However,
we recommend to use Fraction traits since it is more general and offers dispatching functionality.

4.6.1 Examples

The following example show a simple use of Fraction traits:� �
#include <CGAL/basic.h>
#include <CGAL/Fraction_traits.h>
#include <CGAL/IO/io.h>

#ifdef CGAL_USE_GMP
#include <CGAL/Gmpz.h>
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#include <CGAL/Gmpq.h>
int main(){

typedef CGAL::Fraction_traits<CGAL::Gmpq> FT;
typedef FT::Numerator_type Numerator_type;
typedef FT::Denominator_type Denominator_type;

CGAL_static_assertion((boost::is_same<Numerator_type,CGAL::Gmpz>::value));

CGAL_static_assertion((boost::is_same<Denominator_type,CGAL::Gmpz>::value));

Numerator_type numerator;
Denominator_type denominator;
CGAL::Gmpq fraction(4,5);
FT::Decompose()(fraction,numerator,denominator);

CGAL::set_pretty_mode(std::cout);
std::cout << "decompose fraction: "<< std::endl;
std::cout << "fraction : " << fraction << std::endl;
std::cout << "numerator : " << numerator<< std::endl;
std::cout << "denominator: " << denominator << std::endl;

std::cout << "re-compose fraction: "<< std::endl;
fraction = FT::Compose()(numerator,denominator);
std::cout << "fraction : " << fraction << std::endl;

}
#else
int main(){ std::cout << "This examples needs GMP" << std::endl; }
#endif� �
File: examples/Algebraic_foundations/fraction_traits.cpp

The following example illustrates the integralization of a vector, i.e., the coefficient vector of a polynomial.
Note that for minimizing coefficient growth Fraction traits<Type>::Common factor is used to compute the
’least’ common multiple of the denominators.� �
#include <CGAL/basic.h>
#include <CGAL/Fraction_traits.h>
#include <CGAL/IO/io.h>
#include <vector>

template <class Fraction>
std::vector<typename CGAL::Fraction_traits<Fraction>::Numerator_type >
integralize(

const std::vector<Fraction>& vec,
typename CGAL::Fraction_traits<Fraction>::Denominator_type& d

) {
typedef CGAL::Fraction_traits<Fraction> FT;
typedef typename FT::Numerator_type Numerator_type;
typedef typename FT::Denominator_type Denominator_type;
typename FT::Decompose decompose;

std::vector<Numerator_type> num(vec.size());
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std::vector<Denominator_type> den(vec.size());

// decompose each coefficient into integral part and denominator
for (unsigned int i = 0; i < vec.size(); i++) {

decompose(vec[i], num[i], den[i]);
}

// compute ’least’ common multiple of all denominator
// We would like to use gcd, so let’s think of Common_factor as gcd.
typename FT::Common_factor gcd;
d = 1;
for (unsigned int i = 0; i < vec.size(); i++) {

d *= CGAL::integral_division(den[i], gcd(d, den[i]));
}

// expand each (numerator, denominator) pair to common denominator
for (unsigned int i = 0; i < vec.size(); i++) {

// For simplicity ImplicitInteroperability is expected in this
example

num[i] *= CGAL::integral_division(d, den[i]);
}
return num;

}

#ifdef CGAL_USE_GMP

#include <CGAL/Gmpz.h>
#include <CGAL/Gmpq.h>

int main(){
std::vector<CGAL::Gmpq> vec(3);
vec[0]=CGAL::Gmpq(1,4);
vec[1]=CGAL::Gmpq(1,6);
vec[2]=CGAL::Gmpq(1,10);
std::cout<< "compute an integralized vector" << std::endl;
std::cout<<"input vector: ["

<< vec[0] << "," << vec[1] << "," << vec[2] << "]" <<
std::endl;
CGAL::Gmpz d;
std::vector<CGAL::Gmpz> integral_vec = integralize(vec,d);
std::cout<<"output vector: ["

<< integral_vec[0] << ","
<< integral_vec[1] << ","
<< integral_vec[2] << "]" << std::endl;

std::cout<<"denominator : "<< d <<std::endl;
}
#else
int main(){ std::cout << "This examples needs GMP" << std::endl; }
#endif� �

File: examples/Algebraic_foundations/integralize.cpp
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4.7 Design and Implementation History

The package is part of CGAL since release 3.3. Of course the package is based on the former Number type
support of CGAL. This goes back to Stefan Schirra and Andreas Fabri. But on the other hand the package is
to a large extend influenced by the experience with the number type support in EXACUS [BEH+05], which in
the main goes back to Lutz Kettner, Susan Hert, Arno Eigenwillig and Michael Hemmer. However, the package
abstracts from the pure support for number types that are embedded on the real axis which allows the support
of polynomials, finite fields, and algebraic extensions as well. See also related subsequent chapters.
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FromIntConstructible

Definition

A model of the concept FromIntConstructible is required to be constructible from int.

Creation

FromIntConstructible type( int& i);

Has Models

int
long
double
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FromDoubleConstructible

Definition

A model of the concept FromDoubleConstructible is required to be constructible from the type double.

In case the type is a model of RealEmbeddable too, for any double d the identity: d == CGAL::to double(T(d)),
is guaranteed.

Creation

FromDoubleConstructible type( double d); conversion constructor from double.
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ExplicitInteroperable

Definition

Two types A and B are a model of the ExplicitInteroperable concept, if it is possible to derive a superior type
for A and B, such that both types are embeddable into this type. This type is Coercion traits<A,B>::Type.

In this case Coercion traits<A,B>::Are explicit interoperable is Tag true.

A and B are valid argument types for all binary functors in Algebraic structure traits<Type> and Real
embeddable traits<Type>. This is also the case for the respective global functions.

See Also

CGAL::Coercion traits<A,B> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 68
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ImplicitInteroperable

Definition

Two types A and B are a model of the concept ImplicitInteroperable, if there is a superior type, such that binary
arithmetic operations involving A and B result in this type. This type is Coercion traits<A,B>::Type.

The type Coercion traits<A,B>::Type is required to be implicit constructible from A and B.

In this case Coercion traits<A,B>::Are implicit interoperable is Tag true.

Refines

ExplicitInteroperable

See Also

CGAL::Coercion traits<A,B> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 68
ExplicitInteroperable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 66
AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
RealEmbeddableTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 124

67



C
la

ss

CGAL::Coercion traits<A,B>

Definition

An instance of Coercion traits<A,B> reflects the type coercion of the types A and B, it is symmetric in the two
template arguments.

#include <CGAL/Coercion traits.h>

Types

Coercion traits<A,B>:: Are explicit interoperable

Tag indicating whether the two types A and B are a model of
ExplicitInteroperable
This is either CGAL::Tag true or CGAL::Tag false.

Coercion traits<A,B>:: Are implicit interoperable

Tag indicating whether the two types A and B are a model of
ImplicitInteroperable
This is either CGAL::Tag true or CGAL::Tag false.

Coercion traits<A,B>:: Type The coercion type of A and B.
In case A and B are not ExplicitInteroperable this is unde-
fined.

Coercion traits<A,B>:: Cast A model of the AdaptableFunctor concept, providing the
conversion of A or B to Type.
In case A and B are not ExplicitInteroperable this is unde-
fined.

See Also

ExplicitInteroperable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 66
ImplicitInteroperable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 67
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IntegralDomainWithoutDivision

Definition

This is the most basic concept for algebraic structures considered within CGAL.

A model IntegralDomainWithoutDivision represents an integral domain, i.e. commutative ring with 0, 1, +, *
and unity free of zero divisors.
Note: A model is not required to offer the always well defined integral division.

It refines Assignable, CopyConstructible, DefaultConstructible and FromIntConstructible.
It refines EqualityComparable, where equality is defined w.r.t. the ring element being represented.
The operators unary and binary plus +, unary and binary minus -, multiplication * and their compound forms
+=, -=, *= are required and implement the respective ring operations.

Moreover, CGAL::Algebraic structure traits< IntegralDomainWithoutDivision > is a model of AlgebraicStruc-
tureTraits providing:
- CGAL::Algebraic structure traits< IntegralDomainWithoutDivision >::Algebraic type derived from Integral
domain without division tag
- CGAL::Algebraic structure traits< IntegralDomainWithoutDivision >::Is zero
- CGAL::Algebraic structure traits< IntegralDomainWithoutDivision >::Is one
- CGAL::Algebraic structure traits< IntegralDomainWithoutDivision >::Square
- CGAL::Algebraic structure traits< IntegralDomainWithoutDivision >::Simplify
- CGAL::Algebraic structure traits< IntegralDomainWithoutDivision >::Unit part

Refines

Assignable
CopyConstructible
DefaultConstructible
EqualityComparable

FromIntConstructible

Operations

IntegralDomainWithoutDivision

+a unary plus
IntegralDomainWithoutDivision

−a unary minus
IntegralDomainWithoutDivision

a+b
IntegralDomainWithoutDivision

a−b
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IntegralDomainWithoutDivision

a∗b
IntegralDomainWithoutDivision

a+= b
IntegralDomainWithoutDivision

a−= b
IntegralDomainWithoutDivision

a∗= b

Equality comparable:

result type a == b The result type is convertible to bool.
result type a != b The result type is convertible to bool.

See Also

IntegralDomainWithoutDivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 69
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IntegralDomain

Definition

IntegralDomain refines IntegralDomainWithoutDivision by providing an integral division.
Note: The concept does not require the operator / for this operation. We intend to reserve the operator syntax
for use with a Field.

Moreover, CGAL::Algebraic structure traits< IntegralDomain > is a model of AlgebraicStructureTraits
providing:

- CGAL::Algebraic structure traits< IntegralDomain >::Algebraic type derived from Integral domain tag
- CGAL::Algebraic structure traits< IntegralDomain >::Integral division
- CGAL::Algebraic structure traits< IntegralDomain >::Divides

Refines

IntegralDomainWithoutDivision

See Also
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UniqueFactorizationDomain

Definition

A model of UniqueFactorizationDomain is an IntegralDomain with the additional property that the ring it
represents is a unique factorization domain (a.k.a. UFD or factorial ring), meaning that every non-zero non-
unit element has a factorization into irreducible elements that is unique up to order and up to multiplication by
invertible elements (units). (An irreducible element is a non-unit ring element that cannot be factored further
into two non-unit elements. In a UFD, the irreducible elements are precisely the prime elements.)

In a UFD, any two elements, not both zero, possess a greatest common divisor (gcd).

Moreover, CGAL::Algebraic structure traits< UniqueFactorizationDomain > is a model of AlgebraicStruc-
tureTraits providing:
- CGAL::Algebraic structure traits< UniqueFactorizationDomain >::Algebraic type derived from Unique
factorization domain tag
- CGAL::Algebraic structure traits< UniqueFactorizationDomain >::Gcd
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EuclideanRing

Definition

A model of EuclideanRing represents an euclidean ring (or Euclidean domain). It is an UniqueFactorization-
Domain that affords a suitable notion of minimality of remainders such that given x and y 6= 0 we obtain an
(almost) unique solution to x = qy+ r by demanding that a solution (q,r) is chosen to minimize r. In particular,
r is chosen to be 0 if possible.

Moreover, CGAL::Algebraic structure traits< EuclideanRing > is a model of AlgebraicStructureTraits provid-
ing:

- CGAL::Algebraic structure traits< EuclideanRing >::Algebraic type derived from Unique factorization
domain tag
- CGAL::Algebraic structure traits< EuclideanRing >::Mod
- CGAL::Algebraic structure traits< EuclideanRing >::Div
- CGAL::Algebraic structure traits< EuclideanRing >::Div mod

Remarks

The most prominent example of a Euclidean ring are the integers. Whenever both x and y are positive, then it is
conventional to choose the smallest positive remainder r.
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Field

Definition

A model of Field is an IntegralDomain in which every non-zero element has a multiplicative inverse. Thus, one
can divide by any non-zero element. Hence division is defined for any divisor != 0. For a Field, we require this
division operation to be available through operators / and /=.

Moreover, CGAL::Algebraic structure traits< Field > is a model of AlgebraicStructureTraits providing:
- CGAL::Algebraic structure traits< Field >::Algebraic type derived from Field tag
- CGAL::Algebraic structure traits< FieldWithSqrt >::Inverse

Refines
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Operations

Field a/b
Field a/= b
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FieldWithSqrt

Definition

A model of FieldWithSqrt is a Field that has operations to take square roots.

Moreover, CGAL::Algebraic structure traits< FieldWithSqrt > is a model of AlgebraicStructureTraits provid-
ing:
- CGAL::Algebraic structure traits< FieldWithSqrt >::Algebraic type derived from Field with sqrt tag
- CGAL::Algebraic structure traits< FieldWithSqrt >::Sqrt
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Field
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FieldWithKthRoot

Definition

A model of FieldWithKthRoot is a FieldWithSqrt that has operations to take k-th roots.

Moreover, CGAL::Algebraic structure traits< FieldWithKthRoot > is a model of AlgebraicStructureTraits
providing:
- CGAL::Algebraic structure traits< FieldWithKthRoot >::Algebraic type derived from Field with kth root
tag
- CGAL::Algebraic structure traits< FieldWithKthRoot >::Kth root
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FieldWithRootOf

Definition

A model of FieldWithRootOf is a FieldWithKthRoot with the possibility to construct it as the root of a univariate
polynomial.

Moreover, CGAL::Algebraic structure traits< FieldWithRootOf > is a model of AlgebraicStructureTraits
providing:
- CGAL::Algebraic structure traits< FieldWithRootOf >::Algebraic type derived from Field with kth root tag
- CGAL::Algebraic structure traits< FieldWithRootOf >::Root of

Refines
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AlgebraicStructureTraits

Definition

A model of AlgebraicStructureTraits reflects the algebraic structure of an associated type Type.

Depending on the concepts that Type fulfills, it contains various functors and descriptive tags. Moreover it gives
access to the several possible algebraic operations within that structure.

Types

A model of AlgebraicStructureTraits is supposed to provide:

AlgebraicStructureTraits:: Type

The associated type.

AlgebraicStructureTraits:: Algebraic category

Tag indicating the algebraic structure of the associated type.

Tag is: Type is model of:
CGAL::Null tag no algebraic concept
CGAL::Integral domain without division tag IntegralDomainWithoutDivision
CGAL::Integral domain tag IntegralDomain
CGAL::Unique factorization domain tag UniqueFactorizationDomain
CGAL::Euclidean ring tag EuclideanRing
CGAL::Field tag Field
CGAL::Field with sqrt tag FieldWithSqrt
CGAL::Field with kth root tag FieldWithKthRoot
CGAL::Field with root of tag FieldWithRootOf

AlgebraicStructureTraits:: Is exact

Tag indicating whether Type is exact.
This is either CGAL::Tag true or CGAL::Tag false.
An algebraic structure is considered exact, if all operations required by its concept are
computed such that a comparison of two algebraic expressions is always correct. The
exactness covers only those operations that are required by the algebraic structure concept.
e.g. an exact Field may have a Sqrt functor that is not exact.

AlgebraicStructureTraits:: Is numerical sensitive

Tag indicating whether Type is numerical sensitive.
This is either CGAL::Tag true or CGAL::Tag false.
An algebraic structure is considered as numerically sensitive, if the performance of the type
is sensitive to the condition number of an algorithm.
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AlgebraicStructureTraits:: Boolean

This type specifies the return type of the predicates provided by this traits. The type must be
convertible to bool and typically the type indeed maps to bool. However, there are also cases
such as interval arithmetic, in which it is Uncertain<bool> or some similar type.

Functors

In case a functor is not provided, it is set to CGAL::Null functor.

AlgebraicStructureTraits:: Is zero

A model of AlgebraicStructureTraits::IsZero.
Required by the concept IntegralDomainWithoutDivision. In case Type is also model of
RealEmbeddable this is a model of RealEmbeddableTraits::IsZero.

AlgebraicStructureTraits:: Is one

A model of AlgebraicStructureTraits::IsOne.
Required by the concept IntegralDomainWithoutDivision.

AlgebraicStructureTraits:: Square

A model of AlgebraicStructureTraits::Square.
Required by the concept IntegralDomainWithoutDivision.

AlgebraicStructureTraits:: Simplify

A model of AlgebraicStructureTraits::Simplify.
Required by the concept IntegralDomainWithoutDivision.

AlgebraicStructureTraits:: Unit part

A model of AlgebraicStructureTraits::UnitPart.
Required by the concept IntegralDomainWithoutDivision.

AlgebraicStructureTraits:: Integral division

A model of AlgebraicStructureTraits::IntegralDivision.
Required by the concept IntegralDomain.

AlgebraicStructureTraits:: Divides

A model of AlgebraicStructureTraits::Divides.
Required by the concept IntegralDomain.

AlgebraicStructureTraits:: Is square

A model of AlgebraicStructureTraits::IsSquare.
Required by the concept IntegralDomainWithoutDivision.
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AlgebraicStructureTraits:: Gcd

A model of AlgebraicStructureTraits::Gcd.
Required by the concept UniqueFactorizationDomain.

AlgebraicStructureTraits:: Mod

A model of AlgebraicStructureTraits::Mod.
Required by the concept EuclideanRing.

AlgebraicStructureTraits:: Div

A model of AlgebraicStructureTraits::Div.
Required by the concept EuclideanRing.

AlgebraicStructureTraits:: Div mod

A model of AlgebraicStructureTraits::DivMod.
Required by the concept EuclideanRing.

AlgebraicStructureTraits:: Inverse

A model of AlgebraicStructureTraits::Inverse.
Required by the concept Field.

AlgebraicStructureTraits:: Sqrt

A model of AlgebraicStructureTraits::Sqrt.
Required by the concept FieldWithSqrt.

AlgebraicStructureTraits:: Kth root

A model of AlgebraicStructureTraits::KthRoot.
Required by the concept FieldWithKthRoot.

AlgebraicStructureTraits:: Root of

A model of AlgebraicStructureTraits::RootOf .
Required by the concept FieldWithRootOf .
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AlgebraicStructureTraits::IsZero

Definition

AdaptableUnaryFunction, returns true in case the argument is the zero element of the ring.

Refines

AdaptableUnaryFunction

Types

AlgebraicStructureTraits::IsZero:: result type Is AlgebraicStructureTraits::Boolean.

AlgebraicStructureTraits::IsZero:: argument type

Is AlgebraicStructureTraits::Type.

Operations

result type is zero( argument type x)

returns true in case x is the zero element of the ring.

See Also

AlgebraicStructureTraits . . . . . . . . . . . . . . . . page 78 RealEmbeddableTraits::IsZero . . . . . . . . . . . . . . . . page 126
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AlgebraicStructureTraits::IsOne

Definition

AdaptableUnaryFunction, returns true in case the argument is the one of the ring.

Refines

AdaptableUnaryFunction

Types

AlgebraicStructureTraits::IsOne:: result type Is AlgebraicStructureTraits::Boolean.

AlgebraicStructureTraits::IsOne:: argument type

Is AlgebraicStructureTraits::Type.

Operations

result type is one( argument type x)

returns true in case x is the one of the ring.

See Also

AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
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AlgebraicStructureTraits::Square

Definition

AdaptableUnaryFunction, computing the square of the argument.

Refines

AdaptableUnaryFunction

Types

AlgebraicStructureTraits::Square:: result type

Is AlgebraicStructureTraits::Type.

AlgebraicStructureTraits::Square:: argument type

Is AlgebraicStructureTraits::Type.

Operations

result type square( argument type x)

returns the square of x.

See Also

AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
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AlgebraicStructureTraits::Simplify

Definition

This AdaptableUnaryFunction may simplify a given object.

Refines

AdaptableUnaryFunction

Types

AlgebraicStructureTraits::Simplify:: result type

Is void.

AlgebraicStructureTraits::Simplify:: argument type

Is AlgebraicStructureTraits::Type.

Operations

result type simplify( argument type x)

may simplify x.

See Also

AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
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AlgebraicStructureTraits::UnitPart

Definition

This AdaptableUnaryFunction computes the unit part of a given ring element.

The mathematical definition of unit part is as follows: Two ring elements a and b are said to be associate if there
exists an invertible ring element (i.e. a unit) u such that a = ub. This defines an equivalence relation. We can
distinguish exactly one element of every equivalence class as being unit normal. Then each element of a ring
possesses a factorization into a unit (called its unit part) and a unit-normal ring element (called its unit normal
associate).

For the integers, the non-negative numbers are by convention unit normal, hence the unit-part of a non-zero
integer is its sign. For a Field, every non-zero element is a unit and is its own unit part, its unit normal associate
being one. The unit part of zero is, by convention, one.

Refines

AdaptableUnaryFunction

Types

AlgebraicStructureTraits::UnitPart:: result type

Is AlgebraicStructureTraits::Type.

AlgebraicStructureTraits::UnitPart:: argument type

Is AlgebraicStructureTraits::Type.

Operations

result type unit part( argument type x)

returns the unit part of x.

See Also

AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
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AlgebraicStructureTraits::IntegralDivision

Definition

AdaptableBinaryFunction providing an integral division.

Integral division (a.k.a. exact division or division without remainder) maps ring elements (x,y) to ring element
z such that x = yz if such a z exists (i.e. if x is divisible by y). Otherwise the effect of invoking this operation is
undefined. Since the ring represented is an integral domain, z is uniquely defined if it exists.

Refines

AdaptableBinaryFunction

Types

AlgebraicStructureTraits::IntegralDivision:: result type

Is AlgebraicStructureTraits::Type.

AlgebraicStructureTraits::IntegralDivision:: first argument

Is AlgebraicStructureTraits::Type.

AlgebraicStructureTraits::IntegralDivision:: second argument

Is AlgebraicStructureTraits::Type.

Operations

result type integral division( first argument type x, second argument type y)

returns x/y, this is an integral division.

template <class NT1, class NT2>
result type integral division( NT1 x, NT2 y)

This operator is defined if NT1 and NT2 are ExplicitInteroperable with coercion
type AlgebraicStructureTraits::Type.

See Also

AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
AlgebraicStructureTraits::Divides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 88
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AlgebraicStructureTraits::Divides

Definition

AdaptableBinaryFunction, returns true if the first argument divides the second argument.

Integral division (a.k.a. exact division or division without remainder) maps ring elements (n,d) to ring element
c such that n = dc if such a c exists. In this case it is said that d divides n.

This functor is required to provide two operators. The first operator takes two arguments and returns true if the
first argument divides the second argument. The second operator returns c via the additional third argument.

Refines

AdaptableBinaryFunction

Types

AlgebraicStructureTraits::Divides:: result type

Is AlgebraicStructureTraits::Boolean.

AlgebraicStructureTraits::Divides:: first argument

Is AlgebraicStructureTraits::Type.

AlgebraicStructureTraits::Divides:: second argument

Is AlgebraicStructureTraits::Type.

Operations

result type divides( first argument type d, second argument type n)

Computes whether d divides n.

result type divides( first argument type d, second argument type n, AlgebraicStructureTraits::Type& c)

Computes whether d divides n. Moreover it computes c if d divides n, otherwise
the value of c is undefined.

See Also

AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
AlgebraicStructureTraits::IntegralDivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 87
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AlgebraicStructureTraits::IsSquare

Definition

AdaptableBinaryFunction that computes whether the first argument is a square. If the first argument is a square
the second argument, which is taken by reference, contains the square root. Otherwise, the content of the second
argument is undefined.

A ring element x is said to be a square iff there exists a ring element y such that x = y∗ y. In case the ring is a
UniqueFactorizationDomain, y is uniquely defined up to multiplication by units.

Refines

AdaptableBinaryFunction

Types

AlgebraicStructureTraits::IsSquare:: result type

Is AlgebraicStructureTraits::Boolean.

AlgebraicStructureTraits::IsSquare:: first argument

Is AlgebraicStructureTraits::Type.

AlgebraicStructureTraits::IsSquare:: second argument

Is AlgebraicStructureTraits::Type&.

Operations

result type is square( first argument type x, second argument type y)

returns true in case x is a square, i.e. x = y∗ y.
Postcondition: unit part(y) == 1.

result type is square( first argument type x)

returns true in case x is a square.

See Also

AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
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AlgebraicStructureTraits::Gcd

Definition

AdaptableBinaryFunction providing the gcd.

The greatest common divisor (gcd) of ring elements x and y is the unique ring element d (up to a unit) with the
property that any common divisor of x and y also divides d. (In other words: d is the greatest lower bound of x
and y in the partial order of divisibility.) We demand the gcd to be unit-normal (i.e. have unit part 1).

gcd(0,0) is defined as 0, since 0 is the greatest element with respect to the partial order of divisibility. This
is because an element a ∈ R is said to divide b ∈ R, iff ∃r ∈ R such that a · r = b. Thus, 0 is divided by every
element of the Ring, in particular by itself.

Refines

AdaptableBinaryFunction

Types

AlgebraicStructureTraits::Gcd:: result type Is AlgebraicStructureTraits::Type.
AlgebraicStructureTraits::Gcd:: first argument

Is AlgebraicStructureTraits::Type.

AlgebraicStructureTraits::Gcd:: second argument

Is AlgebraicStructureTraits::Type.

Operations

result type gcd( first argument type x, second argument type y)

returns gcd(x,y).

template <class NT1, class NT2>
result type gcd( NT1 x, NT2 y)

This operator is defined if NT1 and NT2 are ExplicitInteroperable with coercion
type AlgebraicStructureTraits::Type.

See Also

AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
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AlgebraicStructureTraits::DivMod

Definition

AdaptableFunctor computes both integral quotient and remainder of division with remainder. The quotient q
and remainder r are computed such that x = q∗ y+ r and |r|< |y| with respect to the proper integer norm of the
represented ring. 1 In particular, r is chosen to be 0 if possible. Moreover, we require q to be minimized with
respect to the proper integer norm.

Note that the last condition is needed to ensure a unique computation of the pair (q,r). However, an other
option is to require minimality for |r|, with the advantage that a mod(x,y) operation would return the unique
representative of the residue class of x with respect to y, e.g. mod(2,3) should return −1. But this conflicts
with nearly all current implementation of integer types. From there, we decided to stay conform with common
implementations and require q to be computed as x/y rounded towards zero.

The following table illustrates the behavior for integers:

x y q r
3 3 1 0
2 3 0 2
1 3 0 1
0 3 0 0
-1 3 0 -1
-2 3 0 -2
-3 3 -1 0

-

x y q r
3 -3 -1 0
2 -3 0 2
1 -3 0 1
0 -3 0 0
-1 -3 0 -1
-2 -3 0 -2
-3 -3 1 0

Refines

AdaptableFunctor

Types

AlgebraicStructureTraits::DivMod:: result type

Is void.

AlgebraicStructureTraits::DivMod:: first argument type

Is AlgebraicStructureTraits::Type.

AlgebraicStructureTraits::DivMod:: second argument type

Is AlgebraicStructureTraits::Type.

AlgebraicStructureTraits::DivMod:: third argument type

Is AlgebraicStructureTraits::Type&.

AlgebraicStructureTraits::DivMod:: fourth argument type

Is AlgebraicStructureTraits::Type&.
1 For integers this norm is the absolute value.

For univariate polynomials this norm is the degree.
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Operations

result type div mod.operator()( first argument type x,
second argument type y,
third argument type q,
fourth argument type r)

computes the quotient q and remainder r, such that x = q∗ y + r and r minimal
with respect to the Euclidean Norm on Type.

template <class NT1, class NT2>
result type div mod( NT1 x, NT2 y, third argument type q, fourth argument type r)

This operator is defined if NT1 and NT2 are ExplicitInteroperable with coercion
type AlgebraicStructureTraits::Type.

See Also

AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
AlgebraicStructureTraits::Mod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 94
AlgebraicStructureTraits::Div . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 93
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AlgebraicStructureTraits::Div

Definition

AdaptableBinaryFunction computes the integral quotient of division with remainder.

Refines

AdaptableBinaryFunction

Types

AlgebraicStructureTraits::Div:: result type Is AlgebraicStructureTraits::Type.
AlgebraicStructureTraits::Div:: first argument

Is AlgebraicStructureTraits::Type.

AlgebraicStructureTraits::Div:: second argument

Is AlgebraicStructureTraits::Type.

Operations

result type div( first argument type x, second argument type y)

template <class NT1, class NT2>
result type div( NT1 x, NT2 y)

This operator is defined if NT1 and NT2 are ExplicitInteroperable with coercion
type AlgebraicStructureTraits::Type.

See Also

AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
AlgebraicStructureTraits::Mod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 94
AlgebraicStructureTraits::DivMod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 91
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AlgebraicStructureTraits::Mod

Definition

AdaptableBinaryFunction computes the remainder of division with remainder.

Refines

AdaptableBinaryFunction

Types

AlgebraicStructureTraits::Mod:: result type Is AlgebraicStructureTraits::Type.
AlgebraicStructureTraits::Mod:: first argument

Is AlgebraicStructureTraits::Type.

AlgebraicStructureTraits::Mod:: second argument

Is AlgebraicStructureTraits::Type.

Operations

result type mod( first argument type x, second argument type y)

template <class NT1, class NT2>
result type mod( NT1 x, NT2 y)

This operator is defined if NT1 and NT2 are ExplicitInteroperable with coercion
type AlgebraicStructureTraits::Type.

See Also

AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
AlgebraicStructureTraits::Div . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 93
AlgebraicStructureTraits::DivMod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 91
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AlgebraicStructureTraits::Inverse

Definition

AdaptableUnaryFunction providing the inverse element with respect to multiplication of a Field.

Refines

AdaptableUnaryFunction

Types

AlgebraicStructureTraits::Inverse:: result type

Is AlgebraicStructureTraits::Type.

AlgebraicStructureTraits::Inverse:: argument type

Is AlgebraicStructureTraits::Type.

Operations

result type inverse( argument type x)

returns the inverse element of x with respect to multiplication.
Precondition: x 6= 0

See Also

AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78

95



C
on

ce
pt

F
un

ct
or

AlgebraicStructureTraits::Sqrt

Definition

AdaptableUnaryFunction providing the square root.

Refines

AdaptableUnaryFunction

Types

AlgebraicStructureTraits::Sqrt:: result type Is AlgebraicStructureTraits::Type.

AlgebraicStructureTraits::Sqrt:: argument type

Is AlgebraicStructureTraits::Type.

Operations

result type sqrt( argument type x)

returns
√

x.

See Also

AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
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AlgebraicStructureTraits::KthRoot

Definition

AdaptableBinaryFunction providing the k-th root.

Refines

AdaptableBinaryFunction

Types

AlgebraicStructureTraits::KthRoot:: result type

Is AlgebraicStructureTraits::Type.

AlgebraicStructureTraits::KthRoot:: first argument

Is int.

AlgebraicStructureTraits::KthRoot:: second argument

Is AlgebraicStructureTraits::Type.

Operations

result type kth root( int k, second argument type x)

returns the k-th root of x.
Precondition: k ≥ 1

See Also

FieldWithRootOf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 77
AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
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AlgebraicStructureTraits::RootOf

Definition

AdaptableFunctor computes a real root of a square-free univariate polynomial.

Refines

AdaptableFunctor

Types

AlgebraicStructureTraits::RootOf :: result type

Is AlgebraicStructureTraits::Type.

Operations

template<class InputIterator>
result type root of ( int k, InputIterator begin, InputIterator end)

returns the k-th real root of the univariate polynomial, which
is defined by the iterator range, where begin refers to the con-
stant term.
Precondition: The polynomial is square-free.
Precondition: The value type of the InputIterator is Alge-
braicStructureTraits::Type

See Also

FieldWithRootOf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 77
AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
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CGAL::Algebraic structure traits<T>

Definition

An instance of Algebraic structure traits<T> is a model of AlgebraicStructureTraits, where T is the associated
type.

#include <CGAL/Algebraic structure traits.h>

Is Model for the Concepts

AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
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CGAL::Integral domain without division tag

Definition

Tag indicating that a type is a model of the IntegralDomainWithoutDivision concept.

Is Model for the Concepts

DefaultConstructible

See Also

IntegralDomainWithoutDivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 69
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CGAL::Integral domain tag

Definition

Tag indicating that a type is a model of the IntegralDomain concept.

Inherits From

Integral domain without division tag

Is Model for the Concepts

DefaultConstructible

See Also

IntegralDomain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 71
AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
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CGAL::Unique factorization domain tag

Definition

Tag indicating that a type is a model of the UniqueFactorizationDomain concept.

Inherits From

Integral domain tag

Is Model for the Concepts

DefaultConstructible

See Also

UniqueFactorizationDomain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 72
AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
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CGAL::Euclidean ring tag

Definition

Tag indicating that a type is a model of the EuclideanRing concept.

Inherits From

Unique factorization domain tag

Is Model for the Concepts

DefaultConstructible

See Also

EuclideanRing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 73
AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
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CGAL::Field tag

Definition

Tag indicating that a type is a model of the Field concept.

Inherits From

Integral domain tag

Is Model for the Concepts

DefaultConstructible

See Also

Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 74
AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
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CGAL::Field with sqrt tag

Definition

Tag indicating that a type is a model of the FieldWithSqrt concept.

Inherits From

Field tag

Is Model for the Concepts

DefaultConstructible

See Also

FieldWithSqrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 75
AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
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CGAL::Field with kth root tag

Definition

Tag indicating that a type is a model of the FieldWithKthRoot concept.

Inherits From

Field with sqrt tag

Is Model for the Concepts

DefaultConstructible

See Also

FieldWithKthRoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 76
AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
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CGAL::Field with root of tag

Definition

Tag indicating that a type is a model of the FieldWithRootOf concept.

Inherits From

Field with kth root tag

Is Model for the Concepts

DefaultConstructible

See Also

FieldWithRootOf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 77
AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
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CGAL::is zero

Definition

The function is zero determines if a value is equal to 0 or not.
The function is defined if the argument type is a model of the RealEmbeddable or of the IntegralDomainWith-
outDivision concept.

#include <CGAL/number utils.h>

template <class NT>
result type is zero( NT x) The result type is convertible to bool.

See Also

RealEmbeddable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 123
RealEmbeddableTraits::IsZero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 126
IntegralDomainWithoutDivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 69
AlgebraicStructureTraits::IsZero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 82
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CGAL::is one

Definition

The function is one determines if a value is equal to 1 or not.
The function is defined if the argument type is a model of the IntegralDomainWithoutDivision concept.

#include <CGAL/number utils.h>

template <class NT>
result type is one( NT x) The result type is convertible to bool.

See Also

IntegralDomainWithoutDivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 69
AlgebraicStructureTraits::IsOne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 83
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CGAL::square

Definition

The function square returns the square of a number.
The function is defined if the argument type is a model of the IntegralDomainWithoutDivision concept.

#include <CGAL/number utils.h>

template <class NT>
NT square( NT x)

See Also

IntegralDomainWithoutDivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 69
AlgebraicStructureTraits::Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 84
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CGAL::is square

Definition

An ring element x is said to be a square iff there exists a ring element y such that x = y∗ y. In case the ring is a
UniqueFactorizationDomain, y is uniquely defined up to multiplication by units.

The function is square is available if Algebraic structure traits::Is square is not the CGAL::Null functor.

#include <CGAL/number utils.h>

template <class NT>
result type is square( NT x) The result type is convertible to bool.

template <class NT>
result type is square( NT x, NT& y)

The result type is convertible to bool.

See Also

UniqueFactorizationDomain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 72
AlgebraicStructureTraits::IsSquare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 89
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CGAL::simplify

Definition

The function simplify may simplify a given object.

The function is defined if the argument type is a model of the IntegralDomainWithoutDivision concept.

#include <CGAL/number utils.h>

template <class NT>
void simplify( NT x)

See Also

IntegralDomainWithoutDivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 69
AlgebraicStructureTraits::Simplify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 85

112



F
un

ct
io

n

CGAL::unit part

Definition

The function unit part computes the unit part of a given ring element.

The function is defined if the argument type is a model of the IntegralDomainWithoutDivision concept.

#include <CGAL/number utils.h>

template <class NT>
NT unit part( NT x)

See Also

IntegralDomainWithoutDivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 69
AlgebraicStructureTraits::UnitPart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 86

113



F
un

ct
io

n

CGAL::integral division

Definition

The function integral division (a.k.a. exact division or division without remainder) maps ring elements (x,y) to
ring element z such that x = yz if such a z exists (i.e. if x is divisible by y). Otherwise the effect of invoking this
operation is undefined. Since the ring represented is an integral domain, z is uniquely defined if it exists.

In case the argument types NT1 and NT2 differ, the result type is determined via Coercion traits.
Thus, the result type is well defined if NT1 and NT2 are a model of ExplicitInteroperable.
The actual integral division is performed with the semantic of that type.

The function is defined if result type is a model of the IntegralDomain concept.

#include <CGAL/number utils.h>

template <class NT1, class NT2>
result type integral division( NT1 x, NT2 y)

See Also

IntegralDomain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 71
AlgebraicStructureTraits::IntegralDivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 87
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CGAL::gcd

Definition

The function gcd computes the greatest common divisor of two values.

In case the argument types NT1 and NT2 differ, the result type is determined via Coercion traits.
Thus, the result type is well defined if NT1 and NT2 are a model of ExplicitInteroperable.
The actual gcd is performed with the semantic of that type.

The function is defined if result type is a model of the UniqueFactorizationDomain concept.

#include <CGAL/number utils.h>

template <class NT1, class NT2>
result type gcd( NT1 x, NT2 y)

See Also

UniqueFactorizationDomain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 72
AlgebraicStructureTraits::Gcd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 90
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CGAL::div mod

Definition

The function div mod computes the integral quotient and remainder of division with remainder.

In case the argument types NT1 and NT2 differ, the result type is determined via Coercion traits.
Thus, the result type is well defined if NT1 and NT2 are a model of ExplicitInteroperable.
The actual div mod is performed with the semantic of that type.

The function is defined if result type is a model of the EuclideanRing concept.

#include <CGAL/number utils.h>

template <class NT1, class NT2>
void div mod( NT1 x, NT2 y, result type& q, result type& r)

computes the quotient q and remainder r, such that x = q ∗
y + r and r minimal with respect to the Euclidean Norm of
the result type.

See Also

EuclideanRing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 73
AlgebraicStructureTraits::DivMod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 91
CGAL::mod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 118
CGAL::div . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 117
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CGAL::div

Definition

The function div computes the integral quotient of division with remainder.

In case the argument types NT1 and NT2 differ, the result type is determined via Coercion traits.
Thus, the result type is well defined if NT1 and NT2 are a model of ExplicitInteroperable.
The actual div is performed with the semantic of that type.

The function is defined if result type is a model of the EuclideanRing concept.

#include <CGAL/number utils.h>

template< class NT1, class NT2>
result type div( NT1 x, NT2 y)

See Also

EuclideanRing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 73
AlgebraicStructureTraits::Div . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 93
CGAL::mod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 118
CGAL::div mod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 116
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CGAL::mod

Definition

The function mod computes the remainder of division with remainder.

In case the argument types NT1 and NT2 differ, the result type is determined via Coercion traits.
Thus, the result type is well defined if NT1 and NT2 are a model of ExplicitInteroperable.
The actual mod is performed with the semantic of that type.

The function is defined if result type is a model of the EuclideanRing concept.

#include <CGAL/number utils.h>

template< class NT1, class NT2>
result type mod( NT1 x, NT2 y)

See Also

EuclideanRing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 73
AlgebraicStructureTraits::DivMod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 91
CGAL::div mod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 116
CGAL::div . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 117
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CGAL::inverse

Definition

The function inverse returns the inverse element with respect to multiplication.

The function is defined if the argument type is a model of the Field concept.

#include <CGAL/number utils.h>

template <class NT>
NT inverse( NT x) Precondition: x 6= 0

See Also

Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 74
AlgebraicStructureTraits::Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 95
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CGAL::sqrt

Definition

The function sqrt returns the square root of a value.

The function is defined if the argument type is a model of the FieldWithSqrt concept.

#include <CGAL/number utils.h>

template <class NT>
NT sqrt( NT x)

See Also

FieldWithSqrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 75
AlgebraicStructureTraits::Sqrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 96
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CGAL::kth root

Definition

The function kth root returns the k-th root of a value.

The function is defined if the second argument type is a model of the FieldWithKthRoot concept.

#include <CGAL/number utils.h>

template <class NT>
NT kth root( int k, NT x)

See Also

FieldWithKthRoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 76
AlgebraicStructureTraits::KthRoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 97
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CGAL::root of

Definition

The function root of computes a real root of a square-free univariate polynomial.

The function is defined if the value type, NT , of the iterator range is a model of the FieldWithRootOf concept.

#include <CGAL/number utils.h>

template <class InputIterator>
NT root of( int k, InputIterator begin, InputIterator end)

returns the k-th real root of the univariate polynomial, which
is defined by the iterator range, where begin refers to the con-
stant term.
Precondition: The polynomial is square-free.

See Also

FieldWithRootOf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 77
AlgebraicStructureTraits::RootOf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 98
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Definition

A model of this concepts represents numbers that are embeddable on the real axis. The type obeys the algebraic
structure and compares two values according to the total order of the real numbers.

Moreover, CGAL::Real embeddable traits< RealEmbeddable > is a model of RealEmbeddableTraits
with:
- CGAL::Real embeddable traits< RealEmbeddable >::Is real embeddable set to Tag true
and functors :
- CGAL::Real embeddable traits< RealEmbeddable >::Is zero
- CGAL::Real embeddable traits< RealEmbeddable >::Abs
- CGAL::Real embeddable traits< RealEmbeddable >::Sgn
- CGAL::Real embeddable traits< RealEmbeddable >::Is positive
- CGAL::Real embeddable traits< RealEmbeddable >::Is negative
- CGAL::Real embeddable traits< RealEmbeddable >::Compare
- CGAL::Real embeddable traits< RealEmbeddable >::To double
- CGAL::Real embeddable traits< RealEmbeddable >::To interval

Remark:
If a number type is a model of both IntegralDomainWithoutDivision and RealEmbeddable, it follows that the
ring represented by such a number type is a sub-ring of the real numbers and hence has characteristic zero.

Refines

Equality Comparable
LessThanComparable

Operations

bool a == b
bool a != b

bool a < b
bool a <= b
bool a > b
bool a >= b

See Also

RealEmbeddableTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 124
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RealEmbeddableTraits

Definition

A model of RealEmbeddableTraits is associated to a number type Type and reflects the properties of this type
with respect to the concept RealEmbeddable.

Types

A model of RealEmbeddableTraits is supposed to provide:

RealEmbeddableTraits:: Type The associated number type.

RealEmbeddableTraits:: Is real embeddable Tag indicating whether the associated type is real embed-
dable.
This is either CGAL::Tag true or CGAL::Tag false.

RealEmbeddableTraits:: Boolean This type specifies the return type of the predicates provided
by this traits. The type must be convertible to bool and typ-
ically the type indeed maps to bool. However, there are also
cases such as interval arithmetic, in which it is Uncertain<
bool> or some similar type.

RealEmbeddableTraits:: Sign This type specifies the return type of the Sgn functor. The
type must be convertible to CGAL::Sign and typically the
type indeed maps to CGAL::Sign. However, there are also
cases such as interval arithmetic, in which it is Uncertain<
CGAL::Sign> or some similar type.

RealEmbeddableTraits:: Comparison result This type specifies the return type of the Compare functor.
The type must be convertible to CGAL::Comparison result
and typically the type indeed maps to CGAL::Comparison
result. However, there are also cases such as interval arith-
metic, in which it is Uncertain<CGAL::Comparison result>
or some similar type.

Functors

In case the associated type is RealEmbeddable all functors are provided.
In case a functor is not provided, it is set to CGAL::Null functor.

RealEmbeddableTraits:: Is zero A model of RealEmbeddableTraits::IsZero In case Type
is also model of IntegralDomainWithoutDivision this is a
model of AlgebraicStructureTraits::IsZero.

RealEmbeddableTraits:: Abs A model of RealEmbeddableTraits::Abs
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RealEmbeddableTraits:: Sgn A model of RealEmbeddableTraits::Sgn

RealEmbeddableTraits:: Is positive A model of RealEmbeddableTraits::IsPositive

RealEmbeddableTraits:: Is negative A model of RealEmbeddableTraits::IsNegative

RealEmbeddableTraits:: Compare A model of RealEmbeddableTraits::Compare

RealEmbeddableTraits:: To double A model of RealEmbeddableTraits::ToDouble

RealEmbeddableTraits:: To interval A model of RealEmbeddableTraits::ToInterval

Has Models

CGAL::Real embeddable traits<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 134
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RealEmbeddableTraits::IsZero

Definition

AdaptableUnaryFunction, returns true in case the argument is 0.

Refines

AdaptableUnaryFunction

Types

RealEmbeddableTraits::IsZero:: result type Type convertible to bool.

RealEmbeddableTraits::IsZero:: argument type

Is RealEmbeddableTraits::Type.

Operations

result type is zero( argument type x)

returns true in case x is the zero element of the ring.

See Also

RealEmbeddableTraits . . . . . . . . . . . . . . . . page 124 AlgebraicStructureTraits::IsZero . . . . . . . . . . . . . . . . page 82
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RealEmbeddableTraits::Abs

Definition

AdaptableUnaryFunction computes the absolute value of a number.

Refines

AdaptableUnaryFunction

Types

RealEmbeddableTraits::Abs:: result type Is RealEmbeddableTraits::Type.

RealEmbeddableTraits::Abs:: argument type Is RealEmbeddableTraits::Type.

Operations

result type abs( argument type x)

computes the absolute value of x.

See Also

RealEmbeddableTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 124
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RealEmbeddableTraits::Sgn

Definition

This AdaptableUnaryFunction computes the sign of a real embeddable number.

Refines

AdaptableUnaryFunction

Types

RealEmbeddableTraits::Sgn:: result type Type convertible to CGAL::Sign.

RealEmbeddableTraits::Sgn:: argument type Is RealEmbeddableTraits::Type.

Operations

result type sign( argument type x)

Computes the sign of x.

See Also

RealEmbeddableTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 124
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RealEmbeddableTraits::IsPositive

Definition

AdaptableUnaryFunction, returns true in case the argument is positive.

Refines

AdaptableUnaryFunction

Types

RealEmbeddableTraits::IsPositive:: result type

Type convertible to bool.

RealEmbeddableTraits::IsPositive:: argument type

Is RealEmbeddableTraits::Type.

Operations

result type is positive( argument type x)

returns true in case x is positive.

See Also

RealEmbeddableTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 124
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RealEmbeddableTraits::IsNegative

Definition

AdaptableUnaryFunction, returns true in case the argument is negative.

Refines

AdaptableUnaryFunction

Types

RealEmbeddableTraits::IsNegative:: result type

Type convertible to bool.

RealEmbeddableTraits::IsNegative:: argument type

Is RealEmbeddableTraits::Type.

Operations

result type is negative( argument type x)

returns true in case x is negative.

See Also

RealEmbeddableTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 124
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RealEmbeddableTraits::Compare

Definition

AdaptableBinaryFunction compares two real embeddable numbers.

Refines

AdaptableBinaryFunction

Types

RealEmbeddableTraits::Compare:: result type

Type convertible to CGAL::Comparison result.

RealEmbeddableTraits::Compare:: first argument type

Is RealEmbeddableTraits::Type.

RealEmbeddableTraits::Compare:: second argument type

Is RealEmbeddableTraits::Type.

Operations

result type compare( first argument type x, second argument type y)

compares x with respect to y.

template <class NT1, class NT2>
result type compare( NT1 x, NT2 y)

This operator is defined if NT1 and NT2 are ExplicitInteroperable with coercion
type RealEmbeddableTraits::Type.

See Also

RealEmbeddableTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 124
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RealEmbeddableTraits::ToDouble

Definition

AdaptableUnaryFunction computes a double approximation of a real embeddable number.

Remark: In order to control the quality of approximation one has to resort to methods that are specific to NT.
There are no general guarantees whatsoever.

Refines

AdaptableUnaryFunction

Types

RealEmbeddableTraits::ToDouble:: result type

Is double.

RealEmbeddableTraits::ToDouble:: argument type

Is RealEmbeddableTraits::Type.

Operations

result type to double( argument type x)

computes a double approximation of a real embeddable number.

See Also

RealEmbeddableTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 124

132



C
on

ce
pt

F
un

ct
or

RealEmbeddableTraits::ToInterval

Definition

AdaptableUnaryFunction computes for a given real embeddable number x a double interval containing x. This
interval is represented by std::pair<double,double>.

Refines

AdaptableUnaryFunction

Types

RealEmbeddableTraits::ToInterval:: result type

Is std::pair<double,double>.

RealEmbeddableTraits::ToInterval:: argument type

Is RealEmbeddableTraits::Type.

Operations

result type to interval( argument type x)

computes a double interval containing x.

See Also

RealEmbeddableTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 124
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CGAL::Real embeddable traits<T>

Definition

An instance of Real embeddable traits<T> is a model of RealEmbeddableTraits, where T is the associated
type.

#include <CGAL/Real embeddable traits.h>

Is Model for the Concepts

RealEmbeddableTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 124
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CGAL::abs

Definition

The template function abs returns the absolute value of a number.

The function is defined if the argument type is a model of the RealEmbeddable concept.

#include <CGAL/number utils.h>

template <class NT>
NT abs( NT x)

See Also

RealEmbeddable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 123
RealEmbeddableTraits::Abs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 127
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CGAL::sign

Definition

The template function sign returns the sign of a number.

The function is defined if the argument type is a model of the RealEmbeddable concept.

#include <CGAL/number utils.h>

template <class NT>
result type sign( NT x) returns the sign of the argument. The result type is convert-

ible to CGAL::Sign.

See Also

RealEmbeddable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 123
RealEmbeddableTraits::Sgn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 128
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CGAL::is positive

Definition

The template function is positive determines if a value is positive or not. The function is defined if the argument
type is a model of the RealEmbeddable concept.

#include <CGAL/number utils.h>

result type is positive( NT x) The result type is convertible to bool.

See Also

RealEmbeddable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 123
RealEmbeddableTraits::IsPositive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 129
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CGAL::is negative

Definition

The template function is negative determines if a value is negative or not. The function is defined if the argument
type is a model of the RealEmbeddable concept.

#include <CGAL/number utils.h>

result type is negative( NT x) The result type is convertible to bool.

See Also

RealEmbeddable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 123
RealEmbeddableTraits::IsNegative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 130
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CGAL::compare

Definition

The template function compare compares the first argument with respect to the second, i.e. it returns
CGAL::LARGER if x is larger then y.

In case the argument types NT1 and NT2 differ, compare is performed with the semantic of the type determined
via Coercion traits. The function is defined if this type is a model of the RealEmbeddable concept.

#include <CGAL/number utils.h>

template <class NT1, class NT2>
result type compare( NT x, NT y) The result type is convertible to CGAL::Comparison result.

RealEmbeddable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 123
RealEmbeddableTraits::Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 131
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CGAL::to double

Definition

The template function to double returns an double approximation of a number. The function is defined if the
argument type is a model of the RealEmbeddable concept.

Remark: In order to control the quality of approximation one has to resort to methods that are specific to NT.
There are no general guarantees whatsoever.

#include <CGAL/number utils.h>

template <class NT>
double to double( NT x)

See Also

RealEmbeddable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 123
RealEmbeddableTraits::ToDouble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 132
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CGAL::to interval

Definition

The template function to interval computes for a given real embeddable number x a double interval containing
x. This interval is represented by a std::pair<double,double>. The function is defined if the argument type is a
model of the RealEmbeddable concept.

#include <CGAL/number utils.h>

template <class NT>
std::pair<double,double>

to interval( NT x)

See Also

RealEmbeddable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 123
RealEmbeddableTraits::ToInterval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 133

141



C
on

ce
pt

Fraction

Definition

A type is considered as a Fraction, if there is a reasonable way to decompose it into a numerator and denom-
inator. In this case the relevant functionality for decomposing and re-composing as well as the numerator and
denominator type are provided by CGAL::Fraction traits.

See Also

FractionTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 143
CGAL::Fraction traits<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 147
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FractionTraits

Definition

A model of FractionTraits is associated with a type Type.

In case the associated type is a Fraction, a model of FractionTraits provides the relevant functionality for
decomposing and re-composing as well as the numerator and denominator type.

#include <CGAL/Fraction traits.h>

Types

FractionTraits:: Type the associated type

FractionTraits:: Is fraction Tag indicating whether the associated type is a fraction and
can be decomposed into a numerator and denominator.
This is either CGAL::Tag true or CGAL::Tag false.

FractionTraits:: Numerator type The type to represent the numerator. This is undefined in
case the associated type is not a fraction.

FractionTraits:: Denominator type The (simpler) type to represent the denominator. This is un-
defined in case the associated type is not a fraction.

Functors

In case Type is not a Fraction all functors are Null functor.

FractionTraits:: Decompose A model of FractionTraits::Decompose.

FractionTraits:: Compose A model of FractionTraits::Compose.

FractionTraits:: Common factor A model of FractionTraits::CommonFactor.

Has Models

CGAL::Fraction traits<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 147

See Also

FractionTraits::Decompose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 144
FractionTraits::Compose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 145
FractionTraits::CommonFactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 146
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FractionTraits::Decompose

Definition

Functor decomposing a Fraction into its numerator and denominator.

Types

Operations

void decompose.operator()( FractionTraits::Type f,
FractionTraits::Numerator type & n,
FractionTraits::Denominator type & d)

decompose f into numerator n and denominator d.

See Also

Fraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 142
FractionTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 143
FractionTraits::Compose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 145
FractionTraits::CommonFactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 146
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FractionTraits::Compose

Definition

AdaptableBinaryFunction, returns the fraction of its arguments.

Refines

AdaptableBinaryFunction

Types

typedef FractionTraits::Type

result type;

typedef FractionTraits::Numerator type

first argument type;

typedef FractionTraits::Denominator type

second argument type;

Operations

result type compose( first argument type n, second argument type d)

return the fraction n/d.

See Also

Fraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 142
FractionTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 143
FractionTraits::Decompose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 144
FractionTraits::CommonFactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 146
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FractionTraits::CommonFactor

Definition

AdaptableBinaryFunction, finds great common factor of denominators.

This can be considered as a relaxed version of AlgebraicStructureTraits::Gcd, this is needed because it is not
guaranteed that FractionTraits::Denominator type is a model of UniqueFactorizationDomain.

Refines

AdaptableBinaryFunction

Types

typedef FractionTraits::Denominator type

result type;

typedef FractionTraits::Denominator type

first argument type;

typedef FractionTraits::Denominator type

second argument type;

Operations

result type common factor( first argument type d1, second argument type d2)

return a great common factor of d1 and d2.
Note: operator()(0,0) = 0

See Also

Fraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 142
FractionTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 143
FractionTraits::Decompose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 144
FractionTraits::Compose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 145
AlgebraicStructureTraits::Gcd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 90
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CGAL::Fraction traits<T>

Definition

An instance of Fraction traits<T> is a model of FractionTraits, where T is the associated type.

#include <CGAL/Fraction traits.h>

Is Model for the Concepts

FractionTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 143
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RingNumberType

Definition

The concept RingNumberType combines the requirements of the concepts IntegralDomainWithoutDivision and
RealEmbeddable. A model of RingNumberType can be used as a template parameter for Homogeneous kernels.

Refines

IntegralDomainWithoutDivision
RealEmbeddable

Has Models

C++ built-in number types
CGAL::Gmpq
CGAL::Gmpz
CGAL::Interval nt
CGAL::Interval nt advanced
CGAL::Lazy exact nt<RingNumberType>
CGAL::MP Float
CGAL::Gmpzf
CGAL::Quotient<RingNumberType>
leda integer
leda rational
leda bigfloat
leda real

See Also

FieldNumberType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 149
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FieldNumberType

Definition

The concept FieldNumberType combines the requirements of the concepts Field and RealEmbeddable. A model
of FieldNumberType can be used as a template parameter for Cartesian kernels.

Refines

Field
RealEmbeddable

Has Models

float
double
CGAL::Gmpq
CGAL::Interval nt
CGAL::Interval nt advanced
CGAL::Lazy exact nt<FieldNumberType>
CGAL::Quotient<RingNumberType>
leda rational
leda bigfloat
leda real

See Also

RingNumberType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 148
Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 581
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Chapter 5

Number Types
Michael Hemmer, Susan Hert, Sylvain Pion, and Stefan Schirra

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.2 Built-in Number Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.3 Number Types Provided by CGAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.4 Number Types Provided by GMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.5 Number Types Provided by LEDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.6 Number Types Provided by CORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.7 Interval arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.8 User-supplied Number Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.9 Design and Implementation History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Reference Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.10 Classified Reference Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.11 Alphabetical List of Reference Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.1 Introduction

This chapter gives an overview of the number types supported by CGAL. Number types must fulfill certain
syntactical and semantic requirements, such that they can be successfully used in CGAL code. In general they
are expected to be a model of an algebraic structure concepts and in case they model a subring of the real
numbers they are also a model of RealEmbeddable. For an overview of the algebraic structure concepts see
Section 4.8.

5.2 Built-in Number Types

The built-in number types float, double and long double have the required arithmetic and comparison operators.
They lack some required routines though which are automatically included by CGAL. 1

1 The functions can be found in the header files CGAL/int.h, CGAL/float.h, CGAL/double.h and CGAL/long long.h.
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All built-in number types of C++ can represent a discrete (bounded) subset of the rational numbers only. We as-
sume that the floating-point arithmetic of your machine follows IEEE floating-point standard. Since the floating-
point culture has much more infrastructural support (hardware, language definition and compiler) than exact
computation, it is very efficient. Like with all number types with finite precision representation which are used
as approximations to the infinite ranges of integers or real numbers, the built-in number types are inherently
potentially inexact. Be aware of this if you decide to use the efficient built-in number types: you have to cope
with numerical problems. For example, you can compute the intersection point of two lines and then check
whether this point lies on the two lines. With floating point arithmetic, roundoff errors may cause the answer of
the check to be false. With the built-in integer types overflow might occur.

5.3 Number Types Provided by CGAL

CGAL provides several number types that can be used for exact computation. These include the Quotient class
that can be used to create, for example, a number type that behaves like a rational number when parameterized
with a number type which can represent integers.

The number type MP Float is able to represent multi-precision floating point values, a generalization of integers
scaled by a (potentially negative) power of 2. It allows to deal with ring operations over floating-point values
with requiring rational numbers. By plugging it in Quotient, one obtains rational numbers. Note that MP Float
may not be as efficient as the integer types provided by GMP or LEDA, but it has the advantage to make more
parts of CGAL independent on these external libraries for handling robustness issues.

The templated number type Lazy exact nt<NT> is able to represent any number that NT is able to represent, but
because it first tries to use an approximate value to perform computations it can be faster than NT .

A number type for doing interval arithmetic, Interval nt, is provided. This number type helps in doing arithmetic
filtering in many places such as Filtered predicate.

CGAL::Sqrt extension is a number type that allows to represent algebraic numbers of degree 2 as well as nested
forms. A generic function CGAL::make root of 2 allows to build this type generically.

A debugging helper Number type checker<NT1,NT2,Comparator> is also provided which allows to compare
the behavior of operations over two number types.

5.4 Number Types Provided by GMP

CGAL provides wrapper classes for number types defined in the GNU Multiple Precision arithmetic li-
brary [Gra]. The file CGAL/Gmpz.h provides the class Gmpz, a wrapper class for the arbitrary-precision integer
type mpz t, which is compliant with the CGAL number type requirements. The file CGAL/Gmpq.h provides the
class Gmpq, a wrapper class for the arbitrary-precision rational type mpq t, which is compliant with the CGAL
number type requirements.

The file CGAL/Gmpzf.h provides the class Gmpzf , an exact arbitrary-precision floating-point type. Hence, It
does not support operators like / to guarantee exactness of the operations. The arithmetic operations on this
type are restricted to +, -, * and CGAL::integral division.

The file CGAL/Gmpfr.h provides the class Gmpfr, a fixed-precision floating-point number type. Since the pre-
cision (number of bits used to represent the mantissa of the number) is fixed for each object, the result of each
operation is rounded when necessary. Though not necessary at first, the user will take full advantage of this
number type by understanding the ideas behind floating-point arithmetic, such as precision and rounding, and
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understanding the flags set by this library after each operation. For more details, the reader should refer to
[MPFb] and the Gmpfr reference manual.

In addition, it is possible to directly use the C++ number types provided by GMP : mpz class, mpq class (note
that support for mpf class is incomplete). The file CGAL/gmpxx.h provides the necessary functions to make
these classes compliant to the CGAL number type requirements.

To use these classes, GMP and MPFR must be installed.

5.5 Number Types Provided by LEDA

LEDA provides number types that can be used for exact computation with both Cartesian and homogeneous
representations. If you are using homogeneous representation with the built-in integer types short, int, and
long as ring type, exactness of computations can be guaranteed only if your input data come from a sufficiently
small integral range and the depth of the computations is sufficiently small. LEDA provides the number type
leda integer for integers of arbitrary length. (Of course the length is somehow bounded by the resources of
your computer.) It can be used as ring type in homogeneous kernels and leads to exact computation as long as
all intermediate results are rational. For the same kind of problems, Cartesian representation with number type
leda rational leads to exact computation as well. The number type leda bigfloat in LEDA is a variable precision
floating-point type. Rounding mode and precision (i.e. mantissa length) of leda bigfloat can be set.

The most sophisticated number type in LEDA is the number type called leda real. Like in Pascal, where the
name real is used for floating-point numbers, the name leda real does not describe the number type precisely,
but intentionally. leda reals are a subset of real algebraic numbers. Any integer is leda real and leda reals are
closed under the operations +,−,∗,/ and k-th root computation. For LEDA version 5.0 and or later leda real is
also able to represent real roots of polynomials. leda reals guarantee that all comparisons between expressions
involving leda reals produce the exact result.

The files CGAL/leda integer.h, CGAL/leda rational.h, CGAL/leda bigfloat.h and CGAL/leda real.h
provide the necessary functions to make these classes compliant to the CGAL number type requirements.

5.6 Number Types Provided by CORE

In principle CORE [KLPY99] provides the same set of number types as LEDA. The type CORE::BigInt represent
integers and CORE::BigRat represent rationals of arbitrary length. The number type CORE::BigFloat is a
variable precision floating-point type. It is also possible to interpret it as an interval type, since it also carries the
error of a computed value. As for LEDA, the most sophisticated number type in CORE is CORE::Expr, which
is in its functionality equivalent to leda real.

The files CGAL/CORE BigInt.h, CGAL/CORE BigRat.h, CGAL/CORE BigFloat.h and CGAL/CORE Expr.h pro-
vide the necessary functions to make these classes compliant to the CGAL number type requirements.

CORE version 1.7 or later is required.
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5.7 Interval arithmetic

Interval arithmetic is very important for geometric programming. It is a fundamental tool for filtering predicates.
For many problems, intervals of machine double-precision numbers are sufficient, but it is not always enough.
For example, one approach for determining the sign of an expression is to evaluate its sign using interval
arithmetic and to repeatedly increase the precision of the bounds of the intervals until either the interval does
not contain zero or its width is less than the separation bound of the polynomial.

For intervals of machine double-precision numbers, CGAL provides the class Interval nt. For intervals of
floating-point arbitrary-precision numbers, the class Gmpfi is provided in the file CGAL/Gmpfi.h.

Endpoints of Gmpfi intervals are represented as Gmpfr numbers. Each interval has an associated precision,
which is the maximum precision (number of bits used to represent the mantissa) of its endpoints. The result
of the operations is guaranteed to be always contained in the returned interval. Since the interval arithmetic is
implemented on top of Gmpfr, the global flags and the default precision are inherited from the Gmpfr interface.
See [MPFa] and the Gmpfi reference manual for details.

To use the Gmpfi class, MPFI must be installed.

5.8 User-supplied Number Types

In order to use your own number type it must be a model of the according algebraic structure concept, in
particular you must provide a specialization of CGAL::Algebraic structure traits and also of Real embeddable
traits in case it is a sub ring of the real numbers. If you even want to provide a related ensemble of number types
you should also provide specializations for CGAL::Coercion traits in order to reflect their interoperability.

5.9 Design and Implementation History

This package was naturally one of the first packages implemented in CGAL. It initially contained the Quotient,
Gmpz and Gmpq classes, together with the interfaces to the number types provided by LEDA, which were
implemented by Stefan Schirra and Andreas Fabri.

Later, around 1998-2002, Sylvain Pion implemented Interval nt MP Float and Lazy exact nt, together with the
interfaces to the mpz class and mpq class types from GMP.

Number type concepts were then refined, notably by Lutz Kettner and Susan Hert, who also contributed utility
algorithms.

The work on concepts was further extended within the EXACUS project, and was finally contributed to CGAL
by Michael Hemmer in 2006, as what is now the separate Algebraic Foundations package 4, together with a
rewritten interface to operations on number types.

The class Sqrt extension was contributed by Michael Hemmer and Ron Wein around 2006. In 2010 it went
through a considerable reinvestigation by Sébastien Loriot, Michael Hemmer, and Monique Teillaud. As a result
it got further improved and now replaces several similar types such as Root of 2, which had been contributed
by Pedro M. M. de Castro, Sylvain Pion and Monique Teillaud, and is deprecated since CGAL-3.8.

In 2008-2010, Bernd Gärtner added the Gmpzf class, while Luis Peñaranda and Sylvain Lazard contributed the
Gmpfi and Gmpfr classes.
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int

Definition

The fundamental type int is an RealEmbeddable EuclideanRing. Due to overflow int is considered as not exact.

#include <CGAL/int.h> Is Model for the Concepts

EuclideanRing
RealEmbeddable
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short int

Definition

The fundamental type short int is an RealEmbeddable EuclideanRing. Due to overflow short int is considered
as not exact.

#include <CGAL/int.h> Is Model for the Concepts

EuclideanRing
RealEmbeddable
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long int

Definition

The fundamental type long int is an RealEmbeddable EuclideanRing. Due to overflow long int is considered as
not exact.

#include <CGAL/int.h> Is Model for the Concepts

EuclideanRing
RealEmbeddable
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long long int

Definition

The fundamental type long long int is an RealEmbeddable EuclideanRing. Due to overflow long long int is
considered as not exact.

#include <CGAL/long long.h> Is Model for the Concepts

EuclideanRing
RealEmbeddable
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float

Definition

The fundamental type float is an RealEmbeddable FieldWithSqrt. Due to rounding errors and overflow float is
considered as not exact.

#include <CGAL/float.h> Is Model for the Concepts

FieldWithSqrt
RealEmbeddable

Query Functions

bool CGAL::is finite( x) Determines whether the argument represents a value in R.
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double

Definition

The fundamental type double is an RealEmbeddable Field. Due to rounding errors and overflow double is
considered as not exact.

#include <CGAL/double.h> Is Model for the Concepts

FieldWithSqrt
RealEmbeddable

Query Functions

bool CGAL::is finite( x) Determines whether the argument represents a value in R.
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long double

Definition

The fundamental type long double is an RealEmbeddable FieldWithSqrt. Due to rounding errors and overflow
long double is considered as not exact.

#include <CGAL/long double.h> Is Model for the Concepts

FieldWithSqrt
RealEmbeddable

Query Functions

bool CGAL::is finite( x) Determines whether the argument represents a value in R.
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CORE::BigInt

Definition

The class CORE::BigInt provides exact computation in Z. Operations and comparisons between objects of this
type are guaranteed to be exact. This number type is provided by the CORE library [KLPY99].

CGAL defines the necessary functions so that this class complies to the requirements on number types.

#include <CGAL/CORE BigInt.h>

Is Model for the Concepts

EuclideanRing

RealEmbeddable
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CORE::BigRat

Definition

The class CORE::BigRat provides exact computation in R. Operations and comparisons between objects of this
type are guaranteed to be exact. This number type is provided by the CORE library [KLPY99].

CGAL defines the necessary functions so that this class complies to the requirements on number types.

#include <CGAL/CORE BigRat.h>

Is Model for the Concepts

Field
RealEmbeddable
Fraction
FromDoubleConstructible
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CORE::BigFloat

Definition

The class CORE::BigFloat is a variable precision floating-point type. Rounding mode and precision (i.e. man-
tissa length) of CORE::BigFloat can be set. Since it also carries the error of a computed value.

This number type is provided by the CORE library [KLPY99].

CGAL defines the necessary functions so that this class complies to the requirements on number types.

#include <CGAL/CORE BigFloat.h>

Is Model for the Concepts

FieldWithKthRoot
RealEmbeddable
FromDoubleConstructible
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CORE::Expr

Definition

The class CORE::Expr provides exact computation over the subset of real numbers that contains integers, and
which is closed by the operations +,−,×,/,

√ and kth root. Operations and comparisons between objects of
this type are guaranteed to be exact. This number type is provided by the CORE library [KLPY99].

CGAL defines the necessary functions so that this class complies to the requirements on number types.

#include <CGAL/CORE Expr.h>

Is Model for the Concepts

FieldWithRootOf
RealEmbeddable
FromDoubleConstructible
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leda integer

Definition

The class leda integer provides exact computation in Z. The class leda integer is a wrapper class that provides
the functions needed to use the number type leda::integer, representing exact multiprecision integers provided
by LEDA.

#include <CGAL/leda integer.h>

Is Model for the Concepts

EuclideanRing

RealEmbeddable

For more details on the number types of LEDA we refer to the LEDA manual [MNSU].
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leda rational

Definition

The class leda rational provides exact computation in R. The class leda rational is a wrapper class that pro-
vides the functions needed to use the number type rational, representing exact multiprecision rational numbers
provided by LEDA.

#include <CGAL/leda rational.h>

Is Model for the Concepts

Field
RealEmbeddable
Fraction
FromDoubleConstructible

For more details on the number types of LEDA we refer to the LEDA manual [MNSU].
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leda bigfloat

Definition

The class leda bigfloat is a wrapper class that provides the functions needed to use the number type bigfloat.
bigfloat Rounding mode and precision (i.e. mantissa length) of leda bigfloat can be set.

For more details on the number types of LEDA we refer to the LEDA manual [MNSU].

#include <CGAL/leda bigfloat.h>

Is Model for the Concepts

FieldWithKthRoot
RealEmbeddable
FromDoubleConstructible
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leda real

Definition

The class leda real is a wrapper class that provides the functions needed to use the number type real, represent-
ing exact real numbers numbers provided by LEDA. The class leda real provides exact computation over the
subset of real numbers that contains integers, and which is closed by the operations +,−,×,/,

√ and kth root.
For LEDA version 5.0 or later leda real is also able to represent real roots of polynomials. Operations and
comparisons between objects of this type are guaranteed to be exact.

#include <CGAL/leda real.h>

Is Model for the Concepts

FieldWithRootOf
RealEmbeddable
FromDoubleConstructible

For more details on the number types of LEDA we refer to the LEDA manual [MNSU].
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mpz class

Definition

The class mpz class is an exact multiprecision integer number type, provided by GMP. CGAL provides the
necessary functions to make it compliant to the number type concept.

#include <CGAL/gmpxx.h>

Is Model for the Concepts

EuclideanRing

RealEmbeddable

See the GMP documentation for additional details.

173



C
la

ss

mpq class

Definition

The class mpq class is an exact multiprecision rational number type, provided by GMP. CGAL provides the
necessary functions to make it compliant to the number type concept.

#include <CGAL/gmpxx.h>

Is Model for the Concepts

Field
RealEmbeddable
Fraction

See the GMP documentation for additional details.
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CGAL::Gmpz

Definition

An object of the class Gmpz is an arbitrary precision integer based on the GNU Multiple Precision Arithmetic
Library.

#include <CGAL/Gmpz.h>

Is Model for the Concepts

EuclideanRing
RealEmbeddable

Creation

Gmpz z; creates an uninitialized multiple precision integer z.
Gmpz z( int i); creates a multiple-precision integer initialized with i.
Gmpz z( double d); creates a multiple-precision integer initialized with the integral part of d.

Operations

Gmpz & ++ z prefix increment.
Gmpz z++ postfix increment.
Gmpz & −− z prefix decrement.
Gmpz z−− postfix decrement.

Gmpz a >> unsigned long i rightshift by i.
Gmpz a << unsigned long i leftshift by i.
Gmpz & z >>= long i rightshift by i, where i >= 0.
Gmpz & z <<= long i leftshift by i, where i >= 0.

Gmpz a & b bitwise AND.
Gmpz a | b bitwise IOR.
Gmpz a ˆb bitwise XOR.
Gmpz & z &= b bitwise AND.
Gmpz & z |= b bitwise IOR.
Gmpz & z ˆ= b bitwise XOR.

Sign z.sign() const Returns the sign of z.

size t z.bit size() const Returns the bit-size (that is, the number of bits needed to rep-
resent the mantissa) of z.

size t z.size() const Returns the size in limbs of z. A limb is the type used by GMP
to represent the integer (usually long).
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size t z.approximate decimal length() const

Returns the approximate number of decimal digits needed to
represent z. Approximate means either a correct result, either
the correct result plus one.

double z.to double() const Returns a double approximation of z. The integer is truncated if
needed. If the exponent of the conversion is too big, the result
is system dependent (returning infinity where it is supported).

std::ostream& std::ostream& out << z writes z to the ostream out.
std::istream& std::istream& in >> & z reads an integer from in, then converts it to a Gmpz.

Implementation

Gmpzs are reference counted.
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CGAL::Gmpq

Definition

An object of the class Gmpq is an arbitrary precision rational number based on the GNU Multiple Precision
Arithmetic Library.

#include <CGAL/Gmpq.h>

Is Model for the Concepts

Field
RealEmbeddable
Fraction

Creation

Gmpq q; creates an uninitialized Gmpq q.
Gmpq q( int i); creates a Gmpq initialized with i.
Gmpq q( Gmpz n); creates a Gmpq initialized with n.
Gmpq q( Gmpfr f ); creates a Gmpq initialized with f .
Gmpq q( int n, int d); creates a Gmpq initialized with n/d.
Gmpq q( signed long n, unsigned long d); creates a Gmpq initialized with n/d.
Gmpq q( unsigned long n, unsigned long d); creates a Gmpq initialized with n/d.
Gmpq q( Gmpz n, Gmpz d); creates a Gmpq initialized with n/d.
Gmpq q( double d); creates a Gmpq initialized with d.

Gmpq q( std::string str); creates a Gmpq initialized with str, which can be an integer
like ”41” or a fraction like ”41/152”. White space is allowed
in the string, and ignored.

Gmpq q( std::string str, int base); creates a Gmpq initialized with str in base base, which is
an integer between 2 and 62. White space in the string is
ignored.

Operations

std::ostream& std::ostream& out << q writes q to the ostream out, in the form n/d.

std::istream& std::istream& in >> & q reads a number from in, then converts it to a Gmpq. The num-
ber may be an integer, a rational number in the form n/d, or a
floating-point number.

There are two access functions, namely to the numerator and the denominator of a rational. Note that these
values are not uniquely defined. It is guaranteed that q.numerator() and q.denominator() return values nt num
and nt den such that q = nt num/nt den, only if q.numerator() and q.denominator() are called consecutively
wrt. q, i.e. q is not involved in any other operation between these calls.

Gmpz q.numerator() const returns the numerator of q.
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Gmpz q.denominator() const returns the denominator of q.

Implementation

Gmpqs are reference counted.
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CGAL::Gmpzf

Definition

This is an multiple-precision floating-point type; it can represent numbers of the form m ∗ 2e, where m is an
arbitrary precision integer based on the GNU Multiple Precision Arithmetic Library, and e is of type long. This
type can be considered exact, even if the exponent is not a multiple-precision number. This number type offers
functionality very similar to MP Float but is generally faster.

#include <CGAL/Gmpzf.h>

Is Model for the Concepts

EuclideanRing

RealEmbeddable

Creation

Gmpzf f ; creates a Gmpzf initialized with 0.

Gmpzf f ( int i); creates a Gmpzf initialized with i.

Gmpzf f ( long int l); creates a Gmpzf initialized with l.

Gmpzf f ( Gmpz i); creates a Gmpzf initialized with i.

Gmpzf f ( Gmpfr f ); creates a Gmpzf initialized with f .

Gmpzf f ( double d); creates a Gmpzf initialized with d.

Operations

std::ostream& std::ostream& out << f

writes a double approximation of f to the ostream out.

std::ostream& print( std::ostream& out, f)

writes an exact representation of f to the ostream out.

std::istream& std::istream& in >> & f

reads a double from in, then converts it to a Gmpzf .
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Implementation

The significand m of a Gmpzf is a Gmpz and is reference counted. The exponent e of a Gmpzf is a long.
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CGAL::Gmpfr

Definition

An object of the class Gmpfr is a fixed precision floating-point number, based on the MPFR library. This type is
inexact, due to the fact that the mantissa of each number is represented by a fixed amount of bits (this amount is
called precision). If an operation needs more bits than the precision of the result number, the results are rounded
following different possible criteria (called rounding modes).

Currently, MPFR supports four rounding modes: round to nearest, round toward zero, round down (or toward
−∞) and round up (or toward +∞). When not specified explicitly, the operations use the default rounding mode,
which is in practice a variable local to each execution thread. The default rounding mode can be set to any of
the four rounding modes (initially, it is set to nearest). To specify rounding modes for operations, the type used
is std::float round style.

This type is ImplicitInteroperable with Gmpz, long, unsigned long, int, double and long double.

#include <CGAL/Gmpfr.h>

Is Model for the Concepts

FieldWithKthRoot
RealEmbeddable

Types

Gmpfr:: Precision type Type representing the precision (number of bits used to rep-
resent the mantissa) of a number.

Creation

Gmpfr f ; Creates an uninitialized Gmpfr f .

Gmpfr f ( n); Copy constructor. The copied object inherits the precision of
n, and thus it is not rounded.

Gmpfr f ( long si); Creates Gmpfr, initialized with the value of si.

Gmpfr f ( unsigned long ui); Creates a Gmpfr, initialized with the value of ui.

Gmpfr f ( int i); Creates a Gmpfr, initialized with the value of i.

Gmpfr f ( double d); Creates a Gmpfr, initialized with the value of d.

Gmpfr f ( long double ld); Creates a Gmpfr, initialized with the value of ld.

Gmpfr f ( Gmpz z); Creates a Gmpfr, initialized with the value of z.
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Gmpfr f ( Gmpzf zf ); Creates a Gmpfr, initialized with the value of zf .

Gmpfr f ( std::pair<Gmpz,long> ie); Creates a Gmpfr, initialized with the value of ie. f irst ×
2ie.second .

Note that all constructors can be called with two optional parameters. One can specify as second parameter the
rounding mode desired for the conversion from the source number and as a third parameter the precision with
which this Gmpfr will be created. If only one optional parameter is specified, it can be either the rounding mode
or the precision. If no optional parameters are specified, the precision of the created object is chosen in such a
way that the conversion is exact (i.e., no rounding is performed).

These optional parameters, along with other functions which will be explained below, allow users to control the
rounding and precision. For example, being z a Gmpz, Gmpfr g(z,53,std::round_toward_neg_infinity)
will construct a Gmpfr g having as value the biggest 53-bit floating-point number that is equal or smaller than
to z.

Operations

Each Gmpfr object has a precision associated to it. The precision is the amount of bits needed to represent the
mantissa. MPFR has a default precision value, which can be controlled by static functions of the Gmpfr class
(in practice, this default value is a variable local to each execution thread). There are also functions to get and
set the precision of each Gmpfr object.

static Precision type get default precision() This returns the current precision used in Gmpfr cre-
ation by default.

static Precision type set default precision( Precision type p)

This function sets the default MPFR precision to p,
and returns the old one.

Precision type f .get precision() const Returns the precision of f .

Gmpfr f .round( Precision type p, std::float round style r) const

Returns the value of f , rounded with precision p in
the direction r.

static std::float round style

get default rndmode() This function returns the current rounding mode used
by MPFR.

static std::float round style

set default rndmode( std::float round style r)

This function sets the MPFR rounding mode to r and
returns the old one.

MPFR provides some flags to know whether performed operations were exact or not, or they incurred in overflow
or underflow, if the exponent is out of range, or the result was NaN (not-a-number). One can clear the flags
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before a set of operations and inspect them afterward, in order to see if something unexpected happened during
the operations. The static functions used to handle flags are:

static void clear flags() Clears all the flags set by MPFR(they are not cleared
automatically).

static bool underflow flag() Shows whether an operation incurred in underflow.

static bool overflow flag() Shows whether an operation incurred in overflow.

static bool nan flag() Shows whether the result of an operation was NaN.

static bool inex flag() Shows whether an operation was inexact.

static bool erange flag() Returns true iff a range error occurred. Such an ex-
ception occurs when some function which does not
return a Gmpfr has an invalid result. For example,
this flag will be set if one of the operands of a com-
parison is NaN.

Arithmetic operators + , - , * and / are overloaded, but special care must be taken when applying them. The
precision of an operation between two Gmpfrs is defined as the maximum of the operands precision and the
default precision.

The second operand of the former operations can be a Gmpfr, int, long, unsigned, unsigned long, or Gmpz.
The precision of an operation between a Gmpfr and a number of another type is defined as the maximum
between the number’s precision and the default precision.

To specify the rounding mode and/or the precision to perform an operation, this class provides the four static
functions add, sub, mul and div. Only one of them is shown here, since their interfaces are similar:

static Gmpfr add( a, b)

static Gmpfr add( a, b, std::float round style r)

static Gmpfr add( a, b, Precision type p)

static Gmpfr add( a, b, Precision type p, std::float round style r)

When the precision is not specified in this family of functions, it is defined as in the overloaded operators. When
the rounding mode is not specified, the default is used.

Other arithmetic functions provided by the class are:

Gmpfr f .abs( Precision type p, std::float round style r=get default rndmode())

Returns the absolute value of f , rounded with preci-
sion p in the direction r. If p is not specified, the
precision used is the maximum between f ’s precision
and the default.
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Gmpfr f .sqrt( Precision type p, std::float round style r=get default rndmode())

Returns the square root of f , rounded with precision
p in the direction r. If p is not specified, the precision
used is the maximum between f ’s precision and the
default.

Gmpfr f .kthroot( int k, Precision type p, std::float round style r=get default rndmode())

Returns the k-th root of f , rounded with precision p
in the direction r. If p is not specified, the precision
used is the maximum between f ’s precision and the
default.

Gmpfr f .square( Precision type p, std::float round style r=get default rndmode())

Returns the square of f , rounded with precision p in
the direction r. If p is not specified, the precision
used is the maximum between f ’s precision and the
default.

double f .to double( std::float round style r=get default rndmode())

Returns a double precision approximation of f using
the rounding mode r.

std::pair<double,double>

f .to interval() Returns an interval of doubles which contains f . If a
rounded endpoint does not fit in a double, the double
is set to plus or minus infinity and the overflow or
underflow flag.

std::pair<double,long>

f .to double exp( std::float round style r=get default rndmode())

Returns the pair (d,e) such that 0.5 ≤ |d| < 1 and
d × 2e equals f rounded to double precision, using
the rounding mode r. If f is NaN or infinity, then the
corresponding double is returned, leaving the expo-
nent undefined and setting the appropriate error flag.

std::pair<std::pair<double,double>,long>

f .to interval exp() Returns ((m,M),e) such that m×2e ≤ f ≤M×2e. If
f is NaN or infinity, then the corresponding doubles
are returned, leaving the exponent undefined and set-
ting the appropriate error flag.
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std::pair<Gmpz,long>

f .to integer exp() Returns a pair of integers (m,e), such that f = m×2e.
Note that the returned value of m is not necessarily
the smallest possible value of m (that is, it might be
that 2|m).

Comparisons

Comparison operators ==, !=, >, <, >= and <= are also overloaded. A Gmpfr can be compared with other
Gmpfr, as well as with a Gmpz, long, unsigned long, int, double or long double. It is worth noting
that the numbers are never converted nor rounded before comparison. In the case where one of the compared
numbers is NaN, the erange flag is set.

Query Functions

Sign f .sign() Returns the sign of f .

bool f .is zero() Returns true iff f is zero.

bool f .is one() Returns true iff f is one.

bool f .is nan() Returns true iff f is NaN (not-a-number).

bool f .is inf() Returns true iff f is plus or minus infinity.

bool f .is number() Returns true iff f is a valid number.

bool f .is square() Returns true iff f is the square of a number repre-
sentable by an object of this type.

bool f .is square( y) Returns true iff f is the square of a number repre-
sentable by an object of this type, computing and
storing it in y.

Input/Output

std::istream& std::istream& in >> & f Reads a floating-point number from in. The number
M×2E must be in the form MeE, where the mantissa
M and the exponent E are integers in base 10.

std::ostream& std::ostream& out << f If the ostream out is in pretty-print mode, writes a
decimal approximation of f to out. Otherwise, writes
f to out in the form MeE, where M is its mantissa and
E is its exponent, both in base 10.
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Implementation

Since the MPFR library can be compiled to be thread-safe, this interface is designed to keep the thread-safety.

Gmpfrs are reference counted. This behavior may be changed, by setting the flag CGAL_GMPFR_NO_REFCOUNT. A
non-reference-counted class is slightly more efficient in case the implementation does not need to copy numbers
(this is not usually the case). Nevertheless, setting this flag may be useful for debugging purposes.

See Also

RealEmbeddable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 123
FieldWithKthRoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 76
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CGAL::Gmpfi

Definition

An object of the class Gmpfi is a closed interval, with endpoints represented as Gmpfr floating-point numbers.
An interval can have finite or infinite endpoints and its meaning is straightforward. It can also have one (or both)
NaN endpoint(s): this indicates that an invalid operation has been performed and that the resulting interval has
no mathematical meaning.

All the operations of Gmpfi were designed in such a way that the mathematical correct result is always contained
in the resulting interval.

This type is ImplicitInteroperable with Gmpfr, Gmpz, Gmpq, long, unsigned long, int, double and
long double.

#include <CGAL/Gmpfi.h>

Is Model for the Concepts

FieldWithKthRoot
RealEmbeddable

Types

Gmpfi:: Precision type Type representing the precision (number of bits used to rep-
resent the mantissa) of a number.

Creation

All the constructors accept an optional last argument: a precision (a Precision type, which can be used to specify
the precision of the Gmpfr endpoints. If none is specified, the default precision will be used. As the endpoints
are represented with a fixed number of bits, they may need to be rounded. In this case, the number from which
the Gmpfi was constructed is guaranteed to be included in the constructed interval.

Gmpfi i( Precision type p=get default precision());

creates an uninitialized Gmpfi interval i.

template <class T>
Gmpfi i( T t, Precision type p=get default precision());

creates a Gmpfi initialized with the value of t. T is Gmpfr,
Gmpq, or any type from which Gmpfr can be constructed
from. The rounding of the endpoints will guarantee that t is
included in i.

Gmpfi i( Gmpfr left, Gmpfr right, Precision type p=get default precision());

creates a Gmpfi initialized with endpoints left and right. The
rounding of the endpoints will guarantee that [left,right] is
included in i.
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template<class L, class R>
Gmpfi i( std::pair<L,R> endpoints, Precision type p=get default precision());

creates a Gmpfi initialized with endpoints endpoints.first and
endpoints.second. L and R are types from which Gmpfr can
be constructed from. The rounding of the endpoints will
guarantee that [endpoints.first,endpoints.second] is included
in i.

Operations

Gmpfr i.inf() const Returns the smallest (or inferior) Gmpfr endpoint of i.

Gmpfr i.sup() const Returns the largest (or superior) Gmpfr endpoint of i.

static Precision type i.get default precision()

Returns the default precision.

static Precision type i.set default precision( Precision type prec)

Sets the default precision to prec and returns the old value.

Precision type i.get precision() const

Returns the precision of i.

Gmpfi i.round( Precision type p) const

Returns the value of the number, rounded with precision p.

Arithmetic operators +, -, * and / are overloaded, but special care must be taken when applying them. The
precision of an operation between two Gmpfis is defined as the maximum of the operands precision and the
default precision.

The second operand of the former operations can be a Gmpfi, Gmpfr, int, long, unsigned, unsigned long,
Gmpz or Gmpq. The precision of an operation between a Gmpfi and a number of another type is defined as the
Gmpfi’s precision (even when operating with a Gmpfr).

To specify the rounding mode and/or the precision to perform an operation, this class provides the four static
functions add, sub, mul and div. Only one of them is shown here, since their interfaces are similar:

static Gmpfi add( a, b, Precision type p=0)

When the precision is not specified in this family of functions, it is defined as in the overloaded operators.

Other arithmetic functions provided by the class are:

188



Gmpfi i.abs( Precision type p) const

Returns the absolute value of i, with precision p. If p is not
specified, the precision used is the maximum between i’s pre-
cision and the default.

Gmpfi i.sqrt( Precision type p) const

Returns the square root of i, with precision p. If p is not spec-
ified, the precision used is the maximum between i’s preci-
sion and the default.

Gmpfi i.kthroot( int k, Precision type p) const

Returns the k-th root of i, with precision p. If p is not speci-
fied, the precision used is the maximum between i’s precision
and the default.

Gmpfi i.square( Precision type p) const

Returns the square of i, with precision p. If p is not specified,
the precision used is the maximum between i’s precision and
the default.

std::pair<double,double>

i.to interval() const Returns an interval of doubles which contains i. If a rounded
endpoint does not fit in a double, sets its value to plus or
minus infinity and the overflow or underflow flag.

std::pair<double,long>

i.to double exp() const

Returns (m,e) such that m×2e is the center of i, rounded to
nearest. If one of the endpoints of i is NaN or infinity, then
the corresponding double is returned, leaving the exponent
undefined and setting the appropriate error flag.

std::pair<std::pair<double,double>,long>

i.to interval exp() const

Returns ((m1,m2),e), such that [m1×2e,m2×2e] contains i.
If one of the endpoints of i is NaN or infinity, then the cor-
responding doubles are returned, leaving the exponent unde-
fined and setting the appropriate error flag.
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Comparisons

The semantics of the comparison operators is the same than on Interval nt<Protected>. The result of the com-
parison is always an Uncertain<bool> (this type is convertible to bool, but may throw an exception). If compared
intervals have no common points, the result is true or false; otherwise, Uncertain<bool>::indeterminate() will
be returned.

In the same way, we can explain the semantics of Uncertain<Comparison result> and Uncertain<Sign>.

With the semantics described above, this class provides comparisons between Gmpfi and Gmpfi, Gmpfr, long,
unsigned long, int, double, Gmpz and Gmpq. Comparison operators ==, !=, >, <, >= and <= are overloaded.

The class provides also functions to test efficiently some special kinds of comparisons:

bool i.is same( j) const Returns true iff left endpoints of i and j are equal and right
endpoints of them are also equal. Note that this does not
mean equality between i and j.

bool i.do overlap( j) const Returns true iff i and j overlap, i.e., iff they have points in
common.

Uncertain<Comparison result>

i.compare( j) const If i and j do not overlap, this function returns the result of the
comparison. Otherwise, it returns indeterminate.

Query Functions

bool i.is point() const Returns true iff both endpoints are equal.

bool i.is nan() const Returns true iff at least one of the endpoints is NaN.

bool i.is inf() const Returns true iff at least one of the endpoints is plus or minus
infinity.

bool i.is number() const Returns true iff i is a bounded interval, i.e. its endpoints are
neither invalid nor infinite.

Uncertain<bool> i.is zero() const Returns true if both endpoints are zero, false if the interval
does not contain zero and indeterminate otherwise.

Uncertain<bool> i.is one() const Returns true if both endpoints are one, false if the interval
does not contain one and indeterminate otherwise.

Uncertain<Sign> i.sign() const If all numbers contained in the interval have the same sign,
this function returns it. Otherwise it returns indeterminate.

Uncertain<bool> i.is positive() const Returns true if all numbers contained in the interval are pos-
itive, false if all of them are negative or zero and indetermi-
nate otherwise.

Uncertain<bool> i.is negative() const Returns true if all numbers contained in the interval are nega-
tive, false if all of them are positive or zero and indeterminate
otherwise.
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Input/Output

std::istream& std::istream &is >> i Reads i from is. is must have the form [inf,sup], where inf
and sup have valid Gmpfr input formats.

std::ostream& std::ostream &os << i

Writes i to os, in the form [i.inf(),i.sup()]. The endpoints are
written according to the Gmpfr formatting.

Implementation

All interval operations are performed by the MPFI library. The class Gmpfi is not reference counted, but its
members are.

See Also

Gmpfr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
Interval nt<Protected> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
Uncertain<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
RealEmbeddable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 123
FieldWithKthRoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 76
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CGAL::MP Float

Definition

An object of the class MP Float is able to represent a floating point value with arbitrary precision. This num-
ber type has the property that additions, subtractions and multiplications are computed exactly, as well as the
construction from float, double and long double.

Division and square root are not enabled by default since CGAL release 3.2, since they are computed approxi-
mately. We suggest that you use rationals like Quotient<MP Float> when you need exact divisions.

Note on the implementation : although the mantissa length is basically only limited by the available memory,
the exponent is currently represented by a (integral valued) double, which can overflow in some circumstances.
We plan to also have a multiprecision exponent to fix this issue.

#include <CGAL/MP Float.h>

Is Model for the Concepts

EuclideanRing.

RealEmbeddable

Creation

MP Float m; introduces an uninitialized variable m.
MP Float m( MP Float); copy constructor.
MP Float m( int i); introduces the integral value i.
MP Float m( float d); introduces the floating point value d (exact conversion).
MP Float m( double d); introduces the floating point value d (exact conversion).
MP Float m( long double d); introduces the floating point value d (exact conversion).

Operations

std::ostream& std::ostream& out << m

writes a double approximation of m to the ostream out.

std::istream& std::istream& in >> & m

reads a double from in, then converts it to an MP Float.

MP Float approximate division( a, b)

computes an approximation of the division by converting the
operands to double, performing the division on double, and
converting back to MP Float.
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MP Float approximate sqrt( a) computes an approximation of the square root by converting
the operand to double, performing the square root on double,
and converting back to MP Float.

Implementation

The implementation of MP Float is simple but provides a quadratic complexity for multiplications. This can be
a problem for large operands. For faster implementations of the same functionality with large integral values,
you may want to consider using GMP or LEDA instead.
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CGAL::Interval nt<Protected>

Definition

This section describes briefly what interval arithmetic is, its implementation in CGAL, and its possible use by
geometric programs. The main reason for having interval arithmetic in CGAL is its integration into the filtered
robust and fast predicates scheme, but we also provide a number type so that you can use it separately if you
find any use for it, such as interval analysis, or to represent data with tolerance...

The purpose of interval arithmetic is to provide an efficient way to bound the roundoff errors made by floating
point computations. You can choose the behavior of your program depending on these errors. You can find
more theoretical information on this topic in [BBP01].

Interval arithmetic is a large concept and we will only consider here a simple arithmetic based on intervals whose
bounds are doubles. So each variable is an interval representing any value inside the interval. All arithmetic
operations (+, -, ∗, /,√, square(), min(), max() and abs()) on intervals preserve the inclusion. This property can
be expressed by the following formula (x and y are real, X and Y are intervals, OP is an arithmetic operation):

∀ x ∈ X ,∀ y ∈ Y,(x OP y) ∈ (X OP Y )

For example, if the final result of a sequence of arithmetic operations is an interval that does not contain zero,
then you can safely determine its sign.

#include <CGAL/Interval nt.h>

Parameters

The template parameter Protected is a Boolean parameter, which defaults to true. It provides a way to select
faster computations by avoiding rounding mode switches, at the expense of more care to be taken by the user
(see below). The default value, true, is the safe way, and takes care of proper rounding mode changes. When
specifying false, the user has to take care about setting the rounding mode towards plus infinity before doing
any computations with the interval class. He can do so using the Protect FPU rounding class for example.

Is Model for the Concepts

FieldWithSqrt

RealEmbeddable

Types

The class Interval nt defines the following types: typedef double value type; The type of the bounds of the interval.

typedef Uncertain conversion exception

unsafe comparison; The type of the exceptions raised when uncertain compar-
isons are performed.
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Interval nt<Protected>:: Protector A type whose default constructor and destructor allow to pro-
tect a block of code from FPU rounding modes necessary for
the computations with Interval nt<false>. It does nothing
for Interval nt<true>. It is implemented as Protect FPU
rounding<!Protected>.

Creation

Interval nt<Protected> I( int i); introduces the interval [i;i].
Interval nt<Protected> I( double d); introduces the interval [d;d].
Interval nt<Protected> I( double i, double s); introduces the interval [i;s].
Interval nt<Protected> I( std::pair<double, double> p);

introduces the interval [p.first;p.second].

Operations

All functions required by a class to be considered as a CGAL number type (see 5) are present, as well as the
utility functions, sometimes with a particular semantic which is described below. There are also a few additional
functions.

Interval nt I /Interval nt J returns [−∞;+∞] when the denominator contains 0.

Interval nt sqrt( Interval nt I) returns [0;
√

upper bound(I)] when only the lower bound is
negative (expectable case with roundoff errors), and is un-
specified when the upper bound also is negative (unexpected
case).

double to double( Interval nt I)

returns the middle of the interval, as a double approximation
of the interval.

double I.inf() returns the lower bound of the interval.

double I.sup() returns the upper bound of the interval.

bool I.is point() returns whether both bounds are equal.

bool I.is same( Interval nt J)

returns whether both intervals have the same bounds.

bool I.do overlap( Interval nt J)

returns whether both intervals have a non empty intersection.
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The comparison operators (<, >, <=, >=, ==, ! =, sign() and compare()) have the following semantic: it
is the intuitive one when for all couples of values in both intervals, the comparison is identical (case of non-
overlapping intervals). This can be expressed by the following formula (x and y are real, X and Y are intervals,
OP is a comparison operator):

(∀x ∈ X ,∀y ∈ Y,(x OP y) = true)⇒ (X OP Y ) = true

and
(∀x ∈ X ,∀y ∈ Y,(x OP y) = f alse)⇒ (X OP Y ) = f alse

Otherwise, the comparison is not safe, and we specify this by returning a type encoding this uncertainty, namely
using Uncertain<bool> or Uncertain<Sign>, which can be probed for uncertainty explicitly, and which has a
conversion to the normal type (e.g. bool) which throws an exception when the conversion is not certain. Note
that each failed conversion increments a profiling counter (see CGAL PROFILE), and then throws the exception
of type unsafe comparison.

Uncertain<bool> Interval nt i < Interval nt j
Uncertain<bool> Interval nt i > Interval nt j
Uncertain<bool> Interval nt i <= Interval nt j
Uncertain<bool> Interval nt i >= Interval nt j
Uncertain<bool> Interval nt i == Interval nt j
Uncertain<bool> Interval nt i != Interval nt j
Uncertain<Comparison result>

compare( Interval nt i, Interval nt j)
Uncertain<Sign> sign( Interval nt i)

typedef Interval nt<false>

Interval nt advanced;

This typedef (at namespace CGAL scope) exists for backward
compatibility, as well as removing the need to remember the
Boolean value for the template parameter.

advanced

Implementation

The operations on Interval nt with the default parameter true, are automatically protected against rounding
modes, and are thus slower than those on Interval nt advanced, but easier to use. Users that need performance
are encouraged to use Interval nt advanced instead.

Changing the rounding mode affects all floating point computations, and might cause problems with parts of
your code, or external libraries (even CGAL), that expect the rounding mode to be the default (round to the
nearest).

We provide two interfaces to change the rounding mode. The first one is to use a protector object whose default
constructor and destructor will take care of changing the rounding mode. The protector is implemented using
Protect FPU rounding.

The second one is the following detailed set of functions :
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typedef int FPU CW t; The type used by the following functions to deal with round-
ing modes. This is usually an int.

void FPU set cw( FPU CW t R)

sets the rounding mode to R.

FPU CW t FPU get cw( void) returns the current rounding mode.

FPU CW t FPU get and set cw( FPU CW t R)

sets the rounding mode to R and returns the old one.

The macros CGAL FE TONEAREST , CGAL FE TOWARDZERO, CGAL FE UPWARD and CGAL FE
DOWNWARD are the values corresponding to the rounding modes.

Example

Protecting an area of code that uses operations on the class Interval nt advanced can be done in the following
way:

{
Interval_nt_advanced::Protector P;
... // The code to be protected.

}

The basic idea is to use the directed rounding modes specified by the IEEE 754 standard, which are implemented
by almost all processors nowadays. It states that you have the possibility, concerning the basic floating point
operations (+,−,∗,/,

√) to specify the rounding mode of each operation instead of using the default, which
is set to ’round to the nearest’. This feature allows us to compute easily on intervals. For example, to add the
two intervals [a.i;a.s] and [b.i;b.s], compute c.i = a.i + b.i rounded towards minus infinity, and c.s = a.s + b.s
rounded towards plus infinity, and the result is the interval [c.i;c.s]. This method can be extended easily to the
other operations.

The problem is that we have to change the rounding mode very often, and the functions of the C library doing
this operation are slow and not portable. That’s why assembly versions are used as often as possible. Another
trick is to store the opposite of the lower bound, instead of the lower bound itself, which allows us to never
change the rounding mode inside simple operations. Therefore, all basic operations, which are in the class
Interval nt advanced assume that the rounding mode is set to ’round to infinity’, and everything works with
this correctly set.

So, if the user needs the speed of Interval nt advanced, he must take care of setting the rounding mode to ’round
to infinity’ before each block of operations on this number type. And if other operations might be affected by
this, he must take care to reset it to ’round to the nearest’ before they are executed.

Notes:

• On Intel platforms (with any operating system and compiler), due to a misfeature of the floating point unit,
which does not handle exactly IEEE compliant operations on doubles, we are forced to use a workaround
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which slows down the code, but is only useful when the intervals can overflow or underflow. If you know
that the intervals will never overflow nor underflow for your code, then you can disable this workaround
with the flag CGAL IA NO X86 OVER UNDER FLOW PROTECT . Other platforms are not affected by
this flag.

• When optimizing, compilers usually propagate the value of variables when they know it’s a constant. This
can break the interval routines because the compiler then does some floating point operations on these
constants with the default rounding mode, which is wrong. This kind of problem is avoided by stopping
constant propagation in the interval routines. However, this solution slows down the code and is rarely
useful, so you can disable it by setting the flag CGAL IA DONT STOP CONSTANT PROPAGATION.

advanced
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CGAL::Lazy exact nt<NT>

Definition

An object of the class Lazy exact nt<NT> is able to represent any real embeddable number which NT is able
to represent. The idea is that Lazy exact nt<NT> works exactly like NT , except that it is expected to be faster
because it tries to only compute an approximation of the value, and only refers to NT when needed. The goal is
to speed up exact computations done by any exact but slow number type NT .

NT must be a model of concept RealEmbeddable.
NT must be at least model of concept IntegralDomainWithoutDivision.

Note that some filtering mechanism is available at the predicate level using Filtered predicate and Filtered
kernel.

#include <CGAL/Lazy exact nt.h>

Is Model for the Concepts

IntegralDomainWithoutDivision same as NT
RealEmbeddable
Fraction if NT is a Fraction

Creation

Lazy exact nt<NT> m; introduces an uninitialized variable m.
Lazy exact nt<NT> m( int i); introduces the integral value i.
Lazy exact nt<NT> m( double d); introduces the floating point value d (works only if NT has a

constructor from a double too).

Lazy exact nt<NT> m( NT n); introduces the value n.
template <class NT1>
Lazy exact nt<NT> m( Lazy exact nt<NT1> n);

introduces the value n. NT1 needs to be convertible to NT
(and this conversion will only be done if necessary).

Operations

NT m.exact() returns the corresponding NT value.

Interval nt<true> m.approx() returns an interval containing the exact value.

Interval nt<false> m.interval() returns an interval containing the exact value.

199



static void m.set relative precision of to double( double d)

specifies the relative precision that to double() has to fulfill.
The default value is 10−5.
Precondition: d¿0 and d¡1.

static double m.get relative precision of to double()

returns the relative precision that to double() currently ful-
fills.

std::ostream& std::ostream& out << m

writes m to ostream out in an interval format.

std::istream& std::istream& in >> & m

reads a NT from in, then converts it to a Lazy exact nt<NT>.

Example

#include <CGAL/Cartesian.h>
#include <CGAL/MP_Float.h>
#include <CGAL/Lazy_exact_nt.h>
#include <CGAL/Quotient.h>

typedef CGAL::Lazy_exact_nt<CGAL::Quotient<CGAL::MP_Float> > NT;
typedef CGAL::Cartesian<NT> K;
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CGAL::Quotient<NT>

Definition

An object of the class Quotient<NT> is an element of the field of quotients of the integral domain type NT . If NT
behaves like an integer, Quotient<NT> behaves like a rational number. LEDA’s class rational (see Section 5.5)
has been the basis for Quotient<NT>. A Quotient<NT> q is represented as a pair of NTs, representing numerator
and denominator.

NT must be at least model of concept IntegralDomainWithoutDivision.
NT must be a model of concept RealEmbeddable.

#include <CGAL/Quotient.h>

Is Model for the Concepts

Field
RealEmbeddable
Fraction

Creation

Quotient<NT> q; introduces an uninitialized variable q.
template <class T>
Quotient<NT> q( T t); introduces the quotient t/1. NT needs to have a constructor

from T.
template <class T>
Quotient<NT> q( Quotient<T> t); introduces the quotient NT(t.numerator())/NT(t.denominator()).

NT needs to have a constructor from T.
Quotient<NT> q( NT n, NT d); introduces the quotient n/d.

Precondition: d 6= 0.

Operations

There are two access functions, namely to the numerator and the denominator of a quotient. Note that these
values are not uniquely defined. It is guaranteed that q.numerator() and q.denominator() return values nt num
and nt den such that q = nt num/nt den, only if q.numerator() and q.denominator() are called consecutively wrt
q, i.e. q is not involved in any other operation between these calls.

NT q.numerator() const returns a numerator of q.
NT q.denominator() const

returns a denominator of q.

The stream operations are available as well. They assume that corresponding stream operators for type NT exist.
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std::ostream& std::ostream& out << q

writes q to ostream out in format “n/d”, where
n==q.numerator() and d==q.denominator().

std::istream& std::istream& in >> & q

reads q from istream in. Expected format is “n/d”, where n
and d are of type NT . A single n which is not followed by a
/ is also accepted and interpreted as n/1.

The following functions are added to fulfill the CGAL requirements on number types.

double to double( q) returns some double approximation to q.
bool is valid( q) returns true, if numerator and denominator are valid.
bool is finite( q) returns true, if numerator and denominator are finite.
Quotient<NT> sqrt( q) returns the square root of q. This is supported if and only if

NT supports the square root as well.
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CGAL::Number type checker<NT1,NT2,Comparator>

Definition

Number type checker is a number type whose instances store two numbers of types NT1 and NT2. It for-
wards all arithmetic operations to them, and calls the binary predicate Comparator to check the equality of the
instances after each modification, as well as for each comparison.

This is a debugging tool which is useful when dealing with number types.

Parameters

NT1 must be a model of some algebraic structure concept. NT2 must be a model of the same algebraic structure
concept. NT1 and NT2 must be FromDoubleConstructible. Comparator has to be a model of a binary predicate
taking NT1 as first argument, and NT2 as second. The Comparator parameter has a default value which is a
functor calling operator== between the two arguments.

#include <CGAL/Number type checker.h>

Is Model for the Concepts

IntegralDomainWithoutDivision (same as NT1)
RealEmbeddable Creation

Number type checker<NT1,NT2,Comparator> c;

introduces an uninitialized variable c.

Number type checker<NT1,NT2,Comparator> c( int i);

introduces the integral value i.

Number type checker<NT1,NT2,Comparator> c( double d);

introduces the floating point value d.

Number type checker<NT1,NT2,Comparator> c( NT1 n1, NT2 n2);

introduces a variable storing the pair n1, n2.

Operations

Some operations have a particular behavior documented here.

NT1 c.n1() const returns a const reference to the object of type NT1.
NT2 c.n2() const returns a const reference to the object of type NT2.
NT1& c.n1() returns a reference to the object of type NT1.
NT2& c.n2() returns a reference to the object of type NT2.
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bool c.is valid() const calls the Comparator binary predicate on the two stored ob-
jects and returns its result.

std::ostream& std::ostream& out << Number type checker c

writes c.n1() to the ostream out.

std::istream& std::istream& in >> Number type checker& c

reads an NT1 from in, then converts it to an NT2, so a con-
version from NT1 to NT2 is required here.
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CGAL::Max<T,Less>

Definition

The function object class Max<T,Less> returns the larger of two values. The order is induced by the second
template argument Less. The default value for Less is std::less.

Note that T must be a model of LessThanComparable in case std::less is used.

#include <CGAL/utils classes.h>

Is Model for the Concepts

AdaptableFunctor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??

Creation

Max<T,Less> max; default constructor.
Max<T,Less> max( Less c); The constructed object will use c to compare the arguments.

Operations

T operator()( T x, T y) returns the larger of x and y, with respect to the order induced
by Less.
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CGAL::Min<T,Less>

Definition

The function object class Min<T,Less> returns the smaller of two values. The order is induced by the second
template argument Less. The default value for Less is std::less.

Note that T must be a model of LessThanComparable in case std::less is used.

#include <CGAL/utils classes.h>

Is Model for the Concepts

AdaptableFunctor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??

Creation

Min<T,Less> min; default constructor.
Min<T,Less> min( Less c); The constructed object will use c to compare the arguments.

Operations

T operator()( T x, T y) returns the larger of x and y, with respect to the order induced
by Less.
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CGAL::Is valid<T>

Definition

Not all values of a type need to be valid. The function object class Is valid<T> checks this.

For example, an expression like NT(0)/NT(0) can result in an invalid number. Routines may have as a precondi-
tion that all values are valid.

#include <CGAL/utils classes.h>

Is Model for the Concepts

AdaptableFunctor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??

bool operator()( T x) returns if the argument is valid.
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CGAL::max

Definition

The function max returns the larger of two values.

#include <CGAL/utils.h>

T max( T x, T y)

Max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
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CGAL::min

Definition

The function min returns the smaller of two values.

#include <CGAL/utils.h>

T min( T x, T y)

See Also

Min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
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CGAL::is valid

Definition

Not all values of a type need to be valid. The function is valid returns whether the argument is valid.

#include <CGAL/utils.h>

bool is valid( T x)

See Also

Is valid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
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CGAL::Rational traits<NT>

Definition

The class Rational traits<NT> can be used to determine the type of the numerator and denominator of a rational
number type as Quotient, Gmpq, mpq class or leda rational.

#include <CGAL/Rational traits.h>

Types

Rational traits<NT>:: RT the type of the numerator and denominator.

Operations

RT t.numerator( NT r) const

returns the numerator of r.

RT t.denominator( NT r) const

returns the denominator of r.

NT t.make rational( RT n, RT d) const

constructs a rational number.

NT t.make rational( NT n, NT d) const

constructs a rational number.
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CGAL::simplest rational in interval

Definition

The function simplest rational in interval computes the simplest rational number in an interval of two double
values.

#include <CGAL/simplest rational in interval.h>

Rational simplest rational in interval( double d1, double d2)

computes the rational number with the smallest denominator
in the interval [d1,d2].

Implementation

See Knuth, ”Seminumerical algorithms”, page 654, answer to exercise 4.53-39.

See Also

Rational CGAL::to rational<Rational>(double d).
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CGAL::to rational

Definition

The function to rational computes the rational number representing a given double precision floating point
number.

#include <CGAL/to rational.h>

Rational to rational( double d) computes the rational number that equals d.

Implementation

See Also

CGAL::simplest rational in interval<Rational>(double d1, double d2).
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RootOf 2

Definition

Concept to represent algebraic numbers of degree up to 2 over a RealEmbeddable IntegralDomain RT .

A model of this concept is associated to this RT via CGAL::Root of traits<RT>, which provides Root of 2 as
a public type. Moreover, CGAL::Root of traits<RT> provides the public type Root of 1, which is the quotient
field of RT . We refer to Root of 1 as FT (for field type).

The model of RootOf 2 is a RealEmbeddable IntegralDomain, which is ImplicitInteroperable with RT , FT . In
particular, it provides the comparison operators ==, !=, <, >, <=, >= as well as the sign and compare functions
needed to compare elements of types RootOf 2, RT and FT . It also provides all arithmetic operators +,-,*,/
among elements of type RootOf 2 as well as mixed forms with RT and FT .

However, it is important to note that arithmetic operations among elements of RootOf 2 are only allowed in the
special case when they have been constructed from equations having the same discriminant, that is, if they are
defined in the same algebraic extension of degree 2.

Besides construction from int, RT and FT the following functions provide special construction for extensions
of degree 2:
- make root of 2
- make sqrt

Refines

DefaultConstructible
CopyConstructible
FromIntConstructible
ImplicitInteroperable with RT
ImplicitInteroperable with FT

Operations

RootOf 2 & += a Precondition: *this and a are defined in the same extension.
RootOf 2 a+b Precondition: a and b are defined in the same extension.

bool a == b
bool a < b

Same for operator -,*,/,!=,<=,>,>= as well as mixed forms with RT and FT .

Has Models

double (not exact)
CGAL::Sqrt extension
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See Also

CGAL::make root of 2<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 217
CGAL::make sqrt<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 218
CGAL::compute roots of 2<RT,OutputIterator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 219
CGAL::Root of traits<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 216
AlgebraicKernelForCircles::PolynomialForCircles 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1230
AlgebraicKernelForCircles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1223
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CGAL::Root of traits<RT>

Definition

For a RealEmbeddable IntegralDomain RT , the class template Root of traits<RT> associates a type Root of
2, which represents algebraic numbers of degree 2 over RT . Moreover, the class provides Root of 1, which
represents the quotient field of RT .

#include <CGAL/Root of traits.h>

Types

Root of traits<RT>:: Root of 1 A RealEmbeddable Field representing the quotient field of
RT .

Root of traits<RT>:: Root of 2 Model of RootOf 2.

See Also

RootOf 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 214
CGAL::compute roots of 2<RT,OutputIterator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 219
CGAL::make root of 2<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 217
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CGAL::make root of 2<RT>

Definition

The function make root of 2<RT> constructs an algebraic number of degree 2 over a ring number type.

#include <CGAL/Root of traits.h>

template <typename RT>
Root of traits<RT>::Root of 2

make root of 2( RT a, RT b, RT c, bool s)

Returns the smallest real root of the polynomial aX2 +bX +c
if s is true, and the largest root is s is false.
Precondition: RT is an IntegralDomainWithoutDivision.
Precondition: The polynomial has at least one real root.

template <typename RT>
Root of traits<RT>::Root of 2

make root of 2( RT alpha, RT beta, RT gamma)

Constructs the number α+β
√

γ.
Precondition: RT is an IntegralDomainWithoutDivision.
Precondition: γ≥ 0

See Also

RootOf 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 214
CGAL::Root of traits<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 216
CGAL::make sqrt<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 218
CGAL::compute roots of 2<RT,OutputIterator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 219
CGAL::Sqrt extension<NT,ROOT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 220
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CGAL::make sqrt<RT>

Definition

The function make sqrt<RT> constructs a square root of a given value of type RT . Depending on the type RT
the square root may be returned in a new type that can represent algebraic extensions of degree 2.

#include <CGAL/Root of traits.h>

template <typename RT>
Root of traits<RT>::Root of 2

make sqrt( RT x) Returns
√

x.
Precondition: RT is a RealEmbeddable IntegralDomain.
Precondition: x≤ 0

See Also

RootOf 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 214
CGAL::make root of 2<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 217
CGAL::Root of traits<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 216
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CGAL::compute roots of 2<RT,OutputIterator>

Definition

The function compute roots of 2<RT,OutputIterator> solves a univariate polynomial as it is defined by the
coefficients given to the function. The solutions are written into the given OutputIterator.

#include <CGAL/Root of traits.h>

template <typename RT, typename OutputIterator>
OutputIterator compute roots of 2( RT a, RT b, RT c, OutputIterator oit)

Writes the real roots of the polynomial aX2 +bX +c into oit
in ascending order.
OutputIterator is required to accept Root of traits<RT>
::Root of 2.
Multiplicities are not reported.

Precondition: RT is an IntegralDomainWithoutDivision.
Precondition: a 6= 0 or b 6= 0.

See Also

RootOf 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 214
CGAL::Root of traits<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 216
CGAL::make root of 2<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 217
CGAL::make sqrt<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 218
CGAL::Sqrt extension<NT,ROOT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 220
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CGAL::Sqrt extension<NT,ROOT>

In addition, Sqrt extension has another two default template arguments:
· DifferentExtensionComparable = ::CGAL::Tag false
· FilterPredicates = ::CGAL::Tag false
See below for more details.

Definition

An instance of this class represents an extension of the type NT by one square root of the type ROOT .
NT is required to be constructible from ROOT .
NT is required to be an IntegralDomainWithoutDivision.
Sqrt extension<NT,ROOT> is RealEmbeddable if NT is RealEmbeddable.

For example, let Integer be some type representing Z, then Sqrt extension<Integer,Integer> is able to represent
Z[
√

root] for some arbitrary Integer root.2 The value of root is set at construction time, or set to zero if it is not
specified.

Arithmetic operations among different extensions, say Z[
√

a] and Z[
√

b], are not supported. The result would be
in Z[
√

a,
√

b], which is not representable by Sqrt extension<Integer,Integer>. The user is responsible to check
that arithmetic operations are carried out for elements from the same extensions only. This is not tested by
Sqrt extension<NT,ROOT> for efficiency reasons. A violation of the precondition leads to undefined behavior.
Be aware that for efficiency reasons the given root is stored as it is given to the constructor. In particular, an
extension by a square root of a square is considered as an extension.

Since elements of Sqrt extension<NT,ROOT> that lie in different extensions are not interoperable with respect
to any arithmetic operations, the full value range of Sqrt extension<NT,ROOT> does not represent an algebraic
structure. However, each subset of the value range that represents the extension of NT by a particular square
root is a valid algebraic structure, since this subset is closed under all provided arithmetic operations. From
there, Sqrt extension<NT,ROOT> can be used as if it were a model of an algebraic structure concept, with the
following correspondence:

NT Sqrt extension<NT,ROOT>

IntegralDomainWithoutDivision IntegralDomainWithoutDivision
IntegralDomain IntegralDomain
UniqueFactorizationDomain IntegralDomain
EuclideanRing IntegralDomain
Field Field

The extension of a UniqueFactorizationDomain or EuclideanRing is just an IntegralDomain, since the extension
in general destroys the unique factorization property. For instance consider Z[

√
10], the extension of Z by

√
10:

in Z[
√

10] the element 10 has two different factorizations
√

10 ·
√

10 and 2 ·5. In particular, the factorization is
not unique.

If NT is a model of RealEmbeddable the type Sqrt extension is also considered as RealEmbeddable. How-
ever, by default it is not allowed to compare values from different extensions for efficiency reasons. In case
such a comparison becomes necessary, use the member function compare with the according Boolean flag. If
such a comparison is a very frequent case, override the default of DifferentExtensionComparable by giving
::CGAL::Tag true as third template parameter. This effects the behavior of compare functions as well as the
compare operators.

2R[a] denotes the extension of a ring R by an element a. See also: http://mathworld.wolfram.com/ExtensionRing.html
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The fourth template argument, FilterPredicates, triggers an internal filter that may speed up comparisons and
sign computations. In case FilterPredicates is set to CGAL::Tag true the type first computes a double interval
containing the represented number and tries to perform the comparison or sign computation using this interval.
Once computed, this interval is stored by the corresponding Sqrt extension object for further usage. Note
that this internal filter is switched off by default, since it may conflict with other filtering methods, such as
CGAL::Lazy exact nt<Sqrt extension>.

In case NT is not RealEmbeddable, DifferentExtensionComparable as well as FilterPredicates have no effect.

Is Model for the Concepts

Assignable
CopyConstructible
DefaultConstructible
EqualityComparable
ImplicitInteroperable with int
ImplicitInteroperable with NT
Fraction if NT is a Fraction
RootOf 2

Creation

Sqrt extension<NT,ROOT> ext; Introduces an variable initialized with 0.
Sqrt extension<NT,ROOT> ext( Sqrt extension x); Copy constructor.
Sqrt extension<NT,ROOT> ext( int i); Introduces an variable initialized with i.
Sqrt extension<NT,ROOT> ext( NT x); Introduces an variable initialized with x.

Sqrt extension<NT,ROOT> ext( int a0, int a1, int r); Constructor from int: ext= a0+a1 · sqrt(r).
Precondition: r 6= 0

Sqrt extension<NT,ROOT> ext( NT a0, NT a1, ROOT r); General constructor: ext= a0+a1 · sqrt(r).
Precondition: r 6= 0

Operations

An object of type Sqrt extension represent an expression of the form: a0+a1∗ sqrt(root).

NT ext.a0() const Const access operator for a0
NT ext.a1() const Const access operator for a1
ROOT ext.root() const Const access operator for root
bool ext.is extended() const

Returns true in case root of ext is not zero.
Note that a1 == 0 does not imply root == 0.

void ext.simplify() Simplifies the representation, in particular root is set to zero
if a1 is zero, that is, ext becomes not extended.
Moreover, it propagates the simplify command to members
of ext. see also: AlgebraicStructureTraits::Simplify.

bool ext.is zero() const returns true if ext represents the value zero.
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CGAL::Sign ext.sign() const Determines the sign of ext by (repeated) squaring.
Precondition: Sqrt extension is RealEmbeddable.

Sqrt extension ext.abs() const returns the absolute value of ext.
Precondition: Sqrt extension is RealEmbeddable.

CGAL::Comparison result

ext.compare( Sqrt extension y,
bool in same extension = !DifferentExtensionComparable::value) const

Compares ext with y.
The optional bool in same extension indicates whether ext
and y are in the same extension of NT.

Sqrt extension operator+( Sqrt extension a, Sqrt extension b)

Precondition: (a.root()==0 or b.root()==0 or a.root() ==
b.root())

Sqrt extension operator-( Sqrt extension a, Sqrt extension b)

Precondition: (a.root()==0 or b.root()==0 or a.root() ==
b.root())

Sqrt extension operator*( Sqrt extension a, Sqrt extension b)

Precondition: (a.root()==0 or b.root()==0 or a.root() ==
b.root())

Sqrt extension& ext.operator+=( Sqrt extension a)

Precondition: (this->root()==0 or a.root()==0 or this->
root() == a.root())

Sqrt extension& ext.operator-=( Sqrt extension a)

Precondition: (this->root()==0 or a.root()==0 or this->
root() == a.root())

Sqrt extension& ext.operator*=( Sqrt extension a)

Precondition: (this->root()==0 or a.root()==0 or this->
root() == a.root())

In case NT is only an IntegralDomain operator/ implements integral division. In case NT is a Field operator/
implements the field division.

Sqrt extension operator/( Sqrt extension a, Sqrt extension b)

Precondition: (a.root()==0 or b.root()==0 or a.root() ==
b.root())

Sqrt extension& ext.operator/=( Sqrt extension a)

Precondition: (this->root()==0 or a.root()==0 or this->
root() == a.root())

bool operator==( Sqrt extension a, Sqrt extension b)

Precondition: (a.root()==0 or b.root()==0 or a.root() ==
b.root())
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bool operator!=( Sqrt extension a, Sqrt extension b)

Precondition: (a.root()==0 or b.root()==0 or a.root() ==
b.root())

In case Sqrt extension is RealEmbeddable:

bool operator<( Sqrt extension a, Sqrt extension b)

Precondition: (a.root()==0 or b.root()==0 or a.root() ==
b.root())

bool operator<=( Sqrt extension a, Sqrt extension b)

Precondition: (a.root()==0 or b.root()==0 or a.root() ==
b.root())

bool operator>( Sqrt extension a, Sqrt extension b)

Precondition: (a.root()==0 or b.root()==0 or a.root() ==
b.root())

bool operator>=( Sqrt extension a, Sqrt extension b)

Precondition: (a.root()==0 or b.root()==0 or a.root() ==
b.root())

The stream operations are available as well. They assume that corresponding stream operators for type NT and
ROOT exist.

std::ostream& operator<<( std::ostream& os, ext)

writes ext to ostream os. The format depends on the
CGAL::IO::MODE of os.
In case the mode is CGAL::IO::ASCII the format is
EXT[a0,a1,root].
In case the mode is CGAL::IO::PRETTY the format is
human readable.

std::istream& operator>>( std::istream& is, ext)

reads ext from istream is in format EXT[a0,a1,root], the
output format in mode CGAL::IO::ASCII

See Also

IntegralDomainWithoutDivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 69
IntegralDomain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 71
Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 74
RealEmbeddable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 123
ImplicitInteroperable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 67
Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 142
RootOf 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 214

CGAL::Tag true . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4232
CGAL::Tag false . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4233
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CGAL::Root of 2<RT>

deprecated

This class is deprecated since CGAL-3.8. It is replaced by Sqrt extension.

deprecated

CGAL::Sqrt extension<NT,ROOT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 220
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CGAL::Set ieee double precision

Definition

The IEEE754 standard specifies that the precision of double precision floating-point numbers should be 53 bits,
with 11 bits for the exponent range.

Some processors violate this rule by providing excess precision during some computations (when values are
in registers). This is the case of the x86 Intel processor and compatible processors (note that the SSE2 more
recent alternative FPU is fortunately not affected by this issue). The effect of such excess precision can be a
problem for some computations, since it can produce so-called double rounding effects, where actually less
precision is actually provided! It can also be the root of non-deterministic computations depending on compiler
optimizations or not (since this affects how long variables are kept in registers), for example numerical floating-
point values get computed with slightly different results. Finally, it affects code that carefully makes use of
cancellation properties, like Residue.

The class Set ieee double precision provides a mechanism to set the correct 53 bits precision for a block of
code. It does so by having a default constructor that sets a particular mode on the FPU which corrects the
problem, and have its destructor reset the mode to its previous state.

Note that nothing can be done for the excess range of the exponent, which affects underflow and overflow cases,
fortunately less frequent.

Note also that in the process of setting the correct precision, the rounding mode is also set to the nearest.

Moreover, some compilers provide a flag that performs this setting at the time of program startup. For example,
GCC provides the option -mpc64 since release 4.3 which does exactly this. Other compilers may have similar
options.

Similarly, some third-party libraries may do the same thing as part of their startup process, and this is notably
the case of LEDA (at least some versions of it). CGAL does not enforce this at startup as it would impact
computations with long double performed by other codes in the same program.

Note that this property is notably required for proper functionning of the Residue class that performs modular
arithmetic using efficient floating-point operations.

Note concerning Visual C++ 64-bit: due to a compiler bug, the stack unwinding process happenning when
an exception is thrown does not correctly execute the restoring operation when the Set ieee double precision
object is destroyed. Therefore, for this configuration, some explicit code has to be added if you care about the
state being restored.

#include <CGAL/FPU.h>

Creation

If the platform is not affected by the excess precision problem, this class becomes an empty class doing nothing.

Set ieee double precision P; Sets the precision of operations on double to 53bits. Note
that the rounding mode is set to the nearest in the same pro-
cess.
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void ˜Set ieee double precision()

The precision and rounding modes are reset to the values they
held before the constructor was called.

Also note that the following free function is also provided that does the same thing as the default constructor of
Set ieee double precision except that it does not perform the save and restore of the previous state.

void force ieee double precision()

Sets the precision of operations on double to 53bits. Note
that the rounding mode is set to the nearest in the same pro-
cess.

See Also

CGAL::Protect FPU rounding<Protected> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 227
CGAL::Residue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 234
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CGAL::Protect FPU rounding<Protected>

Definition

Floating-point arithmetic, as specified by the IEEE-754 standard, allows to use so-called directed rounding for
the following arithmetic operations: addition, subtraction, multiplication, division and square root. The default
behavior is that the result of such an arithmetic operation is the closest floating-point number to the exact real
result of the operation (rounding to the nearest). The other rounding modes are: round towards plus infinity,
round towards minus infinity, and round towards zero.

Interval arithmetic uses such directed rounding modes to offer guaranteed enclosures for the evaluation of real
functions, such as with CGAL’s Interval nt class.

In order to efficiently evaluate sequences of interval arithmetic operations, such as a geometric predicate com-
puting for example a determinant, it is advised to reduce the number of rounding mode changes, which otherwise
are performed for each arithmetic operation. CGAL exploits the fact that it is possible to compute a sequence of
interval arithmetic operations by doing only one rounding mode change around the whole function evaluation
in order to benefit from this optimization.

The class Protect FPU rounding allows to easily benefit from this. Its constructor saves the current rounding
mode in the object, and then sets the current rounding mode to the value provided as argument to the constructor.
The destructor sets the rounding mode back to the saved value. This allows to protect a block of code determined
by a C++ scope, and have the destructor take care of restoring the value automatically.

The related class Set ieee double precision allows to similarly protect a block of code from excess precision
on some machines (x86 typically with the traditional FPU, not the more recent SSE2). Note that Protect FPU
rounding mode, when changing rounding modes, also sets the precision to the correct 64 bit precision, hence
providing a similar effect to Set ieee double precision. This notably affects the Residue class.

Note for Visual C++ 64-bit users: due to a compiler bug, the stack unwinding process happenning when an
exception is thrown does not correctly execute the rounding mode restoration when the Protect FPU rounding
object is destroyed. Therefore, for this configuration, some explicit code has to be added.

#include <CGAL/FPU.h>

Parameters

The template parameter Protected is a Boolean parameter, which defaults to true. It follows the same parameter
of the Interval nt class. When it is false, the constructor and the destructor of the class do nothing (this is meant
to be used in a context where you know that the rounding mode change has been taken care of at a higher level
in the call stack.

What follows describes the behavior when the parameter has its default value, true.

Creation

Protect FPU rounding<Protected> P( FPU CW t r = CGAL FE UPWARD);

The current rounding mode is saved in the object, and
rounding mode is set to r which can be any of CGAL
FE TONEAREST , CGAL FE TOWARDZERO, CGAL FE
UPWARD (the default) and CGAL FE DOWNWARD.
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void ˜Protect FPU rounding()

The rounding mode is restored to the saved value.

See Also

CGAL::Set ieee double precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 225
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Chapter 6

Modular Arithmetic
Michael Hemmer and Sylvain Pion

6.1 Introduction

Modular arithmetic is a fundamental tool in modern algebra systems. In conjunction with the Chinese remainder
theorem it serves as the workhorse in several algorithms computing the gcd, resultant etc. Moreover, it can serve
as a very efficient filter, since it is often possible to exclude that some value is zero by computing its modular
correspondent with respect to one prime only.

First of all, this package introduces a type CGAL::Residue. It represents Z/pZ for some prime p. The prime
number p is stored in a static member variable. The class provides static member functions to change this value.
Note that changing the prime invalidates already existing objects of this type. However, already existing
objects do not lose their value with respect to the old prime and can be reused after restoring the old prime.
Since the type is based on double arithmetic the prime is restricted to values less than 226. The initial value of
p is 67111067.

Please note that the implementation of class CGAL::Residue requires a mantissa precision according to the IEEE
Standard for Floating-Point Arithmetic (IEEE 754). However, on some processors the traditional FPU uses an
extended precision. Hence, it is indispensable that the proper mantissa length is enforced before performing any
arithmetic operations. Moreover, it is required that numbers are rounded to the next nearest value. This can be
ensured using CGAL::Protect FPU rounding with CGAL FE TONEAREST , which also enforces the required
precision as a side effect.

advanced

In case the flag CGAL HAS THREADS is undefined the prime is just stored in a static member of the class,
that is, CGAL::Residue is not thread-safe in this case. In case CGAL HAS THREADS the implementation of
the class is thread safe using boost::thread specific ptr. However, this may cause some performance penalty.
Hence, it may be advisable to configure CGAL with CGAL HAS NO THREADS.

advanced

Moreover, the package introduces the concept Modularizable. An algebraic structure T is considered as Mod-
ularizable if there is a mapping from T into an algebraic structure that is based on the type CGAL::Residue.
For scalar types, e.g. Integers, this mapping is just the canonical homomorphism into Z/pZ represented by
CGAL::Residue. For compound types, e.g. Polynomials, the mapping is applied to the coefficients of the
compound type. The mapping is provided by the class CGAL::Modular traits<T>. The class CGAL::Modular
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traits<T> is designed such that the concept Modularizable can be considered as optional, i.e., CGAL::Modular
traits<T> provides a tag that can be used for dispatching.

6.1.1 Example

In the following example modular arithmetic is used as a filter.� �
/* Modular arithmetic can be used as a filter, in this example modular

arithmetic is used to avoid unnecessary gcd computations of
polynomials.
A gcd computation can be very costly due to coefficient growth within
the
Euclidean algorithm.

The general idea is that firstly the gcd is computed with respect
to one prime only. If this modular gcd is constant we can (in most
cases)
conclude that the actual gcd is constant as well.

For this purpose the example introduces the function
may_have_common_factor.
Note that there are two versions of this function, namely for the case
that the coefficient type is Modularizable and that it is not.
If the type is not Modularizable the filter is just not applied and
the
function returns true.

*/

#include <CGAL/basic.h>

#ifdef CGAL_USE_GMP

#include <CGAL/Gmpz.h>
#include <CGAL/Polynomial.h>

// Function in case Polynomial is Modularizable
template< typename Polynomial >
bool may_have_common_factor(

const Polynomial& p1, const Polynomial& p2, CGAL::Tag_true){
std::cout<< "The type is modularizable" << std::endl;

// Enforce IEEE double precision and rounding mode to nearest
// before useing modular arithmetic
CGAL::Protect_FPU_rounding<true> pfr(CGAL_FE_TONEAREST);

// Use Modular_traits to convert to polynomials with modular
coefficients

typedef CGAL::Modular_traits<Polynomial> MT;
typedef typename MT::Residue_type MPolynomial;
typedef typename MT::Modular_image Modular_image;
MPolynomial mp1 = Modular_image()(p1);
MPolynomial mp2 = Modular_image()(p2);
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// check for unlucky primes, the polynomials should not lose a degree
typename CGAL::Polynomial_traits_d<Polynomial>::Degree degree;
typename CGAL::Polynomial_traits_d<MPolynomial>::Degree mdegree;
if ( degree(p1) != mdegree(mp1)) return true;
if ( degree(p2) != mdegree(mp2)) return true;

// compute gcd for modular images
MPolynomial mg = CGAL::gcd(mp1,mp2);

// if the modular gcd is not trivial: return true
if ( mdegree(mg) > 0 ){

std::cout << "The gcd may be non trivial" << std::endl;
return true;

}else{
std::cout << "The gcd is trivial" << std::endl;
return false;

}
}

// This function returns true, since the filter is not applicable
template< typename Polynomial >
bool may_have_common_factor(

const Polynomial&, const Polynomial&, CGAL::Tag_false){
std::cout<< "The type is not modularizable" << std::endl;
return true;

}

template< typename Polynomial >
Polynomial modular_filtered_gcd(const Polynomial& p1, const Polynomial&

p2){
typedef CGAL::Modular_traits<Polynomial> MT;
typedef typename MT::Is_modularizable Is_modularizable;

// Try to avoid actual gcd computation
if (may_have_common_factor(p1,p2, Is_modularizable())){

// Compute gcd, since the filter indicates a common factor
return CGAL::gcd(p1,p2);

}else{
typename CGAL::Polynomial_traits_d<Polynomial>::Univariate_content
content;
typename CGAL::Polynomial_traits_d<Polynomial>::Construct_polynomial
construct;
return construct(CGAL::gcd(content(p1),content(p2))); // return
trivial gcd

}
}

int main(){
CGAL::set_pretty_mode(std::cout);

typedef CGAL::Gmpz NT;
typedef CGAL::Polynomial<NT> Poly;
CGAL::Polynomial_traits_d<Poly>::Construct_polynomial construct;
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Poly f1=construct(NT(2), NT(6), NT(4));
Poly f2=construct(NT(12), NT(4), NT(8));
Poly f3=construct(NT(3), NT(4));

std::cout << "f1 : " << f1 << std::endl;
std::cout << "f2 : " << f2 << std::endl;

std::cout << "compute modular filtered gcd(f1,f2): " << std::endl;
Poly g1 = modular_filtered_gcd(f1,f2);
std::cout << "gcd(f1,f2): " << g1 << std::endl;

std::cout << std::endl;
Poly p1 = f1*f3;
Poly p2 = f2*f3;

std::cout << "f3 : " << f3 << std::endl;
std::cout << "p1=f1*f3 : " << p1 << std::endl;
std::cout << "p2=f2*f3 : " << p2 << std::endl;

std::cout << "compute modular filtered gcd(p1,p2): " << std::endl;
Poly g2 = modular_filtered_gcd(p1,p2);
std::cout << "gcd(p1,p2): " << g2 << std::endl;

}

#else

int main (){
std::cout << " This examples needs GMP! " << std::endl;

}

#endif� �
File: examples/Modular_arithmetic/modular_filter.cpp

6.2 Design and Implementation History

The class CGAL::Residue is based on the C-code of Sylvain Pion et. al. as it was presented in [BEPP99].

The remaining part of the package is the result of the integration process of the NumeriX library of EXACUS
[BEH+05] into CGAL.
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CGAL::Residue

Definition

The class Residue represents a finite field Z/pZ, for some prime number p.

The prime number p is stored in a static member variable. The class provides static member functions to change
this value. Note that changing the prime invalidates already existing objects of this type. However, already
existing objects do not lose their value with respect to the old prime and can be reused after restoring the old
prime. Since the type is based on double arithmetic the prime is restricted to values less than 226. The initial
value of p is 67111067.

Please note that the implementation of class CGAL::Residue requires a mantissa precision according to the IEEE
Standard for Floating-Point Arithmetic (IEEE 754). However, on some processors the traditional FPU uses an
extended precision. Hence, it is indispensable that the proper mantissa length is enforced before performing any
arithmetic operations. Moreover, it is required that numbers are rounded to the next nearest value. This can be
ensured using CGAL::Protect FPU rounding with CGAL FE TONEAREST , which also enforces the required
precision as a side effect.

In case the flag CGAL HAS THREADS is undefined the prime is just stored in a static member of the class,
that is, Residue is not thread-safe in this case. In case CGAL HAS THREADS the implementation of the class
is thread safe using boost::thread specific ptr. However, this may cause some performance penalty. Hence, it
may be advisable to configure CGAL with CGAL HAS NO THREADS.

#include <CGAL/Residue.h>

Is Model for the Concepts

Field

Creation

Residue x; introduces a variable x, which is initialized with zero;
Residue x( m); copy constructor;
Residue x( int i); introduces a variable x, which is initialized with i%p;
Residue x( long i); introduces a variable x, which is initialized with i%p;

Operations

static int x.set current prime( int p)

Static member function;
sets current prime to the given value and returns the old
prime.

static int x.get current prime() Static member function;
returns the value of the current prime.
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int x.get value() const Returns the unique representative of xwithin the range
[−p/2, p/2], where p is the current prime.

Residue +a
Residue −a
Residue a+b
Residue a−b
Residue a∗b
Residue a/b
Residue & x+= a
Residue & x−= a
Residue & x∗= a
Residue & x/= a
Residue a == b
Residue a != b

235



C
on

ce
pt

Modularizable

Definition

An algebraic structure is called Modularizable, if there is a suitable mapping into an algebraic structure which is
based on the type CGAL::Residue. For scalar types, e.g. Integers, this mapping is just the canonical homomor-
phism into the type CGAL::Residue with respect to the current prime. For compound types, e.g. Polynomials,
the mapping is applied to the coefficients of the compound type.

The mapping is provided via CGAL::Modular traits<Modularizable>, being a model of ModularTraits.

Note that types representing rationals, or types which do have some notion of denominator, are not Modulariz-
able. This is due to the fact that the denominator may be zero modulo the prime, which can not be represented.

Has Models

int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 158
long . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
CORE::BigInt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 165
CGAL::Gmpz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 175
leda::integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
mpz class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 173

The following types are Modularizable iff their template arguments are. CGAL::Lazy exact nt<NT> . page 199
CGAL::Sqrt extension<NT,ROOT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 220
CGAL::Polynomial<Coeff> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 324

See Also

CGAL::Residue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 234
CGAL::Modular traits<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 240
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ModularTraits

Definition

A model of ModularTraits is associated to a specific Type. In case this associated type is Modularizable, this
is indicated by the boolean tag Is modularizable. The mapping into the Residue type is provided by the functor
Modular image.

Types

A model of ModularTraits is supposed to provide:

ModularTraits:: Type The associated type.
ModularTraits:: Is modularizable Tag indicating whether the associated type is modularizable.

This is either CGAL::Tag true or CGAL::Tag false.

ModularTraits:: Residue type The type of the modular image.
In case the type is not Modularizable this is undefined.

Functors

In case the associated type is Modularizable all functors are provided.
In case a functor is not provided, it is set to CGAL::Null functor.

ModularTraits:: Modular image A model of ModularTraits::ModularImage
ModularTraits:: Modular image representative

A model of ModularTraits::ModularImageRepresentative

Has Models

CGAL::Modular traits<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 240

See Also

CGAL::Residue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 234
Modularizable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 236
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ModularTraits::ModularImage

Definition

This AdaptableUnaryFunction computes the modular image of the given value with respect to a homomorphism
ϕ from the ModularTraits::Type into the ModularTraits::Residue type.

The homomorphism preserves the mapping of int into both types , i.e., ϕ(Type(i)) == Residue type(i).

Types

typedef ModularTraits::Residue type

result type;

typedef ModularTraits::Type

argument type;

result type fo( argument type x) computes ϕ(x).

Refines

AdaptableUnaryFunction

See Also

ModularTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 237
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ModularTraits::ModularImageRepresentative

Definition

This AdaptableUnaryFunction returns a representative in the original type of a given modular image. More
precisely, it implements the rightinverse of a proper restriction of the homomorphism ϕ, which is implemented
by ModularTraits::ModularImage.

Types

typedef ModularTraits::Type

result type;

typedef ModularTraits::Residue type

argument type;

result type fo( argument type x) computes ϕ−1(x).

Refines

AdaptableUnaryFunction

See Also

ModularTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 237
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CGAL::Modular traits<T>

Definition

An instance of Modular traits<T> is a model of ModularTraits, where T is the associated type.

#include <CGAL/Modular traits.h>

Is Model for the Concepts

ModularTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 237
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Chapter 7

Polynomial
Michael Hemmer

7.1 Fundamentals

Note that this is just a very brief introduction to polynomials. For a quick reference we refer to the Wikipedia
or for a more elaborate introduction to any class book on elementary algebra.

A polynomial is either zero, or can be written as the sum of one or more non-zero terms. The number of terms
is finite. A term consist of a constant coefficient and a monomial, that is, the product of zero or more variables.
Each variable may have an exponent that is a non-negative integer. The exponent on a variable in a term is equal
to the degree of that variable in that term. A term with no variables is called a constant term. The degree of a
constant term is 0.

For example, −7x3y is a term. The coefficient is −7, the monomial is x3y, comprised of the variables x and y,
the degree of x is three, and the degree of y is one. The total degree of the entire term is the sum of the degrees
in each variable. In the example above, the degree is 3+1 = 4.

A one-variable (univariate) polynomial f of degree n has the following form:

f = anxn +an−1xn−1 + ...+a2x2 +a1x+a0

The coefficient a0 is called the constant coefficient, an is called the leading coefficient. If f is not the zero
polynomial the leading coefficient is not zero. The polynomial is called monic if an = 1. In case the coefficient
domain of f possess a greatest common divisor (gcd) the content of f is the gcd of all coefficients of f . For
instance, the content of 12x3 +6 is 6.

A multivariate polynomial is a polynomial in more than one variable. According to the number of variables
it is possible to further classify multivariate polynomials as bivariate, trivariate etc. In contrast to univariate
polynomials the terms of a multivariate polynomial are not completely ordered by their total degree. However,
given a certain order on the variables it is possible to define a lexicographic order on the terms. Given this order
the leading coefficient of a multivariate polynomial is defined as the coefficient of the highest term. For instance
the leading coefficient of the multivariate polynomial p = 5x3y+7xy2 is 7, given that y has an higher order than
x.

However, it is also possible to interpret a multivariate polynomial as a univariate polynomial in that variable.
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For instance the trivariate polynomial

q = x5 +7x2y1z2 +13x1y2z2 ∈ Z[x,y,z]

may be interpreted as a univariate polynomial in z, that is, q is interpreted as an element of R[z], with R = Z[x,y].

q = (13x1y2 +7x2y1)z2 + x5z0 ∈ R[z]

In this case the leading coefficient of q with respect to z is 13x1y2 +7x2y1 and x5 becomes the ’constant’ term.

A homogeneous polynomial is a polynomial whose terms do all have the same total degree. For example,
h = x5 +7x2y1z2 +13x1y2z2 is a homogeneous polynomial of degree 5, in three variables.

7.2 General Design

The package introduces a concept Polynomial d, a concept for multivariate polynomials in d variables. Though
the concept is written for an arbitrary number of variables, the number of variables is considered as fixed for a
particular model of Polynomial d. The concept also allows univariate polynomials.

First of all a model of Polynomial d is considered as an algebraic structure, that is, the ring operations {+,−, ·}
are provided due to the fact that Polynomial d refines at least the concept IntegralDomainWithoutDivision.
However, a model of Polynomial d has to be accompanied by a traits class CGAL::Polynomial traits d<
Polynomial d> being a model of PolynomialTraits d. In principal the traits class provides all further func-
tionalities on polynomials.

Given a d-variate polynomial over some base ring R there are at least two different possible views on such a
polynomial.

• The recursive or univariate view: In this view, a polynomial is considered as an element of
R[x0, . . . ,xd−2][xd−1]. That is, the polynomial is treated as a univariate polynomial over the ring
R[x0, . . . ,xd−2].

• The symmetric or multivariate view: This view is almost symmetric with respect to all variables. It
considers the polynomial as an element of R[x0, . . . ,xd−1].

According to these two different views the traits class is required to provide two different coefficient types:

• CGAL::Polynomial traits d<Polynomial d>::Coefficient type representing R[x0, . . . ,xd−2].

• CGAL::Polynomial traits d<Polynomial d>::Innermost coefficient type representing the base ring R.

Another important type which is introduced by this package is CGAL::Exponent vector. It is derived from
std::vector<int> and used to identify multivariate monomials. For instance the exponent vector containing the
sequence [3,2,4] corresponds to the trivariate monomial x3

0x2
1x4

2. Note that a vector with negative exponents is
considered as invalid. However, we decided to in principal allow negative exponents as they may appear as
intermediate results, in particular we did not derive from std::vector<unsigned int>.

7.3 Constructing a multivariate polynomial

First of all the concept Polynomial d requires that the model is constructible from int. This is due to the fact that
Polynomial d refines IntegralDomainWithoutDivision which in turn refines FromIntConstructible. Of course
this allows only the construction of constant polynomials.
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In general a polynomial is constructed using the functor CGAL::Polynomial traits d<Polynomial d>
::Construct polynomial a model of PolynomialTraits d::ConstructPolynomial. Basically there are two options:

• The polynomial is constructed from an iterator range with value type CGAL::Polynomial traits d<
Polynomial d>::Coefficient type, where the begin iterator refers to the constant term (constant with re-
spect to the outermost variable).

• The polynomial is constructed from an iterator range with value type std::pair< CGAL::Exponent vector,
CGAL::Polynomial traits d<Polynomial d>::Innermost coefficient type>, where each pair defines the
coefficient for the monomial defined by the exponent vector.

However, in some cases it might be more convenient to just construct the polynomials representing the different
variables and to obtain the final polynomial using algebraic expressions. The most elegant way to construct
a certain variable is CGAL::Polynomial traits d<Polynomial d>::Shift being a model of PolynomialTraits
d::Shift.

7.3.1 Examples

The following example illustrates different ways to construct a bivariate polynomial:� �
#include <CGAL/config.h>
#include <CGAL/Polynomial.h>
#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial_type_generator.h>

int main(){
CGAL::set_pretty_mode(std::cout);

typedef CGAL::Polynomial_type_generator<int,2>::Type Poly_2;
typedef CGAL::Polynomial_traits_d<Poly_2> PT_2;
typedef PT_2::Coefficient_type Poly_1;
typedef PT_2::Innermost_coefficient_type Integer;

PT_2::Construct_polynomial construct_polynomial;

// constructing a constant polynomial from int
Poly_2 two(2); // = 2
std::cout << "A constant polynomial: " << two << std::endl;

// construction from an iterator range of univariate polynomials

std::list<Poly_1> univariate_coeffs;
univariate_coeffs.push_back(Poly_1(3));
univariate_coeffs.push_back(Poly_1(0));
univariate_coeffs.push_back(Poly_1(5));
Poly_2 F = // 5*yˆ2 + 3

construct_polynomial(univariate_coeffs.begin(),univariate_coeffs.end());
std::cout << "The bivariate polynomial F: " << F << std::endl;
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// construction from an iterator range over monomials

std::list<std::pair<CGAL::Exponent_vector, Integer> > innermost_coeffs;

innermost_coeffs.push_back(std::make_pair(CGAL::Exponent_vector(0,0),-2));

innermost_coeffs.push_back(std::make_pair(CGAL::Exponent_vector(3,5),2));
Poly_2 G = // (2*xˆ3)*yˆ5 + (-2)

construct_polynomial(innermost_coeffs.begin(),innermost_coeffs.end());
std::cout << "The bivariate polynomial G: " << G << std::endl;

//construction using shift
PT_2::Shift shift;
Poly_2 x = shift(Poly_2(1),1,0); // ’multiply’ 1 by x_0ˆ1
Poly_2 y = shift(Poly_2(1),1,1); // ’multiply’ 1 by x_1ˆ1

Poly_2 H = 5 * x * y + 3 * y * y; // = 3*yˆ2 + (5*x)*y
std::cout << "The bivariate polynomial H: " << H << std::endl;

}� �
File: examples/Polynomial/construction.cpp

7.4 Coefficient Access

In order to obtain a certain coefficient the traits class provides several functors. Note that the functors do not
allow a write access to the coefficients.

• PolynomialTraits d::GetCoefficient: a model of this concept provides access to a coefficient in the uni-
variate view, that is, it returns elements of R[x0, . . . ,xd−2].

• PolynomialTraits d::GetInnermostCoefficient: a model of this concept provides access to a coefficient in
the multivariate view, that is, it returns elements of R.

• PolynomialTraits d::LeadingCoefficient: a model of this concept provides access to the leading coeffi-
cient in the univariate view.

• PolynomialTraits d::InnermostLeadingCoefficient: a model of this concept provides access to the leading
coefficient in the multivariate view, that is, it returns the (innermost) coefficient of the leading multivariate
monomial. See also PolynomialTraits d::DegreeVector.

7.4.1 Examples

The following example illustrates the application of the functors discussed above:� �
#include <CGAL/config.h>
#include <CGAL/Polynomial.h>
#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial_type_generator.h>
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int main(){
CGAL::set_pretty_mode(std::cout);
typedef CGAL::Polynomial_type_generator<int,2>::Type Poly_2;
typedef CGAL::Polynomial_traits_d<Poly_2> PT_2;

//construction using shift
Poly_2 x = PT_2::Shift()(Poly_2(1),1,0); // = xˆ1
Poly_2 y = PT_2::Shift()(Poly_2(1),1,1); // = yˆ1

Poly_2 F // = (11*xˆ2 + 5*x)*yˆ4 + (7*xˆ2)*yˆ3
= 11 * CGAL::ipower(y,4) * CGAL::ipower(x,2)
+ 5 * CGAL::ipower(y,4) * CGAL::ipower(x,1)
+ 7 * CGAL::ipower(y,3) * CGAL::ipower(x,2);

std::cout << "The bivariate polynomial F: " << F <<"\n"<< std::endl;

PT_2::Get_coefficient get_coefficient;
std::cout << "Coefficient of yˆ0: "<< get_coefficient(F,0) <<
std::endl;

std::cout << "Coefficient of yˆ1: "<< get_coefficient(F,1) <<
std::endl;

std::cout << "Coefficient of yˆ2: "<< get_coefficient(F,2) <<
std::endl;

std::cout << "Coefficient of yˆ3: "<< get_coefficient(F,3) <<
std::endl;

std::cout << "Coefficient of yˆ4: "<< get_coefficient(F,4) <<
std::endl;

std::cout << "Coefficient of yˆ5: "<< get_coefficient(F,5) <<
std::endl;

std::cout << std::endl;

PT_2::Leading_coefficient lcoeff;
std::cout << "Leading coefficient with respect to y: "

<< lcoeff(F) // = 11*xˆ2 + 5*x
<< std::endl;

PT_2::Get_innermost_coefficient get_icoeff;
std::cout << "Innermost coefficient of monomial xˆ1yˆ4: "

<< get_icoeff(F,CGAL::Exponent_vector(1,4)) // = 5
<< std::endl;

PT_2::Innermost_leading_coefficient ilcoeff;
std::cout << "Innermost leading coefficient with respect to y: "

<< ilcoeff(F) // = 11
<< std::endl;

}� �
File: examples/Polynomial/coefficient_access.cpp

7.5 Degree, total degree and degree vector

There are three functors in PolynomialTraits d related to the degree of a polynomial.
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• PolynomialTraits d::Degree: a model of this concept returns the degree of the polynomial in the univari-
ate view. By default this is the degree with respect to the outermost variable, but it is also possible to
select another variable.

• PolynomialTraits d::TotalDegree: a model of this concept returns the total degree of a polynomial. The
polynomial is considered as a multivariate polynomial. The total degree is the maximum over the sums
of the exponents of each multivariate monomial.

• PolynomialTraits d::DegreeVector: a model of this concept returns the exponent vector of the leading
monomial, where the monomial order is lexicographic and starts with the outermost variable. See also
PolynomialTraits d::InnermostLeadingCoefficient.

7.5.1 Examples

The following example illustrates the application of the functors discussed above:� �
#include <CGAL/config.h>
#include <CGAL/Polynomial.h>
#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial_type_generator.h>

int main(){
CGAL::set_pretty_mode(std::cout);
typedef CGAL::Polynomial_type_generator<int,2>::Type Poly_2;
typedef CGAL::Polynomial_traits_d<Poly_2> PT_2;

//construction using shift
Poly_2 x = PT_2::Shift()(Poly_2(1),1,0); // x_0ˆ1
Poly_2 y = PT_2::Shift()(Poly_2(1),1,1); // x_1ˆ1

Poly_2 F // = (11*xˆ2 + 5*x)*yˆ4 + (7*xˆ2)*yˆ3
= 11 * CGAL::ipower(y,4) * CGAL::ipower(x,2)
+ 5 * CGAL::ipower(y,4) * CGAL::ipower(x,1)
+ 7 * CGAL::ipower(y,3) * CGAL::ipower(x,2);

std::cout << "The bivariate polynomial F: " << F <<"\n"<< std::endl;

PT_2::Degree degree;
PT_2::Total_degree total_degree;
PT_2::Degree_vector degree_vector;

std::cout << "The degree of F with respect to y: "<< degree(F)
// = 4

<< std::endl;
std::cout << "The degree of F with respect to x: "<< degree(F,0)
// = 2

<< std::endl;
std::cout << "The total degree of F : "<< total_degree(F)
// = 6

<< std::endl;
std::cout << "The degree vector of F : "<<
degree_vector(F)// = (2,4)

<< std::endl;
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}� �
File: examples/Polynomial/degree.cpp

7.6 Changing the order of variables

Given for instance a bivariate polynomial it is conceivable that one wants to interchange the role of x and
y. That is one wants to interpret the x as y and vice versa. For such a case the polynomial traits provides
PolynomialTraits d::Swap:
Given a polynomial p and to two indices i and j, the functor returns the polynomial in which xi is substituted by
x j and vice versa, that is, the variables swap their positions. The order of the other variables remains untouched.

Another scenario is, that a particular variable should be moved to another position, for instance, it should become
the outermost variable while the relative order of the other variables remains unchanged. For such a case the
polynomial traits provides PolynomialTraits d::Move.

Of course there is also a general method to interchange the order of variables, namely PolynomialTraits
d::Permute.

7.6.1 Examples

The following example illustrates the application of the functors discussed above:� �
#include <CGAL/config.h>
#include <CGAL/Polynomial.h>
#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial_type_generator.h>

int main(){
CGAL::set_pretty_mode(std::cout);
typedef CGAL::Polynomial_type_generator<int,3>::Type Poly_3;
typedef CGAL::Polynomial_traits_d<Poly_3> PT_3;

//construction using shift
Poly_3 x = PT_3::Shift()(Poly_3(1),1,0); // x_0ˆ1
Poly_3 y = PT_3::Shift()(Poly_3(1),1,1); // x_1ˆ1
Poly_3 z = PT_3::Shift()(Poly_3(1),1,2); // x_2ˆ1

Poly_3 F = x*y*y*z*z*z;
std::cout << "The trivariate polynomial F: " << F << std::endl;
std::cout << std::endl;

PT_3::Swap swap;
PT_3::Move move;
PT_3::Permute permute;

std::cout << "x and z swapped: "<< swap(F,0,2) // = xˆ3*yˆ2*z
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<< std::endl;
std::cout << "x and y swapped: "<< swap(F,0,1) // = xˆ2*y*zˆ3

<< std::endl << std::endl;

std::cout << "x moved to outermost position : "
<< move(F,0,2) // = xˆ2*yˆ3*z
<< std::endl;

std::cout << "Same as swap(swap(F,0,1),1,2) : "
<< swap(swap(F,0,1),1,2) // = xˆ2*yˆ3*z
<< std::endl;

std::cout << "Same as the permutation (0,1,2)->(2,0,1): ";
std::vector<int> perm;
perm.push_back(2);perm.push_back(0);perm.push_back(1);
std::cout << permute(F,perm.begin(),perm.end())// = xˆ2*yˆ3*z

<< std::endl;

}� �
File: examples/Polynomial/swap_move.cpp

7.7 GCD and More

Since the concept PolynomialTraits d refines the concept AlgebraicStructureTraits the polynomial traits pro-
vides functors for integral division, division with remainder, greatest common divisor, etc. But note that the
algebraic structure of a polynomial depends on the algebraic structure of the innermost coefficient, for in-
stance, a gcd is available if and only if the innermost coefficient is a Field or a UniqueFactorizationDomain.
Hence, we can not provide a gcd if the innermost coefficient is just an IntegralDomain since it is simply
not well defined1. However, if we would consider the polynomial over the quotient field of the integral do-
main the gcd would be well defined. The only problem is that the result can not be represented over the ring
since it contains denominators. Therefore, the PolynomialTraits d requires functors such as PolynomialTraits
d::GcdUpToConstantFactor. This functor computes the gcd of two polynomials up to a constant factor (utcf).
That is, it returns the correct gcd for polynomials over the quotient field, but multiplied by some constant such
that the result is representable with coefficients in the ring.

However, note that these ’utcf’ functions are usually a bit faster than their strict counterparts. This is due to
the fact that the ’utcf’ functions are allowed to skip the computation of the correct constant factor. Note that in
many cases the constant factor is in fact not needed. In particular if the polynomials are supposed to represent
some zero set, that is, an algebraic curve or surface.

The concepts for the related functors are:

• AlgebraicStructureTraits::Gcd
PolynomialTraits d::GcdUpToConstantFactor

• AlgebraicStructureTraits::IntegralDivision
PolynomialTraits d::IntegralDivisionUpToConstantFactor

1An example for such a number type is the template CGAL::Sqrt extension<NT,ROOT> representing an algebraic extension of degree
two. This is just an IntegralDomain if NT is not a Field.
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• PolynomialTraits d::UnivariateContent
PolynomialTraits d::UnivariateContentUpToConstantFactor

• PolynomialTraits d::SquareFreeFactorize
PolynomialTraits d::SquareFreeFactorizeUpToConstantFactor

Another analog functionality is the pseudo division. The related functors replace the usual division with remain-
der in case the Polynomial is not a EuclideanRing.
The concepts for the related functors are:

• AlgebraicStructureTraits::Div mod
PolynomialTraits d::PseudoDivision

• AlgebraicStructureTraits::Div
PolynomialTraits d::PseudoDivisionQuotient

• AlgebraicStructureTraits::Mod
PolynomialTraits d::PseudoDivisionRemainder

7.7.1 Examples

The following example illustrates the application of some functors discussed above:� �
#include <CGAL/config.h>
#include <CGAL/Polynomial.h>
#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial_type_generator.h>

int main(){
CGAL::set_pretty_mode(std::cout);
typedef CGAL::Polynomial_type_generator<int,1>::Type Poly_1;
typedef CGAL::Polynomial_traits_d<Poly_1> PT_1;

PT_1::Shift shift;
PT_1::Gcd gcd;
PT_1::Gcd_up_to_constant_factor gcd_utcf;
PT_1::Multivariate_content mcontent;
PT_1::Canonicalize canonicalize;

//construction using shift
Poly_1 x = shift(Poly_1(1),1,0); // xˆ1

// common factor 7 * (xˆ2-2)
Poly_1 F = 21*(x-5)*(x*x-2); // = 21*xˆ3 + (-105)*xˆ2 + (-42)*x + 210
Poly_1 G = 14*(x-3)*(x*x-2); // = 14*xˆ3 + (-42)*xˆ2 + (-28)*x + 84

std::cout << "The univariate polynomial F: " << F << std::endl;
std::cout << "The univariate polynomial G: " << G << std::endl;
std::cout << "Common multivariate content: "

<< CGAL::gcd(mcontent(F),mcontent(G)) // = 7
<< std::endl;

std::cout << "The gcd of F and G: "
<< gcd(F,G) // = 7*xˆ2 + (-14)
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<< std::endl;
std::cout << "The gcd up to constant factor of F and G: "

<< gcd_utcf(F,G) // = xˆ2 + (-2)
<< std::endl;

std::cout << "Same as canonicalized gcd of F and G: "
<< canonicalize(gcd_utcf(F,G)) // = xˆ2 + (-2)
<< std::endl;

}� �
File: examples/Polynomial/gcd_up_to_constant_factor.cpp

7.8 Evaluation and Substitution

Of course, it should also be possible to evaluate a polynomial or substitute its variables. We also require a
special functor to determine whether a polynomial is zero at a given point. In case the inner most coefficient is
RealEmbeddable the traits also must provide a function to compute the sign at a given point.
The concepts for the related functors are:

• PolynomialTraits d::Substitute
• PolynomialTraits d::Evaluate
• PolynomialTraits d::IsZeroAt
• PolynomialTraits d::SignAt

The traits is also required to provide variants of these functors that interpret the polynomial as a homogeneous
polynomial by adding a virtual homogeneous variable such that each term has the same degree, namely the
degree of the polynomial. Of course there is a difference between the univariate and multivariate view. For
instance the polynomial

5x3 +7x−3

has degree 3, hence it is interpreted as the homogeneous polynomial

5x3 +7xw2−3w3

by adding the homogeneous variable w. In case of the multivariate view each term is filled up by the homoge-
neous variable such that the degree of each term is equal to the total degree of the polynomial. Note that these
functors may significantly improve efficiency. For instance, it is possible to determine the sign of a polynomial
over integer coefficients at a rational point without changing the coefficient domain of the polynomial. For more
details have a look at the following concepts:

• PolynomialTraits d::SubstituteHomogeneous
• PolynomialTraits d::EvaluateHomogeneous
• PolynomialTraits d::IsZeroAtHomogeneous
• PolynomialTraits d::SignAtHomogeneous

Note that substitute allows the substitution of the variables by any type that is ExplicitInteroperable with the
innermost coefficient type. This is a very powerful tool since it allows the substitution of the variables by poly-
nomials. However, for some standard manipulations such as translation or scaling we require special functors
since they are expected to be faster than their equivalent implementation using substitution:

• PolynomialTraits d::Shift
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• PolynomialTraits d::Negate
• PolynomialTraits d::Invert
• PolynomialTraits d::Translate
• PolynomialTraits d::TranslateHomogeneous
• PolynomialTraits d::Scale
• PolynomialTraits d::ScaleHomogeneous

7.8.1 Examples

The following example illustrates the application of some functors discussed above:� �
#include <CGAL/config.h>
#include <CGAL/Polynomial.h>
#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial_type_generator.h>

int main(){
CGAL::set_pretty_mode(std::cout);
typedef CGAL::Polynomial_type_generator<int,2>::Type Poly_2;
typedef CGAL::Polynomial_traits_d<Poly_2> PT_2;

//construction using shift
Poly_2 x = PT_2::Shift()(Poly_2(1),1,0); // xˆ1
Poly_2 y = PT_2::Shift()(Poly_2(1),1,1); // yˆ1

Poly_2 F = 2*x*y + 3*CGAL::ipower(y,3);
std::cout << "The bivariate polynomial F: " << F // = 3*yˆ3 + (2*x)*y

<< std::endl << std::endl;

PT_2::Evaluate evaluate;
PT_2::Evaluate_homogeneous hevaluate;

// Evaluation considers a polynomials as univariate:
std::cout << "F(5): " << evaluate(F,5) // = 10*x + 375

<< std::endl;
// Evaluate_homogeneous considers F as a homogeneous polynomial in
// the outermost variable only, that is, F is interpreted as
// F(u,v) = 2*x*u*vˆ2 + 3 * uˆ3
std::cout << "F(5,7): " << hevaluate(F,5,7) // = 490*x + 375

<< std::endl << std::endl;

PT_2::Substitute substitute;
PT_2::Substitute_homogeneous hsubstitute;

// Substitute considers a polynomials as multivariate, that is, the
// new values for the variables are given by an iterator range
// Note that the value type only has to be interoperable with the
innermost

// coefficient
std::list<Poly_2> replacements;
replacements.push_back(x-1); // replace x by x-1
replacements.push_back(y); // replace y by y, i.e., do nothing
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std::cout << "The bivariate polynomial F: " << F // = 3*yˆ3 + (2*x)*y
<< std::endl;

std::cout << "F(x-1,y): " // = 3*yˆ3 + (2*x + (-2))*y
<< substitute(F,replacements.begin(),replacements.end())
<< std::endl;

// Substitute_homogeneous considers F as a homogeneous polynomial in
// all variable, that is, F is interpreted as
// F(x,y,w) = 2*x*y*w + 3 * yˆ3
replacements.push_back(y); // replace z by y

std::cout << "F(x-1,y,y): " // = 3*yˆ3 + (2*x + (-2))*yˆ2
<< hsubstitute(F,replacements.begin(),replacements.end())
<< std::endl;

}� �
File: examples/Polynomial/substitute.cpp

7.9 Resultants, Subresultants and Sturm-Habicht sequences

The PolynomialTraits d concept also provides more sophisticated functors for computations with polynomials –
computing the resultant of two polynomials, their polynomial subresultant sequence, with or without cofactors,
and their principal subresultant coefficients.

• PolynomialTraits d::Resultant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 312
• PolynomialTraits d::PolynomialSubresultants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 314
• PolynomialTraits d::PolynomialSubresultantsWithCofactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 316
• PolynomialTraits d::PrincipalSubresultants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 318

Moreover, functors to compute the Sturm-Habicht sequence, with or without cofactors, and for the principal
Sturm-Habicht coefficients exist.

• PolynomialTraits d::SturmHabichtSequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 319
• PolynomialTraits d::SturmHabichtSequenceWithCofactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 321
• PolynomialTraits d::PrincipalSturmHabichtSequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 323

For a formal definition of all used terms, we refer to the corresponding reference pages.

The principal Sturm-Habicht sequence allows to count the number of real roots of a polynomial using the
function

• CGAL::number of real roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 377.

As input, this function requires an iterator range that represents the principal Sturm-Habicht coefficients. This
might look complicated at a first sight, as one has to store the principal Sturm-Habicht sequence temporarily.
However, we remark an important property of the (principal) Sturm-Habicht sequence. Having a polynomial
ft(x) that depends on a parameter t, and its (principal) Sturm-Habicht coefficients stha0( ft), . . . ,sthan( ft), evalu-
ating stha0( ft) for t = t0 yields a valid (principal) Sturm-Habicht sequence for ft0 . The same holds for (principal)
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subresultants. Thus, it is enough in such situations to compute the sequence once for the parameter t, and call
CGAL::number of real roots for each specialized parameter value.

We finally remark that computing subresultants and Sturm-Habicht sequences introduces an enormous coeffi-
cient blow-up. An application of the functors therefore does not make sense for built-in integers except for toy
examples. To avoid overflows, one should use arbitrary size integer types in real applications.

7.9.1 Examples

The following example illustrates how two compute resultants of two polynomials, and how to count the number
of distinct real roots of a polynomial using its principal Sturm-Habicht coefficients.� �
#include <CGAL/config.h>
#include <CGAL/Polynomial.h>
#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial_type_generator.h>

#include <CGAL/Gmpz.h>

int main(){
CGAL::set_pretty_mode(std::cout);

typedef CGAL::Gmpz Int;

typedef CGAL::Polynomial_type_generator<Int,1>::Type Poly_1;
typedef CGAL::Polynomial_traits_d<Poly_1> PT_1;

//construction using shift
Poly_1 x = PT_1::Shift()(Poly_1(1),1); // xˆ1

Poly_1 F // = (x+1)ˆ2*(x-1)*(2x-1)=2xˆ4+xˆ3-3xˆ2-x+1
= 2 * CGAL::ipower(x,4) + 1 * CGAL::ipower(x,3)

- 3 * CGAL::ipower(x,2) - 1 * CGAL::ipower(x,1)
+ 1 * CGAL::ipower(x,0);

std::cout << "F=" << F << std::endl;

Poly_1 G // = (x+1)*(x+3)=xˆ2+4*x+3
= 1 * CGAL::ipower(x,2) + 4 * CGAL::ipower(x,1) + 3 *
CGAL::ipower(x,0);

std::cout << "G=" << G << std::endl;

// Resultant computation:
PT_1::Resultant resultant;

std::cout << "The resultant of F and G is: " << resultant(F,G) <<
std::endl;

// It is zero, because F and G have a common factor

// Real root counting:
PT_1::Principal_sturm_habicht_sequence stha;
std::vector<Int> psc;

stha(F,std::back_inserter(psc));
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int roots = CGAL::number_of_real_roots(psc.begin(),psc.end());

std::cout << "The number of real roots of F is: " << roots <<
std::endl; // 3

roots = CGAL::number_of_real_roots(G);

std::cout << "The number of real roots of G is: " << roots <<
std::endl; // 2

return 0;

}� �
File: examples/Polynomial/subresultants.cpp

7.10 Design and Implementation History

This package is the result of the integration process of the NumeriX library of EXACUS [BEH+05] into CGAL.

The class CGAL::Polynomial<Coeff> had been started by Michael Seel within CGAL as part of the Nef 2 pack-
age. As part of the EXACUS project it got significantly improved by Arno Eigenwillig and Michael Hemmer.

However, due to the recursive definition the class was rather restricted to the univariate view. Moreover, it is
clear that depending on the context other classes that are symmetric in all variables or dedicated for sparse
polynomials may be more efficient. As a consequence this package introduced the CGAL::Polynomial traits
d<Polynomial d> giving also the symmetric view on polynomials and the opportunity to introduce and use other
classes representing polynomials within CGAL.
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Polynomial d

Definition

A model of Polynomial d is representing a multivariate polynomial in d ≥ 1 variables over some basic ring
R. This type is denoted as the innermost coefficient. A model of Polynomial d accompanied by a traits class
CGAL::Polynomial traits d<Polynomial d>, which is a model of PolynomialTraits d. Please have a look at
the concept PolynomialTraits d, since nearly all functionality related to polynomials is provided by the traits.

Refines

IntegralDomainWithoutDivision

The algebraic structure of Polynomial d depends on the algebraic structure of Innermost coefficient type:

Innermost coefficient type Polynomial d
IntegralDomainWithoutDivision IntegralDomainWithoutDivision
IntegralDomain IntegralDomain
UniqueFactorizationDomain UniqueFactorizationDomain
EuclideanRing UniqueFactorizationDomain
Field UniqueFactorizationDomain

Note: In case the polynomial is univariate and the innermost coefficient is a Field the polynomial is model of
EuclideanRing.

See Also

AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262

Has Models

CGAL::Polynomial<Coeff> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 324
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PolynomialTraits d

Definition

A model of PolynomialTraits d is associated with a type Polynomial d. The type Polynomial d represents a
multivariate polynomial. The number of variables is denoted as the dimension d of the polynomial, it is arbitrary
but fixed for a certain model of this concept. Note that univariate polynomials are not excluded by this concept.
In this case d is just set to one.

PolynomialTraits d provides two different views on the multivariate polynomial.

• The recursive view: In this view, the polynomial is considered as an element of R[x0, . . . ,xd−2][xd−1].
That is, the polynomial is treated as a univariate polynomial over the ring R[x0, . . . ,xd−2].

• The symmetric or multivariate view: This view is symmetric with respect to all variables, considering the
polynomial as an element of R[x0, . . . ,xd−1].

Many functors consider the polynomial as a univariate polynomial in one variable. By default this is the outer-
most variable xd−1. However, in general it is possible to select a certain variable.

Refines

AlgebraicStructureTraits

Constants

static const int d; The dimension and the number of variables respectively.

Types

PolynomialTraits d:: Polynomial d Type representing R[x0, . . . ,xd−1].
PolynomialTraits d:: Coefficient type Type representing R[x0, . . . ,xd−2].
PolynomialTraits d:: Innermost coefficient type

Type representing the base ring R.

PolynomialTraits d:: Coefficient const iterator

Const iterator used to iterate through all coefficients of the
polynomial.

PolynomialTraits d:: Innermost coefficient const iterator

Const iterator used to iterate through all innermost coeffi-
cients of the polynomial.
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PolynomialTraits d:: template <typename T, int d> struct Rebind

This nested template class has to define a type Other which
is a model of the concept PolynomialTraits d, where d is the
number of variables and T the Innermost coefficient type.

Functors

In case a functor is not provided it is set to CGAL::Null functor.

PolynomialTraits d:: Construct polynomial A model of PolynomialTraits d::ConstructPolynomial.

PolynomialTraits d:: Get coefficient A model of PolynomialTraits d::GetCoefficient.

PolynomialTraits d:: Get innermost coefficient A model of PolynomialTraits
d::GetInnermostCoefficient.

PolynomialTraits d:: Construct coefficient const iterator range

A model of PolynomialTraits
d::ConstructCoefficientConstIteratorRange.

PolynomialTraits d:: Construct innermost coefficient const iterator range

A model of PolynomialTraits
d::ConstructInnermostCoefficientConstIteratorRange.

PolynomialTraits d:: Swap A model of PolynomialTraits d::Swap.

PolynomialTraits d:: Move A model of PolynomialTraits d::Move.

PolynomialTraits d:: Degree A model of PolynomialTraits d::Degree.

PolynomialTraits d:: Total degree A model of PolynomialTraits d::TotalDegree.

PolynomialTraits d:: Degree vector A model of PolynomialTraits d::DegreeVector.

PolynomialTraits d:: Leading coefficient A model of PolynomialTraits d::LeadingCoefficient.

PolynomialTraits d:: Innermost leading coefficient

A model of PolynomialTraits
d::InnermostLeadingCoefficient.

PolynomialTraits d:: Canonicalize A model of PolynomialTraits d::Canonicalize.

PolynomialTraits d:: Differentiate A model of PolynomialTraits d::Differentiate.
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PolynomialTraits d:: Evaluate A model of PolynomialTraits d::Evaluate.

PolynomialTraits d:: Evaluate homogeneous A model of PolynomialTraits d::EvaluateHomogeneous.

PolynomialTraits d:: Substitute A model of PolynomialTraits d::Substitute.

PolynomialTraits d:: Substitute homogeneous A model of PolynomialTraits
d::SubstituteHomogeneous.

PolynomialTraits d:: Is zero at A model of PolynomialTraits d::IsZeroAt.

PolynomialTraits d:: Is zero at homogeneous A model of PolynomialTraits d::IsZeroAtHomogeneous.

PolynomialTraits d:: Sign at A model of PolynomialTraits d::SignAt.
In case Innermost coefficient type is not RealEmbed-
dable this is CGAL::Null functor.

PolynomialTraits d:: Sign at homogeneous A model of PolynomialTraits d::SignAtHomogeneous.
In case Innermost coefficient type is not RealEmbed-
dable this is CGAL::Null functor.

PolynomialTraits d:: Compare A model of PolynomialTraits d::Compare.
In case Innermost coefficient type is not RealEmbed-
dable this is CGAL::Null functor.

PolynomialTraits d:: Univariate content In case PolynomialTraits d::Coefficient type is not
a model of UniqueFactorizationDomain, this is
CGAL::Null functor, otherwise this is a model of
PolynomialTraits d::UnivariateContent.

PolynomialTraits d:: Multivariate content In case PolynomialTraits d::Innermost coefficient type
is not a model of UniqueFactorizationDomain, this
is CGAL::Null functor, otherwise this is a model of
PolynomialTraits d::MultivariateContent.

PolynomialTraits d:: Shift A model of PolynomialTraits d::Shift.
PolynomialTraits d:: Negate A model of PolynomialTraits d::Negate.
PolynomialTraits d:: Invert A model of PolynomialTraits d::Invert.

PolynomialTraits d:: Translate A model of PolynomialTraits d::Translate.
PolynomialTraits d:: Translate homogeneous A model of PolynomialTraits

d::TranslateHomogeneous.

PolynomialTraits d:: Scale A model of PolynomialTraits d::Scale.
PolynomialTraits d:: Scale homogeneous A model of PolynomialTraits d::ScaleHomogeneous.

PolynomialTraits d:: Make square free A model of PolynomialTraits d::MakeSquareFree.
PolynomialTraits d:: Square free factorize In case PolynomialTraits::Polynomial d is not a model of

UniqueFactorizationDomain, this is of type CGAL::Null
functor, otherwise this is a model of PolynomialTraits
d::SquareFreeFactorize.
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PolynomialTraits d:: Pseudo division A model of PolynomialTraits d::PseudoDivision.
PolynomialTraits d:: Pseudo division remainder A model of PolynomialTraits

d::PseudoDivisionRemainder.
PolynomialTraits d:: Pseudo division quotient A model of PolynomialTraits

d::PseudoDivisionQuotient.

PolynomialTraits d:: Gcd up to constant factor A model of PolynomialTraits
d::GcdUpToConstantFactor.

PolynomialTraits d:: Integral division up to constant factor

A model of PolynomialTraits
d::IntegralDivisionUpToConstantFactor.

PolynomialTraits d:: Content up to constant factor

A model of PolynomialTraits
d::UnivariateContentUpToConstantFactor.

PolynomialTraits d:: Square free factorize up to constant factor

A model of PolynomialTraits
d::SquareFreeFactorizeUpToConstantFactor.

PolynomialTraits d:: Resultant A model of PolynomialTraits d::Resultant.

PolynomialTraits d:: Polynomial subresultants Either CGAL::Null functor or a model of
PolynomialTraits d::PolynomialSubresultants.

PolynomialTraits d:: Polynomial subresultants with cofactors

Either CGAL::Null functor or a model of
PolynomialTraits d::PolynomialSubresultants with
cofactors.

PolynomialTraits d:: Principal subresultants Either CGAL::Null functor or a model of
PolynomialTraits d::PrincipalSubresultants.

PolynomialTraits d:: Sturm habicht sequence Either CGAL::Null functor or a model of
PolynomialTraits d::SturmHabichtSequence.

PolynomialTraits d:: Sturm habicht sequence with cofactors

Either CGAL::Null functor or
a model of PolynomialTraits
d::SturmHabichtSequenceWithCofactors.

PolynomialTraits d:: Principal sturm habicht sequence

Either CGAL::Null functor or a model of
PolynomialTraits d::PrincipalSturmHabichtSequence.
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See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261

Has Models

CGAL::Polynomial traits d<Polynomial d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 326

266



C
on

ce
pt

PolynomialTraits d::ConstructPolynomial

Definition

This AdaptableFunctor provides several operators to construct objects of type PolynomialTraits
d::Polynomial d.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Polynomial d

result type;

Operations

result type fo() Construct the zero polynomial.

result type fo( int i) Construct the constant polynomial equal to i.

result type fo( PolynomialTraits d::Innermost coefficient type a)

Construct the constant polynomial equal to a.

result type fo( PolynomialTraits d::Coefficient type a)

Construct the polynomial equal to a.

template < class InputIterator >
result type fo( InputIterator begin, InputIterator end)

Precondition: The value type of InputIterator is PolynomialTraits
d::Coefficient type.

The operator constructs the a polynomial from the iterator range, with
respect to the outermost variable, xd−1.
The range starts with the coefficient for x0

d−1.
In case the range is empty, the zero polynomial is constructed.

template < class InputIterator >
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result type fo( InputIterator begin, InputIterator end, bool is sorted= false)

Constructs a Polynomial d from a given iterator range of std::pair<
Exponent vector, PolynomialTraits d::Innermost coefficient type>.
The optional parameter is sorted indicates whether the given iterator
range is already sorted.
Precondition: The value type of InputIterator is std::pair<Exponent
vector, PolynomialTraits d::Innermost coefficient type>.
Precondition: Each Exponent vector must have size d.
Precondition: All appearing Exponent vectors are different.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
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PolynomialTraits d::GetCoefficient

Definition

This AdaptableBinaryFunction provides access to coefficients of a PolynomialTraits d::Polynomial d.

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Coefficient type

result type;

typedef PolynomialTraits d::Polynomial d

first argument type;

typedef int second argument type;

Operations

result type fo( first argument type p, second argument type e)

For given polynomial p this operator returns the coefficient of xe
d−1,

where xd−1 is the outermost variable.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
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PolynomialTraits d::GetInnermostCoefficient

Definition

For the given PolynomialTraits d::Polynomial d this AdaptableBinaryFunction returns the coefficient of the
(multivariate) monomial specified by the given Exponent vector.

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Innermost coefficient type

result type;
typedef PolynomialTraits d::Polynomial d

first argument type;
typedef Exponent vector

second argument type;

Operations

result type fo( first argument type p, second argument type v)

For given polynomial p this operator returns the innermost coefficient
of the monomial corresponding to the given Exponent vector v.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
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PolynomialTraits d::MonomialRepresentation

Definition

This Functor outputs the monomial representation of the given polynomial, that is, it writes all non zero terms
of the polynomial as std::pair<CGAL::Exponent vector, PolynomialTraits d::Innermost coefficient type> into
the given output iterator.

Refines

Assignable
CopyConstructible
DefaultConstructible

Operations

template<class OutputIterator>
OutputIterator fo( PolynomialTraits d::Polynomial d p, OutputIterator it)

Writes the monom representation of p into the given out-
put iterator it.
Precondition: std::iterator traits< OutputIter-
ator >::value type must be constructible from
std::pair<CGAL::Exponent vector, PolynomialTraits
d::Innermost coefficient type>.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
PolynomialTraits d::ConstructPolynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 267
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PolynomialTraits d::ConstructCoefficientConstIteratorRange

Definition

This AdaptableUnaryFunction returns a const iterator range over the coefficients of the given polynomial, with
respect to the outermost variable, xd−1. The range starts with the coefficient for x0

d−1.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef std::pair< PolynomialTraits d::Coefficient const iterator, PolynomialTraits d::Coefficient const
iterator >

result type;
typedef PolynomialTraits d::Polynomial d argument type;

Operations

result type fo( argument type p)

Returns a const iterator range over the coefficients of p.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
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PolynomialTraits d::ConstructInnermostCoefficientConstIteratorRange

Definition

This AdaptableUnaryFunction returns a const iterator range over all innermost coefficients of the given polyno-
mial.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef std::pair< PolynomialTraits d::Innermost coefficient const iterator, PolynomialTraits d::Innermost
coefficient const iterator >

result type;
typedef PolynomialTraits d::Polynomial d argument type;

Operations

result type fo( argument type p)

Returns a const iterator range over all innermost coeffi-
cients of p.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
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PolynomialTraits d::Permute

Definition

This AdaptableFunctor permutes the variables of the given polynomial with respect to a permutation σ, that is,
each monomial ∏xei

i will be mapped to the monomial ∏xei
σ(i). The permutation σ is given by the iterator range

of length PolynomialTraits d::d, which is supposed to contain the second row of the permutation.

For instance, let p be a polynomial in 4 variables and it is intended to change the order of the variables such that
x0 7→ x2, x1 7→ x0, x2 7→ x1 and x3 7→ x3. In this case the iterator range should contain the sequence [2,0,1,3].

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Polynomial d result type;

Operations

Operations

template<class Input iterator>
result type fo.operator()( PolynomialTraits d::Polynomial d p,

Input iterator begin,
Input iterator end)

Returns p with interchanged variables as defined by the
iterator range.
Precondition: (end-begin == PolynomialTraits d::d)
Precondition: std::iterator traits< InputIterator >
::value type is convertible to int.
Precondition: The iterator range contains each value in
{0, . . . ,d−1} exactly once.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
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PolynomialTraits d::Swap

Definition

This AdaptableFunctor swaps two variables of a multivariate polynomial.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Polynomial d result type;

Operations

result type fo( PolynomialTraits d::Polynomial d p, int i, int j)

Returns polynomial p with interchanged variables xi,x j.
Precondition: 0≤ i < d
Precondition: 0≤ j < d

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
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PolynomialTraits d::Move

Definition

This AdaptableFunctor moves a variable at position i to a new position j. The relative order of the other
variables is preserved, that is, the variables between xi and x j (including x j) are moved by one position while xi
is moved to the former position of x j.

This function may be used to make a certain variable the outer most variable.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Polynomial d result type;

Operations

result type fo( PolynomialTraits d::Polynomial d, int i, int j)

This function moves the variable at position i to its new
position j and returns the new polynomial. The relative
order of the other variables is preserved.
Precondition: 0≤ i < d
Precondition: 0≤ j < d

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
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PolynomialTraits d::Degree

Definition

This AdaptableUnaryFunction computes the degree of a PolynomialTraits d::Polynomial d with respect to a
certain variable.

The degree of p with respect to a certain variable xi, is the highest power e of xi such that the coefficient of xe
i in

p is not zero.
For instance the degree of p = x2

0x3
1 + x4

1 with respect to x1 is 4.

The degree of the zero polynomial is set to 0. From the mathematical point of view this should be −in f inity,
but this would imply an inconvenient return type.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef int result type;
typedef PolynomialTraits d::Polynomial d argument type;

Operations

result type fo( argument type p)

Computes the degree of p with respect to the outermost
variable xd−1.

result type fo( argument type p, int i)

Computes the degree of p with respect to variable xi.
Precondition: 0≤ i < d

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
PolynomialTraits d::TotalDegree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 278
PolynomialTraits d::DegreeVector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 279
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PolynomialTraits d::TotalDegree

Definition

This AdaptableUnaryFunction computes the total degree of a PolynomialTraits d::Polynomial d.

Given a (multivariate) monomial the sum of all appearing exponents is the total degree of this monomial. The
total degree of a polynomial p is the maximum of the total degrees of all appearing (multivariate) monomials in
p.
For instance the total degree of p = x2

0x3
1 + x4

1 is 5.

The total degree of the zero polynomial is set to 0. From the mathematical point of view this should be −in f ,
but this would imply an inconvenient return type.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef int result type;
typedef PolynomialTraits d::Polynomial d argument type;

Operations

result type fo( argument type p)

Computes the total degree of p.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
PolynomialTraits d::Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 277
PolynomialTraits d::DegreeVector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 279
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PolynomialTraits d::DegreeVector

Definition

For a given PolynomialTraits d::Polynomial d p this AdaptableUnaryFunction returns the degree vector, that
is, it returns the exponent vector of the monomial of highest order in p, where the monomial order is the
lexicographic order giving outer variables a higher priority. In particular, this is the monomial that belongs to
the innermost leading coefficient of p.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef Exponent vector result type;
typedef PolynomialTraits d::Polynomial d argument type;

Operations

result type fo( argument type p)

Returns the degree vector.

See Also
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PolynomialTraits d::LeadingCoefficient

Definition

This AdaptableUnaryFunction computes the leading coefficient of a PolynomialTraits d::Polynomial d.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Coefficient type

result type;
typedef PolynomialTraits d::Polynomial d argument type;

Operations

result type fo( argument type p)

Computes the leading coefficient of p with respect to the
outermost variable xd−1.

See Also
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PolynomialTraits d::InnermostLeadingCoefficient

Definition

This AdaptableUnaryFunction computes the innermost leading coefficient of a PolynomialTraits
d::Polynomial d p. The innermost leading coefficient is recursively defined as the innermost leading coefficient
of the leading coefficient of p. In case p is univariate it coincides with the leading coefficient.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Innermost coefficient type

result type;
typedef PolynomialTraits d::Polynomial d argument type;

Operations

result type fo( argument type p)

Computes the innermost leading coefficient of p.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262

281



C
on

ce
pt

PolynomialTraits d::Canonicalize

Definition

For a given polynomial p this AdaptableUnaryFunction computes the unique representative of the set

P := {q | λ∗q = p f or some λ ∈ R},

where R is the base of the polynomial ring.

In case PolynomialTraits::Innermost coefficient type is a model of Field, the computed polynomial is the monic
polynomial in P , that is, the innermost leading coefficient equals one.
In case PolynomialTraits::Innermost coefficient type is a model of UniqueFactorizationDomain, the computed
polynomial is the one with a multivariate content of one.
For all other cases the notion of uniqueness is up to the concrete model.

Note that the computed polynomial has the same zero set as the given one.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Polynomial d result type;
typedef PolynomialTraits d::Polynomial d argument type;

Operations

result type fo( first argument type p)

Returns the canonical representative of p.

See Also
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PolynomialTraits d::Differentiate

Definition

This AdaptableUnaryFunction computes the derivative of a PolynomialTraits d::Polynomial d with respect to
one variable.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Polynomial d result type;
typedef PolynomialTraits d::Polynomial d argument type;

Operations

result type fo( argument type p)

Returns p′, with respect to the outermost variable.

result type fo( argument type p, int i)

Returns p′, with respect to variable xi.
Precondition: 0≤ i < d

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262

283



C
on

ce
pt

PolynomialTraits d::Evaluate

Definition

This AdaptableBinaryFunction evaluates PolynomialTraits d::Polynomial d with respect to one variable.

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Coefficient type

result type;
typedef PolynomialTraits d::Polynomial d first argument type;
typedef PolynomialTraits d::Coefficient type

second argument type;

Operations

result type fo( first argument type p, second argument type x)

Returns p(x), with respect to the outermost variable.

See Also
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PolynomialTraits d::EvaluateHomogeneous

Definition

This AdaptableFunctor provides evaluation of a PolynomialTraits d::Polynomial d interpreted as a homoge-
neous polynomial in one variable.
For instance the polynomial p = 5x2y3 +y is interpreted as the homogeneous polynomial p[x](u,v)= 5x2u3 +uv2

and evaluated as such.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Coefficient type

result type;

Operations

result type fo.operator()( PolynomialTraits d::Polynomial d p,
PolynomialTraits d::Coefficient type u,
PolynomialTraits d::Coefficient type v)

Returns p(u,v), with respect to the outermost variable.

See Also
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PolynomialTraits d::Substitute

Definition

This Functor substitutes all variables of a given multivariate PolynomialTraits d::Polynomial d by the values
given in the iterator range, where begin refers the value for the innermost variable.

Refines

Assignable
CopyConstructible
DefaultConstructible

Types

Note that the result type is the coercion type of the value type of the given iterator range and PolynomialTraits
d::Innermost coefficient type. In particular std::iterator traits<Input iterator>::value type must be Explicit-
Interoperable with PolynomialTraits d::Innermost coefficient type. Hence, it can not be provided as a public
type in advance.

Operations

template<class Input iterator>
result type fo.operator()( PolynomialTraits d::Polynomial d p,

Input iterator begin,
Input iterator end)

Substitutes each variable of p by the values given in the
iterator range, where begin refers to the innermost vari-
able x0.
Precondition: (end-begin == PolynomialTraits d::d)

See Also
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PolynomialTraits d::SubstituteHomogeneous

Definition

This Functor substitutes all variables of a given multivariate PolynomialTraits d::Polynomial d p by the
values given in the iterator range, where begin refers the value for the innermost variable. In contrast to
PolynomialTraits d::Substitute the given polynomial p is interpreted as a homogeneous polynomial. Hence
the iterator range is required to be of length PolynomialTraits d::d+1.
For instance the polynomial p(x0,x1) = x2

0x3
1 + x4

1 is interpreted as the homogeneous polynomial p(x0,x1,w) =
x2

0x3
1 + x4

1w1.

Refines

Assignable
CopyConstructible
DefaultConstructible

Types

Note that the result type is the coercion type of the value type of the given iterator range and PolynomialTraits
d::Innermost coefficient type. In particular std::iterator traits<Input iterator>::value type must be Explicit-
Interoperable with PolynomialTraits d::Innermost coefficient type. Hence, it can not be provided as a public
type in advance.

Operations

template<class Input iterator>
result type fo.operator()( PolynomialTraits d::Polynomial d p,

Input iterator begin,
Input iterator end)

Substitutes each variable of p by the values given in the
iterator range, where p is interpreted as a homogeneous
polynomial in all variables. The begin iterator refers to
the innermost variable x0.
Precondition: (end-begin == PolynomialTraits d::d)+1

See Also
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PolynomialTraits d::IsZeroAt

Definition

This AdaptableFunctor returns whether a PolynomialTraits d::Polynomial d p is zero at a given Cartesian
point, which is represented as an iterator range.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef bool result type;

Operations

template <class InputIterator>
result type fo.operator()( PolynomialTraits d::Polynomial d p,

InputIterator begin,
InputIterator end)

Computes whether p is zero at the Cartesian point given
by the iterator range, where begin is referring to the in-
nermost variable.
Precondition: (end-begin == PolynomialTraits d::d)
Precondition: std::iterator traits< InputItera-
tor >::value type is ExplicitInteroperable with
PolynomialTraits d::Innermost coefficient type.

See Also
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PolynomialTraits d::IsZeroAtHomogeneous

Definition

This AdaptableFunctor returns whether a PolynomialTraits d::Polynomial d p is zero at a given homogeneous
point, which is given by an iterator range.

The polynomial is interpreted as a homogeneous polynomial in all variables.
For instance the polynomial p(x0,x1) = x2

0x3
1 + x4

1 is interpreted as the homogeneous polynomial p(x0,x1,w) =
x2

0x3
1 + x4

1w1.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef bool result type;

Operations

template <class InputIterator>
result type fo.operator()( PolynomialTraits d::Polynomial d p,

InputIterator begin,
InputIterator end)

Computes whether p is zero at the homogeneous point
given by the iterator range, where begin is referring to
the innermost variable.
Precondition: (end-begin==PolynomialTraits d::d+1)
Precondition: std::iterator traits< InputItera-
tor >::value type is ExplicitInteroperable with
PolynomialTraits d::Innermost coefficient type.

See Also
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PolynomialTraits d::SignAt

Definition

This AdaptableFunctor returns the sign of a PolynomialTraits d::Polynomial d p at given Cartesian point rep-
resented as an iterator range.

This functor is well defined if PolynomialTraits d::Innermost coefficient type is RealEmbeddable.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef CGAL::Sign result type;

Operations

template <class InputIterator>
result type fo.operator()( PolynomialTraits d::Polynomial d p,

InputIterator begin,
InputIterator end)

Returns the sign of p at the given Cartesian point, where
begin is referring to the innermost variable.
Precondition: (end-begin == PolynomialTraits d::d)
Precondition: std::iterator traits< InputItera-
tor >::value type is ExplicitInteroperable with
PolynomialTraits d::Innermost coefficient type.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
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PolynomialTraits d::SignAtHomogeneous

Definition

This AdaptableFunctor returns the sign of a PolynomialTraits d::Polynomial d p at a given homogeneous
point, which is given by an iterator range.

The polynomial is interpreted as a homogeneous polynomial in all variables.
For instance the polynomial p(x0,x1) = x2

0x3
1 + x4

1 is interpreted as the homogeneous polynomial p(x0,x1,w) =
x2

0x3
1 + x4

1w1.

This functor is well defined if PolynomialTraits d::Innermost coefficient type is RealEmbeddable.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef CGAL::Sign result type;

Operations

template <class InputIterator>
result type fo.operator()( PolynomialTraits d::Polynomial d p,

InputIterator begin,
InputIterator end)

Returns the sign of p at the given homogeneous point,
where begin is referring to the innermost variable.
Precondition: (end-begin==PolynomialTraits d::d+1)
Precondition: std::iterator traits< InputItera-
tor >::value type is ExplicitInteroperable with
PolynomialTraits d::Innermost coefficient type.

See Also
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PolynomialTraits d::Compare

Definition

This AdaptableBinaryFunction compares two polynomials, with respect to the lexicographic order with prefer-
ence to the outermost variable.

This functor is well defined if PolynomialTraits d::Innermost coefficient type is RealEmbeddable.

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Types

typedef CGAL::Comparison result result type;
typedef PolynomialTraits d::Polynomial d first argument type;
typedef PolynomialTraits d::Polynomial d second argument type;

Operations

result type fo( first argument type f, second argument type g)

Compares two polynomials.

See Also
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PolynomialTraits d::UnivariateContent

Definition

This AdaptableUnaryFunction computes the content of a PolynomialTraits d::Polynomial d with respect to the
univariate (recursive) view on the polynomial, that is, it computes the gcd of all coefficients with respect to one
variable.

This functor is well defined if PolynomialTraits d::Coefficient type is a Field or a UniqueFactorizationDomain.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Coefficient type

result type;
typedef PolynomialTraits d::Polynomial d argument type;

Operations

result type fo( argument type p)

Computes the content of p with respect to the outermost
variable xd−1.

See Also
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PolynomialTraits d::MultivariateContent

Definition

This AdaptableUnaryFunction computes the content of a PolynomialTraits d::Polynomial d with respect to the
symmetric view on the polynomial, that is, it computes the gcd of all innermost coefficients.

This functor is well defined if PolynomialTraits d::Innermost coefficient type is a Field or a UniqueFactoriza-
tionDomain.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Innermost coefficient type

result type;
typedef PolynomialTraits d::Polynomial d argument type;

Operations

result type fo( argument type p)

Computes the gcd of all innermost coefficients of
p.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
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PolynomialTraits d::SquareFreeFactorize

Definition

This Functor computes a square-free factorization of a PolynomialTraits d::Polynomial d.

A polynomial p is factored into square-free and pairwise coprime non-constant factors gi with multiplicities mi
and a constant factor a, such that p = a ·gm1

1 · ... ·gmn
n .

The pairs (gi,mi) are written into the given output iterator.

This functor is well defined if PolynomialTraits d::Polynomial d is a UniqueFactorizationDomain.

Refines

Assignable
CopyConstructible
DefaultConstructible

Operations

template<class OutputIterator>
OutputIterator fo.operator()( PolynomialTraits d::Polynomial d p,

OutputIterator it,
PolynomialTraits d::Innermost coefficient

type& a)

Computes the square-free factorization of p and returns
the past-the-end iterator of the written range.
Precondition: std::iterator traits< OutputIterator >
::value type must be constructible from std::pair<
PolynomialTraits d::Polynomial d,int>.

template<class OutputIterator>
OutputIterator fo( PolynomialTraits d::Polynomial d p, OutputIterator it)

As the first operator, just not computing the factor a.

See Also
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PolynomialTraits d::MakeSquareFree

Definition

This AdaptableBinaryFunction computes the square-free part of a polynomial of type PolynomialTraits
d::Polynomial d up to a constant factor.

A polynomial p can be factored into square-free and pairwise coprime non-constant factors gi with multiplicities
mi and a constant factor a, such that p = a ·gm1

1 · ... ·gmn
n , where all gi are canonicalized.

Given this decomposition, the square free part is defined as the product g1 · ... · gn, which is computed by this
functor.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Polynomial d result type;
typedef PolynomialTraits d::Polynomial d argument type;

Operations

result type fo( argument type p)

Returns the square-free part of p.

See Also
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PolynomialTraits d::IsSquareFree

Definition

This AdaptableBinaryFunction computes whether the given a polynomial of type PolynomialTraits
d::Polynomial d is square free.

Note that this statement does cover constant factors, i.e., whether the multivariate content contains a square.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef bool result type;
typedef PolynomialTraits d::Polynomial d argument type;

Operations

result type fo( argument type p)

Returns whether the p is square free.

See Also
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PolynomialTraits d::PseudoDivision

Definition

This AdaptableFunctor computes the pseudo division of two polynomials f and g.

Given f and g 6= 0 this functor computes quotient q and remainder r such that D · f = g ·q+ r and degree(r) <
degree(g), where D = leading coe f f icient(g)max(0,degree( f )−degree(g)+1)

This functor is useful if the regular division is not available, which is the case if PolynomialTraits
d::Coefficient type is not a Field. Hence in general it is not possible to invert the leading coefficient of g.
Instead f is extended by D allowing integral divisions in the internal computation.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef void result type;

Operations

result type fo.operator()( PolynomialTraits d::Polynomial d f,
PolynomialTraits d::Polynomial d g,
PolynomialTraits d::Polynomial d & q,
PolynomialTraits d::Polynomial d & r,
PolynomialTraits d::Coefficient type & D)

Computes the pseudo division with respect to the outer-
most variable xd−1.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
PolynomialTraits d::PseudoDivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 298
PolynomialTraits d::PseudoDivisionRemainder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 300
PolynomialTraits d::PseudoDivisionQuotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 299

298



C
on

ce
pt

PolynomialTraits d::PseudoDivisionQuotient

Definition

This AdaptableBinaryFunction computes the quotient of the pseudo division of two polynomials f and g.

Given f and g 6= 0 one can compute quotient q and remainder r such that D · f = g · q + r and degree(r) <
degree(g), where D = leading coe f f icient(g)max(0,degree( f )−degree(g)+1)

This functor computes q.

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Polynomial d result type;
typedef PolynomialTraits d::Polynomial d first argument type;
typedef PolynomialTraits d::Polynomial d second argument type;

Operations

result type fo( first argument type f, second argument type g)

Returns the quotient q of the pseudo division of f and g
with respect to the outermost variable xd−1.

See Also
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PolynomialTraits d::PseudoDivisionRemainder

Definition

This AdaptableBinaryFunction computes the remainder of the pseudo division of two polynomials f and g.

Given f and g 6= 0 one can compute quotient q and remainder r such that D · f = g · q + r and degree(r) <
degree(g), where D = leading coe f f icient(g)max(0,degree( f )−degree(g)+1)

This functor computes r.

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Polynomial d result type;
typedef PolynomialTraits d::Polynomial d first argument type;
typedef PolynomialTraits d::Polynomial d second argument type;

Operations

result type fo( first argument type f, second argument type g)

Returns the remainder r of the pseudo division of f and
g with respect to the outermost variable xd−1.

See Also
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PolynomialTraits d::GcdUpToConstantFactor

Definition

This AdaptableBinaryFunction computes the gcd up to a constant factor (utcf) of two polynomials of type
PolynomialTraits d::Polynomial d.

In case the base ring R (PolynomialTraits d::Innermost coefficient type) is not a UniqueFactorizationDomain
or not a Field the polynomial ring R[x0, . . . ,xd−1] (PolynomialTraits d::Polynomial d) may not possesses great-
est common divisors. However, since R is an integral domain one can consider its quotient field Q(R) for which
gcds of polynomials exist.

This functor computes gcd utc f ( f ,g) = D ∗ gcd( f ,g), for some D ∈ R such that gcd utc f ( f ,g) ∈
R[x0, . . . ,xd−1]. Hence, gcd utc f ( f ,g) may not be a divisor of f and g in R[x0, . . . ,xd−1].

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Polynomial d result type;
typedef PolynomialTraits d::Polynomial d first argument type;
typedef PolynomialTraits d::Polynomial d second argument type;

Operations

result type fo( first argument type f, second argument type g)

Computes gcd( f ,g) up to a constant factor.

See Also
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PolynomialTraits d::IntegralDivisionUpToConstantFactor

Definition

This AdaptableBinaryFunction computes the integral division of two polynomials of type PolynomialTraits
d::Polynomial d up to a constant factor (utcf) .

Precondition: g divides f in Q(R)[x0, . . . ,xd−1], where Q(R) is the quotient field of the base ring R,
PolynomialTraits d::Innermost coefficient type.

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Polynomial d result type;
typedef PolynomialTraits d::Polynomial d first argument type;
typedef PolynomialTraits d::Polynomial d second argument type;

Operations

result type fo( first argument type f, second argument type g)

Computes f /g up to a constant factor.

See Also
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PolynomialTraits d::UnivariateContentUpToConstantFactor

Definition

This AdaptableUnaryFunction computes the content of a PolynomialTraits d::Polynomial d with respect to the
univariate (recursive) view on the polynomial up to a constant factor (utcf), that is, it computes the gcd utc f of
all coefficients with respect to one variable.

Remark: This is called UnivariateContentUpToConstantFactor for symmetric reasons with respect to
PolynomialTraits d::UnivariateContent and PolynomialTraits d::MultivariateContent. However, a concept
PolynomialTraits d::MultivariateContentUpToConstantFactor does not exist since the result is trivial.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Coefficient type

result type;
typedef PolynomialTraits d::Polynomial d argument type;

Operations

result type fo( first argument type p)

Computes the content up to a constant factor of p with
respect to the outermost variable xd−1.

See Also
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PolynomialTraits d::SquareFreeFactorizeUpToConstantFactor

Definition

This AdaptableFunctor computes a square-free factorization up to a constant factor (utcf) of a
PolynomialTraits d::Polynomial d.

A polynomial p is factored into square-free and pairwise coprime non-constant factors gi with multiplicities mi,
such that a · p = gm1

1 · ... ·gmn
n , where a is some constant factor.

The pairs (gi,mi) are written into the given output iterator.
The constant factor a is not computed.

This functor is well defined even though PolynomialTraits d::Innermost coefficient type may not be a Unique-
FactorizationDomain.

Refines

Assignable
CopyConstructible
DefaultConstructible

Operations

template<class OutputIterator>
OutputIterator fo( PolynomialTraits d::Polynomial d p, OutputIterator it)

Computes the square-free factorization of p and returns
the past-the-end iterator of the written range.
Precondition: std::iterator traits< OutputIterator >
::value type must be constructible from std::pair<
PolynomialTraits d::Polynomial d,int>.

See Also
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PolynomialTraits d::Shift

Definition

This AdaptableBinaryFunction multiplies a PolynomialTraits d::Polynomial d by the given power of the spec-
ified variable.

This functor is provided for efficiency reasons, since multiplication by some variable will in general correspond
to a shift of coefficients in the internal representation.

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Polynomial d result type;

typedef PolynomialTraits d::Polynomial d first argument type;

typedef int second argument type;

Operations

result type fo( first argument type p, second argument type e)

Returns p∗ xe
d−1.

Precondition: 0≤ e

result type fo( first argument type p, second argument type e, int i)

Returns p∗ xe
i .

Precondition: 0≤ e
Precondition: 0≤ i < d

See Also
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PolynomialTraits d::Negate

Definition

This AdaptableUnaryFunction computes p(−x) for a given polynomial p.

Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as
a univariate polynomial in one specific variable.

This functor is provided for efficiency reasons, since this operation just flips the sign of all odd coefficients with
respect to the specified variable.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Polynomial d result type;
typedef PolynomialTraits d::Polynomial d argument type;

Operations

result type fo( argument type p)

Returns p(−x), with respect to the outermost variable.

result type fo( argument type p, int i)

Returns p(−x), with respect to variable xi.
Precondition: 0≤ i < d

See Also
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PolynomialTraits d::Invert

Definition

This AdaptableUnaryFunction inverts one variable in a given PolynomialTraits d::Polynomial d, that is, for a
given polynomial p it computes xdegree(p) p(1/x).

Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as
a univariate polynomial in one specific variable.

This functor is provided for efficiency reasons, since this operation just inverts the order of the coefficients with
respect to the specified variable.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Polynomial d result type;
typedef PolynomialTraits d::Polynomial d argument type;

Operations

result type fo( argument type p)

Returns xdegree(p) p(1/x), where x refers to the outermost
variable xd−1.

result type fo( argument type p, int i)

Return xdegree(p,i) p(1/x), where x refers to the variable
xi.
Precondition: 0≤ i < d

See Also
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PolynomialTraits d::Translate

Definition

This AdaptableBinaryFunction translates a PolynomialTraits d::Polynomial d with respect to one variable, that
is, for a given polynomial p and constant c it computes p(x+ c).

Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as
a univariate polynomial in one specific variable.

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Polynomial d result type;
typedef PolynomialTraits d::Polynomial d first argument type;
typedef PolynomialTraits d::Innermost coefficient type

second argument type;

Operations

result type fo( first argument type p, second argument type c)

Returns p(x+ c), with respect to the outermost variable.

result type fo( first argument type p, second argument type c, int i)

Same as first operator but for variable xi.
Precondition: 0≤ i < d

See Also
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PolynomialTraits d::TranslateHomogeneous

Definition

Given numerator a and denominator b this AdaptableFunctor translates a PolynomialTraits d::Polynomial d p
with respect to one variable by a/b, that is, it computes bdegree(p) · p(x+a/b).

Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as
a univariate homogeneous polynomial in one specific variable.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Polynomial d result type;

Operations

result type fo.operator()( PolynomialTraits d::Polynomial d p,
PolynomialTraits d::Innermost coefficient type

a,
PolynomialTraits d::Innermost coefficient type

b)

Returns bdegree(p) · p(x +a/b), with respect to the outer-
most variable.

result type fo.operator()( PolynomialTraits d::Polynomial d p,
PolynomialTraits d::Innermost coefficient type

a,
PolynomialTraits d::Innermost coefficient type

b,
int i)

Same as first operator but for variable xi.
Precondition: 0≤ i < d

See Also
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PolynomialTraits d::Scale

Definition

Given a constant c this AdaptableBinaryFunction scales a PolynomialTraits d::Polynomial d p with respect to
one variable, that is, it computes p(c · x).

Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as
a univariate polynomial in one specific variable.

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Polynomial d result type;
typedef PolynomialTraits d::Polynomial d first argument type;
typedef PolynomialTraits d::Innermost coefficient type

second argument type;

Operations

result type fo( first argument type p, second argument type c)

Returns p(c · x), with respect to the outermost variable.

result type fo( first argument type p, second argument type c, int i)

Same as first operator but for variable xi.
Precondition: 0≤ i < d

See Also
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PolynomialTraits d::ScaleHomogeneous

Definition

Given a numerator a and a denominator b this AdaptableFunctor scales a PolynomialTraits d::Polynomial d p
with respect to one variable, that is, it computes bdegree(p) · p(a/b · x).

Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as
a univariate homogeneous polynomial in one specific variable.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Polynomial d result type;

Operations

result type fo.operator()( PolynomialTraits d::Polynomial d p,
PolynomialTraits d::Innermost coefficient type

a,
PolynomialTraits d::Innermost coefficient type

b)

Returns bdegree · p(a/b · x), with respect to the outermost
variable.

result type fo.operator()( PolynomialTraits d::Polynomial d p,
PolynomialTraits d::Innermost coefficient type

a,
PolynomialTraits d::Innermost coefficient type

b,
int i)

Same as first operator but for variable xi.
Precondition: 0≤ i < d

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
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PolynomialTraits d::Resultant

Definition

This AdaptableBinaryFunction computes the resultant of two polynomials f and g of type PolynomialTraits
d::Polynomial d with respect to a certain variable.

Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as
a univariate polynomial in one specific variable.

Let f and g be two univariate polynomials over some commutative ring A, where

f = fmxm + . . .+ f0

and
g = gnxn + . . .+g0.

The resultant of f and g is defined as the determinant of the Sylvester matrix:



fm . . . f0
fm . . . f0

. . . . . .
fm . . . f0

gn . . . g0
gn . . . g0

. . . . . .
gn . . . g0



Note that this is a (n+m)× (n+m) matrix as there are n rows for f and m rows that are used for g. The blank
spaces are supposed to be filled with zeros.

advanced

Let L be the algebraic closure of A, and write f and g as

f := fm

m

∏
i=1

(x−αi), αi ∈ L

and

g := gn

n

∏
j=1

(x−β j), βi ∈ L,

then the resultant of f and g is (up to leading coefficients) the product of all pairwise differences of the roots of
f and g, namely

res( f ,g) = f n
mgm

n

m

∏
i=1

n

∏
j=1

(αi−β j).

In particular, res( f ,g) 6= 0 iff f and g have a common factor with a positive degree in X .

advanced
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There are various ways to compute the resultant. Naive options are the computation of the resultant as the deter-
minant of the Sylvester Matrix or the Bezout Matrix as well as the so called subresultant algorithm, which is a
variant of the Euclidean Algorithm. More sophisticated methods may use modular arithmetic and interpolation.
For more information we refer to, e.g., [vzGG99].

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits d::Coefficient type

result type;
typedef PolynomialTraits d::Polynomial d first argument type;
typedef PolynomialTraits d::Polynomial d second argument type;

Operations

result type fo( first argument type f, second argument type g)

Computes the resultant of f and g, with respect to the
outermost variable.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
PolynomialTraits d::UnivariateContent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 293
PolynomialTraits d::PolynomialSubresultants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 314
PolynomialTraits d::PrincipalSubresultants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 318
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PolynomialTraits d::PolynomialSubresultants

Note: This functor is optional!

Definition

Computes the polynomial subresultant of two polynomials p and q of type PolynomialTraits d::Polynomial d
with respect to outermost variable. Let p = ∑i=0,...,n pixi and q = ∑i=0,...,m qixi, where x is the outermost variable.
The i-th subresultant (with i = 0, . . . ,min{n,m}) is defined by

Sresi(p,q) = det



pn . . . . . . p2i−m+2 xm−i−1 p
. . .

...
...

pn . . . pi+1 p
qm . . . . . . q2i−n+2 xn−i−1q

. . .
...

...
qm . . . qi+1 q



where pi and qi are set to zero if i < 0. In the case that n = m, Sresn is set to q.

The result is written in an output range, starting with the 0-th subresultant Sres0(p,q) (aka as the resultant of p
and q).

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Operations

template<typename OutputIterator>
OutputIterator fo( Polynomial d p, Polynomial d q, OutputIterator out)

computes the polynomial subresultants of p and q, with re-
spect to the outermost variable. Each element is of type
PolynomialTraits d::Polynomial d.

template<typename OutputIterator>
OutputIterator fo( Polynomial d p, Polynomial d q, OutputIterator out, int i)

computes the polynomial subresultants of p and q, with re-
spect to the variable xi.
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PolynomialTraits d::PolynomialSubresultantsWithCofactors

Note: This functor is optional!

Definition

Computes the polynomial subresultant of two polynomials p and q of degree n and m, respectively, as defined
in the documentation of PolynomialTraits d::PolynomialSubresultants. Moreover, for Sresi(p,q), polynomials
ui and vi with degui ≤ m− i−1 and degvi ≤ n− i−1 are computed such that Sresi(p,q) = ui p+ viq. ui and vi
are called the cofactors of Sresi(p,q).

The result is written in three output ranges, each of length min{n,m}+1, starting with the 0-th subresultant and
the corresponding cofactors.

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Operations

template< typename OutputIterator1, typename OutputIterator2, typename OutputIterator3 >
OutputIterator1 fo.operator()( Polynomial d p,

Polynomial d q,
OutputIterator1 sres,
OutputIterator2 co p,
OutputIterator3 co q)

computes the subresultants of p and q, and the cofactors, with
respect to the outermost variable. Each element is of type
PolynomialTraits d::Polynomial d.

template< typename OutputIterator1, typename OutputIterator2, typename OutputIterator3 >
OutputIterator1 fo.operator()( Polynomial d p,

Polynomial d q,
OutputIterator1 sres,
OutputIterator2 co p,
OutputIterator3 co q,
int i)

computes the subresultants of p and q, and the cofactors,
with respect to xi. Each element is of type PolynomialTraits
d::Polynomial d.
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PolynomialTraits d::PrincipalSubresultants

Note: This functor is optional!

Definition

Computes the principal subresultant of two polynomials p and q of type PolynomialTraits d::Coefficient type
with respect to the outermost variable. The i-th principal subresultant, sresi(p,q), is defined as the coefficient at
t i of the i-th polynomial subresultant Sresi(p,q). Thus, it is either the leading coefficient of Sresi, or zero in the
case where its degree is below i.

The result is written in an output range, starting with the 0-th principal subresultant sres0(p,q) ,aka as the
resultant of p and q. (Note that sres0(p,q) = Sres0(p,q) by definition)

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Operations

template<typename OutputIterator>
OutputIterator fo( Polynomial d p, Polynomial d q, OutputIterator out)

computes the principal subresultants of p and q, with re-
spect to the outermost variable. Each element is of type
PolynomialTraits d::Coefficient type.

template<typename OutputIterator>
OutputIterator fo( Polynomial d p, Polynomial d q, OutputIterator out, int i)

computes the principal subresultants of p and q, with respect
to the variable xi.

See Also
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PolynomialTraits d::SturmHabichtSequence

Note: This functor is optional!

Definition

Computes the Sturm-Habicht sequence (aka the signed subresultant sequence) of a polynomial f of type
PolynomialTraits d::Polynomial d with respect to a certain variable xi. The Sturm-Habicht sequence is similar
to the polynomial subresultant sequence of f and its derivative f ′ := ∂ f

∂xi
with respect to xi. The implementation

is based on the following definition:

Let n := deg f and δk := (−1)k(k+1)/2. For k ∈ {0, . . . ,n}, the k-th Sturm-Habicht polynomial of f is defined as:

Sthak( f ) =

 f if k = n
f ′ if k = n−1

δn−k−1Sresk( f , f ′) if 0≤ k ≤ n−2


where Sresk( f , f ′) is defined as in the concept PolynomialTraits d::PolynomialSubresultants.

The result is written in an output range, starting with the 0-th Sturm-Habicht polynomial (which is equal to the
discriminant of f up to a multiple of the leading coefficient).

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Operations

template<typename OutputIterator>
OutputIterator fo( Polynomial d f, OutputIterator out)

computes the Sturm-Habicht sequence of f , with respect
to the outermost variable. Each element is of type
PolynomialTraits d::Polynomial d.

template<typename OutputIterator>
OutputIterator fo( Polynomial d f, OutputIterator out, int i)

computes the Sturm-Habicht sequence of f with respect to
the variable xi.
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PolynomialTraits d::SturmHabichtSequenceWithCofactors

Note: This functor is optional!

Definition

Computes the Sturm-Habicht polynomials of a polynomial f of degree n, as defined in the documentation
of PolynomialTraits d::SturmHabichtSequence. Moreover, for Sthai( f ), polynomials ui and vi with degui ≤
n− i−2 and degvi ≤ n− i−1 are computed such that Sresi(p,q) = ui f +vi f ′. ui and vi are called the cofactors
of Sthai( f ).

The result is written in three output ranges, each of length min{n,m}+1, starting with the 0-th Sturm-Habicht
polynomial Stha0(f) and the corresponding cofactors.

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Operations

template<typename OutputIterator1, typename OutputIterator2, typename OutputIterator3>
OutputIterator1 fo.operator()( Polynomial d f,

OutputIterator1 stha,
OutputIterator2 co f,
OutputIterator3 co fx)

computes the Sturm-Habicht sequence of f , and the cofac-
tors, with respect to the outermost variable. Each element is
of type PolynomialTraits d::Polynomial d.

template< typename OutputIterator1, typename OutputIterator2, typename OutputIterator3 >
OutputIterator1 fo.operator()( Polynomial d f,

OutputIterator1 stha,
OutputIterator2 co f,
OutputIterator3 co fx,
int i)

computes the Sturm-Habicht sequence of f , and the co-
factors, with respect to xi. Each element is of type
PolynomialTraits d::Polynomial d.

See Also
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PolynomialTraits d::PrincipalSturmHabichtSequence

Note: This functor is optional!

Definition

Computes the principal leading coefficients of the Sturm-Habicht sequence of a polynomials f of type
PolynomialTraits d::Polynomial d with respect a certain variable xi. This means that for the j-th Sturm-Habicht
polynomial, this methods returns the coefficient of x j

i .

Note that the degree of the j-th Sturm-Habicht polynomial is at most j, but the principal coefficient might be
zero, thus, this functor does not necessarily give the leading coefficient of the Sturm-Habicht polynomials.

In case that PolynomialTraits d::Coefficient type is RealEmbeddable, the function CGAL::number of real
roots can be used on the resulting sequence to count the number of distinct real roots of the polynomial f .

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Operations

template<typename OutputIterator>
OutputIterator fo( Polynomial d f, OutputIterator out)

computes the principal coefficients of the Sturm-Habicht se-
quence of f , with respect to the outermost variable. Each
element is of type PolynomialTraits d::Coefficient type.

template<typename OutputIterator>
OutputIterator fo( Polynomial d f, OutputIterator out, int i)

computes the principal coefficients of the Sturm-Habicht se-
quence of f with respect to the variable xi.

See Also
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CGAL::Polynomial<Coeff>

Definition

An instance of the data type Polynomial represents a polynomial p = a0 + a1 ∗ x + ...ai ∗ xi from the ring
Coe f f [x]. Coeff can itself be an instance of Polynomial, yielding a form of multivariate polynomials.

The template argument Coeff must be at least a model of IntegralDomainWithoutDivision. For all operations
naturally involving division, an IntegralDomain is required. Polynomial offers a full set of algebraic operators,
i.e. binary +, -, *, / as well as +=, -=, *=, /=; not only for polynomials but also for a polynomial and a number
of the coefficient type. (The / operator must only be used for integral divisions, i.e. those with remainder zero.)
The operations are implemented naively: + and - need a number of Coeff operations which is linear in the
degree while * is quadratic. Unary + and - and (in)equality ==, != are provided as well.

Polynomial is a model of LessThanComparable if Coeff is a model of LessThanComparable. In this case Poly-
nomial provides comparison operators <, >, <=, >=, where the comparison amounts to lexicographic comparison
of the coefficient sequence, with the coefficient of the highest power taking precedence over those of lower
powers.

Polynomial is a model of Fraction if Coeff is a model of Fraction. In this case Polynomial may be decomposed
into a (scalar) denominator and a compound numerator with a simpler coefficient type. Often operations can be
performed faster on these denominator-free multiples.

Polynomial is a model of Modularizable if Coeff is a model of Modularizable, where the homomorphic map on
the polynomials is simply defined as the canonical extension of the homomorphic map which is defined on the
coefficient type.

Implementation

Inexact and limited-precision types can be used as coefficients, but at the user’s risk. The algorithms imple-
mented were written with exact number types in mind.

This data type is implemented as a handle type with value semantics using CGAL::Handle with policy, where
HandlePolicy is Handle policy no union. An important invariant to be preserved by all methods is that the
coefficient sequence does not contain leading zero coefficients (where leading means at the high-degree end),
with the exception that the zero polynomial is represented by a single zero coefficient.

Is Model for the Concepts

Polynomial d
Assignable
CopyConstructible
DefaultConstructible
EqualityComparable
ImplicitInteroperable with int
ImplicitInteroperable with Coeff
Fraction if Coeff is model of Fraction
LessThanComparable if Coeff is model of LessThanComparable
Modularizable if Coeff is model of Modularizable.
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Creation

Polynomial<Coeff> poly; Introduces an variable initialized with 0.
Polynomial<Coeff> poly( Polynomial x); copy constructor.
Polynomial<Coeff> poly( int i); Constructor from int.
Polynomial<Coeff> poly( Coeff x); Constructor from type Coeff.
template <class Forward iterator>
Polynomial<Coeff> poly( Forward iterator first, Forward iterator last);

Constructor from iterator range with value type Coeff.

Types

Operations

const iterator poly.begin() const A const random access iterator pointing to the constant coef-
ficient.

const iterator poly.end() const A const random access iterator pointing beyond the leading
coefficient.

int poly.degree() const The degree of the polynomial in x. The degree of the zero
polynomial is 0.

NT poly.operator[]( unsigned int i) const

Const access to the coefficient of xi.

NT poly.lcoeff() const Const access to the leading coefficient.
std::ostream& operator<<( std::ostream& os, poly)

Writes poly to ostream os. The format depends on
the CGAL::IO::MODE of os. In case the mode is
CGAL::IO::ASCII the format is P[d(0,a0)(1,a1) . . .(d,ad)],
where d is the degree of the polynomial. The format is output
sensitive, that is, coefficients that are zero are not reported. In
case the mode is CGAL::IO::PRETTY the format is human
readable.

std::istream& operator>>( std::istream& is, poly)

Reads poly from istream is in format
P[d(0,a0)(1,a1) . . .(d,ad)], the output format in mode
CGAL::IO::ASCII.
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CGAL::Polynomial traits d<Polynomial d>

Definition

A model of concept PolynomialTraits d

#include <CGAL/Polynomial traits d.h>

Is Model for the Concepts

PolynomialTraits d
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CGAL::Exponent vector

Definition

For a given (multivariate) monomial the vector of its exponents is called the exponent vector. The class is meant
to represent such a vector.

A vector is considered as valid, in case it represents a valid monomial. that is, it should not contain negative
exponents. We decided to use int as the value type, since negative exponents may appear in intermediate results.
The set of exponent vectors with elementwise addition forms an Abelian Group.

Beside the constructors has almost the same interface as an std::vector<int>. Moreover the comparison is
changed such that the lexicographic order starts the comparison at the last entry. This reflects the fact that the
last entry corresponds to the outermost variable of a multivariate polynomial.

#include <CGAL/Exponent vector.h>

Is Model for the Concepts

Random Access Container
Back Insertion Sequence

DefaultConstructible
Assignable
CopyConstructible

EqualityComparable
LessThanComparable

Creation

Exponent vector fo; introduces an uninitialized variable fo.
Exponent vector fo( ev ); The copy constructor
Exponent vector fo( int e1); Creates a vector containing the given element.
Exponent vector fo( int e1, int e2); Creates a vector containing the given elements.
Exponent vector fo( int e1, int e2, int e3); Creates a vector containing the given elements.
Exponent vector fo( int e1, int e2, int e3, int e4);

Creates a vector containing the given elements.

template < class InputIterator >
Exponent vector fo( InputIterator begin, InputIterator end);

Creates a vector with a copy of the given range.
Precondition: InputIterator must allow the value type int.
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Operations
bool is valid( ev) Returns true if all entries of ev are not negative.

Operations

Group Operation:

Exponent vector +ev1
Exponent vector −ev1
Exponent vector ev1+ ev2 Precondition: ev1.size() == ev2.size()
Exponent vector ev1− ev2 Precondition: ev1.size() == ev2.size()
Exponent vector fo+= ev2 Precondition: fo.size() == ev2.size()
Exponent vector fo−= ev2 Precondition: fo.size() == ev2.size()

EqualityComparable:

bool ev1 == ev2
bool ev1 != ev2

LessThanComparable:

bool ev1 < ev2 Lexicographic compare, starting with the last variable.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
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CGAL::Polynomial type generator<T,d>

Definition

This class template provides a convenient way to obtain the type representing a multivariate polynomial with d
variables, where T is the innermost coefficient type. In case T happens to be a CGAL::Polynomial the generator
will add d variables to T .

T must be a model of IntegralDomainWithoutDivision.
d must be of type int.

Types

Polynomial type generator<T,d>:: Type The generated type.

#include <CGAL/Polynomial type generator.h>

See Also

CGAL::Polynomial<Coeff> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 324
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CGAL::get coefficient

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function get coefficient adapts the according functor in Polynomial traits d<
Polynomial d>.

For more details see the concept PolynomialTraits d::GetCoefficient.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::get coefficient::result type

get coefficient( Polynomial d p, int i)

Adapts Polynomial traits d<Polynomial d>
::GetCoefficient.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
PolynomialTraits d::GetCoefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 269
PolynomialTraits d::GetInnermostCoefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 270
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CGAL::get innermost coefficient

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function get innermost coefficient adapts the according functor in Polynomial
traits d<Polynomial d>.

For more details see the concept PolynomialTraits d::GetInnermostCoefficient.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::get innermost coefficient::result type

get innermost coefficient( Polynomial d p, Exponent vector ev)

Adapts Polynomial traits d<Polynomial d>
::GetInnermostCoefficient.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
PolynomialTraits d::GetCoefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 269
PolynomialTraits d::GetInnermostCoefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 270
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CGAL::permute

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function permute adapts the according functor in Polynomial traits d<
Polynomial d>.

For more details see the concept PolynomialTraits d::Permute.

template <class Polynomial d, class InputIterator >
Polynomial traits d<Polynomial d>::Permute::result type

permute( Polynomial d p, InputIterator begin, InputIterator end)

Adapts Polynomial traits d<Polynomial d>::Permute.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
PolynomialTraits d::Permute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 274
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CGAL::swap

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function swap adapts the according functor in Polynomial traits d<Polynomial
d>.

For more details see the concept PolynomialTraits d::Swap.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Swap::result type

swap( Polynomial d p, int i, int j)

Adapts Polynomial traits d<Polynomial d>::Swap.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
PolynomialTraits d::Swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 275
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CGAL::move

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function move adapts the according functor in Polynomial traits d<Polynomial
d>.

For more details see the concept PolynomialTraits d::Move.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Move::result type

move( Polynomial d p, int i, int j)

Adapts Polynomial traits d<Polynomial d>::Move.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
PolynomialTraits d::Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 276
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CGAL::degree

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function degree adapts the according functor in Polynomial traits d<Polynomial
d>.

For more details see the concept PolynomialTraits d::Degree.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Degree::result type

degree( Polynomial d p, int i, index = Polynomial traits d<Polynomial d>::d-1)

Adapts Polynomial traits d<Polynomial d>::Degree.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
PolynomialTraits d::Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 277
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CGAL::total degree

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function total degree adapts the according functor in Polynomial traits d<
Polynomial d>.

For more details see the concept PolynomialTraits d::TotalDegree.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Total degree::result type

total degree( Polynomial d p)

Adapts Polynomial traits d<Polynomial d>::Total degree.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
PolynomialTraits d::TotalDegree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 278

336



F
un

ct
io

n

CGAL::degree vector

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function degree vector adapts the according functor in Polynomial traits d<
Polynomial d>.

For more details see the concept PolynomialTraits d::DegreeVector.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Degree vector::result type

degree vector( Polynomial d p)

Adapts Polynomial traits d<Polynomial d>
::DegreeVector.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
PolynomialTraits d::Degree vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
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CGAL::leading coefficient

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function leading coefficient adapts the according functor in Polynomial traits
d<Polynomial d>.

For more details see the concept PolynomialTraits d::LeadingCoefficient.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Leading coefficient::result type

leading coefficient( Polynomial d p)

Adapts Polynomial traits d<Polynomial d>::Leading
coefficient.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
PolynomialTraits d::LeadingCoefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 280
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CGAL::innermost leading coefficient

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function innermost leading coefficient adapts the according functor in
Polynomial traits d<Polynomial d>.

For more details see the concept PolynomialTraits d::InnermostLeadingCoefficient.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Innermost leading coefficient::result type

innermost leading coefficient( Polynomial d p)

Adapts Polynomial traits d<Polynomial d>
::InnermostLeadingCoefficient.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
PolynomialTraits d::InnermostLeadingCoefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 281
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CGAL::canonicalize

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function canonicalize adapts the according functor in Polynomial traits d<
Polynomial d>.

For more details see the concept PolynomialTraits d::Canonicalize.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Canonicalize::result type

canonicalize( Polynomial d p)

Adapts Polynomial traits d<Polynomial d>::Canonicalize.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
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CGAL::differentiate

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function differentiate adapts the according functor in Polynomial traits d<
Polynomial d>.

For more details see the concept PolynomialTraits d::Differentiate.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Differentiate::result type

differentiate( Polynomial d p, index = Polynomial traits d<Polynomial d>::d-1)

Adapts Polynomial traits d<Polynomial d>::Differentiate.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
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PolynomialTraits d::Differentiate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 283
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CGAL::evaluate

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function evaluate adapts the according functor in Polynomial traits d<
Polynomial d>.

For more details see the concept PolynomialTraits d::Evaluate.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Evaluate::result type

evaluate( Polynomial d p, Polynomial traits d<Polynomial d>::Coefficient type x)

Adapts Polynomial traits d<Polynomial d>::Evaluate.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
PolynomialTraits d::Evaluate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 284
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CGAL::evaluate homogeneous

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function evaluate homogeneous adapts the according functor in Polynomial
traits d<Polynomial d>.

For more details see the concept PolynomialTraits d::EvaluateHomogeneous.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Evaluate homogeneous::result type

evaluate homogeneous( Polynomial d p,
Polynomial traits d<Polynomial d>::Coefficient type u,
Polynomial traits d<Polynomial d>::Coefficient type v)

Adapts Polynomial traits d<Polynomial d>::Evaluate
homogeneous.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
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CGAL::substitute

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function substitute adapts the according functor in Polynomial traits d<
Polynomial d>.

For more details see the concept PolynomialTraits d::Substitute.

template < class Polynomial d, class InputIterator >
CGAL::Coercion traits< Polynomial traits d<Polynomial d>::Innermost coefficient, std::iterator traits<
Input iterator>::value type >::Type

substitute( Polynomial d p, InputIterator begin, InputIterator end)

Adapts Polynomial traits d<Polynomial d>::Substitute.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
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CGAL::is zero at

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function is zero at adapts the according functor in Polynomial traits d<
Polynomial d>.

For more details see the concept PolynomialTraits d::IsZeroAt.

template < class Polynomial d, class InputIterator >
Polynomial traits d<Polynomial d>::Is zero at::result type

is zero at( Polynomial d p, InputIterator begin, InputIterator end)

Adapts Polynomial traits d<Polynomial d>::Is zero at.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
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345



F
un

ct
io

n

CGAL::sign at

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function sign at adapts the according functor in Polynomial traits d<Polynomial
d>.

For more details see the concept PolynomialTraits d::SignAt.

template < class Polynomial d, class InputIterator >
Polynomial traits d<Polynomial d>::Sign at::result type

sign at( Polynomial d p, InputIterator begin, InputIterator end)

Adapts Polynomial traits d<Polynomial d>::Sign at.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
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346



F
un

ct
io

n

CGAL::substitute homogeneous

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function substitute homogeneous adapts the according functor in Polynomial
traits d<Polynomial d>.

For more details see the concept PolynomialTraits d::SubstituteHomogeneous.

template < class Polynomial d, class InputIterator >
CGAL::Coercion traits< Polynomial traits d<Polynomial d>::Innermost coefficient, std::iterator traits<
Input iterator>::value type >::Type

substitute homogeneous( Polynomial d p, InputIterator begin, InputIterator end)

Adapts Polynomial traits d<Polynomial d>::Substitute
homogeneous.

See Also
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CGAL::is zero at homogeneous

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function is zero at homogeneous adapts the according functor in Polynomial
traits d<Polynomial d>.

For more details see the concept PolynomialTraits d::IsZeroAtHomogeneous.

template < class Polynomial d, class InputIterator >
Polynomial traits d<Polynomial d>::Is zero at homogeneous::result type

is zero at homogeneous( Polynomial d p, InputIterator begin, InputIterator end)

Adapts Polynomial traits d<Polynomial d>::Is zero at
homogeneous.

See Also
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CGAL::sign at homogeneous

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function sign at homogeneous adapts the according functor in Polynomial
traits d<Polynomial d>.

For more details see the concept PolynomialTraits d::SignAtHomogeneous.

template < class Polynomial d, class InputIterator >
Polynomial traits d<Polynomial d>::Sign at homogeneous::result type

sign at homogeneous( Polynomial d p, InputIterator begin, InputIterator end)

Adapts Polynomial traits d<Polynomial d>::Sign at
homogeneous.

See Also
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CGAL::compare

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function compare adapts the according functor in Polynomial traits d<
Polynomial d>.

For more details see the concept PolynomialTraits d::Compare.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Compare::result type

compare( Polynomial d p, Polynomial d q)

Adapts Polynomial traits d<Polynomial d>::Compare.

See Also
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CGAL::univariate content

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function univariate content adapts the according functor in Polynomial traits d<
Polynomial d>.

For more details see the concept PolynomialTraits d::UnivariateContent.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Univariate content::result type

univariate content( Polynomial d p)

Adapts Polynomial traits d<Polynomial d>
::UnivariateContent.

See Also
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CGAL::multivariate content

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function multivariate content adapts the according functor in Polynomial traits
d<Polynomial d>.

For more details see the concept PolynomialTraits d::MultivariateContent.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Multivariate content::result type

multivariate content( Polynomial d p)

Adapts Polynomial traits d<Polynomial d>::Multivariate
content.

See Also
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CGAL::square free factorize

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function square free factorize adapts the according functor in Polynomial traits
d<Polynomial d>.

For more details see the concept PolynomialTraits d::SquareFreeFactorize.

template <class Polynomial d, class OutputIterator >
OutputIterator square free factorize( Polynomial d p,

OutputIterator it,
Polynomial traits d<Polynomial>::Innermost coefficient& a)

Adapts Polynomial traits d<Polynomial d>::Square free
factorize.

template <class Polynomial d, class OutputIterator >
OutputIterator square free factorize( Polynomial d p, OutputIterator it)

Adapts Polynomial traits d<Polynomial d>::Square free
factorize.

See Also
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CGAL::make square free

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function make square free adapts the according functor in Polynomial traits d<
Polynomial d>.

For more details see the concept PolynomialTraits d::MakeSquareFree.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Make square free::result type

make square free( Polynomial d p)

Adapts Polynomial traits d<Polynomial d>::Make square
free.

See Also
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CGAL::is square free

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function is square free adapts the according functor in Polynomial traits d<
Polynomial d>.

For more details see the concept PolynomialTraits d::IsSquareFree.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Is square free::result type

is square free( Polynomial d p)

Adapts Polynomial traits d<Polynomial d>::Is square
free.

See Also
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CGAL::pseudo division

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function pseudo division adapts the according functor in Polynomial traits d<
Polynomial d>.

For more details see the concept PolynomialTraits d::PseudoDivision.

template <class Polynomial d>
void pseudo division( Polynomial d f,

Polynomial d g,
Polynomial d& q,
Polynomial d& r,
Polynomial traits d<Polynomial d>::Coefficient type& D)

Adapts Polynomial traits d<Polynomial d>::Pseudo
division.

See Also
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CGAL::pseudo division quotient

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function pseudo division quotient adapts the according functor in Polynomial
traits d<Polynomial d>.

For more details see the concept PolynomialTraits d::PseudoDivisionQuotient.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Pseudo division quotient::result type

pseudo division quotient( Polynomial d p, Polynomial d q)

Adapts Polynomial traits d<Polynomial d>::Pseudo
division quotient.

See Also
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CGAL::pseudo division remainder

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function pseudo division remainder adapts the according functor in Polynomial
traits d<Polynomial d>.

For more details see the concept PolynomialTraits d::PseudoDivisionRemainder.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Pseudo division remainder::result type

pseudo division remainder( Polynomial d p, Polynomial d q)

Adapts Polynomial traits d<Polynomial d>::Pseudo
division remainder.

See Also
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CGAL::gcd up to constant factor

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function gcd up to constant factor adapts the according functor in Polynomial
traits d<Polynomial d>.

For more details see the concept PolynomialTraits d::GcdUpToConstantFactor.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Gcd up to constant factor::result type

gcd up to constant factor( Polynomial d p, Polynomial d q)

Adapts Polynomial traits d<Polynomial d>::Gcd up to
constant factor.

See Also
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CGAL::integral division up to constant factor

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function integral division up to constant factor adapts the according functor in
Polynomial traits d<Polynomial d>.

For more details see the concept PolynomialTraits d::IntegralDivisionUpToConstantFactor.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Integral division up to constant factor::result type

integral division up to constant factor( Polynomial d p, Polynomial d q)

Adapts Polynomial traits d<Polynomial d>::Integral
division up to constant factor.

See Also
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CGAL::univariate content up to constant factor

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function univariate content up to constant factor adapts the according functor
in Polynomial traits d<Polynomial d>.

For more details see the concept PolynomialTraits d::UnivariateContentUpToConstantFactor.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Univariate content up to constant factor::result type

univariate content up to constant factor( Polynomial d p)

Adapts Polynomial traits d<Polynomial d>::Univariate
content up to constant factor.

See Also
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CGAL::square free factorize up to constant factor

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function square free factorize up to constant factor adapts the according
functor in Polynomial traits d<Polynomial d>.

For more details see the concept PolynomialTraits d::SquareFreeFactorizeUpToConstantFactor.

template <class Polynomial d, class OutputIterator >
OutputIterator square free factorize up to constant factor( Polynomial d p, OutputIterator it)

Adapts Polynomial traits d<Polynomial d>::Square free
factorize up to constant factor.

See Also
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CGAL::shift

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function shift adapts the according functor in Polynomial traits d<Polynomial
d>.

For more details see the concept PolynomialTraits d::Shift.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Shift::result type

shift( Polynomial d p, int i, int index = Polynomial traits d<Polynomial d>::d-1)

Adapts Polynomial traits d<Polynomial d>::Shift.

See Also
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CGAL::negate

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function negate adapts the according functor in Polynomial traits d<Polynomial
d>.

For more details see the concept PolynomialTraits d::Negate.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Negate::result type

negate( Polynomial d p, int index = Polynomial traits d<Polynomial d>::d-1)

Adapts Polynomial traits d<Polynomial d>::Negate.

See Also
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CGAL::invert

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function invert adapts the according functor in Polynomial traits d<Polynomial
d>.

For more details see the concept PolynomialTraits d::Invert.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Invert::result type

invert( Polynomial d p, int index = Polynomial traits d<Polynomial d>::d-1)

Adapts Polynomial traits d<Polynomial d>::Invert.

See Also
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CGAL::translate

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function translate adapts the according functor in Polynomial traits d<
Polynomial d>.

For more details see the concept PolynomialTraits d::Translate.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Translate::result type

translate( Polynomial d p,
Polynomial traits d<Polynomial d>::Innermost coefficient type a,
int index = Polynomial traits d<Polynomial d>::d-1)

Adapts Polynomial traits d<Polynomial d>::Translate.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
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CGAL::translate homogeneous

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function translate homogeneous adapts the according functor in Polynomial
traits d<Polynomial d>.

For more details see the concept PolynomialTraits d::TranslateHomogeneous.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Translate homogeneous::result type

translate homogeneous( Polynomial d p,
Polynomial traits d<Polynomial d>::Innermost coefficient

type u,
Polynomial traits d<Polynomial d>::Innermost coefficient

type v,
int index = Polynomial traits d<Polynomial d>::d-1)

Adapts Polynomial traits d<Polynomial d>::Translate
homogeneous.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
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CGAL::scale

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function scale adapts the according functor in Polynomial traits d<Polynomial
d>.

For more details see the concept PolynomialTraits d::Scale.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Scale::result type

scale( Polynomial d p,
Polynomial traits d<Polynomial d>::Innermost coefficient type a,
int index = Polynomial traits d<Polynomial d>::d-1)

Adapts Polynomial traits d<Polynomial d>::Scale.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
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CGAL::scale homogeneous

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function scale homogeneous adapts the according functor in Polynomial traits
d<Polynomial d>.

For more details see the concept PolynomialTraits d::ScaleHomogeneous.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Scale homogeneous::result type

scale homogeneous( Polynomial d p,
Polynomial traits d<Polynomial d>::Innermost coefficient

type u,
Polynomial traits d<Polynomial d>::Innermost coefficient

type v,
int index = Polynomial traits d<Polynomial d>::d-1)

Adapts Polynomial traits d<Polynomial d>::Scale
homogeneous.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
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CGAL::resultant

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function resultant adapts the according functor in Polynomial traits d<
Polynomial d>.

For more details see the concept PolynomialTraits d::Resultant.

template <class Polynomial d>
Polynomial traits d<Polynomial d>::Resultant::result type

resultant( Polynomial d p, Polynomial d q)

Adapts Polynomial traits d<Polynomial d>::Resultant.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
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CGAL::polynomial subresultants

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function polynomial subresultants adapts the according functor in Polynomial
traits d<Polynomial d>.

For more details see the concept PolynomialTraits d::PolynomialSubresultants.

template<typename Polynomial d,typename OutputIterator>

OutputIterator polynomial subresultants( Polynomial d p, Polynomial d q, OutputIterator out)

computes the polynomial subresultants of p and q, with re-
spect to the outermost variable. Each element is of type
Polynomial d.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
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CGAL::polynomial subresultants with cofactors

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function polynomial subresultants with cofactors adapts the according functor
in Polynomial traits d<Polynomial d>.

For more details see the concept PolynomialTraits d::PolynomialSubresultantsWithCofactors.

template<typename Polynomial d, typename OutputIterator1, typename OutputIterator2, typename Out-

putIterator3>
OutputIterator1 polynomial subresultants with cofactors( Polynomial d p,

Polynomial d q,
OutputIterator1 sres out,
OutputIterator2 coP out,
OutputIterator3 coQ out)

computes the polynomial subresultants of p and q, sres out,
with respect to the outermost variable, and the cofactors for
P, coP out and Q, coQ out. The elements of each output
range are of type Polynomial d.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
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CGAL::principal subresultants

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function principal subresultants adapts the according functor in Polynomial
traits d<Polynomial d>.

For more details see the concept PolynomialTraits d::PrincipalSubresultants.

template<typename Polynomial d,typename OutputIterator>

OutputIterator principal subresultants( Polynomial d p, Polynomial d q, OutputIterator out)

computes the principal subresultants of p and q, with re-
spect to the outermost variable. Each element is of type
Polynomial traits d<Polynomial d>::Coefficient type.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
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CGAL::sturm habicht sequence

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function sturm habicht sequence adapts the according functor in Polynomial
traits d<Polynomial d>.

For more details see the concept PolynomialTraits d::SturmHabichtSequence.

template<typename Polynomial d,typename OutputIterator>

OutputIterator sturm habicht sequence( Polynomial d f, OutputIterator out)

computes the Sturm-Habicht-sequence of f with respect to
the outermost variable. Each element is of type Polynomial
d.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
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CGAL::sturm habicht sequence with cofactors

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function sturm habicht sequence with cofactors adapts the according functor in
Polynomial traits d<Polynomial d>.

For more details see the concept PolynomialTraits d::SturmHabichtSequenceWithCofactors.

template<typename Polynomial d, typename OutputIterator1, typename OutputIterator2, typename Out-

putIterator3>
OutputIterator1 sturm habicht sequence with cofactors( Polynomial d f,

OutputIterator1 stha out,
OutputIterator2 cof out,
OutputIterator3 cofx out)

computes the Sturm-Habicht sequence of f stha out, with
respect to the outermost variable, and the cofactors for f ,
cof out and f ′, cofx out. The elements of each output range
are of type Polynomial d.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
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CGAL::principal sturm habicht sequence

#include <CGAL/polynomial utils.h>

Definition

For a given Polynomial d the function principal sturm habicht sequence adapts the according functor in
Polynomial traits d<Polynomial d>.

For more details see the concept PolynomialTraits d::PrincipalSturmHabichtSequence.

template <typename Polynomial d,typename OutputIterator>

inline OutputIterator principal sturm habicht sequence( typename Polynomial d f, OutputIterator out)

computes the principal Sturm-Habicht coefficients of f with
respect to the outermost variable. Each element is of type
Polynomial traits d<Polynomial d>::Coefficient type.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
PolynomialTraits d::PrincipalSturmHabichtSequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 323
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CGAL::number of real roots

#include <CGAL/polynomial utils.h>

Definition

Given a polynomial f , or a range of values that is interpreted as the principal Sturm-Habicht coefficients of f ,
the function computes

m := #{α ∈ R | f (α) = 0}

that is, the number of distinct real roots of f .

The coefficient type of the polynomial, or the value type of the iterator range, respectively must be a model of
RealEmbeddable. In the second version, it is not required to pass the exact princiapl Sturm-Habicht coefficients
to the functions; it is only required that the sign of each element corresponds to the sign of the actual principal
Sturm-Habicht coefficient.

advanced

We explain the internals of this function. For a sequence I := (a0, . . . ,an) of real numbers with a0 6= 0, define

C(I) =
s

∑
i=1

εi

where s is the number of subsequences of I of the form

(a,0, . . . ,0︸ ︷︷ ︸
k

,b)

with a 6= 0,b 6= 0,k ≥ 0.
For the i-th subsequence of I, define

εi :=
0 if k is odd,

(−1)k/2sign(ab) if k is even.

For f ∈ R[x] with deg f = n, we have:

C(sthan( f ), . . . ,stha0( f )) = #{α ∈ R | f (α) = 0}

In other words, the signs of the principal Sturm-Habicht coefficients determine the number of distinct real roots
of f .

advanced

Operations

template<typename Polynomial d>
int number of real roots( Polynomial d f)

computes the number of distinct real roots of f

template<typename InputIterator>
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int number of real roots( InputIterator start, InputIterator end)

computes the number of distinct real roots of f whose prin-
cipal Sturm-Habicht coefficients are passed by the iterator
range.

See Also

Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
PolynomialTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 262
PolynomialTraits d::PrincipalSturmHabichtSequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 323
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8.1 Introduction

Real solving of polynomials is a fundamental problem with a wide application range. This package is targeted
at providing black-box implementations of state-of-the-art algorithms to determine, compare, and approximate
real roots of univariate polynomials and bivariate polynomial systems. Such a black-box is called an Algebraic
Kernel. Since this package is aimed at providing more than one implementation, the interface of the algebraic
kernels is expressed in concepts. The main concepts provided by this package are the AlgebraicKernel d 1
for univariate polynomial systems and AlgebraicKernel d 2 for bivariate polynomial systems, the latter being a
refinement of the first.

379



8.2 Algebraic Kernel Concepts

8.2.1 Univariate Algebraic Kernel

Major types

First of all, the univariate algebraic kernel provides construction, comparison and approximation of real roots
of univariate polynomials. Thus, the major public types the AlgebraicKernel d 1 provides are:
AlgebraicKernel d 1::Polynomial 1 – the type representing univariate polynomials,
AlgebraicKernel d 1::Coefficient – the coefficient type of these polynomials,
AlgebraicKernel d 1::Algebraic real 1 – the type representing real roots,
AlgebraicKernel d 1::Bound – the type which is used to approximate these algebraic reals, in particular, it is
used to represent the boundaries of isolating intervals.

Construction of Algebraic Real Numbers

The kernel provides two different function objects to construct an AlgebraicKernel d 1::Algebraic real 1. The
most general way is to use AlgebraicKernel d 1::Isolate 1; The function object takes a univariate polynomial
and writes all real roots into a given output iterator. It is also possible to retrieve the multiplicity of each
root. The second option is to construct one particular algebraic real using AlgebraicKernel d 1::Construct
algebraic real 1. This function object provides construction from the native int type, the coefficient type as
well as the bound type. Moreover, it is possible to construct an algebraic real by giving a polynomial and either
an isolating interval or the index of the root. A related function object is AlgebraicKernel d 1::Number of
solutions 1 computing the number of real roots of a polynomial.

Comparison and Approximation of Algebraic Real Numbers

An AlgebraicKernel d 1::Algebraic real 1 is model of RealEmbeddable, for instance, it is possible to compare
two algebraic reals, to determine the sign of an algebraic real or to ask for its double approximation, see also
section 4.3. Moreover, AlgebraicKernel d 1::Compare 1 provides comparison with int, the coefficient type
and the bound type.

There are several ways to approximate an AlgebraicKernel d 1::Algebraic real 1:
AlgebraicKernel d 1::Approximate absolute 1 – provides an approximation that is better than the passed ab-
solute error bound,
AlgebraicKernel d 1::Approximate relative 1 – provides an approximation that is better than the passed rela-
tive error bound,
AlgebraicKernel d 1::Isolate 1 – returns an isolating interval with respect to a given univariate polynomial,
A related function object is AlgebraicKernel d 1::Bound between 1, which computes a number that isolates
two algebraic real numbers.

Interplay with Polynomials

It is also possible to retrieve a representing polynomial from an algebraic real using AlgebraicKernel d
1::Compute polynomial 1, which guarantees that the algebraic real is a root of the returned polynomial. As
the name already indicates, this operation may be very costly since the polynomial may not be computed yet.
Moreover, it is not guaranteed that the returned polynomial is the minimal polynomial of the number. Together
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with AlgebraicKernel d 1::Isolate 1, it is possible to retrieve the traditional representation of an algebraic real
as a square free polynomial and an isolating interval.

Though the AlgebraicKernel d 1 does not provide arithmetic operations on AlgebraicKernel d 1::Algebraic
real 1, it is possible to compute the sign of a polynomial at a given algebraic real using AlgebraicKernel d
1::Sign at 1. Or alternatively, just compute whether the polynomial is zero at an algebraic real number using
AlgebraicKernel d 1::Is zero at 1. Note that this operation can be significantly less expensive, in particular if
the polynomial is not zero at the given algebraic real.

Auxiliary Functionality for Polynomials

First of all the type AlgebraicKernel d 1::Polynomial 1 is required to be a model of the concept Polynomial 1,
which is defined in the Polynomial package (see chapter 7). This implies that all essential functionality is pro-
vided via CGAL::Polynomial traits d. However, the algebraic kernel also provides several function objects to
handle polynomials:
AlgebraicKernel d 1::Is square free 1 – determines whether a polynomial is square free,
AlgebraicKernel d 1::Make square free 1 – computes the square free part of a polynomial,
AlgebraicKernel d 1::Square free factorize 1 – computes a square free factorization of a polynomial,
AlgebraicKernel d 1::Is coprime 1 – computes whether a pair of polynomials is square free,
AlgebraicKernel d 1::Make coprime 1 – decomposes two polynomials into the coprime factors and their com-
mon factor.

Though the polynomial package provides similar functionality we suggest to use the function objects provided
by the kernel, since the design of the algebraic kernel allows for instance internal caching by the kernel.

Also note that AlgebraicKernel d 1::Square free factorize 1 only computes the square free factorization up to
a constant factor. This is a slight modification with respect to its counterpart in CGAL::Polynomial traits d.
In this way it was possible that the concepts just require the coefficient type to be a model of IntegralDomain,
instead of Field or UniqueFactorizationDomain. For more details see also:
PolynomialTraits d::SquareFreeFactorize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 295
PolynomialTraits d::SquareFreeFactorizeUpToConstantFactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 304

Design Rationale

Most implementations of an AlgebraicKernel d 1 will represent an algebraic real number by the root of a square
free polynomial and an isolating interval, that is, the number is defined as the only root of the polynomial within
the interval. Usually, one will refrain from computing the minimal polynomial since the computation of the
minimal polynomial is much more expensive and does not pay of. However, besides the representation by a
polynomial and an isolating interval one can also imagine the representation by a polynomial and the index of
the root, e.g., as the ith real root when enumerated from minus to plus infinity. Moreover, it may very well
be that the kernel just computes an approximation of the number, whereas the representing polynomial is not
computed yet. This is in particular relevant in relation to the AlgebraicKernel d 2, where AlgebraicKernel
d 1::Algebraic real 1 is used to represent coordinates of solutions of bivariate systems. Hence, the design
does not allow a direct access to any, seemingly obvious, members of an AlgebraicKernel d 1::Algebraic real
1. Instead there is, e.g., AlgebraicKernel d 1::Compute polynomial 1 which emphasizes that the requested
polynomial may not be computed yet. Similarly, there is no way to directly ask for the refinement of the current
isolating interval since this would impose a state to every object of an AlgebraicKernel d 1::Algebraic real 1.
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8.2.2 Bivariate Algebraic Kernel

The concept AlgebraicKernel d 2 is a refinement of AlgebraicKernel d 1, that is, a model of AlgebraicKernel
d 2 is also a model of AlgebraicKernel d 1. Hence, the AlgebraicKernel d 2 concept is designed such that
occurring names and functionalities are as similar as possible to those in the AlgebraicKernel d 1 concept. The
following are a direct generalization of their univariate counterparts:

AlgebraicKernel d 2::Polynomial 2,
AlgebraicKernel d 2::Algebraic real 2,
AlgebraicKernel d 2::Construct algebraic real 2,
AlgebraicKernel d 2::Isolate 2,
AlgebraicKernel d 2::Is square free 2,
AlgebraicKernel d 2::Make square free 2,
AlgebraicKernel d 2::Square free factorize 2,
AlgebraicKernel d 2::Is coprime 2,
AlgebraicKernel d 2::Make coprime 2,
AlgebraicKernel d 2::Solve 2,
AlgebraicKernel d 2::Number of solutions 2,
AlgebraicKernel d 2::Compare xy 2,
AlgebraicKernel d 2::Sign at 2,
AlgebraicKernel d 2::Is zero at 2.

For instance, AlgebraicKernel d 2::Solve 2 provides the solution for a bivariate polynomial system. However,
it is also possible to obtain the coordinates of these solutions with the additional functors:

AlgebraicKernel d 2::Compute x 2,
AlgebraicKernel d 2::Compute y 2.

In principal this would be sufficient generalization, since functions such as isolating, approximating algebraic
real numbers could be implemented using these access functions ant the corresponding functionalities in the
univariate algebraic kernel. However, one should be aware that an AlgebraicKernel d 2::Algebraic real 2 is
not necessarily represented as a pair of univariate solutions, that is, using AlgebraicKernel d 2::Compute y 2
may entail considerable computations. Therefore, the concept also requires the following additional functors
that may allow a model to bypass this issue:

AlgebraicKernel d 2::Compute polynomial x 2,
AlgebraicKernel d 2::Compute polynomial y 2,
AlgebraicKernel d 2::Isolate x 2,
AlgebraicKernel d 2::Isolate y 2,
AlgebraicKernel d 2::Compare x 2,
AlgebraicKernel d 2::Compare y 2,
AlgebraicKernel d 2::Approximate absolute x 2,
AlgebraicKernel d 2::Approximate relative x 2,
AlgebraicKernel d 2::Approximate absolute y 2,
AlgebraicKernel d 2::Approximate relative y 2,
AlgebraicKernel d 2::Bound between x 2,
AlgebraicKernel d 2::Bound between y 2.
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8.3 Models

8.3.1 Generic Algebraic Kernels

The package provides generic models of the univariate and bivariate algebraic kernel, namely
CGAL::Algebraic kernel d 1<Coeff> and CGAL::Algebraic kernel d 2<Coeff>, respectively. Both kernels
support a large set of number types as their template argument, which defines the supported coefficient type.
The supported types are, for instance, Gmpz and Gmpq as well as the corresponding types of LEDA and CORE.

The CGAL::Algebraic kernel d 1<Coeff> represents an algebraic real root by a square free polynomial and an
isolating interval that uniquely defines the root. The current method to isolate roots is the Bitstream Descartes
method [Eig08]. The used method to refine the approximation of an algebraic real root is a slightly modified
(filtered) version of the one presented in [Abb]. The method has quadratic convergence.

CGAL::Algebraic kernel d 2<Coeff> is based on an algorithm computing a geometric-topological analysis of
a single curve [EKW07] and of a pair of curves [EK08]. The main idea behind both analyses is to compute the
critical x-coordinates of curves and curve pairs by projection (resultants), and compute additional information
about the critical fibers using subresultants and Sturm-Habicht sequences [GVRLR98]. With that information,
the fiber at critical x-coordinates is computed by a variant of the Bitstream Descartes method. See also [Ker09]
for a comprehensive description of these techniques. Almost all functors in the class that take a Polynomial 2
object as argument trigger such an analysis as a main computation step. For efficiency, these analyses (of single
curves and curve pairs) are therefore cached internally for efficiency. For instance, computing the pairwise
solutions of 10 Polynomial 2 objects requires 10 curve analyses and 45 curve pair analyses to be computed
internally.

A point p of type Algebraic real 2 is represented by its x-coordinate x0 (as described in the Algebraic kernel
d 1 paragraph above), an algebraic curve where p lies on, and an integer i, denoting that p is the ith point in the
fiber at x0, counted from the bottom (ignoring a possible vertical line at x0). Note that this determines the point
uniquely, but the y-coordinate is not stored internally in terms of an Algebraic real 1 object. Querying such a
representation by calling Compute y 2 is a time-consuming step, and should be avoided for efficiency reasons
if possible.

8.3.2 Algebraic Kernels Based on RS

The package offers two univariate algebraic kernels that are based on the library Rs [RS], namely
CGAL::Algebraic kernel rs gmpz d 1 and CGAL::Algebraic kernel rs gmpq d 1. As the names indicate,
the kernels are based on the library Rs [RS] and support univariate polynomials over CGAL::Gmpz or
CGAL::Gmpq, respectively.

In general we encourage to use CGAL::Algebraic kernel rs gmpz d 1 instead of CGAL::Algebraic kernel
rs gmpq d 1. This is caused by the fact that the most efficient way to compute operations (such as gcd) on
polynomials with rational coefficients is to use the corresponding implementation for polynomials with integer
coefficients. That is, the CGAL::Algebraic kernel rs gmpq d 1 is slightly slower due to overhead caused by
the necessary conversions. However, since this may not always be a major issue, the CGAL::Algebraic kernel
rs gmpq d 1 is provided for convenience.

The core of both kernels is the implementation of the interval Descartes algorithm [RZ04] of the library Rs [RS],
which is used to isolate the roots of the polynomial. The Rs library restricts its attention to univariate integer
polynomials and some substantial gain of efficiency can be made by using a kernel that does not follow the
generic programming paradigm, by avoiding interfaces between layers. Specifically, working with only one
number type allows to optimize some polynomial operations as well as memory handling. The implementation
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of these kernels make heavy use of the MPFR [MPFb] and MPFI [MPFa] libraries, and of their CGAL interfaces,
Gmpfr and Gmpfi. The algebraic numbers (roots of the polynomials) are represented in the two Rs kernels by
a Gmpfi interval and a pointer to the polynomial of which they are roots. See [LPT09] for more details on
the implementation, tests of these kernels, comparisons with other algebraic kernels and discussions about the
efficiency.
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8.4 Examples

Construction of Algebraic Real Numbers

The following example illustrates the construction of AlgebraicKernel d 1::Algebraic real 1 using
AlgebraicKernel d 1::Construct algebraic real 1:� �
#include <CGAL/basic.h>
#ifdef CGAL_USE_MPFI
#include <CGAL/Algebraic_kernel_d_1.h>
#include <CGAL/Gmpz.h>
#include <vector>
#include <iostream>

typedef CGAL::Algebraic_kernel_d_1<CGAL::Gmpz> AK;
typedef AK::Polynomial_1 Polynomial_1;
typedef AK::Algebraic_real_1 Algebraic_real_1;
typedef AK::Coefficient Coefficient;
typedef AK::Bound Bound;
typedef AK::Multiplicity_type Multiplicity_type;

int main(){
AK ak; // an object of
AK::Construct_algebraic_real_1 construct_algreal_1 =
ak.construct_algebraic_real_1_object();

std::cout << "Construct from int : " << construct_algreal_1(int(2)) <<
"\n";

std::cout << "Construct from Coefficient : " <<
construct_algreal_1(Coefficient(2)) << "\n";

std::cout << "Construct from Bound : " << construct_algreal_1(Bound(2)) <<
"\n\n";

Polynomial_1 x = CGAL::shift(AK::Polynomial_1(1),1); // the monomial x
std::cout << "Construct by index : "

<< construct_algreal_1(x*x-2,1) << "\n"
<< to_double(construct_algreal_1(x*x-2,1)) << "\n";

std::cout << "Construct by isolating interval : "
<< construct_algreal_1(x*x-2,Bound(0),Bound(2)) << "\n"
<< to_double(construct_algreal_1(x*x-2,Bound(0),Bound(2))) << "\n\n";

return 0;
}
#else
int main(){
std::cout << "This example requires CGAL to be configured with library MPFI." <<

std::endl;
return 0;
}
#endif� �
File: examples/Algebraic_kernel_d/Construct_algebraic_real_1.cpp
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Solving Univariate Polynomials

The following example illustrates the construction of AlgebraicKernel d 1::Algebraic real 1 using
AlgebraicKernel d 1::Solve 1:� �
#include <CGAL/basic.h>
#ifdef CGAL_USE_MPFI
#include <CGAL/Algebraic_kernel_d_1.h>
#include <CGAL/Gmpz.h>
#include <vector>

typedef CGAL::Algebraic_kernel_d_1<CGAL::Gmpz> AK;
typedef AK::Polynomial_1 Polynomial_1;
typedef AK::Algebraic_real_1 Algebraic_real_1;
typedef AK::Bound Bound;
typedef AK::Multiplicity_type Multiplicity_type;

int main(){
AK ak; // an object of
AK::Solve_1 solve_1 = ak.solve_1_object();
Polynomial_1 x = CGAL::shift(AK::Polynomial_1(1),1); // the monomial x

// variant using a bool indicating a square free polynomial
// multiplicities are not computed
std::vector<Algebraic_real_1> roots;
solve_1(x*x-2,true, std::back_inserter(roots));
std::cout << "Number of roots is : " << roots.size() << "\n";
std::cout << "First root should be -sqrt(2): " << CGAL::to_double(roots[0]) <<
"\n";

std::cout << "Second root should be sqrt(2): " << CGAL::to_double(roots[1]) <<
"\n\n";

roots.clear();

// variant for roots in a given range of a square free polynomial
solve_1((x*x-2)*(x*x-3),true, Bound(0),Bound(10),std::back_inserter(roots));
std::cout << "Number of roots is : " << roots.size() << "\n";
std::cout << "First root should be sqrt(2): " << CGAL::to_double(roots[0]) <<
"\n";

std::cout << "Second root should be sqrt(3): " << CGAL::to_double(roots[1]) <<
"\n\n";

roots.clear();

// variant computing all roots with multiplicities
std::vector<std::pair<Algebraic_real_1,Multiplicity_type> > mroots;
solve_1((x*x-2), std::back_inserter(mroots));
std::cout << "Number of roots is : " << mroots.size() << "\n";
std::cout << "First root should be -sqrt(2): " <<
CGAL::to_double(mroots[0].first) << ""

<< " with multiplicity " << mroots[0].second << "\n";
std::cout << "Second root should be sqrt(2): " <<
CGAL::to_double(mroots[1].first) << ""

<< " with multiplicity " << mroots[1].second << "\n\n";
mroots.clear();

// variant computing roots with multiplicities for a range
solve_1((x*x-2)*(x*x-3),Bound(0),Bound(10),std::back_inserter(mroots));
std::cout << "Number of roots is : " << mroots.size() << "\n";
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std::cout << "First root should be sqrt(2): " <<
CGAL::to_double(mroots[0].first) << ""

<< " with multiplicity " << mroots[0].second << "\n";
std::cout << "Second root should be sqrt(3): " <<
CGAL::to_double(mroots[1].first) << ""

<< " with multiplicity " << mroots[1].second << "\n\n";
return 0;

}
#else
int main(){
std::cout << "This example requires CGAL to be configured with library MPFI." <<

std::endl;
return 0;
}
#endif� �
File: examples/Algebraic_kernel_d/Solve_1.cpp
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Comparison and Approximation of Algebraic Real Numbers

The following example illustrates the comparison of AlgebraicKernel d 1::Algebraic real 1 numbers:� �
#include <CGAL/basic.h>
#ifdef CGAL_USE_MPFI
#include <CGAL/Algebraic_kernel_d_1.h>
#include <CGAL/Gmpz.h>
#include <vector>

typedef CGAL::Algebraic_kernel_d_1<CGAL::Gmpz> AK;
typedef AK::Coefficient Coefficient;
typedef AK::Polynomial_1 Polynomial_1;
typedef AK::Algebraic_real_1 Algebraic_real_1;
typedef AK::Bound Bound;
typedef std::pair<Bound,Bound> Interval;

int main(){
AK ak;

AK::Construct_algebraic_real_1 construct_algebraic_real_1 =
ak.construct_algebraic_real_1_object();

Polynomial_1 x = CGAL::shift(AK::Polynomial_1(1),1); // the monomial x
Algebraic_real_1 a = construct_algebraic_real_1(x*x-2,1); // sqrt(2)
Algebraic_real_1 b = construct_algebraic_real_1(x*x-3,1); // sqrt(3)

// Algebraic_real_1 is RealEmbeddable (just some functions:)
std::cout << "sign of a is : " << CGAL::sign(a) << "\n";
std::cout << "double approximation of a is : " << CGAL::to_double(a) << "\n";
std::cout << "double approximation of b is : " << CGAL::to_double(b) << "\n";
std::cout << "double lower bound of a : " << CGAL::to_interval(a).first <<

"\n";
std::cout << "double upper bound of a : " << CGAL::to_interval(a).second <<

"\n";
std::cout << "LessThanComparable (a<b) : " << (a<b) << "\n\n";

// use compare_1 with int, Bound, Coefficient, Algebraic_real_1
AK::Compare_1 compare_1 = ak.compare_1_object();
std::cout << " compare with an int : " << compare_1(a ,int(2))
<< "\n";

std::cout << " compare with an Coefficient : " << compare_1(a
,Coefficient(2)) << "\n";

std::cout << " compare with an Bound : " << compare_1(a
,Bound(2)) << "\n";

std::cout << " compare with another Algebraic_real_1: " << compare_1(a ,b) <<
"\n\n";

// get a value between two roots
AK::Bound_between_1 bound_between_1 = ak.bound_between_1_object();
std::cout << " value between sqrt(2) and sqrt(3) " << bound_between_1(a,b) <<
"\n";

std::cout << " is larger than sqrt(2) " <<
compare_1(bound_between_1(a,b),a) << "\n";

std::cout << " is less than sqrt(3) " <<
compare_1(bound_between_1(a,b),b) << "\n\n";

// approximate with relative precision
AK::Approximate_relative_1 approx_r = ak.approximate_relative_1_object();
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std::cout << " lower bound of a with at least 100 bits: "<<
approx_r(a,100).first << "\n";

std::cout << " upper bound of a with at least 100 bits: "<<
approx_r(a,100).second << "\n\n";

// approximate with absolute error
AK::Approximate_absolute_1 approx_a = ak.approximate_absolute_1_object();
std::cout << " lower bound of b with error less than 2ˆ-100: "<<
approx_a(b,100).first << "\n";

std::cout << " upper bound of b with error less than 2ˆ-100: "<<
approx_a(b,100).second << "\n\n";

return 0;
}

#else
int main(){
std::cout << "This example requires CGAL to be configured with library MPFI." <<

std::endl;
return 0;
}
#endif� �
File: examples/Algebraic_kernel_d/Compare_1.cpp
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Isolation of Algebraic Real Numbers with respect to roots of other polynomials

The following example illustrates the isolation of AlgebraicKernel d 1::Algebraic real 1 numbers:� �
#include <CGAL/basic.h>
#ifdef CGAL_USE_MPFI
#include <CGAL/Algebraic_kernel_d_1.h>
#include <CGAL/Gmpz.h>
#include <vector>

typedef CGAL::Algebraic_kernel_d_1<CGAL::Gmpz> AK;
typedef AK::Polynomial_1 Polynomial_1;
typedef AK::Algebraic_real_1 Algebraic_real_1;
typedef AK::Coefficient Coefficient;
typedef AK::Bound Bound;
typedef AK::Multiplicity_type Multiplicity_type;

int main(){
AK ak; // an object of
AK::Construct_algebraic_real_1 construct_algreal_1 =
ak.construct_algebraic_real_1_object();

AK::Isolate_1 isolate_1 = ak.isolate_1_object();
AK::Compute_polynomial_1 compute_polynomial_1 =
ak.compute_polynomial_1_object();

// construct an algebraic number from an integer
Algebraic_real_1 frominteger=construct_algreal_1(int(2));
std::cout << "Construct from int: " << frominteger << "\n";

// the constructed algebraic number is root of a polynomial
Polynomial_1 pol=compute_polynomial_1(frominteger);
std::cout << "The constructed number is root of: " << pol << "\n";

// construct an algebraic number from a polynomial and an isolating interval
Polynomial_1 x = CGAL::shift(AK::Polynomial_1(1),1); // the monomial x
Algebraic_real_1 frominterval=construct_algreal_1(x*x-2,Bound(0),Bound(2));
std::cout << "Construct from isolating interval: " << frominterval << "\n";

// isolate the second algebraic number from the first: this is to say,
// isolating the second algebraic number with respect to the polynomial
// of which the first constructed number is root
std::pair<Bound,Bound> isolation1 = isolate_1(frominterval,pol);
std::cout << "Isolating the second algebraic number gives: ["

<< isolation1.first << "," << isolation1.second << "]\n";

// isolate again the same algebraic number, this time with respect to
// the polynomial 10*x-14 (which has root 1.4, close to this algebraic
// number)
std::pair<Bound,Bound> isolation2 = isolate_1(frominterval,10*x-14);
std::cout << "Isolating again the second algebraic number gives: ["

<< isolation2.first << "," << isolation2.second << "]\n";

return 0;
}
#else
int main(){
std::cout << "This example requires CGAL to be configured with library MPFI." <<

std::endl;
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return 0;
}
#endif� �
File: examples/Algebraic_kernel_d/Isolate_1.cpp

391



Interplay with Polynomials

The following example illustrates the sign evaluation of AlgebraicKernel d 1::Algebraic real 1 numbers in
polynomials:� �
#include <CGAL/basic.h>
#ifdef CGAL_USE_MPFI
#include <CGAL/Algebraic_kernel_d_1.h>
#include <CGAL/Gmpz.h>
#include <vector>

typedef CGAL::Algebraic_kernel_d_1<CGAL::Gmpz> AK;
typedef AK::Polynomial_1 Polynomial_1;
typedef AK::Algebraic_real_1 Algebraic_real_1;
typedef AK::Coefficient Coefficient;
typedef AK::Bound Bound;
typedef AK::Multiplicity_type Multiplicity_type;

int main(){
AK ak;
AK::Construct_algebraic_real_1 construct_algreal_1 =
ak.construct_algebraic_real_1_object();

AK::Solve_1 solve_1 = ak.solve_1_object();
AK::Sign_at_1 sign_at_1 = ak.sign_at_1_object();
AK::Is_zero_at_1 is_zero_at_1 = ak.is_zero_at_1_object();

// construct the polynomials p=xˆ2-5 and q=x-2
Polynomial_1 x = CGAL::shift(AK::Polynomial_1(1),1); // the monomial x
Polynomial_1 p = x*x-5;
std::cout << "Polynomial p: " << p << "\n";
Polynomial_1 q = x-2;
std::cout << "Polynomial q: " << q << "\n";

// find the roots of p (it has two roots) and q (one root)
std::vector<Algebraic_real_1> roots_p,roots_q;
solve_1(p,true, std::back_inserter(roots_p));
solve_1(q,true, std::back_inserter(roots_q));

// evaluate the second root of p in q
std::cout << "Sign of the evaluation of root 2 of p in q: "

<< sign_at_1(q,roots_p[1]) << "\n";

// evaluate the root of q in p
std::cout << "Sign of the evaluation of root 1 of q in p: "

<< sign_at_1(p,roots_q[0]) << "\n";

// check whether the evaluation of the first root of p in p is zero
std::cout << "Is zero the evaluation of root 1 of p in p? "

<< is_zero_at_1(p,roots_p[0]) << "\n";

return 0;
}

#else
int main(){
std::cout << "This example requires CGAL to be configured with library MPFI." <<

std::endl;
return 0;
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}
#endif� �
File: examples/Algebraic_kernel_d/Sign_at_1.cpp

8.5 Design and Implementation History

This package is clearly split into a univariate and bivariate kernel. However, with respect to its history the
package splits into a design part and an implementation part.

The concepts, which make up the design part, were written by Eric Berberich, Michael Hemmer, and Monique
Teillaud. The design history of the package is fairly old and several ideas that influenced this package can
already be found in [BHKT07]. Since then, the initial design underwent considerable changes. For instance, it
was decided that the algebraic numbers should be under the control of the algebraic kernel. On the other hand
the initial support for polynomials was extended to a separate and independent package that is not restricted
to a certain number of variables. Thus, the authors want to thank for all the useful feedback and ideas that
was brought to them throughout the last years. In particular, they want to thank Menelaos Karavelas and Elias
Tsigaridas for their initial contributions.

The two generic models where initially developed as part of the EXACUS [BEH+05] project. However, the
models are now fully integrated into the CGAL library, since also the relevant layers of EXACUS are now part of
CGAL. The main authors for CGAL::Algebraic kernel d 1<Coeff> and CGAL::Algebraic kernel d 2<Coeff>
are Michael Hemmer and Michael Kerber, respectively. Notwithstanding, the authors also want to emphasize the
contribution of all authors of the EXACUS project, particularly the contribution of Arno Eigenwillig, Sebastian
Limbach and Pavel Emeliyanenko.

The two univariate kernels that interface the library Rs [RS] were written by Luis Peñaranda and Sylvain Lazard.
Both models interface the library Rs [RS] by Fabrice Rouillier. The authors want to thank Fabrice Rouillier and
Elias Tsigaridas for strong support and many useful discussions that lead to the integration of Rs.
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AlgebraicKernel d 1

Definition

A model of the AlgebraicKernel d 1 concept is meant to provide the algebraic functionalities on univariate
polynomials of general degree d.

Refines

CopyConstructible
Assignable

A model of AlgebraicKernel d 1 must provide:

Types

AlgebraicKernel d 1:: Coefficient A model of IntegralDomain and RealEmbeddable.
ExplicitInteroperable with AlgebraicKernel d 1::Bound.

AlgebraicKernel d 1:: Polynomial 1 A univariate polynomial that is a model of Polynomial
d, where CGAL::Polynomial traits d<Polynomial 1>
::Innermost coefficient is AlgebraicKernel d 1::Coefficient.

AlgebraicKernel d 1:: Algebraic real 1 A type that is used to represent real roots of univariate poly-
nomials. The type must be a model of DefaultConstructible,
CopyConstructible, Assignable and RealEmbeddable.

AlgebraicKernel d 1:: Bound A type to represent upper and lower bounds of
AlgebraicKernel d 1::Algebraic real 1.
The type is ExplicitInteroperable with AlgebraicKernel
d 1::Coefficient and must be a model IntegralDomain,
RealEmbeddable and dense in R.

AlgebraicKernel d 1:: size type Size type (unsigned integral type).

AlgebraicKernel d 1:: Multiplicity type Multiplicity type (unsigned integral type).

Functors

AlgebraicKernel d 1:: Construct algebraic real 1

A model of AlgebraicKernel d 1::ConstructAlgebraicReal 1.

AlgebraicKernel d 1:: Compute polynomial 1 A model of AlgebraicKernel d 1::ComputePolynomial 1.
AlgebraicKernel d 1:: Isolate 1 A model of AlgebraicKernel d 1::Isolate 1.
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AlgebraicKernel d 1:: Is square free 1 A model of AlgebraicKernel d 1::IsSquareFree 1.
AlgebraicKernel d 1:: Make square free 1 A model of AlgebraicKernel d 1::MakeSquareFree 1.

AlgebraicKernel d 1:: Square free factorize 1

A model of AlgebraicKernel d 1::SquareFreeFactorize 1.

AlgebraicKernel d 1:: Is coprime 1 A model of AlgebraicKernel d 1::IsCoprime 1.
AlgebraicKernel d 1:: Make coprime 1 A model of AlgebraicKernel d 1::MakeCoprime 1.
AlgebraicKernel d 1:: Solve 1 A model of AlgebraicKernel d 1::Solve 1.
AlgebraicKernel d 1:: Number of solutions 1 A model of AlgebraicKernel d 1::NumberOfSolutions 1.
AlgebraicKernel d 1:: Sign at 1 A model of AlgebraicKernel d 1::SignAt 1.
AlgebraicKernel d 1:: Compare 1 A model of AlgebraicKernel d 1::Compare 1.
AlgebraicKernel d 1:: Bound between 1 A model of AlgebraicKernel d 1::BoundBetween 1.

AlgebraicKernel d 1:: Approximate absolute 1

A model of AlgebraicKernel d 1::ApproximateAbsolute 1.

AlgebraicKernel d 1:: Approximate relative 1

A model of AlgebraicKernel d 1::ApproximateRelative 1.

Operations

For each of the function objects above, there must exist a member function that requires no arguments and
returns an instance of that function object. The name of the member function is the uncapitalized name of
the type returned with the suffix object appended. For example, for the function object AlgebraicKernel d
1::Bound between 1 the following member function must exist:

AlgebraicKernel d 1::Bound between 1

ak 1.bound between 1 object() const

Has Models

Algebraic kernel rs gmpz d 1
Algebraic kernel rs gmpq d 1

See Also

AlgebraicKernel d 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 422
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AlgebraicKernel d 1::ConstructAlgebraicReal 1

Definition

Constructs AlgebraicKernel d 1::Algebraic real 1.

Refines

AdaptableFunctor

Types

typedef AlgebraicKernel d 1::Algebraic real 1 result type;

Operations

result type fo( int a) introduces an AlgebraicKernel d 1::Algebraic real 1 initialized to a.

result type fo( AlgebraicKernel d 1::Bound a)

introduces an AlgebraicKernel d 1::Algebraic real 1 initialized to a.

result type fo( AlgebraicKernel d 1::Coefficient a)

introduces an AlgebraicKernel d 1::Algebraic real 1 initialized to a.

result type fo( AlgebraicKernel d 1::Polynomial 1 p, AlgebraicKernel d 1::size type i)

introduces an AlgebraicKernel d 1::Algebraic real 1 initialized to the i-
th real root of p. The index starts at 0, that is, p must have at least i + 1
real roots.
Precondition: p is square free.
Precondition: p has at least i+1 real roots.

result type fo.operator()( AlgebraicKernel d 1::Polynomial 1 p,
AlgebraicKernel d 1::Bound l,
AlgebraicKernel d 1::Bound u)

introduces an AlgebraicKernel d 1::Algebraic real 1 initialized to the
only real root of p in the open interval I = (l,u).
Precondition: l < u
Precondition: p is square free.
Precondition: p has exactly one real root in I
Precondition: p has no real root on ∂I
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See Also

AlgebraicKernel d 2::ConstructAlgebraicReal 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 424
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AlgebraicKernel d 1::ComputePolynomial 1

Definition

Computes a square free univariate polynomial p, such that the given AlgebraicKernel d 1::Algebraic real 1 is
a root of p.

Refines

AdaptableUnaryFunction

Types

typedef AlgebraicKernel d 1::Polynomial 1 result type;
typedef AlgebraicKernel d 1::Algebraic real 1 argument type;

Operations

result type fo( argument type x)

Computes a square free polynomial p, such that x is a real root of p.

See Also

AlgebraicKernel d 1::Isolate 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 403
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AlgebraicKernel d 1::Isolate 1

Definition

Computes an open isolating interval for an AlgebraicKernel d 1::Algebraic real 1 with respect to the real roots
of a given univariate polynomial.

Refines

AdaptableBinaryFunction

Types

typedef std::pair<AlgebraicKernel d 1::Bound,AlgebraicKernel d 1::Bound>

result type;

typedef AlgebraicKernel d 1::Algebraic real 1 first argument type;

typedef AlgebraicKernel d 1::Polynomial 1 second argument type;

Operations

result type fo( first argument type a, second argument type p)

Computes an open isolating interval I = (l,u) for a with respect to the real
roots of p. It is not required that a is a root of p.
Postcondition: a ∈ I.
Postcondition: p(x) 6= 0|∀x ∈ I\a.

See Also

AlgebraicKernel d 1::ComputePolynomial 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 402
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AlgebraicKernel d 1::IsSquareFree 1

Definition

Computes whether the given univariate polynomial is square free.

Refines

AdaptableUnaryFunction

Types

typedef bool result type;
typedef AlgebraicKernel d 1::Polynomial 1 argument type;

A model of this type must provide:

Operations

result type fo( argument type p)

Returns true if p is square free.

See Also

AlgebraicKernel d 1::MakeSquareFree 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 405
AlgebraicKernel d 1::SquareFreeFactorize 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 406
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AlgebraicKernel d 1::MakeSquareFree 1

Definition

Returns a square free part of a univariate polynomial.

Refines

AdaptableUnaryFunction

Types

typedef AlgebraicKernel d 1::Polynomial 1 result type;
typedef AlgebraicKernel d 1::Polynomial 1 argument type;

Operations

result type fo( argument type p)

Returns a square free part of p

See Also

AlgebraicKernel d 1::IsSquareFree 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 404
AlgebraicKernel d 1::SquareFreeFactorize 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 406
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AlgebraicKernel d 1::SquareFreeFactorize 1

Definition

Computes a square free factorization of an AlgebraicKernel d 1::Polynomial 1.

A polynomial p is factored into square free and pairwise coprime non-constant factors qi with multiplicities mi
and a constant factor c, such that p = c ·qm1

1 · ... ·qmn
n .

The factor multiplicity pairs < qi,mi > are written to the given output iterator. The constant factor c is not
computed.

Refines

Assignable
CopyConstructible

Operations

template < class OutputIterator >
OutputIterator fo( AlgebraicKernel d 1::Polynomial 1 p, OutputIterator res)

Copies in the output iterator the factors of a square
free factorization of p, with their multiplicity, as objects
of type std::pair<AlgebraicKernel d 1::Polynomial 1,
AlgebraicKernel d 1::Multiplicity type>.

See Also

AlgebraicKernel d 1::IsSquareFree 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 404
AlgebraicKernel d 1::MakeSquareFree 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 405
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AlgebraicKernel d 1::IsCoprime 1

Definition

Determines whether a given pair of univariate polynomials p1, p2 is coprime, namely if deg(gcd(p1, p2)) = 0.

Refines

AdaptableBinaryFunction

Types

typedef bool result type;
typedef AlgebraicKernel d 1::Polynomial 1 first argument type;
typedef AlgebraicKernel d 1::Polynomial 1 second argument type;

Operations

result type fo( first argument type p1, second argument type p2)

Returns true if p1 and p2 are coprime.

See Also

AlgebraicKernel d 1::MakeCoprime 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 408
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AlgebraicKernel d 1::MakeCoprime 1

Definition

Computes for a given pair of univariate polynomials p1, p2 their common part g up to a constant factor and
coprime parts q1, q2 respectively.

That is, it computes g,q1,q2 such that:
c1 · p1 = g ·q1 for some constant c1 and
c2 · p2 = g ·q2 for some constant c2, such that q1 and q2 are coprime.

It returns true if p1 and p2 are already coprime.

Refines

AdaptableFunctor with five arguments

Types

typedef bool result type;

Operations

result type fo.operator()( AlgebraicKernel d 1::Polynomial 1 p1,
AlgebraicKernel d 1::Polynomial 1 p2,
AlgebraicKernel d 1::Polynomial 1 & g,
AlgebraicKernel d 1::Polynomial 1 & q1,
AlgebraicKernel d 1::Polynomial 1 & q2)

Computes g,q1,q2 as described above.
Returns whether p1 and p2 where already coprime.

See Also

AlgebraicKernel d 1::IsCoprime 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 407
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AlgebraicKernel d 1::Solve 1

Definition

Computes the real roots of a univariate polynomial.

Refines

Assignable
CopyConstructible

Operations

A model of this type must provide:

template < class OutputIterator >
OutputIterator fo( AlgebraicKernel d 1::Polynomial 1 p, OutputIterator res)

Computes all real solutions of p with multiplicity, and copies them
as objects of type std::pair<AlgebraicKernel d 1::Algebraic real 1,
AlgebraicKernel d 1::Multiplicity type> in res.

template < class OutputIterator >
OutputIterator fo.operator()( AlgebraicKernel d 1::Polynomial 1 p,

bool known to be square free,
OutputIterator res)

Computes all real solutions of p, and copies them as objects of type
AlgebraicKernel d 1::Algebraic real 1 in res. The bool¸ known to be
square free indicates whether p is known to be square free. Each root,
though it might be a multiple root, is reported only once.

template < class OutputIterator >
OutputIterator fo.operator()( AlgebraicKernel d 1::Polynomial 1 p,

AlgebraicKernel d 1::Bound l,
AlgebraicKernel d 1::Bound u,
OutputIterator res)

Computes all real solutions of p in the closed interval [l,u] with multi-
plicity, and copies them as objects of type std::pair<AlgebraicKernel d
1::Algebraic real 1, AlgebraicKernel d 1::Multiplicity type> in res.

template < class OutputIterator >
OutputIterator fo.operator()( AlgebraicKernel d 1::Polynomial 1 p,

bool known to be square free,
AlgebraicKernel d 1::Bound l,
AlgebraicKernel d 1::Bound u,
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OutputIterator res)

Computes all real solutions of p in the closed interval [l,u], and copies
them as objects of type AlgebraicKernel d 1::Algebraic real 1 in res.
The bool known to be square free indicates whether p is known to be
square free. Each root, though it might be a multiple root, is reported only
once.

See Also
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AlgebraicKernel d 1::NumberOfSolutions 1

Definition

Computes the number of real solutions of the given univariate polynomial.

Refines

AdaptableUnaryFunction

Types

typedef AlgebraicKernel d 1::size type result type;
typedef AlgebraicKernel d 1::Polynomial 1 argument type;

A model of this type must provide:

Operations

result type fo( argument type p)

Returns the number of real solutions of p.
Precondition: p is square free.

See Also

AlgebraicKernel d 1::ConstructAlgebraicReal 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 400
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AlgebraicKernel d 1::SignAt 1

Definition

Computes the sign of a univariate polynomial AlgebraicKernel d 1::Polynomial 1 at a real value of type
AlgebraicKernel d 1::Algebraic real 1.

Refines

AdaptableBinaryFunction

Types

AlgebraicKernel d 1::SignAt 1:: result type Type convertible to CGAL::Sign
typedef AlgebraicKernel d 1::Polynomial 1 first argument type;
typedef AlgebraicKernel d 1::Algebraic real 1 second argument type;

Operations

result type fo( first argument type p, second argument type x)

Computes the sign of p at x.

See Also

AlgebraicKernel d 1::IsZeroAt 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 413
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AlgebraicKernel d 1::IsZeroAt 1

Definition

Computes whether an AlgebraicKernel d 1::Polynomial 1 is zero at a given AlgebraicKernel d 1::Algebraic
real 1.

Refines

AdaptableBinaryFunction

Types

AlgebraicKernel d 1::IsZeroAt 1:: result type

Type convertible to bool

typedef AlgebraicKernel d 1::Polynomial 1 first argument type;
typedef AlgebraicKernel d 1::Algebraic real 1 second argument type;

Operations

result type fo( first argument type p, second argument type x)

Computes whether p is zero at x.

See Also

AlgebraicKernel d 1::SignAt 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 412
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AlgebraicKernel d 1::Compare 1

Definition

Compares AlgebraicKernel d 1::Algebraic real 1 values.

Refines

AdaptableBinaryFunction

Types

AlgebraicKernel d 1::Compare 1:: result type

Type convertible to CGAL::Comparison result

typedef AlgebraicKernel d 1::Algebraic real 1 first argument type;
typedef AlgebraicKernel d 1::Algebraic real 1 second argument type;

Operations

The following operators and their symmetric counterparts are required:

result type fo( AlgebraicKernel d 1::Algebraic real 1 a, AlgebraicKernel d 1::Algebraic real 1 b)

Compares a and b.

result type fo( AlgebraicKernel d 1::Algebraic real 1 a, int b)

Compares a and b.

result type fo( AlgebraicKernel d 1::Algebraic real 1 a, AlgebraicKernel d 1::Bound b)

Compares a and b.

result type fo( AlgebraicKernel d 1::Algebraic real 1 a, AlgebraicKernel d 1::Coefficient b)

Compares a and b.

414



C
on

ce
pt

F
un

ct
or

AlgebraicKernel d 1::BoundBetween 1

Definition

Computes a number of type AlgebraicKernel d 1::Bound in-between two AlgebraicKernel d 1::Algebraic
real 1 values.

Refines

AdaptableBinaryFunction

Types

typedef AlgebraicKernel d 1::Bound result type;
typedef AlgebraicKernel d 1::Algebraic real 1 first argument type;
typedef AlgebraicKernel d 1::Algebraic real 1 second argument type;

Operations

result type fo( first argument type a, second argument type b)

Computes a value r, which is between a and b.

Precondition: a 6= b
Postcondition: r > min(a,b)
Postcondition: r < max(a,b)

415



C
on

ce
pt

F
un

ct
or

AlgebraicKernel d 1::ApproximateAbsolute 1

Definition

A model of AlgebraicKernel d 1::ApproximateAbsolute 1 is an AdaptableBinaryFunction that computes an
approximation of an AlgebraicKernel d 1::Algebraic real 1 value with respect to a given absolute precision.

Refines

AdaptableBinaryFunction

Types

typedef std::pair<AlgebraicKernel d 1::Bound, AlgebraicKernel d 1::Bound>

result type;
typedef AlgebraicKernel d 1::Algebraic real 1 first argument type;
typedef int second argument type;

Operations

result type fo( first argument type x, second argument type a)

The function computes a pair p of AlgebraicKernel d 1::Bound, where
p. f irst represents the lower approximation and p.second represents the
upper approximation. The pair p approximates the given value x with
respect to the given absolute precision a.
Postcondition: p. f irst <= x
Postcondition: x <= p.second
Postcondition: (x− p. f irst) <= 2−a

Postcondition: (p.second− x) <= 2−a

See Also

AlgebraicKernel d 1::ApproximateRelative 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 417
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AlgebraicKernel d 1::ApproximateRelative 1

Definition

A model of AlgebraicKernel d 1::ApproximateRelative 1 is an AdaptableBinaryFunction that computes an
approximation of an AlgebraicKernel d 1::Algebraic real 1 value with respect to a given relative precision.

Refines

AdaptableBinaryFunction

Types

typedef std::pair<AlgebraicKernel d 1::Bound, AlgebraicKernel d 1::Bound>

result type;
typedef AlgebraicKernel d 1::Algebraic real 1 first argument type;
typedef int second argument type;

Operations

result type fo( first argument type x, second argument type r)

The function computes a pair p of AlgebraicKernel d 1::Bound, where
p. f irst represents the lower approximation and p.second represents the
upper approximation. The pair p approximates the given value x with
respect to the given relative precision r.
Postcondition: p. f irst <= x
Postcondition: x <= p.second
Postcondition: (x− p. f irst) <= 2−r ∗ |x|
Postcondition: (p.second− x) <= 2−r ∗ |x|

See Also

AlgebraicKernel d 1::ApproximateAbsolute 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 416
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CGAL::Algebraic kernel d 1<Coeff>

#include <CGAL/Algebraic kernel d 1.h>

Definition

The class represents an algebraic real root by a square free polynomial and an isolating interval that uniquely
defines the root. The template argument Coeff determines the coefficient type of the kernel, which is also the
coefficient type of the supported polynomials.

Currently, the following coefficient types are supported:
– Gmpz, Gmpq, (requires configuration with external libraries GMP, MPFR and MPFI)
– CORE::BigInt, CORE::BigRat, (requires configuration with external library GMP)
– leda integer, leda rational. (requires configuration with external library LEDA)

advanced

The template argument type can also be set to Sqrt extension<NT,ROOT>, where NT is one of the types listed
above. ROOT should be one of the integer types. See also the documentation of Sqrt extension<NT,ROOT>.

advanced

The current method to isolate roots is the bitstream Descartes method presented in [Eig08]. The used method
to refine the approximation of an algebraic real root is a slightly modified (filtered) version of the one presented
in [Abb]. The method has quadratic convergence.

Is Model for the Concepts

AlgebraicKernel d 1.

Types

Algebraic kernel d 1<Coeff>:: Coefficient Same type as the template argument Coeff .

Algebraic kernel d 1<Coeff>:: Polynomial 1 A model of AlgebraicKernel d 1::Polynomial 1.

Algebraic kernel d 1<Coeff>:: Algebraic real 1

A model of AlgebraicKernel d 1::AlgebraicReal 1.

Algebraic kernel d 1<Coeff>:: Bound The choice of Coeff also determines the provided bound,
type. In case of Coeff is:
– Gmpz or Gmpq this is Gmpq,
– CORE::BigInt or CORE::BigInt this is CORE::BigRat,
– leda integer or leda integer this is leda rational.

Algebraic kernel d 1<Coeff>:: Multiplicity type

The multiplicity type is int.
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See Also

AlgebraicKernel d 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 398
Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
CGAL::Algebraic kernel d 2<Coeff> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 451
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CGAL::Algebraic kernel rs gmpz d 1

#include <CGAL/Algebraic kernel rs gmpz d 1.h>

Definition

This univariate algebraic kernel uses the Rs library to perform integer univariate polynomial root isolation. It is
a model of the AlgebraicKernel d 1 concept.

Types

Algebraic kernel rs gmpz d 1:: Coefficient It is a typedef to CGAL::Gmpz.

Algebraic kernel rs gmpz d 1:: Polynomial 1

It is defined as CGAL::Polynomial<CGAL::Gmpz>.

Algebraic kernel rs gmpz d 1:: Algebraic real 1

Type that represents the real roots of integer univariate poly-
nomials, containing a pointer to the polynomial of which the
represented algebraic number is root and and a CGAL::Gmpfi
isolating interval.

Algebraic kernel rs gmpz d 1:: Bound Since the isolating intervals of the roots have type
CGAL::Gmpfi, the bounds have type CGAL::Gmpfr.

Algebraic kernel rs gmpz d 1:: Multiplicity type

The multiplicity is an int.

Is Model for the Concepts

AlgebraicKernel d 1.

See Also

Algebraic kernel rs gmpz d 1
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CGAL::Algebraic kernel rs gmpq d 1

#include <CGAL/Algebraic kernel rs gmpq d 1.h>

Definition

This univariate algebraic kernel uses the Rs library to perform rational univariate polynomial root isolation. It
is a model of the AlgebraicKernel d 1 concept. Due to the fact that RS can only isolate integer polynomials,
the operations of this kernel have the overhead of converting the polynomials to integer.

Types

Algebraic kernel rs gmpq d 1:: Coefficient It is a typedef to CGAL::Gmpq.

Algebraic kernel rs gmpq d 1:: Polynomial 1

It is defined as CGAL::Polynomial<CGAL::Gmpq>.

Algebraic kernel rs gmpq d 1:: Algebraic real 1

Type that represents the real roots of integer univariate poly-
nomials, containing a pointer to the polynomial of which the
represented algebraic number is root and and a CGAL::Gmpfi
isolating interval.

Algebraic kernel rs gmpq d 1:: Bound Since the isolating intervals of the roots have type
CGAL::Gmpfi, the bounds have type CGAL::Gmpfr.

Algebraic kernel rs gmpq d 1:: Multiplicity type

The multiplicity is an int.

Is Model for the Concepts

AlgebraicKernel d 1

See Also

Algebraic kernel rs gmpz d 1
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AlgebraicKernel d 2

Definition

A model of the AlgebraicKernel d 2 concept gathers necessary tools for solving and handling bivariate poly-
nomial systems of general degree d.

Refines

AlgebraicKernel d 1
CopyConstructible
Assignable

Types

AlgebraicKernel d 2:: Polynomial 2 A bivariate polynomial that is a model of Polynomial
d, where CGAL::Polynomial traits d<Polynomial 2>
::Innermost coefficient is AlgebraicKernel d 1::Coefficient.

AlgebraicKernel d 2:: Algebraic real 2 A type that is used to represent real solutions of bivariate
zero dimensional polynomial systems. A model of Default-
Constructible, CopyConstructible and Assignable.

Functors

AlgebraicKernel d 2:: Construct algebraic real 2

A model of AlgebraicKernel d 2::ConstructAlgebraicReal 2.

AlgebraicKernel d 2:: Compute polynomial x 2

A model of AlgebraicKernel d 2::ComputePolynomialX 2.

AlgebraicKernel d 2:: Compute polynomial y 2

A model of AlgebraicKernel d 2::ComputePolynomialY 2.

AlgebraicKernel d 2:: Isolate 2 A model of AlgebraicKernel d 2::Isolate 2.
AlgebraicKernel d 2:: Isolate x 2 A model of AlgebraicKernel d 2::IsolateX 2.
AlgebraicKernel d 2:: Isolate y 2 A model of AlgebraicKernel d 2::IsolateY 2.
AlgebraicKernel d 2:: Is square free 2 A model of AlgebraicKernel d 2::IsSquareFree 2.
AlgebraicKernel d 2:: Make square free 2 A model of AlgebraicKernel d 2::MakeSquareFree 2.
AlgebraicKernel d 2:: Square free factorize 2

A model of AlgebraicKernel d 2::SquareFreeFactorize 2.
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AlgebraicKernel d 2:: Is coprime 2 A model of AlgebraicKernel d 2::IsCoprime 2.
AlgebraicKernel d 2:: Make coprime 2 A model of AlgebraicKernel d 2::MakeCoprime 2.
AlgebraicKernel d 2:: Solve 2 A model of AlgebraicKernel d 2::Solve 2.
AlgebraicKernel d 2:: Number of solutions 2 A model of AlgebraicKernel d 2::NumberOfSolutions 2.
AlgebraicKernel d 2:: Sign at 2 A model of AlgebraicKernel d 2::SignAt 2.
AlgebraicKernel d 2:: Compare x 2 A model of AlgebraicKernel d 2::CompareX 2.
AlgebraicKernel d 2:: Compare y 2 A model of AlgebraicKernel d 2::CompareY 2.
AlgebraicKernel d 2:: Compare xy 2 A model of AlgebraicKernel d 2::CompareXY 2.
AlgebraicKernel d 2:: Bound between x 2 A model of AlgebraicKernel d 2::BoundBetweenX 2.
AlgebraicKernel d 2:: Bound between y 2 A model of AlgebraicKernel d 2::BoundBetweenY 2.

AlgebraicKernel d 2:: Approximate absolute x 2

A model of AlgebraicKernel d 2::ApproximateAbsoluteX 2.

AlgebraicKernel d 2:: Approximate absolute y 2

A model of AlgebraicKernel d 2::ApproximateAbsoluteY 2.

AlgebraicKernel d 2:: Approximate relative x 2

A model of AlgebraicKernel d 2::ApproximateRelativeX 2.

AlgebraicKernel d 2:: Approximate relative y 2

A model of AlgebraicKernel d 2::ApproximateRelativeY 2.

Operations

For each of the function objects above, there must exist a member function that requires no arguments and
returns an instance of that function object. The name of the member function is the uncapitalized name of
the type returned with the suffix object appended. For example, for the function object AlgebraicKernel d
2::Bound betweenX 2 the following member function must exist:

AlgebraicKernel d 2::Bound between x 2

ak 2.bound between x 2 object() const

See Also

AlgebraicKernel d 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 398
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AlgebraicKernel d 2::ConstructAlgebraicReal 2

Definition

Constructs an AlgebraicKernel d 2::Algebraic real 2.

Refines

AdaptableFunctor

Types

typedef AlgebraicKernel d 2::Algebraic real 2 result type;

Operations

result type fo( int x, int y) introduces an AlgebraicKernel d 2::Algebraic real 2 initialized to (x,y).

result type fo( AlgebraicKernel d 2::Bound x, AlgebraicKernel d 2::Bound y)

introduces an AlgebraicKernel d 2::Algebraic real 2 initialized to (x,y).

result type fo( AlgebraicKernel d 2::Coefficient x, AlgebraicKernel d 2::Coefficient y)

introduces an AlgebraicKernel d 2::Algebraic real 2 initialized to (x,y).

result type fo( AlgebraicKernel d 2::Algebraic real 1 x, AlgebraicKernel d 2::Algebraic real 1 y)

introduces an AlgebraicKernel d 2::Algebraic real 2 initialized to (x,y).

result type fo.operator()( AlgebraicKernel d 2::Polynomial 2 f,
AlgebraicKernel d 2::Polynomial 2 g,
AlgebraicKernel d 2::size type i)

introduces an AlgebraicKernel d 2::Algebraic real 2 initialized to the i-
th real common solution of f and g, with respect to xy-lexicographic order.
The index starts at 0, that is, the system must have at least i+1 real solu-
tions.
Precondition: f is square free.
Precondition: g is square free.
Precondition: f and g are coprime.
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result type fo.operator()( AlgebraicKernel d 2::Polynomial 2 f,
AlgebraicKernel d 2::Polynomial 2 g,
AlgebraicKernel d 2::Bound x l,
AlgebraicKernel d 2::Bound x u,
AlgebraicKernel d 2::Bound y l,
AlgebraicKernel d 2::Bound y u)

introduces an AlgebraicKernel d 2::Algebraic real 2 initialized to the
only real intersection of f and g in the open box B = (xl ,xu)× (yl ,yu).
Precondition: xl < xu
Precondition: yl < yu
Precondition: f is square free.
Precondition: g is square free.
Precondition: f and g are coprime.
Precondition: f and g have exactly one common solution in B
Precondition: f and g have no common solution on ∂B

See Also

AlgebraicKernel d 1::ConstructAlgebraicReal 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 400
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AlgebraicKernel d 2::ComputePolynomialX 2

Definition

Computes a univariate square free polynomial p, such that the first coordinate of a given AlgebraicKernel d
2::Algebraic real 2 is a real root of p.

Refines

AdaptableUnaryFunction

Types

typedef AlgebraicKernel d 2::Polynomial 1 result type;
typedef AlgebraicKernel d 2::Algebraic real 2 argument type;

Operations

result type fo( argument type a)

Computes a univariate square free polynomial p, such that the first coor-
dinate of a is a real root of p.

See Also

AlgebraicKernel d 2::ComputePolynomialY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 427

426



C
on

ce
pt

F
un

ct
or

AlgebraicKernel d 2::ComputePolynomialY 2

Definition

Computes a univariate square free polynomial p, such that the second coordinate of a given AlgebraicKernel
d 2::Algebraic real 2 is a real root of p.

Refines

AdaptableUnaryFunction

Types

typedef AlgebraicKernel d 2::Polynomial 1 result type;
typedef AlgebraicKernel d 2::Algebraic real 2 argument type;

Operations

result type fo( argument type a)

Computes a univariate square free polynomial p, such that the second co-
ordinate of a is a real root of p.

See Also

AlgebraicKernel d 2::ComputePolynomialX 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 426
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AlgebraicKernel d 2::Isolate 2

Definition

Computes an isolating box for a given AlgebraicKernel d 2::Algebraic real 2.

Refines

AdaptableFunctor

Types

typedef CGAL::cpp0x::array<AlgebraicKernel d 1::Bound, 4> result type;

Operations

result type fo( AlgebraicKernel d 2::Algebraic real 2 a, AlgebraicKernel d 2::Polynomial 2 f)

The returned CGAL::cpp0x::array [xl,xu,yl,yu] represents an open iso-
lating box B = (xl,xu)× (yl,yu) for a with respect to f .
Precondition: f (a) 6= 0
Postcondition: a ∈ B.
Postcondition: {r| f (r) = 0}∩B = /0.

result type fo.operator()( AlgebraicKernel d 2::Algebraic real 2 a,
AlgebraicKernel d 2::Polynomial 2 f,
AlgebraicKernel d 2::Polynomial 2 g)

The returned CGAL::cpp0x::array [xl,xu,yl,yu] represents an open isolat-
ing box B = (xl,xu)× (yl,yu) for a with respect to the common solutions
of f and g. It is not necessary that a is a common solution of f and g.
Postcondition: a ∈ B.
Postcondition: {r| f (r) = g(r) = 0}∩B ∈ {{a}, /0}.

See Also

AlgebraicKernel d 2::IsolateX 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 429
AlgebraicKernel d 2::IsolateY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 430
AlgebraicKernel d 2::ComputePolynomialX 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 426
AlgebraicKernel d 2::ComputePolynomialY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 427
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AlgebraicKernel d 2::IsolateX 2

Definition

Computes an isolating interval for the first coordinate of an AlgebraicKernel d 2::Algebraic real 2 with respect
to the real roots of a univariate polynomial.

Refines

AdaptableBinaryFunction

Types

typedef std::pair<AlgebraicKernel d 2::Bound,AlgebraicKernel d 2::Bound>

result type;

typedef AlgebraicKernel d 2::Algebraic real 2 first argument type;

typedef AlgebraicKernel d 2::Polynomial 1 second argument type;

Operations

result type fo( first argument type a, second argument type p)

Computes an open isolating interval I = (l,u) for the first coordinate x of
a with respect to the real roots of p. It is not required that x is a root of p.
Postcondition: x ∈ I.
Postcondition: p(α) 6= 0|∀α ∈ I\x.

See Also

AlgebraicKernel d 2::IsolateY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 430
AlgebraicKernel d 2::ComputePolynomialX 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 426
AlgebraicKernel d 2::ComputePolynomialY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 427
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AlgebraicKernel d 2::IsolateY 2

Definition

Computes an isolating interval for the second coordinate of an AlgebraicKernel d 2::Algebraic real 2 with
respect to the real roots of a univariate polynomial.

Refines

AdaptableBinaryFunction

Types

typedef std::pair<AlgebraicKernel d 2::Bound,AlgebraicKernel d 2::Bound>

result type;

typedef AlgebraicKernel d 2::Algebraic real 2 first argument type;

typedef AlgebraicKernel d 2::Polynomial 1 second argument type;

Operations

result type fo( first argument type a, second argument type p)

Computes an open isolating interval I = (l,u) for the second coordinate y
of a with respect to the real roots of p. It is not required that x is a root of
p.
Postcondition: y ∈ I.
Postcondition: p(α) 6= 0|∀α ∈ I\y.

See Also

AlgebraicKernel d 2::IsolateX 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 429
AlgebraicKernel d 2::ComputePolynomialX 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 426
AlgebraicKernel d 2::ComputePolynomialY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 427
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AlgebraicKernel d 2::IsSquareFree 2

Definition

Computes whether the given bivariate polynomial is square free.

Refines

AdaptableUnaryFunction

Types

typedef bool result type;
typedef AlgebraicKernel d 2::Polynomial 2 argument type;

Operations

result type fo( argument type p)

Computes whether p is square free.

See Also

AlgebraicKernel d 2::MakeSquareFree 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 432
AlgebraicKernel d 2::SquareFreeFactorize 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 433
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AlgebraicKernel d 2::MakeSquareFree 2

Definition

Returns a square free part of a bivariate polynomial.

Refines

AdaptableUnaryFunction

Types

typedef AlgebraicKernel d 2::Polynomial 2 result type;
typedef AlgebraicKernel d 2::Polynomial 2 argument type;

Operations

result type fo( argument type p)

Returns a square free part of p.

See Also

AlgebraicKernel d 2::IsSquareFree 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 431
AlgebraicKernel d 2::SquareFreeFactorize 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 433
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AlgebraicKernel d 2::SquareFreeFactorize 2

Definition

Computes a square free factorization of an AlgebraicKernel d 2::Polynomial 2.

A polynomial p is factored into square free and pairwise coprime non-constant factors qi with multiplicities mi
and a constant factor c, such that p = c ·qm1

1 · ... ·qmn
n .

The factor multiplicity pairs < qi,mi > are written to the given output iterator. The constant factor c is not
computed.

Refines

Assignable
CopyConstructible

Operations

template < class OutputIterator >
OutputIterator fo( AlgebraicKernel d 2::Polynomial 2 p, OutputIterator res)

Copies in the output iterator the factors of a square free factorization of
p, with their multiplicity, as objects of type std::pair<AlgebraicKernel d
2::Polynomial 2, AlgebraicKernel d 2::Multiplicity type>.

See Also

AlgebraicKernel d 2::IsSquareFree 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 431
AlgebraicKernel d 2::MakeSquareFree 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 432
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AlgebraicKernel d 2::IsCoprime 2

Definition

Computes whether a given pair of bivariate polynomials is coprime.

Refines

AdaptableBinaryFunction

Types

typedef bool result type;
typedef AlgebraicKernel d 2::Polynomial 2 first argument type;
typedef AlgebraicKernel d 2::Polynomial 2 second argument type;

Operations

result type fo( first argument type p1, second argument type p2)

Computes whether f and g are coprime.

See Also

AlgebraicKernel d 2::MakeCoprime 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 435
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AlgebraicKernel d 2::MakeCoprime 2

Definition

Computes for a given pair of bivariate polynomials p1, p2 their common part g and coprime parts q1, q2 respec-
tively.

That is, it computes g,q1,q2 such that:
c1 · p1 = g ·q1 for some constant c1 and
c2 · p2 = g ·q2 for some constant c2, such that q1 and q2 are coprime.

Refines

AdaptableFunctor with five arguments

Types

typedef bool result type;

Operations

result type fo.operator()( AlgebraicKernel d 2::Polynomial 2 p1,
AlgebraicKernel d 2::Polynomial 2 p2,
AlgebraicKernel d 2::Polynomial 2 & g,
AlgebraicKernel d 2::Polynomial 2 & q1,
AlgebraicKernel d 2::Polynomial 2 & q2)

Computes g,q1,q2 as described above.
Returns whether p1 and p2 where already coprime.

See Also

AlgebraicKernel d 2::IsCoprime 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 434
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AlgebraicKernel d 2::Solve 2

Definition

Computes the real zero-dimensional solutions of a bivariate polynomial system. The multiplicity stored in the
output iterator is the multiplicity in the system.

Refines

Assignable CopyConstructible

Operations

A model of this type must provide:

template < class OutputIterator >
OutputIterator fo.operator()( AlgebraicKernel d 2::Polynomial 2 f,

AlgebraicKernel d 2::Polynomial 2 g,
OutputIterator res)

Computes all common solutions of f and g with multiplicity, and copies
them as objects of type std::pair<AlgebraicKernel d 2::Algebraic real
2, AlgebraicKernel d 2::Multiplicity type> in res.
Precondition: f is square free.
Precondition: g is square free.
Precondition: f and g are coprime.

template < class OutputIterator >
OutputIterator fo.operator()( AlgebraicKernel d 2::Polynomial 2 f,

AlgebraicKernel d 2::Polynomial 2 g,
AlgebraicKernel d 2::Bound xl,
AlgebraicKernel d 2::Bound xu,
AlgebraicKernel d 2::Bound yl,
AlgebraicKernel d 2::Bound yu,
OutputIterator res)

Computes all common solutions of f and g in the closed box [xl,xu]×
[yl,yu], and copies them as objects of type std::pair<AlgebraicKernel d
2::Algebraic real 2, AlgebraicKernel d 2::Multiplicity type> in res.
Precondition: f is square free.
Precondition: g is square free.
Precondition: f and g are coprime.
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AlgebraicKernel d 2::NumberOfSolutions 2

Definition

Computes the number of real solutions of the given bivariate polynomial system.

Refines

AdaptableBinaryFunction

Types

typedef AlgebraicKernel d 2::size type result type;
typedef AlgebraicKernel d 2::Polynomial 2 first argument type;

typedef AlgebraicKernel d 2::Polynomial 2 second argument type;

A model of this type must provide:

Operations

result type fo( first argument type f, second argument type g)

Returns the number of real solutions of the bivariate polynomial system
( f ,g).
Precondition: f is square free.
Precondition: g is square free.
Precondition: f and g are coprime.

See Also

AlgebraicKernel d 2::ConstructAlgebraicReal 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 424
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AlgebraicKernel d 2::SignAt 2

Definition

Computes the sign of a bivariate polynomial AlgebraicKernel d 2::Polynomial 2 at a value of type
AlgebraicKernel d 2::Algebraic real 2.

Refines

AdaptableBinaryFunction

Types

AlgebraicKernel d 2::SignAt 2:: result type Type convertible to CGAL::Sign
typedef AlgebraicKernel d 2::Polynomial 2 first argument type;
typedef AlgebraicKernel d 2::Algebraic real 2 second argument type;

Operations

result type fo( first argument type p, second argument type a)

Computes the sign of a bivariate polynomial p evaluated at a.

See Also

AlgebraicKernel d 2::IsZeroAt 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 439
AlgebraicKernel d 1::SignAt 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 412
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AlgebraicKernel d 2::IsZeroAt 2

Definition

Computes whether an AlgebraicKernel d 2::Polynomial 2 is zero at a given AlgebraicKernel d 2::Algebraic
real 2.

Refines

AdaptableBinaryFunction

Types

AlgebraicKernel d 2::IsZeroAt 2:: result type

Type convertible to bool

typedef AlgebraicKernel d 2::Polynomial 2 first argument type;
typedef AlgebraicKernel d 2::Algebraic real 2 second argument type;

Operations

result type fo( first argument type p, second argument type a)

Computes whether p is zero at a.

See Also

AlgebraicKernel d 2::SignAt 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 438
AlgebraicKernel d 1::IsZeroAt 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 413
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AlgebraicKernel d 2::ComputeX 2

Definition

Computes the first coordinate of an AlgebraicKernel d 2::AlgebraicReal 2.

Refines

AdaptableUnaryFunction

Types

typedef AlgebraicKernel d 2::Algebraic real 1 result type;
typedef AlgebraicKernel d 2::Algebraic real 2 argument type;

Operations

A model of this type must provide:

result type fo( argument type a)

Computes the first coordinate of a.

See Also

AlgebraicKernel d 2::ComputeY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 441
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AlgebraicKernel d 2::ComputeY 2

Definition

Computes the second coordinate of an AlgebraicKernel d 2::AlgebraicReal 2.

Refines

AdaptableUnaryFunction

Types

typedef AlgebraicKernel d 2::Algebraic real 1 result type;
typedef AlgebraicKernel d 2::Algebraic real 2 argument type;

Operations

A model of this type must provide:

result type fo( argument type a)

Computes the second coordinate of a.

See Also

AlgebraicKernel d 2::ComputeY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 441
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AlgebraicKernel d 2::CompareX 2

Definition

Compares the first coordinates of AlgebraicKernel d 2::Algebraic real 2s.

Refines

AdaptableBinaryFunction

Types

AlgebraicKernel d 2::CompareX 2:: result type

Type convertible to CGAL::Comparison result

typedef AlgebraicKernel d 2::Algebraic real 2 first argument type;
typedef AlgebraicKernel d 2::Algebraic real 2 second argument type;

Operations

The following operators and their symmetric counterparts are required:

result type fo( first argument type a, second argument type b)

Compares the first coordinates of a and b.

result type fo( AlgebraicKernel d 2::Algebraic real 2 a, int x)

Compares the first coordinate of a with x.

result type fo( AlgebraicKernel d 2::Algebraic real 2 a, AlgebraicKernel d 2::Bound x)

Compares the first coordinate of a with x.

result type fo( AlgebraicKernel d 2::Algebraic real 2 a, AlgebraicKernel d 2::Coefficient x)

Compares the first coordinate of a with x.

result type fo( AlgebraicKernel d 2::Algebraic real 2 a, AlgebraicKernel d 2::Algebraic real 1 x)

Compares the first coordinate of a with x.

See Also

AlgebraicKernel d 2::CompareY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 443
AlgebraicKernel d 2::CompareXY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 444
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AlgebraicKernel d 2::CompareY 2

Definition

Compares the second coordinated of AlgebraicKernel d 2::Algebraic real 2s.

Refines

AdaptableBinaryFunction

Types

AlgebraicKernel d 2::CompareY 2:: result type

Type convertible to CGAL::Comparison result

typedef AlgebraicKernel d 2::Algebraic real 2 first argument type;
typedef AlgebraicKernel d 2::Algebraic real 2 second argument type;

Operations

The following operators and their symmetric counterparts are required:

result type fo( first argument type a, second argument type b)

Compares the second coordinates of a and b.

result type fo( AlgebraicKernel d 2::Algebraic real 2 a, int y)

Compares the second coordinate of a with y.

result type fo( AlgebraicKernel d 2::Algebraic real 2 a, AlgebraicKernel d 2::Bound y)

Compares the second coordinate of a with y.

result type fo( AlgebraicKernel d 2::Algebraic real 2 a, AlgebraicKernel d 2::Coefficient y)

Compares the second coordinate of a with y.

result type fo( AlgebraicKernel d 2::Algebraic real 2 a, AlgebraicKernel d 2::Algebraic real 1 y)

Compares the second coordinate of a with y.

See Also

AlgebraicKernel d 2::CompareX 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 442
AlgebraicKernel d 2::CompareXY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 444
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AlgebraicKernel d 2::CompareXY 2

Definition

Compares AlgebraicKernel d 2::Algebraic real 2s lexicographically.

Refines

AdaptableBinaryFunction

Types

AlgebraicKernel d 2::CompareXY 2:: result type

Type convertible to CGAL::Comparison result

typedef AlgebraicKernel d 2::Algebraic real 2 first argument type;
typedef AlgebraicKernel d 2::Algebraic real 2 second argument type;

Operations

result type fo( first argument type a, second argument type b)

Compares a and b lexicographically.

result type fo( AlgebraicKernel d 2::Algebraic real 2 a, int x, int y)

Compares a with (x,y) lexicographically.

result type fo.operator()( AlgebraicKernel d 2::Algebraic real 2 a,
AlgebraicKernel d 2::Bound x,
AlgebraicKernel d 2::Bound y)

Compares a with (x,y) lexicographically.

result type fo.operator()( AlgebraicKernel d 2::Algebraic real 2 a,
AlgebraicKernel d 2::Coefficient x,
AlgebraicKernel d 2::Coefficient y)

Compares a with (x,y) lexicographically.

See Also

AlgebraicKernel d 2::CompareX 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 442
AlgebraicKernel d 2::CompareY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 443
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AlgebraicKernel d 2::ApproximateAbsoluteX 2

Definition

A model of AlgebraicKernel d 2::ApproximateAbsoluteX 2 is an AdaptableBinaryFunction that computes an
approximation of the x-coordinate of an AlgebraicKernel d 2::Algebraic real 2 value with respect to a given
absolute precision.

Refines

AdaptableBinaryFunction

Types

typedef std::pair<AlgebraicKernel d 1::Bound, AlgebraicKernel d 1::Bound>

result type;
typedef AlgebraicKernel d 2::Algebraic real 2 first argument type;
typedef int second argument type;

Operations

result type fo( first argument type v, second argument type a)

The function computes a pair p of AlgebraicKernel d 1::Bound, where
p. f irst represents the lower approximation and p.second represents the
upper approximation. The pair p approximates the x-coordinate x of the
AlgebraicKernel d 2::Algebraic real 2 value v with respect to the abso-
lute precision a.
Postcondition: p. f irst <= x
Postcondition: x <= p.second
Postcondition: (x− p. f irst) <= 2−a

Postcondition: (p.second− x) <= 2−a

See Also

AlgebraicKernel d 2::ApproximateRelativeX 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 447
AlgebraicKernel d 1::ApproximateAbsolute 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 416
AlgebraicKernel d 1::ApproximateRelative 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 417
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AlgebraicKernel d 2::ApproximateAbsoluteY 2

Definition

A model of AlgebraicKernel d 2::ApproximateAbsoluteY 2 is an AdaptableBinaryFunction that computes an
approximation of the y-coordinate of an AlgebraicKernel d 2::Algebraic real 2 value with respect to a given
absolute precision.

Refines

AdaptableBinaryFunction

Types

typedef std::pair<AlgebraicKernel d 1::Bound, AlgebraicKernel d 1::Bound>

result type;
typedef AlgebraicKernel d 2::Algebraic real 2 first argument type;
typedef int second argument type;

Operations

result type fo( first argument type v, second argument type a)

The function computes a pair p of AlgebraicKernel d 1::Bound, where
p. f irst represents the lower approximation and p.second represents the
upper approximation. The pair p approximates the y-coordinate y of the
AlgebraicKernel d 2::Algebraic real 2 value v with respect to the abso-
lute precision a.
Postcondition: p. f irst <= y
Postcondition: y <= p.second
Postcondition: (y− p. f irst) <= 2−a

Postcondition: (p.second− y) <= 2−a

See Also

AlgebraicKernel d 2::ApproximateRelativeY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 448
AlgebraicKernel d 1::ApproximateAbsolute 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 416
AlgebraicKernel d 1::ApproximateRelative 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 417
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AlgebraicKernel d 2::ApproximateRelativeX 2

Definition

A model of AlgebraicKernel d 2::ApproximateRelativeX 2 is an AdaptableBinaryFunction that computes an
approximation of the x-coordinate of an AlgebraicKernel d 2::Algebraic real 2 value with respect to a given
relative precision.

Refines

AdaptableBinaryFunction

Types

typedef std::pair<AlgebraicKernel d 1::Bound, AlgebraicKernel d 1::Bound>

result type;
typedef AlgebraicKernel d 2::Algebraic real 2 first argument type;
typedef int second argument type;

Operations

result type fo( first argument type v, second argument type a)

The function computes a pair p of AlgebraicKernel d 1::Bound, where
p. f irst represents the lower approximation and p.second represents the
upper approximation. The pair p approximates the x-coordinate x of the
AlgebraicKernel d 2::Algebraic real 2 value v with respect to the rela-
tive precision a.
Postcondition: p. f irst <= x
Postcondition: x <= p.second
Postcondition: (x− p. f irst) <= 2−a|x|
Postcondition: (p.second− x) <= 2−a|x|

See Also

AlgebraicKernel d 2::ApproximateAbsoluteY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 446
AlgebraicKernel d 1::ApproximateAbsolute 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 416
AlgebraicKernel d 1::ApproximateRelative 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 417
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AlgebraicKernel d 2::ApproximateRelativeY 2

Definition

A model of AlgebraicKernel d 2::ApproximateRelativeY 2 is an AdaptableBinaryFunction that computes an
approximation of the y-coordinate of an AlgebraicKernel d 2::Algebraic real 2 value with respect to a given
relative precision.

Refines

AdaptableBinaryFunction

Types

typedef std::pair<AlgebraicKernel d 1::Bound, AlgebraicKernel d 1::Bound>

result type;
typedef AlgebraicKernel d 2::Algebraic real 2 first argument type;
typedef int second argument type;

Operations

result type fo( first argument type v, second argument type a)

The function computes a pair p of AlgebraicKernel d 1::Bound, where
p. f irst represents the lower approximation and p.second represents the
upper approximation. The pair p approximates the y-coordinate y of the
AlgebraicKernel d 2::Algebraic real 2 value v with respect to the rela-
tive precision a.
Postcondition: p. f irst <= y
Postcondition: y <= p.second
Postcondition: (y− p. f irst) <= 2−a|y|
Postcondition: (p.second− y) <= 2−a|y|

See Also

AlgebraicKernel d 2::ApproximateAbsoluteY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 446
AlgebraicKernel d 1::ApproximateAbsolute 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 416
AlgebraicKernel d 1::ApproximateRelative 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 417
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AlgebraicKernel d 2::BoundBetweenX 2

Definition

Computes a number of type AlgebraicKernel d 1::Bound in-between the first coordinates of two
AlgebraicKernel d 2::AlgebraicReal 2.

Refines

AdaptableBinaryFunction

Types

typedef AlgebraicKernel d 1::Bound result type;
typedef AlgebraicKernel d 2::Algebraic real 2 first argument type;
typedef AlgebraicKernel d 2::Algebraic real 2 second argument type;

Operations

result type fo( first argument type a, second argument type b)

Computes a number of type AlgebraicKernel d 1::Bound in-between the
first coordinates of a and b.
Precondition: ax 6= bx.

See Also

AlgebraicKernel d 2::BoundBetweenY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 450
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AlgebraicKernel d 2::BoundBetweenY 2

Definition

Computes a number of type AlgebraicKernel d 1::Bound in-between the second coordinates of two
AlgebraicKernel d 2::AlgebraicReal 2.

Refines

AdaptableBinaryFunction

Types

typedef AlgebraicKernel d 1::Bound result type;
typedef AlgebraicKernel d 2::Algebraic real 2 first argument type;
typedef AlgebraicKernel d 2::Algebraic real 2 second argument type;

Operations

result type fo( first argument type a, second argument type b)

Computes a number of type AlgebraicKernel d 1::Bound in-between the
second coordinates of a and b.
Precondition: ay 6= by.

See Also

AlgebraicKernel d 2::BoundBetweenX 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 449
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CGAL::Algebraic kernel d 2<Coeff>

#include <CGAL/Algebraic kernel d 2.h>

Definition

This class is based on an algorithm computing a geometric-topological analysis of a single curve [EKW07] and
of a pair of curves [EK08]. The main idea behind both analyses is to compute the critical x-coordinates of
curves and curve pairs by projection (resultants), and compute additional information about the critical fibers
using subresultants and Sturm-Habicht sequences [GVRLR98]. With that information, the fiber at critical x-
coordinates is computed by a variant of the Bitstream Descartes method. See also [Ker09] for a comprehensive
description of these techniques.

A point p of type Algebraic real 2 is represented by its x-coordinate x0 (as described in the Algebraic kernel
d 1 paragraph above), an algebraic curve where p lies on, and an integer i, denoting that p is the ith point in
the fiber at x0, counted from the bottom (ignoring a possible vertical line at x0). This determines the point
uniquely, but the y-coordinate is not stored internally in terms of an Algebraic real 1 object. Querying such a
representation by calling Compute y 2 is a time-consuming step, and should be avoided for efficiency reasons
if possible. Note that this representation is not exposed in the interface.

The template argument Coeff determines the coefficient type of the kernel, which is also the innermost coeffi-
cient type of the supported polynomials.

Currently, the following coefficient types are supported:
– Gmpz, Gmpq, (requires configuration with external libraries GMP, MPFR and MPFI)
– CORE::BigInt, CORE::BigRat, (requires configuration with external library GMP)
– leda integer, leda rational. (requires configuration with external library LEDA)

advanced

The template argument type can also be set to Sqrt extension<NT,ROOT>, where NT is one of the types listed
above. ROOT should be one of the integer types. See also the documentation of Sqrt extension<NT,ROOT>.

advanced

Is Model for the Concepts

AlgebraicKernel d 2.

Types

Algebraic kernel d 2<Coeff>:: Coefficient Same type as the template argument Coeff .

Algebraic kernel d 2<Coeff>:: Polynomial 2 A model of AlgebraicKernel d 2::Polynomial 2

.

Algebraic kernel d 2<Coeff>:: Algebraic real 2

A model of AlgebraicKernel d 2::AlgebraicReal 2
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Algebraic kernel d 2<Coeff>:: Bound The choice of Coeff also determines the provided bound,
type. In case of Coeff is - Gmpz or Gmpq this is Gmpq
- CORE::BigInt or CORE::BigInt this is CORE::BigRat
- leda integer or leda integer this is leda rational

Algebraic kernel d 2<Coeff>:: Multiplicity type

The multiplicity type is int.

See Also

AlgebraicKernel d 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 398
AlgebraicKernel d 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 422
Polynomial d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 261
CGAL::Algebraic kernel d 2<Coeff> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 451
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Part III

Combinatorial Algorithms
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Chapter 9

Monotone and Sorted Matrix Search
Michael Hoffmann

CGAL::monotone matrix search and CGAL::sorted matrix search are techniques that deal with the problem
of efficiently finding largest entries in matrices with certain structural properties. Many concrete problems can
be modelled as matrix search problems, and for some of them we provide explicit solutions that allow you to
solve them without knowing about the matrix search technique. Examples are, the computation of all furthest
neighbors for the vertices of a convex polygon, maximal k-gons inscribed into a planar point set, and computing
rectangular p-centers.
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Monotone and Sorted Matrix Search
Reference Manual
Michael Hoffmann

This chapter describes concepts, classes, and functions for monotone and sorted matrix search.

Assertions

The optimization code uses infix OPTIMISATION in the assertions, e.g. defining the compiler flag CGAL
OPTIMISATION NO PRECONDITIONS switches precondition checking off, cf. Section 2.8.

9.1 Classified References Pages

CGAL::monotone matrix search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 458

CGAL::Dynamic matrix<M> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 460

MonotoneMatrixSearchTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 462
BasicMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 464

CGAL::sorted matrix search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 465

CGAL::Sorted matrix search traits adaptor<F,M> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 468

SortedMatrixSearchTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 470

9.2 Alphabetical List of Reference Pages

BasicMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 464
Dynamic matrix<M> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 460
MonotoneMatrixSearchTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 462
monotone matrix search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 458
SortedMatrixSearchTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 470
Sorted matrix search traits adaptor<F,M> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 468
sorted matrix search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 465
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CGAL::monotone matrix search

advanced

Definition

The function monotone matrix search computes the maxima for all rows of a totally monotone matrix.

More precisely, monotony for matrices is defined as follows.

Let K be a totally ordered set, M ∈ K(n,m) a matrix over K and for 0≤ i < n:

rmaxM(i) :∈
{

min
0≤ j<m

j
∣∣∣∣M[i, j] = max

0≤k<m
M[i, k]

}
the (leftmost) column containing the maximum entry in row i. M is called monotone, iff

∀0≤ i1 < i2 < n : rmaxM(i1)≤ rmaxM(i2) .

M is totally monotone, iff all of its submatrices are monotone (or equivalently: iff all 2× 2 submatrices are
monotone).

#include <CGAL/monotone matrix search.h>

template < class Matrix, class RandomAccessIC, class Compare strictly >
void monotone matrix search(

Matrix m,
RandomAccessIC t,
Compare strictly compare strictly = less< Matrix::Value >())

computes the maximum (as specified by compare strictly) entry for each row of m and writes the corresponding
column to t, i.e. t[i] is set to the index of the column containing the maximum element in row i. The maximum
mr of a row r is the leftmost element for which compare strictly(mr, x) is false for all elements x in r.

Precondition: t points to a structure of size at least m.number of rows()

Requirement:

1. Matrix is a model for MonotoneMatrixSearchTraits.

2. Value type of RandomAccessIC is int.

3. If compare strictly is defined, it is an adaptable binary function: Matrix::Value ×Matrix::Value→ bool
describing a strict (non-reflexive) total ordering on Matrix::Value.

See Also

MonotoneMatrixSearchTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 462
CGAL::all furthest neighbors 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3933
CGAL::maximum area inscribed k gon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3912
CGAL::maximum perimeter inscribed k gon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3914
CGAL::extremal polygon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3916
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Implementation

The implementation uses an algorithm by Aggarwal et al.[AKM+87]. The runtime is linear in the number of
rows and columns of the matrix.

advanced
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CGAL::Dynamic matrix<M>

advanced

Definition

The class Dynamic matrix<M> is an adaptor for an arbitrary matrix class M to provide the dynamic operations
needed for monotone matrix search.

Requirements

M is a model for BasicMatrix.

#include <CGAL/Dynamic matrix.h>

Is Model for the Concepts

MonotoneMatrixSearchTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 462
BasicMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 464

Creation

Dynamic matrix<M> d( M m); initializes d to m. m is not copied, we only store a reference.

Operations

int d.number of columns() const

returns the number of columns.

int d.number of rows() const

returns the number of rows.

Entry d( int row, int column)

returns the entry at position (row, column).
Precondition:
0≤ row < number of rows() and
0≤ column < number of columns().

void d.replace column( int old, int new)

replace column old with column number new.
Precondition:
0≤ old, new < number of columns().

460



Matrix* d.extract all even rows() const

returns a new Matrix consisting of all rows of d with even
index, (i.e. first row is row 0 of d, second row is row 2 of d
etc.).
Precondition: number of rows() > 0.

void d.shrink to quadratic size()

deletes the rightmost columns, such that d becomes
quadratic.
Precondition:
number of columns() ≥ number of rows().
Postcondition:
number of rows() == number of columns().

See Also

CGAL::monotone matrix search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 458
MonotoneMatrixSearchTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 462
BasicMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 464

Implementation

All operations take constant time except for extract all even rows which needs time linear in the number of
rows.

advanced
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MonotoneMatrixSearchTraits

advanced

Definition

The concept MonotoneMatrixSearchTraits is a refinement of BasicMatrix and defines types and operations
needed to compute the maxima for all rows of a totally monotone matrix using the function monotone matrix
search.

Types

MonotoneMatrixSearchTraits:: Value The type of a matrix entry.

Operations

int m.number of columns() const

returns the number of columns.

int m.number of rows() const

returns the number of rows.

Entry m.operator()( int row, int column) const

returns the entry at position (row, column).
Precondition:
0≤ row < number of rows() and
0≤ column < number of columns().

void m.replace column( int old, int new)

replace column old with column number new.
Precondition:
0≤ old, new < number of columns().

Matrix* m.extract all even rows() const

returns a new Matrix consisting of all rows of m with even
index, (i.e. first row is row 0 of m, second row is row 2 of m
etc.).
Precondition: number of rows() > 0.

462



void m.shrink to quadratic size()

deletes the rightmost columns, such that m becomes
quadratic.
Precondition:
number of columns() ≥ number of rows().
Postcondition:
number of rows() == number of columns().

Notes

• For the sake of efficiency (and in order to achieve the time bounds claimed for monotone matrix search),
all these operations have to be realized in constant time – except for extract all even rows which may
take linear time.

• There is an adaptor Dynamic matrix that can be used to add most of the functionality described above to
arbitrary matrix classes.

Has Models

CGAL::Dynamic matrix<M> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 460

See Also

CGAL::monotone matrix search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 458

advanced
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BasicMatrix

advanced

Definition

A class has to provide the following types and operations in order to be a model for BasicMatrix.

Types

BasicMatrix:: Value The type of a matrix entry. It has to define a copy constructor.

Operations

int m.number of columns() const

returns the number of columns.

int m.number of rows() const

returns the number of rows.

Entry m.operator()( int row, int column) const

returns the entry at position (row, column).
Precondition:
0≤ row < number of rows() and
0≤ column < number of columns().

Has Models

CGAL::Dynamic matrix<M> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 460

See Also

MonotoneMatrixSearchTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 462
SortedMatrixSearchTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 470

advanced
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CGAL::sorted matrix search

advanced

Definition

The function sorted matrix search selects the smallest entry in a set of sorted matrices that fulfills a certain
feasibility criterion.

More exactly, a matrix M = (mi j) ∈ Sr×l (over a totally ordered set S) is sorted, iff

∀1≤ i≤ r, 1≤ j < l : mi j ≤ mi( j+1) and

∀1≤ i < r, 1≤ j ≤ l : mi j ≤ m(i+1) j .

Now let M be a set of n sorted matrices over S and f be a monotone predicate on S, i.e.

f : S−→ bool with f (r) =⇒ ∀ t ∈ S , t > r : f (t) .

If we assume there is any feasible element in one of the matrices in M , there certainly is a smallest such element.
This is the one we are searching for.

The feasibility test as well as some other parameters can (and have to) be customized through a traits class.

#include <CGAL/sorted matrix search.h>

template < class RandomAccessIterator, class Traits >
Traits::Value sorted matrix search( RandomAccessIterator f, RandomAccessIterator l, Traits t)

returns the element x in one of the sorted matrices from the range [ f , l), for which t.is feasible( x) is true and
t.compare( x, y) is true for all other y values from any matrix for which t.is feasible( y) is true.

Precondition:

1. All matrices in [ f , l) are sorted according to Traits::compare non strictly.

2. There is at least one entry x in a matrix M ∈ [ f , l) for which Traits::is feasible(x) is true.

Requirement:

1. Traits is a model for SortedMatrixSearchTraits.

2. Value type of RandomAccessIterator is Traits::Matrix.

See Also

SortedMatrixSearchTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 470
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Implementation

The implementation uses an algorithm by Frederickson and Johnson[FJ83, FJ84] and runs in O(n ·k+ f · log(n ·
k)), where n is the number of input matrices, k denotes the maximal dimension of any input matrix and f the
time needed for one feasibility test.

Example

In the following program we build a random vector a = (ai)i=1, ...,5 (elements drawn uniformly from {0, . . . , 99})
and construct a Cartesian matrix M containing as elements all sums ai + a j, i, j ∈ {1, . . . , 5}. If a is sorted, M
is sorted as well. So we can apply sorted matrix search to compute the upper bound for the maximal entry of
a in M.� �
#include <CGAL/Random.h>
#include <CGAL/Cartesian_matrix.h>
#include <CGAL/sorted_matrix_search.h>
#include <vector>
#include <algorithm>
#include <iterator>
#include <functional>

typedef int Value;
typedef std::vector<Value> Vector;
typedef Vector::iterator Value_iterator;
typedef std::vector<Vector> Vector_cont;
typedef CGAL::Cartesian_matrix<std::plus<int>,

Value_iterator,
Value_iterator> Matrix;

int main()
{

// set of vectors the matrices are build from:
Vector_cont vectors;

// generate a random vector and sort it:
Vector a;
const int n = 5;
for (int i = 0; i < n; ++i)

a.push_back(CGAL::default_random(100));
std::sort(a.begin(), a.end());
std::cout << "a = ( ";
std::copy(a.begin(), a.end(), std::ostream_iterator<int>(std::cout,"
"));

std::cout << ")\n";

// build a Cartesian matrix from a:
Matrix M(a.begin(), a.end(), a.begin(), a.end());

// search for an upper bound for max(a):
Value bound = a[n-1];
Value upper_bound =
CGAL::sorted_matrix_search(

&M, &M + 1,
CGAL::sorted_matrix_search_traits_adaptor(
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std::bind2nd(std::greater_equal<Value>(), bound), M));
std::cout << "Upper bound for " << bound << " is "

<< upper_bound << "." << std::endl;

return 0;
}� �
File: examples/Matrix_search/sorted_matrix_search.cpp

advanced
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CGAL::Sorted matrix search traits adaptor<F,M>

advanced

#include <CGAL/Sorted matrix search traits adaptor.h>

Definition

The class Sorted matrix search traits adaptor<F,M> can be used as an adaptor to create sorted matrix search
traits classes for arbitrary feasibility test and matrix classes F resp. M.

Is Model for the Concepts

SortedMatrixSearchTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 470

Requirements

1. M is a model for BasicMatrix and

2. F defines a copy constructor and a monotone bool operator()( const Value&).

Creation

Sorted matrix search traits adaptor<F,M> t( const F& m);

initializes t to use m for feasibility testing.

Types

Sorted matrix search traits adaptor<F,M>:: Matrix

typedef to M.

Sorted matrix search traits adaptor<F,M>:: Value

typedef to Matrix::Value.

Sorted matrix search traits adaptor<F,M>:: Compare strictly

typedef to std::less<Value>.

Sorted matrix search traits adaptor<F,M>:: Compare non strictly

typedef to std::less equal<Value>.
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Operations

Compare strictly t.compare strictly() const

returns the Compare strictly object to be used for the search.

Compare non strictly

t.compare non strictly() const

returns the Compare non strictly object to be used for the
search.

bool t.is feasible( const Value& a)

uses the feasibility test given during creation.

advanced
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SortedMatrixSearchTraits

advanced

Definition

The concept SortedMatrixSearchTraits defines types and operations needed to compute the smallest entry in a
set of sorted matrices that fulfills a certain feasibility criterion using the function sorted matrix search.

Types

SortedMatrixSearchTraits:: Matrix The class used for representing matrices. It has to be a model
for BasicMatrix.

typedef Matrix::Value

Value; The class used for representing the matrix elements.

SortedMatrixSearchTraits:: Compare strictly An adaptable binary function class: Value × Value→ bool
defining a non-reflexive total order on Value. This deter-
mines the direction of the search.

SortedMatrixSearchTraits:: Compare non strictly

An adaptable binary function class: Value × Value→ bool
defining the reflexive total order on Value corresponding to
Compare strictly.

Operations

Compare strictly t.compare strictly() const

returns the Compare strictly object to be used for the search.

Compare non strictly

t.compare non strictly() const

returns the Compare non strictly object to be used for the
search.

bool t.is feasible( const Value& a)

The predicate to determine whether an element a is feasible.
It has to be monotone in the sense that compare( a, b) and
is feasible( a) imply is feasible( b).
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Has Models

CGAL::Sorted matrix search traits adaptor<F,M> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 468

See Also

CGAL::sorted matrix search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 465
BasicMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 464
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Chapter 10

Linear and Quadratic Programming
Solver
Kaspar Fischer, Bernd Gärtner, Sven Schönherr, and Frans Wessendorp
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10.1 Which Programs can be Solved?

This package lets you solve convex quadratic programs of the general form

(QP) minimize xT Dx+ cT x+ c0

subject to Ax R b,

l≤ x≤ u

in n real variables x = (x0, . . . ,xn−1). Here,

• A is an m×n matrix (the constraint matrix),

• b is an m-dimensional vector (the right-hand side),

• R is an m-dimensional vector of relations from {≤,=,≥},

• l is an n-dimensional vector of lower bounds for x, where l j ∈ R∪{−∞} for all j

• u is an n-dimensional vector of upper bounds for x, where u j ∈ R∪{∞} for all j

• D is a symmetric positive-semidefinite n×n matrix (the quadratic objective function),

• c is an n-dimensional vector (the linear objective function), and

• c0 is a constant.

If D = 0, the program (QP) is actually a linear program. Section 10.2.2 on robustness briefly discusses the case
of D not being positive-semidefinite and therefore not defining a convex program.

Solving the program means to find an n-vector x∗ such that Ax∗ R b, l ≤ x∗ ≤ u (a feasible solution), and with
the smallest objective function value x∗T Dx∗+ cT x∗+ c0 among all feasible solutions.

There might be no feasible solution at all, in which case the quadratic program is infeasible, or there might be
feasible solutions of arbitrarily small objective function value, in which case the program is unbounded.

10.2 Design, Efficiency, and Robustness

The design of the package is quite simple. The linear or quadratic program to be solved is supplied in form of
an object of a class that is a model of the concept QuadraticProgram (or some specialized other concepts, e.g.
for linear programs). CGAL provides a number of easy-to-use and flexible models, see Section 10.3 below. The
input data may be of any given number type, such as double, int, or any exact type.

Then the program is solved using the function solve quadratic program (or some specialized other functions,
e.g. for linear programs). For this, you also have to provide a suitable exact number type ET used in the solution
process. In case of input type double, solution methods that use floating-point-filtering are chosen by default
for certain programs (in some cases, this is not appropriate, and the default should be changed; see Section 10.8
for details).

The output of this is an object of Quadratic program solution<ET> which you can in turn query for various
things: what is the status of the program (optimally solved, infeasible, or unbounded?), what are the values of
the optimal solution x∗, what is the associated objective function value, etc.

You can in particular get certificates for the solution. In short, these are proofs that the output is correct. Thus,
if you don’t believe in the solution (whether it says “optimally solved”, “infeasible”, or “unbounded”), you can
verify it yourself by using the certificates. Section 10.7 says more about this.
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10.2.1 Efficiency

The concept QuadraticProgram (as well as the other specialized ones) require a dense interface of the program,
in terms of random-access iterators over the matrices and vectors of (QP). Zero entries therefore play no special
role and are treated like all other entries by the interface.

This has mainly historical reasons: the original motivation behind this package was low-dimensional geo-
metric optimization where a dense representation is appropriate and efficient. In fact, the CGAL packages
Min annulus d<Traits> and Polytope distance d<Traits> internally use the linear and quadratic programming
solver.

As a user, however, you don’t necessarily have to provide a dense representation of your program. You do not
pass vectors or matrices to the solution functions, but rather specify the vectors and matrices through iterators.
The iterator abstraction easily allows to build models that convert a sparse representation into a dense interface.
The predefined models Quadratic program<NT> and Quadratic program from mps<NT> do exactly this; in
using them, you can forget about the dense interface.

Nevertheless, if you care about efficiency, you cannot completely ignore the issue. If you think about a quadratic
program in n variables and m constraints, its dense interface has Θ(n2 + mn) entries, even if actually very few
of them are nonzero. This has consequences for the complexity of the internal computations. In fact, a single
iteration of the solution process has complexity at least Ω(mn), since usually, all entries of the matrix A are
accessed. This implies that problems where min(n,m) is large cannot be solved efficiently, even if the number
of nonzero entries in the problem description is very small.

We can actually be quite precise about performance, in terms of the following parameters.
n : the number of variables (or columns of A),
m : the number of constraints (or rows of A),
e : the number of equality constraints,
r : the rank of the quadratic objective function matrix D.

The time required to solve the problems is in most cases linear in max(n,m), but with a factor heavily depending
on min(n,e)+ r. Therefore, the solver will be efficient only if min(n,e)+ r is small.

Here are the scenarios in which this applies:

• Quadratic programs with a small number of variables, but possibly a large number of inequality con-
straints,

• Linear programs with a small number of equality constraints but possibly a large number of variables,

• Quadratic programs with a small number of equality constraints and D of small rank, but possibly with a
large number of variables.

How small is small? If min(n,e)+ r is up to 10, the solver will probably be very fast, even if max(n,m) goes
into the millions. If min(n,m)+ r is up to a few hundreds, you may still get a solution within reasonable time,
depending on the problem characteristics.

If you have a problem where both n and e are well above 1,000, say, then chances are high that CGAL cannot
solve it within reasonable time.
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10.2.2 Robustness

Given that you use an exact number type in the function solve quadratic program (or in the other, specialized
solution functions), the solver will give you exact rational output, for every convex quadratic program. It may
fail to compute a solution only if

1. The quadratic program is too large (see the previous subsection on efficiency).

2. The quadratic objective function matrix D is not positive-semidefinite (see the discussion below).

3. The floating-point filter used by default for certain programs and input type double fails due to a double
exponent overflow. This happens in rare cases only, and it does not pay off to sacrifice the efficiency of
the filtered approach in order to cope with these rare cases. There are means, however, to avoid such
problems by switching to a slower non-filtered variant, see Section 10.8.1.

4. The solver internally cycles. This also happens in rare cases only. However, if you have a hunch that
the solver cycles on your problem, there are means to switch to a slower variant that is guaranteed not to
cycle, see Section 10.8.2.

The second item merits special attention. First, you may ask why the solver does not check that D is positive
semidefinite. But recall that D is given by a dense interface, and it would therefore cost Ω(n2) time already
to access all entries of the matrix D. The solver itself gets away with accessing much less entries of D in the
relevant case where r, the rank of D, is small.

Nevertheless, the solver contains some runtime checks that may detect that the matrix D is not positive-
semidefinite. But you may as well get an “optimal solution” in this case, even with valid certificates. The
validity of these certificates, however, depends on D being positive-semidefinite; if this is not the case, the cer-
tificates only prove that the solver has found a “critical point” of your (nonconvex) program, but there are no
guarantees whatsoever that this is a global optimum, or even a local optimum.

10.3 How to Enter and Solve a Program

In this section, we describe how you can supply and solve your problem, using the CGAL program models and
solution functions. There are two essentially different ways to proceed, and we will discuss them in turn. In
short,

• you can let the model take care of your program data; you start from an empty program and then simply
insert the non-zero entries, or read them from a file (more generally, any input stream) in MPSFormat.
You can also change program entries at any time. This is usually the most convenient way if you don’t
want to care about representation issues;

• you can maintain the data yourself and only supply suitable random-access iterators over the matrices
and vectors. This is advantageous if you already have the data (explicitly, or implicitly encoded, for
example through iterators) and want to avoid copying of data. Typically, this happens if you write generic
iterator-based code.
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Our running example is the following quadratic program in two variables:

minimize x2 +4(y−4)2 (= x2 +4y2−32y+64)
subject to x+ y ≤ 7

−x+2y ≤ 4
x ≥ 0
y ≥ 0
y ≤ 4

Figure 10.1 shows a picture. It depicts the five inequalities of the program, along with the feasible region
(green), the set of points that satisfy all the five constraints. The dashed elliptic curves represent contour lines
of the objective function, i.e., along each dashed curve, the objective function value is constant.

The global minimum of the objective function is attained at the point (0,4), and the minimum within the feasible
region appears at the point (2,3) marked with a black dot. The value of the objective function at this optimal
solution is 22 +4(3−4)2 = 8.

20 7

0

3

4

Figure 10.1: A quadratic program in two variables

10.3.1 Constructing a Program from Data

Here is how this quadratic program can be solved in CGAL according to the first way (letting the model take
care of the data). We use int as the input type, and MP Float or Gmpz (which is faster and preferable if GMP is
installed) as the exact type for the internal computations. In larger examples, it pays off to use double as input
type in order to profit from the automatic floating-point filtering that takes place then.

For examples how to work with the input type double, we refer to Sections 10.5 and 10.8.
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Note: For the quadratic objective function, the entries of the matrix 2D have to be provided, rather than D.
Although this is common to almost all quadratic programming solvers, it can easily be overlooked by a novice.� �
#include <iostream>
#include <cassert>
#include <CGAL/basic.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>

// choose exact integral type
#ifdef CGAL_USE_GMP
#include <CGAL/Gmpz.h>
typedef CGAL::Gmpz ET;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif

// program and solution types
typedef CGAL::Quadratic_program<int> Program;
typedef CGAL::Quadratic_program_solution<ET> Solution;

int main() {
// by default, we have a nonnegative QP with Ax <= b
Program qp (CGAL::SMALLER, true, 0, false, 0);

// now set the non-default entries:
const int X = 0;
const int Y = 1;
qp.set_a(X, 0, 1); qp.set_a(Y, 0, 1); qp.set_b(0, 7); // x + y <= 7
qp.set_a(X, 1, -1); qp.set_a(Y, 1, 2); qp.set_b(1, 4); // -x + 2y <= 4
qp.set_u(Y, true, 4); // y <= 4
qp.set_d(X, X, 2); qp.set_d (Y, Y, 8); // !!specify 2D!! xˆ2 + 4 yˆ2
qp.set_c(Y, -32); // -32y
qp.set_c0(64); // +64

// solve the program, using ET as the exact type
Solution s = CGAL::solve_quadratic_program(qp, ET());
assert (s.solves_quadratic_program(qp));

// output solution
std::cout << s;
return 0;

}� �
File: examples/QP_solver/first_qp.cpp

Asuming that GMP is installed, the output of the of the above program is:

status: OPTIMAL
objective value: 8/1
variable values:
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0: 2/1
1: 3/1

If GMP is not installed, the values are of course the same, but numerator and denominator might have a common
divisor that is not factored out.

10.3.2 Constructing a Program from a Stream

Here, the program data must be available in MPSFormat (the MPSFormat page shows how our running example
looks like in this format, and it briefly explains the format). Assuming that your working directory contains the
file first qp.mps, the following program will read and solve it, with the same output as before.� �
#include <iostream>
#include <fstream>
#include <CGAL/basic.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>

// choose exact integral type
#ifdef CGAL_USE_GMP
#include <CGAL/Gmpz.h>
typedef CGAL::Gmpz ET;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif

// program and solution types
typedef CGAL::Quadratic_program_from_mps<int> Program;
typedef CGAL::Quadratic_program_solution<ET> Solution;

int main() {
std::ifstream in ("first_qp.mps");
Program qp(in); // read program from file
assert (qp.is_valid()); // we should have a valid mps file

// solve the program, using ET as the exact type
Solution s = CGAL::solve_quadratic_program(qp, ET());

// output solution
std::cout << s;
return 0;

}� �
File: examples/QP_solver/first_qp_from_mps.cpp

10.3.3 Constructing a Program from Iterators

The following program again solves our running example from above, with the same output, but this time with
iterators over data stored in suitable containers. You can see that we also store zero entries here (in D). For this
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toy problem, the previous two approaches (program from data/stream) are clearly preferable, but Section 10.5
shows an example where it makes sense to use the iterator-based approach.� �
#include <iostream>
#include <CGAL/basic.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>

// choose exact integral type
#ifdef CGAL_USE_GMP
#include <CGAL/Gmpz.h>
typedef CGAL::Gmpz ET;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif

// program and solution types
typedef CGAL::Quadratic_program_from_iterators
<int**, // for A
int*, // for b
CGAL::Const_oneset_iterator<CGAL::Comparison_result>, // for r
bool*, // for fl
int*, // for l
bool*, // for fu
int*, // for u
int**, // for D
int*> // for c

Program;
typedef CGAL::Quadratic_program_solution<ET> Solution;

int main() {
int Ax[] = {1, -1}; // column for x
int Ay[] = {1, 2}; // column for y
int* A[] = {Ax, Ay}; // A comes columnwise
int b[] = {7, 4}; // right-hand side
CGAL::Const_oneset_iterator<CGAL::Comparison_result>

r( CGAL::SMALLER); // constraints are "<="
bool fl[] = {true, true}; // both x, y are
lower-bounded

int l[] = {0, 0};
bool fu[] = {false, true}; // only y is upper-bounded
int u[] = {0, 4}; // x’s u-entry is ignored
int D1[] = {2}; // 2D_{1,1}
int D2[] = {0, 8}; // 2D_{2,1}, 2D_{2,2}
int* D[] = {D1, D2}; // D-entries on/below
diagonal

int c[] = {0, -32};
int c0 = 64; // constant term

// now construct the quadratic program; the first two parameters are
// the number of variables and the number of constraints (rows of A)
Program qp (2, 2, A, b, r, fl, l, fu, u, D, c, c0);

// solve the program, using ET as the exact type
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Solution s = CGAL::solve_quadratic_program(qp, ET());

// output solution
std::cout << s;
return 0;

}� �
File: examples/QP_solver/first_qp_from_iterators.cpp

Note 1: The example shows an interesting feature of this approach: not all data need to come from containers.
Here, the iterator over the vector of relations can be provided through the class Const oneset iterator<T>, since
all entries of this vector are equal to CGAL::SMALLER. The same could have been done with the vector fl for
the finiteness of the lower bounds.

Note 2: The program type looks a bit scary, with its total of 9 template arguments, one for each iterator type. In
Section 10.5.1 we show how the explicit construction of this type can be circumvented.

10.4 Solving Linear and Nonnegative Programs

Let us reconsider the general form of (QP) from Section 10.1 above. If D = 0, the quadratic program is in fact a
linear program, and in the case that the bound vectors l is the zero vector and all entries of u are ∞, the program
is said to be nonnegative. The package offers dedicated models and solution methods for these special cases.

From an interface perspective, this is just syntactic sugar: in the model Quadratic program<NT>, we can easily
set the default bounds so that a nonnegative program results, and a linear program is obtained by simply not
inserting any D-entries. Even in the iterator-based approach (see QP solver/first qp from iterators.cpp), linear
and nonnegative programs can easily be defined through suitable Const oneset iterator<T>-style iterators.

The main reason for having dedicated solution methods for linear and nonnegative programs is efficiency: if
the solver knows that the program is linear, it can save some computations compared to the general solver that
unknowingly has to fiddle around with a zero D-matrix. As in Section 10.2.2 above, we can argue that checking
in advance whether D = 0 is not an option in general, since this may require Ω(n2) time on the dense interface.

Similarly, if the solver knows that the program is nonnegative, it will be more efficient than under the general
bounds l ≤ x ≤ u. You can argue that nonnegativity is something that could easily be checked in time O(n)
beforehand, but then again nonnegative programs are so frequent that the syntactic sugar aspect becomes some-
what important. After all, we can save four iterators in specifying a nonnegative linear program in terms of the
concept NonnegativeLinearProgram rather than LinearProgram.

Often, there are no bounds at all for the variables, i.e., all entries of l are −∞, and all entries of u are ∞ (this is
called a free program). There is no dedicated solution method for this case (a free quadratic or linear program
is treated like a general quadratic or linear program), but all predefined models make it easy to specify all sorts
of default bounds, covering the free case.

10.4.1 The Linear Programming Solver

Let’s go back to our first quadratic program from above and change it into a linear program by simply removing
the quadratic part of the objective function:
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minimize −32y+64
subject to x+ y ≤ 7

−x+2y ≤ 4
x ≥ 0
y ≥ 0
y ≤ 4

Figure 10.2 shows how this looks like. We will not visualize a linear objective function with contour lines but
with arrows instead. The arrow represents the (direction) of the vector −c, and we are looking for a feasible
solution that is “extreme” in the direction of the arrow. In our small example, this is the unique point “on” the
two constraints x1 + x2 ≤ 7 and −x1 + x2 ≤ 4, the point (10/3,11/3) marked with a black dot. The optimal
objective function value is −32(11/3)+64 =−160/3.

0 10/3 7

0

4
11/3

Figure 10.2: A linear program in two variables

Here is CGAL code for solving it, using the dedicated LP solver, and according to the three ways for constructing
a program that we have already discussed in Section 10.3.

QP solver/first lp.cpp
QP solver/first lp from mps.cpp
QP solver/first lp from iterators.cpp

In all cases, the output is

status: OPTIMAL
objective value: -160/3
variable values:
0: 10/3
1: 11/3
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10.4.2 The Nonnegative Quadratic Programming Solver

If we go back to our first quadratic program and remove the constraint y≤ 4, we arrive at a nonnegative quadratic
program:

minimize x2 +4(y−4)2 (= x2 +4y2−32y+64)
subject to x+ y ≤ 7

−x+2y ≤ 4
x,y ≥ 0

Figure 10.3 contains the illustration; since the constraint y≤ 4 was redundant, the feasible region and the optimal
solution do not change.

0 7

0

3

2

4

Figure 10.3: A nonnegative quadratic program in two variables

The following programs (using the dedicated solver for nonnegative quadratic programs) will therefore again
output

status: OPTIMAL
objective value: 8/1
variable values:
0: 2/1
1: 3/1

QP solver/first nonnegative qp.cpp
QP solver/first nonnegative qp from mps.cpp
QP solver/first nonnegative qp from iterators.cpp
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10.4.3 The Nonnegative Linear Programming Solver

Finally, a dedicated model and function is available for nonnnegative linear programs as well. Let’s take our
linear program from above and remove the constraint y≤ 4 to obtain a nonnegative linear program. At the same
time we remove the constant objective function term to get a “minimal” input and a “shortest” program; the
optimal value is −32(11/3) =−352/3.

minimize −32y
subject to x+ y ≤ 7

−x+2y ≤ 4
x,y ≥ 0

This can be solved by any of the following three programs

QP solver/first nonnegative lp.cpp
QP solver/first nonnegative lp from mps.cpp
QP solver/first nonnegative lp from iterators.cpp

The output will always be

status: OPTIMAL
objective value: -352/3
variable values:
0: 10/3
1: 11/3

10.5 Working from Iterators

Here we present a somewhat more advanced example that emphasizes the usefulness of solving linear and
quadratic programs from iterators. Let’s look at a situation in which a linear program is given implicitly, and
access to it is gained through properly constructed iterators.

The problem we are going to solve is the following: given points p1, . . . pn in d-dimensional space and another
point p: is p in the convex hull of {p1, . . . , pn}? In formulas, this is the case if and only if there are real
coefficients λ1, . . . ,λn such that p is a convex combination of p1, . . . , pn:

p =
n

∑
j=1

λ j p j,
n

∑
j=1

λ j = 1, λ j ≥ 0 for all j.

The problem of testing the existence of such λ j can be expressed as a linear program. It becomes particularly
easy when we use the homogeneous representations of the points: if q1, . . . ,qn,q ∈ Rd+1 are homogeneous
coordinates for p1, . . . , pn, p with positive homogenizing coordinates h1, . . . ,hn,h, we have

q j = h j · (p j | 1) for all j, and q = h · (p | 1).

Now, nonnegative λ1, . . . ,λn are suitable coefficients for a convex combination if and only if

n

∑
j=1

λ j(p j | 1) = (p | 1),
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equivalently, if there are µ1, . . . ,µn (with µ j = λ j ·h/h j for all j) such that

n

∑
j=1

µ j q j = q, µ j ≥ 0 for all j.

The linear program now tests for the existence of nonnegative µ j that satisfy the latter equation. Below is the
code; it defines a function that solves the linear program, given p and p1, . . . , pn (through an iterator range). The
only (mild) trickery involved is the construction of the nested iterator through a fixed column of the constraint
matrix A. We get this from transforming the iterator through the points using a functor that maps a point to an
iterator through its homogeneous coordinates.� �
#include <boost/config.hpp>
#include <boost/iterator/transform_iterator.hpp>
#include <CGAL/Kernel_traits.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>

// unary function to get homogeneous begin-iterator of point
template <class Point_d>
struct Homogeneous_begin {

typedef typename Point_d::Homogeneous_const_iterator result_type;
result_type operator() (const Point_d& p) const {

return p.homogeneous_begin();
}

};

// function to solve the LP that tests whether a point is in the
// convex hull of other points; the type ET is an exact type used
// for the internal computations
template <class Point_d, class RandomAccessIterator, class ET>
CGAL::Quadratic_program_solution<ET>
solve_convex_hull_containment_lp (const Point_d& p,

RandomAccessIterator begin,
RandomAccessIterator end, const ET&

dummy)
{

// Constraint matrix type: A[j][i] is the i-th homogeneous coordinate
of p_j

typedef boost::transform_iterator
<Homogeneous_begin<Point_d>, RandomAccessIterator> A_it;

// Right-hand side type: b[i] is the i-th homogeneous coordinate of p
typedef typename Point_d::Homogeneous_const_iterator B_it;
// Relation type ("=")
typedef CGAL::Const_oneset_iterator<CGAL::Comparison_result> R_it;
// input number type
typedef typename CGAL::Kernel_traits<Point_d>::Kernel::RT RT;
// Linear objective function type (c=0: we only test feasibility)
typedef CGAL::Const_oneset_iterator<RT> C_it;
// the nonnegative linear program type
typedef

CGAL::Nonnegative_linear_program_from_iterators<A_it, B_it, R_it,
C_it>
Program;
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// ok, we are prepared now: construct program and solve it
Program lp (end-begin, // number of variables

p.dimension()+1, // number of constraints
A_it (begin), B_it (p.homogeneous_begin()),
R_it (CGAL::EQUAL), C_it (0));

return CGAL::solve_nonnegative_linear_program (lp, dummy);
}� �
File: examples/QP_solver/solve_convex_hull_containment_lp.h

To see this in action, let us call it with p1 = (0,0), p2 = (10,0), p3 = (0,10) fixed (they define a triangle) and all
integral points p in [0,10]2. We know that p is in the convex hull of {p1, p2, p3} if and only if its two coordinates
sum up to 10 at most. As the exact type, we use MP Float or Gmpzf (which is faster and preferable if GMP is
installed).� �
#include <cassert>
#include <vector>
#include <CGAL/Cartesian_d.h>
#include <CGAL/MP_Float.h>
#include "solve_convex_hull_containment_lp.h"

// choose exact floating-point type
#ifdef CGAL_USE_GMP
#include <CGAL/Gmpzf.h>
typedef CGAL::Gmpzf ET;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif

typedef CGAL::Cartesian_d<double> Kernel_d;
typedef Kernel_d::Point_d Point_d;

bool is_in_convex_hull (const Point_d& p,
std::vector<Point_d>::const_iterator begin,
std::vector<Point_d>::const_iterator end)

{
CGAL::Quadratic_program_solution<ET> s =

solve_convex_hull_containment_lp (p, begin, end, ET(0));
return !s.is_infeasible();

}

int main()
{

std::vector<Point_d> points;
// convex hull: simplex spanned by {(0,0), (10,0), (0,10)}
points.push_back (Point_d ( 0.0, 0.0));
points.push_back (Point_d (10.0, 0.0));
points.push_back (Point_d ( 0.0, 10.0));
for (int i=0; i<=10; ++i)

for (int j=0; j<=10; ++j) {
// (i,j) is in the simplex iff i+j <= 10
bool contained = is_in_convex_hull
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(Point_d (i, j), points.begin(), points.end());
assert (contained == (i+j<=10));

}

return 0;
}� �
File: examples/QP_solver/convex_hull_containment.cpp

10.5.1 Using Makers

You already noticed in the previous example that the actual template arguments for CGAL::Nonnegative linear
program from iterators<A it, B it, R it, C it> can be quite elaborate, and this only gets worse if you plug more
iterators into each other. In general, you want to construct a program from given expressions for the iterators,
but the types of these expressions are probably very complicated and difficult to look up.

You can avoid the explicit construction of the type CGAL::Nonnegative linear program from iterators<A it,
B it, R it, C it> if you only need an expression of it, e.g. to pass it directly as an argument to the solving
function. Here is an alternative version of QP solver/solve convex hull containment lp.h that shows how this
works. In effect, you get shorter and more readable code.� �
#include <boost/config.hpp>
#include <boost/iterator/transform_iterator.hpp>
#include <CGAL/Kernel_traits.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>

// unary function to get homogeneous begin-iterator of point
template <class Point_d>
struct Homogeneous_begin {

typedef typename Point_d::Homogeneous_const_iterator result_type;
result_type operator() (const Point_d& p) const {

return p.homogeneous_begin();
}

};

// function to test whether point is in the convex hull of other points;
// the type ET is an exact type used for the computations
template <class Point_d, class RandomAccessIterator, class ET>
CGAL::Quadratic_program_solution<ET>
solve_convex_hull_containment_lp (const Point_d& p,

RandomAccessIterator begin,
RandomAccessIterator end, const ET&

dummy)
{

// construct program and solve it
return CGAL::solve_nonnegative_linear_program

(CGAL::make_nonnegative_linear_program_from_iterators
(end-begin,
// n
p.dimension()+1,
// m
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boost::transform_iterator
<Homogeneous_begin<Point_d>, RandomAccessIterator>(begin),
// A
typename Point_d::Homogeneous_const_iterator

(p.homogeneous_begin()),// b
CGAL::Const_oneset_iterator<CGAL::Comparison_result>(CGAL::EQUAL),
// ˜
CGAL::Const_oneset_iterator
<typename CGAL::Kernel_traits<Point_d>::Kernel::RT> (0)), dummy);
// c

}� �
File: examples/QP_solver/solve_convex_hull_containment_lp2.h

10.6 Important Variables and Constraints

If you have a solution x∗ of a linear or quadratic program, the “important” variables are typically the ones that
are not on their bounds. In case of a nonnegative program, these are the nonzero variables. Going back to the
example of the previous Section 10.5, we can easily interpret their importance: the nonzero variables correspond
to points p j that actually contribute to the convex combination that yields p.

The following example shows how we can access the important variables, using the iterators basic variable
indices begin() and basic variable indices end().

We generate a set of points that form a 4-gon in [0,4]2, and then find the ones that contribute to the convex
combinations of all 25 lattice points in [0,4]2. If the lattice point in question is not in the 4-gon, we simply
output this fact.� �
#include <cassert>
#include <vector>
#include <CGAL/Cartesian_d.h>
#include <CGAL/MP_Float.h>
#include "solve_convex_hull_containment_lp2.h"

typedef CGAL::Cartesian_d<double> Kernel_d;
typedef Kernel_d::Point_d Point_d;
typedef CGAL::Quadratic_program_solution<CGAL::MP_Float> Solution;

int main()
{

std::vector<Point_d> points;
// convex hull: 4-gon spanned by {(1,0), (4,1), (4,4), (2,3)}
points.push_back (Point_d (1, 0)); // point 0
points.push_back (Point_d (4, 1)); // point 1
points.push_back (Point_d (4, 4)); // point 2
points.push_back (Point_d (2, 3)); // point 3

// test all 25 integer points in [0,4]ˆ2
for (int i=0; i<=4; ++i)

for (int j=0; j<=4; ++j) {
Point_d p (i, j);
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Solution s = solve_convex_hull_containment_lp
(p, points.begin(), points.end(), CGAL::MP_Float());

std::cout << p;
if (s.is_infeasible())

std::cout << " is not in the convex hull\n";
else {

assert (s.is_optimal());
std::cout << " is a convex combination of the points ";
Solution::Index_iterator it = s.basic_variable_indices_begin();
Solution::Index_iterator end = s.basic_variable_indices_end();
for (; it != end; ++it) std::cout << *it << " ";
std::cout << std::endl;

}
}

return 0;
}� �
File: examples/QP_solver/important_variables.cpp

It turns out that exactly three of the four points contribute to any convex combination, even through there are
lattice points that lie in the convex hull of less than three of the points. This shows that the set of basic variables
that we access in the example does not necessarily coincide with the set of important variables as defined above.
In fact, it is only guaranteed that a non-basic variable attains one of its bounds, but there might be basic variables
that also have this property. In linear and quadratic programming terms, such a situation is called a degeneracy.

There is also the concept of an important constraint: this is typically a constraint in the system Ax R b that
is satisfied with equality at x∗. Program QP solver/first qp basic constraints.cpp shows how these can be
accessed, using the iterators basic constraint indices begin() and basic constraint indices end().

Again, we have a disagreement between “basic” and “important”: it is guaranteed that all basic constraints are
satisfied with equality at x∗, but there might be non-basic constraints that are satisfied with equality as well.

10.7 Solution Certificates

Suppose the solver tells you that the problem you have entered is infeasible. Why should you believe this?
Similarly, you can quite easily verify that a claimed optimal solution is feasible, but why is there no better one?

Certificates are proofs that the solver can give you in order to convince you that what it claims is indeed true.
The archetype of such a proof is Farkas Lemma [MG06].

Farkas Lemma: Either the inequality system

Ax ≤ b
x ≥ 0

has a solution x∗, or there exists a vector y such that

y ≥ 0
yT A ≥ 0
yT b < 0,

but not both.
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Thus, if someone wants to convince you that the first system in the Farkas Lemma is infeasible, that person can
simply give you a vector y that solves the second system. Since you can easily verify yourself that the y you
got satisfies this second system, you now have a certificate for the infeasibility of the first system, assuming that
you believe in Farkas Lemma.

Here we show how the solver can convince you. We first set up an infeasible linear program with constraints
of the type Ax≤ b,x≥ 0; then we solve it and ask for a certificate. Finally, we verify the certificate by simply
checking the inequalities of the second system in Farkas Lemma.� �
#include <cassert>
#include <CGAL/basic.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>

// choose exact integral type
#ifdef CGAL_USE_GMP
#include <CGAL/Gmpz.h>
typedef CGAL::Gmpz ET;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif

// program and solution types
typedef CGAL::Nonnegative_linear_program_from_iterators
<int**, // for A
int*, // for b
CGAL::Comparison_result*, // for r
int*> // for c

Program;
typedef CGAL::Quadratic_program_solution<ET> Solution;

// we demonstrate Farkas Lemma: either the system
// A x <= b
// x >= 0
// has a solution, or there exists y such that
// y >= 0
// yˆTA >= 0
// yˆTb < 0
// In the following instance, the first system has no solution,
// since adding up the two inequalities gives x_2 <= -1:
// x_1 - 2x_2 <= 1
// -x_1 + 3x_2 <= -2
// x_1, x_2 >= 0

int main() {
int Ax1[] = { 1, -1}; // column for x1
int Ax2[] = {-2, 3}; // column for x2
int* A[] = {Ax1, Ax2}; // A comes columnwise
int b[] = {1, -2}; // right-hand side
CGAL::Comparison_result

r[] = {CGAL::SMALLER, CGAL::SMALLER}; // constraints are "<="
int c[] = {0, 0}; // zero objective function

// now construct the linear program; the first two parameters are
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// the number of variables and the number of constraints (rows of A)
Program lp (2, 2, A, b, r, c);

// solve the program, using ET as the exact type
Solution s = CGAL::solve_nonnegative_linear_program(lp, ET());

// get certificate for infeasibility
assert (s.is_infeasible());
Solution::Infeasibility_certificate_iterator y =

s.infeasibility_certificate_begin();
// check y >= 0
assert (y[0] >= 0);
assert (y[1] >= 0);
// check yˆT A >= 0
assert (y[0] * A[0][0] + y[1] * A[0][1] >= 0);
assert (y[0] * A[1][0] + y[1] * A[1][1] >= 0);
// check yˆT b < 0
assert (y[0] * b[0] + y[1] * b[1] < 0);

return 0;
}� �
File: examples/QP_solver/infeasibility_certificate.cpp

There are similar certificates for optimality and unboundedness that you can see in action in the programs
QP solver/optimality certificate.cpp and QP solver/unboundedness certificate.cpp. The underlying variants
of Farkas Lemma are somewhat more complicated, due to the mixed relations in R and the general bounds.
The certificate section of Quadratic program solution<ET> gives the full picture and mathematically proves
the correctness of the certificates.

10.8 Customizing the Solver

Sometimes it is necessary to alter the default behavior of the solver. This can be done by passing a suitably
prepared object of the class Quadratic program options to the solution functions. Most options concern “soft”
issues like verbosity, but there are two notable case where it is of critical importance to be able to change the
defaults.

10.8.1 Exponent Overflow in Double Using Floating-Point Filters

The filtered version of the solver that is used for some problems by default on input type double internally
constructs double-approximations of exact multiprecision values. If these exact values are extremely large, this
may lead to infinite double values and incorrect results. In debug mode, the solver will notice this through a
certificate cross-check in the end (or even earlier). In this case, it is advisable to explicitly switch to a non-filtered
pricing strategy, see Quadratic program pricing strategy.

Hint: If you have a program where the number of variables n and the number of constraints m have the same or-
der of magnitude, the filtering will usually have no dramatic effect on the performance, so in that case you might
as well switch to QP PARTIAL DANTZIG to be safe from the issue described here (see QP solver/cycling.cpp
for an example that shows how to change the pricing strategy).
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10.8.2 The Solver Internally Cycles

Consider the following program. It reads a nonnegative linear program from the file cycling.mps (which is in
the example directory as well), and then solves it in verbose mode, using Bland’s rule, see Quadratic program
pricing strategy.� �
#include <iostream>
#include <fstream>
#include <CGAL/basic.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>

// choose exact floating-point type
#ifdef CGAL_USE_GMP
#include <CGAL/Gmpzf.h>
typedef CGAL::Gmpzf ET;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif

// program and solution types
typedef CGAL::Quadratic_program_from_mps<double> Program;
typedef CGAL::Quadratic_program_solution<ET> Solution;

int main() {
std::ifstream in ("cycling.mps");
Program lp(in); // read program from file
assert (lp.is_valid()); // we should have a valid mps file...
assert (lp.is_linear()); // ... and it should be linear...
assert (lp.is_nonnegative()); // as well as nonnegative

// solve the program, using ET as the exact type
// choose verbose mode and Bland pricing
CGAL::Quadratic_program_options options;
options.set_verbosity(1); // verbose mode
options.set_pricing_strategy(CGAL::QP_BLAND); // Bland’s rule
options.set_auto_validation(true); // automatic
self-check

Solution s = CGAL::solve_nonnegative_linear_program(lp, ET(), options);
assert (s.is_valid()); // did the self-check
succeed?

// output solution
std::cout << s;
return 0;

}� �
File: examples/QP_solver/cycling.cpp

If you comment the line

options.set_pricing_strategy(CGAL::QP_BLAND); // Bland’s rule
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you will see that the solver cycles: the verbose mode outputs the same sequence of six iterations over and over
again. By switching to QP BLAND, the solution process typically slows down a bit (it may also speed up in
some cases), but now it is guaranteed that no cycling occurs.

In general, the verbose mode can be of use when you are not sure whether the solver “has died”, or whether
it simply takes very long to solve your problem. We refer to the class Quadratic program options for further
details.

10.9 Some Benchmarks for Convex Hull Containment

Here we want to show what you can expect from the solver’s performance in a specific application; we don’t
know whether this application is typical in your case, and we make no claims whatsoever about the performance
in other applications.

Still, the example shows that the performance can be dramatically affected by switching between pricing strate-
gies, and we give some hints on how to achieve good performance in general.

The application is the one already discussed in Section 10.5 above: testing whether a point is in the convex hull
of other points. To be able to switch between pricing strategies, we add another parameter of type Quadratic
program options to the function solve convex hull containment lp that we pass on to the solution function:� �
#include <boost/config.hpp>
#include <boost/iterator/transform_iterator.hpp>
#include <CGAL/Kernel_traits.h>
#include <CGAL/QP_options.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>

// unary function to get homogeneous begin-iterator of point
template <class Point_d>
struct Homogeneous_begin {

typedef typename Point_d::Homogeneous_const_iterator result_type;
result_type operator() (const Point_d& p) const {

return p.homogeneous_begin();
}

};

// function to test whether point is in the convex hull of other points;
// the type ET is an exact type used for the computations
template <class Point_d, class RandomAccessIterator, class ET>
CGAL::Quadratic_program_solution<ET>
solve_convex_hull_containment_lp (const Point_d& p,

RandomAccessIterator begin,
RandomAccessIterator end, const ET&

dummy,
const CGAL::Quadratic_program_options&

o)
{

// construct program and solve it
return CGAL::solve_nonnegative_linear_program

(CGAL::make_nonnegative_linear_program_from_iterators
(end-begin,
// n
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p.dimension()+1,
// m
boost::transform_iterator
<Homogeneous_begin<Point_d>, RandomAccessIterator>(begin),
// A
typename Point_d::Homogeneous_const_iterator

(p.homogeneous_begin()),// b
CGAL::Const_oneset_iterator<CGAL::Comparison_result>(CGAL::EQUAL),
// ˜
CGAL::Const_oneset_iterator
<typename CGAL::Kernel_traits<Point_d>::Kernel::RT> (0)),
// c
dummy, o);

}� �
File: examples/QP_solver/solve_convex_hull_containment_lp3.h

Now let us test containment of the origin in the convex hull of n random points in [0,1]d (it will most likely not
be contained, and it turns out that this is the most expensive case). In the program below, we use d = 10 and
n = 100,000, and we comment on some other combinations of n and d below (feel free to experiment with still
other values).� �
#include <vector>
#include <CGAL/Cartesian_d.h>
#include <CGAL/MP_Float.h>
#include <CGAL/Random.h>
#include <CGAL/Timer.h>
#include "solve_convex_hull_containment_lp3.h"

// choose exact floating-point type
#ifdef CGAL_USE_GMP
#include <CGAL/Gmpzf.h>
typedef CGAL::Gmpzf ET;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif

typedef CGAL::Cartesian_d<double> Kernel_d;
typedef Kernel_d::Point_d Point_d;

int main()
{

const int d = 10; // change this in order to experiment
const int n = 100000; // change this in order to experiment

// generate n random d-dimensional points in [0,1]ˆd
CGAL::Random rd;
std::vector<Point_d> points;
for (int j =0; j<n; ++j) {

std::vector<double> coords;
for (int i=0; i<d; ++i)

coords.push_back(rd.get_double());
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points.push_back (Point_d (d, coords.begin(), coords.end()));
}

// benchmark all pricing strategies in turn
CGAL::Quadratic_program_pricing_strategy strategy[] = {

CGAL::QP_CHOOSE_DEFAULT, // QP_PARTIAL_FILTERED_DANTZIG
CGAL::QP_DANTZIG, // Dantzig’s pivot rule...
CGAL::QP_PARTIAL_DANTZIG, // ... with partial pricing
CGAL::QP_BLAND, // Bland’s pivot rule
CGAL::QP_FILTERED_DANTZIG, // Dantzig’s filtered pivot
rule...
CGAL::QP_PARTIAL_FILTERED_DANTZIG // ... with partial pricing

};

CGAL::Timer t;
for (int i=0; i<6; ++i) {

// test strategy i
CGAL::Quadratic_program_options options;
options.set_pricing_strategy (strategy[i]);
t.reset(); t.start();
// is origin in convex hull of the points? (most likely, not)
solve_convex_hull_containment_lp

(Point_d (d, CGAL::ORIGIN), points.begin(), points.end(),
ET(0), options);

t.stop();
std::cout << "Time (s) = " << t.time() << std::endl;

}

return 0;
}� �

File: examples/QP_solver/convex_hull_containment_benchmarks.cpp

If you compile with the macros NDEBUG or CGAL QP NO ASSERTIONS set (this is essential for good perfor-
mance!!), you will see runtimes that qualitatively look as follows (on your machine, the actual runtimes will
roughly be some fixed multiples of the numbers in the table below, and they might vary with the random
choices). The default choice of the pricing strategy in that case is QP PARTIAL FILTERED DANTZIG.

strategy runtime in seconds
CGAL::QP CHOOSE DEFAULT — 0.32
CGAL::QP DANTZIG — 10.7
CGAL::QP PARTIAL DANTZIG — 3.72
CGAL::QP BLAND — 3.65
CGAL::QP FILTERED DANTZIG — 0.43
CGAL::QP PARTIAL FILTERED DANTZIG — 0.32

We clearly see the effect of filtering: we gain a factor of ten, roughly, compared to the next best non-filtered
variant.
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10.9.1 d = 3, n = 1,000,000

The filtering effect is amplified if the points/dimension ratio becomes larger. This is what you might see in
dimension three, with one million points.

strategy runtime in seconds
CGAL::QP CHOOSE DEFAULT — 1.34
CGAL::QP DANTZIG — 47.6
CGAL::QP PARTIAL DANTZIG — 15.6
CGAL::QP BLAND — 16.02
CGAL::QP FILTERED DANTZIG — 1.89
CGAL::QP PARTIAL FILTERED DANTZIG — 1.34

In general, if your problem has a high variable/constraint or constraint/variable ratio, then filtering will typically
pay off. In such cases, it might be beneficial to encode your problem using input type double in order to profit
from the filtering (but see the issue discussed in Section 10.8.1).

10.9.2 d = 100, n = 100,000

Conversely, the filtering effect deteriorates if the points/dimension ratio becomes smaller.

strategy runtime in seconds
CGAL::QP CHOOSE DEFAULT — 3.05
CGAL::QP DANTZIG — 78.4
CGAL::QP PARTIAL DANTZIG — 45.9
CGAL::QP BLAND — 33.2
CGAL::QP FILTERED DANTZIG — 3.36
CGAL::QP PARTIAL FILTERED DANTZIG — 3.06

10.9.3 d = 500, n = 1,000

If the points/dimension ratio tends to a constant, filtering is no longer a clear winner. The reason is that in this
case, the necessary exact calculations with multiprecision numbers dominate the overall runtime.

strategy runtime in seconds
CGAL::QP CHOOSE DEFAULT — 2.65
CGAL::QP DANTZIG — 5.55
CGAL::QP PARTIAL DANTZIG — 5.6
CGAL::QP BLAND — 4.46
CGAL::QP FILTERED DANTZIG — 2.65
CGAL::QP PARTIAL FILTERED DANTZIG — 2.61

In general, if you have a program where the number of variables and the number of constraints have the same
order of magnitude, then the saving gained from using the filtered approach is typically small. In such a situation,
you should consider switching to a non-filtered variant in order to avoid the rare issue discussed in Section 10.8.1
altogether.
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10.10 Classified Reference Pages

Concepts

QuadraticProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 500
(for quadratic programs with variable bounds l≤ x≤ u)
LinearProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 506
(for linear programs with variable bounds l≤ x≤ u)
NonnegativeQuadraticProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 503
(for quadratic programs with variable bounds x≥ 0)
NonnegativeLinearProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 509
(for linear programs with variable bounds x≥ 0)

MPSFormat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 511
(the format used for reading and writing linear and quadratic programs)

Classes

There is a class that represents the solution of a linear or quadratic program. An instance of this class is returned
by any of the solution functions below.

CGAL::Quadratic program solution<ET> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 514

We offer a number of predefined models for the above program concepts. The following two are simultaneously
models for all four concepts and are probably the most convenient models; they allow you to construct linear or
quadratic programs entry by entry, or from streams in MPSFormat. At any time, you can query these programs
for linearity and nonnegativity and thus select the appropriate solution function.

CGAL::Quadratic program<NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 525
(for linear and quadratic programs that own their data and are built entry-wise)
CGAL::Quadratic program from mps<NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 528
(for linear and quadratic programs read from an input stream in MPSFormat; the constructed program can also
be manipulate entry-wise)
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Then there are specific models for any of the four program concepts above; these are useful if you want to
maintain the program data yourself, since they simply wrap random access iterators over the program data and
involve no further copying of data.

CGAL::Quadratic program from iterators<A it, B it, R it, FL it, L it, FU it, U it, D it, C it> . . . . . page 532
(for quadratic programs that wrap given iterators, without copying data)

CGAL::Linear program from iterators<A it, B it, R it, FL it, L it, FU it, U it, C it> . . . . . . . . . . . . . . page 534
(for linear programs wrapping given iterators)

CGAL::Nonnegative quadratic program from iterators<A it, B it, R it, D it, C it> . . . . . . . . . . . . . . . page 536
(for nonnegative quadratic programs, wrapping given iterators)

CGAL::Nonnegative linear program from iterators<A it, B it, R it, C it> . . . . . . . . . . . . . . . . . . . . . . . . page 538
(for nonnegative linear programs, wrapping given iterators) Functions

In case you want to construct a program from complicated iterators (whose types you don’t know, or simply
don’t want to bother with), we provide four makers.

CGAL::make quadratic program from iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 540
CGAL::make linear program from iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 541
CGAL::make nonnegative quadratic program from iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 542
CGAL::make nonnegative linear program from iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 543

There are four functions to solve a program, one for each program concept.

CGAL::solve quadratic program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 544
CGAL::solve linear program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 545
CGAL::solve nonnegative quadratic program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 546
CGAL::solve nonnegative linear program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 547

The solution process can customized by passing an object of the class

Quadratic program options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
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QuadraticProgram

Definition

A model of QuadraticProgram describes a convex quadratic program of the form

(QP) minimize xT Dx+ cT x+ c0

subject to Ax R b,

l≤ x≤ u

in n real variables x = (x0, . . . ,xn−1). Here,

• A is an m×n matrix (the constraint matrix),

• b is an m-dimensional vector (the right-hand side),

• R is an m-dimensional vector of relations from {≤,=,≥},

• l is an n-dimensional vector of lower bounds for x, where l j ∈ R∪{−∞} for all j

• u is an n-dimensional vector of upper bounds for x, where u j ∈ R∪{∞} for all j

• D is a symmetric positive-semidefinite n×n matrix (the quadratic objective function),

• c is an n-dimensional vector (the linear objective function), and

• c0 is a constant.

The description is given by appropriate random-access iterators over the program data, see below. The program
therefore comes in dense representation which includes zero entries.

Has Models

Quadratic program<NT>
Quadratic program from mps<NT>
Quadratic program from iterators<A it, B it, R it, FL it, L it, FU it, U it, D it, C it>

Types

QuadraticProgram:: A iterator A random access iterator type to go columnwise over the
constraint matrix A. The value type is a random access iter-
ator type for an individual column that goes over the entries
in that column.

QuadraticProgram:: B iterator A random access iterator type to go over the entries of the
right-hand side b.

QuadraticProgram:: R iterator A random access iterator type to go over the relations R. The
value type of R iterator is CGAL::Comparison result.
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QuadraticProgram:: FL iterator A random access iterator type to go over the existence (finite-
ness) of the lower bounds l j, j = 0, . . . ,n−1. The value type
of FL iterator is bool.

QuadraticProgram:: L iterator A random acess iterator type to go over the entries of the
lower bound vector l.

QuadraticProgram:: UL iterator A random access iterator type to go over the existence (finite-
ness) of the upper bounds u j, j = 0, . . . ,n−1. The value type
of UL iterator is bool.

QuadraticProgram:: U iterator A random acess iterator type to go over the entries of the
upper bound vector u.

QuadraticProgram:: D iterator A random access iterator type to go rowwise over the matrix
2D. The value type is a random access iterator type for an
individual row that goes over the entries in that row, up to
(and including) the entry on the main diagonal.

QuadraticProgram:: C iterator A random access iterator type to go over the entries of the
linear objective function vector c.

Operations

int qp.get n() const returns the number n of variables (number of columns of A)
in qp.

int qp.get m() const returns the number m of constraints (number of rows of A) in
qp.

A iterator qp.get a() const returns an iterator over the columns of A. The corresponding
past-the-end iterator is get a()+get n(). For j = 0, . . . ,n−1,
∗(get a()+ j) is a random access iterator for column j.

B iterator qp.get b() const returns an iterator over the entries of b. The corresponding
past-the-end iterator is get b()+get m().

R iterator qp.get r() const returns an iterator over the entries of R. The correspond-
ing past-the-end iterator is get r()+get m(). The value
CGAL::SMALLER stands for ≤, CGAL::EQUAL stands for
=, and CGAL::LARGER stands for ≥.

FL iterator qp.get fl() const returns an iterator over the existence of the lower bounds
l j, j = 0, . . . ,n−1. The corresponding past-the-end iterator is
get fl()+get n(). If *(get fl()+j) has value true, the variable
x j has a lower bound given by *(get l()+j), otherwise it has
no lower bound.

L iterator qp.get l() const returns an iterator over the entries of l. The corresponding
past-the-end iterator is get l()+get n(). If *(get fl()+j) has
value f alse, the value *(get l()+j) is not accessed.
Precondition: if both *(get fl()+j) and *(get fu()+j) have
value true, then ∗(get l()+ j)≤ ∗(get u()+ j)

501



FU iterator qp.get fu() const returns an iterator over the existence of the upper bounds
u j, j = 0, . . . ,n− 1. The corresponding past-the-end iterator
is get fu()+get n(). If *(get fu()+j) has value true, the vari-
able x j has an upper bound given by *(get u()+j), otherwise
it has no upper bound.

L iterator qp.get u() const returns an iterator over the entries of u. The corresponding
past-the-end iterator is get u()+get n(). If *(get fu()+j) has
value f alse, the value *(get u()+j) is not accessed.
Precondition: if both *(get fl()+j) and *(get fu()+j) have
value true, then ∗(get l()+ j)≤ ∗(get u()+ j)

D iterator qp.get d() const returns an iterator over the rows of 2D. The corresponding
past-the-end iterator is get d()+get n(). For i = 0, . . . ,n−1,
∗(get d()+ i) is a random access iterator for the entries in
row i below or on the diagonal. The valid range of this iter-
ator is guaranteed to have length i + 1 but not more. Values
to the right of the diagonal are deduced from the symmetry
requirement on D.

C iterator qp.get c() const returns an iterator over the entries of c. The corresponding
past-the-end iterator is get c()+get n().

std::iterator traits<C iterator>::value type

qp.get c0() const returns the constant term c0 of the objective function.

Requirements

The value types of all iterator types (nested iterator types, respectively, for A iterator and D iterator) must be
convertible to some common IntegralDomain ET .

See Also

The models

Quadratic program<NT>
Quadratic program from mps<NT>
Quadratic program from iterators<A it, B it, R it, FL it, L it, FU it, U it, D it, C it>

and the other conepts

NonnegativeQuadraticProgramInterface
LinearProgramInterface
NonnegativeLinearProgramInterface
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NonnegativeQuadraticProgram

Definition

A model of NonnegativeQuadraticProgram describes a convex quadratic program of the form

(QP) minimize xT Dx+ cT x+ c0

subject to Ax R b,

x≥ 0

in n real variables x = (x0, . . . ,xn−1). Here,

• A is an m×n matrix (the constraint matrix),

• b is an m-dimensional vector (the right-hand side),

• R is an m-dimensional vector of relations from {≤,=,≥},

• D is a symmetric positive-semidefinite n×n matrix (the quadratic objective function),

• c is an n-dimensional vector (the linear objective function), and

• c0 is a constant.

The description is given by appropriate random-access iterators over the program data, see below. The program
therefore comes in dense representation which includes zero entries.

Has Models

Quadratic program<NT>
Quadratic program from mps<NT>
Nonnegative quadratic program from iterators<A it, B it, R it, FL it, L it, FU it, U it, D it, C it>

Types

NonnegativeQuadraticProgram:: A iterator A random access iterator type to go columnwise over the
constraint matrix A. The value type is a random access iter-
ator type for an individual column that goes over the entries
in that column.

NonnegativeQuadraticProgram:: B iterator A random access iterator type to go over the entries of the
right-hand side b.

NonnegativeQuadraticProgram:: R iterator A random access iterator type to go over the relations R. The
value type of R iterator is CGAL::Comparison result.

NonnegativeQuadraticProgram:: D iterator A random access iterator type to go rowwise over the matrix
2D. The value type is a random access iterator type for an
individual row that goes over the entries in that row, up to
(and including) the entry on the main diagonal.
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NonnegativeQuadraticProgram:: C iterator A random access iterator type to go over the entries of the
linear objective function vector c.

Operations

int qp.get n() const returns the number n of variables (number of columns of A)
in qp.

int qp.get m() const returns the number m of constraints (number of rows of A) in
qp.

A iterator qp.get a() const returns an iterator over the columns of A. The corresponding
past-the-end iterator is get a()+get n(). For j = 0, . . . ,n−1,
∗(get a()+ j) is a random access iterator for column j.

B iterator qp.get b() const returns an iterator over the entries of b. The corresponding
past-the-end iterator is get b()+get m().

R iterator qp.get r() const returns an iterator over the entries of R. The correspond-
ing past-the-end iterator is get r()+get m(). The value
CGAL::SMALLER stands for ≤, CGAL::EQUAL stands for
=, and CGAL::LARGER stands for ≥.

D iterator qp.get d() const returns an iterator over the rows of 2D. The corresponding
past-the-end iterator is get d()+get n(). For i = 0, . . . ,n−1,
∗(get d()+ i) is a random access iterator for the entries in
row i below or on the diagonal. The valid range of this iter-
ator is guaranteed to have length i + 1 but not more. Values
to the right of the diagonal are deduced from the symmetry
requirement on D.

C iterator qp.get c() const returns an iterator over the entries of c. The corresponding
past-the-end iterator is get c()+get n().

std::iterator traits<C iterator>::value type

qp.get c0() const returns the constant term c0 of the objective function.

Requirements

The value types of all iterator types (nested iterator types, respectively, for A iterator and D iterator) must be
convertible to some common IntegralDomain ET .

See Also

The models

Quadratic program<NT>
Quadratic program from mps<NT>
Nonnegative quadratic program from iterators<A it, B it, R it, D it, C it> and the other concepts
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QuadraticProgram
LinearProgram
NonnegativeLinearProgram
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LinearProgram

Definition

A model of LinearProgram describes a linear program of the form

(QP) minimize cT x+ c0

subject to Ax R b,

l≤ x≤ u

in n real variables x = (x0, . . . ,xn−1). Here,

• A is an m×n matrix (the constraint matrix),

• b is an m-dimensional vector (the right-hand side),

• R is an m-dimensional vector of relations from {≤,=,≥},

• l is an n-dimensional vector of lower bounds for x, where l j ∈ R∪{−∞} for all j

• u is an n-dimensional vector of upper bounds for x, where u j ∈ R∪{∞} for all j

• c is an n-dimensional vector (the linear objective function), and

• c0 is a constant.

The description is given by appropriate random-access iterators over the program data, see below. The program
therefore comes in dense representation which includes zero entries.

Has Models

Quadratic program<NT>
Quadratic program from mps<NT>
Linear program from iterators<A it, B it, R it, FL it, L it, FU it, U it, D it, C it>

Types

LinearProgram:: A iterator A random access iterator type to go columnwise over the
constraint matrix A. The value type is a random access iter-
ator type for an individual column that goes over the entries
in that column.

LinearProgram:: B iterator A random access iterator type to go over the entries of the
right-hand side b.

LinearProgram:: R iterator A random access iterator type to go over the relations R. The
value type of R iterator is CGAL::Comparison result.

LinearProgram:: FL iterator A random access iterator type to go over the existence (finite-
ness) of the lower bounds l j, j = 0, . . . ,n−1. The value type
of FL iterator is bool.
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LinearProgram:: L iterator A random acess iterator type to go over the entries of the
lower bound vector l.

LinearProgram:: UL iterator A random access iterator type to go over the existence (finite-
ness) of the upper bounds u j, j = 0, . . . ,n−1. The value type
of UL iterator is bool.

LinearProgram:: U iterator A random acess iterator type to go over the entries of the
upper bound vector u.

LinearProgram:: C iterator A random access iterator type to go over the entries of the
linear objective function vector c.

Operations

int lp.get n() const returns the number n of variables (number of columns of A)
in lp.

int lp.get m() const returns the number m of constraints (number of rows of A) in
lp.

A iterator lp.get a() const returns an iterator over the columns of A. The corresponding
past-the-end iterator is get a()+get n(). For j = 0, . . . ,n−1,
∗(get a()+ j) is a random access iterator for column j.

B iterator lp.get b() const returns an iterator over the entries of b. The corresponding
past-the-end iterator is get b()+get m().

R iterator lp.get r() const returns an iterator over the entries of R. The correspond-
ing past-the-end iterator is get r()+get m(). The value
CGAL::SMALLER stands for ≤, CGAL::EQUAL stands for
=, and CGAL::LARGER stands for ≥.

FL iterator lp.get fl() const returns an iterator over the existence of the lower bounds
l j, j = 0, . . . ,n−1. The corresponding past-the-end iterator is
get fl()+get n(). If *(get fl()+j) has value true, the variable
x j has a lower bound given by *(get l()+j), otherwise it has
no lower bound.

L iterator lp.get l() const returns an iterator over the entries of l. The corresponding
past-the-end iterator is get l()+get n(). If *(get fl()+j) has
value f alse, the value *(get l()+j) is not accessed.
Precondition: if both *(get fl()+j) and *(get fu()+j) have
value true, then ∗(get l()+ j)≤ ∗(get u()+ j)

FU iterator lp.get fu() const returns an iterator over the existence of the upper bounds
u j, j = 0, . . . ,n− 1. The corresponding past-the-end iterator
is get fu()+get n(). If *(get fu()+j) has value true, the vari-
able x j has an upper bound given by *(get u()+j), otherwise
it has no upper bound.
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L iterator lp.get u() const returns an iterator over the entries of u. The corresponding
past-the-end iterator is get u()+get n(). If *(get fu()+j) has
value f alse, the value *(get u()+j) is not accessed.
Precondition: if both *(get fl()+j) and *(get fu()+j) have
value true, then ∗(get l()+ j)≤ ∗(get u()+ j)

C iterator lp.get c() const returns an iterator over the entries of c. The corresponding
past-the-end iterator is get c()+get n().

std::iterator traits<C iterator>::value type

lp.get c0() const returns the constant term c0 of the objective function.

See Also

The models

Quadratic program<NT>
Quadratic program from mps<NT>
Linear program from iterators<A it, B it, R it, FL it, L it, FU it, U it, C it>

and the other concepts

QuadraticProgram
NonnegativeQuadraticProgram
NonnegativeLinearProgram
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NonnegativeLinearProgram

Definition

A model of NonnegativeLinearProgram describes a linear program of the form

(QP) minimize cT x+ c0

subject to Ax R b,

x≥ 0

in n real variables x = (x0, . . . ,xn−1). Here,

• A is an m×n matrix (the constraint matrix),

• b is an m-dimensional vector (the right-hand side),

• R is an m-dimensional vector of relations from {≤,=,≥},

• c is an n-dimensional vector (the linear objective function), and

• c0 is a constant.

The description is given by appropriate random-access iterators over the program data, see below. The program
therefore comes in dense representation which includes zero entries.

Has Models

Quadratic program<NT>
Quadratic program from mps<NT>
Nonnegative linear program from iterators<A it, B it, R it, FL it, L it, FU it, U it, D it, C it>

Types

NonnegativeLinearProgram:: A iterator A random access iterator type to go columnwise over the
constraint matrix A. The value type is a random access iter-
ator type for an individual column that goes over the entries
in that column.

NonnegativeLinearProgram:: B iterator A random access iterator type to go over the entries of the
right-hand side b.

NonnegativeLinearProgram:: R iterator A random access iterator type to go over the relations R. The
value type of R iterator is CGAL::Comparison result.

NonnegativeLinearProgram:: C iterator A random access iterator type to go over the entries of the
linear objective function vector c.
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Operations

int lp.get n() const returns the number n of variables (number of columns of A)
in lp.

int lp.get m() const returns the number m of constraints (number of rows of A) in
lp.

A iterator lp.get a() const returns an iterator over the columns of A. The corresponding
past-the-end iterator is get a()+get n(). For j = 0, . . . ,n−1,
∗(get a()+ j) is a random access iterator for column j.

B iterator lp.get b() const returns an iterator over the entries of b. The corresponding
past-the-end iterator is get b()+get m().

R iterator lp.get r() const returns an iterator over the entries of R. The correspond-
ing past-the-end iterator is get r()+get m(). The value
CGAL::SMALLER stands for ≤, CGAL::EQUAL stands for
=, and CGAL::LARGER stands for ≥.

C iterator lp.get c() const returns an iterator over the entries of c. The corresponding
past-the-end iterator is get c()+get n().

std::iterator traits<C iterator>::value type

lp.get c0() const returns the constant term c0 of the objective function.

Requirements

The value types of all iterator types (nested iterator types, respectively, for A iterator) must be convertible to
some common IntegralDomain ET .

See Also

The models

Quadratic program<NT>
Quadratic program from mps<NT>
Nonnegative linear program from iterators<A it, B it, R it, C it>

and the other concepts

QuadraticProgram
LinearProgram
NonnegativeQuadraticProgram
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MPSFormat

MPS is a commonly used file format for storing linear and quadratic programs according to the concepts
QuadraticProgram, LinearProgram, NonnegativeQuadraticProgram, and NonnegativeLinearProgram, see also
http://en.wikipedia.org/wiki/MPS_(format).

CGAL supports a large subset of this format, but there are MPS files around that we cannot read (for example,
files that encode integrality constraints on the variables). Also, there might be some other MPS-based solvers
that will not be able to read the MPS files written by CGAL, since we do not strictly adhere to the very rigid
layout requirements of the original MPS format.

Let’s look at an example first. The quadratic program

minimize x2 +4(y−4)2 (= x2 +4y2−32y+64)
subject to x+ y ≤ 7

−x+2y ≤ 4
x ≥ 0
y ≥ 0
y ≤ 4

has the following description in MPS format.

NAME first_qp
ROWS
N obj
L c0
L c1

COLUMNS
x0 c0 1
x0 c1 -1
x1 obj -32
x1 c0 1
x1 c1 2

RHS
rhs obj -64
rhs c0 7
rhs c1 4

BOUNDS
UP BND x1 4

QMATRIX
x0 x0 2
x1 x1 8

ENDATA

Here comes a semiformal description of the format in general.
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NAME section

This (mandatory) section consists of a single line starting with NAME. Everything starting from the first non-
whitespace after that until the end of the line constitutes the name of the problem.

ROWS section

In the (mandatory) ROW section, you find one line for every constraint, where the letter L indicates relation ≤,
letter G stands for ≥, and E for =. In addition, there is a row for the linear objective function (indicated by letter
N). In that section, names are asigned to the constraints (here: c0, c1) and the objective function (here: obj).
An MPS file may encode several linear objective functions by using several rows starting with N, but we ignore
all but the first.

COLUMNS section

The (mandatory) COLUMNS section encodes the constraint matrix A and the linear objective function vector c.
Every line consists of one or two sequences of three tokens jival, where j is the name of a variable (here, we
have variables x0,x1), i is the name of a constraint or the objective function, and val is the value Ai j (if i names
a constraint), or c j (if i names the linear objective function). Values for pairs (i, j) that are not specified in this
section default to 0. Otherwise, for every pair (i, j), the last specified value determines Ai j or c j.

RHS section

This (mandatory) section encodes the right-hand side vector b and the constant term c0 in the objective function.
The first token in every line is an identifier (here: rhs). An MPS file may encode several right-hand sides b by
using several such identifiers, but we ignore all lines having an identifier different from that of the first line.

The right-hand side identifier is succeeded by one or two sequences of tokens ival, where i names a constraint
or the linear objective function, and val specifies the value bi (if i names a constraint), or −c0 (if i names the
linear objective function). Values that are not specified in this section default to 0. Otherwise, for every i, the
last specified value determines bi or −c0.

BOUNDS section

This (optional) section encodes the lower and upper bound vectors l and u for the variables. The default bounds
for any variable x j are 0≤ x j ≤∞; the BOUNDS section is used to override these defaults. In particular, if there is
no BOUNDS section, the program is nonnegative and actually a model of the concept NonnegativeQuadraticPro-
gram or NonnegativeLinearProgram.

The first token in every line is succeeded by an (optional) identifier (here: BND). An MPS file may encode several
bound vectors l and u by using several such identifiers, but we ignore all lines having an identifier different from
that of the first line. The first token t itself determines the type of the bound, and the token j after the bound
identifier names the variable to which the bound applies In case of bound types FX, LO, and UP, there is another
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token val that specifices the bound value. Here is how bound type and value determine a bound for variable x j.
There may be several bound specifications for a single variable, and they are processed in order of appearance.

bound type resulting bound
FX x j = val (x j becomes a fixed variable)
LO x j ≥ val (upper bound remains unchanged)
UP x j ≤ val (lower bound remains unchanged, except if val < 0; then, a zero lower bound is reset to −∞)
FR −∞≤ x j ≤ ∞ (previous bounds are discarded)
MI x j ≥−∞ (upper bound remains unchanged)
PL x j ≤ ∞ (lower bound remains unchanged)

QMATRIX / QUADOBJ / DMATRIX section

This (optional) section encodes the quadratic objective function matrix D. Every line is a sequence i jval of
three tokens, where both i and j name variables, and val is the value 2Di, j (in case of QMATRIX or QUADOBJ), or
Di j (in case of DMATRIX).

In case of QMATRIX and DMATRIX, all nonzero entries must be specified: if there is a line i jval, then there must
also be a line jival, since D is required to be symmetric. In case of QUADOBJ, only the entries of 2D on or
below the diagonal must be specified, entries above the diagonal are deduced from symmetry. It is not allowed
to specify two or more different nonzero values for an unordered pair {i, j}.

If this section is missing or does not contain nonzero values, the program is a model of the concept LinearPro-
gram.

Miscellaneous

Our MPS format also supports an (optional) RANGES section, but we don’t explain this here.

See Also

Quadratic program from mps<NT>
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CGAL::Quadratic program solution<ET>

#include <CGAL/QP solution.h>

Definition

An object of class Quadratic program solution<ET> represents the solution of a linear or convex quadratic
program of the general form

(QP) minimize xT Dx+ cT x+ c0

subject to Ax R b,

l≤ x≤ u

in n real variables x = (x0, . . . ,xn−1).

If D = 0, the program is a linear program; if the variable bounds are x ≥ 0, we have a nonnegative pro-
gram. Objects of type Quadratic program solution<ET> are returned by any of the four functions solve
quadratic program, solve linear program, solve nonnegative quadratic program, and solve nonnegative
linear program.

Example

QP solver/first qp.cpp

Terminology

If there is no x that satisfies all the (in)equalities, the program is called infeasible, otherwise, it is feasible, and
any x that satisfies all (in)equalities is called a feasible solution.

If the objective function value becomes arbitrarily small over the feasible region (the set of feasible solutions),
the program is called unbounded, and bounded otherwise.

Any program that is both feasible and bounded has at least one feasible solution x∗ whose objective function
value is not larger than that of any other feasible solution. This is called an optimal solution.

Every convex quadratic program (even if it is infeasible or unbounded) has a ’solution’ in form of an object of
the class Quadratic program solution<ET>.

Types

Quadratic program solution<ET>:: ET The exact number type that was used to solve the program.

Quadratic program solution<ET>:: Variable value iterator

An iterator type with value type Quotient<ET> to go over the
values of the variables in the solution.
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Quadratic program solution<ET>:: Variable numerator iterator

An iterator type with value type ET to go over the numerators
of the variable values with respect to a common denominator.

Quadratic program solution<ET>:: Index iterator

An iterator type with value type int to go over the indices of
the basic variables and the basic constraints.

Quadratic program solution<ET>:: Optimality certificate iterator

An iterator type with value type Quotient<ET> to go over an
m-vector λ that proves optimality of the solution.

Quadratic program solution<ET>:: Optimality certificate numerator iterator

An iterator type with value type ET to go over the numerators
of the vector λ with respect to a common denominator.

Quadratic program solution<ET>:: Infeasibility certificate iterator

An iterator type with value type ET to go over an m-vector λ

that proves infeasibility of the solution.

Quadratic program solution<ET>:: Unboundedness certificate iterator

An iterator type with value type ET to go over an n-vector w
that proves unboundedness of the solution.

Creation

Quadratic program solution<ET> sol; constructs a void instance of Quadratic program solution<
ET> that is associated to no program.

Objects of type Quadratic program solution<ET> can be copied and assigned.

Objects of type Quadratic program solution<ET> that are associated to an actual program are returned by any
of the four functions solve quadratic program, solve linear program, solve nonnegative quadratic program,
and solve nonnegative linear program.

Example

QP solver/first qp.cpp
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Operations

bool sol.is void() const returns true iff sol is not associated to a program. The con-
dition !sol.is void() is a precondition for all access methods
below.

Solution status

Here are the access methods for the status of the solution.

bool sol.is optimal() const returns true iff sol is an optimal solution of the associated
program.

bool sol.is infeasible() const

returns true iff the associated program is infeasible.

bool sol.is unbounded() const

returns true iff the associated program is unbounded.

Quadratic program status

sol.status() const returns the status of the solution; this is one of the values
QP OPTIMAL, QP INFEASIBLE, and QP UNBOUNDED,
depending on whether the program asociated to sol has an
optimal solution, is infeasible, or is unbounded.

int sol.number of iterations() const

returns the number of iterations that it took to solve the pro-
gram asociated to sol.

Solution values

The actual solution (variable and objective function values) can be accessed as follows.

Quotient<ET> sol.objective value() const

returns the objective function value of sol.

ET sol.objective value numerator() const

returns the numerator of the objective function value of sol.

ET sol.objective value denominator() const

returns the denominator of the objective function value of
sol.
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Variable value iterator

sol.variable values begin() const

returns a random-access iterator over the values of the vari-
ables in sol. The value type is Quotient<ET>, and the valid
iterator range has length n.

Variable value iterator

sol.variable values end() const

returns the corresponding past-the-end iterator.

Variable numerator iterator

sol.variable numerators begin() const

returns a random-access iterator it over the values of the vari-
ables in sol, with respect to a common denominator of all
variables. The value type is ET , and the valid iterator range
has length n.

Variable numerator iterator

sol.variable numerators end() const

returns the corresponding past-the-end iterator.

ET sol.variables common denominator() const

returns the common denominator of the variable values as
referred to by the previous two methods.

Basic variables and constraints

The solution of a linear or quadratic program distinguishes ’important’ variables (the ones not attaining one of
their bounds), and ’important’ constraints (the ones being satisfied with equality). The following methods grant
access to them.

Index iterator sol.basic variable indices begin() const

returns a random access iterator over the indices of the ba-
sic variables. The value type is int. It is guaranteed that any
variable that is not basic in sol attains one of its bounds. In
particular, if the bounds are of type x≥ 0, all non-basic vari-
ables have value 0.
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Index iterator sol.basic variable indices end() const

returns the corresponding past-the-end iterator.

int sol.number of basic variables() const

returns the number of basic variables, equivalently the length
of the range determined by the previous two iterators.

Example

QP solver/important variables.cpp

Index iterator sol.basic constraint indices begin() const

returns a random access iterator over the indices of the basic
constraints in the system Ax R b. The value type is int. It is
guaranteed that any basic constraint is satisfied with equality.
In particular, if the system is of type Ax = b, all constraints
are basic.

Index iterator sol.basic constraint indices end() const

returns the corresponding past-the-end iterator.

int sol.number of basic constraints() const

returns the number of basic constraint, equivalently the
length of the range determined by the previous two iterators.

Example

QP solver/first qp basic constraints.cpp

Output

template <typename ET>
std::ostream& std::ostream& out << sol

writes the status of sol to the stream out. In case the status
is QP OPTIMAL, the optimal objective value and the values
of the variables at the optimal solution are output as well.
For more detailed information about the solution (like ba-
sic variables/constraints) please use the dedicated methods
of Quadratic program solution<ET>.
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Validity

The following four methods allow you to check whether sol indeed solves the program that you intended to
solve. The methods use the certificates described in the advanced section below and thus save you from validat-
ing the certificates yourself (if you believe in the correctness of these methods; otherwise, you can look at their
implementation to convince yourself).

By passing a suitable option to the solution function, you can make sure that this check is done automatically
after the solution of the program, see Quadratic program options. If the check fails, a logfile is generated that
contains the details, and an error message is written to std::cerr (see QP solver/cycling.cpp for an example that
uses this option).

template <class QuadraticProgram>
bool sol.solves quadratic program( QuadraticProgram qp)

returns true iff sol solves the quadratic program qp. If the
result is false, you can get a message that describes the prob-
lem, through the method get error().

QP solver/first qp.cpp

template <class LinearProgram>
bool sol.solves linear program( LinearProgram lp)

returns true iff sol solves the linear program lp. If the result
is false, you can get a message that describes the problem,
through the method get error().

QP solver/first lp.cpp

template <class NonnegativeQuadraticProgram>
bool sol.solves nonnegative quadratic program( NonnegativeQuadraticProgram qp)

returns true iff sol solves the nonnegative quadratic program
qp. If the result is false, you can get a message that describes
the problem, through the method get error().

QP solver/first nonnegative qp.cpp

template <class NonnegativeLinearProgram>
bool sol.solves nonnegative linear program( NonnegativeLinearProgram lp)

returns true iff sol solves the nonnegative linear program lp.
If the result is false, you can get a message that describes the
problem, through the method get error().

QP solver/first nonnegative lp.cpp

bool sol.is valid() const returns false iff the validation through one of the previous
four functions has failed.
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std::string sol.get error() const returns an error message in case any of the previous four val-
idation functions has returned false.

advanced

Certificates

A certificate is a vector that admits a simple proof for the correctness of the solution. Any non-void object of
Quadratic program solution<ET> comes with such a certificate.

Lemma 1 (optimality certificate): A feasible n-vector x∗ is an optimal solution of (QP) if an m-vector λ with
the following properties exist.

1. if the i-th constraint is of type ≤ (≥, respectively), then λi ≥ 0 (λi ≤ 0, respectively).

2. λT (Ax∗−b) = 0.

3.

≥ 0, if x∗j = l j < u j

(cT +λT A+2x∗T D) j = 0, if l j < x∗j < u j

≤ 0, if l j < u j = x∗j .

Proof: Let x be any feasible solution. We need to prove that

cT x+xT Dx≥ cT x∗+x∗T Dx∗.

For this, we argue as follows.

cT x+2x∗T Dx ≥ cT x+2x∗T Dx+λT (Ax−b) (by Ax R b and 1.)
= (cT +λT A+2x∗T D)x−λT b
≥ (cT +λT A+2x∗T D)x∗−λT b (by l≤ x≤ u and 3.)
= cT x∗+2x∗T Dx∗ (by 2.)

After adding xT Dx−xT Dx−x∗T Dx∗ =−x∗T Dx∗ to both sides of this inequality, we get

cT x+xT Dx− (x−x∗)T D(x−x∗)≥ cT x∗+x∗T Dx∗,

and since D is positive semidefinite, we have (x−x∗)T D(x−x∗)≥ 0 and the lemma follows.

Optimality certificate iterator

sol.optimality certifcate begin() const

returns a random access iterator over the optimality certifi-
cate λ as given in Lemma 1, with respect to the solution x∗
obtained from sol.variable values begin(). The value type is
Quotient<ET>, and the valid iterator range has length m.
Precondition: sol.is optimal()

Optimality certificate iterator

sol.optimality certificate end() const

returns the corresponding past-the-end iterator.
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Optimality certificate numerator iterator

sol.optimality certifcate numerators begin() const

returns a random access iterator over the numerator val-
ues of the optimality certificate λ, with respect to the
common denominator returned by sol.variables common
denominator(). The value type is ET , and the valid iterator
range has length m.

Optimality certificate numerator iterator

sol.optimality certificate numerators end() const

returns the corresponding past-the-end iterator.

Example

QP solver/optimality certificate.cpp

Lemma 2 (infeasibility certificate): The program (QP) is infeasible if an m-vector λ with the following prop-
erties exist.

1. if the i-th constraint is of type ≤ (≥, respectively), then λi ≥ 0 (λi ≤ 0, respectively).

2.

≥ 0 if u j = ∞

λT A j
≤ 0 if l j =−∞.

3.

λ
T b < ∑

j:λT A j<0

λ
T A ju j + ∑

j:λT A j>0

λ
T A jl j.

Proof: Let us assume for the purpose of obtaining a contradiction that there is a feasible solution x. Then we
get

0 ≥ λT (Ax−b) (by Ax R b and 1.)
= ∑ j:λT A j<0 λT A jx j + ∑ j:λT A j>0 λT A jx j−λT b
≥ ∑ j:λT A j<0 λT A ju j + ∑ j:λT A j>0 λT A jl j−λT b (by l≤ x≤ u and 2.)
> 0 (by 3.),

and this is the desired contradiction 0 > 0.

Infeasibility certificate iterator

sol.infeasibility certificate begin() const

returns a random access iterator over the infeasibility certifi-
cate λ as given in Lemma 2. The value type is ET , and the
valid iterator range has length m.
Precondition: sol.is infeasible()
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Infeasibility certificate iterator

sol.infeasibility certificate end() const

returns the corresponding past-the-end iterator.

Example

QP solver/infeasibility certificate.cpp

Lemma 3 (unboundedness certificate:) Let x∗ be a feasible solution of (QP). The program (QP) is unbounded
if an n-vector w with the following properties exist.

1. if the i-th constraint is of type≤ (≥,=, respectively), then (Aw)i≤ 0 ((Aw)i≥ 0,(Aw)i = 0, respectively).

2.

≥ 0 if l j is finite
w j

≤ 0 if u j is finite.

3. wT Dw = 0 and (cT +2x∗T D)w < 0.

The vector w is called an unbounded direction.

Proof: For a real number t, consider the vector x(t) := x∗+ tw. By 1. and 2., x(t) is feasible for all t ≥ 0. The
objective function value of x(t) is

cT x(t)+x(t)T Dx(t) = cT x∗+ tcT w+x∗T Dx∗+2tx∗T Dw+ t2wT Dw
= cT x∗+x∗T Dx∗+ t(cT +2x∗T D)w+ t2wT Dw.

By condition 3., this tends to −∞ for t→ ∞, so the problem is indeed unbounded.

Unboundedness certificate iterator

sol.unboundedness certificate begin() const

returns a random acess iterator over the unbounded direction
w as given in Lemma 3,with respect to the solution x∗ ob-
tained from sol.variable values begin(). The value type is
ET , and the valid iterator range has length n.
Precondition: sol.is unbounded()

Unboundedness certificate iterator

sol.unboundedness certificate end()

returns the corresponding past-the-end iterator.
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Example

QP solver/unboundedness certificate.cpp

advanced

See Also

The program concepts

QuadraticProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 500
LinearProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 506
NonnegativeQuadraticProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 503
NonnegativeLinearProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 509

and the functions that compute objects of class Quadratic program solution<ET> from models of these con-
cepts:

solve quadratic program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
solve linear program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
solve nonnegative quadratic program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
solve nonnegative linear program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
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CGAL::Quadratic program status

#include <CGAL/QP solution.h>

Definition

This is an enumeration type containing the values QP OPTIMAL, QP INFEASIBLE, and QP UNBOUNDED.
It indicates the status of a linear or quadratic program solution as represented by an object of type Quadratic
program solution<ET>.

See Also

Quadratic program solution<ET>
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CGAL::Quadratic program<NT>

#include <CGAL/QP models.h>

Definition

An object of class Quadratic program<NT> describes a convex quadratic program of the form

(QP) minimize xT Dx+ cT x+ c0

subject to Ax R b,

l≤ x≤ u

in n real variables x = (x0, . . . ,xn−1). Here,

• A is an m×n matrix (the constraint matrix),

• b is an m-dimensional vector (the right-hand side),

• R is an m-dimensional vector of relations from {≤,=,≥},

• l is an n-dimensional vector of lower bounds for x, where l j ∈ R∪{−∞} for all j

• u is an n-dimensional vector of upper bounds for x, where u j ∈ R∪{∞} for all j

• D is a symmetric positive-semidefinite n×n matrix (the quadratic objective function),

• c is an n-dimensional vector (the linear objective function), and

• c0 is a constant.

If D = 0, the program is a linear program; if the variable bounds are x≥ 0, we have a nonnegative program.

This class allows you to build your program entry by entry, using the set-methods below.

If you only need to wrap existing (random-access) iterators over your own data, then you may use any of the
four models Quadratic program from iterators<A it, B it, R it, FL it, L it, FU it, U it, D it, C it>, Linear
program from iterators<A it, B it, R it, FL it, L it, FU it, U it, C it>, Nonnegative quadratic program from
iterators<A it, B it, R it, D it, C it>, and Nonnegative linear program from iterators<A it, B it, R it, C it>.

If you want to read a quadratic program in MPSFormat from a stream, please use the model Quadratic program
from mps<NT>.

Is Model for the Concepts

QuadraticProgram
LinearProgram
NonnegativeQuadraticProgram
NonnegativeLinearProgram

Types

Quadratic program<NT>:: NT The number type of the program entries.
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Creation

Quadratic program<NT> qp( CGAL::Comparison result default r = CGAL::EQUAL,
bool default fl = true,
NT default l = 0,
bool default fu = false,
NT default u = 0)

constructs a quadratic program with no variables and no con-
straints, ready for data to be added. Unless relations are ex-
plicitly set, they will be of type default r. Unless bounds are
explicitly set, they will be as specified by default fl (finite
lower bound?), default l (lower bound value if lower bound
is finite), default fu (finite upper bound?), and default l (up-
per bound value if upper bound is finite). If all parameters
take their default values, we thus get equality constraints and
bounds x ≥ 0 by default. Numerical entries that are not ex-
plicitly set will default to 0.
Precondition: if default fl = default fu = true, then
default l≤ default u

Operations

bool qp.is linear() const returns true if and only if qp is a linear program.

bool qp.is nonnegative() const

returns true if and only if qp is a nonnegative program.

void qp.set a( int j, int i, NT val)

sets the entry Ai j in column j and row i of the constraint
matrix A of qp to val. An existing entry is overwritten. qp is
enlarged if necessary to accomodate this entry.

void qp.set b( int i, NT val)

sets the entry bi of qp to val. An existing entry is overwritten.
qp is enlarged if necessary to accomodate this entry.

void qp.set r( int i, CGAL::Comparison result rel)

sets the entry Ri of qp to rel. CGAL::SMALLER means that
the i-th constraint is of type “≤”, CGAL::EQUAL means
“=”, and CGAL::LARGER encodes “≥”. An existing entry
is overwritten. qp is enlarged if necessary to accomodate this
entry.
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void qp.set l( int j, bool is finite, NT val = NT(0))

if is finite, this sets the entry l j of qp to val, otherwise it sets
l j to −∞. An existing entry is overwritten. qp is enlarged if
necessary to accomodate this entry.

void qp.set u( int j, bool is finite, NT val = NT(0))

if is finite, this sets the entry u j of qp to val, otherwise it sets
u j to ∞. An existing entry is overwritten. qp is enlarged if
necessary to accomodate this entry.

void qp.set c( int j, NT val)

sets the entry c j of qp to val. An existing entry is overwritten.
qp is enlarged if necessary to accomodate this entry.

void qp.set c0( NT val) sets the entry c0 of qp to val. An existing entry is overwritten.

void qp.set d( int i, int j, NT val)

sets the entries 2Di j and 2D ji of qp to val. Existing entries
are overwritten. qp is enlarged if necessary to accomodate
these entries.
Precondition: j <= i

Example

QP solver/first qp.cpp
QP solver/first lp.cpp
QP solver/first nonnegative qp.cpp
QP solver/first nonnegative lp.cpp
QP solver/invert matrix.cpp See Also

Quadratic program from iterators<A it, B it, R it, FL it, L it, FU it, U it, D it, C it>
Linear program from iterators<A it, B it, R it, FL it, L it, FU it, U it, C it>
Nonnegative quadratic program from iterators<A it, B it, R it, D it, C it>
Nonnegative linear program from iterators<A it, B it, R it, C it>
Quadratic program from mps<NT>
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CGAL::Quadratic program from mps<NT>

#include <CGAL/QP models.h>

Definition

An object of class Quadratic program from mps<NT> describes a convex quadratic program of the general
form

(QP) minimize xT Dx+ cT x+ c0

subject to Ax R b,

l≤ x≤ u

in n real variables x = (x0, . . . ,xn−1). Here,

• A is an m×n matrix (the constraint matrix),

• b is an m-dimensional vector (the right-hand side),

• R is an m-dimensional vector of relations from {≤,=,≥},

• l is an n-dimensional vector of lower bounds for x, where l j ∈ R∪{−∞} for all j

• u is an n-dimensional vector of upper bounds for x, where u j ∈ R∪{∞} for all j

• D is a symmetric positive-semidefinite n×n matrix (the quadratic objective function),

• c is an n-dimensional vector (the linear objective function), and

• c0 is a constant.

If D = 0, the program is a linear program; if the variable bounds are x≥ 0, we have a nonnegative program.

The program data are read from an input stream in MPSFormat. This is a commonly used format for encoding
linear and quadratic programs that is understood by many solvers. All values are expected to be readable into
type NT . The constructed program can be further manipulated by using the set-methods below.

Is Model for the Concepts

QuadraticProgram
LinearProgram
NonnegativeQuadraticProgram
NonnegativeLinearProgram

Types

Quadratic program from mps<NT>:: NT The number type of the program entries.
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Creation

Quadratic program from mps<NT> qp( std::istream& in);

reads qp from the input stream in.

Operations

bool qp.is valid() const returns true if and only if an MPS-encoded quadratic pro-
gram could be extracted from the input stream.

std::string qp.get error() const if !qp.is valid(), this method returns an error message ex-
plaining why the input does not conform to the MPSFormat.

std::string qp.variable name by index( int j) const

returns the name of the j-th variable.
Precondition: j must not refer to a variable that has been
added later, using one of the set methods below.

int qp.variable index by name( std::string name) const

returns the index of the variable with name name. If there is
no variable with this name, the result is −1.

std::string qp.constraint name by index( int i) const

returns the name of the i-th constraint.
Precondition: i must not refer to a constraint that has been
added later, using one of the set methods below.

int qp.constraint index by name( std::string name) const

returns the index of the constraint with name name. If there
is no constraint with this name, the result is −1.

bool qp.is linear() const returns true if and only if qp is a linear program.

bool qp.is nonnegative() const

returns true if and only if qp is a nonnegative program.

void qp.set a( int j, int i, NT val)

sets the entry Ai j in column j and row i of the constraint
matrix A of qp to val. An existing entry is overwritten. qp is
enlarged if necessary to accomodate this entry.
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void qp.set b( int i, NT val)

sets the entry bi of qp to val. An existing entry is overwritten.
qp is enlarged if necessary to accomodate this entry.

void qp.set r( int i, CGAL::Comparison result rel)

sets the entry Ri of qp to rel. CGAL::SMALLER means that
the i-th constraint is of type “≤”, CGAL::EQUAL means
“=”, and CGAL::LARGER encodes “≥”. An existing entry
is overwritten. qp is enlarged if necessary to accomodate this
entry.

void qp.set l( int j, bool is finite, NT val = NT(0))

if is finite, this sets the entry l j of qp to val, otherwise it sets
l j to −∞. An existing entry is overwritten. qp is enlarged if
necessary to accomodate this entry.

void qp.set u( int j, bool is finite, NT val = NT(0))

if is finite, this sets the entry u j of qp to val, otherwise it sets
u j to ∞. An existing entry is overwritten. qp is enlarged if
necessary to accomodate this entry.

void qp.set c( int j, NT val)

sets the entry c j of qp to val. An existing entry is overwritten.
qp is enlarged if necessary to accomodate this entry.

void qp.set c0( NT val) sets the entry c0 of qp to val. An existing entry is overwritten.

void qp.set d( int i, int j, NT val)

sets the entries 2Di j and 2D ji of qp to val. Existing entries
are overwritten. qp is enlarged if necessary to accomodate
these entries.
Precondition: j <= i

Example

QP solver/first qp from mps.cpp
QP solver/first lp from mps.cpp
QP solver/first nonnegative qp from mps.cpp
QP solver/first nonnegative lp from mps.cpp
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See Also

Quadratic program<NT>
Quadratic program from iterators<A it, B it, R it, FL it, L it, FU it, U it, D it, C it>
Linear program from iterators<A it, B it, R it, FL it, L it, FU it, U it, C it>
Nonnegative quadratic program from iterators<A it, B it, R it, D it, C it>
Nonnegative linear program from iterators<A it, B it, R it, C it>
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CGAL::Quadratic program from iterators<A it, B it, R it, FL it, L it,
FU it, U it, D it, C it>

#include <CGAL/QP models.h>

Definition

An object of class Quadratic program from iterators<A it, B it, R it, FL it, L it, FU it, U it, D it, C it> de-
scribes a convex quadratic program of the form

(QP) minimize xT Dx+ cT x+ c0

subject to Ax R b,

l≤ x≤ u

in n real variables x = (x0, . . . ,xn−1). Here,

• A is an m×n matrix (the constraint matrix),

• b is an m-dimensional vector (the right-hand side),

• R is an m-dimensional vector of relations from {≤,=,≥},

• l is an n-dimensional vector of lower bounds for x, where l j ∈ R∪{−∞} for all j

• u is an n-dimensional vector of upper bounds for x, where u j ∈ R∪{∞} for all j

• D is a symmetric positive-semidefinite n×n matrix (the quadratic objective function),

• c is an n-dimensional vector (the linear objective function), and

• c0 is a constant.

This class is simply a wrapper for existing iterators, and it does not copy the program data.

It frequently happens that all values in one of the vectors from above are the same, for example if the system
Ax R b is actually a system of equations Ax = b. To get an iterator over such a vector, it is not necessary to store
multiple copies of the value in some container; an instance of the class Const oneset iterator<T>, constructed
from the value in question, does the job more efficiently.

Is Model for the Concepts

QuadraticProgram

Creation
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Quadratic program from iterators<A it, B it, R it, FL it, L it, FU it, U it, D it, C it> qp( int n,
int m,
A it a,
B it b,
R it r,
FL it fl,
L it l,
FU it fu,
U it u,
D it d,
C it c,
std::iterator

traits<C it>value type c0 = 0)

constructs qp from given random-access iterators and the
constant c0. The passed iterators are merely stored, no copy-
ing of the program data takes place. How these iterators
are supposed to encode the quadratic program is described
in QuadraticProgram.

Example

QP solver/first qp from iterators.cpp

The following example for the simpler model Nonnegative linear program from iterators<A it, B it, R it, C
it> should give you a flavor of the use of this model in practice.

QP solver/solve convex hull containment lp.h
QP solver/convex hull containment.cpp See Also

QuadraticProgram Quadratic program<NT>
Quadratic program from mps<NT>
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CGAL::Linear program from iterators<A it, B it, R it, FL it, L it,
FU it, U it, C it>

#include <CGAL/QP models.h>

Definition

An object of class Linear program from iterators<A it, B it, R it, FL it, L it, FU it, U it, C it> describes a
linear program of the form

(QP) minimize cT x+ c0

subject to Ax R b,

l≤ x≤ u

in n real variables x = (x0, . . . ,xn−1). Here,

• A is an m×n matrix (the constraint matrix),

• b is an m-dimensional vector (the right-hand side),

• R is an m-dimensional vector of relations from {≤,=,≥},

• l is an n-dimensional vector of lower bounds for x, where l j ∈ R∪{−∞} for all j

• u is an n-dimensional vector of upper bounds for x, where u j ∈ R∪{∞} for all j

• c is an n-dimensional vector (the linear objective function), and

• c0 is a constant.

This class is simply a wrapper for existing iterators, and it does not copy the program data.

It frequently happens that all values in one of the vectors from above are the same, for example if the system
Ax R b is actually a system of equations Ax = b. To get an iterator over such a vector, it is not necessary to store
multiple copies of the value in some container; an instance of the class Const oneset iterator<T>, constructed
from the value in question, does the job more efficiently.

Is Model for the Concepts

QuadraticProgram
LinearProgram

Creation
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Linear program from iterators<A it, B it, R it, FL it, L it, FU it, U it, C it> lp( int n,
int m,
A it a,
B it b,
R it r,
FL it fl,
L it l,
FU it fu,
U it u,
C it c,
std::iterator traits<C it>

value type c0 = 0)

constructs lp from given random-access iterators and the con-
stant c0. The passed iterators are merely stored, no copy-
ing of the program data takes place. How these iterators are
supposed to encode the linear program is described in Lin-
earProgram.

Example

QP solver/first lp from iterators.cpp

The following example for the simpler model Nonnegative linear program from iterators<A it, B it, R it, C
it> should give you a flavor of the use of this model in practice.

QP solver/solve convex hull containment lp.h
QP solver/convex hull containment.cpp

See Also

LinearProgram Quadratic program<NT>
Quadratic program from mps<NT>
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CGAL::Nonnegative quadratic program from iterators<A it, B it, R
it, D it, C it>

#include <CGAL/QP models.h>

Definition

An object of class Nonnegative quadratic program from iterators<A it, B it, R it, D it, C it> describes a con-
vex quadratic program of the form

(QP) minimize xT Dx+ cT x+ c0

subject to Ax R b,

x≥ 0

in n real variables x = (x0, . . . ,xn−1). Here,

• A is an m×n matrix (the constraint matrix),

• b is an m-dimensional vector (the right-hand side),

• R is an m-dimensional vector of relations from {≤,=,≥},

• D is a symmetric positive-semidefinite n×n matrix (the quadratic objective function),

• c is an n-dimensional vector (the linear objective function), and

• c0 is a constant.

This class is simply a wrapper for existing iterators, and it does not copy the program data.

It frequently happens that all values in one of the vectors from above are the same, for example if the system
Ax R b is actually a system of equations Ax = b. To get an iterator over such a vector, it is not necessary to store
multiple copies of the value in some container; an instance of the class Const oneset iterator<T>, constructed
from the value in question, does the job more efficiently.

Is Model for the Concepts

QuadraticProgram
NonnegativeQuadraticProgram

Creation

Nonnegative quadratic program from iterators<A it, B it, R it, D it, C it> qp( int n,
int m,
A it a,
B it b,
R it r,
D it d,
C it c,
std::iterator traits<C it>
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value type c0 = 0)

constructs qp from given random-access iterators and the
constant c0. The passed iterators are merely stored, no copy-
ing of the program data takes place. How these iterators are
supposed to encode the nonnegative quadratic program is de-
scribed in NonnegativeQuadraticProgram.

Example

QP solver/first nonnegative qp from iterators.cpp

The following example for the simpler model Nonnegative linear program from iterators<A it, B it, R it, C
it> should give you a flavor of the use of this model in practice.

QP solver/solve convex hull containment lp.h
QP solver/convex hull containment.cpp

See Also

NonnegativeQuadraticProgram Quadratic program<NT>
Quadratic program from mps<NT>
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CGAL::Nonnegative linear program from iterators<A it, B it, R it, C
it>

#include <CGAL/QP models.h>

Definition

An object of class Nonnegative linear program from iterators<A it, B it, R it, C it> describes a linear pro-
gram of the form

(QP) minimize cT x+ c0

subject to Ax R b,

x≥ 0

in n real variables x = (x0, . . . ,xn−1). Here,

• A is an m×n matrix (the constraint matrix),

• b is an m-dimensional vector (the right-hand side),

• R is an m-dimensional vector of relations from {≤,=,≥},

• c is an n-dimensional vector (the linear objective function), and

• c0 is a constant.

This class is simply a wrapper for existing iterators, and it does not copy the program data.

It frequently happens that all values in one of the vectors from above are the same, for example if the system
Ax R b is actually a system of equations Ax = b. To get an iterator over such a vector, it is not necessary to store
multiple copies of the value in some container; an instance of the class Const oneset iterator<T>, constructed
from the value in question, does the job more efficiently.

Is Model for the Concepts

QuadraticProgram
LinearProgram
NonnegativeQuadraticProgram
NonnegativeLinearProgram

Creation

Nonnegative linear program from iterators<A it, B it, R it, C it> lp( int n,
int m,
A it a,
B it b,
R it r,
C it c,
std::iterator traits<C it>value type c0
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= 0)

constructs lp from given random-access iterators and the con-
stant c0. The passed iterators are merely stored, no copying
of the program data takes place. How these iterators are sup-
posed to encode the nonnegative linear program is described
in NonnegativeLinearProgram.

Example

QP solver/first nonnegative lp from iterators.cpp
QP solver/solve convex hull containment lp.h
QP solver/convex hull containment.cpp

See Also

NonnegativeLinearProgram Quadratic program<NT>
Quadratic program from mps<NT>
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CGAL::make quadratic program from iterators

#include <CGAL/QP models.h>

This template function creates an instance of Quadratic program from iterators<A it, B it, R it, FL it, L it,
FU it, U it, D it, C it> from given iterators. This function can be useful if the types of these iterators are too
complicated (or of too little interest for you) to write them down explicitly.

template < A it, B it, R it, FL it, L it, FU it, U it, D it, C it >
Quadratic program from iterators<A it, B it, R it, FL it, L it, FU it, U it, D it, C it>

make quadratic program from iterators( int n,
int m,
A it a,
B it b,
R it r,
FL it fl,
L it l,
FU it fu,
U it u,
D it d,
C it c,
std::iterator traits<C it>::value type c0 =

std::iterator traits<C it>::value type(0))

returns an instance of Quadratic program from iterators<
A it, B it, R it, FL it, L it, FU it, U it, D it, C it>, con-
structed from the given iterators.

Example

The following example demonstrates the typical usage of makers with the simpler function make nonnegative
linear program from iterators.

QP solver/solve convex hull containment lp2.h
QP solver/convex hull containment2.cpp

See Also

Quadratic program from iterators<A it, B it, R it, FL it, L it, FU it, U it, D it, C it>
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CGAL::make linear program from iterators

#include <CGAL/QP models.h>

This template function creates an instance of Linear program from iterators<A it, B it, R it, FL it, L it, FU it,
U it, C it> from given iterators. This function can be useful if the types of these iterators are too complicated
(or of too little interest for you) to write them down explicitly.

template < A it, B it, R it, FL it, L it, FU it, U it, C it >
Linear program from iterators<A it, B it, R it, FL it, L it, FU it, U it, C it>

make linear program from iterators( int n,
int m,
A it a,
B it b,
R it r,
FL it fl,
L it l,
FU it fu,
U it u,
C it c,
std::iterator traits<C it>::value type c0 =

std::iterator traits<C it>::value type(0))

returns an instance of Linear program from iterators<A it,
B it, R it, FL it, L it, FU it, U it, C it>, constructed from
the given iterators.

Example

The following example demonstrates the typical usage of makers with the simpler function make nonnegative
linear program from iterators.

QP solver/solve convex hull containment lp2.h
QP solver/convex hull containment2.cpp

See Also

Linear program from iterators<A it, B it, R it, FL it, L it, FU it, U it, C it>
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CGAL::make nonnegative quadratic program from iterators

#include <CGAL/QP models.h>

This template function creates an instance of Nonnegative quadratic program from iterators<A it, B it, R it,
D it, C it> from given iterators. This function can be useful if the types of these iterators are too complicated
(or of too little interest for you) to write them down explicitly.

template < A it, B it, R it, D it, C it >
Nonnegative quadratic program from iterators <A it, B it, R it, D it, C it>

make nonnegative quadratic program from iterators( int n,
int m,
A it a,
B it b,
R it r,
D it d,
C it c,
std::iterator traits<C it>

::value type c0 = std::iterator traits<C it>::value type(0))

returns an instance of Nonnegative quadratic program
from iterators<A it, B it, R it, D it, C it>, constructed from
the given iterators.

Example

The following example demonstrates the typical usage of makers with the simpler function make nonnegative
linear program from iterators.

QP solver/solve convex hull containment lp2.h
QP solver/convex hull containment2.cpp

See Also

Nonnegative quadratic program from iterators<A it, B it, R it, D it, C it>
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CGAL::make nonnegative linear program from iterators

#include <CGAL/QP models.h>

This template function creates an instance of Nonnegative linear program from iterators<A it, B it, R it, C
it> from given iterators. This function can be useful if the types of these iterators are too complicated (or of too
little interest for you) to write them down explicitly.

template < A it, B it, R it, C it >
Nonnegative linear program from iterators <A it, B it, R it, C it>

make nonnegative linear program from iterators( int n,
int m,
A it a,
B it b,
R it r,
C it c,
std::iterator traits<C it>::value

type c0 = std::iterator traits<C it>::value type(0))

returns an instance of Nonnegative linear program from
iterators<A it, B it, R it, C it>, constructed from the given
iterators.

Example

QP solver/solve convex hull containment lp2.h
QP solver/convex hull containment2.cpp

See Also

Nonnegative linear program from iterators<A it, B it, R it, C it>
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CGAL::solve quadratic program

#include <CGAL/QP functions.h>

This function solves a quadratic program, using some exact Integral Domain ET for its computations. Various
options may be provided, see Quadratic program options.

template <QuadraticProgram, ET>
Quadratic program solution<ET>

solve quadratic program( QuadraticProgram qp,
ET,
Quadratic program options options = Quadratic

program options())

returns the solution of the quadratic program qp, solved with
exact number type ET .

Requirements

ET is a model of the concepts IntegralDomain and RealEmbeddable; it must be an exact type, and all entries of
qp are convertible to ET .

Here are some recommended combinations of input type (the type of the qp entries) and ET .

input type — ET
double — MP Float, Gmpzf , or Gmpq
int — MP Float, or Gmpz
any exact type NT — NT

Note: by default, this function performs a large number of runtime-checks to ensure consistency during the
solution process. However, these checks slow down the computations by a considerable factor. For maximum
efficiency, it is advisable to define the macros CGAL QP NO ASSERTIONS or NDEBUG.

Example

QP solver/first qp.cpp

See Also

The models of QuadraticProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 500:

Quadratic program<NT>
Quadratic program from mps<NT>
Quadratic program from iterators<A it, B it, R it, FL it, L it, FU it, U it, D it, C it>
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CGAL::solve linear program

#include <CGAL/QP functions.h>

This function solves a linear program, using some exact Integral Domain ET for its computations. Various
options may be provided, see Quadratic program options.

template <LinearProgram, ET>
Quadratic program solution<ET>

solve linear program( LinearProgram lp,
ET,
Quadratic program options options = Quadratic program

options())

returns the solution of the linear program lp, solved with ex-
act number type ET .

Requirements

ET is a model of the concepts IntegralDomain and RealEmbeddable; it must be an exact type, and all entries of
qp are convertible to ET .

Here are some recommended combinations of input type (the type of the qp entries) and ET .

input type — ET
double — MP Float, Gmpzf , or Gmpq
int — MP Float, or Gmpz
any exact type NT — NT

Note: by default, this function performs a large number of runtime-checks to ensure consistency during the
solution process. However, these checks slow down the computations by a considerable factor. For maximum
efficiency, it is advisable to define the macros CGAL QP NO ASSERTIONS or NDEBUG.

Example

QP solver/first lp.cpp

See Also

The models of LinearProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 506:

Quadratic program<NT>
Quadratic program from mps<NT>
Linear program from iterators<A it, B it, R it, FL it, L it, FU it, U it, C it>
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CGAL::solve nonnegative quadratic program

#include <CGAL/QP functions.h>

This function solves a nonnegative quadratic program, using some exact Integral Domain ET for its computa-
tions. Various options may be provided, see Quadratic program options.

template <NonnegativeQuadraticProgram, ET>
Quadratic program solution<ET>

solve nonnegative quadratic program( NonnegativeQuadraticProgram qp,
ET,
Quadratic program options options =

Quadratic program options())

returns the solution of the nonnegative quadratic program qp,
solved with exact number type ET .

Requirements

ET is a model of the concepts IntegralDomain and RealEmbeddable; it must be an exact type, and all entries of
qp are convertible to ET .

Here are some recommended combinations of input type (the type of the qp entries) and ET .

input type — ET
double — MP Float, Gmpzf , or Gmpq
int — MP Float, or Gmpz
any exact type NT — NT

Note: by default, this function performs a large number of runtime-checks to ensure consistency during the
solution process. However, these checks slow down the computations by a considerable factor. For maximum
efficiency, it is advisable to define the macros CGAL QP NO ASSERTIONS or NDEBUG.

Example

QP solver/first nonnegative qp.cpp

See Also

The models of NonnegativeQuadraticProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 503:

Quadratic program<NT>
Quadratic program from mps<NT>
Nonnegative quadratic program from iterators<A it, B it, R it, D it, C it>
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CGAL::solve nonnegative linear program

#include <CGAL/QP functions.h>

This function solves a nonnegative linear program, using some exact Integral Domain ET for its computations.
Various options may be provided, see Quadratic program options.

template <NonnegativeLinearProgram, ET>
Quadratic program solution<ET>

solve nonnegative linear program( NonnegativeLinearProgram lp,
ET,
Quadratic program options options =

Quadratic program options())

returns the solution of the nonnegative linear program lp,
solved with exact number type ET .

Requirements

ET is a model of the concepts IntegralDomain and RealEmbeddable; it must be an exact type, and all entries of
qp are convertible to ET .

Here are some recommended combinations of input type (the type of the qp entries) and ET .

input type — ET
double — MP Float, Gmpzf , or Gmpq
int — MP Float, or Gmpz
any exact type NT — NT

Note: by default, this function performs a large number of runtime-checks to ensure consistency during the
solution process. However, these checks slow down the computations by a considerable factor. For maximum
efficiency, it is advisable to define the macros CGAL QP NO ASSERTIONS or NDEBUG.

Example

QP solver/first nonnegative lp.cpp

See Also

The models of NonnegativeLinearProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 509:

Quadratic program<NT>
Quadratic program from mps<NT>
Nonnegative linear program from iterators<A it, B it, R it, C it>
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CGAL::Quadratic program options

#include <CGAL/QP options.h>

Definition

This is a class used for passing options to the linear and quadratic programming solvers. Currently, we support
only options referring to

1. the verbosity,

2. the pricing strategy (see Quadratic program pricing strategy),

3. the validation mode (see the Validity section of Quadratic program solution)

The idea is that this list grows in the future.

Creation

Quadratic program options options; constructs an instance of Quadratic program options where
all available options are at their defaults.

Operations

Here we just have set/get pairs for any option type.

Verbosity

void options.set verbosity( int verbosity)

sets the verbosity of the solver to the value verbosity when
options is passed to any of the four solution functions. The
provided value must be a number between 0 and 5. Verbosity
0 is the default and results in the solver running silently. Ver-
bosity 1 prints a short summary of every iteration. Higher
verbosity values print more information about the solution
process, but these are mainly for debugging purposes and
have no effect if you compile with CGAL QP NO ASSERTIONS
or NDEBUG.

int options.get verbosity() const

returns the verbosity level of options.
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Pricing strategy

void options.set pricing strategy( Quadratic program pricing strategy pricing strategy)

sets the pricing strategy of the solver to the value pricing
strategy when options is passed to any of the four solu-
tion functions. The pricing strategy controls how the solver
proceeds from any intermediate solution. For the available
strategies and their behavior, see the documentation of the
class Quadratic program pricing strategy.

Quadratic program pricing strategy

options.get pricing strategy() const

returns the pricing strategy of options.

Validation mode

void options.set auto validation( bool validate)

sets the automatic validation mode of the solver to the value
validate. The default is false. By providing value true you
can tell the solver to automatically check whether the pro-
gram has correctly been solved, see the Validity section of
the class Quadratic program solution.

bool options.get auto validation() const

returns the validation mode of options.

Example

QP solver/cycling.cpp

See Also

Quadratic program solution
solve quadratic program
solve linear program
solve nonnegative quadratic program
solve nonnegative linear program

549



C
la

ss

CGAL::Quadratic program pricing strategy

#include <CGAL/QP options.h>

Definition

This is an enumeration type containing the values QP CHOOSE DEFAULT , QP DANTZIG, QP PARTIAL
DANTZIG, QP FILTERED DANTZIG, QP PARTIAL FILTERED DANTZIG, andQP BLAND.

It indicates the pricing strategy to be used in solving a linear or quadratic program. This strategy determines
how the solver gets from one intermediate solution to the next during any of its iterations.

Here we briefly describe when to choose which strategy.

QP CHOOSE DEFAULT

This is the default value of the pricing strategy in Quadratic program options, and it lets the solver choose the
strategy that it thinks is most appropriate for the problem at hand. There are only few reasons to deviate from
this default, but you are free to experiment, of course.

QP PARTIAL DANTZIG

If the input type is not double, this is usually the best choice for linear and quadratic programs of medium size.

QP DANTZIG

If the input type is not double, this can sometimes make a difference (be faster or slowe) than QP PARTIAL
DANTZIG for problems with a high variable/constraint or constraint/variable ratio.

QP PARTIAL FILTERED DANTZIG

If the input type is double, this is usually the best choice for linear and quadratic programs of medium size. If
the input type is not double, this choice is equivalent to QP PARTIAL DANTZIG.

Note: filtered strategies may in rare cases fail due to double exponent overflows, see Section 10.8.1. In this
case, the slower fallback option is the non-filtered variant QP PARTIAL DANTZIG of this strategy.

QP FILTERED DANTZIG

If the input type is double, this can sometimes make a difference (be faster or slowe) than QP PARTIAL
FILTERED DANTZIG for problems with a high variable/constraint or constraint/variable ratio. If the input
type is not double, this choice is equivalent to QP DANTZIG.

Note: filtered strategies may in rare cases fail due to double exponent overflows, see Section 10.8.1. In this
case, the slower fallback option is the non-filtered variant QP DANTZIG of this strategy.
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QP BLAND

This is hardly ever the most efficient choice, but it is guaranteed to avoid internal cycling of the solution algo-
rithm, see Section 10.8.2.

See Also

Quadratic program options
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CGAL::print quadratic program

#include <CGAL/QP functions.h>

This function writes a quadratic program to an output stream (in MPSFormat). The time complexity is Θ(n2 +
mn), even if the program is very sparse.

template <QuadraticProgram>
void print quadratic program( std::ostream& out,

QuadraticProgram qp,
std::string problem name = std::string(”MY MPS”))

writes the quadratic program qp to out in MPSFormat. The
name of the program will be the one provided by problem
name.

Requirements

Output operators are defined for all entry types of qp.

Example

QP solver/print first qp.cpp

See Also

The concept

QuadraticProgram
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CGAL::print linear program

#include <CGAL/QP functions.h>

This function writes a linear program to an output stream (in MPSFormat). The time complexity is Θ(mn), even
if the program is very sparse.

template <LinearProgram>
void print linear program( std::ostream& out,

LinearProgram lp,
std::string problem name = std::string(”MY MPS”))

writes the linear program lp to out in MPSFormat. The name
of the program will be the one provided by problem name.

Requirements

Output operators are defined for all entry types of lp.

Example

QP solver/print first lp.cpp

See Also

The concept

LinearProgram
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CGAL::print nonnegative quadratic program

#include <CGAL/QP functions.h>

This function writes a nonnegative quadratic program to an output stream (in MPSFormat). The time complexity
is Θ(n2 +mn), even if the program is very sparse.

template <NonnegativeQuadraticProgram>
void print nonnegative quadratic program( std::ostream& out,

NonnegativeQuadraticProgram qp,
std::string problem name = std::string(”MY

MPS”))

writes the nonnegative quadratic program qp to out in MPS-
Format. The name of the program will be the one provided
by problem name.

Requirements

Output operators are defined for all entry types of qp.

Example

QP solver/print first nonnegative qp.cpp

See Also

The concept

NonnegativeQuadraticProgram
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CGAL::print nonnegative linear program

#include <CGAL/QP functions.h>

This function writes a nonnegative linear program to an output stream (in MPSFormat). The time complexity is
Θ(mn), even if the program is very sparse.

template <NonnegativeLinearProgram>
void print nonnegative linear program( std::ostream& out,

NonnegativeLinearProgram lp,
std::string problem name = std::string(”MY

MPS”))

writes the nonnegative linear program lp to out in MPSFor-
mat. The name of the program will be the one provided by
problem name.

Requirements

Output operators are defined for all entry types of lp.

Example

QP solver/print first nonnegative lp.cpp

See Also

The concept

NonnegativeLinearProgram
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11.1 Introduction

CGAL, the Computational Geometry Algorithms Library, is written in C++ and consists of three major parts.
The first part is the kernel, which consists of constant-size non-modifiable geometric primitive objects and
operations on these objects. The objects are represented both as stand-alone classes that are parameterized by a
representation class, which specifies the underlying number types used for calculations and as members of the
kernel classes, which allows for more flexibility and adaptability of the kernel. The second part is a collection of
basic geometric data structures and algorithms, which are parameterized by traits classes that define the interface
between the data structure or algorithm and the primitives they use. In many cases, the kernel classes provided
in CGAL can be used as traits classes for these data structures and algorithms. The third part of the library
consists of non-geometric support facilities, such as circulators, random sources, I/O support for debugging and
for interfacing CGAL to various visualization tools.

This part of the reference manual covers the kernel. The kernel contains objects of constant size, such as point,
vector, direction, line, ray, segment, triangle, iso-oriented rectangle and tetrahedron. With each type comes a set
of functions which can be applied to an object of this type. You will typically find access functions (e.g. to the
coordinates of a point), tests of the position of a point relative to the object, a function returning the bounding
box, the length, or the area of an object, and so on. The CGAL kernel further contains basic operations such as
affine transformations, detection and computation of intersections, and distance computations.

11.1.1 Robustness

The correctness proof of nearly all geometric algorithms presented in theory papers assumes exact computation
with real numbers. This leads to a fundamental problem with the implementation of geometric algorithms.
Naively, often the exact real arithmetic is replaced by inexact floating-point arithmetic in the implementation.
This often leads to acceptable results for many input data. However, even for the implementation of the simplest
geometric algorithms this simplification occasionally does not work. Rounding errors introduced by an inac-
curate arithmetic may lead to inconsistent decisions, causing unexpected failures for some correct input data.
There are many approaches to this problem, one of them is to compute exactly (compute so accurate that all
decisions made by the algorithm are exact) which is possible in many cases but more expensive than standard
floating-point arithmetic. C. M. Hoffmann [Hof89a, Hof89b] illustrates some of the problems arising in the
implementation of geometric algorithms and discusses some approaches to solve them. A more recent overview
is given in [Sch00]. The exact computation paradigm is discussed by Yap and Dubé [YD95] and Yap [Yap97].

In CGAL you can choose the underlying number types and arithmetic. You can use different types of arithmetic
simultaneously and the choice can be easily changed, e.g. for testing. So you can choose between implemen-
tations with fast but occasionally inexact arithmetic and implementations guaranteeing exact computation and
exact results. Of course you have to pay for the exactness in terms of execution time and storage space. See the
dedicated chapter for more details on number types and their capabilities and performance.
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11.2 Kernel Representations

Our object of study is the d-dimensional affine Euclidean space. Here we are mainly concerned with cases
d = 2 and d = 3. Objects in that space are sets of points. A common way to represent the points is the use of
Cartesian coordinates, which assumes a reference frame (an origin and d orthogonal axes). In that framework, a
point is represented by a d-tuple (c0,c1, . . . ,cd−1), and so are vectors in the underlying linear space. Each point
is represented uniquely by such Cartesian coordinates. Another way to represent points is by homogeneous
coordinates. In that framework, a point is represented by a (d + 1)-tuple (h0,h1, . . . ,hd). Via the formulae
ci = hi/hd , the corresponding point with Cartesian coordinates (c0,c1, . . . ,cd−1) can be computed. Note that
homogeneous coordinates are not unique. For λ 6= 0, the tuples (h0,h1, . . . ,hd) and (λ · h0,λ · h1, . . . ,λ · hd)
represent the same point. For a point with Cartesian coordinates (c0,c1, . . . ,cd−1) a possible homogeneous
representation is (c0,c1, . . . ,cd−1,1). Homogeneous coordinates in fact allow to represent objects in a more
general space, the projective space Pd . In CGAL, we do not compute in projective geometry. Rather, we use
homogeneous coordinates to avoid division operations, since the additional coordinate can serve as a common
denominator.

11.2.1 Genericity Through Parameterization

Almost all the kernel objects (and the corresponding functions) are templates with a parameter that allows the
user to choose the representation of the kernel objects. A type that is used as an argument for this parameter
must fulfill certain requirements on syntax and semantics. The list of requirements defines an abstract kernel
concept. For all kernel objects types, the types CGAL::Type<Kernel> and Kernel::Type are identical.

CGAL offers four families of concrete models for the concept Kernel, two based on the Cartesian representation
of points and two based on the homogeneous representation of points. The interface of the kernel objects is
designed such that it works well with both Cartesian and homogeneous representation. For example, points
in 2D have a constructor with three arguments as well (the three homogeneous coordinates of the point). The
common interfaces parameterized with a kernel class allow one to develop code independent of the chosen
representation. We said “families” of models, because both families are parameterized too. A user can choose
the number type used to represent the coordinates.

For reasons that will become evident later, a kernel class provides two typenames for number types, namely
Kernel::FT and Kernel::RT . The type Kernel::FT must fulfill the requirements on what is called a FieldNum-
berType in CGAL. This roughly means that Kernel::FT is a type for which operations +, −, ∗ and / are
defined with semantics (approximately) corresponding to those of a field in a mathematical sense. Note that,
strictly speaking, the built-in type int does not fulfill the requirements on a field type, since ints correspond to
elements of a ring rather than a field, especially operation / is not the inverse of ∗. The requirements on the
type Kernel::RT are weaker. This type must fulfill the requirements on what is called a RingNumberType in
CGAL. This roughly means that Kernel::RT is a type for which operations +, −, ∗ are defined with semantics
(approximately) corresponding to those of a ring in a mathematical sense.

11.2.2 Cartesian Kernels

With Cartesian<FieldNumberType> you can choose a Cartesian representation of coordinates. When you
choose Cartesian representation you have to declare at the same time the type of the coordinates. A number
type used with the Cartesian representation class should be a FieldNumberType as described above. As men-
tioned above, the built-in type int is not a FieldNumberType. However, for some computations with Cartesian
representation, no division operation is needed, i.e., a RingNumberType is sufficient in this case. With Carte-
sian<FieldNumberType>, both Cartesian<FieldNumberType>::FT and Cartesian<FieldNumberType>::RT are
mapped to FieldNumberType.
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Cartesian<FieldNumberType> uses reference counting internally to save copying costs. CGAL also provides
Simple cartesian<FieldNumberType>, a kernel that uses Cartesian representation but no reference counting.
Debugging is easier with Simple cartesian<FieldNumberType>, since the coordinates are stored within the
class and hence direct access to the coordinates is possible. Depending on the algorithm, it can also be slightly
more or less efficient than Cartesian<FieldNumberType>. Again, in Simple cartesian<FieldNumberType> both
Simple cartesian<FieldNumberType>::FT and Simple cartesian<FieldNumberType>::RT are mapped to Field-
NumberType.

11.2.3 Homogeneous Kernels

Homogeneous coordinates permit to avoid division operations in numerical computations, since the additional
coordinate can serve as a common denominator. Avoiding divisions can be useful for exact geometric computa-
tion. With Homogeneous<RingNumberType> you can choose a homogeneous representation for the coordinates
of the kernel objects. As for the Cartesian representation, one has to declare the type used to store the co-
ordinates. Since the homogeneous representation does not use divisions, the number type associated with a
homogeneous representation class must be a model for the weaker concept RingNumberType only. However,
some operations provided by this kernel involve divisions, for example computing squared distances or Carte-
sian coordinates. To keep the requirements on the number type parameter of Homogeneous low, the number
type Quotient<RingNumberType> is used for operations that require divisions. This number type can be viewed
as an adaptor which turns a RingNumberType into a FieldNumberType. It maintains numbers as quotients, i.e., a
numerator and a denominator. With Homogeneous<RingNumberType>, Homogeneous<RingNumberType>::FT
is equal to Quotient<RingNumberType>, while Homogeneous<RingNumberType>::RT is equal to RingNumber-
Type.

Homogeneous<RingNumberType> uses reference counting internally to save copying costs. CGAL also pro-
vides Simple homogeneous<RingNumberType>, a kernel that uses homogeneous representation but no ref-
erence counting. Debugging is easier with Simple homogeneous<RingNumberType>, since the coordinates
are stored within the class and hence direct access to the coordinates is possible. Depending on the algo-
rithm, it can also be slightly more or less efficient than Homogeneous<RingNumberType>. Again, in Simple
homogeneous<RingNumberType> the type Simple homogeneous<RingNumberType>::FT is equal to Quotient<
RingNumberType> while Simple homogeneous<RingNumberType>::RT is equal to RingNumberType.

11.2.4 Naming Conventions

The use of kernel classes not only avoids problems, it also makes all CGAL classes very uniform. They always
consist of:

1. The capitalized base name of the geometric object, such as Point, Segment, or Triangle.

2. An underscore followed by the dimension of the object, for example 2, 3, or d.

3. A kernel class as parameter, which itself is parameterized with a number type, such as Cartesian<double>
or Homogeneous<leda integer>.

11.2.5 Kernel as a Traits Class

Algorithms and data structures in the basic library of CGAL are parameterized by a traits class that subsumes
the objects on which the algorithm or data structure operates as well as the operations to do so. For most of the
algorithms and data structures in the basic library you can use a kernel as a traits class. For some algorithms
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you even do not have to specify the kernel; it is detected automatically using the types of the geometric objects
passed to the algorithm. In some other cases, the algorithms or data structures needs more than is provided by
the kernel concept. In these cases, a kernel can not be used as a traits class.

11.2.6 Choosing a Kernel and Predefined Kernels

If you start with integral Cartesian coordinates, many geometric computations will involve integral numerical
values only. Especially, this is true for geometric computations that evaluate only predicates, which are tanta-
mount to determinant computations. Examples are triangulation of point sets and convex hull computation. In
this case, the Cartesian representation is probably the first choice, even with a ring type. You might use limited
precision integer types like int or long, use double to present your integers (they have more bits in their mantissa
than an int and overflow nicely), or an arbitrary precision integer type like the wrapper Gmpz for the GMP
integers, leda integer, or MP Float. Note, that unless you use an arbitrary precision ring type, incorrect results
might arise due to overflow.

If new points are to be constructed, for example the intersection point of two lines, computation of Cartesian
coordinates usually involves divisions. Hence, one needs to use a FieldNumberType with Cartesian representa-
tion, or alternatively, switch to homogeneous representation. The type double is a – though imprecise – model
for FieldNumberType. You can also put any RingNumberType into the Quotient adaptor to get a field type which
then can be put into Cartesian. But using homogeneous representation on the RingNumberType is usually the
better option. Other valid FieldNumberTypes are leda rational and leda real.

If it is crucial for you that the computation is reliable, the right choice is probably a number type that guarantees
exact computation. The Filtered kernel provides a way to apply filtering techniques [BBP01] to achieve a
kernel with exact and efficient predicates. Still other people will prefer the built-in type double, because they
need speed and can live with approximate results, or even algorithms that, from time to time, crash or compute
incorrect results due to accumulated rounding errors.

Predefined kernels. For the user’s convenience, CGAL provides 3 typedefs to generally useful kernels.

• They are all Cartesian kernels.

• They all support constructions of points from double Cartesian coordinates.

• All these 3 kernels provide exact geometric predicates.

• They handle geometric constructions differently:

– Exact predicates exact constructions kernel: provides exact geometric constructions, in addition
to exact geometric predicates.

– Exact predicates exact constructions kernel with sqrt: same as Exact predicates exact
constructions kernel, but the number type it provides (Exact predicates exact constructions
kernel with sqrt::FT) supports the square root operation exactly 1.

– Exact predicates inexact constructions kernel: provides exact geometric predicates, but geometric
constructions may be inexact due to round-off errors. It is however enough for most CGAL al-
gorithms, and faster than both Exact predicates exact constructions kernel and Exact predicates
exact constructions kernel with sqrt.

1Currently it requires having either LEDA or CORE installed
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11.3 Kernel Geometry

11.3.1 Points and Vectors

In CGAL, we strictly distinguish between points, vectors and directions. A point is a point in the Euclidean
space Ed , a vector is the difference of two points p2, p1 and denotes the direction and the distance from p1
to p2 in the vector space Rd , and a direction is a vector where we forget about its length. They are different
mathematical concepts. For example, they behave different under affine transformations and an addition of two
points is meaningless in affine geometry. By putting them in different classes we not only get cleaner code,
but also type checking by the compiler which avoids ambiguous expressions. Hence, it pays twice to make this
distinction.

CGAL defines a symbolic constant ORIGIN of type Origin which denotes the point at the origin. This constant
is used in the conversion between points and vectors. Subtracting it from a point p results in the locus vector of
p.

Point 2< Cartesian<double> > p(1.0, 1.0), q;

Vector 2< Cartesian<double> > v;

v = p − ORIGIN;

q = ORIGIN + v;

assert( p == q );

In order to obtain the point corresponding to a vector v you simply have to add v to ORIGIN. If you want to
determine the point q in the middle between two points p1 and p2, you can write2

q = p 1 + (p 2 − p 1) / 2.0;

Note that these constructions do not involve any performance overhead for the conversion with the currently
available representation classes.

11.3.2 Kernel Objects

Besides points (Point 2<Kernel>, Point 3<Kernel>, Point d<Kernel>), vectors (Vector 2<Kernel>, Vector 3<
Kernel>), and directions (Direction 2<Kernel>, Direction 3<Kernel>), CGAL provides lines, rays, segments,
planes, triangles, tetrahedra, iso-rectangles, iso-cuboids, circles and spheres.

Lines (Line 2<Kernel>, Line 3<Kernel>) in CGAL are oriented. In two-dimensional space, they induce a parti-
tion of the plane into a positive side and a negative side. Any two points on a line induce an orientation of this
line. A ray (Ray 2<Kernel>, Ray 3<Kernel>) is semi-infinite interval on a line, and this line is oriented from
the finite endpoint of this interval towards any other point in this interval. A segment (Segment 2<Kernel>,
Segment 3<Kernel>) is a bounded interval on a directed line, and the endpoints are ordered so that they induce
the same direction as that of the line.

Planes are affine subspaces of dimension two in E3, passing through three points, or a point and a line, ray, or
segment. CGAL provides a correspondence between any plane in the ambient space E3 and the embedding of
E2 in that space. Just like lines, planes are oriented and partition space into a positive side and a negative side.
In CGAL, there are no special classes for half-spaces. Half-spaces in 2D and 3D are supposed to be represented
by oriented lines and planes, respectively.

2you might call midpoint(p 1,p 2) instead
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Concerning polygons and polyhedra, the kernel provides triangles, iso-oriented rectangles, iso-oriented cuboids
and tetrahedra. More complex polygons3 and polyhedra or polyhedral surfaces can be obtained from the basic
library (Polygon 2, Polyhedron 3), so they are not part of the kernel. As with any Jordan curves, triangles,
iso-oriented rectangles and circles separate the plane into two regions, one bounded and one unbounded.

11.3.3 Orientation and Relative Position

Geometric objects in CGAL have member functions that test the position of a point relative to the object. Full
dimensional objects and their boundaries are represented by the same type, e.g. half-spaces and hyperplanes are
not distinguished, neither are balls and spheres and discs and circles. Such objects split the ambient space into
two full-dimensional parts, a bounded part and an unbounded part (e.g. circles), or two unbounded parts (e.g.
hyperplanes). By default these objects are oriented, i.e., one of the resulting parts is called the positive side, the
other one is called the negative side. Both of these may be unbounded.

For these objects there is a function oriented side() that determines whether a test point is on the positive side,
the negative side, or on the oriented boundary. These function returns a value of type Oriented side.

Those objects that split the space in a bounded and an unbounded part, have a member function bounded side()
with return type Bounded side.

If an object is lower dimensional, e.g. a triangle in three-dimensional space or a segment in two-dimensional
space, there is only a test whether a point belongs to the object or not. This member function, which takes a
point as an argument and returns a Boolean value, is called has on()

11.4 Predicates and Constructions

11.4.1 Predicates

Predicates are at the heart of a geometry kernel. They are basic units for the composition of geometric algorithms
and encapsulate decisions. Hence their correctness is crucial for the control flow and hence for the correctness
of an implementation of a geometric algorithm. CGAL uses the term predicate in a generalized sense. Not only
components returning a Boolean value are called predicates but also components returning an enumeration type
like a Comparison result or an Orientation. We say components, because predicates are implemented both as
functions and function objects (provided by a kernel class).

CGAL provides predicates for the orientation of point sets (orientation, leftturn, rightturn, collinear, copla-
nar), for comparing points according to some given order, especially for comparing Cartesian coordinates
(e.g. lexicographically xy smaller), in-circle and in-sphere tests, and predicates to compare distances.

11.4.2 Constructions

Functions and function objects that generate objects that are neither of type bool nor enum types are called con-
structions. Constructions involve computation of new numerical values and may be imprecise due to rounding
errors unless a kernel with an exact number type is used.

3Any sequence of points can be seen as a (not necessary simple) polygon or polyline. This view is used frequently in the basic library
as well.
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Affine transformations (Aff transformation 2<Kernel>, Aff transformation 3<Kernel>) allow to generate new
object instances under arbitrary affine transformations. These transformations include translations, rotations
(in 2D only) and scaling. Most of the geometric objects in a kernel have a member function transform(Aff
transformation t) which applies the transformation to the object instance.

CGAL also provides a set of functions that detect or compute the intersection between objects of the 2D kernel,
and many objects in the 3D kernel, and functions to calculate their squared distance. Moreover, some member
functions of kernel objects are constructions.

So there are routines that compute the square of the Euclidean distance, but no routines that compute the distance
itself. Why? First of all, the two values can be derived from each other quite easily (by taking the square root
or taking the square). So, supplying only the one and not the other is only a minor inconvenience for the user.
Second, often either value can be used. This is for example the case when (squared) distances are compared.
Third, the library wants to stimulate the use of the squared distance instead of the distance. The squared distance
can be computed in more cases and the computation is cheaper. We do this by not providing the perhaps more
natural routine, The problem of a distance routine is that it needs the sqrt operation. This has two drawbacks:

• The sqrt operation can be costly. Even if it is not very costly for a specific number type and platform,
avoiding it is always cheaper.

• There are number types on which no sqrt operation is defined, especially integer types and rationals.

11.4.3 Polymorphic Return Values

Some functions can return different types of objects. A typical C++ solution to this problem is to derive all
possible return types from a common base class, to return a pointer to this class and to perform a dynamic cast
on this pointer. The class Object provides an abstraction. An object obj of the class Object can represent an
arbitrary class. The only operations it provides is to make copies and assignments, so that you can put them in
lists or arrays. Note that Object is NOT a common base class for the elementary classes. Therefore, there is no
automatic conversion from these classes to Object. Rather this is done with the global function make object().
This encapsulation mechanism requires the use of object cast to access the encapsulated class (a less efficient
way, which is now discouraged, used to be to use the assign function).

Example

In the following example, the object class is used as return value for the intersection computation, as there are
possibly different return values.

{

typedef Cartesian<double> K;

typedef K::Point 2 Point 2;

typedef K::Segment 2 Segment 2;

Segment 2 segment 1, segment 2;

std::cin � segment 1 � segment 2;

Object obj = intersection(segment 1, segment 2);

if (const Point 2 ∗point = object cast<Point 2>(&obj)) {

/∗ do something with ∗point ∗/
} else if (const Segment 2 ∗segment = object cast<Segment 2>(&obj)) {

566



/∗ do something with ∗segment∗/
}

/∗ there was no intersection ∗/
}

The intersection routine itself looks roughly as follows:

template < class Kernel >

Object intersection(Segment 2<Kernel> s1, Segment 2<Kernel> s2)

{

if (/∗ intersection in a point ∗/ ) {

Point 2<Kernel> p = ... ;

return make object(p);

} else if (/∗ intersection in a segment ∗/ ) {

Segment 2<Kernel> s = ... ;

return make object(s);

}

return Object();

}

11.4.4 Constructive Predicates

For testing where a point p lies with respect to a plane defined by three points q, r and s, one may be tempted
to construct the plane Plane 3<Kernel>(q,r,s) and use the method oriented side(p). This may pay off if many
tests with respect to the plane are made. Nevertheless, unless the number type is exact, the constructed plane
is only approximated, and round-off errors may lead oriented side(p) to return an orientation which is different
from the orientation of p, q, r, and s.

In CGAL, we provide predicates in which such geometric decisions are made directly with a reference to the
input points p, q, r, s, without an intermediary object like a plane. For the above test, the recommended way to
get the result is to use orientation(p,q,r,s). For exact number types, the situation is different. If several tests are
to be made with the same plane, it pays off to construct the plane and to use oriented side(p).

11.5 Extensible Kernel

This manual section describe how users can plug user defined geometric classes in existing CGAL kernels. This
is best illustrated by an example.
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11.5.1 Introduction

CGAL defines the concept of a geometry kernel. Such a kernel provides types, construction objects and general-
ized predicates. Most implementations of Computational Geometry algorithms and data structures in the basic
library of CGAL were done in a way that classes or functions can be parametrized with a geometric traits class.

In most cases this geometric traits class must be a model of the CGAL geometry kernel concept (but there are
some exceptions).

11.5.2 An Extensive Example

Assume you have the following point class, where the coordinates are stored in an array of doubles, where we
have another data member color, which shows up in the constructor.� �
#ifndef MY_POINTC2_H
#define MY_POINTC2_H

#include <CGAL/Origin.h>
#include <CGAL/Bbox_2.h>

class MyPointC2 {

private:
double vec[2];
int col;

public:

MyPointC2()
: col(0)

{
*vec = 0;
*(vec+1) = 0;

}

MyPointC2(const double x, const double y, int c = 0)
: col(c)

{
*vec = x;
*(vec+1) = y;

}

const double& x() const { return *vec; }

const double& y() const { return *(vec+1); }

double & x() { return *vec; }

double& y() { return *(vec+1); }
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int color() const { return col; }

int& color() { return col; }

bool operator==(const MyPointC2 &p) const
{

return ( *vec == *(p.vec) ) && ( *(vec+1) == *(p.vec + 1) && ( col
== p.col) );

}

bool operator!=(const MyPointC2 &p) const
{

return !(*this == p);
}

};

#endif // MY_POINTC2_H� �
File: examples/Kernel_23/MyPointC2.h

As said earlier the class is pretty minimalistic, for example it has no bbox() method. One might assume that a
basic library algorithm which computes a bounding box (e.g, to compute the bounding box of a polygon), will
not compile. Luckily it will, because it does not use of member functions of geometric objects, but it makes use
of the functor Kernel::Construct bbox 2.

To make the right thing happen with MyPointC2 we have to provide the following functor.� �
#ifndef MYCONSTRUCT_BBOX_2_H
#define MYCONSTRUCT_BBOX_2_H

template <class ConstructBbox_2>
class MyConstruct_bbox_2 : public ConstructBbox_2 {
public:

using ConstructBbox_2::operator();

CGAL::Bbox_2 operator()(const MyPointC2& p) const {
return CGAL::Bbox_2(p.x(), p.y(), p.x(), p.y());

}
};

#endif //MYCONSTRUCT_BBOX_2_H� �
File: examples/Kernel_23/MyConstruct_bbox_2.h

Things are similar for random access to the Cartesian coordinates of a point. As the coordinates are stored in an
array of doubles we can use double* as random access iterator.� �
#ifndef MYCONSTRUCT_COORD_ITERATOR_H
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#define MYCONSTRUCT_COORD_ITERATOR_H

class MyConstruct_coord_iterator {
public:

const double* operator()(const MyPointC2& p)
{

return &p.x();
}

const double* operator()(const MyPointC2& p, int)
{

const double* pyptr = &p.y();
pyptr++;
return pyptr;

}
};

#endif //MYCONSTRUCT_COORD_ITERATOR_H� �
File: examples/Kernel_23/MyConstruct_coord_iterator.h

The last functor we have to provide is the one which constructs points. That is you are not forced to add the
constructor with the Origin as parameter to your class, nor the constructor with homogeneous coordinates. The
functor is a kind of glue layer between the CGAL algorithms and your class.� �
#ifndef MYCONSTRUCT_POINT_2_H
#define MYCONSTRUCT_POINT_2_H

template <typename K, typename OldK>
class MyConstruct_point_2
{

typedef typename K::RT RT;
typedef typename K::Point_2 Point_2;
typedef typename K::Line_2 Line_2;
typedef typename Point_2::Rep Rep;

public:
typedef Point_2 result_type;

// Note : the CGAL::Return_base_tag is really internal CGAL stuff.
// Unfortunately it is needed for optimizing away copy-constructions,
// due to current lack of delegating constructors in the C++ standard.
Rep // Point_2
operator()(CGAL::Return_base_tag, CGAL::Origin o) const
{ return Rep(o); }

Rep // Point_2
operator()(CGAL::Return_base_tag, const RT& x, const RT& y) const
{ return Rep(x, y); }

Rep // Point_2
operator()(CGAL::Return_base_tag, const RT& x, const RT& y, const RT&
w) const

{ return Rep(x, y, w); }
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Point_2
operator()(CGAL::Origin o) const
{ return MyPointC2(0, 0, 0); }

Point_2
operator()(const RT& x, const RT& y) const
{

return MyPointC2(x, y, 0);
}

Point_2
operator()(const Line_2& l) const
{

typename OldK::Construct_point_2 base_operator;
Point_2 p = base_operator(l);
return p;

}

Point_2
operator()(const Line_2& l, int i) const
{

typename OldK::Construct_point_2 base_operator;
return base_operator(l, i);

}

// We need this one, as such a functor is in the Filtered_kernel
Point_2
operator()(const RT& x, const RT& y, const RT& w) const
{

if(w != 1){
return MyPointC2(x/w, y/w, 0);

} else {
return MyPointC2(x,y, 0);

}
}

};

#endif //MYCONSTRUCT_POINT_2_H� �
File: examples/Kernel_23/MyConstruct_point_2.h

Now we are ready to put the puzzle together. We won’t explain it in detail, but you see that there are typedefs to
the new point class and the functors. All the other types are inherited.� �
#ifndef MYKERNEL_H
#define MYKERNEL_H

#include <CGAL/Cartesian.h>
#include "MyPointC2.h"
#include "MySegmentC2.h"
#include "MyConstruct_bbox_2.h"
#include "MyConstruct_coord_iterator.h"
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#include "MyConstruct_point_2.h"

// K_ is the new kernel, and K_Base is the old kernel
template < typename K_, typename K_Base >
class MyCartesian_base

: public K_Base::template Base<K_>::Type
{

typedef typename K_Base::template Base<K_>::Type OldK;
public:

typedef K_ Kernel;
typedef MyPointC2 Point_2;
typedef MySegmentC2<Kernel> Segment_2;
typedef MyConstruct_point_2<Kernel, OldK> Construct_point_2;
typedef const double* Cartesian_const_iterator_2;
typedef MyConstruct_coord_iterator
Construct_cartesian_const_iterator_2;

typedef MyConstruct_bbox_2<typename OldK::Construct_bbox_2>
Construct_bbox_2;

Construct_point_2
construct_point_2_object() const
{ return Construct_point_2(); }

Construct_bbox_2
construct_bbox_2_object() const
{ return Construct_bbox_2(); }

Construct_cartesian_const_iterator_2
construct_cartesian_const_iterator_2_object() const
{ return Construct_cartesian_const_iterator_2(); }

template < typename Kernel2 >
struct Base { typedef MyCartesian_base<Kernel2, K_Base> Type; };

};

template < typename FT_ >
struct MyKernel

: public CGAL::Type_equality_wrapper<
MyCartesian_base<MyKernel<FT_>, CGAL::Cartesian<FT_> >,
MyKernel<FT_> >

{};

#endif // MYKERNEL_H� �
File: examples/Kernel_23/MyKernel.h

Finally, we give an example how this new kernel can be used. Predicates and constructions work with the new
point, they can be a used to construct segments and triangles with, and data structures from the Basic Library,
as the Delaunay triangulation work with them.

The kernel itself can be made robust by plugging it in the Filtered kernel.
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� �
#include <CGAL/basic.h>
#include <CGAL/Filtered_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/squared_distance_2.h>
#include <cassert>
#include "MyKernel.h"
#include "MyPointC2_iostream.h"

typedef MyKernel<double> MK;
typedef CGAL::Filtered_kernel_adaptor<MK> K;
typedef CGAL::Delaunay_triangulation_2<K> Delaunay_triangulation_2;

typedef K::Point_2 Point;
typedef K::Segment_2 Segment;
typedef K::Ray_2 Ray;
typedef K::Line_2 Line;
typedef K::Triangle_2 Triangle;
typedef K::Iso_rectangle_2 Iso_rectangle;

const int RED= 1;
const int BLACK=2;

int main()
{

Point a(0,0), b(1,0), c(1,1), d(0,1);
a.color()=RED;
b.color()=BLACK;
d.color()=RED;

Delaunay_triangulation_2 dt;
dt.insert(a);

K::Orientation_2 orientation;
orientation(a,b,c);

Point p(1,2), q;
p.color() = RED;
q.color() = BLACK;
std::cout << p << std::endl;

K::Compute_squared_distance_2 squared_distance;

std::cout << "squared_distance(a, b) == "
<< squared_distance(a, b) << std::endl;

Segment s1(p,q), s2(a, c);

K::Construct_midpoint_2 construct_midpoint_2;

Point mp = construct_midpoint_2(p,q);

assert(s1.source().color() == RED);
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K::Intersect_2 intersection;

CGAL::Object o = intersection(s1, s2);

K::Construct_cartesian_const_iterator_2 construct_it;
K::Cartesian_const_iterator_2 cit = construct_it(a);
assert(*cit == a.x());

cit = construct_it(a,0);

cit--;
assert(*cit == a.y());

Line l1(a,b), l2(p, q);

intersection(l1, l2);

intersection(s1, l1);

Ray r1(d,b), r2(d,c);
intersection(r1, r2);

intersection(r1, l1);

squared_distance(r1, r2);
squared_distance(r1, l2);
squared_distance(r1, s2);

Triangle t1(a,b,c), t2(a,c,d);
intersection(t1, t2);
intersection(t1, l1);

intersection(t1, s1);

intersection(t1, r1);

Iso_rectangle i1(a,c), i2(d,p);
intersection(i1, i2);
intersection(i1, s1);

intersection(i1, r1);
intersection(i1, l1);

t1.orientation();

std::cout << s1.source() << std::endl;

std::cout << t1.bbox() << std::endl;

std::cout << "done" << std::endl;
return 0;

}� �
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File: examples/Kernel_23/MyKernel.cpp

11.5.3 Limitations

The point class must have member functions x() and y() (and z() for the 3d point). We will probably introduce
function objects that take care of coordinate access.

As we enforce type equality between MyKernel::Point 2 and Point 2<MyKernel>, the constructor with the
color as third argument is not available.

11.6 Projection Traits Classes

It is sometimes useful to apply 2D algorithms to the projection of 3D points on a plane. Examples are triangu-
lated terrains, which are points with elevation, or surface reconstruction from parallel slices, where one wants
to check the simplicity or orientation of polygons.

For this purpose CGAL provides several projection traits classes, which are a model of traits class concepts of
2D triangulations, 2D polygon and 2D convex hull traits classes. The projection traits classes are listed in the
“Is Model for the Concepts” sections of the concepts.

11.7 Design and Implementation History

At a meeting at Utrecht University in January 1995, Olivier Devillers, Andreas Fabri, Wolfgang Freiseisen,
Geert-Jan Giezeman, Mark Overmars, Stefan Schirra, Otfried Schwarzkopf (now Otfried Cheong), and Sven
Schönherr discussed the foundations of the CGAL kernel. Many design and software engineering issues were
addressed, e.g. naming conventions, coupling of classes (flat versus deep class hierarchy), memory allocation,
programming conventions, mutability of atomic objects, points and vectors, storing additional information,
orthogonality of operations on the kernel objects, viewing non-constant-size objects like polygons as dynamic
data structures (and hence not as part of the (innermost) kernel).

The people attending the meeting delegated the compilation of a draft specification to Stefan Schirra. The
resulting draft specification was intentionally modeled on CGAL’s precursors C++GAL and PLAGEO as well as
on the geometric part of LEDA. The specification already featured coexistence of Cartesian and homogeneous
representation of point/vector data and parameterization by number type(s). During the discussion of the draft
a kernel design group was formed. The members of this group were Andreas Fabri, Geert-Jan Giezeman, Lutz
Kettner, Stefan Schirra, and Sven Schönherr. The work of the kernel design group led to significant changes and
improvements of the original design, e.g. the strong separation between points and vectors. Probably the most
important enhancement was the design of a common superstructure for the previously uncoupled Cartesian and
homogeneous representations. One can say, that the kernel was designed by this group. The kernel was later
revised based on suggestions by Hervé Brönnimann, Bernd Gärtner, Michael Hoffmann, and Lutz Kettner.

A first version of the kernel was internally made available at the beginning of the CGAL-project (ESPRIT LTR
IV project number 21957). Since then many more people contributed to the evolution of the kernel through
discussions on the CGAL mailing lists. The implementation based on Cartesian representation was (initially)
provided by Andreas Fabri, the homogeneous representation (initially) by Stefan Schirra. Intersection and
distance computations were implemented by Geert-Jan Giezeman. Further work has been done by Susan Hert
on the overall maintenance of the kernel. Philippe Guigue has provided efficient intersection tests for 3D
triangles. Andreas Fabri, Michael Hoffmann and Sylvain Pion have improved the support for the extensibility
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and adaptability of the kernel. Pedro Machado Manhães de Castro and Monique Teillaud introduced 3D circles.
In 2010, Pierre Alliez, Stéphane Tayeb and Camille Wormser added intersection constructions for 3D triangles
and efficient intersection tests for bounding boxes.
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11.8 Concepts

C
on

ce
pt

Kernel

The concept of a kernel is defined by a set of requirements on the provision of certain types and access member
functions to create objects of these types. The types are function object classes to be used within the algorithms
and data structures of CGAL. This allows you to use any model of a kernel as a traits class in the CGAL
algorithms and data structures, unless they require types beyond those provided by a kernel.

A kernel provides types, construction objects, and generalized predicates. The former replace constructors of
the kernel classes and constructive procedures in the kernel. There are also function objects replacing operators,
especially for equality testing.

Has Models

CGAL::Cartesian<FieldNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 588
CGAL::Homogeneous<RingNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1070
CGAL::Simple cartesian<FieldNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 602
CGAL::Simple homogeneous<RingNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 603
CGAL::Filtered kernel<CK> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 592
CGAL::Exact predicates exact constructions kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 606
CGAL::Exact predicates exact constructions kernel with sqrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 607
CGAL::Exact predicates inexact constructions kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 608

Types

Kernel:: FT a model of FieldNumberType
Kernel:: RT a model of RingNumberType

The following types describe the return types of predicates. They typically map to bool and CGAL kernel enum
types, except when an interval arithmetic number type is used such as within the filtering kernels, in which case
it is Uncertain<bool> or similar.

Kernel:: Boolean bool or Uncertain<bool>
Kernel:: Sign CGAL::Sign or Uncertain<CGAL::Sign>
Kernel:: Comparison result CGAL::Comparison result or Uncertain<

CGAL::Comparison result>

Kernel:: Orientation CGAL::Orientation or Uncertain<CGAL::Orientation>
Kernel:: Oriented side CGAL::Oriented side or Uncertain<CGAL::Oriented

side>

Kernel:: Bounded side CGAL::Bounded side or Uncertain<CGAL::Bounded
side>

Kernel:: Angle CGAL::Angle or Uncertain<CGAL::Angle>

Constants
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static const bool Has filtered predicates;

A Boolean value indicating whether the predicates are fil-
tered (as in Filtered kernel). This helps propagating such
decisions to traits classes which are built on top of a ker-
nel, so that they can decide to filter their own predicates
or not.

Coordinate Access

Kernel:: Cartesian const iterator 2 a model of Kernel::CartesianConstIterator 2

Geometric Objects

Kernel:: Point 2 a model of Kernel::Point 2
Kernel:: Vector 2 a model of Kernel::Vector 2
Kernel:: Direction 2 a model of Kernel::Direction 2
Kernel:: Line 2 a model of Kernel::Line 2
Kernel:: Ray 2 a model of Kernel::Ray 2
Kernel:: Segment 2 a model of Kernel::Segment 2
Kernel:: Triangle 2 a model of Kernel::Triangle 2
Kernel:: Iso rectangle 2 a model of Kernel::IsoRectangle 2
Kernel:: Circle 2 a model of Kernel::Circle 2
Kernel:: Object 2 a model of Kernel::Object 2

Constructions

Kernel:: Construct point 2 a model of Kernel::ConstructPoint 2
Kernel:: Construct vector 2 a model of Kernel::ConstructVector 2
Kernel:: Construct direction 2 a model of Kernel::ConstructDirection 2
Kernel:: Construct segment 2 a model of Kernel::ConstructSegment 2
Kernel:: Construct line 2 a model of Kernel::ConstructLine 2
Kernel:: Construct ray 2 a model of Kernel::ConstructRay 2
Kernel:: Construct circle 2 a model of Kernel::ConstructCircle 2
Kernel:: Construct triangle 2 a model of Kernel::ConstructTriangle 2
Kernel:: Construct iso rectangle 2 a model of Kernel::ConstructIsoRectangle 2
Kernel:: Construct object 2 a model of Kernel::ConstructObject 2
Kernel:: Construct scaled vector 2 a model of Kernel::ConstructScaledVector 2
Kernel:: Construct translated point 2 a model of Kernel::ConstructTranslatedPoint 2
Kernel:: Construct point on 2 a model of Kernel::ConstructPointOn 2
Kernel:: Construct projected point 2 a model of Kernel::ConstructProjectedPoint 2
Kernel:: Construct projected xy point 2 a model of Kernel::ConstructProjectedXYPoint 2
Kernel:: Construct cartesian const iterator 2 a model of Kernel::ConstructCartesianConstIterator 2
Kernel:: Construct vertex 2 a model of Kernel::ConstructVertex 2
Kernel:: Construct bbox 2 a model of Kernel::ConstructBbox 2
Kernel:: Construct perpendicular vector 2 a model of Kernel::ConstructPerpendicularVector 2
Kernel:: Construct perpendicular direction 2 a model of Kernel::ConstructPerpendicularDirection 2
Kernel:: Construct perpendicular line 2 a model of Kernel::ConstructPerpendicularLine 2
Kernel:: Construct max vertex 2 a model of Kernel::ConstructMaxVertex 2
Kernel:: Construct midpoint 2 a model of Kernel::ConstructMidpoint 2
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Kernel:: Construct equidistant line 3 a model of Kernel::ConstructEquidistantLine 3
Kernel:: Construct min vertex 2 a model of Kernel::ConstructMinVertex 2
Kernel:: Construct center 2 a model of Kernel::ConstructCenter 2
Kernel:: Construct centroid 2 a model of Kernel::ConstructCentroid 2
Kernel:: Construct circumcenter 2 a model of Kernel::ConstructCircumcenter 2
Kernel:: Construct bisector 2 a model of Kernel::ConstructBisector 2
Kernel:: Construct opposite direction 2 a model of Kernel::ConstructOppositeDirection 2
Kernel:: Construct opposite segment 2 a model of Kernel::ConstructOppositeSegment 2
Kernel:: Construct opposite ray 2 a model of Kernel::ConstructOppositeRay 2
Kernel:: Construct opposite line 2 a model of Kernel::ConstructOppositeLine 2
Kernel:: Construct opposite triangle 2 a model of Kernel::ConstructOppositeTriangle 2
Kernel:: Construct opposite circle 2 a model of Kernel::ConstructOppositeCircle 2
Kernel:: Construct opposite vector 2 a model of Kernel::ConstructOppositeVector 2

If the result type is not determined, there is no Construct prefix:

Kernel:: Intersect 2 a model of Kernel::Intersect 2
Kernel:: Assign 2 a model of Kernel::Assign 2

If the result type is a number type, the prefix is Compute :

Kernel:: Compute squared distance 2 a model of Kernel::ComputeSquaredDistance 2
Kernel:: Compute squared length 2 a model of Kernel::ComputeSquaredLength 2
Kernel:: Compute squared radius 2 a model of Kernel::ComputeSquaredRadius 2
Kernel:: Compute area 2 a model of Kernel::ComputeArea 2
Kernel:: Compute determinant 2 a model of Kernel::ComputeDeterminant 2

Generalized Predicates

Kernel:: Angle 2 a model of Kernel::Angle 2
Kernel:: Equal 2 a model of Kernel::Equal 2
Kernel:: Equal x 2 a model of Kernel::EqualX 2
Kernel:: Equal y 2 a model of Kernel::EqualY 2
Kernel:: Less x 2 a model of Kernel::LessX 2
Kernel:: Less y 2 a model of Kernel::LessY 2
Kernel:: Less xy 2 a model of Kernel::LessXY 2
Kernel:: Less yx 2 a model of Kernel::LessYX 2
Kernel:: Compare x 2 a model of Kernel::CompareX 2
Kernel:: Compare x at y 2 a model of Kernel::CompareXAtY 2
Kernel:: Compare y 2 a model of Kernel::CompareY 2
Kernel:: Compare xy 2 a model of Kernel::CompareXY 2
Kernel:: Compare yx 2 a model of Kernel::CompareYX 2
Kernel:: Compare y at x 2 a model of Kernel::CompareYAtX 2
Kernel:: Compare distance 2 a model of Kernel::CompareDistance 2
Kernel:: Compare angle with x axis 2 a model of Kernel::CompareAngleWithXAxis 2
Kernel:: Compare slope 2 a model of Kernel::CompareSlope 2
Kernel:: Less distance to point 2 a model of Kernel::LessDistanceToPoint 2
Kernel:: Less signed distance to line 2 a model of Kernel::LessSignedDistanceToLine 2
Kernel:: Less rotate ccw 2 a model of Kernel::LessRotateCCW 2
Kernel:: Left turn 2 a model of Kernel::LeftTurn 2
Kernel:: Collinear 2 a model of Kernel::Collinear 2
Kernel:: Orientation 2 a model of Kernel::Orientation 2
Kernel:: Side of oriented circle 2 a model of Kernel::SideOfOrientedCircle 2
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Kernel:: Side of bounded circle 2 a model of Kernel::SideOfBoundedCircle 2
Kernel:: Is horizontal 2 a model of Kernel::IsHorizontal 2
Kernel:: Is vertical 2 a model of Kernel::IsVertical 2
Kernel:: Is degenerate 2 a model of Kernel::IsDegenerate 2
Kernel:: Has on 2 a model of Kernel::HasOn 2
Kernel:: Collinear has on 2 a model of Kernel::CollinearHasOn 2
Kernel:: Has on bounded side 2 a model of Kernel::HasOnBoundedSide 2
Kernel:: Has on unbounded side 2 a model of Kernel::HasOnUnboundedSide 2
Kernel:: Has on boundary 2 a model of Kernel::HasOnBoundary 2
Kernel:: Has on positive side 2 a model of Kernel::HasOnPositiveSide 2
Kernel:: Has on negative side 2 a model of Kernel::HasOnNegativeSide 2
Kernel:: Oriented side 2 a model of Kernel::OrientedSide 2
Kernel:: Bounded side 2 a model of Kernel::BoundedSide 2
Kernel:: Are parallel 2 a model of Kernel::AreParallel 2
Kernel:: Are ordered along line 2 a model of Kernel::AreOrderedAlongLine 2
Kernel:: Are strictly ordered along line 2 a model of Kernel::AreStrictlyOrderedAlongLine 2
Kernel:: Collinear are ordered along line 2 a model of Kernel::CollinearAreOrderedAlongLine 2
Kernel:: Collinear are strictly ordered along line 2

a model of Kernel::CollinearAreStrictlyOrderedAlongLine
2

Kernel:: Counterclockwise in between 2 a model of Kernel::CounterclockwiseInBetween 2
Kernel:: Do intersect 2 a model of Kernel::DoIntersect 2

Three-dimensional Kernel

Coordinate Access

Kernel:: Cartesian const iterator 3 a model of Kernel::CartesianConstIterator 3

Geometric Objects

Kernel:: Point 3 a model of Kernel::Point 3
Kernel:: Vector 3 a model of Kernel::Vector 3
Kernel:: Direction 3 a model of Kernel::Direction 3
Kernel:: Iso cuboid 3 a model of Kernel::IsoCuboid 3
Kernel:: Line 3 a model of Kernel::Line 3
Kernel:: Ray 3 a model of Kernel::Ray 3
Kernel:: Circle 3 a model of Kernel::Circle 3
Kernel:: Sphere 3 a model of Kernel::Sphere 3
Kernel:: Segment 3 a model of Kernel::Segment 3
Kernel:: Plane 3 a model of Kernel::Plane 3
Kernel:: Triangle 3 a model of Kernel::Triangle 3
Kernel:: Tetrahedron 3 a model of Kernel::Tetrahedron 3
Kernel:: Object 3 a model of Kernel::Object 3

Constructions

Kernel:: Construct point 3 a model of Kernel::ConstructPoint 3
Kernel:: Construct vector 3 a model of Kernel::ConstructVector 3
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Kernel:: Construct direction 3 a model of Kernel::ConstructDirection 3
Kernel:: Construct plane 3 a model of Kernel::ConstructPlane 3
Kernel:: Construct iso cuboid 3 a model of Kernel::ConstructIsoCuboid 3
Kernel:: Construct line 3 a model of Kernel::ConstructLine 3
Kernel:: Construct ray 3 a model of Kernel::ConstructRay 3
Kernel:: Construct sphere 3 a model of Kernel::ConstructSphere 3
Kernel:: Construct segment 3 a model of Kernel::ConstructSegment 3
Kernel:: Construct triangle 3 a model of Kernel::ConstructTriangle 3
Kernel:: Construct tetrahedron 3 a model of Kernel::ConstructTetrahedron 3
Kernel:: Construct object 3 a model of Kernel::ConstructObject 3
Kernel:: Construct scaled vector 3 a model of Kernel::ConstructScaledVector 3
Kernel:: Construct translated point 3 a model of Kernel::ConstructTranslatedPoint 3
Kernel:: Construct point on 3 a model of Kernel::ConstructPointOn 3
Kernel:: Construct projected point 3 a model of Kernel::ConstructProjectedPoint 3
Kernel:: Construct lifted point 3 a model of Kernel::ConstructLiftedPoint 3
Kernel:: Construct cartesian const iterator 3 a model of Kernel::ConstructCartesianConstIterator 3
Kernel:: Construct vertex 3 a model of Kernel::ConstructVertex 3
Kernel:: Construct bbox 3 a model of Kernel::ConstructBbox 3
Kernel:: Construct supporting plane 3 a model of Kernel::ConstructSupportingPlane 3
Kernel:: Construct orthogonal vector 3 a model of Kernel::ConstructOrthogonalVector 3
Kernel:: Construct base vector 3 a model of Kernel::ConstructBaseVector 3
Kernel:: Construct perpendicular plane 3 a model of Kernel::ConstructPerpendicularPlane 3
Kernel:: Construct radical plane 3 a model of Kernel::ConstructRadicalPlane 3
Kernel:: Construct perpendicular line 3 a model of Kernel::ConstructPerpendicularLine 3
Kernel:: Construct midpoint 3 a model of Kernel::ConstructMidpoint 3
Kernel:: Construct center 3 a model of Kernel::ConstructCenter 3
Kernel:: Construct centroid 3 a model of Kernel::ConstructCentroid 3
Kernel:: Construct circumcenter 3 a model of Kernel::ConstructCircumcenter 3
Kernel:: Construct bisector 3 a model of Kernel::ConstructBisector 3
Kernel:: Construct cross product vector 3 a model of Kernel::ConstructCrossProductVector 3
Kernel:: Construct opposite direction 3 a model of Kernel::ConstructOppositeDirection 3
Kernel:: Construct opposite segment 3 a model of Kernel::ConstructOppositeSegment 3
Kernel:: Construct opposite ray 3 a model of Kernel::ConstructOppositeRay 3
Kernel:: Construct opposite line 3 a model of Kernel::ConstructOppositeLine 3
Kernel:: Construct opposite plane 3 a model of Kernel::ConstructOppositePlane 3
Kernel:: Construct opposite sphere 3 a model of Kernel::ConstructOppositeSphere 3
Kernel:: Construct opposite vector 3 a model of Kernel::ConstructOppositeVector 3

If the result type is not determined, there is no Construct prefix:

Kernel:: Intersect 3 a model of Kernel::Intersect 3
Kernel:: Assign 3 a model of Kernel::Assign 3

If the result type is a number type, the prefix is Compute :

Kernel:: Compute area 3 a model of Kernel::ComputeArea 3
Kernel:: Compute squared area 3 a model of Kernel::ComputeSquaredArea 3
Kernel:: Compute area divided by pi 3 a model of Kernel::ComputeAreaDividedByPi 3
Kernel:: Compute approximate area 3 a model of Kernel::ComputeApproximateArea 3
Kernel:: Compute determinant 3 a model of Kernel::ComputeDeterminant 3
Kernel:: Compute squared distance 3 a model of Kernel::ComputeSquaredDistance 3
Kernel:: Compute squared length 3 a model of Kernel::ComputeSquaredLength 3
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Kernel:: Compute squared length divided by pi square 3

a model of Kernel::ComputeSquaredLengthDividedByPiSquare
3

Kernel:: Compute approximate squared length 3 a model of Kernel::ComputeApproximateSquaredLength
3

Kernel:: Compute squared radius 3 a model of Kernel::ComputeSquaredRadius 3
Kernel:: Compute volume 3 a model of Kernel::ComputeVolume 3

Generalized Predicates

Kernel:: Angle 3 a model of Kernel::Angle 3
Kernel:: Equal 3 a model of Kernel::Equal 3
Kernel:: Equal x 3 a model of Kernel::EqualX 3
Kernel:: Equal y 3 a model of Kernel::EqualY 3
Kernel:: Equal z 3 a model of Kernel::EqualZ 3
Kernel:: Equal xy 3 a model of Kernel::EqualXY 3
Kernel:: Less x 3 a model of Kernel::LessX 3
Kernel:: Less y 3 a model of Kernel::LessY 3
Kernel:: Less z 3 a model of Kernel::LessZ 3
Kernel:: Less xy 3 a model of Kernel::LessXY 3
Kernel:: Less xyz 3 a model of Kernel::LessXYZ 3
Kernel:: Compare x 3 a model of Kernel::CompareX 3
Kernel:: Compare y 3 a model of Kernel::CompareY 3
Kernel:: Compare z 3 a model of Kernel::CompareZ 3
Kernel:: Compare xy 3 a model of Kernel::CompareXY 3
Kernel:: Compare xyz 3 a model of Kernel::CompareXYZ 3
Kernel:: Less signed distance to plane 3 a model of Kernel::LessSignedDistanceToPlane 3
Kernel:: Less distance to point 3 a model of Kernel::LessDistanceToPoint 3
Kernel:: Compare dihedral angle 3 a model of Kernel::CompareDihedralAngle 3
Kernel:: Compare distance 3 a model of Kernel::CompareDistance 3
Kernel:: Collinear 3 a model of Kernel::Collinear 3
Kernel:: Coplanar 3 a model of Kernel::Coplanar 3
Kernel:: Orientation 3 a model of Kernel::Orientation 3
Kernel:: Coplanar orientation 3 a model of Kernel::CoplanarOrientation 3
Kernel:: Coplanar side of bounded circle 3 a model of Kernel::CoplanarSideOfBoundedCircle 3
Kernel:: Side of oriented sphere 3 a model of Kernel::SideOfOrientedSphere 3
Kernel:: Side of bounded sphere 3 a model of Kernel::SideOfBoundedSphere 3
Kernel:: Is degenerate 3 a model of Kernel::IsDegenerate 3
Kernel:: Has on 3 a model of Kernel::HasOn 3
Kernel:: Has on bounded side 3 a model of Kernel::HasOnBoundedSide 3
Kernel:: Has on unbounded side 3 a model of Kernel::HasOnUnboundedSide 3
Kernel:: Has on boundary 3 a model of Kernel::HasOnBoundary 3
Kernel:: Has on positive side 3 a model of Kernel::HasOnPositiveSide 3
Kernel:: Has on negative side 3 a model of Kernel::HasOnNegativeSide 3
Kernel:: Oriented side 3 a model of Kernel::OrientedSide 3
Kernel:: Bounded side 3 a model of Kernel::BoundedSide 3
Kernel:: Are parallel 3 a model of Kernel::AreParallel 3
Kernel:: Are ordered along line 3 a model of Kernel::AreOrderedAlongLine 3
Kernel:: Are strictly ordered along line 3 a model of Kernel::AreStrictlyOrderedAlongLine 3
Kernel:: Collinear are ordered along line 3 a model of Kernel::CollinearAreOrderedAlongLine 3
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Kernel:: Collinear are strictly ordered along line 3

a model of Kernel::CollinearAreStrictlyOrderedAlongLine
3

Kernel:: Do intersect 3 a model of Kernel::DoIntersect 3

Operations

For each of the function objects above, there must exist a member function that requires no arguments and
returns an instance of that function object. The name of the member function is the uncapitalized name of the
type returned with the suffix object appended. For example, for the function object Kernel::Construct vector 2
the following member function must exist:
Kernel::Construct vector 2 kernel.construct vector 2 object() const

See Also
Kernel d
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CGAL::Cartesian<FieldNumberType>

#include <CGAL/Cartesian.h>

Definition

A model for Kernel that uses Cartesian coordinates to represent the geometric objects. In order for Cartesian<
FieldNumberType> to model Euclidean geometry in E2 and/or E3, for some mathematical field E (e.g., the
rationals Q or the reals R), the template parameter FieldNumberType must model the mathematical field E.
That is, the field operations on this number type must compute the mathematically correct results. If the number
type provided as a model for FieldNumberType is only an approximation of a field (such as the built-in type
double), then the geometry provided by the kernel is only an approximation of Euclidean geometry.

Is Model for the Concepts

Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 581

Types

typedef FieldNumberType FT;
typedef FieldNumberType RT;

Implementation

All geometric objects in Cartesian<FieldNumberType> are reference counted.

See Also

CGAL::Simple cartesian<FieldNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 602
CGAL::Homogeneous<RingNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1070
CGAL::Simple homogeneous<RingNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 603
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CGAL::Cartesian converter<K1, K2, NTConverter>

Definition

Cartesian converter<K1, K2, NTConverter>converts objects from the kernel traits K1 to the kernel traits K2
using Converter to do the conversion. Those traits must be of the form Cartesian<FT1> and Cartesian<FT2>
(or the equivalent with Simple cartesian). It then provides the following operators to convert objects from K1
to K2.

The third template parameter NTConverter is a function object that must provide K2::FT operator()(K1::FT n)
that converts n to an K2::FT which has the same value.

The default value of this parameter is CGAL::NT converter<K1::FT, K2::FT>.

#include <CGAL/Cartesian converter.h>

Creation

Cartesian converter<K1, K2, NTConverter> conv;

Default constructor.

Operations

K2::Point 2 conv.operator()( K1::Point 2 p)

returns a K2::Point 2 which coordinates are those of p,
converted by NTConverter.

Similar operators are defined for the other kernel traits types Point 3, Vector 2...

Example

In the following example, we compute exactly the intersection point between a line and a triangle, and we then
create a double approximation of this point.� �
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Quotient.h>
#include <CGAL/MP_Float.h>
#include <CGAL/Cartesian_converter.h>

typedef CGAL::Simple_cartesian<double> IK;
typedef CGAL::Simple_cartesian<CGAL::Quotient<CGAL::MP_Float> > EK;
typedef CGAL::Cartesian_converter<IK,EK>

IK_to_EK;
typedef CGAL::Cartesian_converter<EK,IK>

EK_to_IK;
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int main(){
IK::Triangle_3 t1(

IK::Point_3(0.,0.,0.),
IK::Point_3(1.,0.,-1.),
IK::Point_3(0.,1.,3.)

);

IK::Line_3 l1(
IK::Point_3(0.2,0.25,-7),
IK::Point_3(0.25,0.3,4)

);

IK_to_EK to_exact;

EK::Triangle_3 t2=to_exact(t1);
EK::Line_3 l2=to_exact(l1);

CGAL::Object inter=CGAL::intersection(t2,l2);
const EK::Point_3& exact_pt=CGAL::object_cast<EK::Point_3>(inter);

EK_to_IK to_inexact;

IK::Point_3 inexact_pt = to_inexact(exact_pt);
return 0;

}� �
File: examples/Kernel_23/cartesian_converter.cpp

See Also

CGAL::Cartesian<FieldNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 588
CGAL::Simple cartesian<FieldNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 602
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CGAL::cartesian to homogeneous

#include <CGAL/cartesian homogeneous conversion.h>

Point 2< Homogeneous<RT> > cartesian to homogeneous( Point 2< Cartesian<RT> > cp)

converts 2d point cp with Cartesian representation into a 2d
point with homogeneous representation with the same num-
ber type.

Point 3< Homogeneous<RT> > cartesian to homogeneous( Point 3< Cartesian<RT> > cp)

converts 3d point cp with Cartesian representation into a 3d
point with homogeneous representation with the same num-
ber type.

See Also

CGAL::Cartesian<FieldNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 588
CGAL::Cartesian converter<K1, K2, NTConverter> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 589
CGAL::Homogeneous<RingNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1070
CGAL::Homogeneous converter<K1, K2, RTConverter, FTConverter> . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 598
CGAL::homogeneous to cartesian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 599
CGAL::homogeneous to quotient cartesian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 600
CGAL::quotient cartesian to homogeneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 764
CGAL::Simple cartesian<FieldNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 602
CGAL::Simple homogeneous<RingNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 603
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CGAL::Filtered kernel<CK>

Definition

Filtered kernel<CK>is a kernel that uses the filtering technique based on interval arithmetic from [BBP01] to
achieve exact and efficient predicates. In addition, a few selected important predicates are implemented using
the formally proved, semi-static, filtering techniques from [MP05].

The geometric constructions are exactly those of the kernel CK, which means that they are not necessarily exact.

#include <CGAL/Filtered kernel.h>

Parameters

The first parameter, CK, is the ”Construction Kernel”, namely the kernel from which are taken the types of the
geometric objects as well as the geometric constructions.

The second parameter, UseStaticFilters, is a Boolean value which activates or not an additional layer of semi-
static filters. It defaults to true (activated), unless the CGAL NO STATIC FILTERS macro is defined. This
option is mostly for debugging and testing, there should be no production use for deactivating static filters.

Is Model for the Concepts

Kernel

Types

typedef EK Exact kernel; The type of the exact kernel.
typedef FK Approximate kernel; The type of the approximate ”filtering” kernel.

Constants

static const bool Has static filters; A Boolean value corresponding to the second template
argument. Tells whether static filters are provided.

Example

The following example shows how to produce a kernel whose geometric objects and constructions are those of
Simple cartesian<double> but the predicates are exact.

#include <CGAL/Simple_cartesian.h>
#include <CGAL/Filtered_kernel.h>

typedef CGAL::Simple_cartesian<double> CK;
typedef CGAL::Filtered_kernel<CK> K;
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Implementation

The implementation uses CGAL::Filtered predicate<EP, FP, C2E, C2F> over each predicate of the kernel traits
interface. Additionally, faster static filters may be used for a few selected critical predicates.
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CGAL::Filtered kernel adaptor<CK>

Definition

Filtered kernel adaptor<CK>is a kernel that uses the filtering technique [BBP01] to obtain a kernel with exact
and efficient predicate functors. The geometric constructions are exactly those of the kernel CK, which means
that they are not necessarily exact.

In contrast to Filtered kernel, the global functions are those of CK.

Is Model for the Concepts

Kernel

#include <CGAL/Filtered kernel.h>

Example

The following example shows how to produce a kernel whose geometric objects and constructions are those of
Simple cartesian<double> The predicate functors of the kernel are exact, the global functions are not.

#include <CGAL/Simple_cartesian.h>
#include <CGAL/Filtered_kernel.h>

typedef CGAL::Simple_cartesian<double> CK;
typedef CGAL::Filtered_kernel_adaptor<CK> K;

typedef K::Point_2 p(0,0), q(1,1), r(1,5);

CGAL::orientation(p,q,r); // not exact

typedef K::Orientation_2 orientation;
orientation(p,q,r); // exact
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CGAL::Filtered predicate<EP, FP, C2E, C2F>

Definition

Filtered predicate<EP, FP, C2E, C2F>is an adaptor for predicate function objects that allows one to produce
efficient and exact predicates. It is used to build CGAL::Filtered kernel<CK> and can be used for other predi-
cates too.

EP is the exact but supposedly slow predicate that is able to evaluate the predicate correctly. It will be called
only when the filtering predicate, FP, cannot compute the correct result. This failure of FP must be done by
throwing an exception.

To convert the geometric objects that are the arguments of the predicate, we use the function objects C2E and
C2F, which must be of the form Cartesian converter or Homogeneous converter.

#include <CGAL/Filtered predicate.h>

Types

typedef FP::result type result type; The return type of the function operators. It must also be
the same type as EP::result type.

Creation

Filtered predicate<EP, FP, C2E, C2F> fo; Default constructor.

Operations

template <class A1>
result type fo.operator()( A1 a1) The unary function operator for unary predicates.

template <class A1, class A2>
result type fo.operator()( A1 a1, A2 a2)

The binary function operator for binary predicates.

Similar function operators are defined for up to 7 arguments.

Example

The following example defines an efficient and exact version of the orientation predicate over three points
using the Cartesian representation with double coordinates and without reference counting (Simple cartesian<
double>::Point 2). Of course, the orientation predicate can already be found in the kernel, but you can follow
this example to filter your own predicates. It uses the fast but inexact predicate based on interval arithmetic for
filtering and the slow but exact predicate based on multi-precision floats when the filtering predicate fails.
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#include <CGAL/Simple_cartesian.h>
#include <CGAL/Filtered_predicate.h>
#include <CGAL/MP_Float.h>
#include <CGAL/Cartesian_converter.h>

typedef CGAL::Simple_cartesian<double> K;
typedef CGAL::Simple_cartesian<CGAL::Interval_nt_advanced> FK;
typedef CGAL::Simple_cartesian<CGAL::MP_Float> EK;
typedef CGAL::Cartesian_converter<K, EK> C2E;
typedef CGAL::Cartesian_converter<K, FK> C2F;

// Define my predicate, parameterized by a kernel.
template < typename K >
struct My_orientation_2
{

typedef typename K::RT RT;
typedef typename K::Point_2 Point_2;

typedef typename K::Orientation result_type;

result_type
operator()(const Point_2 &p, const Point_2 &q, const Point_2 &r) const
{

RT prx = p.x() - r.x();
RT pry = p.y() - r.y();
RT qrx = q.x() - r.x();
RT qry = q.y() - r.y();
return CGAL::sign( prx*qry - qrx*pry );

}
};

typedef CGAL::Filtered_predicate<My_orientation_2<EK>,
My_orientation_2<FK>, C2E, C2F>

Orientation_2;

int main()
{

K::Point_2 p(1,2), q(2,3), r(3,4);
Orientation_2 orientation;
orientation(p, q, r);
return 0;

}� �
File: examples/Filtered_kernel/Filtered_predicate.cpp

596



C
la

ss

CGAL::Homogeneous<RingNumberType>

#include <CGAL/Homogeneous.h>

Definition

A model for a Kernel using homogeneous coordinates to represent the geometric objects. In order for Homoge-
neous<RingNumberType> to model Euclidean geometry in E2 and/or E3, for some mathematical ring E (e.g.,
the integers Z or the rationals Q), the template parameter RingNumberType must model the mathematical ring
E. That is, the ring operations on this number type must compute the mathematically correct results. If the
number type provided as a model for RingNumberType is only an approximation of a ring (such as the built-in
type double), then the geometry provided by the kernel is only an approximation of Euclidean geometry.

Is Model for the Concepts

Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 581

Types

typedef Quotient<RingNumberType> FT;
typedef RingNumberType RT;

Implementation

This model of a kernel uses reference counting.

See Also

CGAL::Cartesian<FieldNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 588
CGAL::Simple cartesian<FieldNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 602
CGAL::Simple homogeneous<RingNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 603
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CGAL::Homogeneous converter<K1, K2, RTConverter, FTConverter>

Definition

Homogeneous converter<K1, K2, RTConverter, FTConverter>converts objects from the kernel traits K1 to the
kernel traits K2. Those traits must be of the form Homogeneous<RT1> and Homogeneous<RT2> (or the equiv-
alent with Simple homogeneous). It then provides the following operators to convert objects from K1 to K2.

The third template parameter RT Converter is a function object that must provide K2::RT operator()(const
K1::RT &n); that converts n to an K2::RT that has the same value.

The default value of this parameter is CGAL::NT converter<K1::RT, K2::RT>, which uses the conversion op-
erator from K1::RT to K2::RT .

Similarly, the fourth template parameter must provide K2::FT operator()(const K1::FT &n); that converts n to
an K2::FT that has the same value. Its default value is CGAL::NT converter<K1::FT, K2::FT>.

#include <CGAL/Homogeneous converter.h>

Creation

Homogeneous converter<K1, K2, RTConverter, FTConverter> conv;

Default constructor.

Operations

K2::Point 2 conv.operator()( K1::Point 2 p)

returns a K2::Point 2 which coordinates are those of p,
converted by RTConverter.

Similar operators are defined for the other kernel traits geometric types Point 3, Vector 2...

See Also

CGAL::Homogeneous<RingNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1070
CGAL::Simple homogeneous<RingNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 603
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CGAL::homogeneous to cartesian

#include <CGAL/cartesian homogeneous conversion.h>

Point 2< Cartesian<FT> > homogeneous to cartesian( Point 2< Homogeneous<FT> > hp)

converts 2d point hp with homogeneous representation into a
2d point with Cartesian representation with the same number
type.

Point 3< Cartesian<FT> > homogeneous to cartesian( Point 3< Homogeneous<FT> > hp)

converts 3d point hp with homogeneous representation into a
3d point with Cartesian representation with the same number
type.

See Also

See Also

CGAL::Cartesian<FieldNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 588
CGAL::Cartesian converter<K1, K2, NTConverter> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 589
CGAL::cartesian to homogeneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 591
CGAL::Homogeneous<RingNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1070
CGAL::Homogeneous converter<K1, K2, RTConverter, FTConverter> . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 598
CGAL::homogeneous to quotient cartesian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 600
CGAL::quotient cartesian to homogeneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 764
CGAL::Simple cartesian<FieldNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 602
CGAL::Simple homogeneous<RingNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 603
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CGAL::homogeneous to quotient cartesian

#include <CGAL/cartesian homogeneous conversion.h>

Point 2< Cartesian<Quotient<RT> > >

homogeneous to quotient cartesian( Point 2<Homogeneous<RT> > hp)

converts the 2d point hp with homogeneous representa-
tion with number type RT into a 2d point with Cartesian
representation with number type Quotient<RT>.

Point 3< Cartesian<Quotient<RT> > >

homogeneous to quotient cartesian( Point 3<Homogeneous<RT> > hp)

converts the 3d point hp with homogeneous representa-
tion with number type RT into a 3d point with Cartesian
representation with number type Quotient<RT>.

See Also

CGAL::Cartesian<FieldNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 588
CGAL::Cartesian converter<K1, K2, NTConverter> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 589
CGAL::cartesian to homogeneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 591
CGAL::Homogeneous<RingNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1070
CGAL::Homogeneous converter<K1, K2, RTConverter, FTConverter> . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 598
CGAL::homogeneous to cartesian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 599
CGAL::quotient cartesian to homogeneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 764
CGAL::Simple cartesian<FieldNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 602
CGAL::Simple homogeneous<RingNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 603
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CGAL::Kernel traits<T>

#include <CGAL/Kernel traits.h>

Definition

The class Kernel traits<T> provides access to the kernel model to which the argument type T belongs. (Provided
T belongs to some kernel model.) The default implementation assumes there is a local type T::Kernel referring
to the kernel model of T . If this type does not exist, a specialization of Kernel traits<T> can be used to provide
the desired information.

This class is, for example, useful in the following context. Assume you want to write a generic function that
accepts two points p and q as argument and constructs the line segment between p and q. In order to specify
the return type of this function, you need to know what is the segment type corresponding to the Point type
representing p and q. Using Kernel traits<T>, this can be done as follows.

template < class Point >
typename Kernel_traits<Point>::Kernel::Segment
construct_segment(Point p, Point q)
{ ... }

Types

typedef T::R Kernel; If T is a type K::Point 2 of some kernel model K, then Kernel
is equal to K.
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CGAL::Simple cartesian<FieldNumberType>

#include <CGAL/Simple cartesian.h>

Definition

A model for a Kernel using Cartesian coordinates to represent the geometric objects. In order for Simple
cartesian<FieldNumberType> to model Euclidean geometry in E2 and/or E3, for some mathematical field E
(e.g., the rationals Q or the reals R), the template parameter FieldNumberType must model the mathematical
field E. That is, the field operations on this number type must compute the mathematically correct results. If the
number type provided as a model for FieldNumberType is only an approximation of a field (such as the built-in
type double), then the geometry provided by the kernel is only an approximation of Euclidean geometry.

Is Model for the Concepts

Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 581

Types

typedef FieldNumberType

FT;
typedef FieldNumberType

RT;

Implementation

In contrast to Cartesian, no reference counting is used internally. This eases debugging, but may slow down
algorithms that copy objects intensively.

See Also

CGAL::Cartesian<FieldNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 588
CGAL::Homogeneous<RingNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1070
CGAL::Simple homogeneous<RingNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 603
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CGAL::Simple homogeneous<RingNumberType>

#include <CGAL/Simple homogeneous.h>

Definition

A model for a Kernel using homogeneous coordinates to represent the geometric objects. In order for Simple
homogeneous<RingNumberType> to model Euclidean geometry in E2 and/or E3, for some mathematical ring E
(e.g., the integers Z or the rationals Q), the template parameter RingNumberType must model the mathematical
ring E. That is, the ring operations on this number type must compute the mathematically correct results. If the
number type provided as a model for RingNumberType is only an approximation of a ring (such as the built-in
type double), then the geometry provided by the kernel is only an approximation of Euclidean geometry.

Is Model for the Concepts

Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 581

Types

typedef Quotient<RingNumberType> FT;
typedef RingNumberType RT;

Implementation

In contrast to Homogeneous, no reference counting is used internally. This eases debugging, but may slow down
algorithms that copy objects intensively, or slightly speed up others.

See Also

CGAL::Cartesian<FieldNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 588
CGAL::Homogeneous<RingNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1070
CGAL::Simple cartesian<FieldNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 602
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CGAL::Projection traits xy 3<K>

Definition

The class Projection traits xy 3<K> is an adapter to apply 2D algorithms to the projections of 3D data on the
xy-plane.

CGAL provides also predefined geometric traits classes Projection traits yz 3<K> and Projection traits xz 3<
K> to deal with projections on the zx- and the zy-plane, respectively.

Parameters

The template parameter K has to be instantiated by a model of the Kernel concept. Projection traits xy 3<K>
uses types and predicates defined in K.

#include <CGAL/Projection traits xy 3.h>

Is Model for the Concepts

The class is a model of several 2D triangulation traits class concepts, except that it does not provide the
type and constructors required to build the dual Voronoi diagram. The class is also a model of the concepts
PolygonTraits 2 and ConvexHullTraits 2.

TriangulationTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2541
DelaunayTriangulationTraits 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 2513
ConstrainedTriangulationTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2495
PolygonTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1470
ConvexHullTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1381

Types

typedef Point 3<K> Point 2;
typedef Segment 3<K> Segment 2;
typedef Triangle 3<K> Triangle 2;
typedef Line 3<K> Line 2;

typedef K::Object 3 Object 2;

The functors provided by this class are those listed in the concepts, except that it does not provide the type and
constructors required to build the dual Voronoi diagram. The functors operate on the 2D projection of their
arguments. They come with preconditions that projections of the arguments are non-degenerate, eg. a line
segment does not project on a single point, two points do not project on the same point, etc.

In the following, we specify the choice of the z-coordinate in case a new point is constructed.
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Projection traits xy 3<K>:: Intersect 2

A construction object. Provides the operator :
Object 2 operator()(Segment 2 s1, Segment 2 s2); which returns a 3D object whose
projection on the xy-plane is the intersection of the projections of s1 and s2. If non
empty, the returned object is either a segment or a point. Its embedding in 3D is
computed as the interpolation between s1 and s2, meaning that any point p of the
returned object is the midpoint of segment p1p2 where p1 and p2 are the two points
of s1 and s2 respectively, both projecting on p.
Precondition: The projection of s1 and the projection of s2 are non-degenerate 2D
segments.

Creation

Projection traits xy 3<K> traits;

default constructor.

Projection traits xy 3<K> traits( Projection traits xy 3 tr);

Copy constructor.

Projection traits xy 3 traits.operator=( Projection traits xy 3 tr)

Assignment operator.
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11.10 Predefined Kernels
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CGAL::Exact predicates exact constructions kernel

Definition

A typedef to a kernel which has the following properties:

• It uses Cartesian representation.

• It supports constructions of points from double Cartesian coordinates.

• It provides both exact geometric predicates and exact geometric constructions.

#include <CGAL/Exact predicates exact constructions kernel.h>

Is Model for the Concepts

Kernel

See Also

CGAL::Exact predicates exact constructions kernel with sqrt
CGAL::Exact predicates inexact constructions kernel
CGAL::Cartesian
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CGAL::Exact predicates exact constructions kernel with sqrt

Definition

A typedef to a kernel which has the following properties:

• It uses Cartesian representation.

• It supports constructions of points from double Cartesian coordinates.

• It provides both exact geometric predicates and exact geometric constructions.

• Its FT nested type supports the square root operation sqrt().

Note that it requires CORE or LEDA installed.

#include <CGAL/Exact predicates exact constructions kernel with sqrt.h>

Is Model for the Concepts

Kernel

See Also

CGAL::Exact predicates exact constructions kernel
CGAL::Exact predicates inexact constructions kernel
CGAL::Cartesian
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CGAL::Exact predicates inexact constructions kernel

Definition

A typedef to a kernel which has the following properties:

• It uses Cartesian representation.

• It supports constructions of points from double Cartesian coordinates.

• It provides exact geometric predicates, but inexact geometric constructions.

#include <CGAL/Exact predicates inexact constructions kernel.h>

Is Model for the Concepts

Kernel

See Also

CGAL::Exact predicates exact constructions kernel
CGAL::Exact predicates exact constructions kernel with sqrt
CGAL::Cartesian
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11.11 Kernel Objects

11.11.1 Two-dimensional Objects
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CGAL::Aff transformation 2<Kernel>

Definition

The class Aff transformation 2<Kernel> represents two-dimensional affine transformations. The general form
of an affine transformation is based on a homogeneous representation of points. Thereby all transformations
can be realized by matrix multiplications.

Multiplying the transformation matrix by a scalar does not change the represented transformation. Therefore,
any transformation represented by a matrix with rational entries can be represented by a transformation matrix
with integer entries as well. (Multiply the matrix with the common denominator of the rational entries.) Hence,
it is sufficient to use the number type Kernel::RT to represent the entries of the transformation matrix.

CGAL offers several specialized affine transformations. Different constructors are provided to create them. They
are parameterized with a symbolic name to denote the transformation type, followed by additional parameters.
The symbolic name tags solve ambiguities in the function overloading and they make the code more readable,
i.e., what type of transformation is created.

Since two-dimensional points have three homogeneous coordinates, we have a 3×3 matrix (mi j)i, j=0...2.

If the homogeneous representations are normalized (the homogenizing coordinate is 1), then the upper left 2×2
matrix realizes linear transformations. In the matrix form of a translation, the translation vector (v0, v1, 1)
appears in the last column of the matrix. The entries m20 and m21 are always zero and therefore do not appear
in the constructors.

Creation

Aff transformation 2<Kernel> t( Identity transformation);

introduces an identity transformation.

Aff transformation 2<Kernel> t( const Translation, Vector 2<Kernel> v);

introduces a translation by a vector v.

Aff transformation 2<Kernel> t( const Rotation,
Direction 2<Kernel> d,
Kernel::RT num,
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Kernel::RT den = RT(1))

approximates the rotation over the angle indicated by di-
rection d, such that the differences between the sines and
cosines of the rotation given by d and the approximating
rotation are at most num/den each.
Precondition: num/den > 0 and d! = 0.

Aff transformation 2<Kernel> t( const Rotation,
Kernel::RT sine rho,
Kernel::RT cosine rho,
Kernel::RT hw = RT(1))

introduces a rotation by the angle rho.
Precondition: sine rho2 + cosine rho2 == hw2.

Aff transformation 2<Kernel> t( const Scaling, Kernel::RT s, Kernel::RT hw = RT(1));

introduces a scaling by a scale factor s/hw.

Aff transformation 2<Kernel> t( Kernel::RT m00,
Kernel::RT m01,
Kernel::RT m02,
Kernel::RT m10,
Kernel::RT m11,
Kernel::RT m12,
Kernel::RT hw = RT(1))

introduces a general affine transformation in the 3 ×

3 matrix form

 m00 m01 m02
m10 m11 m12

0 0 hw

. The sub-matrix

1
hw

(
m00 m01
m10 m11

)
contains the scaling and rotation infor-

mation, the vector 1
hw

(
m02
m12

)
contains the translational

part of the transformation.

Aff transformation 2<Kernel> t( Kernel::RT m00,
Kernel::RT m01,
Kernel::RT m10,
Kernel::RT m11,
Kernel::RT hw = RT(1))

introduces a general linear transformation m00 m01 0
m10 m11 0

0 0 hw

, i.e. there is no translational

part.
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Operations

The main thing to do with transformations is to apply them on geometric objects. Each class Class 2<Kernel>
representing a geometric object has a member function:

Class 2<Kernel> transform(Aff transformation 2<Kernel> t).

The transformation classes provide a member function transform() for points, vectors, directions, and lines:

Point 2<Kernel> t.transform( Point 2<Kernel> p) const
Vector 2<Kernel> t.transform( Vector 2<Kernel> p) const
Direction 2<Kernel> t.transform( Direction 2<Kernel> p) const
Line 2<Kernel> t.transform( Line 2<Kernel> p) const

CGAL provides function operators for these member functions:

Point 2<Kernel> t.operator()( Point 2<Kernel> p) const
Vector 2<Kernel> t.operator()( Vector 2<Kernel> p) const
Direction 2<Kernel> t.operator()( Direction 2<Kernel> p) const
Line 2<Kernel> t.operator()( Line 2<Kernel> p) const

Miscellaneous

Aff transformation 2<Kernel>

t.operator*( s) const composes two affine transformations.

Aff transformation 2<Kernel>

t.inverse() const gives the inverse transformation.

bool t.is even() const returns true, if the transformation is not reflecting, i.e. the
determinant of the involved linear transformation is non-
negative.

bool t.is odd() const returns true, if the transformation is reflecting.

The matrix entries of a matrix representation of a Aff transformation 2<Kernel> can be accessed trough the
following member functions:

Kernel::FT t.cartesian( int i, int j) const
Kernel::FT t.m( int i, int j) const returns entry mi j in a matrix representation in which m22

is 1.

Kernel::RT t.homogeneous( int i, int j) const
Kernel::RT t.hm( int i, int j) const returns entry mi j in some fixed matrix representation.

For affine transformations no I/O operators are defined.
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See Also

Identity transformation, Rotation, Scaling, Translation
rational rotation approximation

Example

typedef Cartesian<double> K;

typedef Aff transformation 2<K> Transformation;

typedef Point 2<K> Point;

typedef Vector 2<K> Vector;

typedef Direction 2<K> Direction;

Transformation rotate(ROTATION, sin(pi), cos(pi));

Transformation rational rotate(ROTATION,Direction(1,1), 1, 100);

Transformation translate(TRANSLATION, Vector(−2, 0));

Transformation scale(SCALING, 3);

Point q(0, 1);

q = rational rotate(q);

Point p(1, 1);

p = rotate(p);

p = translate(p);

p = scale(p);

The same would have been achieved with

Transformation transform = scale ∗ (translate ∗ rotate);

p = transform(Point(1.0, 1.0));

See Also

CGAL::Aff transformation 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 641
CGAL::Identity transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 686
CGAL::Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 686
CGAL::Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 687
CGAL::Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 687
CGAL::Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 688
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CGAL::Bbox 2

#include <CGAL/Bbox 2.h>

Definition

An object b of the class Bbox 2 is a bounding box in the two-dimensional Euclidean plane E2. This class is not
templated.

Creation

Bbox 2 b( double x min, double y min, double x max, double y max);

introduces a bounding box b with lower left corner at
(xmin, ymin) and with upper right corner at (xmax, ymax).

Operations

bool b.operator==( c) const

Test for equality.

bool b.operator!=( q) const

Test for inequality.

int b.dimension() const Returns 2.

double b.xmin() const
double b.ymin() const
double b.xmax() const
double b.ymax() const

double b.min( int i) const Returns xmin() if i==0 or ymin() if i==1.
Precondition: i==0 or i==1

double b.max( int i) const Returns xmax() if i==0 or ymax() if i==1.
Precondition: i==0 or i==1

Bbox 2 b.operator+( c) const returns a bounding box of b and c.

See Also

CGAL::Bbox 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 639
CGAL::do overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 732
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CGAL::Circle 2<Kernel>

Definition

An object of type Circle 2<Kernel> is a circle in the two-dimensional Euclidean plane E2. The circle is oriented,
i.e. its boundary has clockwise or counterclockwise orientation. The boundary splits E2 into a positive and a
negative side, where the positive side is to the left of the boundary. The boundary also splits E2 into a bounded
and an unbounded side. Note that the circle can be degenerated, i.e. the squared radius may be zero.

Creation

Circle 2<Kernel> c( Point 2<Kernel> center,
Kernel::FT squared radius,
Orientation ori = COUNTERCLOCKWISE)

introduces a variable c of type Circle 2<Kernel>. It is
initialized to the circle with center center, squared radius
squared radius and orientation ori.
Precondition: ori 6= COLLINEAR, and further, squared
radius ≥ 0.

Circle 2<Kernel> c( Point 2<Kernel> p, Point 2<Kernel> q, Point 2<Kernel> r);

introduces a variable c of type Circle 2<Kernel>. It is
initialized to the unique circle which passes through the
points p, q and r. The orientation of the circle is the ori-
entation of the point triple p, q, r.
Precondition: p, q, and r are not collinear.

Circle 2<Kernel> c( Point 2<Kernel> p, Point 2<Kernel> q, Orientation ori = COUNTERCLOCKWISE);

introduces a variable c of type Circle 2<Kernel>. It is
initialized to the circle with diameter pq and orientation
ori.
Precondition: ori 6= COLLINEAR.

Circle 2<Kernel> c( Point 2<Kernel> center, Orientation ori = COUNTERCLOCKWISE);

introduces a variable c of type Circle 2<Kernel>. It is
initialized to the circle with center center, squared radius
zero and orientation ori.
Precondition: ori 6= COLLINEAR.
Postcondition: c.is degenerate() = true.

Access Functions

Point 2<Kernel> c.center() const returns the center of c.
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Kernel::FT c.squared radius() const

returns the squared radius of c.

Orientation c.orientation() const returns the orientation of c.

bool operator c.==( circle2) const returns true, iff c and circle2 are equal, i.e. if they have
the same center, same squared radius and same orienta-
tion.

bool operator c.!=( circle2) const returns true, iff c and circle2 are not equal.

Predicates

bool c.is degenerate() const

returns true, iff c is degenerate, i.e. if c has squared radius
zero.

Oriented side c.oriented side( Point 2<Kernel> p) const

returns either the constant ON ORIENTED
BOUNDARY , ON POSITIVE SIDE, or ON
NEGATIVE SIDE, iff p lies on the boundary, properly
on the positive side, or properly on the negative side of c,
resp.

Bounded side c.bounded side( Point 2<Kernel> p) const

returns ON BOUNDED SIDE, ON BOUNDARY , or
ON UNBOUNDED SIDE iff p lies properly inside, on
the boundary, or properly outside of c, resp.

bool c.has on positive side( Point 2<Kernel> p) const
bool c.has on negative side( Point 2<Kernel> p) const
bool c.has on boundary( Point 2<Kernel> p) const
bool c.has on bounded side( Point 2<Kernel> p) const
bool c.has on unbounded side( Point 2<Kernel> p) const

Miscellaneous

Circle 2<Kernel> c.opposite() const returns the circle with the same center and squared radius
as c but with opposite orientation.

Circle 2<Kernel> c.orthogonal transform( Aff transformation 2<Kernel> at) const

returns the circle obtained by applying at on c.
Precondition: at is an orthogonal transformation.
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Bbox 2 c.bbox() const returns a bounding box containing c.

See Also

Kernel::Circle 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 783
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CGAL::Direction 2<Kernel>

Definition

An object of the class Direction 2<Kernel> is a vector in the two-dimensional vector space R2 where we forget
about its length. They can be viewed as unit vectors, although there is no normalization internally, since this is
error prone. Directions are used whenever the length of a vector does not matter. They also characterize a set of
parallel oriented lines that have the same orientations. For example, you can ask for the direction orthogonal to
an oriented plane, or the direction of an oriented line. Further, they can be used to indicate angles. The slope of
a direction is dy()/dx().

Creation

Direction 2<Kernel> d( Vector 2<Kernel> v); introduces the direction d of vector v.

Direction 2<Kernel> d( Line 2<Kernel> l); introduces the direction d of line l.

Direction 2<Kernel> d( Ray 2<Kernel> r); introduces the direction d of ray r.

Direction 2<Kernel> d( Segment 2<Kernel> s); introduces the direction d of segment s.

Direction 2<Kernel> d( Kernel::RT x, Kernel::RT y);

introduces a direction d passing through the origin and
the point with Cartesian coordinates (x,y).

Operations

Kernel::RT d.delta( int i) const returns values, such that d== Direction 2<Kernel>
(delta(0),delta(1)).
Precondition: : 0≤ i≤ 1.

Kernel::RT d.dx() const returns delta(0).

Kernel::RT d.dy() const returns delta(1).

There is a total order on directions. We compare the angles between the positive x-axis and the directions in
counterclockwise order.

bool d.operator==( e) const
bool d.operator!=( e) const
bool d.operator<( e) const
bool d.operator>( e) const
bool d.operator<=( e) const
bool d.operator>=( e) const
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Furthermore, we have

bool d.counterclockwise in between( d1, d2) const

returns true, iff d is not equal to d1, and while rotating
counterclockwise starting at d1, d is reached strictly be-
fore d2 is reached. Note that true is returned if d1 ==
d2, unless also d == d1.

Direction 2<Kernel> d.operator-() const The direction opposite to d.

Miscellaneous

Vector 2<Kernel> d.vector() const returns a vector that has the same direction as d.

Direction 2<Kernel> d.transform( Aff transformation 2<Kernel> t) const

returns the direction obtained by applying t on d.

See Also

Kernel::Direction 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 785
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CGAL::Iso rectangle 2<Kernel>

Definition

An object s of the data type Iso rectangle 2<Kernel> is a rectangle in the Euclidean plane E2 with sides parallel
to the x and y axis of the coordinate system.

Although they are represented in a canonical form by only two vertices, namely the lower left and the up-
per right vertex, we provide functions for “accessing” the other vertices as well. The vertices are returned in
counterclockwise order.

Iso-oriented rectangles and bounding boxes are quite similar. The difference however is that bounding boxes
have always double coordinates, whereas the coordinate type of an iso-oriented rectangle is chosen by the user.

Creation

Iso rectangle 2<Kernel> r( Point 2<Kernel> p, Point 2<Kernel> q);

introduces an iso-oriented rectangle r with diagonal op-
posite vertices p and q. Note that the object is brought in
the canonical form.

Iso rectangle 2<Kernel> r( Point 2<Kernel> p, Point 2<Kernel> q, int);

introduces an iso-oriented rectangle r with diagonal op-
posite vertices p and q. The int argument value is only
used to distinguish the two overloaded functions.
Precondition: p.x() <= q.x() and p.y() <= q.y().

Iso rectangle 2<Kernel> r( Point 2<Kernel> left,
Point 2<Kernel> right,
Point 2<Kernel> bottom,
Point 2<Kernel> top)

introduces an iso-oriented rectangle r whose minimal x
coordinate is the one of left, the maximal x coordinate is
the one of right, the minimal y coordinate is the one of
bottom, the maximal y coordinate is the one of top.

Iso rectangle 2<Kernel> r( Kernel::RT min hx,
Kernel::RT min hy,
Kernel::RT max hx,
Kernel::RT max hy,
Kernel::RT hw = RT(1))

introduces an iso-oriented rectangle r with diagonal op-
posite vertices (min hx/hw, min hy/hw) and (max hx/hw,
max hy/hw).
Precondition: hw 6= 0.
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Operations

bool r.operator==( r2) const

Test for equality: two iso-oriented rectangles are equal,
iff their lower left and their upper right vertices are equal.

bool r.operator!=( r2) const

Test for inequality.

Point 2<Kernel> r.vertex( int i) const returns the i’th vertex modulo 4 of r in counterclockwise
order, starting with the lower left vertex.

Point 2<Kernel> r.operator[]( int i) const

returns vertex(i).

Point 2<Kernel> r.min() const returns the lower left vertex of r (= vertex(0)).

Point 2<Kernel> r.max() const returns the upper right vertex of r (= vertex(2)).

Kernel::FT r.xmin() const returns the x coordinate of lower left vertex of r.
Kernel::FT r.ymin() const returns the y coordinate of lower left vertex of r.
Kernel::FT r.xmax() const returns the x coordinate of upper right vertex of r.
Kernel::FT r.ymax() const returns the y coordinate of upper right vertex of r.

Kernel::FT r.min coord( int i) const

returns the i’th Cartesian coordinate of the lower left ver-
tex of r.
Precondition: 0≤ i≤ 1.

Kernel::FT r.max coord( int i) const

returns the i’th Cartesian coordinate of the upper right
vertex of r.
Precondition: 0≤ i≤ 1.

Predicates

bool r.is degenerate() const

r is degenerate, if all vertices are collinear.
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Bounded side r.bounded side( Point 2<Kernel> p) const

returns either ON UNBOUNDED SIDE, ON
BOUNDED SIDE, or the constant ON BOUNDARY ,
depending on where point p is.

bool r.has on boundary( Point 2<Kernel> p) const
bool r.has on bounded side( Point 2<Kernel> p) const
bool r.has on unbounded side( Point 2<Kernel> p) const

Miscellaneous

Kernel::FT r.area() const returns the area of r.

Bbox r.bbox() const returns a bounding box containing r.

Iso rectangle 2<Kernel>

r.transform( Aff transformation 2<Kernel> t) const

returns the iso-oriented rectangle obtained by applying t
on the lower left and the upper right corner of r.
Precondition: The angle at a rotation must be a multiple
of π/2, otherwise the resulting rectangle does not have
the same side length. Note that rotating about an arbi-
trary angle can even result in a degenerate iso-oriented
rectangle.

See Also

Kernel::IsoRectangle 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 788
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CGAL::Line 2<Kernel>

Definition

An object l of the data type Line 2<Kernel> is a directed straight line in the two-dimensional Euclidean plane
E2. It is defined by the set of points with Cartesian coordinates (x,y) that satisfy the equation

l : ax+by+ c = 0.

The line splits E2 in a positive and a negative side. A point p with Cartesian coordinates (px, py) is on the
positive side of l, iff a px +b py+ c > 0, it is on the negative side of l, iff a px +b py+ c < 0. The positive side
is to the left of l.

Creation

Line 2<Kernel> l( Kernel::RT a, Kernel::RT b, Kernel::RT c);

introduces a line l with the line equation in Cartesian co-
ordinates ax+by+ c = 0.

Line 2<Kernel> l( Point 2<Kernel> p, Point 2<Kernel> q);

introduces a line l passing through the points p and q.
Line l is directed from p to q.

Line 2<Kernel> l( Point 2<Kernel> p, Direction 2<Kernel> d);

introduces a line l passing through point p with direction
d.

Line 2<Kernel> l( Point 2<Kernel> p, Vector 2<Kernel> v);

introduces a line l passing through point p and oriented
by v.

Line 2<Kernel> l( Segment 2<Kernel> s); introduces a line l supporting the segment s, oriented
from source to target.

Line 2<Kernel> l( Ray 2<Kernel> r); introduces a line l supporting the ray r, with same orien-
tation.

Operations

bool l.operator==( h) const Test for equality: two lines are equal, iff they have a
non empty intersection and the same direction.
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bool l.operator!=( h) const Test for inequality.

Kernel::RT l.a() const returns the first coefficient of l.
Kernel::RT l.b() const returns the second coefficient of l.
Kernel::RT l.c() const returns the third coefficient of l.

Point 2<Kernel> l.point( int i) const returns an arbitrary point on l. It holds point(i) ==
point(j), iff i==j. Furthermore, l is directed from
point(i) to point(j), for all i < j.

Point 2<Kernel> l.projection( Point 2<Kernel> p) const

returns the orthogonal projection of p onto l.

Kernel::FT l.x at y( Kernel::FT y) const

returns the x-coordinate of the point at l with given
y-coordinate.
Precondition: l is not horizontal.

Kernel::FT l.y at x( Kernel::FT x) const

returns the y-coordinate of the point at l with given
x-coordinate.
Precondition: l is not vertical.

Predicates

bool l.is degenerate() const line l is degenerate, if the coefficients a and b of the
line equation are zero.

bool l.is horizontal() const
bool l.is vertical() const

Oriented side l.oriented side( Point 2<Kernel> p) const

returns ON ORIENTED BOUNDARY , ON
NEGATIVE SIDE, or the constant ON POSITIVE
SIDE, depending on the position of p relative to the
oriented line l.

For convenience we provide the following Boolean functions:

bool l.has on( Point 2<Kernel> p) const
bool l.has on positive side( Point 2<Kernel> p) const
bool l.has on negative side( Point 2<Kernel> p) const
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Miscellaneous

Vector 2<Kernel> l.to vector() const returns a vector having the direction of l.

Direction 2<Kernel> l.direction() const returns the direction of l.

Line 2<Kernel> l.opposite() const returns the line with opposite direction.

Line 2<Kernel> l.perpendicular( Point 2<Kernel> p) const

returns the line perpendicular to l and passing
through p, where the direction is the direction of l
rotated counterclockwise by 90 degrees.

Line 2<Kernel> l.transform( Aff transformation 2<Kernel> t) const

returns the line obtained by applying t on a point on
l and the direction of l.

Example

Let us first define two Cartesian two-dimensional points in the Euclidean plane E2. Their dimension and the
fact that they are Cartesian is expressed by the suffix 2 and the representation type Cartesian.

Point 2< Cartesian<double> > p(1.0,1.0), q(4.0,7.0);

To define a line l we write:

Line 2< Cartesian<double> > l(p,q);

See Also

Kernel::Line 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 789
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CGAL::Point 2<Kernel>

Definition

An object of the class Point 2<Kernel> is a point in the two-dimensional Euclidean plane E2.

Remember that Kernel::RT and Kernel::FT denote a RingNumberType and a FieldNumberType, respectively.
For the kernel model Cartesian<T>, the two types are the same. For the kernel model Homogeneous<T>,
Kernel::RT is equal to T , and Kernel::FT is equal to Quotient<T>.

Types

Point 2<Kernel>:: Cartesian const iterator

An iterator for enumerating the Cartesian coordinates of a point.

Creation

Point 2<Kernel> p( Origin ORIGIN);

introduces a variable p with Cartesian coordinates (0,0).

Point 2<Kernel> p( int x, int y); introduces a point p initialized to (x,y).

Point 2<Kernel> p( double x, double y);

introduces a point p initialized to (x,y) provided RT supports construction
from double.

Point 2<Kernel> p( Kernel::RT hx, Kernel::RT hy, Kernel::RT hw = RT(1));

introduces a point p initialized to (hx/hw,hy/hw).
Precondition: hw 6= Kernel::RT(0)

Point 2<Kernel> p( Kernel::FT x, Kernel::FT y);

introduces a point p initialized to (x,y).

Operations

bool p.operator==( q) const

Test for equality. Two points are equal, iff their x and y coordinates are
equal. The point can be compared with ORIGIN.
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bool p.operator!=( q) const

Test for inequality. The point can be compared with ORIGIN.

There are two sets of coordinate access functions, namely to the homogeneous and to the Cartesian coordinates.
They can be used independently from the chosen kernel model.

Kernel::RT p.hx() const

returns the homogeneous x coordinate.

Kernel::RT p.hy() const

returns the homogeneous y coordinate.

Kernel::RT p.hw() const

returns the homogenizing coordinate.

Note that you do not loose information with the homogeneous representation, because the FieldNumberType is
a quotient.

Kernel::FT p.x() const

returns the Cartesian x coordinate, that is hx/hw.

Kernel::FT p.y() const

returns the Cartesian y coordinate, that is hy/hw.

The following operations are for convenience and for compatibility with higher dimensional points. Again they
come in a Cartesian and in a homogeneous flavor.

Kernel::RT p.homogeneous( int i) const

returns the i’th homogeneous coordinate of p, starting with 0.
Precondition: 0≤ i≤ 2.

Kernel::FT p.cartesian( int i) const

returns the i’th Cartesian coordinate of p, starting with 0.
Precondition: 0≤ i≤ 1.

Kernel::FT p.operator[]( int i) const

returns cartesian(i).
Precondition: 0≤ i≤ 1.

Cartesian const iterator p.cartesian begin() const

returns an iterator to the Cartesian coordinates of p, starting with the 0th
coordinate.
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Cartesian const iterator p.cartesian end() const

returns an off the end iterator to the Cartesian coordinates of p.

int p.dimension() const

returns the dimension (the constant 2).

Bbox 2 p.bbox() const

returns a bounding box containing p. Note that bounding boxes are not
parameterized with whatsoever.

Point 2<Kernel> p.transform( Aff transformation 2<Kernel> t) const

returns the point obtained by applying t on p.

Operators

The following operations can be applied on points:

bool operator<( p, q)

returns true iff p is lexicographically smaller than q, i.e. either if p.x() <
q.x() or if p.x() == q.x() and p.y() < q.y().

bool operator>( p, q)

returns true iff p is lexicographically greater than q.

bool operator<=( p, q)

returns true iff p is lexicographically smaller or equal to q.

bool operator>=( p, q)

returns true iff p is lexicographically greater or equal to q.

Vector 2<Kernel> operator-( p, q)

returns the difference vector between q and p. You can substitute ORIGIN
for either p or q, but not for both.

Point 2<Kernel> operator+( p, Vector 2<Kernel> v)

returns the point obtained by translating p by the vector v.
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Point 2<Kernel> operator-( p, Vector 2<Kernel> v)

returns the point obtained by translating p by the vector -v.

Example

The following declaration creates two points with Cartesian double coordinates.

Point 2< Cartesian<double> > p, q(1.0, 2.0);

The variable p is uninitialized and should first be used on the left hand side of an assignment.

p = q;

std::cout � p.x() � " " � p.y() � std::endl;

See Also

Kernel::Point 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 794
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CGAL::Ray 2<Kernel>

Definition

An object r of the data type Ray 2<Kernel> is a directed straight ray in the two-dimensional Euclidean plane
E2. It starts in a point called the source of r and goes to infinity.

Creation

Ray 2<Kernel> r( Point 2<Kernel> p, Point 2<Kernel> q);

introduces a ray r with source p and passing through
point q.

Ray 2<Kernel> r( Point 2<Kernel> p, Direction 2<Kernel> d);

introduces a ray r starting at source p with direction d.

Ray 2<Kernel> r( Point 2<Kernel> p, Vector 2<Kernel> v);

introduces a ray r starting at source p with the direction
of v.

Ray 2<Kernel> r( Point 2<Kernel> p, Line 2<Kernel> l);

introduces a ray r starting at source p with the same di-
rection as l.

Operations

bool r.operator==( h) const

Test for equality: two rays are equal, iff they have the
same source and the same direction.

bool r.operator!=( h) const

Test for inequality.

Point 2<Kernel> r.source() const returns the source of r.

Point 2<Kernel> r.point( int i) const returns a point on r. point(0) is the source, point(i), with
i > 0, is different from the source.
Precondition: i≥ 0.

629



Direction 2<Kernel> r.direction() const returns the direction of r.

Vector 2<Kernel> r.to vector() const returns a vector giving the direction of r.

Line 2<Kernel> r.supporting line() const

returns the line supporting r which has the same direction.

Ray 2<Kernel> r.opposite() const returns the ray with the same source and the opposite di-
rection.

Predicates

bool r.is degenerate() const

ray r is degenerate, if the source and the second defining
point fall together (that is if the direction is degenerate).

bool r.is horizontal() const
bool r.is vertical() const

bool r.has on( Point 2<Kernel> p) const

A point is on r, iff it is equal to the source of r, or if it is
in the interior of r.

bool r.collinear has on( Point 2<Kernel> p) const

checks if point p is on r. This function is faster than func-
tion has on() if the precondition checking is disabled.
Precondition: p is on the supporting line of r.

Miscellaneous

Ray 2<Kernel> r.transform( Aff transformation 2<Kernel> t) const

returns the ray obtained by applying t on the source and
on the direction of r.

See Also

Kernel::Ray 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 798
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CGAL::Segment 2<Kernel>

Definition

An object s of the data type Segment 2<Kernel> is a directed straight line segment in the two-dimensional Eu-
clidean plane E2, i.e. a straight line segment [p,q] connecting two points p,q∈R2. The segment is topologically
closed, i.e. the end points belong to it. Point p is called the source and q is called the target of s. The length
of s is the Euclidean distance between p and q. Note that there is only a function to compute the square of the
length, because otherwise we had to perform a square root operation which is not defined for all number types,
which is expensive, and may not be exact.

Creation

Segment 2<Kernel> s( Point 2<Kernel> p, Point 2<Kernel> q);

introduces a segment s with source p and target q. The
segment is directed from the source towards the target.

Operations

bool s.operator==( q) const Test for equality: Two segments are equal, iff their
sources and targets are equal.

bool s.operator!=( q) const Test for inequality.

Point 2<Kernel> s.source() const returns the source of s.

Point 2<Kernel> s.target() const returns the target of s.
Point 2<Kernel> s.min() const returns the point of s with lexicographically smallest

coordinate.

Point 2<Kernel> s.max() const returns the point of s with lexicographically largest
coordinate.

Point 2<Kernel> s.vertex( int i) const returns source or target of s: vertex(0) returns the
source of s, vertex(1) returns the target of s. The pa-
rameter i is taken modulo 2, which gives easy access
to the other vertex.

Point 2<Kernel> s.point( int i) const returns vertex(i).

Point 2<Kernel> s.operator[]( int i) const returns vertex(i).

Kernel::FT s.squared length() const returns the squared length of s.

Direction 2<Kernel> s.direction() const returns the direction from source to target of s.
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Vector 2<Kernel> s.to vector() const returns the vector s.target() - s.source().

Segment 2<Kernel> s.opposite() const returns a segment with source and target point inter-
changed.

Line 2<Kernel> s.supporting line() const returns the line l passing through s. Line l has the
same orientation as segment s.

Predicates

bool s.is degenerate() const segment s is degenerate, if source and target are equal.

bool s.is horizontal() const
bool s.is vertical() const

bool s.has on( Point 2<Kernel> p) const

A point is on s, iff it is equal to the source or target of
s, or if it is in the interior of s.

bool s.collinear has on( Point 2<Kernel> p) const

checks if point p is on segment s. This function is
faster than function has on().
Precondition: p is on the supporting line of s.

Miscellaneous

Bbox 2 s.bbox() const returns a bounding box containing s.

Segment 2<Kernel> s.transform( Aff transformation 2<Kernel> t) const

returns the segment obtained by applying t on the
source and the target of s.

See Also

Kernel::Segment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 800
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CGAL::Triangle 2<Kernel>

Definition

An object t of the class Triangle 2<Kernel> is a triangle in the two-dimensional Euclidean plane E2. Triangle t
is oriented, i.e., its boundary has clockwise or counterclockwise orientation. We call the side to the left of the
boundary the positive side and the side to the right of the boundary the negative side.

The boundary of a triangle splits the plane in two open regions, a bounded one and an unbounded one.

Creation

Triangle 2<Kernel> t( Point 2<Kernel> p, Point 2<Kernel> q, Point 2<Kernel> r);

introduces a triangle t with vertices p, q and r.

Operations

bool t.operator==( t2) const

Test for equality: two triangles are equal, iff there exists
a cyclic permutation of the vertices of t2, such that they
are equal to the vertices of t.

bool t.operator!=( t2) const

Test for inequality.

Point 2<Kernel> t.vertex( int i) const returns the i’th vertex modulo 3 of t.

Point 2<Kernel> t.operator[]( int i) const

returns vertex(i).

Predicates

bool t.is degenerate() const

triangle t is degenerate, if the vertices are collinear.

Orientation t.orientation() const returns the orientation of t.
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Oriented side t.oriented side( Point 2<Kernel> p) const

returns ON ORIENTED BOUNDARY , or POSITIVE
SIDE, or the constant ON NEGATIVE SIDE, determined
by the position of point p.
Precondition: t is not degenerate.

Bounded side t.bounded side( Point 2<Kernel> p) const

returns the constant ON BOUNDARY , ON BOUNDED
SIDE, or else ON UNBOUNDED SIDE, depending on
where point p is.
Precondition: t is not degenerate.

For convenience we provide the following Boolean functions:

bool t.has on positive side( Point 2<Kernel> p) const
bool t.has on negative side( Point 2<Kernel> p) const
bool t.has on boundary( Point 2<Kernel> p) const
bool t.has on bounded side( Point 2<Kernel> p) const
bool t.has on unbounded side( Point 2<Kernel> p) const

Precondition: t is not degenerate.

Miscellaneous

Triangle 2<Kernel> t.opposite() returns a triangle where the boundary is oriented the other
way round (this flips the positive and the negative side,
but not the bounded and unbounded side).

Kernel::FT t.area() const returns the signed area of t.

Bbox 2 t.bbox() const returns a bounding box containing t.

Triangle 2<Kernel> t.transform( Aff transformation 2<Kernel> at) const

returns the triangle obtained by applying at on the three
vertices of t.

See Also

Kernel::Triangle 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 804
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CGAL::Vector 2<Kernel>

Definition

An object of the class Vector 2<Kernel> is a vector in the two-dimensional vector space R2. Geometrically
spoken, a vector is the difference of two points p2, p1 and denotes the direction and the distance from p1 to p2.

CGAL defines a symbolic constant NULL VECTOR. We will explicitly state where you can pass this constant
as an argument instead of a vector initialized with zeros.

Types

Vector 2<Kernel>:: Cartesian const iterator

An iterator for enumerating the Cartesian coordinates of a vector.

Creation

Vector 2<Kernel> v( Point 2<Kernel> a, Point 2<Kernel> b);

introduces the vector b−a.

Vector 2<Kernel> v( Segment 2<Kernel> s);

introduces the vector s.target()− s.source().

Vector 2<Kernel> v( Ray 2<Kernel> r);

introduces the vector having the same direction as r.

Vector 2<Kernel> v( Line 2<Kernel> l);

introduces the vector having the same direction as l.

Vector 2<Kernel> v( Null vector NULL VECTOR);

introduces a null vector v.

Vector 2<Kernel> v( int x, int y); introduces a vector v initialized to (x,y).

Vector 2<Kernel> v( double x, double y);

introduces a vector v initialized to (x,y).
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Vector 2<Kernel> v( Kernel::RT hx, Kernel::RT hy, Kernel::RT hw = RT(1));

introduces a vector v initialized to (hx/hw,hy/hw).
Precondition: hw 6= 0

Vector 2<Kernel> v( Kernel::FT x, Kernel::FT y);

introduces a vector v initialized to (x,y).

Operations

bool v.operator==( w) const

Test for equality: two vectors are equal, iff their x and y coordinates are
equal. You can compare a vector with the NULL VECTOR.

bool v.operator!=( w) const

Test for inequality. You can compare a vector with the NULL VECTOR.

There are two sets of coordinate access functions, namely to the homogeneous and to the Cartesian coordinates.
They can be used independently from the chosen kernel model.

Kernel::RT v.hx() const

returns the homogeneous x coordinate.

Kernel::RT v.hy() const

returns the homogeneous y coordinate.

Kernel::RT v.hw() const

returns the homogenizing coordinate.

Note that you do not loose information with the homogeneous representation, because the FieldNumberType is
a quotient.

Kernel::FT v.x() const

returns the x-coordinate of v, that is hx/hw.

Kernel::FT v.y() const

returns the y-coordinate of v, that is hy/hw.

The following operations are for convenience and for compatibility with higher dimensional vectors. Again
they come in a Cartesian and homogeneous flavor.
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Kernel::RT v.homogeneous( int i) const

returns the i’th homogeneous coordinate of v, starting with 0.
Precondition: 0≤ i≤ 2.

Kernel::FT v.cartesian( int i) const

returns the i’th Cartesian coordinate of v, starting at 0.
Precondition: 0≤ i≤ 1.

Kernel::FT v.operator[]( int i) const

returns cartesian(i).
Precondition: 0≤ i≤ 1.

Cartesian const iterator v.cartesian begin() const

returns an iterator to the Cartesian coordinates of v, starting with the 0th
coordinate.

Cartesian const iterator v.cartesian end() const

returns an off the end iterator to the Cartesian coordinates of v.

int v.dimension() const

returns the dimension (the constant 2).

Direction 2<Kernel> v.direction() const

returns the direction which passes through v.

Vector 2<Kernel> v.transform( Aff transformation 2<Kernel> t) const

returns the vector obtained by applying t on v.

Vector 2<Kernel> v.perpendicular( Orientation o) const

returns the vector perpendicular to v in clockwise or counterclockwise
orientation.

Operators

The following operations can be applied to vectors:

Vector 2<Kernel> v.operator+( w) const

Addition.
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Vector 2<Kernel> v.operator-( w) const

Subtraction.

Vector 2<Kernel> v.operator-() const

returns the opposite vector.

Kernel::FT v.operator*( w) const

returns the scalar product (= inner product) of the two vectors.

Vector 2<Kernel> operator*( v, Kernel::RT s)

Multiplication with a scalar from the right.

Vector 2<Kernel> operator*( v, Kernel::FT s)

Multiplication with a scalar from the right.

Vector 2<Kernel> operator*( Kernel::RT s, v)

Multiplication with a scalar from the left.

Vector 2<Kernel> operator*( Kernel::FT s, v)

Multiplication with a scalar from the left.

Vector 2<Kernel> v.operator/( Kernel::RT s) const

Division by a scalar.

Kernel::FT v.squared length() const

returns the squared length of v.

See Also

Kernel::Vector 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 806
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11.11.2 Three-dimensional Objects
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CGAL::Bbox 3

#include <CGAL/Bbox 3.h>

Definition

An object b of the class Bbox 3 is a bounding box in the three-dimensional Euclidean space E3.

Creation

Bbox 3 b( double x min, double y min, double z min, double x max, double y max, double z max);

introduces a bounding box b with lexicographically
smallest corner point at (xmin, ymin, zmin) lexicographi-
cally largest corner point at (xmax, ymax, zmax).

Operations

bool b.operator==( c) const

Test for equality.

bool b.operator!=( q) const

Test for inequality.

int b.dimension() const Returns 3.

double b.xmin() const
double b.ymin() const
double b.zmin() const
double b.xmax() const
double b.ymax() const
double b.zmax() const

double b.min( int i) const Returns xmin() if i==0 or ymin() if i==1 or zmin() if
i==2.
Precondition: i¡=0 and i¡=2

double b.max( int i) const Returns xmax() if i==0 or ymax() if i==1 or zmax() if
i==2.
Precondition: i==0 and i¡=2

Bbox 3 b.operator+( c) const returns a bounding box of b and c.
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See Also

CGAL::Bbox 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 613
CGAL::do overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 732
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CGAL::Aff transformation 3<Kernel>

Definition

The class Aff transformation 3<Kernel> represents three-dimensional affine transformations. The general form
of an affine transformation is based on a homogeneous representation of points. Thereby all transformations
can be realized by matrix multiplication.

Multiplying the transformation matrix by a scalar does not change the represented transformation. Therefore,
any transformation represented by a matrix with rational entries can be represented by a transformation matrix
with integer entries as well. (Multiply the matrix with the common denominator of the rational entries.) Hence,
it is sufficient to use the number type Kernel::RT to represent the entries of the transformation matrix.

CGAL offers several specialized affine transformations. Different constructors are provided to create them. They
are parameterized with a symbolic name to denote the transformation type, followed by additional parameters.
The symbolic name tags solve ambiguities in the function overloading and they make the code more readable,
i.e., what type of transformation is created.

In three-dimensional space we have a 4×4 matrix (mi j)i, j=0...3. Entries m30, m31, and m32 are always zero and
therefore do not appear in the constructors.

Creation

Aff transformation 3<Kernel> t( Identity transformation);

introduces an identity transformation.

Aff transformation 3<Kernel> t( const Translation, Vector 3<Kernel> v);

introduces a translation by a vector v.

Aff transformation 3<Kernel> t( const Scaling, Kernel::RT s, Kernel::RT hw = RT(1));

introduces a scaling by a scale factor s/hw.

Aff transformation 3<Kernel> t( Kernel::RT m00,
Kernel::RT m01,
Kernel::RT m02,
Kernel::RT m03,
Kernel::RT m10,
Kernel::RT m11,
Kernel::RT m12,
Kernel::RT m13,
Kernel::RT m20,
Kernel::RT m21,
Kernel::RT m22,
Kernel::RT m23,
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Kernel::RT hw = RT(1))

introduces a general affine transformation of the ma-

trix form


m00 m01 m02 m03
m10 m11 m12 m13
m20 m21 m22 m23

0 0 0 hw

. The part 1
hw

 m00 m01 m02
m10 m11 m12
m20 m21 m22

 defines the scaling and rotational

part of the transformation, while the vector 1
hw

 m03
m13
m23


contains the translational part.

Aff transformation 3<Kernel> t( Kernel::RT m00,
Kernel::RT m01,
Kernel::RT m02,
Kernel::RT m10,
Kernel::RT m11,
Kernel::RT m12,
Kernel::RT m20,
Kernel::RT m21,
Kernel::RT m22,
Kernel::RT hw = RT(1))

introduces a general linear transformation of the matrix

form


m00 m01 m02 0
m10 m11 m12 0
m20 m21 m22 0

0 0 0 hw

, i.e. an affine transfor-

mation without translational part.

Operations

Each class Class 3<Kernel> representing a geometric object in 3D has a member function:

Class 3<Kernel> transform(Aff transformation 3<Kernel> t).

The transformation classes provide a member function transform() for points, vectors, directions, and planes:

Point 3<Kernel> t.transform( Point 3<Kernel> p) const
Vector 3<Kernel> t.transform( Vector 3<Kernel> p) const
Direction 3<Kernel> t.transform( Direction 3<Kernel> p) const
Plane 3<Kernel> t.transform( Plane 3<Kernel> p) const

CGAL provides four function operators for these member functions:

Point 3<Kernel> t.operator()( Point 3<Kernel> p) const
Vector 3<Kernel> t.operator()( Vector 3<Kernel> p) const
Direction 3<Kernel> t.operator()( Direction 3<Kernel> p) const
Plane 3<Kernel> t.operator()( Plane 3<Kernel> p) const
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Aff transformation 3<Kernel>

t.operator*( s) const composes two affine transformations.

Aff transformation 3<Kernel>

t.inverse() const gives the inverse transformation.

bool t.is even() const returns true, if the transformation is not reflecting, i.e. the
determinant of the involved linear transformation is non-
negative.

bool t.is odd() const returns true, if the transformation is reflecting.

The matrix entries of a matrix representation of a Aff transformation 3<Kernel> can be accessed trough the
following member functions:

Kernel::FT t.cartesian( int i, int j) const
Kernel::FT t.m( int i, int j) const returns entry mi j in a matrix representation in which m33

is 1.

Kernel::RT t.homogeneous( int i, int j) const
Kernel::RT t.hm( int i, int j) const returns entry mi j in some fixed matrix representation.

For affine transformations no I/O operators are defined.

See Also

CGAL::Aff transformation 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 609
CGAL::Identity transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 686
CGAL::Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 686
CGAL::Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 687
CGAL::Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 687
CGAL::Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 688
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CGAL::Direction 3<Kernel>

Definition

An object of the class Direction 3<Kernel> is a vector in the three-dimensional vector space R3 where we forget
about their length. They can be viewed as unit vectors, although there is no normalization internally, since this
is error prone. Directions are used whenever the length of a vector does not matter. They also characterize a
set of parallel lines that have the same orientation or the direction normal to parallel planes that have the same
orientation. For example, you can ask for the direction orthogonal to an oriented plane, or the direction of an
oriented line.

Creation

Direction 3<Kernel> d( Vector 3<Kernel> v); introduces a direction d initialized with the direction of
vector v.

Direction 3<Kernel> d( Line 3<Kernel> l); introduces the direction d of line l.

Direction 3<Kernel> d( Ray 3<Kernel> r); introduces the direction d of ray r.

Direction 3<Kernel> d( Segment 3<Kernel> s); introduces the direction d of segment s.

Direction 3<Kernel> d( Kernel::RT x, Kernel::RT y, Kernel::RT z);

introduces a direction d initialized with the direction from
the origin to the point with Cartesian coordinates (x,y,z).

Operations

Kernel::RT d.delta( int i) const returns values, such that d== Direction 3<Kernel>
(delta(0),delta(1),delta(2)).
Precondition: : 0≤ i≤ 2.

Kernel::RT d.dx() const returns delta(0).
Kernel::RT d.dy() const returns delta(1).
Kernel::RT d.dz() const returns delta(2).

bool d.operator==( e) const Test for equality.
bool d.operator!=( e) const Test for inequality.

Direction 3<Kernel> d.operator-() const The direction opposite to d.

Vector 3<Kernel> d.vector() const returns a vector that has the same direction as d.

Direction 3<Kernel> d.transform( Aff transformation 3<Kernel> t) const

returns the direction obtained by applying t on d.
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See Also

Kernel::Direction 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 786
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CGAL::Iso cuboid 3<Kernel>

Definition

An object s of the data type Iso cuboid 3<Kernel> is a cuboid in the Euclidean space E3 with edges parallel to
the x, y and z axis of the coordinate system.

Although they are represented in a canonical form by only two vertices, namely the lexicographically smallest
and largest vertex with respect to Cartesian xyz coordinates, we provide functions for “accessing” the other
vertices as well.

Iso-oriented cuboids and bounding boxes are quite similar. The difference however is that bounding boxes have
always double coordinates, whereas the coordinate type of an iso-oriented cuboid is chosen by the user.

Creation

Iso cuboid 3<Kernel> c( Point 3<Kernel> p, Point 3<Kernel> q);

introduces an iso-oriented cuboid c with diagonal oppo-
site vertices p and q. Note that the object is brought in
the canonical form.

Iso cuboid 3<Kernel> c( Point 3<Kernel> p, Point 3<Kernel> q, int);

introduces an iso-oriented cuboid c with diagonal oppo-
site vertices p and q. The int argument value is only used
to distinguish the two overloaded functions.
Precondition: p.x() <= q.x(), p.y() <= q.y() and
p.z() <= q.z().

Iso cuboid 3<Kernel> c( Point 3<Kernel> left,
Point 3<Kernel> right,
Point 3<Kernel> bottom,
Point 3<Kernel> top,
Point 3<Kernel> far,
Point 3<Kernel> close)

introduces an iso-oriented cuboid c whose minimal x co-
ordinate is the one of left, the maximal x coordinate is
the one of right, the minimal y coordinate is the one of
bottom, the maximal y coordinate is the one of top, the
minimal z coordinate is the one of far, the maximal z co-
ordinate is the one of close.

Iso cuboid 3<Kernel> c( Kernel::RT min hx,
Kernel::RT min hy,
Kernel::RT min hz,
Kernel::RT max hx,
Kernel::RT max hy,
Kernel::RT max hz,
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Kernel::RT hw = RT(1))

introduces an iso-oriented cuboid c with diagonal op-
posite vertices (min hx/hw, min hy/hw, min hz/hw) and
(max hx/hw, max hy/hw, max hz/hw).
Precondition: hw 6= 0.

Operations

bool c.operator==( c2) const

Test for equality: two iso-oriented cuboid are equal, iff
their lower left and their upper right vertices are equal.

bool c.operator!=( c2) const

Test for inequality.

Point 3<Kernel> c.vertex( int i) const returns the i’th vertex modulo 8 of c. starting with the
lower left vertex.

Point 3<Kernel> c.operator[]( int i) const

returns vertex(i), as indicated in the figure below:

6

0 1

3

5

4 7

2
y

x

z

Point 3<Kernel> c.min() const returns the smallest vertex of c (= vertex(0)).

Point 3<Kernel> c.max() const returns the largest vertex of c (= vertex(7)).

Kernel::FT c.xmin() const returns smallest Cartesian x-coordinate in c.
Kernel::FT c.ymin() const returns smallest Cartesian y-coordinate in c.
Kernel::FT c.zmin() const returns smallest Cartesian z-coordinate in c.
Kernel::FT c.xmax() const returns largest Cartesian x-coordinate in c.
Kernel::FT c.ymax() const returns largest Cartesian y-coordinate in c.
Kernel::FT c.zmax() const returns largest Cartesian z-coordinate in c.

Kernel::FT c.min coord( int i) const

returns i-th Cartesian coordinate of the smallest vertex of
c.
Precondition: 0≤ i≤ 2.
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Kernel::FT c.max coord( int i) const

returns i-th Cartesian coordinate of the largest vertex of
c.
Precondition: 0≤ i≤ 2.

Predicates

bool c.is degenerate() const

c is degenerate, if all vertices are coplanar.

Bounded side c.bounded side( Point 3<Kernel> p) const

returns either ON UNBOUNDED SIDE, ON
BOUNDED SIDE, or the constant ON BOUNDARY ,
depending on where point p is.

bool c.has on boundary( Point 3<Kernel> p) const
bool c.has on bounded side( Point 3<Kernel> p) const
bool c.has on unbounded side( Point 3<Kernel> p) const

Miscellaneous

Kernel::FT c.volume() const returns the volume of c.

Bbox 3 c.bbox() const returns a bounding box containing c.

Iso cuboid 3<Kernel> c.transform( Aff transformation 3<Kernel> t) const

returns the iso-oriented cuboid obtained by applying t on
the smallest and the largest of c.
Precondition: The angle at a rotation must be a multiple
of π/2, otherwise the resulting cuboid does not have the
same size. Note that rotating about an arbitrary angle can
even result in a degenerate iso-oriented cuboid.

See Also

Kernel::IsoCuboid 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 787
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CGAL::Line 3<Kernel>

Definition

An object l of the data type Line 3<Kernel> is a directed straight line in the three-dimensional Euclidean space
E3.

Creation

Line 3<Kernel> l( Point 3<Kernel> p, Point 3<Kernel> q);

introduces a line l passing through the points p and q.
Line l is directed from p to q.

Line 3<Kernel> l( Point 3<Kernel> p, Direction 3<Kernel> d);

introduces a line l passing through point p with direction
d.

Line 3<Kernel> l( Point 3<Kernel> p, Vector 3<Kernel> v);

introduces a line l passing through point p and oriented
by v.

Line 3<Kernel> l( Segment 3<Kernel> s); returns the line supporting the segment s, oriented from
source to target.

Line 3<Kernel> l( Ray 3<Kernel> r); returns the line supporting the ray r, with the same orien-
tation.

Operations

bool l.operator==( h) const

Test for equality: two lines are equal, iff they have a non
empty intersection and the same direction.

bool l.operator!=( h) const Test for inequality.

Point 3<Kernel> l.projection( Point 3<Kernel> p) const

returns the orthogonal projection of p on l.

Point 3<Kernel> l.point( int i) const returns an arbitrary point on l. It holds point(i) = point(j), iff
i=j.
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Predicates

bool l.is degenerate() const

returns true iff line l is degenerated to a point.

bool l.has on( Point 3<Kernel> p) const

returns true iff p lies on l.

Miscellaneous

Plane 3<Kernel> l.perpendicular plane( Point 3<Kernel> p) const

returns the plane perpendicular to l passing through p.

Line 3<Kernel> l.opposite() const returns the line with opposite direction.

Vector 3<Kernel> l.to vector() const returns a vector having the same direction as l.

Direction 3<Kernel> l.direction() const returns the direction of l.

Line 3<Kernel> l.transform( Aff transformation 3<Kernel> t) const

returns the line obtained by applying t on a point on l and the
direction of l.

See Also

Kernel::Line 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 790
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CGAL::Plane 3<Kernel>

Definition

An object h of the data type Plane 3<Kernel> is an oriented plane in the three-dimensional Euclidean space E3.
It is defined by the set of points with Cartesian coordinates (x,y,z) that satisfy the plane equation

h : ax+by+ cz+d = 0.

The plane splits E3 in a positive and a negative side. A point p with Cartesian coordinates (px, py, pz) is on the
positive side of h, iff a px+b py+ c pz+d > 0. It is on the negative side, iff a px+b py + c pz+d < 0.

Creation

Plane 3<Kernel> h( Kernel::RT a, Kernel::RT b, Kernel::RT c, Kernel::RT d);

creates a plane h defined by the equation a px + b py +
c pz+d = 0. Notice that h is degenerate if a = b = c = 0.

Plane 3<Kernel> h( Point 3<Kernel> p, Point 3<Kernel> q, Point 3<Kernel> r);

creates a plane h passing through the points p, q and r.
The plane is oriented such that p, q and r are oriented in a
positive sense (that is counterclockwise) when seen from
the positive side of h. Notice that h is degenerate if the
points are collinear.

Plane 3<Kernel> h( Point 3<Kernel> p, Vector 3<Kernel> v);

introduces a plane h that passes through point p and that
is orthogonal to v.

Plane 3<Kernel> h( Point 3<Kernel> p, Direction 3<Kernel> d);

introduces a plane h that passes through point p and that
has as an orthogonal direction equal to d.

Plane 3<Kernel> h( Line 3<Kernel> l, Point 3<Kernel> p);

introduces a plane h that is defined through the three
points l.point(0), l.point(1) and p.

Plane 3<Kernel> h( Ray 3<Kernel> r, Point 3<Kernel> p);

introduces a plane h that is defined through the three
points r.point(0), r.point(1) and p.
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Plane 3<Kernel> h( Segment 3<Kernel> s, Point 3<Kernel> p);

introduces a plane h that is defined through the three
points s.source(), s.target() and p.

Plane 3<Kernel> h( Circle 3<Kernel> c); introduces a plane h that is defined as the plane containing
the circle.

Operations

bool h.operator==( h2) const

Test for equality: two planes are equal, iff they have a
non empty intersection and the same orientation.

bool h.operator!=( h2) const

Test for inequality.

Kernel::RT h.a() const returns the first coefficient of h.
Kernel::RT h.b() const returns the second coefficient of h.
Kernel::RT h.c() const returns the third coefficient of h.
Kernel::RT h.d() const returns the fourth coefficient of h.

Line 3<Kernel> h.perpendicular line( Point 3<Kernel> p) const

returns the line that is perpendicular to h and that passes
through point p. The line is oriented from the negative to
the positive side of h.

Point 3<Kernel> h.projection( Point 3<Kernel> p) const

returns the orthogonal projection of p on h.

Plane 3<Kernel> h.opposite() const returns the plane with opposite orientation.

Point 3<Kernel> h.point() const returns an arbitrary point on h.

Vector 3<Kernel> h.orthogonal vector() const

returns a vector that is orthogonal to h and that is directed
to the positive side of h.

Direction 3<Kernel> h.orthogonal direction() const

returns the direction that is orthogonal to h and that is
directed to the positive side of h.
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Vector 3<Kernel> h.base1() const returns a vector orthogonal to orthogonal vector().

Vector 3<Kernel> h.base2() const returns a vector that is both orthogonal to base1(), and to
orthogonal vector(), and such that the result of orienta-
tion( point(), point() + base1(), point()+base2(), point()
+ orthogonal vector() ) is positive.

2D Conversion

The following functions provide conversion between a plane and CGAL’s two-dimensional space. The transfor-
mation is affine, but not necessarily an isometry. This means, the transformation preserves combinatorics, but
not distances.

Point 2<Kernel> h.to 2d( Point 3<Kernel> p) const

returns the image point of the projection of p under an
affine transformation, which maps h onto the xy-plane,
with the z-coordinate removed.

Point 3<Kernel> h.to 3d( Point 2<Kernel> p) const

returns a point q, such that to 2d( to 3d( p )) is equal to
p.

Predicates

Oriented side h.oriented side( Point 3<Kernel> p) const

returns either ON ORIENTED BOUNDARY , or the
constant ON POSITIVE SIDE, or the constant ON
NEGATIVE SIDE, determined by the position of p rel-
ative to the oriented plane h.

For convenience we provide the following Boolean functions:

bool h.has on( Point 3<Kernel> p) const
bool h.has on positive side( Point 3<Kernel> p) const
bool h.has on negative side( Point 3<Kernel> p) const

bool h.has on( Line 3<Kernel> l) const
bool h.has on( Circle 3<Kernel> l) const

bool h.is degenerate() const

Plane h is degenerate, if the coefficients a, b, and c of the
plane equation are zero.
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Miscellaneous

Plane 3<Kernel> h.transform( Aff transformation 3<Kernel> t) const

returns the plane obtained by applying t on a point of h
and the orthogonal direction of h.

See Also

Kernel::Plane 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 793
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CGAL::Point 3<Kernel>

Definition

An object of the class Point 3<Kernel> is a point in the three-dimensional Euclidean space E3.

Remember that Kernel::RT and Kernel::FT denote a RingNumberType and a FieldNumberType, respectively.
For the kernel model Cartesian<T>, the two types are the same. For the kernel model Homogeneous<T>,
Kernel::RT is equal to T , and Kernel::FT is equal to Quotient<T>.

Types

Point 3<Kernel>:: Cartesian const iterator

An iterator for enumerating the Cartesian coordinates of a point.

Creation

Point 3<Kernel> p( Origin ORIGIN);

introduces a point with Cartesian coordinates(0,0,0).

Point 3<Kernel> p( int x, int y, int z);

introduces a point p initialized to (x,y,z).

Point 3<Kernel> p( double x, double y, double z);

introduces a point p initialized to (x,y,z) provided RT supports it.

Point 3<Kernel> p( Kernel::RT hx, Kernel::RT hy, Kernel::RT hz, Kernel::RT hw = RT(1));

introduces a point p initialized to (hx/hw,hy/hw,hz/hw).
Precondition: hw 6= 0.

Point 3<Kernel> p( Kernel::FT x, Kernel::FT y, Kernel::FT z);

introduces a point p initialized to (x,y,z).

Operations

bool p.operator==( q) const

Test for equality: Two points are equal, iff their x, y and z coordinates are
equal.
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bool p.operator!=( q) const

Test for inequality.

There are two sets of coordinate access functions, namely to the homogeneous and to the Cartesian coordinates.
They can be used independently from the chosen kernel model.

Kernel::RT p.hx() const

returns the homogeneous x coordinate.

Kernel::RT p.hy() const

returns the homogeneous y coordinate.

Kernel::RT p.hz() const

returns the homogeneous z coordinate.

Kernel::RT p.hw() const

returns the homogenizing coordinate.

Note that you do not loose information with the homogeneous representation, because the FieldNumberType is
a quotient.

Kernel::FT p.x() const

returns the Cartesian x coordinate, that is hx/hw.

Kernel::FT p.y() const

returns the Cartesian y coordinate, that is hy/hw.

Kernel::FT p.z() const

returns the Cartesian z coordinate, that is hz/hw.

The following operations are for convenience and for compatibility with code for higher dimensional points.
Again they come in a Cartesian and in a homogeneous flavor.

Kernel::RT p.homogeneous( int i) const

returns the i’th homogeneous coordinate of p, starting with 0.
Precondition: 0≤ i≤ 3.

Kernel::FT p.cartesian( int i) const

returns the i’th Cartesian coordinate of p, starting with 0.
Precondition: 0≤ i≤ 2.

Kernel::FT p.operator[]( int i) const

returns cartesian(i).
Precondition: 0≤ i≤ 2.
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Cartesian const iterator p.cartesian begin() const

returns an iterator to the Cartesian coordinates of p, starting with the 0th
coordinate.

Cartesian const iterator p.cartesian end() const

returns an off the end iterator to the Cartesian coordinates of p.

int p.dimension() const

returns the dimension (the constant 3).

Bbox 3 p.bbox() const

returns a bounding box containing p.

Point 3<Kernel> p.transform( Aff transformation 3<Kernel> t) const

returns the point obtained by applying t on p.

Operators

The following operations can be applied on points:

bool operator<( p, q)

returns true iff p is lexicographically smaller than q (the lexicographical
order being defined on the Cartesian coordinates).

bool operator>( p, q)

returns true iff p is lexicographically greater than q.

bool operator<=( p, q)

returns true iff p is lexicographically smaller or equal to q.

bool operator>=( p, q)

returns true iff p is lexicographically greater or equal to q.

Vector 3<Kernel> operator-( p, q)

returns the difference vector between q and p. You can substitute ORIGIN
for either p or q, but not for both.
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Point 3<Kernel> operator+( p, Vector 3<Kernel> v)

returns the point obtained by translating p by the vector v.

Point 3<Kernel> operator-( p, Vector 3<Kernel> v)

returns the point obtained by translating p by the vector -v.

See Also

Kernel::Point 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 796
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CGAL::Ray 3<Kernel>

Definition

An object r of the data type Ray 3<Kernel> is a directed straight ray in the three-dimensional Euclidean space
E3. It starts in a point called the source of r and it goes to infinity.

Creation

Ray 3<Kernel> r( Point 3<Kernel> p, Point 3<Kernel> q);

introduces a ray r with source p and passing through
point q.

Ray 3<Kernel> r( Point 3<Kernel> p, Direction 3<Kernel> d);

introduces a ray r with source p and with direction d.

Ray 3<Kernel> r( Point 3<Kernel> p, Vector 3<Kernel> v);

introduces a ray r with source p and with a direction given
by v.

Ray 3<Kernel> r( Point 3<Kernel> p, Line 3<Kernel> l);

introduces a ray r starting at source p with the same di-
rection as l.

Operations

bool r.operator==( h) const

Test for equality: two rays are equal, iff they have the
same source and the same direction.

bool r.operator!=( h) const

Test for inequality.

Point 3<Kernel> r.source() const returns the source of r

Point 3<Kernel> r.point( int i) const returns a point on r. point(0) is the source. point(i), with
i > 0, is different from the source.
Precondition: i≥ 0.
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Direction 3<Kernel> r.direction() const returns the direction of r.

Vector 3<Kernel> r.to vector() const returns a vector giving the direction of r.

Line 3<Kernel> r.supporting line() const

returns the line supporting r which has the same direction.

Ray 3<Kernel> r.opposite() const returns the ray with the same source and the opposite di-
rection.

bool r.is degenerate() const

ray r is degenerate, if the source and the second defining
point fall together (that is if the direction is degenerate).

bool r.has on( Point 3<Kernel> p) const

A point is on r, iff it is equal to the source of r, or if it is
in the interior of r.

Ray 3<Kernel> r.transform( Aff transformation 3<Kernel> t) const

returns the ray obtained by applying t on the source and
on the direction of r.

See Also

Kernel::Ray 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 799
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CGAL::Segment 3<Kernel>

Definition

An object s of the data type Segment 3<Kernel> is a directed straight line segment in the three-dimensional
Euclidean space E3, i.e. a straight line segment [p,q] connecting two points p,q ∈ R3. The segment is topolog-
ically closed, i.e. the end points belong to it. Point p is called the source and q is called the target of s. The
length of s is the Euclidean distance between p and q. Note that there is only a function to compute the square
of the length, because otherwise we had to perform a square root operation which is not defined for all number
types, which is expensive, and may not be exact.

Creation

Segment 3<Kernel> s( Point 3<Kernel> p, Point 3<Kernel> q);

introduces a segment s with source p and target q. It is
directed from the source towards the target.

Operations

bool s.operator==( q) const

Test for equality: Two segments are equal, iff their
sources and targets are equal.

bool s.operator!=( q) const

Test for inequality.

Point 3<Kernel> s.source() const returns the source of s.
Point 3<Kernel> s.target() const returns the target of s.

Point 3<Kernel> s.min() const returns the point of s with smallest coordinate (lexico-
graphically).

Point 3<Kernel> s.max() const returns the point of s with largest coordinate (lexico-
graphically).

Point 3<Kernel> s.vertex( int i) const returns source or target of s: vertex(0) returns the source,
vertex(1) returns the target. The parameter i is taken mod-
ulo 2, which gives easy access to the other vertex.

Point 3<Kernel> s.point( int i) const returns vertex(i).
Point 3<Kernel> s.operator[]( int i) const

returns vertex(i).
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Kernel::FT s.squared length() const

returns the squared length of s.

Vector 3<Kernel> s.to vector() const returns the vector s.target() - s.source().

Direction 3<Kernel> s.direction() const returns the direction from source to target.

Segment 3<Kernel> s.opposite() const returns a segment with source and target interchanged.

Line 3<Kernel> s.supporting line() const

returns the line l passing through s. Line l has the same
orientation as segment s, that is from the source to the
target of s.

bool s.is degenerate() const

segment s is degenerate, if source and target fall together.

bool s.has on( Point 3<Kernel> p) const

A point is on s, iff it is equal to the source or target of s,
or if it is in the interior of s.

Bbox 3 s.bbox() const returns a bounding box containing s.

Segment 3<Kernel> s.transform( Aff transformation 3<Kernel> t) const

returns the segment obtained by applying t on the source
and the target of s.

See Also

Kernel::Segment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 801
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CGAL::Circle 3<Kernel>

Definition

An object of type Circle 3<Kernel> is a circle in the three-dimensional Euclidean space E3. Note that the circle
can be degenerate, i.e. the squared radius may be zero.

Creation

Circle 3<Kernel> c( Point 3<Kernel> center, Kernel::FT sq r, Plane 3<Kernel> plane);

introduces a variable c of type Circle 3<Kernel>. It is
initialized to the circle of center center and squared radius
sq r in plane plane.
Precondition: center lies in plane and sq r ≥ 0.

Circle 3<Kernel> c( Point 3<Kernel> center, Kernel::FT sq r, Vector 3<Kernel> n);

introduces a variable c of type Circle 3<Kernel>. It is
initialized to the circle of center center and squared radius
sq r in a plane normal to the vector n.
Precondition: sq r ≥ 0.

Circle 3<Kernel> c( Point 3<Kernel> p, Point 3<Kernel> q, Point 3<Kernel> r);

introduces a variable c of type Circle 3<Kernel>. It is
initialized to the circle passing through the three points.
Precondition: The three points are not collinear.

Circle 3<Kernel> c( Sphere 3<Kernel> sphere1, Sphere 3<Kernel> sphere2);

introduces a variable c of type Circle 3<Kernel>. It is
initialized to the circle along which the two spheres inter-
sect.
Precondition: The two spheres intersect along a circle.

Circle 3<Kernel> c( Sphere 3<Kernel> sphere, Plane 3<Kernel> plane);

introduces a variable c of type Circle 3<Kernel>. It is
initialized to the circle along which the sphere and the
plane intersect.
Precondition: The sphere and the plane intersect along a
circle.
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Circle 3<Kernel> c( Plane 3<Kernel> plane, Sphere 3<Kernel> sphere);

introduces a variable c of type Circle 3<Kernel>. It is
initialized to the circle along which the sphere and the
plane intersect.
Precondition: The sphere and the plane intersect along a
circle.

Access Functions

Point 3<Kernel> c.center() const returns the center of c.
Kernel::FT c.squared radius() const

returns the squared radius of c.

Plane 3<Kernel> c.supporting plane() const

returns the supporting plane of c.

Sphere 3<Kernel> c.diametral sphere() const

returns the diametral sphere of c.

Kernel::FT c.area divided by pi() const

returns the area of c, divided by π.

double c.approximate area() const

returns an approximation of the area of c.

Kernel::FT c.squared length divided by pi square() const

returns the squared length of c, divided by π2.

double c.approximate squared length() const

returns an approximation of the squared length (i.e.
perimeter) of c.

Predicates

bool c.has on( Point 3<Kernel> p) const

Operations

bool operator ==( c1, c2) returns true, iff c1 and c2 are equal, i.e. if they have the
same center, the same squared radius and the same sup-
porting plane.

bool operator !=( c1, c2)
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Bbox 3 c.bbox() const returns a bounding box containing c.

See Also

Kernel::Circle 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 784
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CGAL::Sphere 3<Kernel>

Definition

An object of type Sphere 3<Kernel> is a sphere in the three-dimensional Euclidean space E3. The sphere is
oriented, i.e. its boundary has clockwise or counterclockwise orientation. The boundary splits E3 into a positive
and a negative side, where the positive side is to the left of the boundary. The boundary also splits E3 into a
bounded and an unbounded side. Note that the sphere can be degenerated, i.e. the squared radius may be zero.

Creation

Sphere 3<Kernel> c( Point 3<Kernel> center,
Kernel::FT squared radius,
Orientation orientation = COUNTERCLOCKWISE)

introduces a variable c of type Sphere 3<Kernel>. It is
initialized to the sphere with center center, squared radius
squared radius and orientation orientation.
Precondition: orientation 6= COPLANAR, and further-
more, squared radius ≥ 0.

Sphere 3<Kernel> c( Point 3<Kernel> p, Point 3<Kernel> q, Point 3<Kernel> r, Point 3<Kernel> s);

introduces a variable c of type Sphere 3<Kernel>. It is
initialized to the unique sphere which passes through the
points p, q, r and s. The orientation of the sphere is the
orientation of the point quadruple p, q, r, s.
Precondition: p, q, r, and s are not coplanar.

Sphere 3<Kernel> c( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r,
Orientation o = COUNTERCLOCKWISE)

introduces a variable c of type Sphere 3<Kernel>. It is
initialized to the smallest sphere which passes through
the points p, q, and r. The orientation of the sphere is o.
Precondition: o is not COPLANAR.

Sphere 3<Kernel> c( Point 3<Kernel> p, Point 3<Kernel> q, Orientation o = COUNTERCLOCKWISE);

introduces a variable c of type Sphere 3<Kernel>. It is
initialized to the smallest sphere which passes through
the points p and q. The orientation of the sphere is o.
Precondition: o is not COPLANAR.
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Sphere 3<Kernel> c( Point 3<Kernel> center, Orientation orientation = COUNTERCLOCKWISE);

introduces a variable c of type Sphere 3<Kernel>. It is
initialized to the sphere with center center, squared radius
zero and orientation orientation.
Precondition: orientation 6= COPLANAR.
Postcondition: c.is degenerate() = true.

Sphere 3<Kernel> c( Circle 3<Kernel> c); introduces a variable c of type Sphere 3<Kernel>. It is
initialized to the diametral sphere of the circle.

Access Functions

Point 3<Kernel> c.center() const returns the center of c.
Kernel::FT c.squared radius() const

returns the squared radius of c.

Orientation c.orientation() const returns the orientation of c.

bool operator c.==( sphere2) const returns true, iff c and sphere2 are equal, i.e. if they have
the same center, same squared radius and same orienta-
tion.

bool operator c.!=( sphere2) const returns true, iff c and sphere2 are not equal.

Predicates

bool c.is degenerate() const

returns true, iff c is degenerate, i.e. if c has squared radius
zero.

Oriented side c.oriented side( Point 3<Kernel> p) const

returns either the constant ON ORIENTED
BOUNDARY , ON POSITIVE SIDE, or ON
NEGATIVE SIDE, iff p lies on the boundary, properly
on the positive side, or properly on the negative side of c,
resp.

Bounded side c.bounded side( Point 3<Kernel> p) const

returns ON BOUNDED SIDE, ON BOUNDARY , or
ON UNBOUNDED SIDE iff p lies properly inside, on
the boundary, or properly outside of c, resp.

bool c.has on positive side( Point 3<Kernel> p) const
bool c.has on negative side( Point 3<Kernel> p) const
bool c.has on boundary( Point 3<Kernel> p) const
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bool c.has on bounded side( Point 3<Kernel> p) const
bool c.has on unbounded side( Point 3<Kernel> p) const

bool c.has on( Point 3<Kernel> p) const
bool c.has on( Circle 3<Kernel> p) const

Miscellaneous

Sphere 3<Kernel> c.opposite() const returns the sphere with the same center and squared ra-
dius as c but with opposite orientation.

Sphere 3<Kernel> c.orthogonal transform( Aff transformation 3<Kernel> at) const

returns the sphere obtained by applying at on c.
Precondition: at is an orthogonal transformation.

Bbox 3 c.bbox() const returns a bounding box containing c.

See Also

Kernel::Sphere 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 802
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CGAL::Tetrahedron 3<Kernel>

Definition

An object t of the class Tetrahedron 3<Kernel> is an oriented tetrahedron in the three-dimensional Euclidean
space E3.

It is defined by four vertices p0, p1, p2 and p3. The orientation of a tetrahedron is the orientation of its four
vertices. That means it is positive when p3 is on the positive side of the plane defined by p0, p1 and p2.

The tetrahedron itself splits the space E3 in a positive and a negative side.

The boundary of a tetrahedron splits the space in two open regions, a bounded one and an unbounded one.

Creation

Tetrahedron 3<Kernel> t( Point 3<Kernel> p0,
Point 3<Kernel> p1,
Point 3<Kernel> p2,
Point 3<Kernel> p3)

introduces a tetrahedron t with vertices p0, p1, p2 and p3.

Operations

bool t.operator==( t2) const

Test for equality: two tetrahedra t and t2 are equal, iff t
and t2 have the same orientation and their sets (not se-
quences) of vertices are equal.

bool t.operator!=( t2) const

Test for inequality.

Point 3<Kernel> t.vertex( int i) const returns the i’th vertex modulo 4 of t.

Point 3<Kernel> t.operator[]( int i) const

returns vertex(int i).

Predicates

bool t.is degenerate() const

Tetrahedron t is degenerate, if the vertices are coplanar.
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Orientation t.orientation() const

Oriented side t.oriented side( Point 3<Kernel> p) const

Precondition: : t is not degenerate.

Bounded side t.bounded side( Point 3<Kernel> p) const

Precondition: : t is not degenerate.

For convenience we provide the following Boolean functions:

bool t.has on positive side( Point 3<Kernel> p) const
bool t.has on negative side( Point 3<Kernel> p) const
bool t.has on boundary( Point 3<Kernel> p) const
bool t.has on bounded side( Point 3<Kernel> p) const
bool t.has on unbounded side( Point 3<Kernel> p) const

Miscellaneous

Kernel::FT t.volume() const returns the signed volume of t.

Bbox 3 t.bbox() const returns a bounding box containing t.

Tetrahedron 3<Kernel> t.transform( Aff transformation 3<Kernel> at) const

returns the tetrahedron obtained by applying at on the
three vertices of t.

See Also

Kernel::Tetrahedron 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 803
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CGAL::Triangle 3<Kernel>

Definition

An object t of the class Triangle 3<Kernel> is a triangle in the three-dimensional Euclidean space E3. As the
triangle is not a full-dimensional object there is only a test whether a point lies on the triangle or not.

Creation

Triangle 3<Kernel> t( Point 3<Kernel> p, Point 3<Kernel> q, Point 3<Kernel> r);

introduces a triangle t with vertices p, q and r.

Operations

bool t.operator==( t2) const

Test for equality: two triangles t and t2 are equal, iff there
exists a cyclic permutation of the vertices of t2, such that
they are equal to the vertices of t.

bool t.operator!=( t2) const

Test for inequality.

Point 3<Kernel> t.vertex( int i) const returns the i’th vertex modulo 3 of t.

Point 3<Kernel> t.operator[]( int i) const

returns vertex(int i).

Plane 3<Kernel> t.supporting plane() returns the supporting plane of t, with same orientation.

Predicates

bool t.is degenerate() const

t is degenerate if its vertices are collinear.

bool t.has on( Point 3<Kernel> p) const

A point is on t, if it is on a vertex, an edge or the face of
t.
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Miscellaneous

Kernel::FT t.squared area() const

returns a square of the area of t.

Bbox 3 t.bbox() const returns a bounding box containing t.

Triangle 3<Kernel> t.transform( Aff transformation 3<Kernel> at) const

returns the triangle obtained by applying at on the three
vertices of t.

See Also

Kernel::Triangle 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 805
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CGAL::Vector 3<Kernel>

Definition

An object of the class Vector 3<Kernel> is a vector in the three-dimensional vector space R3. Geometrically
spoken a vector is the difference of two points p2, p1 and denotes the direction and the distance from p1 to p2.

CGAL defines a symbolic constant NULL VECTOR. We will explicitly state where you can pass this constant
as an argument instead of a vector initialized with zeros.

Types

Vector 3<Kernel>:: Cartesian const iterator

An iterator for enumerating the Cartesian coordinates of a vector.

Creation

Vector 3<Kernel> v( Point 3<Kernel> a, Point 3<Kernel> b);

introduces the vector b−a.

Vector 3<Kernel> v( Segment 3<Kernel> s);

introduces the vector s.target()− s.source().

Vector 3<Kernel> v( Ray 3<Kernel> r);

introduces a vector having the same direction as r.

Vector 3<Kernel> v( Line 3<Kernel> l);

introduces a vector having the same direction as l.

Vector 3<Kernel> v( Null vector NULL VECTOR);

introduces a null vector v.

Vector 3<Kernel> v( int x, int y, int z);

introduces a vector v initialized to (x,y,z).
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Vector 3<Kernel> v( double x, double y, double z);

introduces a vector v initialized to (x,y,z).

Vector 3<Kernel> v( Kernel::RT hx, Kernel::RT hy, Kernel::RT hz, Kernel::RT hw = RT(1));

introduces a vector v initialized to (hx/hw,hy/hw,hz/hw).

Vector 3<Kernel> v( Kernel::FT x, Kernel::FT y, Kernel::FT z);

introduces a vector v initialized to (x,y,z).

Operations

bool v.operator==( w) const

Test for equality: two vectors are equal, iff their x, y and z coordinates are
equal. You can compare a vector with the NULL VECTOR.

bool v.operator!=( w) const

Test for inequality. You can compare a vector with the NULL VECTOR.

There are two sets of coordinate access functions, namely to the homogeneous and to the Cartesian coordinates.
They can be used independently from the chosen kernel model.

Kernel::RT v.hx() const

returns the homogeneous x coordinate.

Kernel::RT v.hy() const

returns the homogeneous y coordinate.

Kernel::RT v.hz() const

returns the homogeneous z coordinate.

Kernel::RT v.hw() const

returns the homogenizing coordinate.

Note that you do not loose information with the homogeneous representation, because the FieldNumberType is
a quotient.

Kernel::FT v.x() const

returns the x-coordinate of v, that is hx/hw.

Kernel::FT v.y() const

returns the y-coordinate of v, that is hy/hw.
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Kernel::FT v.z() const

returns the z coordinate of v, that is hz/hw.

The following operations are for convenience and for compatibility with higher dimensional vectors. Again
they come in a Cartesian and homogeneous flavor.

Kernel::RT v.homogeneous( int i) const

returns the i’th homogeneous coordinate of v, starting with 0.
Precondition: 0≤ i≤ 3.

Kernel::FT v.cartesian( int i) const

returns the i’th Cartesian coordinate of v, starting at 0.
Precondition: 0≤ i≤ 2.

Kernel::FT v.operator[]( int i) const

returns cartesian(i).
Precondition: 0≤ i≤ 2.

Cartesian const iterator v.cartesian begin() const

returns an iterator to the Cartesian coordinates of v, starting with the 0th
coordinate.

Cartesian const iterator v.cartesian end() const

returns an off the end iterator to the Cartesian coordinates of v.

int v.dimension() const

returns the dimension (the constant 3).

Vector 3<Kernel> v.transform( Aff transformation 3<Kernel> t) const

returns the vector obtained by applying t on v.

Direction 3<Kernel> v.direction() const

returns the direction of v.

Operators

The following operations can be applied on vectors:
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Vector 3<Kernel> v.operator+( w) const

Addition.

Vector 3<Kernel> v.operator-( w) const

Subtraction.

Vector 3<Kernel> v.operator-() const

Returns the opposite vector.

Kernel::FT v.operator*( w) const

returns the scalar product (= inner product) of the two vectors.

Vector 3<Kernel> operator*( v, Kernel::RT s)

Multiplication with a scalar from the right.

Vector 3<Kernel> operator*( v, Kernel::FT s)

Multiplication with a scalar from the right.

Vector 3<Kernel> operator*( Kernel::RT s, v)

Multiplication with a scalar from the left.

Vector 3<Kernel> operator*( Kernel::FT s, v)

Multiplication with a scalar from the left.

Vector 3<Kernel> v.operator/( Kernel::RT s) const

Division by a scalar.

Kernel::FT v.squared length() const

returns the squared length of v.

See Also

Kernel::Vector 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 807
CGAL::cross product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 728
CGAL::determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 729
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11.12 Constants and Enumerations
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CGAL::Angle

#include <CGAL/enum.h>

enum Angle { OBTUSE, RIGHT, ACUTE};

See Also

CGAL::angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 689
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CGAL::Bounded side

#include <CGAL/enum.h>

enum Bounded side { ON UNBOUNDED SIDE, ON BOUNDARY, ON BOUNDED SIDE};
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CGAL::Comparison result

#include <CGAL/enum.h>

enum Comparison result { SMALLER, EQUAL, LARGER};

E
nu
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CGAL::Sign

#include <CGAL/enum.h>

enum Sign { NEGATIVE, ZERO, POSITIVE};

See Also

CGAL::Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 679
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CGAL::Orientation

#include <CGAL/enum.h>

typedef Sign Orientation;

See Also

CGAL::LEFT TURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 681
CGAL::RIGHT TURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 681
CGAL::COLLINEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 681
CGAL::CLOCKWISE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 680
CGAL::COUNTERCLOCKWISE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 680
CGAL::COPLANAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 682
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CGAL::Oriented side

#include <CGAL/enum.h>

enum Oriented side { ON NEGATIVE SIDE, ON ORIENTED BOUNDARY, ON POSITIVE SIDE};
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CGAL::CLOCKWISE

const Orientation CLOCKWISE = NEGATIVE;

See Also

CGAL::COUNTERCLOCKWISE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 680

C
on

st
an

t

CGAL::COUNTERCLOCKWISE

const Orientation COUNTERCLOCKWISE = POSITIVE;

See Also

CGAL::CLOCKWISE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 680
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CGAL::COLLINEAR

const Orientation COLLINEAR = ZERO;

See Also

CGAL::LEFT TURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 681
CGAL::RIGHT TURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 681

C
on

st
an

t

CGAL::LEFT TURN

const Orientation LEFT TURN = POSITIVE;

See Also

CGAL::COLLINEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 681
CGAL::RIGHT TURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 681

C
on

st
an

t

CGAL::RIGHT TURN

const Orientation RIGHT TURN = NEGATIVE;

See Also

CGAL::COLLINEAR . . . . . . . . . . . . . . . . . . . . . page 681 CGAL::LEFT TURN . . . . . . . . . . . . . . . . . . . . . page 681
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CGAL::COPLANAR

const Orientation COPLANAR = ZERO;

C
on

st
an

t

CGAL::DEGENERATE

const Orientation DEGENERATE = ZERO;
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CGAL::Null vector

#include <CGAL/Origin.h>

Definition

CGAL defines a symbolic constant NULL VECTOR to construct zero length vectors. Null vector is the type of
this constant.

See Also

CGAL::Vector 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 635
CGAL::Vector 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 673

C
on

st
an

t

CGAL::NULL VECTOR

const Null vector NULL VECTOR;

Definition

A symbolic constant used to construct zero length vectors.

See Also

CGAL::Vector 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 635
CGAL::Vector 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 673
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CGAL::Origin

#include <CGAL/Origin.h>

Definition

CGAL defines a symbolic constant ORIGIN which denotes the point at the origin. Origin is the type of this
constant. It is used in the conversion between points and vectors.

See Also

CGAL::Point 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 625
CGAL::Point 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 655
CGAL::Vector 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 635
CGAL::Vector 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 673
CGAL::operator+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 757
CGAL::operator- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 758

C
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t

CGAL::ORIGIN

const Origin ORIGIN;

Definition

A symbolic constant which denotes the point at the origin. This constant is used in the conversion between
points and vectors.

Example

Point 2< Cartesian<Exact NT> > p(1.0, 1.0), q;

Vector2< Cartesian<Exact NT> > v;

v = p − ORIGIN;

q = ORIGIN + v;

assert( p == q );
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See Also

CGAL::Point 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 625
CGAL::Point 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 655
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CGAL::Identity transformation

#include <CGAL/aff transformation tags.h>

Definition

Tag class for affine transformations.

See Also

CGAL::Aff transformation 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 609
CGAL::Aff transformation 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 641
CGAL::Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 686
CGAL::Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 687
CGAL::Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 687
CGAL::Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 688

C
la

ss

CGAL::Reflection

#include <CGAL/aff transformation tags.h>

Definition

Tag class for affine transformations.

See Also

CGAL::Aff transformation 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 609
CGAL::Aff transformation 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 641
CGAL::Identity transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 686
CGAL::Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 687
CGAL::Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 687
CGAL::Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 688
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CGAL::Rotation

#include <CGAL/aff transformation tags.h>

Definition

Tag class for affine transformations.

See Also

CGAL::Aff transformation 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 609
CGAL::Aff transformation 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 641
CGAL::Identity transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 686
CGAL::Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 687
CGAL::Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 687
CGAL::Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 688

C
la

ss

CGAL::Scaling

#include <CGAL/aff transformation tags.h>

Definition

Tag class for affine transformations.

See Also

CGAL::Aff transformation 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 609
CGAL::Aff transformation 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 641
CGAL::Identity transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 686
CGAL::Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 686
CGAL::Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 687
CGAL::Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 688
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CGAL::Translation

#include <CGAL/aff transformation tags.h>

Definition

Tag class for affine transformations.

See Also

CGAL::Aff transformation 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 609
CGAL::Aff transformation 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 641
CGAL::Identity transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 686
CGAL::Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 686
CGAL::Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 687
CGAL::Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 687
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11.13 Global Functions
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CGAL::angle

Angle angle( Vector 2<Kernel> u, Vector 2<Kernel> v)

returns OBTUSE, RIGHT or ACUTE depending on the
angle formed by the two vectors u and v.

Angle angle( Point 2<Kernel> p, Point 2<Kernel> q, Point 2<Kernel> r)

returns OBTUSE, RIGHT or ACUTE depending on the
angle formed by the three points p, q, r (q being the vertex
of the angle). The returned value is the same as angle(p -
q, r - q).

Angle angle( Point 2<Kernel> p,
Point 2<Kernel> q,
Point 2<Kernel> r,
Point 2<Kernel> s)

returns OBTUSE, RIGHT or ACUTE depending on the
angle formed by the two vectors pq, rs. The returned
value is the same as angle(q - p, s - r).

Angle angle( Point 3<Kernel> p, Point 3<Kernel> q, Point 3<Kernel> r)

returns OBTUSE, RIGHT or ACUTE depending on the
angle formed by the three points p, q, r (q being the vertex
of the angle).
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CGAL::are ordered along line

bool are ordered along line( Point 2<Kernel> p,
Point 2<Kernel> q,
Point 2<Kernel> r)

returns true, iff the three points are collinear and q lies
between p and r. Note that true is returned, if q==p or
q==r.

bool are ordered along line( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r)

returns true, iff the three points are collinear and q lies
between p and r. Note that true is returned, if q==p or
q==r.

See Also

CGAL::are strictly ordered along line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 691
CGAL::collinear are ordered along line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 701
CGAL::collinear are strictly ordered along line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 702
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CGAL::are strictly ordered along line

bool are strictly ordered along line( Point 2<Kernel> p,
Point 2<Kernel> q,
Point 2<Kernel> r)

returns true, iff the three points are collinear and q lies
strictly between p and r. Note that false is returned, if
q==p or q==r.

bool are strictly ordered along line( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r)

returns true, iff the three points are collinear and q lies
strictly between p and r. Note that false is returned, if
q==p or q==r.

See Also

CGAL::are ordered along line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 690
CGAL::collinear are ordered along line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 701
CGAL::collinear are strictly ordered along line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 702
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CGAL::area

Kernel::FT area( Point 2<Kernel> p, Point 2<Kernel> q, Point 2<Kernel> r)

returns the signed area of the triangle defined by the
points p, q and r.
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CGAL::barycenter

Point 2<Kernel> barycenter( Point 2<Kernel> p1, Kernel::FT w1, Point 2<Kernel> p2)

compute the barycenter of the points p1 and p2 with cor-
responding weights w1 and 1−w1.

Point 2<Kernel> barycenter( Point 2<Kernel> p1,
Kernel::FT w1,
Point 2<Kernel> p2,
Kernel::FT w2)

compute the barycenter of the points p1 and p2 with cor-
responding weights w1 and w2.
Precondition: w1+w2 != 0.

Point 2<Kernel> barycenter( Point 2<Kernel> p1,
Kernel::FT w1,
Point 2<Kernel> p2,
Kernel::FT w2,
Point 2<Kernel> p3)

compute the barycenter of the points p1, p2 and p3 with
corresponding weights w1, w2 and 1−w1−w2.

Point 2<Kernel> barycenter( Point 2<Kernel> p1,
Kernel::FT w1,
Point 2<Kernel> p2,
Kernel::FT w2,
Point 2<Kernel> p3,
Kernel::FT w3)

compute the barycenter of the points p1, p2 and p3 with
corresponding weights w1, w2 and w3.
Precondition: w1+w2+w3 != 0.

Point 2<Kernel> barycenter( Point 2<Kernel> p1,
Kernel::FT w1,
Point 2<Kernel> p2,
Kernel::FT w2,
Point 2<Kernel> p3,
Kernel::FT w3,
Point 2<Kernel> p4)

compute the barycenter of the points p1, p2, p3 and p4
with corresponding weights w1, w2, w3 and 1−w1−
w2−w3.
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Point 2<Kernel> barycenter( Point 2<Kernel> p1,
Kernel::FT w1,
Point 2<Kernel> p2,
Kernel::FT w2,
Point 2<Kernel> p3,
Kernel::FT w3,
Point 2<Kernel> p4,
Kernel::FT w4)

compute the barycenter of the points p1, p2, p3 and p4
with corresponding weights w1, w2, w3 and w4.
Precondition: w1+w2+w3+w4 != 0.

Point 3<Kernel> barycenter( Point 3<Kernel> p1, Kernel::FT w1, Point 3<Kernel> p2)

compute the barycenter of the points p1 and p2 with cor-
responding weights w1 and 1−w1.

Point 3<Kernel> barycenter( Point 3<Kernel> p1,
Kernel::FT w1,
Point 3<Kernel> p2,
Kernel::FT w2)

compute the barycenter of the points p1 and p2 with cor-
responding weights w1 and w2.
Precondition: w1+w2 != 0.

Point 3<Kernel> barycenter( Point 3<Kernel> p1,
Kernel::FT w1,
Point 3<Kernel> p2,
Kernel::FT w2,
Point 3<Kernel> p3)

compute the barycenter of the points p1, p2 and p3 with
corresponding weights w1, w2 and 1−w1−w2.

Point 3<Kernel> barycenter( Point 3<Kernel> p1,
Kernel::FT w1,
Point 3<Kernel> p2,
Kernel::FT w2,
Point 3<Kernel> p3,
Kernel::FT w3)

compute the barycenter of the points p1, p2 and p3 with
corresponding weights w1, w2 and w3.
Precondition: w1+w2+w3 != 0.

Point 3<Kernel> barycenter( Point 3<Kernel> p1,
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Kernel::FT w1,
Point 3<Kernel> p2,
Kernel::FT w2,
Point 3<Kernel> p3,
Kernel::FT w3,
Point 3<Kernel> p4)

compute the barycenter of the points p1, p2, p3 and p4
with corresponding weights w1, w2, w3 and 1−w1−
w2−w3.

Point 3<Kernel> barycenter( Point 3<Kernel> p1,
Kernel::FT w1,
Point 3<Kernel> p2,
Kernel::FT w2,
Point 3<Kernel> p3,
Kernel::FT w3,
Point 3<Kernel> p4,
Kernel::FT w4)

compute the barycenter of the points p1, p2, p3 and p4
with corresponding weights w1, w2, w3 and w4.
Precondition: w1+w2+w3+w4 != 0.

See Also

CGAL::centroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3969
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CGAL::bisector

Line 2<Kernel> bisector( Point 2<Kernel> p, Point 2<Kernel> q)

constructs the bisector line of the two points p and q. The
bisector is oriented in such a way that p lies on its positive
side.
Precondition: p and q are not equal.

Line 2<Kernel> bisector( Line 2<Kernel> l1, Line 2<Kernel> l2)

constructs the bisector of the two lines l1 and l2. In the
general case, the bisector has the direction of the vector
which is the sum of the normalized directions of the two
lines, and which passes through the intersection of l1 and
l2. If l1 and l2 are parallel, then the bisector is defined as
the line which has the same direction as l1, and which is at
the same distance from l1 and l2. This function requires
that Kernel::RT supports the sqrt() operation.

Plane 3<Kernel> bisector( Point 3<Kernel> p, Point 3<Kernel> q)

constructs the bisector plane of the two points p and q.
The bisector is oriented in such a way that p lies on its
positive side.
Precondition: p and q are not equal.

Plane 3<Kernel> bisector( Plane 3<Kernel> h1, Plane 3<Kernel> h2)

constructs the bisector of the two planes h1 and h2. In the
general case, the bisector has a normal vector which has
the same direction as the sum of the normalized normal
vectors of the two planes, and passes through the intersec-
tion of h1 and h2. If h1 and h2 are parallel, then the bi-
sector is defined as the plane which has the same oriented
normal vector as l1, and which is at the same distance
from h1 and h2. This function requires that Kernel::RT
supports the sqrt() operation.
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CGAL::centroid

Point 2<Kernel> centroid( Point 2<Kernel> p, Point 2<Kernel> q, Point 2<Kernel> r)

compute the centroid of the points p, q, and r.

Point 2<Kernel> centroid( Point 2<Kernel> p,
Point 2<Kernel> q,
Point 2<Kernel> r,
Point 2<Kernel> s)

compute the centroid of the points p, q, r, and s.

Point 2<Kernel> centroid( Triangle 2<Kernel> t)

compute the centroid of the triangle t.

Point 3<Kernel> centroid( Point 3<Kernel> p, Point 3<Kernel> q, Point 3<Kernel> r)

compute the centroid of the points p, q, and r.

Point 3<Kernel> centroid( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r,
Point 3<Kernel> s)

compute the centroid of the points p, q, r, and s.

Point 3<Kernel> centroid( Triangle 3<Kernel> t)

compute the centroid of the triangle t.

Point 3<Kernel> centroid( Tetrahedron 3<Kernel> t)

compute the centroid of the tetrahedron t.

See Also

CGAL::barycenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3971
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CGAL::circumcenter

Point 2<Kernel> circumcenter( Point 2<Kernel> p, Point 2<Kernel> q)

compute the center of the smallest circle passing through
the points p and q. Note: this is the same as
CGAL::midpoint(p, q) but is provided for homogeneity.

Point 2<Kernel> circumcenter( Point 2<Kernel> p, Point 2<Kernel> q, Point 2<Kernel> r)

compute the center of the circle passing through the
points p, q, and r.
Precondition: p, q, and r are not collinear.

Point 2<Kernel> circumcenter( Triangle 2<Kernel> t)

compute the center of the circle passing through the ver-
tices of t.
Precondition: t is not degenerate.

Point 3<Kernel> circumcenter( Point 3<Kernel> p, Point 3<Kernel> q)

compute the center of the smallest sphere passing through
the points p and q. Note: this is the same as
CGAL::midpoint(p, q) but is provided for homogeneity.

Point 3<Kernel> circumcenter( Point 3<Kernel> p, Point 3<Kernel> q, Point 3<Kernel> r)

compute the center of the circle passing through the
points p, q, and r.
Precondition: p, q, and r are not collinear.

Point 3<Kernel> circumcenter( Triangle 3<Kernel> t)

compute the center of the circle passing through the ver-
tices of t.
Precondition: t is not degenerate.

Point 3<Kernel> circumcenter( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r,
Point 3<Kernel> s)

compute the center of the sphere passing through the
points p, q, r, and s.
Precondition: p, q, r, and s are not coplanar.
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Point 3<Kernel> circumcenter( Tetrahedron 3<Kernel> t)

compute the center of the sphere passing through the ver-
tices of t.
Precondition: t is not degenerate.
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CGAL::collinear

bool collinear( Point 2<Kernel> p, Point 2<Kernel> q, Point 2<Kernel> r)

returns true, iff p, q, and r are collinear.

bool collinear( Point 3<Kernel> p, Point 3<Kernel> q, Point 3<Kernel> r)

returns true, iff p, q, and r are collinear.

See Also

CGAL::left turn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 746
CGAL::orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1116
CGAL::right turn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 768
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CGAL::collinear are ordered along line

bool collinear are ordered along line( Point 2<Kernel> p,
Point 2<Kernel> q,
Point 2<Kernel> r)

returns true, iff q lies between p and r.
Precondition: p, q and r are collinear.

bool collinear are ordered along line( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r)

returns true, iff q lies between p and r.
Precondition: p, q and r are collinear.

See Also

CGAL::are ordered along line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 690
CGAL::are strictly ordered along line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 691
CGAL::collinear are strictly ordered along line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 702
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CGAL::collinear are strictly ordered along line

bool collinear are strictly ordered along line( Point 2<Kernel> p,
Point 2<Kernel> q,
Point 2<Kernel> r)

returns true, iff q lies strictly between p and r.
Precondition: p, q and r are collinear.

bool collinear are strictly ordered along line( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r)

returns true, iff q lies strictly between p and r.
Precondition: p, q and r are collinear.

See Also

CGAL::are ordered along line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 690
CGAL::are strictly ordered along line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 691
CGAL::collinear are ordered along line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 701

702



F
un

ct
io

n

CGAL::compare distance to point

Comparison result compare distance to point( Point 2<Kernel> p,
Point 2<Kernel> q,
Point 2<Kernel> r)

compares the distances of points q and r to point p. re-
turns SMALLER, iff q is closer to p than r, LARGER, iff r
is closer to p than q, and EQUAL otherwise.

Comparison result compare distance to point( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r)

compares the distances of points q and r to point p. re-
turns SMALLER, iff q is closer to p than r, LARGER, iff r
is closer to p than q, and EQUAL otherwise.

See Also

CGAL::compare squared distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 710
CGAL::compare signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 705
CGAL::compare signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 706
CGAL::has larger distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 735
CGAL::has larger signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 736
CGAL::has larger signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 737
CGAL::has smaller distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 738
CGAL::has smaller signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 739
CGAL::has smaller signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 740
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CGAL::compare lexicographically

Comparison result compare lexicographically( Point 2<Kernel> p, Point 2<Kernel> q)

Compares the Cartesian coordinates of points p and q lex-
icographically in xy order: first x-coordinates are com-
pared, if they are equal, y-coordinates are compared. This
is the same function as compare xy and exists for com-
patibility with Point d<Kernel>.

Comparison result compare lexicographically( Point 3<Kernel> p, Point 3<Kernel> q)

Compares the Cartesian coordinates of points p and q lex-
icographically in xyz order: first x-coordinates are com-
pared, if they are equal, y-coordinates are compared, and
if both x- and y- coordinate are equal, z-coordinates are
compared. This is the same function as compare xyz and
exists for compatibility with Point d<Kernel>.
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CGAL::compare signed distance to line

Comparison result compare signed distance to line( Line 2<Kernel> l,
Point 2<Kernel> p,
Point 2<Kernel> q)

returns LARGER iff the signed distance of p and l is larger
than the signed distance of q and l, SMALLER, iff it is
smaller, and EQUAL iff both are equal.

Comparison result compare signed distance to line( Point 2<Kernel> p,
Point 2<Kernel> q,
Point 2<Kernel> r,
Point 2<Kernel> s)

returns LARGER iff the signed distance of r and l is larger
than the signed distance of s and l, SMALLER, iff it is
smaller, and EQUAL iff both are equal, where l is the
directed line through p and q.

See Also

CGAL::compare distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 703
CGAL::compare signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 706
CGAL::has larger distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 735
CGAL::has larger signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 736
CGAL::has larger signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 737
CGAL::has smaller distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 738
CGAL::has smaller signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 739
CGAL::has smaller signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 740
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CGAL::compare signed distance to plane

Comparison result compare signed distance to plane( Plane 3<Kernel> h,
Point 3<Kernel> p,
Point 3<Kernel> q)

returns LARGER iff the signed distance of p and h is
larger than the signed distance of q and h, SMALLER,
iff it is smaller, and EQUAL iff both are equal.

Comparison result compare signed distance to plane( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r,
Point 3<Kernel> s,
Point 3<Kernel> t)

returns LARGER iff the signed distance of s and h is
larger than the signed distance of t and h, SMALLER, iff
it is smaller, and EQUAL iff both are equal, where h is
the oriented plane through p, q and r.

See Also

CGAL::compare distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 703
CGAL::compare signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 705
CGAL::has larger distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 735
CGAL::has larger signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 736
CGAL::has larger signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 737
CGAL::has smaller distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 738
CGAL::has smaller signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 739
CGAL::has smaller signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 740
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CGAL::compare slopes

Comparison result compare slopes( Line 2<Kernel> l1, Line 2<Kernel> l2)

compares the slopes of the lines l1 and l2

Comparison result compare slopes( Segment 2<Kernel> s1, Segment 2<Kernel> s2)

compares the slopes of the segments s1 and s2
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CGAL::compare dihedral angle

Comparison result compare dihedral angle( Point 3<K> a1,
Point 3<K> b1,
Point 3<K> c1,
Point 3<K> d1,
K::FT cosine)

compares the dihedral angles θ1 and θ2, where θ1 is the
dihedral angle, in [0,π], of the tetrahedron (a1,b1,c1,d1)
at the edge (a1,b1), and θ2 is the angle in [0,π] such that
cos(θ2) = cosine. The result is the same as compare
dihedral angle(b1-a1, c1-a1, d1-a1, cosine).
Precondition: a1, b1, c1 are not collinear, and a1, b1, d1
are not collinear.

Comparison result compare dihedral angle( Point 3<K> a1,
Point 3<K> b1,
Point 3<K> c1,
Point 3<K> d1,
Point 3<K> a2,
Point 3<K> b2,
Point 3<K> c2,
Point 3<K> d2)

compares the dihedral angles θ1 and θ2, where θi is the
dihedral angle in the tetrahedron (ai,bi,ci,di) at the edge
(ai,bi). These two angles are computed in [0,π]. The
result is the same as compare dihedral angle(b1-a1, c1-
a1, d1-a1, b2-a2, c2-a2, d2-a2).
Precondition: For i ∈ {1,2}, ai, bi, ci are not collinear,
and ai, bi, di are not collinear.

Comparison result compare dihedral angle( K::Vector 3 u1,
K::Vector 3 v1,
K::Vector 3 w1,
K::FT cosine)

compares the dihedral angles θ1 and θ2, where θ1 is the
dihedral angle, in [0,π], between the vectorial planes de-
fined by (u1,v1) and (u1,w1), and θ2 is the angle in [0,π]
such that cos(θ2) = cosine.
Precondition: u1 and v1 are not collinear, and u1 and w1
are not collinear.

Comparison result compare dihedral angle( K::Vector 3 u1,
K::Vector 3 v1,
K::Vector 3 w1,
K::Vector 3 u2,
K::Vector 3 v2,
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K::Vector 3 w2)

compares the dihedral angles θ1 and θ2, where θi is the
dihedral angle between the vectorial planes defined by
(ui,vi) and (ui,wi). These two angles are computed in
[0,π].
Precondition: For i ∈ {1,2}, ui and vi are not collinear,
and ui and wi are not collinear.
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CGAL::compare squared distance

Comparison result compare squared distance( Point 2<Kernel> p,
Point 2<Kernel> q,
typename Kernel::FT d2)

compares the squared distance of points p and q to d2.

Comparison result compare squared distance( Point 3<Kernel> p,
Point 3<Kernel> q,
typename Kernel::FT d2)

compares the squared distance of points p and q to d2.

See Also

CGAL::compare distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 703
CGAL::compare signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 705
CGAL::compare signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 706
CGAL::has larger distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 735
CGAL::has larger signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 736
CGAL::has larger signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 737
CGAL::has smaller distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 738
CGAL::has smaller signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 739
CGAL::has smaller signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 740
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CGAL::compare squared radius

Comparison result compare squared radius( Point 3<Kernel> p, typename Kernel::FT sr)

compares the squared radius of the sphere of radius 0 cen-
tered at p to sr. This returns the opposite sign of sr.

Comparison result compare squared radius( Point 3<Kernel> p,
Point 3<Kernel> q,
typename Kernel::FT sr)

compares the squared radius of the sphere defined by the
points p and q to sr.

Comparison result compare squared radius( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r,
typename Kernel::FT sr)

compares the squared radius of the sphere defined by the
points p, q, and r to sr.

Comparison result compare squared radius( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r,
Point 3<Kernel> s,
typename Kernel::FT sr)

compares the squared radius of the sphere defined by the
points p, q, r, and r to sr.
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CGAL::compare x

Depending on which CGAL kernel is used, different versions of this global function are available. This is
described below.

With the basic 2D and 3D Kernel (see Chapter 11)

Comparison result compare x( Point 2<Kernel> p, Point 2<Kernel> q)

compares the x-coordinates of p and q.

Comparison result compare x( Point 3<Kernel> p, Point 3<Kernel> q)

compares the x-coordinates of p and q.

l1

l2

p

l

h1
h2 l1

l2

h1

h2

(a) (b) (c)

Figure 11.1: Comparison of the x or y-coordinates of the (implicitly given) points in the boxes.

Comparison result compare x( Point 2<Kernel> p, Line 2<Kernel> l1, Line 2<Kernel> l2)

compares the x-coordinates of p and the intersection of
lines l1 and l2 (Figure 11.1 (a)).

Comparison result compare x( Line 2<Kernel> l, Line 2<Kernel> h1, Line 2<Kernel> h2)

compares the x-coordinates of the intersection of line l
with line h1 and with line h2 (Figure 11.1 (b)).

Comparison result compare x( Line 2<Kernel> l1,
Line 2<Kernel> l2,
Line 2<Kernel> h1,
Line 2<Kernel> h2)

compares the x-coordinates of the intersection of lines l1
and l2 and the intersection of lines h1 and h2 (Figure 11.1
(c)).
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With the 2D Circular Kernel (see Chapter 13)

#include <CGAL/global functions circular kernel 2.h>

If this kernel is used, in addition to the function and the combination of 2D types described above, another
version of the function is provided.

Comparison result compare x( Circular arc point 2<CircularKernel> p,
Circular arc point 2<CircularKernel> q)

compares the x-coordinates of p and q.

Comparison result compare x( Circular arc point 2<CircularKernel> p,
Point 2<CircularKernel> q)

compares the x-coordinates of p and q.

With the 3D Spherical Kernel (see Chapter 14)

#include <CGAL/global functions spherical kernel 3.h>

If this kernel is used, in addition to the function and the combination of 2D types described above, another
version of the function is provided.

Comparison result compare x( Circular arc point 3<SphericalKernel> p,
Circular arc point 3<SphericalKernel> q)

compares the x-coordinates of p and q.

Comparison result compare x( Circular arc point 3<SphericalKernel> p,
Point 3<SphericalKernel> q)

compares the x-coordinates of p and q.

See Also

CGAL::compare xy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 714
CGAL::compare xyz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 716
CGAL::compare x at y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 717
CGAL::compare y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 719
CGAL::compare yx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 723
CGAL::compare y at x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 721
CGAL::compare z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 724
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CGAL::compare xy

Depending on which CGAL kernel is used, different versions of this global function are available. This is
described below.

With the basic 2D and 3D Kernel (see Chapter 11)

Comparison result compare xy( Point 2<Kernel> p, Point 2<Kernel> q)

Compares the Cartesian coordinates of points p and q lex-
icographically in xy order: first x-coordinates are com-
pared, if they are equal, y-coordinates are compared.

Comparison result compare xy( Point 3<Kernel> p, Point 3<Kernel> q)

Compares the Cartesian coordinates of points p and q lex-
icographically in xy order: first x-coordinates are com-
pared, if they are equal, y-coordinates are compared.

With the 2D Circular Kernel (see Chapter 13)

#include <CGAL/global functions circular kernel 2.h>

If this kernel is used, in addition to the function and the combination of 2D types described above, another
version of the function is provided.

Comparison result compare xy( Circular arc point 2<CircularKernel> p,
Circular arc point 2<CircularKernel> q)

Compares the x and y Cartesian coordinates of points p
and q lexicographically.

Comparison result compare xy( Circular arc point 2<CircularKernel> p,
Point 2<CircularKernel> q)

Compares the x and y Cartesian coordinates of points p
and q lexicographically.

With the 3D Spherical Kernel (see Chapter 14)

#include <CGAL/global functions spherical kernel 3.h>

If this kernel is used, in addition to the function and the combination of 2D types described above, another
version of the function is provided.
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Comparison result compare xy( Circular arc point 3<SphericalKernel> p,
Circular arc point 3<SphericalKernel> q)

Compares the x and y Cartesian coordinates of points p
and q lexicographically.

Comparison result compare xy( Circular arc point 3<SphericalKernel> p,
Point 3<SphericalKernel> q)

Compares the x and y Cartesian coordinates of points p
and q lexicographically.

See Also

CGAL::compare xyz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 716
CGAL::compare x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 712
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CGAL::compare xyz

Depending on which CGAL kernel is used, different versions of this global function are available. This is
described below.

With the basic 3D Kernel (see Chapter 11)

Comparison result compare xyz( Point 3<Kernel> p, Point 3<Kernel> q)

Compares the Cartesian coordinates of points p and q lex-
icographically in xyz order: first x-coordinates are com-
pared, if they are equal, y-coordinates are compared, and
if both x- and y- coordinate are equal, z-coordinates are
compared.

With the 3D Spherical Kernel (see Chapter 14)

#include <CGAL/global functions spherical kernel 3.h>

If this kernel is used, in addition to the function and the combination of 2D types described above, another
version of the function is provided.

Comparison result compare xyz( Circular arc point 3<SphericalKernel> p,
Circular arc point 3<SphericalKernel> q)

Compares the Cartesian coordinates of points p and q lex-
icographically.

Comparison result compare xyz( Circular arc point 3<SphericalKernel> p,
Point 3<SphericalKernel> q)

Compares the Cartesian coordinates of points p and q lex-
icographically.

See Also

CGAL::compare xy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 714
CGAL::compare x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 712
CGAL::compare x at y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 717
CGAL::compare y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 719
CGAL::compare yx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 723
CGAL::compare y at x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 721
CGAL::compare z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 724

716



F
un

ct
io

n

CGAL::compare x at y

Comparison result compare x at y( Point 2<Kernel> p, Line 2<Kernel> h)

compares the x-coordinates of p and the horizontal pro-
jection of p on h (Figure 11.2 (a)).
Precondition: h is not horizontal.

(a) (b) (c) (d)

h

p

h1

p

h2

l1

l2

p

h

l1

l2

p

h2

h1

Figure 11.2: Comparison of the x-coordinates of the (implicitly given) points in the boxes, at a y-coordinate.
The y-coordinate is either given explicitly (disc) or implicitly (circle).

Comparison result compare x at y( Point 2<Kernel> p, Line 2<Kernel> h1, Line 2<Kernel> h2)

This function compares the x-coordinates of the horizon-
tal projection of p on h1 and on h2 (Figure 11.2 (b)).
Precondition: h1 and h2 are not horizontal.

Comparison result compare x at y( Line 2<Kernel> l1, Line 2<Kernel> l2, Line 2<Kernel> h)

Let p be the intersection of lines l1 and l2. This func-
tion compares the x-coordinates of p and the horizontal
projection of p on h (Figure 11.2 (c)).
Precondition: l1 and l2 intersect and are not horizontal; h
is not horizontal.

Comparison result compare x at y( Line 2<Kernel> l1,
Line 2<Kernel> l2,
Line 2<Kernel> h1,
Line 2<Kernel> h2)

Let p be the intersection of lines l1 and l2. This function
compares the x-coordinates of the horizontal projection
of p on h1 and on h2 (Figure 11.2 (d)).
Precondition: l1 and l2 intersect and are not horizontal;
h1 and h2 are not horizontal.
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CGAL::compare y

Depending on which CGAL kernel is used, different versions of this global function are available. This is
described below.

With the basic 2D and 3D Kernel (see Chapter 11)

Comparison result compare y( Point 2<Kernel> p, Point 2<Kernel> q)

compares Cartesian y-coordinates of p and q.

Comparison result compare y( Point 3<Kernel> p, Point 3<Kernel> q)

compares Cartesian y-coordinates of p and q.

l1

l2

p

l

h1
h2 l1

l2

h1

h2

(a) (b) (c)

Figure 11.3: Comparison of the x or y-coordinates of the (implicitly given) points in the boxes.

Comparison result compare y( Point 2<Kernel> p, Line 2<Kernel> l1, Line 2<Kernel> l2)

compares the y-coordinates of p and the intersection of
lines l1 and l2 (Figure 11.3 (a)).

Comparison result compare y( Line 2<Kernel> l, Line 2<Kernel> h1, Line 2<Kernel> h2)

compares the y-coordinates of the intersection of line l
with line h1 and with line h2 (Figure 11.3 (b)).

Comparison result compare y( Line 2<Kernel> l1,
Line 2<Kernel> l2,
Line 2<Kernel> h1,
Line 2<Kernel> h2)

compares the y-coordinates of the intersection of lines l1
and l2 and the intersection of lines h1 and h2 (Figure 11.3
(c)).
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With the 2D Circular Kernel (see Chapter 13)

#include <CGAL/global functions circular kernel 2.h>

If this kernel is used, in addition to the function and the combination of 2D types described above, another
version of the function is provided.

Comparison result compare y( Circular arc point 2<CircularKernel> p,
Circular arc point 2<CircularKernel> q)

compares the y-coordinates of p and q.

Comparison result compare y( Circular arc point 2<CircularKernel> p,
Point 2<CircularKernel> q)

compares the y-coordinates of p and q.

With the 3D Spherical Kernel (see Chapter 14)

#include <CGAL/global functions spherical kernel 3.h>

If this kernel is used, in addition to the function and the combination of 2D types described above, another
version of the function is provided.

Comparison result compare y( Circular arc point 3<SphericalKernel> p,
Circular arc point 3<SphericalKernel> q)

compares the y-coordinates of p and q.

Comparison result compare y( Circular arc point 3<SphericalKernel> p,
Point 3<SphericalKernel> q)

compares the y-coordinates of p and q.
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CGAL::compare y at x

Depending on which CGAL kernel is used, different versions of this global function are available. This is
described below.

With the basic 2D and 3D Kernel (see Chapter 11)

Comparison result compare y at x( Point 2<Kernel> p, Line 2<Kernel> h)

compares the y-coordinates of p and the vertical projec-
tion of p on h (Figure 11.4 (d)).
Precondition: h is not vertical.

l1

l2

h1

h2

h

p

p

h1

h2

l1

l2

h

(d) (e) (f) (g)

Figure 11.4: Comparison of the y-coordinates of the (implicitly given) points in the boxes, at an x-coordinate.
The x-coordinate is either given explicitly (disc) or implicitly (circle).

Comparison result compare y at x( Point 2<Kernel> p, Line 2<Kernel> h1, Line 2<Kernel> h2)

compares the y-coordinates of the vertical projection of p
on h1 and on h2 (Figure 11.4 (e)).
Precondition: h1 and h2 are not vertical.

Comparison result compare y at x( Line 2<Kernel> l1, Line 2<Kernel> l2, Line 2<Kernel> h)

Let p be the intersection of lines l1 and l2. This function
compares the y-coordinates of p and the vertical projec-
tion of p on h (Figure 11.4 (f)).
Precondition: l1, l2 intersect and h is not vertical.

Comparison result compare y at x( Line 2<Kernel> l1,
Line 2<Kernel> l2,
Line 2<Kernel> h1,
Line 2<Kernel> h2)

Let p be the intersection of lines l1 and l2. This function
compares the y-coordinates of the vertical projection of p
on h1 and on h2 (Figure 11.4 (g)).
Precondition: l1 and l2 intersect; h1 and h2 are not verti-
cal.
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Comparison result compare y at x( Point 2<Kernel> p, Segment 2<Kernel> s)

compares the y-coordinates of p and the vertical projec-
tion of p on s. If s is vertical, then return EQUAL when
p lies on s, SMALLER when p lies under s, and LARGER
otherwise.
Precondition: p is within the x range of s.

Comparison result compare y at x( Point 2<Kernel> p,
Segment 2<Kernel> s1,
Segment 2<Kernel> s2)

compares the y-coordinates of the vertical projection of
p on s1 and on s2. If s1 or s2 is vertical, then return
EQUAL if they intersect, otherwise return SMALLER if
s1 lies below s2, and return LARGER otherwise.
Precondition: p is within the x range of s1 and s2.

With the 2D Circular Kernel (see Chapter 13)

#include <CGAL/global functions circular kernel 2.h>

If this kernel is used, in addition to the function and the combination of 2D types described above, another
version of the function is provided.

Comparison result compare y at x( Circular arc point 2<CircularKernel> p,
Circular arc 2<CircularKernel> a)

Same as above, for a point and a circular arc.

Comparison result compare y at x( Circular arc point 2<CircularKernel> p,
Line arc 2<CircularKernel> a)

Same as above, for a point and a line segment.

See Also

CGAL::compare xy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 714
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CGAL::compare yx

Comparison result compare yx( Point 2<Kernel> p, Point 2<Kernel> q)

Compares the Cartesian coordinates of points p and q lex-
icographically in yx order: first y-coordinates are com-
pared, if they are equal, x-coordinates are compared.

See Also
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CGAL::compare z

Depending on which CGAL kernel is used, different versions of this global function are available. This is
described below.

With the basic 3D Kernel (see Chapter 11)

Comparison result compare z( Point 3<Kernel> p, Point 3<Kernel> q)

compares the z-coordinates of p and q.

With the 3D Spherical Kernel (see Chapter 14)

#include <CGAL/global functions spherical kernel 3.h>

If this kernel is used, in addition to the function and the combination of 2D types described above, another
version of the function is provided.

Comparison result compare z( Circular arc point 3<SphericalKernel> p,
Circular arc point 3<SphericalKernel> q)

compares the z-coordinates of p and q.

Comparison result compare z( Circular arc point 3<SphericalKernel> p,
Point 3<SphericalKernel> q)

compares the z-coordinates of p and q.

See Also

CGAL::compare xy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 714
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CGAL::coplanar

bool coplanar( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r,
Point 3<Kernel> s)

returns true, if p, q, r, and s are coplanar.

See Also

CGAL::coplanar orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 726
CGAL::coplanar side of bounded circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 727
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CGAL::coplanar orientation

Orientation coplanar orientation( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r,
Point 3<Kernel> s)

Let P be the plane defined by the points p, q, and r. Note
that the order defines the orientation of P. The function
computes the orientation of points p, q, and s in P: Iff
p, q, s are collinear, COLLINEAR is returned. Iff P and
the plane defined by p, q, and s have the same orientation,
POSITIVE is returned; otherwise NEGATIVE is returned.
Precondition: p, q, r, and s are coplanar and p, q, and r
are not collinear.

Orientation coplanar orientation( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r)

If p,q,r are collinear, then COLLINEAR is returned. If
not, then p,q,r define a plane P. The return value in
this case is either POSITIVE or NEGATIVE, but we don’t
specify it explicitly. However, we guarantee that all calls
to this predicate over 3 points in P will return a coherent
orientation if considered a 2D orientation in P.

See Also

CGAL::coplanar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 725
CGAL::coplanar side of bounded circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 727
CGAL::orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1116
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CGAL::coplanar side of bounded circle

Bounded side coplanar side of bounded circle( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r,
Point 3<Kernel> s)

returns the bounded side of the circle defined by p, q, and
r on which s lies.
Precondition: p, q, r, and s are coplanar and p, q, and r
are not collinear.

See Also

CGAL::coplanar orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 726
CGAL::side of bounded circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 769
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CGAL::cross product

Vector 3<Kernel> cross product( Vector 3<Kernel> u, Vector 3<Kernel> v)

returns the cross product of u and v.
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CGAL::determinant

Kernel::FT determinant( Vector 2<Kernel> v, Vector 2<Kernel> w)

returns the determinant of v and w.

Kernel::FT determinant( Vector 3<Kernel> u, Vector 3<Kernel> v, Vector 3<Kernel> w)

returns the determinant of u, v and w.

See Also

CGAL::orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1116
CGAL::collinear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 700
CGAL::left turn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 746
CGAL::right turn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 768
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CGAL::do intersect

bool do intersect( Type1 obj1, Type2 obj2)

checks whether obj1 and obj2 intersect. Two objects obj1
and obj2 intersect if there is a point p that is part of both
obj1 and obj2. The intersection region of those two ob-
jects is defined as the set of all points p that are part of
both obj1 and obj2. Note that for objects like triangles
and polygons that enclose a bounded region, this region
is part of the object.

Depending on which CGAL kernel is used, Type1 and Type2 can be of different types.

With the basic 2D and 3D Kernel (see Chapter 11)

#include <CGAL/intersections.h>

The types Type1 and Type2 can be any of the following:

• Point 2<Kernel>
• Line 2<Kernel>
• Ray 2<Kernel>
• Segment 2<Kernel>
• Triangle 2<Kernel>
• Iso rectangle 2<Kernel>

Also, Type1 and Type2 can be both of type

• Line 2<Kernel>
• Circle 2<Kernel>

In three-dimensional space, the types Type1 and Type2 can be any of the following:

• Plane 3<Kernel>
• Line 3<Kernel>
• Ray 3<Kernel>
• Segment 3<Kernel>
• Triangle 3<Kernel>.
• Bbox 3.

Also, Type1 and Type2 can be respectively of types

• Triangle 3<Kernel> and Tetrahedron 3<Kernel>
• Plane 3<Kernel> and Sphere 3<Kernel> (or the contrary)
• Sphere 3<Kernel> and Sphere 3<Kernel>.
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With the 2D Circular Kernel (see Chapter 13)

#include <CGAL/Circular kernel intersections.h>

If this kernel is used, in addition to the combinations of 2D types previously listed, Type1 and Type2 can be any
of the following:

• Line 2<CircularKernel>
• Circle 2<CircularKernel>
• Line arc 2<CircularKernel>
• Circular arc 2<CircularKernel>

An example illustrating this is presented in Chapter 13.

With the 3D Spherical Kernel (see Chapter 14)

#include <CGAL/Spherical kernel intersections.h>

If this kernel is used, in addition to the combinations of 3D types previously listed, Type1 and Type2 can be any
of the following:

• Line 3<SphericalKernel>
• Circle 3<SphericalKernel>
• Plane 3<SphericalKernel>
• Sphere 3<SphericalKernel>
• Line arc 3<SphericalKernel>
• Circular arc 3<SphericalKernel>

An example illustrating this is presented in Chapter 14.

Also, another predicate is provided with this kernel:

bool do intersect( Type1 obj1, Type2 obj2, Type3 obj3)

checks whether obj1, obj2 and obj3 intersect.

where Type1, Type2 and Type3 can be:

• Sphere 3<SphericalKernel>
• Plane 3<SphericalKernel>

See Also

CGAL::intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1553
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CGAL::do overlap

#include <CGAL/Bbox 2.h>

bool do overlap( Bbox 2 bb1, Bbox 2 bb2)

returns true iff bb1 and bb2 overlap, i.e., iff their inter-
section is non-empty.

#include <CGAL/Bbox 3.h>

bool do overlap( Bbox 3 bb1, Bbox 3 bb2)

returns true iff bb1 and bb2 overlap, i.e., iff their inter-
section is non-empty.
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CGAL::enum cast

#include <CGAL/enum.h>

template < typename T, typename U >
T enum cast( U u) converts between the various enums provided by the

CGAL kernel. The conversion preserves the order of the
values.

See Also

CGAL::Sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 678
CGAL::Comparison result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 678
CGAL::Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 679
CGAL::Oriented side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 679
CGAL::Bounded side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 677
CGAL::Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 677
CGAL::Uncertain<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4236
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CGAL::equidistant line

Line 3<Kernel> equidistant line( Point 3<Kernel> p, Point 3<Kernel> q, Point 3<Kernel> r)

constructs the line which is at the same distance from the
three points p, q and r.
Precondition: p, q and r are not collinear.
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CGAL::has larger distance to point

bool has larger distance to point( Point 2<Kernel> p,
Point 2<Kernel> q,
Point 2<Kernel> r)

returns true iff the distance between q and p is larger than
the distance between r and p.

bool has larger distance to point( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r)

returns true iff the distance between q and p is larger than
the distance between r and p.

See Also

CGAL::compare distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 703
CGAL::compare signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 705
CGAL::compare signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 706
CGAL::has larger signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 736
CGAL::has larger signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 737
CGAL::has smaller distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 738
CGAL::has smaller signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 739
CGAL::has smaller signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 740

735



F
un

ct
io

n

CGAL::has larger signed distance to line

bool has larger signed distance to line( Line 2<Kernel> l,
Point 2<Kernel> p,
Point 2<Kernel> q)

returns true iff the signed distance of p and l is larger than
the signed distance of q and l.

bool has larger signed distance to line( Point 2<Kernel> p,
Point 2<Kernel> q,
Point 2<Kernel> r,
Point 2<Kernel> s)

returns true iff the signed distance of r and l is larger than
the signed distance of s and l, where l is the directed line
through points p and q.

See Also

CGAL::compare distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 703
CGAL::compare signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 705
CGAL::compare signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 706
CGAL::has larger distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 735
CGAL::has larger signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 736
CGAL::has larger signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 737
CGAL::has smaller distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 738
CGAL::has smaller signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 739
CGAL::has smaller signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 740
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CGAL::has larger signed distance to plane

bool has larger signed distance to plane( Plane 3<Kernel> h,
Point 3<Kernel> p,
Point 3<Kernel> q)

returns true iff the signed distance of p and h is larger
than the signed distance of q and h.

bool has larger signed distance to plane( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r,
Point 3<Kernel> s,
Point 3<Kernel> t)

returns true iff the signed distance of s and h is larger
than the signed distance of t and h, where h is the oriented
plane through p, q and r.

See Also

CGAL::compare distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 703
CGAL::compare signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 705
CGAL::compare signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 706
CGAL::has larger distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 735
CGAL::has larger signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 736
CGAL::has smaller distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 738
CGAL::has smaller signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 739
CGAL::has smaller signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 740
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CGAL::has smaller distance to point

bool has smaller distance to point( Point 2<Kernel> p,
Point 2<Kernel> q,
Point 2<Kernel> r)

returns true iff the distance between q and p is smaller
than the distance between r and p.

bool has smaller distance to point( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r)

returns true iff the distance between q and p is smaller
than the distance between r and p.

See Also

CGAL::compare distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 703
CGAL::compare signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 705
CGAL::compare signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 706
CGAL::has larger distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 735
CGAL::has larger signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 736
CGAL::has larger signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 737
CGAL::has smaller signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 739
CGAL::has smaller signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 740
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CGAL::has smaller signed distance to line

bool has smaller signed distance to line( Line 2<Kernel> l,
Point 2<Kernel> p,
Point 2<Kernel> q)

returns true iff the signed distance of p and l is smaller
than the signed distance of q and l.

bool has smaller signed distance to line( Point 2<Kernel> p,
Point 2<Kernel> q,
Point 2<Kernel> r,
Point 2<Kernel> s)

returns true iff the signed distance of r and l is smaller
than the signed distance of s and l, where l is the oriented
line through p and q.

See Also

CGAL::compare distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 703
CGAL::compare signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 705
CGAL::compare signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 706
CGAL::has larger distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 735
CGAL::has larger signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 736
CGAL::has larger signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 737
CGAL::has smaller distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 738
CGAL::has smaller signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 740

739



F
un

ct
io

n

CGAL::has smaller signed distance to plane

bool has smaller signed distance to plane( Plane 3<Kernel> h,
Point 3<Kernel> p,
Point 3<Kernel> q)

returns true iff the signed distance of p and h is smaller
than the signed distance of q and h.

bool has smaller signed distance to plane( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r,
Point 3<Kernel> s,
Point 3<Kernel> t)

returns true iff the signed distance of p and h is smaller
than the signed distance of q and h, where h is the oriented
plane through p, q and r.

See Also

CGAL::compare distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 703
CGAL::compare signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 705
CGAL::compare signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 706
CGAL::has larger distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 735
CGAL::has larger signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 736
CGAL::has larger signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 737
CGAL::has smaller distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 738
CGAL::has smaller signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 739
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CGAL::intersection

Depending on which CGAL kernel is used, different versions of this global function are available. This is
described below.

With the basic 2D and 3D Kernel (see Chapter 11)

#include <CGAL/intersections.h>

Object intersection( Type1<Kernel> obj1, Type2<Kernel> obj2)

Two objects obj1 and obj2 intersect if there is a point p
that is part of both obj1 and obj2. The intersection re-
gion of those two objects is defined as the set of all points
p that are part of both obj1 and obj2. Note that for ob-
jects like triangles and polygons that enclose a bounded
region, this region is considered part of the object. If a
segment lies completely inside a triangle, then those two
objects intersect and the intersection region is the com-
plete segment.

The possible value for types Type1 and Type2 and the possible return values wrapped in Object are the following:

type A type B return type
Iso rectangle 2 Iso rectangle 2 Iso rectangle 2

Iso rectangle 2 Line 2
Point 2
Segment 2

Iso rectangle 2 Ray 2
Point 2
Segment 2

Iso rectangle 2 Segment 2
Point 2
Segment 2

Iso rectangle 2 Triangle 2

Point 2
Segment 2
Triangle 2
std::vector<Point 2>

Line 2 Line 2 Point 2
Line 2

Line 2 Ray 2
Point 2
Ray 2

Line 2 Segment 2
Point 2
Segment 2

Line 2 Triangle 2
Point 2
Segment 2

Ray 2 Ray 2
Point 2
Segment 2
Ray 2
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continued

Ray 2 Segment 2
Point 2
Segment 2

Ray 2 Triangle 2
Point 2
Segment 2

Segment 2 Segment 2
Point 2
Segment 2

Segment 2 Triangle 2
Point 2
Segment 2

Triangle 2 Triangle 2

Point 2
Segment 2
Triangle 2
std::vector<Point 2>

Line 3 Line 3 Point 3
Line 3

Line 3 Plane 3 Point 3
Line 3

Line 3 Ray 3
Point 3
Ray 3

Line 3 Segment 3
Point 3
Segment 3

Line 3 Triangle 3
Point 3
Segment 3

Plane 3 Plane 3 Line 3
Plane 3

Plane 3 Ray 3
Point 3
Ray 3

Plane 3 Segment 3
Point 3
Segment 3

Plane 3 Sphere 3 Point 3
Circle 3

Plane 3 Triangle 3
Triangle 3
Segment 3
Point 3

Ray 3 Ray 3
Point 3
Ray 3
Segment 3

Ray 3 Segment 3
Point 3
Segment 3

Ray 3 Triangle 3
Point 3
Segment 3

Segment 3 Segment 3
Point 3
Segment 3

Segment 3 Triangle 3
Point 3
Segment 3

Sphere 3 Sphere 3
Point 3
Circle 3
Sphere 3
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Triangle 3 Triangle 3

Point 3
Segment 3
Triangle 3
std::vector<Point 3>

There is also an intersection function between 3 planes.

Object intersection( Plane 3<Kernel> pl1, Plane 3<Kernel> pl2, Plane 3<Kernel> pl3)

returns the intersection of 3 planes, which can be either a
point, a line, a plane, or empty.

With the 2D Circular Kernel (see Chapter 13)

#include <CGAL/Circular kernel intersections.h>

If this kernel is used, in addition to the function and the combination of 2D types described above, another
version of the function is provided.

Since both the number of intersections, if any, and their type, depend on the arguments, the function returns an
output iterator on Object’s, as presented below.

template < class OutputIterator >
OutputIterator intersection( Type1 obj1, Type2 obj2, OutputIterator intersections)

Copies in the output iterator the intersection elements be-
tween the two objects. intersections iterates on elements
of type CGAL::Object, in lexicographic order,

where Type1 and Type2 can both be either

• Line 2<CircularKernel> or

• Line arc 2<CircularKernel> or

• Circle 2<CircularKernel> or

• Circular arc 2<CircularKernel>.

Depending on the types Type1 and Type2, these elements can be assigned to

• std::pair<Circular arc point 2<CircularKernel>, unsigned>, where the unsigned integer is the multi-
plicity of the corresponding intersection point between obj1 and obj2,

• Circular arc 2<CircularKernel> in case of an overlap of two circular arcs,

• Line arc 2<CircularKernel> in case of an overlap of two line segments or

• Line 2<CircularKernel> or Circle 2<CircularKernel> in case of two equal input lines or circles.
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With the 3D Spherical Kernel (see Chapter 14)

#include <CGAL/Spherical kernel intersections.h>

If this kernel is used, in addition to the function and the combination of 3D types described above, two other
versions of the function are provided.

Since both the number of intersections, if any, and their type, depend on the arguments, the functions return an
output iterator on Object’s, as presented below.

The first function is:

template < class OutputIterator >
OutputIterator intersection( Type1 obj1, Type2 obj2, OutputIterator intersections)

Copies in the output iterator the intersection elements be-
tween the two objects. intersections iterates on elements
of type CGAL::Object, in lexicographic order, when this
ordering is defined on the computed objects,

where Type1 and Type2 can both be either:

• Sphere 3<SphericalKernel>,

• Plane 3<SphericalKernel>,

• Line 3<SphericalKernel>,

• Circle 3<SphericalKernel>,

• Line arc 3<SphericalKernel> or

• Circular arc 3<SphericalKernel>,

and depending on the types Type1 and Type2, the computed CGAL::Objects can be assigned to

• std::pair<Circular arc point 3<SphericalKernel>, unsigned>, where the unsigned integer is the multi-
plicity of the corresponding intersection point between obj1 and obj2,

• Type1, when Type1 and Type2 are equal, and if the two objets obj1 and obj2 are equal,

• Line 3<SphericalKernel> or Circle 3<SphericalKernel> when Type1 and Type2 are two-dimensional ob-
jets intersecting along a curve (2 planes, or 2 spheres, or one plane and one sphere),

• Circular arc 3<SphericalKernel> in case of an overlap of two circular arcs or

• Line arc 3<SphericalKernel> in case of an overlap of two line segments.

The second function is:

template < class OutputIterator >
OutputIterator intersection( Type1 obj1, Type2 obj2, Type3 obj3, OutputIterator intersections)

Copies in the output iterator the intersection elements be-
tween the three objects. intersections iterates on elements
of type CGAL::Object, in lexicographic order when this
ordering is defined on the computed objects
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where Type1, Type2 and Type3 can be either

• Sphere 3<SphericalKernel> or

• Plane 3<SphericalKernel>

and depending of these types, the computed CGAL::Objects can be assigned to

• std::pair<Circular arc point 3<SphericalKernel>, unsigned>, where the unsigned integer is the multi-
plicity of the corresponding intersection point,

• Circle 3<SphericalKernel> or

• Type1, when Type1, Type2 and Type3 are equal, and if the three objets obj1 and obj2 and obj3 are equal.

Example

The following example demonstrates the most common use of intersection routines with the basic 2D and 3D
Kernels.

#include <CGAL/intersections.h>

void foo(CGAL::Segment_2<Kernel> seg, CGAL::Line_2<Kernel> line)
{

CGAL::Object result = CGAL::intersection(seg, line);
if (const CGAL::Point_2<Kernel> *ipoint = CGAL::object_cast<CGAL::Point_2<Kernel> >(&result)) {

// handle the point intersection case with *ipoint.

} else
if (const CGAL::Segment_2<Kernel> *iseg = CGAL::object_cast<CGAL::Segment_2<Kernel> >(&result)) {

// handle the segment intersection case with *iseg.

} else {

// handle the no intersection case.
}

}

Examples illustrating the use of this function in the case of the 2D Circular Kernel and the 3D Spherical Kernel
are presented respectively in Chapters 13 and 14.

See Also

CGAL::do intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 2218
CGAL::Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4167
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CGAL::left turn

bool left turn( Point 2<Kernel> p, Point 2<Kernel> q, Point 2<Kernel> r)

returns true iff p, q, and r form a left turn.

See Also

CGAL::collinear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 700
CGAL::orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1116
CGAL::right turn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 768
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CGAL::lexicographically xyz smaller

bool lexicographically xyz smaller( Point 3<Kernel> p, Point 3<Kernel> q)

returns true iff p is lexicographically smaller than q with
respect to xyz order.

See Also

CGAL::compare xyz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 716
CGAL::lexicographically xyz smaller or equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 748
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CGAL::lexicographically xyz smaller or equal

bool lexicographically xyz smaller or equal( Point 3<Kernel> p, Point 3<Kernel> q)

returns true iff p is lexicographically not larger than q
with respect to xyz order.

See Also

CGAL::compare xyz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 716
CGAL::lexicographically xyz smaller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 747
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CGAL::lexicographically xy larger

bool lexicographically xy larger( Point 2<Kernel> p, Point 2<Kernel> q)

returns true iff p is lexicographically larger than q with
respect to xy order.

See Also

CGAL::compare xy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 714
CGAL::lexicographically xy larger or equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 750
CGAL::lexicographically xy smaller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 751
CGAL::lexicographically xy smaller or equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 752
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CGAL::lexicographically xy larger or equal

bool lexicographically xy larger or equal( Point 2<Kernel> p, Point 2<Kernel> q)

returns true iff p is lexicographically not smaller than q
with respect to xy order.

See Also

CGAL::compare xy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 714
CGAL::lexicographically xy larger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 749
CGAL::lexicographically xy smaller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 751
CGAL::lexicographically xy smaller or equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 752
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CGAL::lexicographically xy smaller

bool lexicographically xy smaller( Point 2<Kernel> p, Point 2<Kernel> q)

returns true iff p is lexicographically smaller than q with
respect to xy order.

See Also

CGAL::compare xy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 714
CGAL::lexicographically xy larger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 749
CGAL::lexicographically xy larger or equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 750
CGAL::lexicographically xy smaller or equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 752
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CGAL::lexicographically xy smaller or equal

bool lexicographically xy smaller or equal( Point 2<Kernel> p, Point 2<Kernel> q)

returns true iff p is lexicographically not larger than q
with respect to xy order.

See Also

CGAL::compare xy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 714
CGAL::lexicographically xy larger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 749
CGAL::lexicographically xy larger or equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 750
CGAL::lexicographically xy smaller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 751
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CGAL::max vertex

Point 2<Kernel> max vertex( Iso box 2<Kernel> ir)

computes the vertex with the lexicographically largest co-
ordinates of the iso rectangle ir.

Point 3<Kernel> max vertex( Iso cuboid 3<Kernel> ic)

computes the vertex with the lexicographically largest co-
ordinates of the iso cuboid ic.
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CGAL::midpoint

Point 2<Kernel> midpoint( Point 2<Kernel> p, Point 2<Kernel> q)

computes the midpoint of the segment pq.

Point 3<Kernel> midpoint( Point 3<Kernel> p, Point 3<Kernel> q)

computes the midpoint of the segment pq.
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CGAL::normal

Vector 3<Kernel> normal( Point 3<Kernel> p, Point 3<Kernel> q, Point 3<Kernel> r)

computes the normal vector for the vectors q-p and r-p.
Precondition: The points p, q, and r must not be collinear.
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CGAL::min vertex

Point 2<Kernel> min vertex( Iso box 2<Kernel> ir)

computes the vertex with the lexicographically smallest
coordinates of the iso rectangle ir.

Point 3<Kernel> min vertex( Iso cuboid 3<Kernel> ic)

computes the vertex with the lexicographically smallest
coordinates of the iso cuboid ic.
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CGAL::operator+

Point 2<Kernel> operator+( Point 2<Kernel> p, Vector 2<Kernel> v)

returns the point obtained by translating p by vector v.

Point 3<Kernel> operator+( Point 3<Kernel> p, Vector 3<Kernel> v)

returns a point obtained by translating p by vector v.

See Also

CGAL::operator- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 758
CGAL::operator* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 759
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CGAL::operator-

Vector 2<Kernel> operator-( Point 2<Kernel> p, Point 2<Kernel> q)

returns the difference vector between q and p. You can
substitute ORIGIN for either p or q ,but not for both.

Point 2<Kernel> operator-( Point 2<Kernel> p, Vector 2<Kernel> v)

returns the point obtained by translating p by the vector
-v.

Vector 3<Kernel> operator-( Point 3<Kernel> p, Point 3<Kernel> q)

returns the difference vector between q and p. You can
substitute ORIGIN for either p or q, but not both.

Point 3<Kernel> operator-( Point 3<Kernel> p, Vector 3<Kernel> v)

returns a point obtained by translating p by the vector−v.

See Also

CGAL::operator+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 757
CGAL::operator* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 759
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CGAL::operator*

Vector 2<Kernel> operator*( Kernel::RT s, Vector 2<Kernel> w)

Multiplication with a scalar from the left.

Vector 3<Kernel> operator*( Kernel::RT s, Vector 3<Kernel> w)

Multiplication with a scalar from the left.

See Also

CGAL::operator+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 757
CGAL::operator- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 758
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CGAL::opposite

#include <CGAL/enum.h>

Oriented side opposite( Oriented side o)

returns the opposite side (for example ON POSITIVE
SIDE if o==ON NEGATIVE SIDE), or ON
ORIENTED BOUNDARY if o==ON ORIENTED
BOUNDARY .

Bounded side opposite( Bounded side o)

returns the opposite side (for example BOUNDED
SIDE if o==UNBOUNDED SIDE), or returns ON
BOUNDARY if o==ON BOUNDARY .
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CGAL::orthogonal vector

Vector 3<Kernel> orthogonal vector( Plane 3<Kernel> p)

computes an orthogonal vector of the plane p, which is
directed to the positive side of this plane.

Vector 3<Kernel> orthogonal vector( Point 3<Kernel> p, Point 3<Kernel> q, Point 3<Kernel> r)

computes an orthogonal vector of the plane defined by p,
q and r, which is directed to the positive side of this plane.
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CGAL::orientation

Orientation orientation( Point 2<Kernel> p, Point 2<Kernel> q, Point 2<Kernel> r)

returns LEFT TURN, if r lies to the left of the oriented
line l defined by p and q, returns RIGHT TURN if r lies
to the right of l, and returns COLLINEAR if r lies on l.

Orientation orientation( Vector 2<Kernel> u, Vector 2<Kernel> v)

returns LEFT TURN if u and v form a left turn, returns
RIGHT TURN if u and v form a right turn, and returns
COLLINEAR if u and v are collinear.

Orientation orientation( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r,
Point 3<Kernel> s)

returns POSITIVE, if s lies on the positive side of the ori-
ented plane h defined by p, q, and r, returns NEGATIVE
if s lies on the negative side of h, and returns COPLANAR
if s lies on h.

Orientation orientation( Vector 3<Kernel> u, Vector 3<Kernel> v, Vector 3<Kernel> w)

returns POSITIVE if u, v and w are positively oriented,
returns NEGATIVE if u, v and w are negatively oriented,
and returns COPLANAR if u, v and w are coplanar.

See Also

CGAL::collinear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 700
CGAL::left turn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 746
CGAL::right turn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 768
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CGAL::parallel

bool parallel( Line 2<Kernel> l1, Line 2<Kernel> l2)

returns true, if l1 and l2 are parallel or if one of those (or
both) is degenerate.

bool parallel( Ray 2<Kernel> r1, Ray 2<Kernel> r2)

returns true, if r1 and r2 are parallel or if one of those (or
both) is degenerate.

bool parallel( Segment 2<Kernel> s1, Segment 2<Kernel> s2)

returns true, if s1 and s2 are parallel or if one of those (or
both) is degenerate.

bool parallel( Line 3<Kernel> l1, Line 3<Kernel> l2)

returns true, if l1 and l2 are parallel or if one of those (or
both) is degenerate.

bool parallel( Plane 3<Kernel> h1, Plane 3<Kernel> h2)

returns true, if h1 and h2 are parallel or if one of those (or
both) is degenerate.

bool parallel( Ray 3<Kernel> r1, Ray 3<Kernel> r2)

returns true, if r1 and r2 are parallel or if one of those (or
both) is degenerate.

bool parallel( Segment 3<Kernel> s1, Segment 3<Kernel> s2)

returns true, if s1 and s2 are parallel or if one of those (or
both) is degenerate.
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CGAL::quotient cartesian to homogeneous

#include <CGAL/cartesian homogeneous conversion.h>

Point 2< Homogeneous<RT> >

quotient cartesian to homogeneous( Point 2< Cartesian< Quotient<RT> > > cp)

converts 2d point cp with Cartesian representation with
number type Quotient<RT> into a 2d point with homoge-
neous representation with number type RT .

Point 3< Homogeneous<RT> >

quotient cartesian to homogeneous( Point 3< Cartesian< Quotient<RT> > > cp)

converts 3d point cp with Cartesian representation with
number type Quotient<RT> into a 3d point with homoge-
neous representation with number type RT .

See Also

CGAL::Cartesian<FieldNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 588
CGAL::Cartesian converter<K1, K2, NTConverter> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 589
CGAL::cartesian to homogeneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 591
CGAL::Homogeneous<RingNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1070
CGAL::Homogeneous converter<K1, K2, RTConverter, FTConverter> . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 598
CGAL::homogeneous to cartesian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 599
CGAL::homogeneous to quotient cartesian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 600
CGAL::Simple cartesian<FieldNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 602
CGAL::Simple homogeneous<RingNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 603
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CGAL::radical plane

Plane 3<Kernel> radical plane( Sphere 3<Kernel> s1, Sphere 3<Kernel> s2)

returns the radical plane of the two spheres.
Precondition: s1 and s2 are not cocentric.
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CGAL::radical line

Line 2<Kernel> radical line( Circle 2<Kernel> c1, Circle 2<Kernel> c2)

returns the radical line of the two circles.
Precondition: c1 and c2 are not cocentric.
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CGAL::rational rotation approximation

#include <CGAL/rational rotation.h>

template <RingNumberType>
void rational rotation approximation( RingNumberType dirx,

RingNumberType diry,
RingNumberType & sin num,
RingNumberType & cos num,
RingNumberType & denom,
RingNumberType eps num,
RingNumberType eps den)

computes integers sin num, cos num and denom, such
that sin num/denom approximates the sine of direction
(dirx,diry). The difference between the sine and the ap-
proximating rational is bounded by eps num/eps den.
Precondition: eps num 6= 0.

Implementation

The approximation is based on Farey sequences as described in the rational rotation method presented by Canny
and Ressler at the 8th SoCG 1992. We use a slower version which needs no division operation in the approxi-
mation.

See Also

CGAL::Aff transformation 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 609
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CGAL::right turn

bool right turn( Point 2<Kernel> p, Point 2<Kernel> q, Point 2<Kernel> r)

returns true iff p, q, and r form a right turn.

See Also

CGAL::collinear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 700
CGAL::left turn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 746
CGAL::orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1116

768



F
un

ct
io

n

CGAL::side of bounded circle

Bounded side side of bounded circle( Point 2<Kernel> p,
Point 2<Kernel> q,
Point 2<Kernel> r,
Point 2<Kernel> t)

returns the relative position of point t to the circle defined
by p, q and r. The order of the points p, q and r does not
matter.
Precondition: p, q and r are not collinear.

Bounded side side of bounded circle( Point 2<Kernel> p,
Point 2<Kernel> q,
Point 2<Kernel> t)

returns the position of the point t relative to the circle that
has pq as its diameter.

See Also

CGAL::coplanar side of bounded circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 727
CGAL::side of oriented circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 771
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CGAL::side of bounded sphere

Bounded side side of bounded sphere( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r,
Point 3<Kernel> s,
Point 3<Kernel> t)

returns the relative position of point t to the sphere de-
fined by p, q, r, and s. The order of the points p, q, r, and
s does not matter.
Precondition: p, q, r and s are not coplanar.

Bounded side side of bounded sphere( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r,
Point 3<Kernel> t)

returns the position of the point t relative to the sphere
passing through p, q, and r and whose center is in the
plane defined by these three points.

Bounded side side of bounded sphere( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> t)

returns the position of the point t relative to the sphere
that has pq as its diameter.

See Also

CGAL::side of oriented sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1119
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CGAL::side of oriented circle

Oriented side side of oriented circle( Point 2<Kernel> p,
Point 2<Kernel> q,
Point 2<Kernel> r,
Point 2<Kernel> test)

returns the relative position of point test to the oriented
circle defined by p, q and r. The order of the points p, q
and r is important, since it determines the orientation of
the implicitly constructed circle.
If p, q and r are collinear, the circle degenerates in a line.
ON ORIENTED BOUNDARY is returned if test is also
collinear or if two points are identical, otherwise, side
of oriented circle(r, q, test, p) is returned.

See Also

CGAL::side of bounded circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 769
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CGAL::side of oriented sphere

Oriented side side of oriented sphere( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r,
Point 3<Kernel> s,
Point 3<Kernel> test)

returns the relative position of point test to the oriented
sphere defined by p, q, r and s. The order of the points p,
q, r, and s is important, since it determines the orientation
of the implicitly constructed sphere. If the points p, q, r
and s are positive oriented, positive side is the bounded
interior of the sphere.
In case of degeneracies, ON ORIENTED BOUNDARY is
returned if all points are coplanar. Otherwise, there is a
cyclic permutation of the five points that puts four non
coplanar points first, it is used to answer the predicate:
e.g. side of oriented sphere(q, r, s, test, p) is returned if
q, r, s, and test are non coplanar.

See Also

CGAL::side of bounded sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1118
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CGAL::squared area

Kernel::FT squared area( Point 3<Kernel> p, Point 3<Kernel> q, Point 3<Kernel> r)

returns the squared area of the triangle defined by the
points p, q and r.
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CGAL::squared distance

#include <CGAL/squared distance 2.h>
#include <CGAL/squared distance 3.h>

Kernel::FT squared distance( Type1<Kernel> obj1, Type2<Kernel> obj2)

computes the square of the Euclidean distance between
two geometric objects. For arbitrary geometric objects
obj1 and obj2 the squared distance is defined as the mini-
mal squared distance(p1, p2), where p1 is a point of obj1
and p2 is a point of obj2. Note that for objects that have
an inside (a bounded region), this inside is part of the ob-
ject. So, the squared distance from a point inside is zero,
not the squared distance to the closest point on the bound-
ary.

In 2D, the types Type1 and Type2 can be any of the following:

• Point 2
• Line 2
• Ray 2
• Segment 2
• Triangle 2

In 3D, the types Type1 and Type2 can be any of the following:

• Point 3
• Line 3
• Ray 3
• Segment 3
• Plane 3

See Also

CGAL::compare distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 703
CGAL::compare signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 705
CGAL::compare signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 706
CGAL::has larger distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 735
CGAL::has larger signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 736
CGAL::has larger signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 737
CGAL::has smaller distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 738
CGAL::has smaller signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 739
CGAL::has smaller signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 740
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CGAL::squared radius

FT squared radius( Point 2<Kernel> p, Point 2<Kernel> q, Point 2<Kernel> r)

compute the squared radius of the circle passing through
the points p, q, and r.
Precondition: p, q, and r are not collinear.

FT squared radius( Point 2<Kernel> p, Point 2<Kernel> q)

compute the squared radius of the smallest circle passing
through p, and q, i.e. one fourth of the squared distance
between p and q.

FT squared radius( Point 2<Kernel> p)

compute the squared radius of the smallest circle passing
through p, i.e. 0.

FT squared radius( Point 3<Kernel> p,
Point 3<Kernel> q,
Point 3<Kernel> r,
Point 3<Kernel> s)

compute the squared radius of the sphere passing through
the points p, q, r and s.
Precondition: p, q, r and s are not coplanar.

FT squared radius( Point 3<Kernel> p, Point 3<Kernel> q, Point 3<Kernel> r)

compute the squared radius of the sphere passing through
the points p, q, and r and whose center is in the same
plane as those three points.

FT squared radius( Point 3<Kernel> p, Point 3<Kernel> q)

compute the squared radius of the smallest circle passing
through p, and q, i.e. one fourth of the squared distance
between p and q.

FT squared radius( Point 3<Kernel> p)

compute the squared radius of the smallest circle passing
through p, i.e. 0.
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See Also

CGAL::Circle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 614
CGAL::Circle 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 663
CGAL::Sphere 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 666
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CGAL::unit normal

Vector 3<Kernel> unit normal( Point 3<Kernel> p, Point 3<Kernel> q, Point 3<Kernel> r)

computes the unit normal vector for the vectors q-p and
r-p.
Precondition: The points p, q, and r must not be collinear.
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CGAL::volume

Kernel::FT volume( Point 3<Kernel> p0,
Point 3<Kernel> p1,
Point 3<Kernel> p2,
Point 3<Kernel> p3)

Computes the signed volume of the tetrahedron defined
by the four points p0, p1, p2 and p3.

See Also

CGAL::Tetrahedron 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 669
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CGAL::x equal

bool x equal( Point 2<Kernel> p, Point 2<Kernel> q)

returns true, iff p and q have the same x-coordinate.

bool x equal( Point 3<Kernel> p, Point 3<Kernel> q)

returns true, iff p and q have the same x-coordinate.

See Also

CGAL::compare x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 712
CGAL::y equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 780
CGAL::z equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 781
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CGAL::y equal

bool y equal( Point 2<Kernel> p, Point 2<Kernel> q)

returns true, iff p and q have the same y-coordinate.

bool y equal( Point 3<Kernel> p, Point 3<Kernel> q)

returns true, iff p and q have the same y-coordinate.

See Also

CGAL::compare y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 719
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CGAL::z equal

bool z equal( Point 3<Kernel> p, Point 3<Kernel> q)

returns true, iff p and q have the same z-coordinate.

See Also

CGAL::compare z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 724
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CGAL::y equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 780
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Kernel::Circle 2

A type representing circles in two dimensions.

Refines

CopyConstructible, Assignable, DefaultConstructible

See Also
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Kernel::Circle 3

A type representing circles in three dimensions.

Refines

CopyConstructible, Assignable, DefaultConstructible

See Also

CGAL::Circle 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 663
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Kernel::Direction 2

A type representing directions in two dimensions.

Refines

CopyConstructible, Assignable, DefaultConstructible

See Also
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Kernel::Direction 3

A type representing directions in three dimensions.

Refines

CopyConstructible, Assignable, DefaultConstructible

See Also
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Kernel::IsoCuboid 3

A type representing isocuboids in three dimensions.

Refines

CopyConstructible, Assignable, DefaultConstructible

See Also
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Kernel::IsoRectangle 2

A type representing iso-rectangles in two dimensions.

Refines

CopyConstructible, Assignable, DefaultConstructible

See Also
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Kernel::ConstructDifferenceOfVectors 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 906
Kernel::ConstructVector 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 978
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Kernel::Vector 3

Definition

A type representing vectors in three dimensions.

Refines

CopyConstructible, Assignable, DefaultConstructible

See Also

CGAL::Vector 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 673
Kernel::ComputeDeterminant 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 859
Kernel::ComputeX 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 876
Kernel::ComputeY 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 878
Kernel::ComputeZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 879
Kernel::ConstructCrossProductVector 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 905
Kernel::ConstructDirection 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 909
Kernel::ConstructOppositeVector 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 940
Kernel::ConstructOrthogonalVector 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 941
Kernel::ConstructScaledVector 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 961
Kernel::ConstructDividedVector 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 911
Kernel::ConstructSumOfVectors 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 969
Kernel::ConstructDifferenceOfVectors 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 907
Kernel::ConstructVector 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 979
Kernel::Equal 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 997
Kernel::Orientation 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1035
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Kernel::Angle 2

A model for this must provide:

Angle fo.operator()( Kernel::Vector 2 u, Kernel::Vector 2 v)

returns OBTUSE, RIGHT or ACUTE depending on the
angle formed by the two vectors u and v.

Angle fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q, Kernel::Point 2 r)

returns OBTUSE, RIGHT or ACUTE depending on the
angle formed by the three points p, q, r (q being the ver-
tex of the angle). The returned value is the same as oper-
ator()(p - q, r - q).

Angle fo.operator()( Kernel::Point 2 p,
Kernel::Point 2 q,
Kernel::Point 2 r,
Kernel::Point 2 s)

returns OBTUSE, RIGHT or ACUTE depending on the
angle formed by the two vectors pq, rs. The returned
value is the same as operator()(q - p, s - r).

See Also

CGAL::angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 689
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Kernel::Angle 3

A model for this must provide:

Angle fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

returns OBTUSE, RIGHT or ACUTE depending on the
angle formed by the three points p, q, r (q being the vertex
of the angle).

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 689
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Kernel::AreOrderedAlongLine 2

A model for this must provide:

bool fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q, Kernel::Point 2 r)

returns true, iff the three points are collinear and q lies
between p and r. Note that true is returned, if q==p or
q==r.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::are ordered along line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 690
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Kernel::AreOrderedAlongLine 3

A model for this must provide:

bool fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

returns true, iff the three points are collinear and q lies
between p and r. Note that true is returned, if q==p or
q==r.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::are ordered along line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 690
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Kernel::AreParallel 2

A model for this must provide:

bool fo.operator()( Kernel::Line 2 l1, Kernel::Line 2 l2)

returns true, if l1 and l2 are parallel or if one of those (or
both) is degenerate.

bool fo.operator()( Kernel::Ray 2 r1, Kernel::Ray 2 r2)

returns true, if r1 and r2 are parallel or if one of those (or
both) is degenerate.

bool fo.operator()( Kernel::Segment 2 s1, Kernel::Segment 2 s2)

returns true, if s1 and s2 are parallel or if one of those (or
both) is degenerate.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 763
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Kernel::AreParallel 3

A model for this must provide:

bool fo.operator()( Kernel::Line 3 l1, Kernel::Line 3 l2)

returns true, if l1 and l2 are parallel or if one of those (or
both) is degenerate.

bool fo.operator()( Kernel::Plane 3 h1, Kernel::Plane 3 h2)

returns true, if h1 and h2 are parallel or if one of those (or
both) is degenerate.

bool fo.operator()( Kernel::Ray 3 r1, Kernel::Ray 3 r2)

returns true, if r1 and r2 are parallel or if one of those (or
both) is degenerate.

bool fo.operator()( Kernel::Segment 3 s1, Kernel::Segment 3 s2)

returns true, if s1 and s2 are parallel or if one of those (or
both) is degenerate.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 763

814



C
on

ce
pt

F
un

ct
or

Kernel::AreStrictlyOrderedAlongLine 2

A model for this must provide:

bool fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q, Kernel::Point 2 r)

returns true, iff the three points are collinear and q lies
strictly between p and r. Note that false is returned, if
q==p or q==r.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::are strictly ordered along line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 691

815



C
on

ce
pt

F
un

ct
or

Kernel::AreStrictlyOrderedAlongLine 3

A model for this must provide:

bool fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

returns true, iff the three points are collinear and q lies
strictly between p and r. Note that false is returned, if
q==p or q==r.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::are strictly ordered along line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 691
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Kernel::Assign 2

A model for this must provide:

template <class T>
bool fo.operator()( T& t, Kernel::Object 2 o)

assigns o to t if o was constructed from an object of type
T . Returns true, if the assignment was possible.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4167
Kernel::Object 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 791
Kernel::Intersect 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1011
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Kernel::Assign 3

A model for this must provide:

template <class T>
bool fo.operator()( T& t, Kernel::Object 3 o)

assigns o to t if o was constructed from an object of type
T . Returns true, if the assignment was possible.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4167
Kernel::Object 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 792
Kernel::Intersect 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1012
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Kernel::BoundedSide 2

A model for this must provide:

Bounded side fo.operator()( Kernel::Circle 2 c, Kernel::Point 2 p)

returns either ON UNBOUNDED SIDE, ON
BOUNDED SIDE, or the constant ON BOUNDARY ,
depending on where point p is relative to circle c.

Bounded side fo.operator()( Kernel::Triangle 2 t, Kernel::Point 2 p)

returns either ON UNBOUNDED SIDE, ON
BOUNDED SIDE, or the constant ON BOUNDARY ,
depending on where point p is relative to triangle t.

Bounded side fo.operator()( Kernel::Iso rectangle 2 r, Kernel::Point 2 p)

returns either ON UNBOUNDED SIDE, ON
BOUNDED SIDE, or the constant ON BOUNDARY ,
depending on where point p is relative to rectangle r.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Circle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 614
CGAL::Triangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 633
CGAL::Iso rectangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 619
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Kernel::BoundedSide 3

A model for this must provide:

Bounded side fo.operator()( Kernel::Sphere 3 s, Kernel::Point 3 p)

returns either ON UNBOUNDED SIDE, ON
BOUNDED SIDE, or the constant ON BOUNDARY ,
depending on where point p is with respect to sphere s.

Bounded side fo.operator()( Kernel::Tetrahedron 3 t, Kernel::Point 3 p)

returns either ON UNBOUNDED SIDE, ON
BOUNDED SIDE, or the constant ON BOUNDARY ,
depending on where point p is with respect to tetrahedron
t.

Bounded side fo.operator()( Kernel::Iso cuboid 3 c, Kernel::Point 3 p)

returns either ON UNBOUNDED SIDE, ON
BOUNDED SIDE, or the constant ON BOUNDARY ,
depending on where point p is with respect to iso-cuboid
c.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Iso cuboid 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 646
CGAL::Sphere 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 666
CGAL::Tetrahedron 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 669
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Kernel::CollinearAreOrderedAlongLine 2

A model for this must provide:

bool fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q, Kernel::Point 2 r)

returns true, iff q lies between p and r.
Precondition: p, q and r are collinear.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::collinear are ordered along line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 701
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Kernel::CollinearAreOrderedAlongLine 3

A model for this must provide:

bool fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

returns true, iff q lies between p and r.
Precondition: p, q and r are collinear.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::collinear are ordered along line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 701
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Kernel::CollinearAreStrictlyOrderedAlongLine 2

A model for this must provide:

bool fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q, Kernel::Point 2 r)

returns true, iff q lies strictly between p and r.
Precondition: p, q and r are collinear.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::collinear are strictly ordered along line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 702
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Kernel::CollinearAreStrictlyOrderedAlongLine 3

A model for this must provide:

bool fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

returns true, iff q lies strictly between p and r.
Precondition: p, q and r are collinear.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::collinear are strictly ordered along line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 702
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Kernel::CollinearHasOn 2

A model for this must provide:

bool fo.operator()( Kernel::Ray 2 r, Kernel::Point 2 p)

checks if point p is on r.
Precondition: p is on the supporting line of r.

bool fo.operator()( Kernel::Segment 2 s, Kernel::Point 2 p)

checks if point p is on s.
Precondition: p is on the supporting line of s.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Ray 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 629
CGAL::Segment 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 631
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Kernel::Collinear 2

A model for this must provide:

bool fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q, Kernel::Point 2 r)

returns true, if p, q, and r are collinear.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::collinear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 700
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Kernel::Collinear 3

A model for this must provide:

bool fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

returns true, if p, q, and r are collinear.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::collinear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 700
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Kernel::CompareAngleWithXAxis 2

A model for this must provide:

Comparison result fo.operator()( Kernel::Direction 2 d, Kernel::Direction 2 e)

compares the angles between the positive x-axis and the
directions in counterclockwise order.

Refines

AdaptableFunctor (with two arguments)
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Kernel::CompareDihedralAngle 3

A model for this must provide:

Comparison result fo.operator()( K::Point 3 a1,
K::Point 3 b1,
K::Point 3 c1,
K::Point 3 d1,
K::FT cosine)

compares the dihedral angles θ1 and θ2, where θ1 is the
dihedral angle, in [0,π], of the tetrahedron (a1,b1,c1,d1)
at the edge (a1,b1), and θ2 is the angle in [0,π] such
that cos(θ2) = cosine. The result is the same as
operator()(b1-a1, c1-a1, d1-a1, cosine).
Precondition: a1, b1, c1 are not collinear, and a1, b1, d1
are not collinear.

Comparison result fo.operator()( K::Point 3 a1,
K::Point 3 b1,
K::Point 3 c1,
K::Point 3 d1,
K::Point 3 a2,
K::Point 3 b2,
K::Point 3 c2,
K::Point 3 d2)

compares the dihedral angles θ1 and θ2, where θi is the
dihedral angle in the tetrahedron (ai,bi,ci,di) at the edge
(ai,bi). These two angles are computed in [0,π]. The
result is the same as operator()(b1-a1, c1-a1, d1-a1, b2-
a2, c2-a2, d2-a2).
Precondition: For i ∈ {1,2}, ai, bi, ci are not collinear,
and ai, bi, di are not collinear.

Comparison result fo.operator()( K::Vector 3 u1, K::Vector 3 v1, K::Vector 3 w1, K::FT cosine)

compares the dihedral angles θ1 and θ2, where θ1 is the
dihedral angle, in [0,π], between the vectorial planes de-
fined by (u1,v1) and (u1,w1), and θ2 is the angle in [0,π]
such that cos(θ2) = cosine.
Precondition: u1 and v1 are not collinear, and u1 and w1
are not collinear.

Comparison result fo.operator()( K::Vector 3 u1,
K::Vector 3 v1,
K::Vector 3 w1,
K::Vector 3 u2,
K::Vector 3 v2,
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K::Vector 3 w2)

compares the dihedral angles θ1 and θ2, where θi is the
dihedral angle between the vectorial planes defined by
(ui,vi) and (ui,wi). These two angles are computed in
[0,π].
Precondition: For i ∈ {1,2}, ui and vi are not collinear,
and ui and wi are not collinear.
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Kernel::CompareDistance 2

A model for this must provide:

Comparison result fo.operator()( Type1 obj1, Type2 obj2, Type3 obj3)

compares the squared distance between obj1 and obj2 to
the squared distance between obj1 and obj3

Comparison result fo.operator()( Type1 obj1, Type2 obj2, Type3 obj3, Type4 obj4)

compares the squared distance between obj1 and obj2 to
the squared distance between obj3 and obj4

for all tuples of types Type1, Type2, Type3 and Type4 in the following set of types:

• Kernel::Point 2
• Kernel::Line 2
• Kernel::Ray 2
• Kernel::Segment 2
• Kernel::Triangle 2

Refines

AdaptableFunctor (with three arguments)

See Also

Kernel::CompareSquaredDistance 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 834
CGAL::compare distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 703
CGAL::compare squared distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 710
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Kernel::CompareDistance 3

A model for this must provide:

Comparison result fo.operator()( Type1 obj1, Type2 obj2, Type3 obj3)

compares the squared distance between obj1 and obj2 to
the squared distance between obj1 and obj3

Comparison result fo.operator()( Type1 obj1, Type2 obj2, Type3 obj3, Type4 obj4)

compares the squared distance between obj1 and obj2 to
the squared distance between obj3 and obj4

for all tuples of types Type1, Type2, Type3 and Type4 in the following set of types:

• Kernel::Point 3
• Kernel::Line 3
• Kernel::Ray 3
• Kernel::Segment 3
• Kernel::Plane 3

Refines

AdaptableFunctor (with three arguments)

See Also

Kernel::CompareSquaredDistance 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 835
CGAL::compare distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 703
CGAL::compare squared distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 710
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Kernel::CompareSlope 2

A model for this must provide:

Comparison result fo.operator()( Kernel::Line 2 l1, Kernel::Line 2 l2)

compares the slopes of the lines l1 and l2

Comparison result fo.operator()( Kernel::Segment 2 s1, Kernel::Segment 2 s2)

compares the slopes of the segments s1 and s2

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::compare slopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 707

833



C
on

ce
pt

F
un

ct
or

Kernel::CompareSquaredDistance 2

A model for this must provide:

Comparison result fo.operator()( Type1 obj1, Type2 obj2, Kernel::FT d2)

compares the squared distance between the two geomet-
rical objects obj1 and obj2 to the value d2

for all pairs Type1 and Type2, where the types Type1 and Type2 can be any of the following:

• Kernel::Point 2
• Kernel::Line 2
• Kernel::Ray 2
• Kernel::Segment 2
• Kernel::Triangle 2

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::compare distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 703
CGAL::compare squared distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 710
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Kernel::CompareSquaredDistance 3

A model for this must provide:

Comparison result fo.operator()( Type1 obj1, Type2 obj2, Kernel::FT d2)

compares the squared distance between the two geomet-
rical objects obj1 and obj2 to the value d2

for all pairs Type1 and Type2, where the types Type1 and Type2 can be any of the following:

• Kernel::Point 3
• Kernel::Line 3
• Kernel::Ray 3
• Kernel::Segment 3
• Kernel::Plane 3

Refines

AdaptableFunctor (with three arguments)

See Also

Kernel::CompareDistance 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 832
CGAL::compare distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 703
CGAL::compare squared distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 710
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Kernel::CompareSquaredRadius 3

A model for this must provide:

Comparison result fo.operator()( Kernel::Point 3 p, Kernel::FT sr)

compares the squared radius of the sphere of radius 0 cen-
tered at p to sr. This returns the opposite sign of sr.

Comparison result fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::FT sr)

compares the squared radius of the sphere defined by the
points p and q to sr.

Comparison result fo.operator()( Kernel::Point 3 p,
Kernel::Point 3 q,
Kernel::Point 3 r,
Kernel::FT sr)

compares the squared radius of the sphere defined by the
points p, q, and r to sr.

Comparison result fo.operator()( Kernel::Point 3 p,
Kernel::Point 3 q,
Kernel::Point 3 r,
Kernel::Point 3 s,
Kernel::FT sr)

compares the squared radius of the sphere defined by the
points p, q, , r, and s to sr.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::compare squared radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 711
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Kernel::CompareXAtY 2

A model for this must provide:

Comparison result fo.operator()( Kernel::Point 2 p, Kernel::Line 2 h)

compares the x-coordinates of p and the horizontal pro-
jection of p on h (Figure 11.5 (a)).

(a) (b) (c) (d)

h

p

h1

p

h2

l1

l2

p

h

l1

l2

p

h2

h1

Figure 11.5: Comparison of the x-coordinates of the (implicitly given) points in the boxes, at a y-coordinate.
The y-coordinate is either given explicitly (disc) or implicitly (circle).

Comparison result fo.operator()( Kernel::Point 2 p, Kernel::Line 2 h1, Kernel::Line 2 h2)

compares the x-coordinates of the horizontal projection
of p on h1 and on h2 (Figure 11.5 (b)).

Comparison result fo.operator()( Kernel::Line 2 l1, Kernel::Line 2 l2, Kernel::Line 2 h)

Let p be the intersection of lines l1 and l2. This func-
tion compares the x-coordinates of p and the horizontal
projection of p on h (Figure 11.5 (c)).

Comparison result fo.operator()( Kernel::Line 2 l1,
Kernel::Line 2 l2,
Kernel::Line 2 h1,
Kernel::Line 2 h2)

Let p be the intersection of lines l1 and l2. This function
compares the x-coordinates of the horizontal projection
of p on h1 and on h2 (Figure 11.5 (d)).

Refines

AdaptableFunctor (with three arguments)
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See Also

CGAL::compare x at y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 717
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Kernel::CompareXYZ 3

A model for this must provide:

Comparison result fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

Compares the Cartesian coordinates of points p and q lex-
icographically in xyz order: first x-coordinates are com-
pared, if they are equal, y-coordinates are compared. If
they are equal, z-coordinates are compared.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::compare xyz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 716
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Kernel::CompareXY 2

A model for this must provide:

Comparison result fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q)

Compares the Cartesian coordinates of points p and q lex-
icographically in xy order: first x-coordinates are com-
pared, if they are equal, y-coordinates are compared.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::compare xy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 714
Kernel::CompareYX 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 848
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Kernel::CompareXY 3

A model for this must provide:

Comparison result fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

Compares the Cartesian coordinates of points p and q lex-
icographically in xy order: first x-coordinates are com-
pared, if they are equal, y-coordinates are compared.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::compare xy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 714
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Kernel::CompareX 2

A model for this must provide:

Comparison result fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q)

compares the Cartesian x-coordinates of points p and q

l1

l2

p

l

h1
h2 l1

l2

h1

h2

(a) (b) (c)

Figure 11.6: Comparison of the x or y-coordinates of the (implicitly given) points in the boxes.

Comparison result fo.operator()( Kernel::Point 2 p, Kernel::Line 2 l1, Kernel::Line 2 l2)

compares the x-coordinates of p and the intersection of
lines l1 and l2 (Figure 11.6 (a)).

Comparison result fo.operator()( Kernel::Line 2 l, Kernel::Line 2 h1, Kernel::Line 2 h2)

compares the x-coordinates of the intersection of line l
with line h1 and with line h2 (Figure 11.6 (b)).

Comparison result fo.operator()( Kernel::Line 2 l1,
Kernel::Line 2 l2,
Kernel::Line 2 h1,
Kernel::Line 2 h2)

compares the x-coordinates of the intersection of lines l1
and l2 and the intersection of lines h1 and h2 (Figure 11.6
(c)).

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::compare x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 712
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Kernel::CompareX 3

A model for this must provide:

Comparison result fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

Compares the Cartesian x-coordinates of points p and q

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::compare x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 712
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Kernel::CompareYAtX 2

A model for this must provide:

Comparison result fo.operator()( Kernel::Point 2 p, Kernel::Line 2 h)

compares the y-coordinates of p and the vertical projec-
tion of p on h (Figure 11.7 (d)).
Precondition: h is not vertical.
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l2

h1

h2

h
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p
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h2
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h

(d) (e) (f) (g)

Figure 11.7: Comparison of the y-coordinates of the (implicitly given) points in the boxes, at an x-coordinate.
The x-coordinate is either given explicitly (disc) or implicitly (circle).

Comparison result fo.operator()( Kernel::Point 2 p, Kernel::Line 2 h1, Kernel::Line 2 h2)

This function compares the y-coordinates of the vertical
projection of p on h1 and on h2 (Figure 11.4 (e)).
Precondition: h1 and h2 are not vertical.

Comparison result fo.operator()( Kernel::Line 2 l1, Kernel::Line 2 l2, Kernel::Line 2 h)

Let p be the intersection of lines l1 and l2. This function
compares the y-coordinates of p and the vertical projec-
tion of p on h (Figure 11.4 (f)).
Precondition: l1, l2 intersect and h is not vertical.

Comparison result fo.operator()( Kernel::Line 2 l1,
Kernel::Line 2 l2,
Kernel::Line 2 h1,
Kernel::Line 2 h2)

Let p be the intersection of lines l1 and l2. This function
compares the y-coordinates of the vertical projection of p
on h1 and on h2 (Figure 11.4 (g)).
Precondition: l1 and l2 intersect; h1 and h2 are not verti-
cal.
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Comparison result fo.operator()( Kernel::Point 2 p, Kernel::Segment 2 s)

compares the y-coordinates of p and the vertical projec-
tion of p on s. If s is vertical, then return EQUAL when
p lies on s, SMALLER when p lies under s, and LARGER
otherwise.
Precondition: p is within the x range of s.

Comparison result fo.operator()( Kernel::Point 2 p, Kernel::Segment 2 s1, Kernel::Segment 2 s2)

This function compares the y-coordinates of the vertical
projection of p on s1 and on s2. If s1 or s2 is verti-
cal, then return EQUAL if they intersect, otherwise re-
turn SMALLER if s1 lies below s2, and return LARGER
otherwise.
Precondition: p is within the x range of s1 and s2.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::compare y at x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 721
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Kernel::CompareY 2

A model for this must provide:

Comparison result fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q)

Compares the Cartesian y-coordinates of points p and q
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l2

p

l

h1
h2 l1
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h1

h2

(a) (b) (c)

Figure 11.8: Comparison of the x or y-coordinates of the (implicitly given) points in the boxes.

Comparison result fo.operator()( Kernel::Point 2 p, Kernel::Line 2 l1, Kernel::Line 2 l2)

compares the y-coordinates of p and the intersection of
lines l1 and l2 (Figure 11.8 (a)).

Comparison result fo.operator()( Kernel::Line 2 l, Kernel::Line 2 h1, Kernel::Line 2 h2)

compares the y-coordinates of the intersection of line l
with line h1 and with line h2 (Figure 11.8 (b)).

Comparison result fo.operator()( Kernel::Line 2 l1,
Kernel::Line 2 l2,
Kernel::Line 2 h1,
Kernel::Line 2 h2)

compares the y-coordinates of the intersection of lines l1
and l2 and the intersection of lines h1 and h2 (Figure 11.8
(c)).

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::compare y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 719
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Kernel::CompareY 3

A model for this must provide:

Comparison result fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

Compares the Cartesian y-coordinates of points p and q

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::compare y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 719
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Kernel::CompareYX 2

A model for this must provide:

Comparison result fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q)

Compares the Cartesian coordinates of points p and q lex-
icographically in yx order: first y-coordinates are com-
pared, if they are equal, x-coordinates are compared.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::compare yx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 723
Kernel::CompareXY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 840
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Kernel::CompareZ 3

A model for this must provide:

Comparison result fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

Compares the Cartesian z-coordinates of points p and q

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::compare z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 724
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Kernel::ComputeA 2

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Line 2 l) const

returns the coefficient a of the line with equation ax +by
+ c = 0.

Refines

AdaptableFunctor
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Kernel::ComputeB 2

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Line 2 l) const

returns the coefficient b of the line with equation ax +by
+ c = 0.

Refines

AdaptableFunctor
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Kernel::ComputeC 2

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Line 2 l) const

returns the coefficient c of the line with equation ax +by
+ c = 0.

Refines

AdaptableFunctor

852



C
on

ce
pt

F
un

ct
or

Kernel::ComputeApproximateArea 3

A model for this must provide:

double fo.operator()( Kernel::Circle 3 c)

returns an approximation of the area of c.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Circle 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 663
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Kernel::ComputeApproximateSquaredLength 3

A model for this must provide:

double fo.operator()( Kernel::Circle 3 c)

returns an approximation of the squared length (i.e.
perimeter) of c.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Circle 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 663
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Kernel::ComputeArea 2

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q, Kernel::Point 2 r)

returns the signed area of the triangle defined by the
points p, q and r.

Kernel::FT fo.operator()( Kernel::Iso rectangle 2 r)

returns the area of r.

Kernel::FT fo.operator()( Kernel::Triangle 2 t)

returns the signed area of t.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Iso rectangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 619
CGAL::Triangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 633
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Kernel::ComputeArea 3

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Triangle 3 t)

returns the area of t. This requires that Kernel::FT sup-
ports the sqrt operation.

Kernel::FT fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

returns the area of the triangle p, q, r. This requires that
Kernel::FT supports the sqrt operation.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Triangle 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 671
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Kernel::ComputeAreaDividedByPi 3

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Circle 3 c)

returns the area of c, divided by π.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Circle 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 663
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Kernel::ComputeDeterminant 2

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Vector 2 v, Kernel::Vector 2 w)

returns the determinant of the two vectors v and w.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Vector 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 635
CGAL::determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 729
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Kernel::ComputeDeterminant 3

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Vector 3 u, Kernel::Vector 3 v, Kernel::Vector 3 w)

returns the determinant of the three vectors u, v and w.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::Vector 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 673
CGAL::determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 729
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Kernel::ComputeDx 2

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Direction 2 v) const

returns an x-coordinate of the direction.

Refines

AdaptableFunctor
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Kernel::ComputeDy 2

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Direction 2 v) const

returns an y-coordinate of the direction.

Refines

AdaptableFunctor
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Kernel::ComputeHx 2

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Point 2 p) const

returns the homogeneous x-coordinate of the point.

Kernel::FT fo.operator()( Kernel::Vector 2 v) const

returns the homogeneous x-coordinate of the vector.

Refines

AdaptableFunctor
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Kernel::ComputeHy 2

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Point 2 p) const

returns the homogeneous y-coordinate of the point.

Kernel::FT fo.operator()( Kernel::Vector 2 v) const

returns the homogeneous y-coordinate of the vector.

Refines

AdaptableFunctor
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Kernel::ComputeScalarProduct 2

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Vector 2 v, Kernel::Vector 2 w)

returns the scalar (inner) product of the two vectors v and
w.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Vector 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 635
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Kernel::ComputeScalarProduct 3

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Vector 3 v, Kernel::Vector 3 w)

returns the scalar (inner) product of the two vectors v and
w.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Vector 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 673
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Kernel::ComputeSquaredArea 3

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Triangle 3 t)

returns the square of the area of t.

Kernel::FT fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

returns the square of the area of the triangle p, q, r.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Triangle 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 671
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Kernel::ComputeSquaredDistance 2

A model for this must provide:

Kernel::FT fo.operator()( Type1 obj1, Type2 obj2)

returns the squared distance between two geometrical ob-
jects of type Type1 and Type2

for all pairs Type1 and Type2, where the types Type1 and Type2 can be any of the following:

• Kernel::Point 2
• Kernel::Line 2
• Kernel::Ray 2
• Kernel::Segment 2
• Kernel::Triangle 2

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::squared distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1120
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Kernel::ComputeSquaredDistance 3

A model for this must provide:

Kernel::FT fo.operator()( Type1 obj1, Type2 obj2)

returns the squared distance between two geometrical ob-
jects of type Type1 and Type2

for all pairs Type1 and Type2, where the types Type1 and Type2 can be any of the following:

• Kernel::Point 3
• Kernel::Line 3
• Kernel::Ray 3
• Kernel::Segment 3
• Kernel::Plane 3

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::squared distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1120
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Kernel::ComputeSquaredLength 2

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Vector 2 v)

returns the squared length of v.

Kernel::FT fo.operator()( Kernel::Segment 2 s)

returns the squared length of s.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Vector 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 635
CGAL::Segment 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 631
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Kernel::ComputeSquaredLength 3

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Vector 3 v)

returns the squared length of v.

Kernel::FT fo.operator()( Kernel::Segment 3 s)

returns the squared length of s.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Vector 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 673
CGAL::Segment 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 661
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Kernel::ComputeSquaredLengthDividedByPiSquare 3

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Circle 3 c)

returns the squared length of c, divided by π2.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Circle 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 663
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Kernel::ComputeSquaredRadius 2

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Circle 2 c)

returns the squared radius of c.

Kernel::FT fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q, Kernel::Point 2 r)

returns the squared radius of the circle passing through p,
q and r.
Precondition: p, q and r are not collinear.

Kernel::FT fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q)

returns the squared radius of the smallest circle passing
through p, and q, i.e. one fourth of the squared distance
between p and q.

Kernel::FT fo.operator()( Kernel::Point 2 p)

returns the squared radius of the smallest circle passing
through p, i.e. 0.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Circle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 614
CGAL::squared radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 775
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Kernel::ComputeSquaredRadius 3

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Sphere 3 s)

returns the squared radius of s.

Kernel::FT fo.operator()( Kernel::Circle 3 c)

returns the squared radius of c.

Kernel::FT fo.operator()( Kernel::Point 3 p,
Kernel::Point 3 q,
Kernel::Point 3 r,
Kernel::Point 3 s)

returns the squared radius of the sphere passing through
p, q, r and s.
Precondition: p, q, r and s are not coplanar.

Kernel::FT fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

returns the squared radius of the sphere passing through
p, q and r, and whose center is in the plane defined by
these three points.

Kernel::FT fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

returns the squared radius of the smallest circle passing
through p, and q, i.e. one fourth of the squared distance
between p and q.

Kernel::FT fo.operator()( Kernel::Point 3 p)

returns the squared radius of the smallest circle passing
through p, i.e. 0.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Sphere 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 666
CGAL::Circle 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 663
CGAL::squared radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 775
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Kernel::ComputeVolume 3

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Iso cuboid 3 c)

returns the volume of c.

Kernel::FT fo.operator()( Kernel::Tetrahedron 3 t)

returns the signed volume of t.

Kernel::FT fo.operator()( Kernel::Point 3 p0,
Kernel::Point 3 p1,
Kernel::Point 3 p2,
Kernel::Point 3 p3)

returns the signed volume of the tetrahedron defined by
the four points p0, p1, p2, p3.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Iso cuboid 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 646
CGAL::Tetrahedron 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 669
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Kernel::ComputeX 2

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Point 2 p) const

returns the x-coordinate of the point.

Kernel::FT fo.operator()( Kernel::Vector 2 v) const

returns the x-coordinate of the vector.

Refines

AdaptableFunctor

875



C
on

ce
pt

F
un

ct
or

Kernel::ComputeX 3

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Point 3 p) const

returns the x-coordinate of the point.

Kernel::FT fo.operator()( Kernel::Vector 3 v) const

returns the x-coordinate of the vector.

Refines

AdaptableFunctor
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Kernel::ComputeY 2

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Point 2 p) const

returns the y-coordinate of the point.

Kernel::FT fo.operator()( Kernel::Vector 2 v) const

returns the y-coordinate of the vector.

Refines

AdaptableFunctor
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Kernel::ComputeY 3

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Point 3 p) const

returns the y-coordinate of the point.

Kernel::FT fo.operator()( Kernel::Vector 3 v) const

returns the y-coordinate of the vector.

Refines

AdaptableFunctor
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Kernel::ComputeZ 3

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Point 3 p) const

returns the z-coordinate of the point.

Kernel::FT fo.operator()( Kernel::Vector 3 v) const

returns the z-coordinate of the vector.

Refines

AdaptableFunctor

879



C
on

ce
pt

F
un

ct
or

Kernel::ComputeXmin 2

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Iso rectangle 2 r) const

returns the smallest x-coordinate of the iso-rectangle.

Refines

AdaptableFunctor
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Kernel::ComputeYmin 2

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Iso rectangle 2 r) const

returns the smallest y-coordinate of the iso-rectangle.

Refines

AdaptableFunctor
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Kernel::ComputeXmax 2

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Iso rectangle 2 r) const

returns the largest x-coordinate of the iso-rectangle.

Refines

AdaptableFunctor
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Kernel::ComputeYmax 2

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Iso rectangle 2 r) const

returns the largest y-coordinate of the iso-rectangle.

Refines

AdaptableFunctor
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Kernel::ComputeYAtX 2

A model for this must provide:

Kernel::FT fo.operator()( Kernel::Line 2 l, Kernel::FT x) const

returns the y-coordinate of the point at l with given x-
coordinate.
Precondition: l is not vertical.

Refines

AdaptableFunctor

See Also

CGAL::compare y at x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 721
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Kernel::ConstructBarycenter 2

A model for this must provide:

Kernel::Point 2 fo.operator()( Kernel::Point 2 p1, Kernel::FT w1, Kernel::Point 2 p2)

compute the barycenter of the points p1 and p2 with cor-
responding weights w1 and 1−w1.

Kernel::Point 2 fo.operator()( Kernel::Point 2 p1,
Kernel::FT w1,
Kernel::Point 2 p2,
Kernel::FT w2)

compute the barycenter of the points p1 and p2 with cor-
responding weights w1 and w2.
Precondition: w1+w2 != 0.

Kernel::Point 2 fo.operator()( Kernel::Point 2 p1,
Kernel::FT w1,
Kernel::Point 2 p2,
Kernel::FT w2,
Kernel::Point 2 p3)

compute the barycenter of the points p1, p2 and p3 with
corresponding weights w1, w2 and 1−w1−w2.

Kernel::Point 2 fo.operator()( Kernel::Point 2 p1,
Kernel::FT w1,
Kernel::Point 2 p2,
Kernel::FT w2,
Kernel::Point 2 p3,
Kernel::FT w3)

compute the barycenter of the points p1, p2 and p3 with
corresponding weights w1, w2 and w3.
Precondition: w1+w2+w3 != 0.

Kernel::Point 2 fo.operator()( Kernel::Point 2 p1,
Kernel::FT w1,
Kernel::Point 2 p2,
Kernel::FT w2,
Kernel::Point 2 p3,
Kernel::FT w3,
Kernel::Point 2 p4)

compute the barycenter of the points p1, p2, p3 and p4
with corresponding weights w1, w2, w3 and 1−w1−
w2−w3.
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Kernel::Point 2 fo.operator()( Kernel::Point 2 p1,
Kernel::FT w1,
Kernel::Point 2 p2,
Kernel::FT w2,
Kernel::Point 2 p3,
Kernel::FT w3,
Kernel::Point 2 p4,
Kernel::FT w4)

compute the barycenter of the points p1, p2, p3 and p4
with corresponding weights w1, w2, w3 and w4.
Precondition: w1+w2+w3+w4 != 0.

Refines

AdaptableFunctor (with three arguments)

See Also

Kernel::ConstructCentroid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 898
CGAL::centroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3969
CGAL::barycenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3971
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Kernel::ConstructBarycenter 3

A model for this must provide:

Kernel::Point 3 fo.operator()( Kernel::Point 3 p1, Kernel::FT w1, Kernel::Point 3 p2)

compute the barycenter of the points p1 and p2 with cor-
responding weights w1 and 1−w1.

Kernel::Point 3 fo.operator()( Kernel::Point 3 p1,
Kernel::FT w1,
Kernel::Point 3 p2,
Kernel::FT w2)

compute the barycenter of the points p1 and p2 with cor-
responding weights w1 and w2.
Precondition: w1+w2 != 0.

Kernel::Point 3 fo.operator()( Kernel::Point 3 p1,
Kernel::FT w1,
Kernel::Point 3 p2,
Kernel::FT w2,
Kernel::Point 3 p3)

compute the barycenter of the points p1, p2 and p3 with
corresponding weights w1, w2 and 1−w1−w2.

Kernel::Point 3 fo.operator()( Kernel::Point 3 p1,
Kernel::FT w1,
Kernel::Point 3 p2,
Kernel::FT w2,
Kernel::Point 3 p3,
Kernel::FT w3)

compute the barycenter of the points p1, p2 and p3 with
corresponding weights w1, w2 and w3.
Precondition: w1+w2+w3 != 0.

Kernel::Point 3 fo.operator()( Kernel::Point 3 p1,
Kernel::FT w1,
Kernel::Point 3 p2,
Kernel::FT w2,
Kernel::Point 3 p3,
Kernel::FT w3,
Kernel::Point 3 p4)

compute the barycenter of the points p1, p2, p3 and p4
with corresponding weights w1, w2, w3 and 1−w1−
w2−w3.
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Kernel::Point 3 fo.operator()( Kernel::Point 3 p1,
Kernel::FT w1,
Kernel::Point 3 p2,
Kernel::FT w2,
Kernel::Point 3 p3,
Kernel::FT w3,
Kernel::Point 3 p4,
Kernel::FT w4)

compute the barycenter of the points p1, p2, p3 and p4
with corresponding weights w1, w2, w3 and w4.
Precondition: w1+w2+w3+w4 != 0.

Refines

AdaptableFunctor (with three arguments)

See Also

Kernel::ConstructCentroid 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 899
CGAL::centroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3969
CGAL::barycenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3971
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Kernel::ConstructBaseVector 3

A model for this must provide:

Kernel::Vector 3 fo.operator()( Kernel::Plane 3 h, int index)

when index == 1, returns a vector b1 that is orthogonal
to the normal n to plane h; when index == 2, returns a
vector b2 that is orthogonal to n and b1 and such that for
an arbitrary point p on the plane h, the orientation of p, p
+ b1, p + b2, and p + n is positive.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Plane 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 651
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Kernel::ConstructBbox 2

A model for this must provide:

CGAL::Bbox 2 fo.operator()( Kernel::Point 2 p)

returns a bounding box of p.

CGAL::Bbox 2 fo.operator()( Kernel::Segment 2 s)

returns a bounding box of s.

CGAL::Bbox 2 fo.operator()( Kernel::Triangle 2 t)

returns a bounding box of t.

CGAL::Bbox 2 fo.operator()( Kernel::Iso rectangle 2 i)

returns a bounding box of i.

CGAL::Bbox 2 fo.operator()( Kernel::Circle 2 c)

returns a bounding box of c.

Refines

AdaptableFunctor (with one argument)
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Kernel::ConstructBbox 3

A model for this must provide:

CGAL::Bbox 3 fo.operator()( Kernel::Circle 3 c)

returns a bounding box of c.

CGAL::Bbox 3 fo.operator()( Kernel::Point 3 p)

returns a bounding box of p.

CGAL::Bbox 3 fo.operator()( Kernel::Segment 3 s)

returns a bounding box of s.

CGAL::Bbox 3 fo.operator()( Kernel::Triangle 3 t)

returns a bounding box of t.

CGAL::Bbox 3 fo.operator()( Kernel::Tetrahedron 3 t)

returns a bounding box of t.

CGAL::Bbox 3 fo.operator()( Kernel::Iso Cuboid 3 i)

returns a bounding box of i.

CGAL::Bbox 3 fo.operator()( Kernel::Sphere 3 s)

returns a bounding box of s.

Refines

AdaptableFunctor (with one argument)
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Kernel::ConstructBisector 2

A model for this must provide:

Kernel::Line 2 fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q)

constructs the bisector of p and q. The bisector is oriented
in such a way that p lies on its positive side.
Precondition: p and q are not equal.

Kernel::Line 2 fo.operator()( Kernel::Line 2 l1, Kernel::Line 2 l2)

constructs the bisector of the two lines l1 and l2. In the
general case, the bisector has the direction of the vector
which is the sum of the normalized directions of the two
lines, and which passes through the intersection of l1 and
l2. If l1 and l2 are parallel, then the bisector is defined as
the line which has the same direction as l1, and which is at
the same distance from l1 and l2. This function requires
that Kernel::RT supports the sqrt() operation.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::bisector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 696
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Kernel::ConstructBisector 3

A model for this must provide:

Kernel::Plane 3 fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

constructs the bisector plane of p and q. The bisector is
oriented in such a way that p lies on its positive side.
Precondition: p and q are not equal.

Kernel::Plane 3 fo.operator()( Kernel::Plane 3 h1, Kernel::Plane 3 h2)

constructs the bisector of the two planes h1 and h2. In the
general case, the bisector has a normal vector which has
the same direction as the sum of the normalized normal
vectors of the two planes, and passes through the intersec-
tion of h1 and h2. If h1 and h2 are parallel, then the bi-
sector is defined as the plane which has the same oriented
normal vector as l1, and which is at the same distance
from h1 and h2. This function requires that Kernel::RT
supports the sqrt() operation.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::bisector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 696
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Kernel::ConstructCartesianConstIterator 2

A model for this must provide:

Kernel::Cartesian const iterator 2

fo.operator()( Kernel::Point 2 p)

returns an iterator on the 0’th Cartesian coordinate of p.

Kernel::Cartesian const iterator 2

fo.operator()( Kernel::Point 2 p, int)

returns the past the end iterator of the Cartesian coordi-
nates of p.

Kernel::Cartesian const iterator 2

fo.operator()( Kernel::Vector 2 v)

returns an iterator on the 0’th Cartesian coordinate of v.

Kernel::Cartesian const iterator 2

fo.operator()( Kernel::Vector 2 v, int)

returns the past the end iterator of the Cartesian coordi-
nates of v.

Refines

AdaptableFunctor (with one argument)

See Also

Kernel::CartesianConstIterator 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 982
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Kernel::ConstructCartesianConstIterator 3

A model for this must provide:

Kernel::Cartesian const iterator 3

fo.operator()( Kernel::Point 3 p)

returns an iterator on the 0’th Cartesian coordinate of p.

Kernel::Cartesian const iterator 3

fo.operator()( Kernel::Point 3 p, int)

returns the past the end iterator of the Cartesian coordi-
nates of p.

Kernel::Cartesian const iterator 3

fo.operator()( Kernel::Vector 3 v)

returns an iterator on the 0’th Cartesian coordinate of v.

Kernel::Cartesian const iterator 3

fo.operator()( Kernel::Vector 3 v, int)

returns the past the end iterator of the Cartesian coordi-
nates of v.

Refines

AdaptableFunctor (with one argument)

See Also

Kernel::CartesianConstIterator 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 983
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Kernel::ConstructCenter 2

A model for this must provide:

Kernel::Point 2 fo.operator()( Kernel::Circle 2 c)

compute the center of the circle c.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Circle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 614
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Kernel::ConstructCenter 3

A model for this must provide:

Kernel::Point 3 fo.operator()( Kernel::Sphere 3 s)

compute the center of the sphere s.

Kernel::Point 3 fo.operator()( Kernel::Circle 3 c)

compute the center of the circle c.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Sphere 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 666
CGAL::Circle 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 663
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Kernel::ConstructCentroid 2

A model for this must provide:

Kernel::Point 2 fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q, Kernel::Point 2 r)

compute the centroid of the points p, q, and r.

Kernel::Point 2 fo.operator()( Kernel::Point 2 p,
Kernel::Point 2 q,
Kernel::Point 2 r,
Kernel::Point 2 s)

compute the centroid of the points p, q, r and s.

Kernel::Point 2 fo.operator()( Kernel::Triangle 2 t)

compute the centroid of the triangle t.

Refines

AdaptableFunctor (with three arguments)

See Also

Kernel::ConstructBarycenter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 885
CGAL::centroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3969
CGAL::barycenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3971
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Kernel::ConstructCentroid 3

A model for this must provide:

Kernel::Point 3 fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

compute the centroid of the points p, q, and r.

Kernel::Point 3 fo.operator()( Kernel::Point 3 p,
Kernel::Point 3 q,
Kernel::Point 3 r,
Kernel::Point 3 s)

compute the centroid of the points p, q, r and s.

Kernel::Point 3 fo.operator()( Kernel::Triangle 3 t)

compute the centroid of the triangle t.

Kernel::Point 3 fo.operator()( Kernel::Tetrahedron 3 t)

compute the centroid of the tetrahedron t.

Refines

AdaptableFunctor (with three arguments)

See Also

Kernel::ConstructBarycenter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 887
CGAL::centroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3969
CGAL::barycenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3971
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Kernel::ConstructCircle 2

A model for this must provide:

Kernel::Circle 2 fo.operator()( Kernel::Point 2 center,
Kernel::FT squared radius,
Orientation orientation = COUNTERCLOCKWISE)

introduces a variable of type Kernel::Circle 2. It is ini-
tialized to the circle with center center, squared radius
squared radius and orientation orientation.
Precondition: orientation 6= COLLINEAR, and further,
squared radius ≥ 0.

Kernel::Circle 2 fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q, Kernel::Point 2 r)

introduces a variable of type Kernel::Circle 2. It is ini-
tialized to the unique circle which passes through the
points p, q and r. The orientation of the circle is the ori-
entation of the point triple p, q, r.
Precondition: p, q, and r are not collinear.

Kernel::Circle 2 fo.operator()( Kernel::Point 2 p,
Kernel::Point 2 q,
Orientation orientation = COUNTERCLOCKWISE)

introduces a variable of type Kernel::Circle 2. It is ini-
tialized to the circle with diameter pq and orientation ori-
entation.
Precondition: orientation 6= COLLINEAR.

Kernel::Circle 2 fo.operator()( Kernel::Point 2 center,
Orientation orientation = COUNTERCLOCKWISE)

introduces a variable of type Kernel::Circle 2. It is ini-
tialized to the circle with center center, squared radius
zero and orientation orientation.
Precondition: orientation 6= COLLINEAR.
Postcondition: .is degenerate() = true.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::Circle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 614
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Kernel::ConstructCircle 3

A model for this must provide:

Kernel::Circle 3 fo.operator()( Kernel::Point 3 center, Kernel::FT sq r, Kernel::Plane 3 plane)

introduces a variable of type Kernel::Circle 3. It is ini-
tialized to the circle with center center, and squared ra-
dius sq r in the plane plane.
Precondition: center lies in plane and sq r ≥ 0.

Kernel::Circle 3 fo.operator()( Kernel::Point 3 center, Kernel::FT sq r, Kernel::Vector 3 n)

introduces a variable of type Kernel::Circle 3. It is ini-
tialized to the circle with center center, and squared ra-
dius sq r in the plane containing center and normal to n.
Precondition: sq r ≥ 0.

Kernel::Circle 3 fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

introduces a variable of type Kernel::Point 3. It is ini-
tialized to the circle passing through the three points.
Precondition: The three points are not collinear.

Kernel::Circle 3 fo.operator()( Kernel::Sphere 3 sphere1, Kernel::Sphere 3 sphere2)

introduces a variable of type Kernel::Circle 3. It is ini-
tialized to the circle along which the two spheres inter-
sect.
Precondition: The two spheres intersect along a circle.

Kernel::Circle 3 fo.operator()( Kernel::Sphere 3 sphere, Kernel::Plane 3 plane)

introduces a variable of type Kernel::Circle 3. It is ini-
tialized to the circle along which the sphere and the plane
intersect.
Precondition: The sphere and the plane intersect along a
circle.

Kernel::Circle 3 fo.operator()( Kernel::Plane 3 plane, Kernel::Sphere 3 sphere)

introduces a variable of type Kernel::Circle 3. It is ini-
tialized to the circle along which the sphere and the plane
intersect.
Precondition: The sphere and the plane intersect along a
circle.
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Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::Circle 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 663
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Kernel::ConstructCircumcenter 2

A model for this must provide:

Kernel::Point 2 fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q)

compute the center of the smallest circle passing through
the points p and q. Note : this is the same as
Kernel::ConstructMidPoint 2.

Kernel::Point 2 fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q, Kernel::Point 2 r)

compute the center of the circle passing through the
points p, q, and r.
Precondition: p, q, and r are not collinear.

Kernel::Point 2 fo.operator()( Kernel::Triangle 2 t)

compute the center of the circle passing through the three
vertices of t.
Precondition: t is not degenerate.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::circumcenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 698
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Kernel::ConstructCircumcenter 3

A model for this must provide:

Kernel::Point 3 fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

compute the center of the smallest circle passing through
the points p and q. Note : this is the same as
Kernel::ConstructMidPoint 3.

Kernel::Point 3 fo.operator()( Kernel::Point 3 p,
Kernel::Point 3 q,
Kernel::Point 3 r,
Kernel::Point 3 s)

compute the center of the sphere passing through the
points p, q, r, and s.
Precondition: p, q, r, and s are not coplanar.

Kernel::Point 3 fo.operator()( Kernel::Tetrahedron 3 t)

compute the center of the sphere passing through the ver-
tices of t.
Precondition: t is not degenerate.

Kernel::Point 3 fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

compute the center of the circle passing through the
points p, q and r.
Precondition: p, q and r are not collinear.

Kernel::Point 3 fo.operator()( Kernel::Triangle 3 t)

compute the center of the circle passing through the ver-
tices of t.
Precondition: t is not degenerate.

Refines

AdaptableFunctor (with four arguments)

See Also

CGAL::circumcenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 698

904



C
on

ce
pt

F
un

ct
or

Kernel::ConstructCrossProductVector 3

A model for this must provide:

Kernel::Vector 3 fo.operator()( Kernel::Vector 3 v, Kernel::Vector 3 w)

computes the cross product of v and w.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::cross product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 728
CGAL::determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 729
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Kernel::ConstructDifferenceOfVectors 2

A model for this must provide:

Kernel::Vector 2 fo.operator()( Kernel::Vector 2 v1, Kernel::Vector 2 v2)

introduces the vector v1− v2.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Vector 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 635
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Kernel::ConstructDifferenceOfVectors 3

A model for this must provide:

Kernel::Vector 3 fo.operator()( Kernel::Vector 3 v1, Kernel::Vector 3 v2)

introduces the vector v1− v2.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Vector 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 673
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Kernel::ConstructDirection 2

A model for this must provide:

Kernel::Direction 2 fo.operator()( Kernel::Vector 2 v)

introduces the direction of vector v.

Kernel::Direction 2 fo.operator()( Kernel::Line 2 l)

introduces the direction of line l.

Kernel::Direction 2 fo.operator()( Kernel::Ray 2 r)

introduces the direction of ray r.

Kernel::Direction 2 fo.operator()( Kernel::Segment 2 s)

introduces the direction of segment s.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Direction 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 617
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Kernel::ConstructDirection 3

A model for this must provide:

Kernel::Direction 3 fo.operator()( Kernel::Vector 3 v)

introduces a direction initialized with the direction of
vector v.

Kernel::Direction 3 fo.operator()( Kernel::Line 3 l)

introduces the direction of line l.

Kernel::Direction 3 fo.operator()( Kernel::Ray 3 r)

introduces the direction of ray r.

Kernel::Direction 3 fo.operator()( Kernel::Segment 3 s)

introduces the direction of segment s.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Direction 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 644

909



C
on

ce
pt

F
un

ct
or

Kernel::ConstructDividedVector 2

A model for this must provide:

Kernel::Vector 2 fo.operator()( Kernel::Vector 2 v, const Kernel::RT s)

introduces the vector v/s.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Vector 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 635
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Kernel::ConstructDividedVector 3

A model for this must provide:

Kernel::Vector 3 fo.operator()( Kernel::Vector 3 v, const Kernel::RT s)

introduces the vector v/s.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Vector 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 673
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Kernel::ConstructEquidistantLine 3

A model for this must provide:

Kernel::Line 3 fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

constructs the line which is at the same distance from the
three points p, q and r.
Precondition: p, q and r are not collinear.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::equidistant line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 734
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Kernel::ConstructIsoCuboid 3

A model for this must provide:

Kernel::Iso cuboid 3 fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

introduces an iso-oriented cuboid with diagonal opposite
vertices p and q such that p is the lexicographically small-
est point in the cuboid.

Kernel::Iso cuboid 3 fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, int)

introduces an iso-oriented cuboid with diagonal opposite
vertices p and q. The int argument value is only used to
distinguish the two overloaded functions.
Precondition: p.x() <= q.x(), p.y() <= q.y() and
p.z() <= q.z().

Kernel::Iso cuboid 3 fo.operator()( Kernel::Point 3 left,
Kernel::Point 3 right,
Kernel::Point 3 bottom,
Kernel::Point 3 top,
Kernel::Point 3 far,
Kernel::Point 3 close)

introduces an iso-oriented cuboid fo whose minimal x co-
ordinate is the one of left, the maximal x coordinate is
the one of right, the minimal y coordinate is the one of
bottom, the maximal y coordinate is the one of top, the
minimal z coordinate is the one of far, the maximal z co-
ordinate is the one of close.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Iso cuboid 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 646
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Kernel::ConstructIsoRectangle 2

A model for this must provide:

Kernel::Iso rectangle 2 fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q)

introduces an iso-oriented rectangle with diagonal oppo-
site vertices p and q such that p is the lexicographically
smallest point in the rectangle.

Kernel::Iso rectangle 2 fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q, int)

introduces an iso-oriented rectangle with diagonal oppo-
site vertices p and q. The int argument value is only used
to distinguish the two overloaded functions.
Precondition: p.x() <= q.x() and p.y() <= q.y().

Kernel::Iso rectangle 2 fo.operator()( Kernel::Point 2 left,
Kernel::Point 2 right,
Kernel::Point 2 bottom,
Kernel::Point 2 top)

introduces an iso-oriented rectangle fo whose minimal x
coordinate is the one of left, the maximal x coordinate is
the one of right, the minimal y coordinate is the one of
bottom, the maximal y coordinate is the one of top.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Iso rectangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 619
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Kernel::ConstructLiftedPoint 3

A model for this must provide:

Kernel::Point 3 fo.operator()( Kernel::Plane 3 h, Kernel::Point 2 p)

returns a point q on plane h, such that the projection of
this point onto the xy-plane is p.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Plane 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 651
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Kernel::ConstructLine 2

A model for this must provide:

Kernel::Line 2 fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q)

introduces a line passing through the points p and q. Line
is directed from p to q.

Kernel::Line 2 fo.operator()( Kernel::Point 2 p, Kernel::Direction 2 d)

introduces a line passing through point p with direction
d.

Kernel::Line 2 fo.operator()( Kernel::Point 2 p, Kernel::Vector 2 v)

introduces a line passing through point p and oriented by
v.

Kernel::Line 2 fo.operator()( Kernel::Segment 2 s)

introduces a line supporting the segment s, oriented from
source to target.

Kernel::Line 2 fo.operator()( Kernel::Ray 2 r)

introduces a line supporting the ray r, with same orienta-
tion.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Line 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 622
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Kernel::ConstructLine 3

A model for this must provide:

Kernel::Line 3 fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

introduces a line passing through the points p and q. Line
is directed from p to q.

Kernel::Line 3 fo.operator()( Kernel::Point 3 p, Kernel::Vector 3 v)

introduces a line passing through point p and oriented by
v.

Kernel::Line 3 fo.operator()( Kernel::Point 3 p, Kernel::Direction 3 d)

introduces a line passing through point p with direction
d.

Kernel::Line 3 fo.operator()( Kernel::Segment 3 s)

returns the line supporting the segment s, oriented from
source to target.

Kernel::Line 3 fo.operator()( Kernel::Ray 3 r)

returns the line supporting the ray r, with the same orien-
tation.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Line 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 649
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Kernel::ConstructMaxVertex 2

A model for this must provide:

Kernel::Point 2 fo.operator()( Kernel::Iso rectangle 2 r)

returns the vertex of r with lexicographically largest co-
ordinates.

Kernel::Point 2 fo.operator()( Kernel::Segment 2 s)

returns the vertex of s with lexicographically largest co-
ordinates.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Iso rectangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 619
CGAL::Segment 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 631
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Kernel::ConstructMaxVertex 3

A model for this must provide:

Kernel::Point 3 fo.operator()( Kernel::Iso cuboid 3 c)

returns the vertex of c with lexicographically largest co-
ordinates.

Kernel::Point 3 fo.operator()( Kernel::Segment 3 s)

returns the vertex of s with lexicographically largest co-
ordinates.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Iso cuboid 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 646
CGAL::Segment 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 661
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Kernel::ConstructMidpoint 2

A model for this must provide:

Kernel::Point 2 fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q)

computes the midpoint of the segment pq.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::midpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1115
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Kernel::ConstructMidpoint 3

A model for this must provide:

Kernel::Point 3 fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

computes the midpoint of the segment pq.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::midpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1115
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Kernel::ConstructMinVertex 2

A model for this must provide:

Kernel::Point 2 fo.operator()( Kernel::Iso rectangle 2 r)

returns the vertex of r with lexicographically smallest co-
ordinates.

Kernel::Point 2 fo.operator()( Kernel::Segment 2 s)

returns the vertex of s with lexicographically smallest co-
ordinates.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Iso rectangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 619
CGAL::Segment 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 631
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Kernel::ConstructMinVertex 3

A model for this must provide:

Kernel::Point 3 fo.operator()( Kernel::Iso cuboid 3 c)

returns the vertex of c with lexicographically smallest co-
ordinates.

Kernel::Point 3 fo.operator()( Kernel::Segment 3 s)

returns the vertex of s with lexicographically smallest co-
ordinates.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Iso cuboid 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 646
CGAL::Segment 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 661
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Kernel::ConstructNormal 3

A model for this must provide:

Kernel::Vector 3 fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

computes the normal of the vectorsq-p and r-p.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 755
CGAL::unit normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 777
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Kernel::ConstructObject 2

A model for this must provide:

template <class T>
Object 2 fo.operator()( T t) constructs an object that contains t and returns it.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4167
Kernel::Assign 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 817
Kernel::Assign 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 818
Kernel::Object 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 791
Kernel::Object 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 792
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Kernel::ConstructObject 3

A model for this must provide:

template <class T>
Object 3 fo.operator()( T t) constructs an object that contains t and returns it.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4167
Kernel::Assign 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 817
Kernel::Assign 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 818
Kernel::Object 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 791
Kernel::Object 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 792
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Kernel::ConstructOppositeCircle 2

A model for this must provide:

Kernel::Circle 2 fo.operator()( Kernel::Circle 2 c)

returns the circle with the same center and squared radius
as c, but with opposite orientation.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Circle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 614
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Kernel::ConstructOppositeDirection 2

A model for this must provide:

Kernel::Direction 2 fo.operator()( Kernel::Direction 2 d)

returns the direction opposite to d.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Direction 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 617
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Kernel::ConstructOppositeDirection 3

A model for this must provide:

Kernel::Direction 3 fo.operator()( Kernel::Direction 3 d)

returns the direction opposite to d.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Direction 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 644
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Kernel::ConstructOppositeLine 2

A model for this must provide:

Kernel::Line 2 fo.operator()( Kernel::Line 2 l)

returns the line representing the same set of points as l,
but with opposite direction.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Line 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 622
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Kernel::ConstructOppositeLine 3

A model for this must provide:

Kernel::Line 3 fo.operator()( Kernel::Line 3 l)

returns the line representing the same set of points as l,
but with opposite direction.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Line 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 649
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Kernel::ConstructOppositePlane 3

A model for this must provide:

Kernel::Plane 3 fo.operator()( Kernel::Plane 3 p)

returns the plane representing the same set of points as p,
but with opposite orientation.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Plane 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 651
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Kernel::ConstructOppositeRay 2

A model for this must provide:

Kernel::Ray 2 fo.operator()( Kernel::Ray 2 r)

returns the ray with the same source as r, but in opposite
direction.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Ray 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 629
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Kernel::ConstructOppositeRay 3

A model for this must provide:

Kernel::Ray 3 fo.operator()( Kernel::Ray 3 r)

returns the ray with the same source as r, but in opposite
direction.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Ray 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 659
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Kernel::ConstructOppositeSegment 2

A model for this must provide:

Kernel::Segment 2 fo.operator()( Kernel::Segment 2 s)

returns the segment representing the same set of points as
s, but with opposite orientation.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Segment 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 631
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Kernel::ConstructOppositeSegment 3

A model for this must provide:

Kernel::Segment 3 fo.operator()( Kernel::Segment 3 s)

returns the segment representing the same set of points as
s, but with opposite orientation.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Segment 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 661
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Kernel::ConstructOppositeSphere 3

A model for this must provide:

Kernel::Sphere 3 fo.operator()( Kernel::Sphere 3 s)

returns the sphere with the same center and squared ra-
dius as s, but with opposite orientation.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Sphere 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 666
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Kernel::ConstructOppositeTriangle 2

A model for this must provide:

Kernel::Triangle 2 fo.operator()( Kernel::Triangle 2 t)

returns the triangle with opposite orientation to t (this
flips the positive and the negative side, but not bounded
and unbounded side).

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Triangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 633
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Kernel::ConstructOppositeVector 2

A model for this must provide:

Kernel::Vector 2 fo.operator()( Kernel::Vector 2 v)

returns the vector -v.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Vector 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 635
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Kernel::ConstructOppositeVector 3

A model for this must provide:

Kernel::Vector 3 fo.operator()( Kernel::Vector 3 v)

returns the vector -v.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Vector 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 673
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Kernel::ConstructOrthogonalVector 3

A model for this must provide:

Kernel::Vector 3 fo.operator()( Kernel::Plane 3 p)

returns a vector that is orthogonal to the plane p and di-
rected to the positive side of p.

Kernel::Vector 3 fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

returns a vector that is orthogonal to the plane defined by
Kernel::ConstructPlane 3()(p, q, r) and directed to the
positive side of this plane.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Plane 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 651
Kernel::ConstructCrossProductVector 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 905
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Kernel::ConstructPerpendicularDirection 2

A model for this must provide:

Kernel::Direction 2 fo.operator()( Kernel::Direction 2 d, Orientation o)

introduces a direction orthogonal to d. If o is CLOCK-
WISE, d is rotated clockwise; if o is COUNTERCLOCK-
WISE, d is rotated counterclockwise.
Precondition: o is not COLLINEAR.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Direction 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 617
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Kernel::ConstructPerpendicularLine 2

A model for this must provide:

Kernel::Line 2 fo.operator()( Kernel::Line 2 l, Kernel::Point 2 p)

returns the line perpendicular to l and passing through p,
where the direction is the direction of l rotated counter-
clockwise by 90 degrees.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Line 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 622
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Kernel::ConstructPerpendicularLine 3

A model for this must provide:

Kernel::Line 3 fo.operator()( Kernel::Plane 3 pl, Kernel::Point 3 p)

returns the line that is perpendicular to pl and that passes
through point p. The line is oriented from the negative to
the positive side of pl

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Plane 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 651
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Kernel::ConstructPerpendicularPlane 3

A model for this must provide:

Kernel::Plane 3 fo.operator()( Kernel::Line 3 l, Kernel::Point 3 p)

returns the plane perpendicular to l passing through p,
such that the normal direction of the plane coincides with
the direction of the line.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Plane 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 651
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Kernel::ConstructPerpendicularVector 2

A model for this must provide:

Kernel::Vector 2 fo.operator()( Kernel::Vector 2 v, Orientation o)

returns v rotated clockwise by 90 degrees, if o is CLOCK-
WISE, and rotated counterclockwise otherwise.
Precondition: o is not COLLINEAR.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Vector 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 635
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Kernel::ConstructPlane 3

A model for this must provide:

Kernel::Plane 3 fo.operator()( Kernel::RT a, Kernel::RT b, Kernel::RT c, Kernel::RT d)

creates a plane defined by the equation ax+by+cz+d =
0. Notice that it is degenerate if a = b = c = 0.

Kernel::Plane 3 fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

creates a plane passing through the points p, q and r. The
plane is oriented such that p, q and r are oriented in a
positive sense (that is counterclockwise) when seen from
the positive side of the plane. Notice that it is degenerate
if the points are collinear.

Kernel::Plane 3 fo.operator()( Kernel::Point 3 p, Kernel::Direction 3 d)

introduces a plane that passes through point p and that
has as an orthogonal direction equal to d.

Kernel::Plane 3 fo.operator()( Kernel::Point 3 p, Kernel::Vector 3 v)

introduces a plane that passes through point p and that is
orthogonal to v.

Kernel::Plane 3 fo.operator()( Kernel::Line 3 l, Kernel::Point 3 p)

introduces a plane that is defined through the three points
l.point(0), l.point(1) and p.

Kernel::Plane 3 fo.operator()( Kernel::Ray 3 r, Kernel::Point 3 p)

introduces a plane that is defined through the three points
r.point(0), r.point(1) and p.

Kernel::Plane 3 fo.operator()( Kernel::Segment 3 s, Kernel::Point 3 p)

introduces a plane that is defined through the three points
s.source(), s.target() and p.

Kernel::Plane 3 fo.operator()( Kernel::Circle 3 c)

introduces a plane that is defined as the plane containing
the circle.

947



Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Plane 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 651
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Kernel::ConstructPointOn 2

A model for this must provide:

Kernel::Point 2 fo.operator()( Kernel::Line 2 l, int i)

returns an arbitrary point on l. It holds point(i) ==
point(j), iff i==j. Furthermore, is directed from point(i)
to point(j), for all i < j.

Kernel::Point 2 fo.operator()( Kernel::Ray 2 r, int i)

returns a point on r. point(0) is the source, point(i), with
i > 0, is different from the source.
Precondition: i≥ 0.

Kernel::Point 2 fo.operator()( Kernel::Segment 2 s, int i)

returns source or target of s: point(0) returns the source
of s, point(1) returns the target of s. The parameter i is
taken modulo 2, which gives easy access to the other end
point.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Line 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 622
CGAL::Ray 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 629
CGAL::Segment 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 631
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Kernel::ConstructPointOn 3

A model for this must provide:

Kernel::Point 3 fo.operator()( Kernel::Line 3 l, int i)

returns an arbitrary point on l. It holds point(i) ==
point(j), iff i==j. Furthermore, is directed from point(i)
to point(j), for all i < j.

Kernel::Point 3 fo.operator()( Kernel::Plane 3 h)

returns an arbitrary point on h.

Kernel::Point 3 fo.operator()( Kernel::Ray 3 r, int i)

returns a point on r. point(0) is the source, point(i), with
i > 0, is different from the source.
Precondition: i≥ 0.

Kernel::Point 3 fo.operator()( Kernel::Segment 3 s, int i)

returns source or target of s: point(0) returns the source
of s, point(1) returns the target of s. The parameter i is
taken modulo 2, which gives easy access to the other end
point.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Line 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 649
CGAL::Plane 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 651
CGAL::Ray 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 659
CGAL::Segment 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 661
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Kernel::ConstructPoint 2

A model for this must provide:

Kernel::Point 2 fo.operator()( Origin ORIGIN)

introduces a variable with Cartesian coordinates (0,0).

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Point 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 625
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Kernel::ConstructPoint 3

A model for this must provide:

Kernel::Point 3 fo.operator()( Origin ORIGIN)

introduces a point with Cartesian coordinates(0,0,0).

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Point 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 655
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Kernel::ConstructProjectedPoint 2

A model for this must provide:

Kernel::Point 2 fo.operator()( Kernel::Line 2 l, Kernel::Point 2 p)

returns the orthogonal projection of p onto l.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Line 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 622
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Kernel::ConstructProjectedPoint 3

A model for this must provide:

Kernel::Point 3 fo.operator()( Kernel::Line 3 l, Kernel::Point 3 p)

returns the orthogonal projection of p onto l.

Kernel::Point 3 fo.operator()( Kernel::Plane 3 h, Kernel::Point 3 p)

returns the orthogonal projection of p onto h.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Line 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 649
CGAL::Plane 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 651
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Kernel::ConstructProjectedXYPoint 2

A model for this must provide:

Kernel::Point 2 fo.operator()( Kernel::Plane 3 h, Kernel::Point 3 p)

returns the image point of the projection of p under an
affine transformation, which maps h onto the xy-plane,
with the z-coordinate removed.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Plane 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 651
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Kernel::ConstructRadicalLine 2

A model for this must provide:

Kernel::Line 2 fo.operator()( Kernel::Circle 2 c1, Kernel::Circle 2 c2)

returns the radical line of the circles.
Precondition: The two circles don’t have the same center.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Circle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 614
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Kernel::ConstructRadicalPlane 3

A model for this must provide:

Kernel::Plane 3 fo.operator()( Kernel::Sphere 3 sphere1, Kernel::Sphere 3 sphere2)

returns the radical plane of the spheres.
Precondition: The two spheres don’t have the same cen-
ter.

Refines

AdaptableFunctor (with two argument)

See Also

CGAL::Sphere 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 666
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Kernel::ConstructRay 2

A model for this must provide:

Kernel::Ray 2 fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q)

introduces a ray with source p and passing through point
q.

Kernel::Ray 2 fo.operator()( Kernel::Point 2 p, Kernel::Vector 2 v)

introduces a ray starting at source p with the direction
given by v.

Kernel::Ray 2 fo.operator()( Kernel::Point 2 p, Kernel::Direction 2 d)

introduces a ray starting at source p with direction d.

Kernel::Ray 2 fo.operator()( Kernel::Point 2 p, Kernel::Line 2 l)

introduces a ray starting at source p with the same direc-
tion as l.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Ray 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 629
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Kernel::ConstructRay 3

A model for this must provide:

Kernel::Ray 3 fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

introduces a ray with source p and passing through point
q.

Kernel::Ray 3 fo.operator()( Kernel::Point 3 p, Kernel::Vector 3 v)

introduces a ray with source p and with the direction
given by v.

Kernel::Ray 3 fo.operator()( Kernel::Point 3 p, Kernel::Direction 3 d)

introduces a ray with source p and with direction d.

Kernel::Ray 3 fo.operator()( Kernel::Point 3 p, Kernel::Line 3 l)

introduces a ray with source p and with the same direc-
tion as l.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Ray 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 659
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Kernel::ConstructScaledVector 2

A model for this must provide:

Kernel::Vector 2 fo.operator()( Kernel::Vector 2 v, Kernel::RT scale)

produces the vector v scaled by a factor scale.

Kernel::Vector 2 fo.operator()( Kernel::Vector 2 v, Kernel::FT scale)

produces the vector v scaled by a factor scale.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Vector 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 635
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Kernel::ConstructScaledVector 3

A model for this must provide:

Kernel::Vector 3 fo.operator()( Kernel::Vector 3 v, Kernel::RT scale)

produces the vector v scaled by a factor scale.

Kernel::Vector 3 fo.operator()( Kernel::Vector 3 v, Kernel::FT scale)

produces the vector v scaled by a factor scale.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Vector 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 673
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Kernel::ConstructSecondPoint 2

A model for this must provide:

Kernel::Point 2 fo.operator()( Kernel::Ray 2 r)

returns a point different from the source on the ray r.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Ray 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 629
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Kernel::ConstructSegment 2

A model for this must provide:

Kernel::Segment 2 fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q)

introduces a segment with source p and target q. The
segment is directed from the source towards the target.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Segment 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 631
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Kernel::ConstructSegment 3

A model for this must provide:

Kernel::Segment 3 fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

introduces a segment with source p and target q. It is
directed from the source towards the target.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Segment 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 661
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Kernel::ConstructSource 2

A model for this must provide:

Kernel::Point 2 fo.operator()( Kernel::Segment 2 s)

returns the source of the segment s.

Kernel::Point 2 fo.operator()( Kernel::Ray 2 r)

returns the source of the ray r.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Segment 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 631
CGAL::Ray 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 629
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Kernel::ConstructSphere 3

A model for this must provide:

Kernel::Sphere 3 fo.operator()( Kernel::Point 3 center,
Kernel::FT squared radius,
Orientation orientation = COUNTERCLOCKWISE)

introduces a sphere initialized to the sphere with cen-
ter center, squared radius squared radius and orientation
orientation.
Precondition: orientation 6= COPLANAR, and further-
more, squared radius ≥ 0.

Kernel::Sphere 3 fo.operator()( Kernel::Point 3 p,
Kernel::Point 3 q,
Kernel::Point 3 r,
Kernel::Point 3 s)

introduces a sphere initialized to the unique sphere which
passes through the points p, q, r and s. The orientation of
the sphere is the orientation of the point quadruple p, q,
r, s.
Precondition: p, q, r, and s are not coplanar.

Kernel::Sphere 3 fo.operator()( Kernel::Point 3 p,
Kernel::Point 3 q,
Kernel::Point 3 r,
Orientation o = COUNTERCLOCKWISE)

introduces a sphere initialized to the smallest sphere
which passes through the points p, q, and r. The orienta-
tion of the sphere is o.
Precondition: o is not COPLANAR.

Kernel::Sphere 3 fo.operator()( Kernel::Point 3 p,
Kernel::Point 3 q,
Orientation o = COUNTERCLOCKWISE)

introduces a sphere initialized to the smallest sphere
which passes through the points p and q. The orientation
of the sphere is o.
Precondition: o is not COPLANAR.

Kernel::Sphere 3 fo.operator()( Kernel::Point 3 center,
Orientation orientation = COUNTERCLOCKWISE)

introduces a sphere s initialized to the sphere with center
center, squared radius zero and orientation orientation.
Precondition: orientation 6= COPLANAR.
Postcondition: s.is degenerate() = true.

966



Kernel::Sphere 3 fo.operator()( Kernel::Circle 3 c)

introduces a sphere initialized to the diametral sphere of
the circle.

Refines

AdaptableFunctor (with four arguments)

See Also

CGAL::Sphere 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 666
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Kernel::ConstructSumOfVectors 2

A model for this must provide:

Kernel::Vector 2 fo.operator()( Kernel::Vector 2 v1, Kernel::Vector 2 v2)

introduces the vector v1+ v2.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Vector 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 635
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Kernel::ConstructSumOfVectors 3

A model for this must provide:

Kernel::Vector 3 fo.operator()( Kernel::Vector 3 v1, Kernel::Vector 3 v2)

introduces the vector v1+ v2.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Vector 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 673
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Kernel::ConstructSupportingPlane 3

A model for this must provide:

Kernel::Plane 3 fo.operator()( Kernel::Triangle 3 t)

returns the supporting plane of t, with same orientation.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Triangle 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 671
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Kernel::ConstructTarget 2

A model for this must provide:

Kernel::Point 2 fo.operator()( Kernel::Segment 2 s)

returns the target of the segment s.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Segment 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 631

971



C
on

ce
pt

F
un

ct
or

Kernel::ConstructTetrahedron 3

A model for this must provide:

Kernel::Tetrahedron 3 fo.operator()( Kernel::Point 3 p0,
Kernel::Point 3 p1,
Kernel::Point 3 p2,
Kernel::Point 3 p3)

introduces a tetrahedron with vertices p0, p1, p2 and p3.

Refines

AdaptableFunctor (with four arguments)

See Also

CGAL::Tetrahedron 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 669
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Kernel::ConstructTranslatedPoint 2

A model for this must provide:

Kernel::Point 2 fo.operator()( Kernel::Point 2 p, Kernel::Vector 2 v)

returns the point obtained by translating p by the vector
v.

Kernel::Point 2 fo.operator()( Origin o, Kernel::Vector 2 v)

returns the point obtained by translating a point at the
origin by the vector v.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Point 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 625
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Kernel::ConstructTranslatedPoint 3

A model for this must provide:

Kernel::Point 3 fo.operator()( Kernel::Point 3 p, Kernel::Vector 3 v)

returns the point obtained by translating p by the vector
v.

Kernel::Point 3 fo.operator()( Origin o, Kernel::Vector 3 v)

returns the point obtained by translating a point at the
origin by the vector v.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Point 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 655
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Kernel::ConstructTriangle 2

A model for this must provide:

Kernel::Triangle 2 fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q, Kernel::Point 2 r)

introduces a triangle with vertices p, q and r.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::Triangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 633
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Kernel::ConstructTriangle 3

A model for this must provide:

Kernel::Triangle 3 fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

introduces a triangle with vertices p, q and r.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::Triangle 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 671
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Kernel::ConstructUnitNormal 3

A model for this must provide:

Kernel::Vector 3 fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

computes the unit normal of the vectorsq-p and r-p. This
requires that Kernel::FT supports the sqrt operation.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 755
CGAL::unit normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 777
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Kernel::ConstructVector 2

A model for this must provide:

Kernel::Vector 2 fo.operator()( Kernel::Point 2 a, Kernel::Point 2 b)

introduces the vector b−a.

Kernel::Vector 2 fo.operator()( Origin o, Kernel::Point 2 b)

introduces the vector b.

Kernel::Vector 2 fo.operator()( Kernel::Point 2 a, Origin o)

introduces the vector −a.

Kernel::Vector 2 fo.operator()( Kernel::Segment 2 s)

introduces the vector s.target()− s.source().

Kernel::Vector 2 fo.operator()( Kernel::Ray 2 r)

introduces a vector having the same direction as r.

Kernel::Vector 2 fo.operator()( Kernel::Line 2 l)

introduces a vector having the same direction as l.

Kernel::Vector 2 fo.operator()( Null vector NULL VECTOR)

introduces a null vector .

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Vector 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 635
Kernel::ConstructScaledVector 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 960
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Kernel::ConstructVector 3

A model for this must provide:

Kernel::Vector 3 fo.operator()( Kernel::Point 3 a, Kernel::Point 3 b)

introduces the vector b−a.

Kernel::Vector 3 fo.operator()( Origin o, Kernel::Point 3 b)

introduces the vector b.

Kernel::Vector 3 fo.operator()( Kernel::Point 3 a, Origin o)

introduces the vector −a.

Kernel::Vector 3 fo.operator()( Kernel::Segment 3 s)

introduces the vector s.target()− s.source().

Kernel::Vector 3 fo.operator()( Kernel::Ray 3 r)

introduces a vector having the same direction as r.

Kernel::Vector 3 fo.operator()( Kernel::Line 3 l)

introduces a vector having the same direction as l.

Kernel::Vector 3 fo.operator()( Null vector NULL VECTOR)

introduces a null vector .

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Vector 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 673
Kernel::ConstructScaledVector 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 961
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Kernel::ConstructVertex 2

A model for this must provide:

Kernel::Point 2 fo.operator()( Kernel::Segment 2 s, int i)

returns source or target of s: fo(s,0) returns the source of
s, fo(s,1) returns the target of s. The parameter i is taken
modulo 2.

Kernel::Point 2 fo.operator()( Kernel::Iso rectangle 2 r, int i)

returns the i’th vertex of r in counterclockwise order,
starting with the lower left vertex. The parameter i is
taken modulo 4.

Kernel::Point 2 fo.operator()( Kernel::Triangle 2 t, int i)

returns the i’th vertex of t. The parameter i is taken mod-
ulo 3.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Iso rectangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 619
CGAL::Segment 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 631
CGAL::Triangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 633
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Kernel::ConstructVertex 3

A model for this must provide:

Kernel::Point 3 fo.operator()( Kernel::Segment 3 s, int i)

returns source or target of s: fo(s,0) returns the source of
s, fo(s,1) returns the target of s. The parameter i is taken
modulo 2.

Kernel::Point 3 fo.operator()( Kernel::Iso cuboid 3 c, int i)

returns the i’th vertex of c, as indicated in the fig-
ure below. The parameter i is taken modulo 8.
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Kernel::Point 3 fo.operator()( Kernel::Triangle 3 t, int i)

returns the i’th vertex of t. The parameter i is taken mod-
ulo 3.

Kernel::Point 3 fo.operator()( Kernel::Tetrahedron 3 t, int i)

returns the i’th vertex of t. The parameter i is taken mod-
ulo 4.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Iso cuboid 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 646
CGAL::Segment 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 661
CGAL::Tetrahedron 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 669
CGAL::Triangle 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 671
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Kernel::CartesianConstIterator 2

A type representing an iterator to the Cartesian coordinates of a point in two dimensions.

Refines

CopyConstructible, Assignable, DefaultConstructible

See Also

Kernel::ConstructCartesianConstIterator 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 894
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Kernel::CartesianConstIterator 3

A type representing an iterator to the Cartesian coordinates of a point in three dimensions.

Refines

CopyConstructible, Assignable, DefaultConstructible

See Also

Kernel::ConstructCartesianConstIterator 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 895
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Kernel::CoplanarOrientation 3

A model for this must provide:

Orientation fo.operator()( Kernel::Point 3 p,
Kernel::Point 3 q,
Kernel::Point 3 r,
Kernel::Point 3 s)

Let P be the plane defined by the points p, q, and r. Note
that the order defines the orientation of P. The function
computes the orientation of points p, q, and s in P: Iff
p, q, s are collinear, COLLINEAR is returned. Iff P and
the plane defined by p, q, and s have the same orientation,
POSITIVE is returned; otherwise NEGATIVE is returned.
Precondition: p, q, r, and s are coplanar and p, q, and r
are not collinear.

Orientation fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

If p,q,r are collinear, then COLLINEAR is returned. If
not, then p,q,r define a plane P. The return value in
this case is either POSITIVE or NEGATIVE, but we don’t
specify it explicitly. However, we guarantee that all calls
to this predicate over 3 points in P will return a coherent
orientation if considered a 2D orientation in P.

Refines

AdaptableFunctor (with four arguments)

See Also

CGAL::coplanar orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 726
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Kernel::CoplanarSideOfBoundedCircle 3

A model for this must provide:

Bounded side fo.operator()( Kernel::Point 3 p,
Kernel::Point 3 q,
Kernel::Point 3 r,
Kernel::Point 3 s)

returns the bounded side of the circle defined by p, q, and
r on which s lies.
Precondition: p, q, r, and s are coplanar and p, q, and r
are not collinear.

Refines

AdaptableFunctor (with four arguments)

See Also

CGAL::coplanar side of bounded circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 727
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Kernel::Coplanar 3

A model for this must provide:

bool fo.operator()( Kernel::Point 3 p,
Kernel::Point 3 q,
Kernel::Point 3 r,
Kernel::Point 3 s)

returns true, if p, q, r, and s are coplanar.

Refines

AdaptableFunctor (with four arguments)

See Also

CGAL::coplanar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 725
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Kernel::CounterclockwiseInBetween 2

A model for this must provide:

bool fo.operator()( Kernel::Direction 2 d,
Kernel::Direction 2 d1,
Kernel::Direction 2 d2)

returns true iff d is not equal to d1, and while rotating
counterclockwise starting at d1, d is reached strictly be-
fore d2 is reached. Note that true is returned if d1 == d2,
unless also d == d1.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::Direction 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 617
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Kernel::DoIntersect 2

A model for this must provide

bool fo.operator()( Type1 obj1, Type2 obj2)

determines if two geometrical objects of type Type1 and
Type2 intersect or not

for all pairs Type1 and Type2, where the types Type1 and Type2 can be any of the following:

• Kernel::Point 2
• Kernel::Line 2
• Kernel::Ray 2
• Kernel::Segment 2
• Kernel::Triangle 2
• Kernel::Iso rectangle 2

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::do intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 2218
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Kernel::DoIntersect 3

A model for this must provide

bool fo.operator()( Type1 obj1, Type2 obj2)

determines if two geometrical objects of type Type1 and
Type2 intersect or not

for all pairs Type1 and Type2, where the types Type1 and Type2 can be any of the following:

• Kernel::Plane 3
• Kernel::Line 3
• Kernel::Ray 3
• Kernel::Segment 3
• Kernel::Triangle 3
• Bbox 3

and also for Type1 and Type2 of respective types

• Kernel::Triangle 3 and Kernel::Tetrahedron 3
• Kernel::Plane 3 and Kernel::Sphere 3 (or the contrary)
• Kernel::Sphere 3 and Kernel::Sphere 3.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::do intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 2218
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Kernel::EqualXY 3

A model for this must provide:

bool fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

returns true iff p and q have the same Cartesian x-
coordinate and the same Cartesian y-coordinate.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::compare xy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 714
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Kernel::EqualX 2

A model for this must provide:

bool fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q)

returns true iff p and q have the same Cartesian x-
coordinate.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::x equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 779
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Kernel::EqualX 3

A model for this must provide:

bool fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

returns true iff p and q have the same Cartesian x-
coordinate.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::x equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 779
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Kernel::EqualY 2

A model for this must provide:

bool fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q)

returns true iff p and q have the same Cartesian y-
coordinate.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::y equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 780
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Kernel::EqualY 3

A model for this must provide:

bool fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

returns true iff p and q have the same Cartesian y-
coordinate.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::y equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 780
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Kernel::EqualZ 3

A model for this must provide:

bool fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

returns true iff p and q have the same Cartesian z-
coordinate.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::z equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 781
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Kernel::Equal 2

A model for this must provide the following operations. For all of them fo(x,y) returns true iff x and y are equal.

bool fo.operator()( Kernel::Point 2 x, Kernel::Point 2 y)

bool fo.operator()( Kernel::Vector 2 x, Kernel::Vector 2 y)

bool fo.operator()( Kernel::Direction 2 x, Kernel::Direction 2 y)

bool fo.operator()( Kernel::Line 2 x, Kernel::Line 2 y)

bool fo.operator()( Kernel::Ray 2 x, Kernel::Ray 2 y)

bool fo.operator()( Kernel::Segment 2 x, Kernel::Segment 2 y)

bool fo.operator()( Kernel::Circle 2 x, Kernel::Circle 2 y)

bool fo.operator()( Kernel::Triangle 2 x, Kernel::Triangle 2 y)

bool fo.operator()( Kernel::Iso rectangle 2 x, Kernel::Iso rectangle 2 y)

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Circle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 614
CGAL::Direction 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 617
CGAL::Iso rectangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 619
CGAL::Line 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 622
CGAL::Point 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 625
CGAL::Ray 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 629
CGAL::Segment 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 631
CGAL::Triangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 633
CGAL::Vector 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 635
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Kernel::Equal 3

A model for this must provide the following operations. For all of them fo(x,y) returns true iff x and y are equal.

bool fo.operator()( Kernel::Point 3 x, Kernel::Point 3 y)

bool fo.operator()( Kernel::Vector 3 x, Kernel::Vector 3 y)

bool fo.operator()( Kernel::Direction 3 x, Kernel::Direction 3 y)

bool fo.operator()( Kernel::Line 3 x, Kernel::Line 3 y)

bool fo.operator()( Kernel::Plane 3 x, Kernel::Plane 3 y)

bool fo.operator()( Kernel::Ray 3 x, Kernel::Ray 3 y)

bool fo.operator()( Kernel::Segment 3 x, Kernel::Segment 3 y)

bool fo.operator()( Kernel::Circle 3 x, Kernel::Circle 3 y)

bool fo.operator()( Kernel::Sphere 3 x, Kernel::Sphere 3 y)

bool fo.operator()( Kernel::Triangle 3 x, Kernel::Triangle 3 y)

bool fo.operator()( Kernel::Tetrahedron 3 x, Kernel::Tetrahedron 3 y)

bool fo.operator()( Kernel::Iso cuboid 3 x, Kernel::Iso cuboid 3 y)

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Direction 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 644
CGAL::Iso cuboid 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 646
CGAL::Line 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 649
CGAL::Plane 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 651
CGAL::Point 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 655
CGAL::Ray 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 659
CGAL::Segment 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 661
CGAL::Sphere 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 666
CGAL::Tetrahedron 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 669
CGAL::Triangle 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 671
CGAL::Vector 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 673
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Kernel::HasOnBoundary 2

A model for this must provide:

bool fo.operator()( Kernel::Circle 2 c, Kernel::Point 2 p)

returns true iff p lies on the boundary of c.

bool fo.operator()( Kernel::Iso rectangle 2 i, Kernel::Point 2 p)

returns true iff p lies on the boundary of i.

bool fo.operator()( Kernel::Triangle 2 t, Kernel::Point 2 p)

returns true iff p lies on the boundary of t.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Circle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 614
CGAL::Iso rectangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 619
CGAL::Triangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 633
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Kernel::HasOnBoundary 3

A model for this must provide:

bool fo.operator()( Kernel::Sphere 3 s, Kernel::Point 3 p)

returns true iff p lies on the boundary of s.

bool fo.operator()( Kernel::Tetrahedron 3 t, Kernel::Point 3 p)

returns true iff p lies on the boundary of t.

bool fo.operator()( Kernel::Iso cuboid 3 c, Kernel::Point 3 p)

returns true iff p lies on the boundary of c.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Iso cuboid 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 646
CGAL::Sphere 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 666
CGAL::Tetrahedron 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 669
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Kernel::HasOnBoundedSide 2

A model for this must provide:

bool fo.operator()( Kernel::Circle 2 c, Kernel::Point 2 p)

returns true iff p lies on the bounded side of c.

bool fo.operator()( Kernel::Iso rectangle 2 i, Kernel::Point 2 p)

returns true iff p lies on the bounded side of i.

bool fo.operator()( Kernel::Triangle 2 t, Kernel::Point 2 p)

returns true iff p lies on the bounded side of t.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Circle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 614
CGAL::Iso rectangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 619
CGAL::Triangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 633
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Kernel::HasOnBoundedSide 3

A model for this must provide:

bool fo.operator()( Kernel::Sphere 3 s, Kernel::Point 3 p)

returns true iff p lies on the bounded side of s.

bool fo.operator()( Kernel::Tetrahedron 3 t, Kernel::Point 3 p)

returns true iff p lies on the bounded side of t.

bool fo.operator()( Kernel::Iso cuboid 3 c, Kernel::Point 3 p)

returns true iff p lies on the bounded side of c.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Iso cuboid 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 646
CGAL::Sphere 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 666
CGAL::Tetrahedron 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 669
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Kernel::HasOnNegativeSide 2

A model for this must provide:

bool fo.operator()( Kernel::Circle 2 c, Kernel::Point 2 p)

returns true iff p lies on the negative side of c.

bool fo.operator()( Kernel::Line 2 l, Kernel::Point 2 p)

returns true iff p lies on the negative side of l (l is consid-
ered a half-space).

bool fo.operator()( Kernel::Triangle 2 t, Kernel::Point 2 p)

returns true iff p lies on the negative side of t.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Circle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 614
CGAL::Line 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 622
CGAL::Triangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 633
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Kernel::HasOnNegativeSide 3

A model for this must provide:

bool fo.operator()( Kernel::Plane 3 h, Kernel::Point 3 p)

returns true iff p lies on the negative side of h (h is con-
sidered a half-space).

bool fo.operator()( Kernel::Sphere 3 s, Kernel::Point 3 p)

returns true iff p lies on the negative side of s.

bool fo.operator()( Kernel::Tetrahedron 3 t, Kernel::Point 3 p)

returns true iff p lies on the negative side of t.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Plane 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 651
CGAL::Sphere 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 666
CGAL::Tetrahedron 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 669
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Kernel::HasOnPositiveSide 2

A model for this must provide:

bool fo.operator()( Kernel::Circle 2 c, Kernel::Point 2 p)

returns true iff p lies on the positive side of c.

bool fo.operator()( Kernel::Line 2 l, Kernel::Point 2 p)

returns true iff p lies on the positive side of l (l is consid-
ered a half-space).

bool fo.operator()( Kernel::Triangle 2 t, Kernel::Point 2 p)

returns true iff p lies on the positive side of t.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Circle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 614
CGAL::Line 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 622
CGAL::Triangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 633
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Kernel::HasOnPositiveSide 3

A model for this must provide:

bool fo.operator()( Kernel::Plane 3 h, Kernel::Point 3 p)

returns true iff p lies on the positive side of h (h is con-
sidered a half-space).

bool fo.operator()( Kernel::Sphere 3 s, Kernel::Point 3 p)

returns true iff p lies on the positive side of s.

bool fo.operator()( Kernel::Tetrahedron 3 t, Kernel::Point 3 p)

returns true iff p lies on the positive side of t.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Plane 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 651
CGAL::Sphere 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 666
CGAL::Tetrahedron 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 669
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Kernel::HasOnUnboundedSide 2

A model for this must provide:

bool fo.operator()( Kernel::Circle 2 c, Kernel::Point 2 p)

returns true iff p lies on the unbounded side of c.

bool fo.operator()( Kernel::Iso rectangle 2 i, Kernel::Point 2 p)

returns true iff p lies on the unbounded side of i.

bool fo.operator()( Kernel::Triangle 2 t, Kernel::Point 2 p)

returns true iff p lies on the unbounded side of t.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Circle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 614
CGAL::Iso rectangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 619
CGAL::Triangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 633
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Kernel::HasOnUnboundedSide 3

A model for this must provide:

bool fo.operator()( Kernel::Sphere 3 s, Kernel::Point 3 p)

returns true iff p lies on the unbounded side of s.

bool fo.operator()( Kernel::Tetrahedron 3 t, Kernel::Point 3 p)

returns true iff p lies on the unbounded side of t.

bool fo.operator()( Kernel::Iso cuboid 3 c, Kernel::Point 3 p)

returns true iff p lies on the unbounded side of c.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Iso cuboid 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 646
CGAL::Sphere 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 666
CGAL::Tetrahedron 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 669
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Kernel::HasOn 2

A model for this must provide:

bool fo.operator()( Kernel::Line 2 l, Kernel::Point 2 p)

returns true iff p lies on l.

bool fo.operator()( Kernel::Ray 2 r, Kernel::Point 2 p)

returns true iff p lies on r.

bool fo.operator()( Kernel::Segment 2 s, Kernel::Point 2 p)

returns true iff p lies on s.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Line 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 622
CGAL::Ray 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 629
CGAL::Segment 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 631
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Kernel::HasOn 3

A model for this must provide:

bool fo.operator()( Kernel::Circle 3 c, Kernel::Point 3 p)

returns true iff p lies on c.

bool fo.operator()( Kernel::Line 3 l, Kernel::Point 3 p)

returns true iff p lies on l.

bool fo.operator()( Kernel::Ray 3 r, Kernel::Point 3 p)

returns true iff p lies on r.

bool fo.operator()( Kernel::Segment 3 s, Kernel::Point 3 p)

returns true iff p lies on s.

bool fo.operator()( Kernel::Plane 3 pl, Kernel::Point 3 p)

returns true iff p lies on pl.

bool fo.operator()( Kernel::Plane 3 pl, Kernel::Line 3 l)

returns true iff l lies on pl.

bool fo.operator()( Kernel::Plane 3 pl, Kernel::Circle 3 c)

returns true iff c lies on pl.

bool fo.operator()( Kernel::Sphere 3 s, Kernel::Point 3 c)

returns true iff c lies on s.

bool fo.operator()( Kernel::Sphere 3 s, Kernel::Circle 3 c)

returns true iff c lies on s.

bool fo.operator()( Kernel::Triangle 3 t, Kernel::Point 3 p)

returns true iff p lies on t.
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Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Circle 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 663
CGAL::Line 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 649
CGAL::Plane 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 651
CGAL::Point 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 655
CGAL::Ray 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 659
CGAL::Segment 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 661
CGAL::Sphere 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 666
CGAL::Triangle 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 671
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Kernel::Intersect 2

A model for this must provide

Kernel::Object 2 fo.operator()( Type1 obj1, Type2 obj2)

computes the intersection region of two geometrical ob-
jects of type Type1 and Type2

for all pairs Type1 and Type2, where the types Type1 and Type2 can be any of the following:

• Kernel::Line 2
• Kernel::Ray 2
• Kernel::Segment 2
• Kernel::Triangle 2
• Kernel::Iso rectangle 2

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1553
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Kernel::Intersect 3

A model for this must provide

Kernel::Object 3 fo.operator()( Type1 obj1, Type2 obj2)

computes the intersection region of two geometrical ob-
jects of type Type1 and Type2

for all pairs Type1 and Type2, where the types Type1 and Type2 can be any of the following:

• Kernel::Plane 3
• Kernel::Line 3
• Kernel::Ray 3
• Kernel::Segment 3
• Kernel::Triangle 3

Kernel::Object 3 fo.operator()( Kernel::Sphere 3 s1, Kernel::Sphere 3 s2)

computes the intersection of two spheres. The result
can be either a Kernel::Point 3, a Kernel::Circle 3, a
Kernel::Sphere 3 or empty.

Kernel::Object 3 fo.operator()( Kernel::Plane 3 p, Kernel::Sphere 3 s)

computes the intersection of a plane and a sphere. The
result can be either a Kernel::Point 3, a Kernel::Circle
3 or empty.

Kernel::Object 3 fo.operator()( Kernel::Sphere 3 s, Kernel::Plane 3 p)

computes the intersection of a plane and a sphere. The
result can be either a Kernel::Point 3, a Kernel::Circle
3 or empty.

Kernel::Object 3 fo.operator()( Kernel::Plane 3 pl1, Kernel::Plane 3 pl2, Kernel::Plane 3 pl3)

computes the intersection of three planes. The result
can be either a Kernel::Point 3, a Kernel::Line 3, a
Kernel::Plane 3, or empty.

Refines

AdaptableFunctor (with two or three arguments)
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See Also

CGAL::intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1553
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Kernel::IsDegenerate 2

A model for this must provide:

bool fo.operator()( Kernel::Circle 2 o)

returns true iff o is degenerate.

bool fo.operator()( Kernel::Iso rectangle 2 o)

returns true iff o is degenerate.

bool fo.operator()( Kernel::Line 2 o)

returns true iff o is degenerate.

bool fo.operator()( Kernel::Ray 2 o)

returns true iff o is degenerate.

bool fo.operator()( Kernel::Segment 2 o)

returns true iff o is degenerate.

bool fo.operator()( Kernel::Triangle 2 o)

returns true iff o is degenerate.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Circle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 614
CGAL::Iso rectangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 619
CGAL::Line 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 622
CGAL::Ray 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 629
CGAL::Segment 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 631
CGAL::Triangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 633
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Kernel::IsDegenerate 3

A model for this must provide:

bool fo.operator()( Kernel::Circle 3 o)

returns true iff o is degenerate.

bool fo.operator()( Kernel::Iso cuboid 3 o)

returns true iff o is degenerate.

bool fo.operator()( Kernel::Line 3 o)

returns true iff o is degenerate.

bool fo.operator()( Kernel::Plane 3 o)

returns true iff o is degenerate.

bool fo.operator()( Kernel::Ray 3 o)

returns true iff o is degenerate.

bool fo.operator()( Kernel::Segment 3 o)

returns true iff o is degenerate.

bool fo.operator()( Kernel::Sphere 3 o)

returns true iff o is degenerate.

bool fo.operator()( Kernel::Tetrahedron 3 o)

returns true iff o is degenerate.

bool fo.operator()( Kernel::Triangle 3 o)

returns true iff o is degenerate.

Refines

AdaptableFunctor (with one argument)
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See Also

CGAL::Circle 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 663
CGAL::Iso cuboid 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 646
CGAL::Line 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 649
CGAL::Plane 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 651
CGAL::Point 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 655
CGAL::Ray 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 659
CGAL::Segment 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 661
CGAL::Sphere 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 666
CGAL::Tetrahedron 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 669
CGAL::Triangle 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 671

1016



C
on

ce
pt

F
un

ct
or

Kernel::IsHorizontal 2

A model for this must provide:

bool fo.operator()( Kernel::Line 2 o)

returns true iff o is horizontal.

bool fo.operator()( Kernel::Ray 2 o)

returns true iff o is horizontal.

bool fo.operator()( Kernel::Segment 2 o)

returns true iff o is horizontal.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Line 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 622
CGAL::Ray 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 629
CGAL::Segment 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 631
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Kernel::IsVertical 2

A model for this must provide:

bool fo.operator()( Kernel::Line 2 o)

returns true iff o is vertical.

bool fo.operator()( Kernel::Ray 2 o)

returns true iff o is vertical.

bool fo.operator()( Kernel::Segment 2 o)

returns true iff o is vertical.

Refines

AdaptableFunctor (with one argument)

See Also

CGAL::Line 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 622
CGAL::Ray 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 629
CGAL::Segment 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 631
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Kernel::LeftTurn 2

A model for this must provide:

bool fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q, Kernel::Point 2 r)

returns true, iff the three points p, q and r form a left turn.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::left turn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 746
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Kernel::LessDistanceToPoint 2

A model for this must provide:

bool fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q, Kernel::Point 2 r)

returns true iff the distance of q to p is smaller than the
distance of r to p.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::has smaller distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 738
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Kernel::LessDistanceToPoint 3

A model for this must provide:

bool fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

returns true iff the distance of q to p is smaller than the
distance of r to p.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::has smaller distance to point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 738
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Kernel::LessRotateCCW 2

A model for this must provide:

bool fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q, Kernel::Point 2 r)

returns true iff the three points p, q and r form a left turn
or if they are collinear and the distance of q to p is larger
than the distance of r to p, where p is the point passed to
the object at construction.
Precondition: p does not lie in the interior of the segment
rq, i.e. p is an extreme point with respect to {p,q,r}.

Refines

AdaptableFunctor (with three arguments)
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Kernel::LessSignedDistanceToLine 2

A model for this must provide:

bool fo.operator()( Kernel::Line 2 l, Kernel::Point 2 p, Kernel::Point 2 q)

returns true if the signed distance from p and the oriented
line l is smaller than the signed distance of q and l.

bool fo.operator()( Kernel::Point 2 p,
Kernel::Point 2 q,
Kernel::Point 2 r,
Kernel::Point 2 s)

returns true if the signed distance from r and the oriented
line l defined by p and q is smaller than the signed dis-
tance of s and l.
Precondition: p! = q.

Refines

AdaptableFunctor (with four arguments)

See Also

CGAL::has smaller signed distance to line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 739
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Kernel::LessSignedDistanceToPlane 3

A model for this must provide:

bool fo.operator()( Kernel::Plane 3 p, Kernel::Point 3 q, Kernel::Point 3 r)

returns true, iff the signed distance from point q to plane
p is smaller than the signed distance from point r to p.

bool fo.operator()( Kernel::Point 3 p1,
Kernel::Point 3 p2,
Kernel::Point 3 p3,
Kernel::Point 3 q,
Kernel::Point 3 r)

returns true, iff the signed distance from point q to the
plane p defined by p1, p2, p3 is smaller than the signed
distance from point r to p.
Precondition: p,q, and r are not collinear.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::has smaller signed distance to plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 740
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Kernel::LessXYZ 3

A model for this must provide:

bool fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

returns true iff the x-coordinate of p is smaller than the x-
coordinate of q or if the are the same and the y-coordinate
of p is smaller than the y-coordinate of q, or, if both x-
and y- coordinate are identical and the z-coordinate of p
is smaller than the z-coordinate of q.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::lexicographically xyz smaller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 747
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Kernel::LessXY 2

A model for this must provide:

bool fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q)

returns true iff the x-coordinate of p is smaller than the x-
coordinate of q or if the are the same and the y-coordinate
of p is smaller than the y-coordinate of q.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::lexicographically xy smaller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 751
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Kernel::LessXY 3

A model for this must provide:

bool fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

returns true iff the x-coordinate of p is smaller than the x-
coordinate of q or if the are the same and the y-coordinate
of p is smaller than the y-coordinate of q.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::compare xy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 714
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Kernel::LessX 2

A model for this must provide:

bool fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q)

returns true iff the x-coordinate of p is smaller than the
x-coordinate of q.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::compare x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 712
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Kernel::LessX 3

A model for this must provide:

bool fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

returns true iff the x-coordinate of p is smaller than the
x-coordinate of q.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::compare x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 712
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Kernel::LessYX 2

A model for this must provide:

bool fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q)

returns true iff the y-coordinate of p is smaller than the y-
coordinate of q or if the are the same and the x-coordinate
of p is smaller than the x-coordinate of q.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::compare yx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 723
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Kernel::LessY 2

A model for this must provide:

bool fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q)

returns true iff the y-coordinate of p is smaller than the
y-coordinate of q.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::compare y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 719
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Kernel::LessY 3

A model for this must provide:

bool fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

returns true iff the y-coordinate of p is smaller than the
y-coordinate of q.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::compare y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 719
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Kernel::LessZ 3

A model for this must provide:

bool fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q)

returns true iff the z-coordinate of p is smaller than the
z-coordinate of q.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::compare z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 724
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Kernel::Orientation 2

A model for this must provide:

Orientation fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q, Kernel::Point 2 r)

returns LEFT TURN, if r lies to the left of the oriented
line l defined by p and q, returns RIGHT TURN if r lies
to the right of l, and returns COLLINEAR if r lies on l.

Orientation fo.operator()( Kernel::Vector 2 u, Kernel::Vector 2 v)

returns LEFT TURN if u and v form a left turn, returns
RIGHT TURN if u and v form a right turn, and returns
COLLINEAR if u and v are collinear.

Refines

AdaptableFunctor (with three arguments)

See Also

CGAL::orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1116
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Kernel::Orientation 3

A model for this must provide:

Orientation fo.operator()( Kernel::Point 3 p,
Kernel::Point 3 q,
Kernel::Point 3 r,
Kernel::Point 3 s)

returns POSITIVE, if s lies on the positive side of the ori-
ented plane h defined by p, q, and r, returns NEGATIVE
if s lies on the negative side of h, and returns COPLANAR
if s lies on h.

Orientation fo.operator()( Kernel::Vector 3 u, Kernel::Vector 3 v, Kernel::Vector 3 w)

returns POSITIVE if u, v and w are positively oriented,
returns NEGATIVE if u, v and w are negatively oriented,
and returns COPLANAR if u, v and w are coplanar.

Orientation fo.operator()( Kernel::Sphere 3 s)

returns the orientation of the sphere s.

Refines

AdaptableFunctor (with four arguments)

See Also

CGAL::orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1116
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Kernel::OrientedSide 2

A model for this must provide:

Oriented side fo.operator()( Kernel::Circle 2 c, Kernel::Point 2 p)

returns ON ORIENTED BOUNDARY , ON NEGATIVE
SIDE, or the constant ON POSITIVE SIDE, depending
on the position of p relative to the oriented circle c.

Oriented side fo.operator()( Kernel::Line 2 l, Kernel::Point 2 p)

returns ON ORIENTED BOUNDARY , ON NEGATIVE
SIDE, or the constant ON POSITIVE SIDE, depending
on the position of p relative to the oriented line l.

Oriented side fo.operator()( Kernel::Triangle 2 t, Kernel::Point 2 p)

returns ON ORIENTED BOUNDARY , ON NEGATIVE
SIDE, or the constant ON POSITIVE SIDE, depending
on the position of p relative to the oriented triangle t.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Circle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 614
CGAL::Line 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 622
CGAL::Triangle 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 633
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Kernel::OrientedSide 3

A model for this must provide:

Oriented side fo.operator()( Kernel::Plane 3 h, Kernel::Point 3 p)

returns ON ORIENTED BOUNDARY , ON NEGATIVE
SIDE, or the constant ON POSITIVE SIDE, depending
on the position of p relative to the oriented plane h.

Oriented side fo.operator()( Kernel::Tetrahedron 3 t, Kernel::Point 3 p)

returns ON ORIENTED BOUNDARY , ON NEGATIVE
SIDE, or the constant ON POSITIVE SIDE, depending
on the position of p relative to the oriented tetrahedron t.

Oriented side fo.operator()( Kernel::Sphere 3 s, Kernel::Point 3 p)

returns ON ORIENTED BOUNDARY , ON NEGATIVE
SIDE, or the ON POSITIVE SIDE, depending on the po-
sition of p relative to the oriented sphere s.

Refines

AdaptableFunctor (with two arguments)

See Also

CGAL::Plane 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 651
CGAL::Sphere 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 666
CGAL::Tetrahedron 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 669

1037



C
on

ce
pt

F
un

ct
or

Kernel::SideOfBoundedCircle 2

A model for this must provide:

Bounded side fo.operator()( Kernel::Point 2 p,
Kernel::Point 2 q,
Kernel::Point 2 r,
Kernel::Point 2 t)

returns the relative position of point t to the circle defined
by p, q and r. The order of the points p, q and r does not
matter.
Precondition: p, q and r are not collinear.

Bounded side fo.operator()( Kernel::Point 2 p, Kernel::Point 2 q, Kernel::Point 2 t)

returns the position of the point t relative to the circle that
has pq as its diameter.

Refines

AdaptableFunctor (with four arguments)

See Also

CGAL::side of bounded circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 769
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Kernel::SideOfBoundedSphere 3

A model for this must provide:

Bounded side fo.operator()( Kernel::Point 3 p,
Kernel::Point 3 q,
Kernel::Point 3 r,
Kernel::Point 3 s,
Kernel::Point 3 t)

returns the relative position of point t to the sphere de-
fined by p, q, r, and s. The order of the points p, q, r, and
s does not matter.
Precondition: p, q, r and s are not coplanar.

Bounded side fo.operator()( Kernel::Point 3 p,
Kernel::Point 3 q,
Kernel::Point 3 r,
Kernel::Point 3 t)

returns the position of the point t relative to the sphere
passing through p, q, and r and whose center is in the
plane defined by these three points.

Bounded side fo.operator()( Kernel::Point 3 p, Kernel::Point 3 q, Kernel::Point 3 t)

returns the position of the point t relative to the sphere
that has pq as its diameter.

Refines

AdaptableFunctor (with five arguments)

See Also

CGAL::side of bounded sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1118
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Kernel::SideOfOrientedCircle 2

A model for this must provide:

Oriented side fo.operator()( Kernel::Point 2 p,
Kernel::Point 2 q,
Kernel::Point 2 r,
Kernel::Point 2 t)

returns the relative position of point t to the oriented cir-
cle defined by p, q and r. The order of the points p, q and
r is important, since it determines the orientation of the
implicitly constructed circle.
If p, q and r are collinear, the circle degenerates in a
line. ON ORIENTED BOUNDARY is returned if t is also
collinear or if two points are identical, otherwise, side of
oriented circle(r, q, t, p) is returned.

Refines

AdaptableFunctor (with four arguments)

See Also

CGAL::side of oriented circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 771
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Kernel::SideOfOrientedSphere 3

A model for this must provide:

Oriented side fo.operator()( Kernel::Point 3 p,
Kernel::Point 3 q,
Kernel::Point 3 r,
Kernel::Point 3 s,
Kernel::Point 3 t)

returns the relative position of point t to the oriented
sphere defined by p, q, r and s. The order of the points p,
q, r, and s is important, since it determines the orientation
of the implicitly constructed sphere. If the points p, q, r
and s are positive oriented, positive side is the bounded
interior of the sphere.
In case of degeneracies, ON ORIENTED BOUNDARY is
returned if all points are coplanar. Otherwise, there is a
cyclic permutation of the five points that puts four non
coplanar points first, it is used to answer the predicate:
e.g. side of oriented sphere(q, r, s, t, p) is returned if q,
r, s, and t are non coplanar.

Refines

AdaptableFunctor (with five arguments)

See Also

CGAL::side of oriented sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1119
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11.16 Dimension handling tools
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CGAL::Ambient dimension<T, K>

Definition

The class Ambient dimension<T, K> allows to retrieve the dimension of the ambient space of a type T in a
kernel K.

Parameters

The parameter K has the default value Kernel traits<T>::Kernel>.

#include <CGAL/Dimension.h>

Constants

static const int value; The dimension value as a compile-time integral constant.
It is implemented as K::Dimension<T>::type::value. It
exists only when the dimension is a compile-time con-
stant.

Types

Ambient dimension<T, K>:: type Either Dimension tag<dim> if the dimension is a
compile-time constant of value dim, or Dynamic
dimension tag otherwise. It is implemented as
K::Ambient dimension<T>::type.

Example

The following retrieves the dimension of a point type.

typedef K::Point 2 Point;

int dimension = Ambient dimension<Point, K>::value;

assert(dimension == 2);

See Also

CGAL::Dimension tag<int dim> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1044
CGAL::Dynamic dimension tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1045
CGAL::Feature dimension<T, K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1043
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CGAL::Feature dimension<T, K>

Definition

The class Feature dimension<T, K> allows to retrieve the geometric dimension of a type T in a kernel K.

Parameters

The parameter K has the default value Kernel traits<T>::Kernel.

#include <CGAL/Dimension.h>

Constants

static const int value; The dimension value as a compile-time integral con-
stant. It is implemented as K::Feature dimension<T>
::type::value. It exists only when the dimension is a
compile-time constant.

Types

Feature dimension<T, K>:: type Either Dimension tag<dim> if the dimension is a
compile-time constant of value dim, or Dynamic
dimension tag otherwise. It is implemented as
K::Feature dimension<T>::type.

Example

The following retrieves the dimension of a point type.

typedef K::Point 2 Point;

int dimension = Feature dimension<Point, K>::value;

assert(dimension == 0);

See Also

CGAL::Dimension tag<int dim> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1044
CGAL::Dynamic dimension tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1045
CGAL::Ambient dimension<T, K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1042
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CGAL::Dimension tag<int dim>

Definition

An object of the class Dimension tag<int dim> is an empty object which can be used for dispatching functions
based on the dimension of an object, as provided by the dim parameter. It is useful in cases where it is not more
practical to pass the dimension as a template parameter directly.

#include <CGAL/Dimension.h>

Constants

static const int value; The value of the dim parameter.

Example

The following code declares two functions constructing two points at the origin, either in 2D or in 3D.

Point 2<K> get origin(Dimension tag<2>) { return Point 2<K>(ORIGIN); }

Point 3<K> get origin(Dimension tag<3>) { return Point 3<K>(ORIGIN); }

std::cout � get origin(Dimension tag<2>())) � std::endl;

See Also

CGAL::Ambient dimension<T, K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1042
CGAL::Feature dimension<T, K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1043
CGAL::Dynamic dimension tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1045
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CGAL::Dynamic dimension tag

Definition

An object of the class Dynamic dimension tag is an empty object which can be used for dispatching functions
based on the dimension of an object. Dynamic dimension tag indicates that the dimension is not known at
compile-time. Dimension tag is the tag class dealing with compile-time dimensions.

#include <CGAL/Dimension.h>

Example

The following code declares two functions constructing two points at the origin, either in 2D or in 3D.

Point 2<K> get origin(Dimension tag<2>) { return Point 2<K>(ORIGIN); }

Point 3<K> get origin(Dimension tag<3>) { return Point 3<K>(ORIGIN); }

Point d<K> get origin(Dynamic dimension tag) { return Point d<K>(ORIGIN); }

std::cout � get origin(Dynamic dimension tag())) � std::endl;

See Also

CGAL::Dimension tag<int dim> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1044
CGAL::Ambient dimension<T, K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1042
CGAL::Feature dimension<T, K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1043
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12.1 Introduction

This part of the reference manual covers the higher-dimensional kernel. The kernel contains objects of constant
size, such as point, vector, direction, line, ray, segment, circle. With each type comes a set of functions which can
be applied to an object of this type. You will typically find access functions (e.g. to the coordinates of a point),
tests of the position of a point relative to the object, a function returning the bounding box, the length, or the
area of an object, and so on. The CGAL kernel further contains basic operations such as affine transformations,
detection and computation of intersections, and distance computations. Note that this section partly recapitulates
facts already mentioned for the lower-dimensional kernel.

12.1.1 Robustness

The correctness proof of nearly all geometric algorithms presented in theory papers assumes exact computation
with real numbers. This leads to a fundamental problem with the implementation of geometric algorithms.
Naively, often the exact real arithmetic is replaced by inexact floating-point arithmetic in the implementation.
This often leads to acceptable results for many input data. However, even for the implementation of the simplest
geometric algorithms this simplification occasionally does not work. Rounding errors introduced by inaccurate
arithmetic may lead to inconsistent decisions, causing unexpected failures for some correct input data. There are
many approaches to this problem, one of them is to compute exactly (compute so accurate that all decisions made
by the algorithm are exact) which is possible in many cases but more expensive than standard floating-point
arithmetic. C. M. Hoffmann [Hof89a, Hof89b] illustrates some of the problems arising in the implementation
of geometric algorithms and discusses some approaches to solve them. A more recent overview is given in
[Sch00]. The exact computation paradigm is discussed by Yap and Dubé [YD95] and Yap [Yap97].

In CGAL you can choose the underlying number types and arithmetic. You can use different types of arithmetic
simultaneously and the choice can be easily changed, e.g. for testing. So you can choose between implemen-
tations with fast but occasionally inexact arithmetic and implementations guaranteeing exact computation and
exact results. Of course you have to pay for the exactness in terms of execution time and storage space. See the
dedicated chapter for more details on number types and their capabilities and performance.

12.1.2 Genericity

To increase generic usage of objects and predicates the higher-dimensional kernel makes heavy use of iterator
ranges as defined in the STL for modeling tuples. Iterators conceptualize C++ pointers.

For an iterator range [first,last) we define T = tuple [first,last) as the ordered tuple (T [0],T [1], . . .T [d− 1])
where S[i] = ∗+ +(i)first (the element obtained by i times forwarding the iterator by operator ++ and then
dereferencing it to get the value to which it points). We write d = size [first,last) and S = set [first,last) to
denote the unordered set of elements of the corresponding tuple.

This extends the syntax of random access iterators to input iterators. If we index the tuple as above then we
require that ++(d+1) first = last.

12.2 Kernel Representations

Our object of study is the d-dimensional affine Euclidean space, where d is a parameter of our geometry. Objects
in that space are sets of points. A common way to represent the points is the use of Cartesian coordinates, which
assumes a reference frame (an origin and d orthogonal axes). In that framework, a point is represented by a

1048



d-tuple (c0,c1, . . . ,cd−1), and so are vectors in the underlying linear space. Each point is represented uniquely
by such Cartesian coordinates.

Another way to represent points is by homogeneous coordinates. In that framework, a point is represented by a
(d + 1)-tuple (h0,h1, . . . ,hd). Via the formulae ci = hi/hd , the corresponding point with Cartesian coordinates
(c0,c1, . . . ,cd−1) can be computed. Note that homogeneous coordinates are not unique. For λ 6= 0, the tuples
(h0,h1, . . . ,hd) and (λ · h0,λ · h1, . . . ,λ · hd) represent the same point. For a point with Cartesian coordinates
(c0,c1, . . . ,cd−1) a possible homogeneous representation is (c0,c1, . . . ,cd−1,1). Homogeneous coordinates in
fact allow to represent objects in a more general space, the projective space Pd . In CGAL, we do not compute in
projective geometry. Rather, we use homogeneous coordinates to avoid division operations, since the additional
coordinate can serve as a common denominator.

12.2.1 Genericity through Parameterization

Almost all the kernel objects (and the corresponding functions) are templates with a parameter that allows the
user to choose the representation of the kernel objects. A type that is used as an argument for this parameter must
fulfill certain requirements on syntax and semantics. The list of requirements defines an abstract kernel concept.
In CGAL such a kernel concept is often also called a representation class and denoted by R. A representation
class provides the actual implementations of the kernel objects. For all kernel objects Kernel object, the types
CGAL::Kernel object<R> and R::Kernel object are identical.

CGAL offers two families of concrete models for the concept representation class, one based on the Cartesian
representation of points and one based on the homogeneous representation of points. The interface of the kernel
objects is designed such that it works well with both Cartesian and homogeneous representation, for example,
points have a constructor with a range of coordinates plus a common denominator (the d + 1 homogeneous
coordinates of the point). The common interfaces parameterized with a representation class allow one to de-
velop code independent of the chosen representation. We said “families” of models, because both families are
parameterized too. A user can choose the number type used to represent the coordinates and the linear algebra
module used to calculate the result of predicates and constructions.

For reasons that will become evident later, a representation class provides two typenames for number types,
namely R::FT and R::RT and one typename for the linear algebra module R::LA. The type R::FT must fulfill
the requirements on what is called a field type in CGAL. This roughly means that R::FT is a type for which
operations +, −, ∗ and / are defined with semantics (approximately) corresponding to those of a field in a
mathematical sense. Note that, strictly speaking, the built-in type int does not fulfill the requirements on a field
type, since ints correspond to elements of a ring rather than a field, especially operation / is not the inverse of
∗. The requirements on the type R::RT are weaker. This type must fulfill the requirements on what is called
an Euclidean ring type in CGAL. This roughly means that R::RT is a type for which operations +, −, ∗ are
defined with semantics (approximately) corresponding to those of a ring in a mathematical sense. A very limited
division operation / must be available as well. It must work for exact (i.e., no remainder) integer divisions only.
Furthermore, both number types should fulfill CGAL’s requirements on a number type.

12.2.2 Cartesian Kernel

With Cartesian d<FieldNumberType,LinearAlgebra> you can choose Cartesian representation of coordinates.
The type LinearAlgebra must me a linear algebra module working on numbers of type FieldNumberType. The
second parameter defaults to module delivered with the kernel so for short a user can just write Cartesian d<
FieldNumberType> when not providing her own linear algebra.

When you choose Cartesian representation you have to declare at least the type of the coordinates. A number
type used with the Cartesian d representation class should be a field type as described above. Both Carte-
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sian<FieldNumberType>::FT and Cartesian<FieldNumberType>::RT are mapped to number type FieldNum-
berType. Cartesian d<FieldNumberType,LinearAlgebra>::LA is mapped to the type LinearAlgebra. Carte-
sian<FieldNumberType> uses reference counting internally to save copying costs.

12.2.3 Homogeneous Kernel

As we mentioned before, homogeneous coordinates permit to avoid division operations in numerical compu-
tations, since the additional coordinate can serve as a common denominator. Avoiding divisions can be useful
for exact geometric computation. With Homogeneous d<RingNumberType,LinearAlgebra> you can choose ho-
mogeneous representation of coordinates with the kernel objects. As for Cartesian representation you have to
declare at the same time the type used to store the homogeneous coordinates. Since the homogeneous represen-
tation allows one to avoid the divisions, the number type associated with a homogeneous representation class
must be a model for the weaker concept Euclidean ring type only.

The type LinearAlgebra must me a linear algebra module working on numbers of type RingNumberType. Again
the second parameter defaults to module delivered with the kernel so for short one can just write Homogeneous
d<RingNumberType> when replacing the default is no issue.

However, some operations provided by this kernel involve division operations, for example computing squared
distances or returning a Cartesian coordinate. To keep the requirements on the number type parameter of Homo-
geneous low, the number type Quotient<RingNumberType> is used instead. This number type turns a ring type
into a field type. It maintains numbers as quotients, i.e. a numerator and a denominator. Thereby, divisions are
circumvented. With Homogeneous d<RingNumberType>, Homogeneous d<RingNumberType>::FT is equal
to Quotient<RingNumberType> while Homogeneous d<RingNumberType>::RT is equal to RingNumberType.
Homogeneous d<RingNumberType,LinearAlgebra>::LA is mapped to the type LinearAlgebra.

12.2.4 Naming conventions

The use of representation classes not only avoids problems, it also makes all CGAL classes very uniform. They
always consist of:

1. The capitalized base name of the geometric object, such as Point, Segment, Triangle.

2. Followed by d.

3. A representation class as parameter, which itself is parameterized with a number type, such as Cartesian
d<double> or Homogeneous d<leda integer>.

12.2.5 Kernel as a Traits Class

Algorithms and data structures in the basic library of CGAL are parameterized by a traits class that subsumes
the objects on which the algorithm or data structure operates as well as the operations to do so. For most of the
algorithms and data structures in the basic library you can use a kernel as a traits class. For some algorithms
you even do not have to specify the kernel; it is detected automatically using the types of the geometric objects
passed to the algorithm. In some other cases, the algorithms or data structures needs more than is provided by a
kernel. In these cases, a kernel can not be used as a traits class.

1050



12.2.6 Choosing a Kernel

If you start with integral Cartesian coordinates, many geometric computations will involve integral numeri-
cal values only. Especially, this is true for geometric computations that evaluate only predicates, which are
tantamount to determinant computations. Examples are triangulation of point sets and convex hull computation.

The dimension d of our affine space determines the dimension of the matrix computations in the mathematical
evaluation of predicates. As rounding errors accumulate fast the homogeneous representation used with multi-
precision integers is the kernel of choice for well-behaved algorithms. Note, that unless you use an arbitrary
precision integer type, incorrect results might arise due to overflow.

If new points are to be constructed, for example the intersection point of two lines, computation of Cartesian
coordinates usually involves divisions, so you need to use a field type with Cartesian representation or have to
switch to homogeneous representation. double is a possible, but imprecise field type. You can also put any ring
type into Quotient to get a field type and put it into Cartesian, but you better put the ring type into Homogeneous.
leda rational and leda real are valid field types, too.

Still other people will prefer the built-in type double, because they need speed and can live with approximate
results, or even algorithms that, from time to time, crash or compute incorrect results due to accumulated
rounding errors.

12.2.7 Inclusion of Header Files

You need just to include a representation class to obtain the geometric objects of the kernel that you would like
to use with the representation class, i.e., CGAL/Cartesian d.h or CGAL/Homogeneous d.h

12.3 Kernel Geometry

12.3.1 Points and Vectors

In CGAL, we strictly distinguish between points, vectors and directions. A point is a point in the Euclidean
space Ed , a vector is the difference of two points p2, p1 and denotes the direction and the distance from p1
to p2 in the vector space Rd , and a direction is a vector where we forget about its length. They are different
mathematical concepts. For example, they behave different under affine transformations and an addition of two
points is meaningless in affine geometry. By putting them in different classes we not only get cleaner code,
but also type checking by the compiler which avoids ambiguous expressions. Hence, it pays twice to make this
distinction.

CGAL defines a symbolic constant ORIGIN of type Origin which denotes the point at the origin. This constant
is used in the conversion between points and vectors. Subtracting it from a point p results in the locus vector of
p.

double coord[] = {1.0, 1.0, 1.0, 1.0};

Point d< Cartesian d<double> > p(4,coord,coord+4), q(4);

Vector d< Cartesian d<double> > v(4);

v = p − ORIGIN;

q = ORIGIN + v;

assert( p == q );
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In order to obtain the point corresponding to a vector v you simply have to add v to ORIGIN. If you want to
determine the point q in the middle between two points p1 and p2, you can write1

q = p 1 + (p 2 − p 1) / 2.0;

Note that these constructions do not involve any performance overhead for the conversion with the currently
available representation classes.

12.3.2 Kernel Objects

Besides points (Point d<R>), vectors (Vector d<R>), and directions (Direction d<R>), CGAL provides lines,
rays, segments, hyperplanes, and spheres.

Lines (Line d<R>) in CGAL are oriented. A ray (Ray d<R>) is a semi-infinite interval on a line, and this line is
oriented from the finite endpoint of this interval towards any other point in this interval. A segment (Segment d<
R>) is a bounded interval on a directed line, and the endpoints are ordered so that they induce the same direction
as that of the line.

Hyperplanes are affine subspaces of dimension d−1 in Ed , passing through d points. Hyperplanes are oriented
and partition space into a positive side and a negative side. In CGAL, there are no special classes for halfspaces.
Halfspaces are supposed to be represented by oriented hyperplanes. All kernel objects are equality comparable
via operator== and operator!=. For those oriented objects whose orientation can be reversed (segments, lines,
hyperplanes, spheres) there is also a global function weak equality that allows to test for point set equality
disregarding the orientation.

12.3.3 Orientation and Relative Position

Geometric objects in CGAL have member functions that test the position of a point relative to the object. Full
dimensional objects and their boundaries are represented by the same type, e.g. halfspaces and hyperplanes are
not distinguished, neither are balls and spheres. Such objects split the ambient space into two full-dimensional
parts, a bounded part and an unbounded part (e.g. spheres), or two unbounded parts (e.g. hyperplanes). By
default these objects are oriented, i.e., one of the resulting parts is called the positive side, the other one is called
the negative side. Both of these may be unbounded.

For these objects there is a function oriented side() that determines whether a test point is on the positive side,
the negative side, or on the oriented boundary. These function returns a value of type Oriented side.

Those objects that split the space in a bounded and an unbounded part, have a member function bounded side()
with return type Bounded side.

If an object is lower dimensional, e.g. a segment in d-dimensional space, there is only a test whether a point
belongs to the object or not. This member function, which takes a point as an argument and returns a Boolean
value, is called has on()

1you might call midpoint(p 1,p 2) instead
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12.4 Predicates and Constructions

12.4.1 Predicates

Predicates are at the heart of a geometry kernel. They are basic units for the composition of geometric algorithms
and encapsulate decisions. Hence their correctness is crucial for the control flow and hence for the correctness
of an implementation of a geometric algorithm. CGAL uses the term predicate in a generalized sense. Not only
components returning a Boolean value are called predicates but also components returning an enumeration type
like a Comparison result or an Orientation. We say components, because predicates are implemented both as
functions and function objects (also called functors and provided by a kernel class).

CGAL provides predicates for the orientation of point sets (orientation), for comparing points according to some
given order, especially for comparing Cartesian coordinates (e.g. lexicographically xy smaller), in-sphere tests,
and predicates to compare distances.

12.4.2 Constructions

Functions and function objects that generate objects that are neither of type bool nor enum types are called con-
structions. Constructions involve computation of new numerical values and may be imprecise due to rounding
errors unless a kernel with an exact number type is used.

Affine transformations (Aff transformation d<R>) allow to generate new object instances under arbitrary affine
transformations. These transformations include translations, rotations (within planes) and scaling. Most of
the geometric objects in a kernel have a member function transform(Aff transformation t) which applies the
transformation to the object instance.

CGAL also provides a set of functions that detect or compute the intersection between objects and functions to
calculate their squared distance. Moreover, some member functions of kernel objects are constructions.

So there are routines that compute the square of the Euclidean distance, but no routines that compute the distance
itself. Why? First of all, the two values can be derived from each other quite easily (by taking the square root
or taking the square). So, supplying only the one and not the other is only a minor inconvenience for the user.
Second, often either value can be used. This is for example the case when (squared) distances are compared.
Third, the library wants to stimulate the use of the squared distance instead of the distance. The squared distance
can be computed in more cases and the computation is cheaper. We do this by not providing the perhaps more
natural routine, The problem of a distance routine is that it needs the sqrt operation. This has two drawbacks:

• The sqrt operation can be costly. Even if it is not very costly for a specific number type and platform,
avoiding it is always cheaper.

• There are number types on which no sqrt operation is defined, especially integer types and rationals.

12.4.3 Intersection and Polymorphic Return Values

Intersections on kernel objects currently cover only those objects that are part of flats (Segment d<R>, Ray d<
R>, Line c<R>, and Hyperplane d<R>). For any pair of objects o1, o2 of these types the operation intersec-
tion(o1,o2) returns a polymorphic object that wraps the result of the intersection operation.

The class Object provides the polymorphic abstraction. An object obj of type Object can represent an arbitrary
class. The only operations it provides is to make copies and assignments, so that you can put them in lists
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or arrays. Note that Object is NOT a common base class for the elementary classes. Therefore, there is no
automatic conversion from these classes to Object Rather this is done with the global function make object().
This encapsulation mechanism requires the use of object cast to unwrap the encapsulated class.

Example

In the following example, the object type is used as a return value for the intersection computation, as there are
possibly different return values.

typedef Point d< Cartesian d<double> > Point;

typedef Segment d< Cartesian d<double> > Segment;

Segment s1, s2;

std::cin � s1 � s2;

Object obj = intersection(s1, s2);

if (const Point ∗p = object cast<Point>(&obj) ) {

/∗ do something with ∗p ∗/
} else if (const Segment ∗s = object cast<Segment>(&obj) ) {

/∗ do something with ∗s ∗/
}

/∗ there was no intersection ∗/

12.4.4 Constructive Predicates

For testing where a point p lies with respect to a hyperplane defined by an array P of points p1, ... , pd , one may
be tempted to construct the hyperplane Hyperplane d<R>(d,P,P+d) and use the method oriented side(p). This
may pay off if many tests with respect to the plane are made. Nevertheless, unless the number type is exact, the
constructed plane is only approximated, and round-off errors may lead oriented side(p) to return an orientation
which is different from the orientation of p1, ... , pd , p.

In CGAL, we provide predicates in which such geometric decisions are made directly with a reference to the
input points in P without an intermediary object like a plane. For the above test, the recommended way to get
the result is to use orientation(P’,P’+d), where P′ is an array containing the points p1, ... , pd , p.

For exact number types like leda real, the situation is different. If several tests are to be made with the same
plane, it pays off to construct the plane and to use oriented side(p).

12.5 Design and Implementation History

This higher-dimensional kernel is the result of a long evolving development. A first version of the kernel was
offered as a LEDA extension package ddgeo by Kurt Mehlhorn and Michael Seel. The original design was
driven by the realization of a d-dimensional convex hull data type developed at the Max-Planck Institut für
Informatik.

The code base was discussed and reviewed within the CGAL kernel group (of the low-dimensional kernel).
This led to the identification of the concept interfaces and in parallel to adaptations according to the evolution
of the low-dimensional kernel. The kernel was revised based on suggestions by Hervé Brönnimann, Michael
Hoffmann, and Stefan Schirra.
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12.6 Linear Algebra Concepts and Classes

C
on

ce
pt

LinearAlgebraTraits d

Definition

The data type LinearAlgebraTraits d encapsulates two classes Matrix, Vector and many functions of basic linear
algebra. An instance of data type Matrix is a matrix of variables of type NT . Accordingly, Vector implements
vectors of variables of type NT . Most functions of linear algebra are checkable, i.e., the programs can be asked
for a proof that their output is correct. For example, if the linear system solver declares a linear system Ax = b
unsolvable it also returns a vector c such that cT A = 0 and cT b 6= 0.

Types

LinearAlgebraTraits d:: NT the number type of the components.

LinearAlgebraTraits d:: Vector the vector type.

LinearAlgebraTraits d:: Matrix the matrix type.

Operations

static Matrix LA.transpose( Matrix M)

returns MT (a M.column dimension() ×M.column dimension() - matrix).

static bool LA.inverse( Matrix M, Matrix& I, NT& D, Vector& c)

determines whether M has an inverse. It also computes either the inverse as (1/D) ·I
or when no inverse exists, a vector c such that cT ·M = 0.
Precondition: M is square.

static Matrix LA.inverse( Matrix M, NT& D)

returns the inverse matrix of M. More precisely, 1/D times the matrix returned is
the inverse of M.

Precondition: determinant(M) != 0.
Precondition: M is square.
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static NT LA.determinant( Matrix M, Matrix& L, Matrix& U, std::vector<int>& q, Vector& c)

returns the determinant D of M and sufficient information to verify that the value
of the determinant is correct. If the determinant is zero then c is a vector such
that cT ·M = 0. If the determinant is non-zero then L and U are lower and upper
diagonal matrices respectively and q encodes a permutation matrix Q with Q(i, j) =
1 iff i = q( j) such that L ·M ·Q = U , L(0,0) = 1, L(i, i) = U(i−1, i−1) for all i,
1≤ i < n, and D = s ·U(n−1,n−1) where s is the determinant of Q.
Precondition: M is square.

static bool LA.verify determinant( Matrix M,
NT D,
Matrix& L,
Matrix& U,
std::vector<int> q,
Vector& c)

verifies the conditions stated above.

static NT LA.determinant( Matrix M)

returns the determinant of M.
Precondition: M is square.

static int LA.sign of determinant( Matrix M)

returns the sign of the determinant of M.
Precondition: M is square.

static bool LA.linear solver( Matrix M,
Vector b,
Vector& x,
NT& D,
Matrix& spanning vectors,
Vector& c)

determines the complete solution space of the linear system M ·x = b. If the system
is unsolvable then cT ·M = 0 and cT ·b 6= 0. If the system is solvable then (1/D)x
is a solution, and the columns of spanning vectors are a maximal set of linearly
independent solutions to the corresponding homogeneous system.
Precondition: M.row dimension() = b.dimension().

static bool LA.linear solver( Matrix M, Vector b, Vector& x, NT& D, Vector& c)

determines whether the linear system M · x = b is solvable. If yes, then (1/D)x is a
solution, if not then cT ·M = 0 and cT ·b 6= 0.
Precondition: M.row dimension() = b.dimension().
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static bool LA.linear solver( Matrix M, Vector b, Vector& x, NT& D)

as above, but without the witness c
Precondition: M.row dimension() = b.dimension().

static bool LA.is solvable( Matrix M, Vector b)

determines whether the system M · x = b is solvable

Precondition: M.row dimension() = b.dimension().

static bool LA.homogeneous linear solver( Matrix M, Vector& x)

determines whether the homogeneous linear system M · x = 0 has a non - trivial
solution. If yes, then x is such a solution.

static int LA.homogeneous linear solver( Matrix M, Matrix& spanning vecs)

determines the solution space of the homogeneous linear system M ·x = 0. It returns
the dimension of the solution space. Moreover the columns of spanning vecs span
the solution space.

static int LA.independent columns( Matrix M, std::vector<int>& columns)

returns the indices of a maximal subset of independent columns of M.

static int LA.rank( Matrix M)

returns the rank of matrix M

Has Models

CGAL::Linear algebraHd<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1068
CGAL::Linear algebraCd<FT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1067
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Vector

Definition

An instance of data type Vector is a vector of variables of number type NT . Together with the type Matrix it
realizes the basic operations of linear algebra.

Types

Vector:: NT the ring type of the components.

Vector:: iterator the iterator type for accessing components.

Vector:: const iterator the const iterator type for accessing components.

Creation

Vector v; creates an instance v of type Vector.

Vector v( int d); creates an instance v of type Vector. v is initialized to a vector of dimension d.

Vector v( int d, NT x); creates an instance v of type Vector. v is initialized to a vector of dimension d with
entries x.

template <class Forward iterator>
Vector v( Forward iterator first, Forward iterator last);

creates an instance v of type Vector; v is initialized to the vector with entries set
[first,last).
Requirement: Forward iterator has value type NT .

Operations

int v.dimension() returns the dimension of v.

bool v.is zero() returns true iff v is the zero vector.

NT& v[ int i] returns the i-th component of v.

Precondition: 0≤ i≤ v.dimension()−1.

iterator v.begin() iterator to the first component.

iterator v.end() iterator beyond the last component.
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The same operations begin(), end() exist for const iterator.

Vector v+ v1 Addition.
Precondition:
v.dimension() == v1.dimension().

Vector v− v1 Subtraction.
Precondition:
v.dimension() = v1.dimension().

NT v∗ v1 Inner Product.
Precondition:
v.dimension() = v1.dimension().

Vector −v Negation.

Vector& v+= v1 Addition plus assignment.
Precondition:
v.dimension() == v1.dimension().

Vector& v−= v1 Subtraction plus assignment.
Precondition:
v.dimension() == v1.dimension().

Vector& v∗= NT s Scalar multiplication plus assignment.

Vector& v/= NT s Scalar division plus assignment.

Vector NT r ∗ v Component-wise multiplication with number r.

Vector v∗NT r Component-wise multiplication with number r.
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Matrix

Definition

An instance of data type Matrix is a matrix of variables of number type NT . The types Matrix and Vector
together realize many functions of basic linear algebra.

Types

Matrix:: NT the ring type of the components.

Matrix:: iterator bidirectional iterator for accessing all components row-wise.

Matrix:: row iterator random access iterator for accessing row entries.

Matrix:: column iterator random access iterator for accessing column entries.

There also constant versions of the above iterators: const iterator, row const iterator, and column const
iterator.

Matrix:: Identity a tag class for identity initialization

Matrix:: Vector the vector type used.

Creation

Matrix M; creates an instance M of type Matrix.

Matrix M( int n); creates an instance M of type Matrix of dimension n×n initialized to the
zero matrix.

Matrix M( int m, int n); creates an instance M of type Matrix of dimension m× n initialized to
the zero matrix.

Matrix M( std::pair<int,int> p); creates an instance M of type Matrix of dimension p.first×p.second ini-
tialized to the zero matrix.

Matrix M( int n, Identity, NT x = NT(1));

creates an instance M of type Matrix of dimension n×n initialized to the
identity matrix (times x).

Matrix M( int m, int n, NT x); creates an instance M of type Matrix of dimension m× n initialized to
the matrix with x entries.
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template <class Forward iterator>
Matrix M( Forward iterator first, Forward iterator last);

creates an instance M of type Matrix. Let S be the ordered set of n
column-vectors of common dimension m as given by the iterator range
[first,last). M is initialized to an m×n matrix with the columns as spec-
ified by S.
Precondition: Forward iterator has a value type V from which we re-
quire to provide a iterator type V::const iterator, to have V::value type
== NT .
Note that Vector or std::vector<NT> fulfill these requirements.

Matrix M( std::vector< Vector > A);

creates an instance M of type Matrix. Let A be an array of n column-
vectors of common dimension m. M is initialized to an m× n matrix
with the columns as specified by A.

Operations

int M.row dimension() returns n, the number of rows of M.

int M.column dimension() returns m, the number of columns of M.

std::pair<int,int> M.dimension() returns (m,n), the dimension pair of M.

Vector M.row( int i) returns the i-th row of M (an m - vector).
Precondition: 0≤ i≤ m−1.

Vector M.column( int i) returns the i-th column of M (an n - vector).
Precondition: 0≤ i≤ n−1.

NT& M( int i, int j) returns Mi, j.
Precondition: 0≤ i≤ m−1 and 0≤ j ≤ n−1.

void M.swap rows( int i, int j) swaps rows i and j.
Precondition: 0≤ i≤ m−1 and 0≤ j ≤ m−1.

void M.swap columns( int i, int j)

swaps columns i and j.
Precondition: 0≤ i≤ n−1 and 0≤ j ≤ n−1.

row iterator M.row begin( int i) an iterator pointing to the first entry of the ith row.
Precondition: 0≤ i≤ m−1.

row iterator M.row end( int i) an iterator pointing beyond the last entry of the ith row.
Precondition: 0≤ i≤ m−1.
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column iterator M.column begin( int i) an iterator pointing to the first entry of the ith column.
Precondition: 0≤ i≤ n−1.

column iterator M.column end( int i) an iterator pointing beyond the last entry of the ith column.
Precondition: 0≤ i≤ n−1.

iterator M.begin() an iterator pointing to the first entry of M.

terator M.end() an iterator pointing beyond the last entry of M.

The same operations exist for row const iterator, column const iterator and const iterator.

bool M == M1 Test for equality.

bool M != M1 Test for inequality.

Arithmetic Operators

Matrix M +M1 Addition.
Precondition:
M.row dimension() == M1.row dimension() and
M.column dimension() == M1.column dimension().

Matrix M−M1 Subtraction.
Precondition:
M.row dimension() == M1.row dimension() and
M.column dimension() == M1.column dimension().

Matrix −M Negation.

Matrix M ∗M1 Multiplication.
Precondition:
M.column dimension() = M1.row dimension().

Vector M ∗Vector vec Multiplication with vector.
Precondition:
M.column dimension() = vec.dimension().

Matrix NT x∗M Multiplication of every entry with x.

Matrix M ∗NT x Multiplication of every entry with x.
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CGAL::Linear algebraCd<FT>

Definition

The class Linear algebraCd<FT> serves as the default traits class for the LA parameter of CGAL::Cartesian
d<FT,LA>. It implements linear algebra for field number types FT .

#include <CGAL/Linear algebraCd.h>

Is Model for the Concepts

LinearAlgebraTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1059

Requirements

FT must be a field number type.

Operations

Fits all operation requirements of the concept.
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CGAL::Linear algebraHd<RT>

Definition

The class Linear algebraHd<RT> serves as the default traits class for the LA parameter of
CGAL::Homogeneous d<RT,LA>. It implements linear algebra for Euclidean ring number types RT .

#include <CGAL/Linear algebraHd.h>

Is Model for the Concepts

LinearAlgebraTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1059

Requirements

To make a ring number type RT work with this class it has to provide a division operator/ with remainder.

Operations

Fits all operation requirements of the concept.

1068
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CGAL::Cartesian d<FieldNumberType>

#include <CGAL/Cartesian d.h>

Definition

A model for Kernel d that uses Cartesian coordinates to represent the geometric objects. In order for Cartesian
d<FieldNumberType> to model Euclidean geometry in Ed , for some mathematical field E (e.g., the rationals Q
or the reals R), the template parameter FieldNumberType must model the mathematical field E. That is, the field
operations on this number type must compute the mathematically correct results. If the number type provided
as a model for FieldNumberType is only an approximation of a field (such as the built-in type double), then the
geometry provided by the kernel is only an approximation of Euclidean geometry.

Is Model for the Concepts

Kernel d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1121

See Also

CGAL::Homogeneous d<RingNumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
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CGAL::Homogeneous<RingNumberType>

#include <CGAL/Homogeneous d.h>

Definition

A model for a Kernel d using homogeneous coordinates to represent the geometric objects. In order for Ho-
mogeneous<RingNumberType> to model Euclidean geometry in Ed , for some mathematical ring E (e.g., the
integers Z or the rationals Q), the template parameter RT must model the mathematical ring E. That is, the ring
operations on this number type must compute the mathematically correct results. If the number type provided
as a model for RingNumberType is only an approximation of a ring (such as the built-in type double), then the
geometry provided by the kernel is only an approximation of Euclidean geometry.

Is Model for the Concepts

Kernel d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1121

See Also

CGAL::Cartesian d<FieldumberType> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
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12.8 Kernel Objects
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CGAL::Point d<Kernel>

Definition

An instance of data type Point d<Kernel> is a point of Euclidean space in dimension d. A point p =
(p0, . . . , pd−1) in d-dimensional space can be represented by homogeneous coordinates (h0,h1, . . . ,hd) of num-
ber type RT such that pi = hi/hd , which is of type FT . The homogenizing coordinate hd is positive.

We call pi, 0≤ i < d the i-th Cartesian coordinate and hi, 0≤ i≤ d, the i-th homogeneous coordinate. We call
d the dimension of the point.

Types

Point d<Kernel>:: LA the linear algebra layer.

Point d<Kernel>:: Cartesian const iterator

a read-only iterator for the Cartesian coordinates.

Point d<Kernel>:: Homogeneous const iterator

a read-only iterator for the homogeneous coordinates.

Creation

Point d<Kernel> p; introduces a variable p of type Point d<Kernel>.

Point d<Kernel> p( int d, Origin);

introduces a variable p of type Point d<Kernel> in d-dimensional space, initial-
ized to the origin.

template <class InputIterator>
Point d<Kernel> p( int d, InputIterator first, InputIterator last);

introduces a variable p of type Point d<Kernel> in dimension d. If size
[first,last) == d this creates a point with Cartesian coordinates set [first,last).
If size [first,last) == d+1 the range specifies the homogeneous coordinates
H = set [first, last) = (±h0,±h1, . . . ,±hd) where the sign chosen is the sign
of hd .
Precondition: d is nonnegative, [first,last) has d or d+1 elements where the last
has to be non-zero.
Requirement: The value type of InputIterator is RT .
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template <class InputIterator>
Point d<Kernel> p( int d, InputIterator first, InputIterator last, RT D);

introduces a variable p of type Point d<Kernel> in dimension d initialized to
the point with homogeneous coordinates as defined by H = set [first,last) and
D: (±H[0],±H[1], . . . ,±H[d−1],±D). The sign chosen is the sign of D.
Precondition: D is non-zero, the iterator range defines a d-tuple of RT .
Requirement: The value type of InputIterator is RT .

Point d<Kernel> p( RT x, RT y, RT w = 1);

introduces a variable p of type Point d<Kernel> in 2-dimensional space.
Precondition: w 6= 0.

Point d<Kernel> p( RT x, RT y, RT z, RT w);

introduces a variable p of type Point d<Kernel> in 3-dimensional space.
Precondition: w 6= 0.

Operations

int p.dimension() returns the dimension of p.

FT p.cartesian( int i) returns the i-th Cartesian coordinate of p.
Precondition: 0≤ i < d.

FT p[ int i] returns the i-th Cartesian coordinate of p.
Precondition: 0≤ i < d.

RT p.homogeneous( int i)

returns the i-th homogeneous coordinate of p.
Precondition: 0≤ i≤ d.

Cartesian const iterator p.cartesian begin() returns an iterator pointing to the zeroth Cartesian co-
ordinate p0 of p.

Cartesian const iterator p.cartesian end() returns an iterator pointing beyond the last Cartesian
coordinate of p.

Homogeneous const iterator

p.homogeneous begin()

returns an iterator pointing to the zeroth homogeneous
coordinate h0 of p.
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Homogeneous const iterator

p.homogeneous end()

returns an iterator pointing beyond the last homoge-
neous coordinate of p.

Point d<Kernel> p.transform( Aff transformation d<Kernel> t)

returns t(p).

Arithmetic Operators, Tests and IO

Vector d<Kernel> p−Origin o returns the vector p−O.

Vector d<Kernel> p−q returns p−q.
Precondition: p.dimension() == q.dimension().

Point d<Kernel> p+Vector d<Kernel> v

returns p+ v.
Precondition: p.dimension() == v.dimension().

Point d<Kernel> p−Vector d<Kernel> v

returns p− v.
Precondition: p.dimension() == v.dimension().

Point d<Kernel>& p+= Vector d<Kernel> v

adds v to p.

Precondition: p.dimension() == v.dimension().

Point d<Kernel>& p−= Vector d<Kernel> v

subtracts v from p.

Precondition: p.dimension() == v.dimension().

bool p == Origin returns true if p is the origin.

Downward compatibility

We provide operations of the lower dimensional interface x(), y(), z(), hx(), hy(), hz(), hw().
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Implementation

Points are implemented by arrays of RT items. All operations like creation, initialization, tests, point - vector
arithmetic, input and output on a point p take time O(p.dimension()). dimension(), coordinate access and
conversions take constant time. The space requirement for points is O(p.dimension()).
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CGAL::Vector d<Kernel>

Definition

An instance of data type Vector d<Kernel> is a vector of Euclidean space in dimension d. A vector
r = (r0, . . . ,rd−1) can be represented in homogeneous coordinates (h0, . . . ,hd) of number type RT , such that
ri = hi/hd which is of type FT . We call the ri’s the Cartesian coordinates of the vector. The homogenizing
coordinate hd is positive.

This data type is meant for use in computational geometry. It realizes free vectors as opposed to position
vectors (type Point d). The main difference between position vectors and free vectors is their behavior under
affine transformations, e.g., free vectors are invariant under translations.

Types

Vector d<Kernel>:: LA the linear algebra layer.

Vector d<Kernel>:: Cartesian const iterator

a read-only iterator for the Cartesian coordinates.

Vector d<Kernel>:: Homogeneous const iterator

a read-only iterator for the homogeneous coordinates.

Vector d<Kernel>:: Base vector

construction tag.

Creation

Vector d<Kernel> v; introduces a variable v of type Vector d<Kernel>.

Vector d<Kernel> v( int d, Null vector);

introduces the zero vector v of type Vector d<Kernel> in d-dimensional space.
For the creation flag CGAL::NULL VECTOR can be used.
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template <class InputIterator>
Vector d<Kernel> v( int d, InputIterator first, InputIterator last);

introduces a variable v of type Vector d<Kernel> in dimension d. If size
[first,last) == d this creates a vector with Cartesian coordinates set [first,last).
If size [first,last) == p+1 the range specifies the homogeneous coordinates
H = set [first, last) = (±h0,±h1, . . . ,±hd) where the sign chosen is the sign
of hd .
Precondition: d is nonnegative, [first,last) has d or d+1 elements where the last
has to be non-zero.
Requirement: The value type of InputIterator is RT .

template <class InputIterator>
Vector d<Kernel> v( int d, InputIterator first, InputIterator last, RT D);

introduces a variable v of type Vector d<Kernel> in dimension d initialized to
the vector with homogeneous coordinates as defined by H = set [first,last) and
D: (±H[0],±H[1], . . . ,±H[d−1],±D). The sign chosen is the sign of D.
Precondition: D is non-zero, the iterator range defines a d-tuple of RT .
Requirement: The value type of InputIterator is RT .

Vector d<Kernel> v( int d, Base vector, int i);

returns a variable v of type Vector d<Kernel> initialized to the i-th base vector
of dimension d.
Precondition: 0≤ i < d.

Vector d<Kernel> v( RT x, RT y, RT w = 1);

introduces a variable v of type Vector d<Kernel> in 2-dimensional space.
Precondition: w 6= 0.

Vector d<Kernel> v( RT x, RT y, RT z, RT w);

introduces a variable v of type Vector d<Kernel> in 3-dimensional space.
Precondition: w 6= 0.

Operations

int v.dimension() returns the dimension of v.

FT v.cartesian( int i) returns the i-th Cartesian coordinate of v.
Precondition: 0≤ i < d.

FT v[ int i] returns the i-th Cartesian coordinate of v.
Precondition: 0≤ i < d.

RT v.homogeneous( int i)

returns the i-th homogeneous coordinate of v.
Precondition: 0≤ i≤ d.
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FT v.squared length() returns the square of the length of v.

Cartesian const iterator v.cartesian begin() returns an iterator pointing to the zeroth Carte-
sian coordinate of v.

Cartesian const iterator v.cartesian end() returns an iterator pointing beyond the last
Cartesian coordinate of v.

Homogeneous const iterator v.homogeneous begin()

returns an iterator pointing to the zeroth homo-
geneous coordinate of v.

Homogeneous const iterator v.homogeneous end()

returns an iterator pointing beyond the last ho-
mogeneous coordinate of v.

Direction d<Kernel> v.direction() returns the direction of v.

Vector d<Kernel> v.transform( Aff transformation d<Kernel> t)

returns t(v).

Arithmetic Operators, Tests and IO

Vector d<Kernel>& v∗= RT n multiplies all Cartesian coordinates by n.

Vector d<Kernel>& v∗= FT r multiplies all Cartesian coordinates by r.

Vector d<Kernel> v/RT n returns the vector with Cartesian coordinates
vi/n,0≤ i < d.

Vector d<Kernel> v/FT r returns the vector with Cartesian coordinates
vi/r,0≤ i < d.

Vector d<Kernel>& v/= RT n divides all Cartesian coordinates by n.

Vector d<Kernel>& v/= FT r divides all Cartesian coordinates by r.

FT v∗w inner product, i.e., ∑0≤i<d viwi, where vi and wi
are the Cartesian coordinates of v and w respec-
tively.

Vector d<Kernel> v+w returns the vector with Cartesian coordinates
vi +wi,0≤ i < d.

Vector d<Kernel>& v+= w addition plus assignment.
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Vector d<Kernel> v−w returns the vector with Cartesian coordinates
vi−wi,0≤ i < d.

Vector d<Kernel>& v−= w subtraction plus assignment.

Vector d<Kernel> −v returns the vector in opposite direction.

bool v.is zero() returns true if v is the zero vector.

Downward compatibility

We provide all operations of the lower dimensional interface x(), y(), z(), hx(), hy(), hz(), hw().

Vector d<Kernel> RT n∗ v returns the vector with Cartesian coordinates
nvi.

Vector d<Kernel> FT r ∗ v returns the vector with Cartesian coordinates
rvi,0≤ i < d.

Implementation

Vectors are implemented by arrays of variables of type RT . All operations like creation, initialization, tests,
vector arithmetic, input and output on a vector v take time O(v.dimension()). coordinate access, dimension()
and conversions take constant time. The space requirement of a vector is O(v.dimension()).
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CGAL::Direction d<Kernel>

Definition

A Direction d is a vector in the d-dimensional vector space where we forget about its length. We represent
directions in d-dimensional space as a tuple (h0, . . . ,hd) of variables of type RT which we call the homogeneous
coordinates of the direction. The coordinate hd must be positive. The Cartesian coordinates of a direction are
ci = hi/hd for 0 ≤ i < d, which are of type FT . Two directions are equal if their Cartesian coordinates are
positive multiples of each other. Directions are in one-to-one correspondence to points on the unit sphere.

Types

Direction d<Kernel>:: LA the linear algebra layer.

Direction d<Kernel>:: Delta const iterator

a read-only iterator for the deltas of dir.

Direction d<Kernel>:: Base direction

construction tag.

Creation

Direction d<Kernel> dir; introduces a variable dir of type Direction d<Kernel>.

Direction d<Kernel> dir( Vector d<Kernel> v);

introduces a variable dir of type Direction d<Kernel> initialized to the direction
of v.

template <class InputIterator>
Direction d<Kernel> dir( int d, InputIterator first, InputIterator last);

introduces a variable dir of type Direction d<Kernel> in dimension d with rep-
resentation tuple set [first,last).
Precondition: d is nonnegative, [first,last) has d elements.
Requirement: The value type of InputIterator is RT .

Direction d<Kernel> dir( int d, Base direction, int i);

returns a variable dir of type Direction d<Kernel> initialized to the direction of
the i-th base vector of dimension d.
Precondition: 0≤ i < d.
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Direction d<Kernel> dir( RT x, RT y);

introduces a variable dir of type Direction d<Kernel> in 2-dimensional space.

Direction d<Kernel> dir( RT x, RT y, RT z);

introduces a variable dir of type Direction d<Kernel> in 3-dimensional space.

Operations

int dir.dimension() returns the dimension of dir.

RT dir.delta( int i) returns the i-th component of dir.
Precondition: 0≤ i < d.

RT dir[ int i] returns the i-th delta of dir.
Precondition: 0≤ i < d.

Delta const iterator dir.deltas begin() returns an iterator pointing to the first delta of
dir.

Delta const iterator dir.deltas end() returns an iterator pointing beyond the last delta
of dir.

Vector d<Kernel> dir.vector() returns a vector pointing in direction dir.

bool dir.is degenerate() returns true iff dir.delta(i)==0 for all 0≤ i < d.

Direction d<Kernel> dir.transform( Aff transformation d<Kernel> t)

returns t(p).

Direction d<Kernel> dir.opposite() returns the direction opposite to dir.

Direction d<Kernel> −dir returns the direction opposite to dir.

Downward compatibility

We provide the operations of the lower dimensional interface dx(), dy(), dz().

Implementation

Directions are implemented by arrays of integers as an item type. All operations like creation, initialization,
tests, inversion, input and output on a direction d take time O(d.dimension()). dimension(), coordinate access
and conversion take constant time. The space requirement is O(d.dimension()).
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CGAL::Line d<Kernel>

Definition

An instance of data type Line d is an oriented line in d-dimensional Euclidean space.

Types

Line d<Kernel>:: LA the linear algebra layer.

Creation

Line d<Kernel> l; introduces a variable l of type Line d<Kernel>.

Line d<Kernel> l( Point d<Kernel> p, Point d<Kernel> q);

introduces a line through p and q and oriented from p to q.
Precondition: p and q are distinct and have the same dimension.

Line d<Kernel> l( Point d<Kernel> p, Direction d<Kernel> dir);

introduces a line through p with direction dir.
Precondition: p.dimension()==dir.dimension(), dir is not degenerate.

Line d<Kernel> l( Segment d<Kernel> s);

introduces a variable l of type Line d<Kernel> and initializes it to the line through
s.source() and s.target() with direction from s.source() to s.target().
Precondition: s is not degenerate.

Line d<Kernel> l( Ray d<Kernel> r);

introduces a variable l of type Line d<Kernel> and initializes it to the line through
r.point(1) and r.point(2).

Operations

int l.dimension() returns the dimension of the ambient space.

Point d<Kernel> l.point( int i) returns an arbitrary point on l. It holds that point(i) ==
point(j), iff i==j. Furthermore, l is directed from point(i) to
point(j), for all i < j.

Line d<Kernel> l.opposite() returns the line (point(2),point(1)) of opposite direction.
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Direction d<Kernel> l.direction() returns the direction of l.

Line d<Kernel> l.transform( Aff transformation d<Kernel> t)

returns t(l).
Precondition: l.dimension()==t.dimension().

Line d<Kernel> l+Vector d<Kernel> v

returns l+v, i.e., l translated by vector v.
Precondition: l.dimension()==v.dimension().

Point d<Kernel> l.projection( Point d<Kernel> p)

returns the point of intersection of l with the hyperplane that
is orthogonal to l and that contains p.
Precondition: l.dimension()==p.dimension().

bool l.has on( Point d<Kernel> p)

returns true if p lies on l and false otherwise.
Precondition: l.dimension()==p.dimension().

Non-Member Functions

bool weak equality( l1, l2)

Test for equality as unoriented lines.
Precondition: l1.dimension()==l2.dimension().

bool parallel( l1, l2) returns true if l1 and l2 are parallel as unoriented lines and
false otherwise.
Precondition: l1.dimension()==l2.dimension().

Implementation

Lines are implemented by a pair of points as an item type. All operations like creation, initialization, tests,
direction calculation, input and output on a line l take time O(l.dimension()). dimension(), coordinate and
point access, and identity test take constant time. The operations for intersection calculation also take time
O(l.dimension()). The space requirement is O(l.dimension()).
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CGAL::Ray d<Kernel>

Definition

An instance of data type Ray d is a ray in d-dimensional Euclidean space. It starts in a point called the source
of r and it goes to infinity.

Types

Ray d<Kernel>:: LA the linear algebra layer.

Creation

Ray d<Kernel> r; introduces some ray in d-dimensional space.

Ray d<Kernel> r( Point d<Kernel> p, Point d<Kernel> q);

introduces a ray through p and q and starting at p.
Precondition: p and q are distinct and have the same dimension.
Precondition: p.dimension()==q.dimension().

Ray d<Kernel> r( Point d<Kernel> p, Direction d<Kernel> dir);

introduces a ray starting in p with direction dir.
Precondition: p and dir have the same dimension and dir is not degenerate.
Precondition: p.dimension()==dir.dimension().

Ray d<Kernel> r( Segment d<Kernel> s);

introduces a ray through s.source() and s.target() and starting at s.source().
Precondition: s is not degenerate.

Operations

int r.dimension() returns the dimension of the ambient space.

Point d<Kernel> r.source() returns the source point of r.

Point d<Kernel> r.point( int i) returns a point on r. point(0) is the source. point(i), with i > 0,
is different from the source.
Precondition: i≥ 0.

Direction d<Kernel> r.direction() returns the direction of r.

1083



Line d<Kernel> r.supporting line() returns the supporting line of r.

Ray d<Kernel> r.opposite() returns the ray with direction opposite to r and starting in
source.

Ray d<Kernel> r.transform( Aff transformation d<Kernel> t)

returns t(r).
Precondition: r.dimension()==t.dimension().

Ray d<Kernel> r +Vector d<Kernel> v

returns r+v, i.e., r translated by vector v.
Precondition: r.dimension()==v.dimension().

bool r.has on( Point d<Kernel> p)

A point is on r, iff it is equal to the source of r, or if it is in
the interior of r.
Precondition: r.dimension()==p.dimension().

Non-Member Functions

bool parallel( r1, r2) returns true if the unoriented supporting lines of r1 and r2 are
parallel and false otherwise.
Precondition: r1.dimension()==r2.dimension().

Implementation

Rays are implemented by a pair of points as an item type. All operations like creation, initialization, tests,
direction calculation, input and output on a ray r take time O(r.dimension()). dimension(), coordinate and point
access, and identity test take constant time. The space requirement is O(r.dimension()).
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CGAL::Segment d<Kernel>

Definition

An instance s of the data type Segment d is a directed straight line segment in d-dimensional Euclidean space
connecting two points p and q. p is called the source point and q is called the target point of s, both points are
called endpoints of s. A segment whose endpoints are equal is called degenerate.

Types

Segment d<Kernel>:: LA the linear algebra layer.

Creation

Segment d<Kernel> s;

introduces a variable s of type Segment d<Kernel>.

Segment d<Kernel> s( Point d<Kernel> p, Point d<Kernel> q);

introduces a variable s of type Segment d<Kernel> which is initialized to the segment
(p,q).
Precondition: p.dimension()==q.dimension().

Segment d<Kernel> s( Point d<Kernel> p, Vector d<Kernel> v);

introduces a variable s of type Segment d<Kernel> which is initialized to the segment
(p,p+v).
Precondition: p.dimension()==v.dimension().

Operations

int s.dimension() returns the dimension of the ambient space.

Point d<Kernel> s.source() returns the source point of segment s.

Point d<Kernel> s.target() returns the target point of segment s.

Point d<Kernel> s.vertex( int i) returns source or target of s: vertex(0) returns the source, ver-
tex(1) returns the target. The parameter i is taken modulo 2,
which gives easy access to the other vertex.
Precondition: i≥ 0.

Point d<Kernel> s.point( int i) returns vertex(i).
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Point d<Kernel> s[ int i] returns vertex(i).

Point d<Kernel> s.min() returns the lexicographically smaller vertex.

Point d<Kernel> s.max() returns the lexicographically larger vertex.

Segment d<Kernel> s.opposite() returns the segment (target(),source()).

Direction d<Kernel> s.direction() returns the direction from source to target.
Precondition: s is non-degenerate.

Vector d<Kernel> s.vector() returns the vector from source to target.

FT s.squared length() returns the square of the length of s.

bool s.has on( Point d<Kernel> p)

returns true if p lies on s and false otherwise.
Precondition: s.dimension()==p.dimension().

Line d<Kernel> s.supporting line() returns the supporting line of s.
Precondition: s is non-degenerate.

Segment d<Kernel> s.transform( Aff transformation d<Kernel> t)

returns t(s).
Precondition: s.dimension()==t.dimension().

Segment d<Kernel> s+Vector d<Kernel> v

returns s+ v, i.e., s translated by vector v.
Precondition: s.dimension()==v.dimension().

bool s.is degenerate() returns true if s is degenerate i.e. s.source()=s.target().

Non-Member Functions

bool weak equality( s1, s2)

Test for equality as unoriented segments.
Precondition: s1.dimension()==s2.dimension().

bool parallel( s1, s2) return true if one of the segments is degenerate or if the un-
oriented supporting lines are parallel.
Precondition: s1.dimension()==s2.dimension().
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bool common endpoint( s1, s2, Point d<Kernel>& common)

if s1 and s2 touch in a common end point, this point is as-
signed to common and the result is true, otherwise the result
is false. If s1==s2 then one of the endpoints is returned.
Precondition: s1.dimension()==s2.dimension().

Implementation

Segments are implemented by a pair of points as an item type. All operations like creation, initialization,
tests, the calculation of the direction and source - target vector, input and output on a segment s take time
O(s.dimension()). dimension(), coordinate and end point access, and identity test take constant time. The oper-
ations for intersection calculation also take time O(s.dimension()). The space requirement is O(s.dimension()).
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CGAL::Hyperplane d<Kernel>

Definition

An instance of data type Hyperplane d is an oriented hyperplane in d - dimensional space. A hyperplane h is
represented by coefficients (c0,c1, . . . ,cd) of type RT . At least one of c0 to cd−1 must be non-zero. The plane
equation is ∑0≤i<d cixi + cd = 0, where x0 to xd−1 are Cartesian point coordinates. For a particular x the sign of
∑0≤i<d cixi + cd determines the position of a point x with respect to the hyperplane (on the hyperplane, on the
negative side, or on the positive side).

There are two equality predicates for hyperplanes. The (weak) equality predicate (weak equality) declares two
hyperplanes equal if they consist of the same set of points, the strong equality predicate (operator==) requires in
addition that the negative halfspaces agree. In other words, two hyperplanes are strongly equal if their coefficient
vectors are positive multiples of each other and they are (weakly) equal if their coefficient vectors are multiples
of each other.

Types

Hyperplane d<Kernel>:: LA

the linear algebra layer.

Hyperplane d<Kernel>:: Coefficient const iterator

a read-only iterator for the coefficients.

Creation

Hyperplane d<Kernel> h; introduces a variable h of type Hyperplane d<Kernel>.

template <class InputIterator>
Hyperplane d<Kernel> h( int d, InputIterator first, InputIterator last, RT D);

introduces a variable h of type Hyperplane d<Kernel> initialized to the hyper-
plane with coefficients set [first,last) and D.
Precondition: size [first,last) == d.
Requirement: The value type of InputIterator is RT .

template <class InputIterator>
Hyperplane d<Kernel> h( int d, InputIterator first, InputIterator last);

introduces a variable h of type Hyperplane d<Kernel> initialized to the hyper-
plane with coefficients set [first,last).
Precondition: size [first,last) == d+1.
Requirement: The value type of InputIterator is RT .
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template <class ForwardIterator>
Hyperplane d<Kernel> h( ForwardIterator first,

ForwardIterator last,
Point d<Kernel> o,
Oriented side side = ON ORIENTED BOUNDARY)

constructs some hyperplane that passes through the points in set [first,last). If
side is ON POSITIVE SIDE or ON NEGATIVE SIDE then o is on that side of
the constructed hyperplane.
Precondition: A hyperplane with the stated properties must exist.
Requirement: The value type of ForwardIterator is Point d<Kernel>.

Hyperplane d<Kernel> h( Point d<Kernel> p, Direction d<Kernel> dir);

constructs the hyperplane with normal direction dir that passes through p. The
direction dir points into the positive side.
Precondition: p.dimension()==dir.dimension() and dir is not degenerate.

Hyperplane d<Kernel> h( RT a, RT b, RT c);

introduces a variable h of type Hyperplane d<Kernel> in 2-dimensional space
with equation ax+by+ c = 0.

Hyperplane d<Kernel> h( RT a, RT b, RT c, RT d);

introduces a variable h of type Hyperplane d<Kernel> in 3-dimensional space
with equation ax+by+ cz+d = 0.

Operations

int h.dimension() returns the dimension of h.

RT h[ int i] returns the i-th coefficient of h.
Precondition: 0≤ i≤ d.

RT h.coefficient( int i)

returns the i-th coefficient of h.
Precondition: 0≤ i≤ d.

Coefficient const iterator h.coefficients begin()

returns an iterator pointing to the first coefficient.

Coefficient const iterator h.coefficients end()

returns an iterator pointing beyond the last coefficient.
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Vector d<Kernel> h.orthogonal vector()

returns the orthogonal vector of h. It points from the negative
halfspace into the positive halfspace and its homogeneous co-
ordinates are (c0, . . . ,cd−1,1).

Direction d<Kernel> h.orthogonal direction()

returns the orthogonal direction of h. It points from the nega-
tive halfspace into the positive halfspace.

Oriented side h.oriented side( Point d<Kernel> p)

returns the side of the hyperplane h containing p.
Precondition: h.dimension() == p.dimension().

bool h.has on( Point d<Kernel> p)

returns true iff point p lies on the hyperplane h.
Precondition: h.dimension() == p.dimension().

bool h.has on boundary( Point d<Kernel> p)

returns true iff point p lies on the boundary of hyperplane h.
Precondition: h.dimension() == p.dimension().

bool h.has on positive side( Point d<Kernel> p)

returns true iff point p lies on the positive side of hyperplane
h.
Precondition: h.dimension() == p.dimension().

bool h.has on negative side( Point d<Kernel> p)

returns true iff point p lies on the negative side of hyperplane
h.
Precondition: h.dimension() == p.dimension().

Hyperplane d<Kernel> h.transform( Aff transformation d<Kernel> t)

returns t(h).
Precondition: h.dimension() == t.dimension().

Non-Member Functions

bool weak equality( h1, h2)

test for weak equality.
Precondition: h1.dimension() == h2.dimension().
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Implementation

Hyperplanes are implemented by arrays of integers as an item type. All operations like creation, initialization,
tests, vector arithmetic, input and output on a hyperplane h take time O(h.dimension()). coordinate access and
dimension() take constant time. The space requirement is O(h.dimension()).
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CGAL::Sphere d<Kernel>

Definition

An instance S of the data type Sphere d is an oriented sphere in some d-dimensional space. A sphere is defined
by d +1 points (class Point d<Kernel>). We use A to denote the array of the defining points. A set A of defining
points is legal if either the points are affinely independent or if the points are all equal. Only a legal set of points
defines a sphere in the geometric sense and hence many operations on spheres require the set of defining points
to be legal. The orientation of S is equal to the orientation of the defining points, i.e., orientation(A).

Types

Sphere d<Kernel>:: LA the linear algebra layer.

Sphere d<Kernel>:: point iterator

a read-only iterator for points defining the sphere.

Creation

Sphere d<Kernel> S; introduces a variable S of type Sphere d<Kernel>.

template <class ForwardIterator>
Sphere d<Kernel> S( int d, ForwardIterator first, ForwardIterator last);

introduces a variable S of type Sphere d<Kernel>. S is initialized to the sphere
through the points in A = tuple [first,last).
Precondition: A consists of d +1 d-dimensional points.
Requirement: The value type of ForwardIterator is Point d<Kernel>.

Operations

int S.dimension() returns the dimension of the ambient space.

Point d<Kernel> S.point( int i) returns the ith defining point.
Precondition: 0≤ i≤ dim.

point iterator S.points begin()

returns an iterator pointing to the first defining point.

point iterator S.points end()

returns an iterator pointing beyond the last defining point.
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bool S.is degenerate()

returns true iff the defining points are not full dimensional.

bool S.is legal() returns true iff the set of defining points is legal. A set of defining points
is legal iff their orientation is non-zero or if they are all equal.

Point d<Kernel> S.center() returns the center of S.
Precondition: S is legal.

FT S.squared radius()

returns the squared radius of the sphere.
Precondition: S is legal.

Orientation S.orientation()

returns the orientation of S.

Oriented side S.oriented side( Point d<Kernel> p)

returns either the constant ON ORIENTED BOUNDARY , ON
POSITIVE SIDE, or ON NEGATIVE SIDE, iff p lies on the boundary,
properly on the positive side, or properly on the negative side of sphere,
resp.
Precondition: S.dimension()==p.dimension().

Bounded side S.bounded side( Point d<Kernel> p)

returns ON BOUNDED SIDE, ON BOUNDARY , or ON
UNBOUNDED SIDE iff p lies properly inside, on the boundary,
or properly outside of sphere, resp.
Precondition: S.dimension()==p.dimension().

bool S.has on positive side( Point d<Kernel> p)

returns S.oriented side(p)==ON POSITIVE SIDE.
Precondition: S.dimension()==p.dimension().

bool S.has on negative side( Point d<Kernel> p)

returns S.oriented side(p)==ON NEGATIVE SIDE.
Precondition: S.dimension()==p.dimension().

bool S.has on boundary( Point d<Kernel> p)

returns S.oriented side(p)==ON ORIENTED BOUNDARY , which is
the same as S.bounded side(p)==ON BOUNDARY .
Precondition: S.dimension()==p.dimension().

1093



bool S.has on bounded side( Point d<Kernel> p)

returns S.bounded side(p)==ON BOUNDED SIDE.
Precondition: S.dimension()==p.dimension().

bool S.has on unbounded side( Point d<Kernel> p)

returns S.bounded side(p)==ON UNBOUNDED SIDE.
Precondition: S.dimension()==p.dimension().

Sphere d<Kernel>

S.opposite() returns the sphere with the same center and squared radius as S but with
opposite orientation.

Sphere d<Kernel>

S +Vector d<Kernel> v

returns the sphere translated by v.
Precondition: S.dimension()==v.dimension().

Non-Member Functions

bool weak equality( S1, S2)

Test for equality as unoriented spheres.
Precondition: S1.dimension()==S2.dimension().

Implementation

Spheres are implemented by a vector of points as a handle type. All operations like creation, initialization, tests,
input and output of a sphere s take time O(s.dimension()). dimension(), point access take constant time. The
center()-operation takes time O(d3) on its first call and constant time thereafter. The sidedness and orientation
tests take time O(d3). The space requirement for spheres is O(s.dimension()) neglecting the storage room of
the points.
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CGAL::Iso box d<Kernel>

Definition

An object b of the data type Iso box d<Kernel> is an iso-box in the Euclidean space Ed with edges parallel to
the axes of the coordinate system.

Creation

Iso box d<Kernel> b( const Point d<Kernel>& p, const Point d<Kernel> &q);

introduces an iso-oriented iso-box b with diagonal oppo-
site vertices p and q.

Operations

bool b.operator==( const Iso box d<Kernel>& b2) const

Test for equality: two iso-oriented cuboid are equal, iff
their lower left and their upper right vertices are equal.

bool b.operator!=( const Iso box d<Kernel>& b2) const

Test for inequality.

const Point d<Kernel>& b.min() const returns the smallest vertex of b.

const Point d<Kernel>& b.max() const returns the largest vertex of b.

Predicates

bool b.is degenerate() const

b is degenerate, if all vertices are collinear.

Bounded side b.bounded side( const Point d<Kernel>& p) const

returns either ON UNBOUNDED SIDE, ON
BOUNDED SIDE, or the constant ON BOUNDARY ,
depending on where point p is.

bool b.has on boundary( const Point d<Kernel>& p) const
bool b.has on bounded side( const Point d<Kernel>& p) const
bool b.has on unbounded side( const Point d<Kernel>& p) const
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Miscellaneous

Kernel::FT b.volume() const returns the volume of b.
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CGAL::Aff transformation d<Kernel>

Definition

An instance of the data type Aff transformation d<Kernel> is an affine transformation of d-dimensional space.
It is specified by a square matrix M of dimension d +1. All entries in the last row of M except the diagonal entry
must be zero; the diagonal entry must be non-zero. A point p with homogeneous coordinates (p[0], . . . , p[d])
can be transformed into the point p.transform(A) = Mp, where A is an affine transformation created from M by
the constructors below.

Types

Aff transformation d<Kernel>:: LA

the linear algebra layer.

Aff transformation d<Kernel>:: Matrix

the matrix type.

Creation

Aff transformation d<Kernel> t;

introduces some transformation.

Aff transformation d<Kernel> t( int d, Identity transformation);

introduces the identity transformation in d-dimensional space.

Aff transformation d<Kernel> t( Matrix M);

introduces the transformation of d-space specified by matrix M.
Precondition: M is a square matrix of dimension d +1 where entries in the last row of
M except the diagonal entry must be zero; the diagonal entry must be non-zero.

template <typename Forward iterator>
Aff transformation d<Kernel> t( Scaling, Forward iterator start, Forward iterator end);

introduces the transformation of d-space specified by a diagonal matrix with entries set
[start,end) on the diagonal (a scaling of the space).
Precondition: set [start,end) is a vector of dimension d +1.

Aff transformation d<Kernel> t( Translation, Vector d<Kernel> v);

introduces the translation by vector v.
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Aff transformation d<Kernel> t( int d, Scaling, RT num, RT den);

returns a scaling by a scale factor num/den.
Precondition: den !=0.

Aff transformation d<Kernel> t( int d, Rotation, RT sin num, RT cos num, RT den, int e1 = 0, int e2 = 1);

returns a planar rotation with sine and cosine values sin num/den and cos num/den in
the plane spanned by the base vectors be1 and be2 in d-space. Thus the default use
delivers a planar rotation in the x-y plane.
Precondition: sin num2 + cos num2 = den2 and 0≤ e1 < e2 < d.
Precondition: den != 0

Aff transformation d<Kernel> t( int d,
Rotation,
Direction d<Kernel> dir,
RT num,
RT den,
int e1 = 0,
int e2 = 1)

returns a planar rotation within a two-dimensional linear subspace. The subspace is
spanned by the base vectors be1 and be2 in d-space. The rotation parameters are given
by the 2-dimensional direction dir, such that the difference between the sines and
cosines of the rotation given by dir and the approximated rotation are at most num/den
each.

Precondition: dir.dimension()==2, !dir.is degenerate() and num < den is positive, den
!= 0, 0≤ e1 < e2 < d.

Operations

int t.dimension() the dimension of the underlying space

Matrix t.matrix() returns the transformation matrix

Aff transformation d<Kernel> t.inverse() returns the inverse transformation.
Precondition: t.matrix() is invertible.

Aff transformation d<Kernel> t ∗ s composition of transformations. Note that
transformations are not necessarily commuta-
tive. t*s is the transformation which transforms
first by t and then by s.

Implementation

Affine Transformations are implemented by matrices of number type RT as a handle type. All operations like
creation, initialization, input and output on a transformation t take time O(t.dimension()2). dimension() takes
constant time. The operations for inversion and composition have the cubic costs of the used matrix operations.
The space requirement is O(t.dimension()2).
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CGAL::affinely independent

#include <CGAL/predicates d.h>

template <class ForwardIterator>
bool affinely independent( ForwardIterator first, ForwardIterator last)

returns true iff the points in A = tuple [first,last) are
affinely independent.
Precondition: The objects are of the same dimension.
Requirement: The value type of ForwardIterator is
Point d<R>
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CGAL::affine rank

#include <CGAL/predicates d.h>

template <class ForwardIterator>
int affine rank( ForwardIterator first, ForwardIterator last)

computes the affine rank of the points in A = tuple
[first,last).
Precondition: The objects in A are of the same dimen-
sion.
Requirement: The value type of ForwardIterator is
Point d<R>.
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CGAL::center of sphere

#include <CGAL/constructions d.h>

template <class ForwardIterator>
Point d<R> center of sphere( ForwardIterator first, ForwardIterator last)

returns the center of the sphere spanned by the points in
A = tuple[first,last).
Precondition: A contains d + 1 affinely independent
points of dimension d.
Requirement: The value type of ForwardIterator is
Point d<R>.
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CGAL::compare lexicographically

#include <CGAL/predicates d.h>

Comparison result compare lexicographically( Point d<R> p, Point d<R> q)

Compares the Cartesian coordinates of points p and q lex-
icographically in ascending order of its Cartesian compo-
nents p[i] and q[i] for i = 0, . . . ,d−1.
Precondition: p.dimension() == q.dimension()
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CGAL::contained in affine hull

#include <CGAL/predicates d.h>

template <class ForwardIterator>
bool contained in affine hull( ForwardIterator first,

ForwardIterator last,
Point d<R> p)

determines whether p is contained in the affine hull of the
points in A = tuple [first,last).
Precondition: The objects in A are of the same dimen-
sion.
Requirement: The value type of ForwardIterator is
Point d<R>.
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CGAL::contained in linear hull

#include <CGAL/predicates d.h>

template <class ForwardIterator>
bool contained in linear hull( ForwardIterator first,

ForwardIterator last,
Vector d<R> v)

determines whether v is contained in the linear hull of the
vectors in A = tuple [first,last).
Precondition: The objects in A are of the same dimen-
sion.
Requirement: The value type of ForwardIterator is
Vector d<R>.

1104



F
un

ct
io

n

CGAL::contained in simplex

#include <CGAL/predicates d.h>

template <class ForwardIterator>
bool contained in simplex( ForwardIterator first, ForwardIterator last, Point d<R> p)

determines whether p is contained in the simplex of the
points in A = tuple [first,last).
Precondition: The objects in A are of the same dimension
and affinely independent.
Requirement: The value type of ForwardIterator is
Point d<R>.
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CGAL::do intersect

#include <CGAL/intersections d.h>

bool do intersect( Type1<R> obj1, Type2<R> obj2)

checks whether obj1 and obj2 intersect. Two objects obj1
and obj2 intersect if there is a point p that is part of both
obj1 and obj2. The intersection region of those two ob-
jects is defined as the set of all points p that are part of
both obj1 and obj2.
Precondition: the objects are of the same dimension.

The types Type1 and Type2 can be any of the following:

• Point d<R>
• Line d<R>
• Ray d<R>
• Segment d<R>
• Hyperplane d<R>

See Also

intersection
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CGAL::intersection

#include <CGAL/intersections d.h>

Object intersection( Type1<R> f1, Type2<R> f2)

returns the intersection result of f 1 and f 2 by means of
the polymorphic wrapper type Object. The returned ob-
ject can be tested for the intersection result and assigned
by means of the object cast function.
Precondition: The objects are of the same dimension.

The possible value for types Type1 and Type2 and the possible return values wrapped in Object are the following:

Type1 Type2 Return Type
Line d Line d Point d, Line d
Segment d Line d Point d, Segment d

Segment d Segment d Point d, Segment d

Ray d Line d Point d, Ray d

Ray d Segment d Point d, Segment d

Ray d Ray d Point d, Segment d, Ray d
Hyperplane d Line d Point 3, Line 3
Hyperplane d Ray d Point d, Ray d

Hyperplane d Segment d Point d, Segment d

Example

The following example demonstrates the most common use of intersection routines.

#include <CGAL/intersections_d.h>

template <class R>
void foo(Segment_d<R> seg, Line_d<R> lin)
{
Object result = intersection(seg, lin);
if (const Point_d<R> *ipnt = object_cast<Point_d<R> >(&result) ) {
// handle the point intersection case with *ipnt.

} else if (const Segment_d<R> *iseg = object_cast<Segment_d<R> >(&result) ) {
// handle the segment intersection case with *iseg.

} else {
// handle the no intersection case.

}
}
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See Also

do intersect, Kernel::Intersect d
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CGAL::lexicographically smaller

#include <CGAL/predicates d.h>

bool lexicographically smaller( Point d<R> p, Point d<R> q)

returns true iff p is lexicographically smaller than q with
respect to Cartesian lexicographic order of points.
Precondition: p.dimension() == q.dimension().
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CGAL::lexicographically smaller or equal

#include <CGAL/predicates d.h>

bool lexicographically smaller or equal( Point d<R> p, Point d<R> q)

returns true iff p is lexicographically smaller than q with
respect to Cartesian lexicographic order of points or equal
to q.
Precondition: p.dimension() == q.dimension().
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CGAL::lift to paraboloid

#include <CGAL/constructions d.h>

Point d<R> lift to paraboloid( Point d<R> p)

returns the projection of p = (x0, . . . ,xd−1) onto
the paraboloid of revolution which is the point
(p0, . . . , pd−1,∑0≤i<d p2

i ) in (d +1)-space.
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CGAL::linearly independent

#include <CGAL/predicates d.h>

template <class ForwardIterator>
bool linearly independent( ForwardIterator first, ForwardIterator last)

decides whether the vectors in A = tuple [first,last) are
linearly independent.
Precondition: The objects in A are of the same dimen-
sion.
Requirement: The value type of ForwardIterator is
Vector d<R>.
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CGAL::linear base

#include <CGAL/constructions d.h>

template <class ForwardIterator, class OutputIterator>
OutputIterator linear base( ForwardIterator first, ForwardIterator last, OutputIterator result)

computes a basis of the linear space spanned by the vec-
tors in A = tuple [first,last) and returns it via an iterator
range starting in result. The returned iterator marks the
end of the output.
Precondition: A contains vectors of the same dimension
d.
Requirement: The value type of ForwardIterator and
OutputIterator is Vector d<R>.
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CGAL::linear rank

#include <CGAL/predicates d.h>

template <class ForwardIterator>
int linear rank( ForwardIterator first, ForwardIterator last)

computes the linear rank of the vectors in A = tuple
[first,last).
Precondition: The objects are of the same dimension.
Requirement: The value type of ForwardIterator is
Vector d<R>.
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CGAL::midpoint

#include <CGAL/constructions d.h>

Point d<R> midpoint( Point d<R> p, Point d<R> q)

computes the midpoint of the segment pq.
Precondition:
Precondition: p.dimension() == q.dimension().
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CGAL::orientation

#include <CGAL/predicates d.h>

template <class ForwardIterator>
Orientation orientation( ForwardIterator first, ForwardIterator last)

determines the orientation of the points of the tuple A =
tuple [first,last) where A consists of d + 1 points in d-
space. This is the sign of the determinant∣∣∣∣ 1 1 1 1

A[0] A[1] . . . A[d]

∣∣∣∣
where A[i] denotes the Cartesian coordinate vector of the
i-th point in A.
Precondition: size [first,last) == d+1 and
A[i].dimension() == d ∀0≤ i≤ d.
Requirement: The value type of ForwardIterator is
Point d<R>.
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CGAL::project along d axis

#include <CGAL/constructions d.h>

Point d<R> project along d axis( Point d<R> p)

returns p projected along the d-axis onto the hyperspace
spanned by the first d−1 standard base vectors.
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CGAL::side of bounded sphere

#include <CGAL/predicates d.h>

template <class ForwardIterator>
Bounded side side of bounded sphere( ForwardIterator first,

ForwardIterator last,
Point d<R> p)

returns the relative position of point p to the sphere de-
fined by A = tuple [first,last). The order of the points of
A does not matter.
Precondition: orientation(first,last) is not ZERO.
Requirement: The value type of ForwardIterator is
Point d<R>.
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CGAL::side of oriented sphere

#include <CGAL/predicates d.h>

template <class ForwardIterator>
Oriented side side of oriented sphere( ForwardIterator first,

ForwardIterator last,
Point d<R> p)

returns the relative position of point p to the oriented
sphere defined by the points in A = tuple [first,last) The
order of the points in A is important, since it determines
the orientation of the implicitly constructed sphere. If the
points in A are positively oriented, the positive side is the
bounded interior of the sphere.
Precondition: A contains d +1 points in d-space.
Requirement: The value type of ForwardIterator is
Point d<R>.
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CGAL::squared distance

#include <CGAL/constructions d.h>

FT squared distance( Point d<R> p, Point d<R> q)

computes the square of the Euclidean distance between
the two points p and q.
Precondition: The dimensions of p and q are the same.
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12.10 Kernel Concept

C
on

ce
pt

Kernel d

The concept of a kernel is defined by a set of requirements on the provision of certain types and access member
functions to create objects of these types. The types are function object classes to be used within the algorithms
and data structures in the basic library of CGAL. This allows you to use any model of a kernel as a traits class
in the CGAL algorithms and data structures, unless they require types beyond those provided by a kernel.

Kernel d subsumes the concept of a d-dimensional kernel.

A kernel provides types, construction objects, and generalized predicates. The former replace constructors of
the kernel classes and constructive procedures in the kernel. There are also function objects replacing operators,
especially for equality testing.

Types

Kernel d:: FT a number type that is a model for FieldNumberType
Kernel d:: RT a number type that is a model for RingNumberType

Coordinate Access

Kernel d:: Cartesian const iterator d a type that allows to iterate over the Cartesian coordinates

Geometric Objects

Kernel d:: Point d
Kernel d:: Vector d
Kernel d:: Direction d
Kernel d:: Hyperplane d
Kernel d:: Line d
Kernel d:: Ray d
Kernel d:: Segment d
Kernel d:: Iso box d
Kernel d:: Sphere d
Kernel d:: Aff transformation d

Constructions

Kernel d:: Barycentric coordinates d
Kernel d:: Center of sphere d a model of Kernel::Center of sphere d
Kernel d:: Compute coordinate d a model of Kernel::Compute coordinate d
Kernel d:: Construct point d
Kernel d:: Construct vector d
Kernel d:: Construct direction d
Kernel d:: Construct hyperplane d
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Kernel d:: Construct segment d
Kernel d:: Construct iso box d
Kernel d:: Construct line d
Kernel d:: Construct ray d
Kernel d:: Construct sphere d
Kernel d:: Construct aff transformation d
Kernel d:: Construct cartesian const iterator d a model of Kernel::ConstructCartesianConstIterator d
Kernel d:: Intersect d a model of Kernel::Intersect d
Kernel d:: Lift to paraboloid d a model of Kernel::Lift to paraboloid d
Kernel d:: Linear base d a model of Kernel::Linear base d
Kernel d:: Midpoint d a model of Kernel::Midpoint d
Kernel d:: Orthogonal vector d a model of Kernel::Orthogonal vector d
Kernel d:: Point of sphere d a model of Kernel::Point of sphere d
Kernel d:: Point to vector d a model of Kernel::Point to vector d
Kernel d:: Project along d axis d a model of Kernel::Project along d axis d
Kernel d:: Squared distance d a model of Kernel::Squared distance d
Kernel d:: Value at d a model of Kernel::Value at d
Kernel d:: Vector to point d a model of Kernel::Vector to point d

Generalized Predicates

Kernel d:: Affine rank d a model of Kernel::Affine rank d
Kernel d:: Affinely independent d a model of Kernel::Affinely independent d
Kernel d:: Compare lexicographically d a model of Kernel::Compare lexicographically d
Kernel d:: Component accessor d a model of Kernel::Component accessor d
Kernel d:: Contained in affine hull d a model of Kernel::Contained in affine hull d
Kernel d:: Contained in linear hull d a model of Kernel::Contained in linear hull d
Kernel d:: Contained in simplex d a model of Kernel::Contained in simplex d
Kernel d:: Equal d a model of Kernel::Equal d
Kernel d:: Has on positive side d a model of Kernel::Has on positive side d
Kernel d:: Less coordinate d a model of Kernel::Less coordinate d
Kernel d:: Less lexicographically d a model of Kernel::Less lexicographically d
Kernel d:: Less or equal lexicographically d a model of Kernel::Less or equal lexicographically d
Kernel d:: Linear rank d a model of Kernel::Linear rank d
Kernel d:: Linearly independent d a model of Kernel::Linearly independent d
Kernel d:: Orientation d a model of Kernel::Orientation d
Kernel d:: Oriented side d a model of Kernel::Oriented side d
Kernel d:: Point dimension d a model of Kernel::Point dimension d
Kernel d:: Position on line d
Kernel d:: Side of bounded sphere d a model of Kernel::Side of bounded sphere d
Kernel d:: Side of oriented sphere d a model of Kernel::Side of oriented sphere d

Operations

The following member functions return function objects of the types listed above. The name of the access
function is the name of the type returned with an object suffix and no capital letter at the beginning. We only
give two examples to show the scheme. For the functors Construct point d and Orientation d the corresponding
functions are:
Kernel::Construct point d kernel.construct point d object() const
Kernel::Orientation d kernel.orientation d object() const

Has Models
Cartesian d<FieldNumberType>, Homogeneous d<RingNumberType>
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Kernel::Affinely independent d

A model for this must provide:

template <class ForwardIterator>
bool fo( ForwardIterator first, ForwardIterator last)

returns true iff the points in A = tuple [first,last) are
affinely independent.
Precondition: The objects are of the same dimension.
Requirement: The value type of ForwardIterator is
Kernel::Point d.
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Kernel::Affine rank d

A model for this must provide:

template <class ForwardIterator>
int fo( ForwardIterator first, ForwardIterator last)

computes the affine rank of the points in A = tuple
[first,last).
Precondition: The objects are of the same dimension.
Requirement: The value type of ForwardIterator is
Kernel::Point d.
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Kernel::CartesianConstIterator d

A type representing an iterator to the Cartesian coordinates of a point in d dimensions.

Refines

CopyConstructible, Assignable, DefaultConstructible

Is Model for the Concepts

BidirectionalIterator

See Also

Kernel::ConstructCartesianConstIterator d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1130
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Kernel::Center of sphere d

A model for this must provide:

template <class ForwardIterator>
Kernel::Point d fo( ForwardIterator first, ForwardIterator last)

returns the center of the sphere spanned by the points in
A = tuple [first,last).
Precondition: A contains d + 1 affinely independent
points of dimension d.
Requirement: The value type of ForwardIterator is
Kernel::Point d.
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Kernel::Compare lexicographically d

A model for this must provide:

Comparison result fo( Kernel::Point d p, Kernel::Point d q)

Compares the Cartesian coordinates of points p and q lex-
icographically in ascending order of its Cartesian compo-
nents p[i] and q[i] for i = 0, . . . ,d−1.
Precondition: The objects are of the same dimension.
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Kernel::Component accessor d

A model for this must provide:

int fo.dimension( Kernel::Point d p)

returns the dimension of p.

Kernel::RT fo.homogeneous( Kernel::Point d p, int i)

returns the ith homogeneous coordinate of p.
Precondition: 0 <= i <= dimension(p).

Kernel::FT fo.cartesian( Kernel::Point d p, int i)

returns the ith Cartesian coordinate of p.
Precondition: 0 <= i < dimension(p).
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Kernel::Compute coordinate d

A model for this must provide:

Kernel::FT fo( Kernel::Point d p, int i)

returns the ith cartesian coordinate of p
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Kernel::ConstructCartesianConstIterator d

A model for this must provide:

Kernel::Cartesian const iterator d

fo( Kernel::Point d p)

returns an iterator on the 0’th Cartesian coordinate of p.

Kernel::Cartesian const iterator d

fo( Kernel::Point d p, int)

returns the past the end iterator of the Cartesian coordi-
nates of p.

Refines

AdaptableFunctor (with one argument)

See Also

Kernel::CartesianConstIterator d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1125
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Kernel::Contained in affine hull d

A model for this must provide:

template <class ForwardIterator>
Bounded side fo( ForwardIterator first, ForwardIterator last, Kernel::Point d p)

determines whether p is contained in the affine hull of the
points in A = tuple [first,last).
Precondition: The objects are of the same dimension.
Requirement: The value type of ForwardIterator is
Kernel::Point d.
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Kernel::Contained in linear hull d

A model for this must provide:

template <class ForwardIterator>
Bounded side fo( ForwardIterator first, ForwardIterator last, Kernel::Vector d v)

determines whether v is contained in the linear hull of the
vectors in A = tuple [first,last).
Precondition: The objects are of the same dimension.
Requirement: The value type of ForwardIterator is
Kernel::Vector d.
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Kernel::Contained in simplex d

A model for this must provide:

template <class ForwardIterator>
Bounded side fo( ForwardIterator first, ForwardIterator last, Kernel::Point d p)

determines whether p is contained in the simplex of the
points in A = tuple [first,last).
Precondition: The objects in A are of the same dimension
and affinely independent.
Requirement: The value type of ForwardIterator is
Kernel::Point d.
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Kernel::Equal d

A model for this must provide:

bool fo( Kernel::Point d p, Kernel::Point d q)

returns true iff p and q are equal (as d-dimensional
points).
Precondition: p and q have the same dimension.
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Kernel::Has on positive side d

A model for this must provide:

template <class Kernel object>
bool fo( Kernel object o, Kernel::Point d p)

returns true iff p is on the positive side of o.
Kernel object may be any of Kernel::Sphere d,
Kernel::Hyperplane d.
Precondition: p and o have the same dimension.
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Kernel::Intersect d

A model for this must provide:

template <class Kernel object>
Object fo( Kernel object p, Kernel object q)

returns the result of the intersection of p and q in form
of a polymorphic object. Kernel object may be any
of Kernel::Segment d, Kernel::Ray d, Kernel::Line d,
Kernel::Hyperplane d.
Precondition: p and q have the same dimension.
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Kernel::Less lexicographically d

A model for this must provide:

bool fo( Kernel::Point d p, Kernel::Point d q)

returns true iff p is lexicographically smaller than q with
respect to Cartesian lexicographic order of points.
Precondition: p and q have the same dimension.
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Kernel::Less or equal lexicographically d

A model for this must provide:

bool fo( Kernel::Point d p, Kernel::Point d q)

returns true iff p is lexicographically smaller than q with
respect to Cartesian lexicographic order of points or equal
to q.
Precondition: p and q have the same dimension.
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Kernel::Less coordinate d

A model for this must provide:

bool fo( Kernel::Point d p, Kernel::Point d q, int i)

returns true iff the ith cartesian coordinate of p is smaller
than the ith cartesian coordinate of q.
Precondition: p and q have the same dimension.
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Kernel::Lift to paraboloid d

A model for this must provide:

Kernel::Point d fo( Kernel::Point d p)

returns p = (x0, . . . ,xd−1) lifted to the paraboloid of rev-
olution which is the point (p0, . . . , pd−1,∑0≤i<d p2

i ) in
(d +1)-space.
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Kernel::Linearly independent d

A model for this must provide:

template <class ForwardIterator>
bool fo( ForwardIterator first, ForwardIterator last)

decides whether the vectors in A = tuple [first,last) are
linearly independent.
Precondition: The objects in A are of the same dimen-
sion.
Requirement: The value type of ForwardIterator is
Kernel d::Vector d.
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Kernel::Linear base d

A model for this must provide:

template <class ForwardIterator, class OutputIterator>
int fo( ForwardIterator first, ForwardIterator last, OutputIterator result)

computes a basis of the linear space spanned by the vec-
tors in A = tuple [first,last) and returns it via an iterator
range starting in result. The returned iterator marks the
end of the output.
Precondition: A contains vectors of the same dimension
d.
Requirement: The value type of ForwardIterator and
OutputIterator is Kernel::Vector d.
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Kernel::Linear rank d

A model for this must provide:

template <class ForwardIterator>
int fo( ForwardIterator first, ForwardIterator last)

computes the linear rank of the vectors in A = tuple
[first,last).
Precondition:
Precondition: A contains vectors of the same dimension
d.
Requirement: The value type of ForwardIterator is
Kernel::Vector d.
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Kernel::Midpoint d

A model for this must provide:

Kernel::Point d fo( Kernel::Point d p, Kernel::Point d q)

computes the midpoint of the segment pq.
Precondition: p and q have the same dimension.
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Kernel::Orientation d

A model for this must provide:

template <class ForwardIterator>
Orientation fo( ForwardIterator first, ForwardIterator last)

determines the orientation of the points of the tuple A =
tuple [first,last) where A consists of d + 1 points in d-
space. This is the sign of the determinant∣∣∣∣ 1 1 1 1

A[0] A[1] . . . A[d]

∣∣∣∣
where A[i] denotes the Cartesian coordinate vector of the
i-th point in A.
Precondition: size [first,last) == d+1 and
A[i].dimension() == d ∀0≤ i≤ d.
Requirement: The value type of ForwardIterator is
Kernel::Point d.
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Kernel::Oriented side d

A model for this must provide:

template <class Kernel object>
Oriented side fo( Kernel object o, Kernel::Point d p)

returns the side of p with respect to o. Kernel object may
be any of Kernel::Sphere d or Kernel::Hyperplane d.
Precondition: p and o have the same dimension.
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Kernel::Orthogonal vector d

A model for this must provide:

Kernel::Vector d fo( Kernel::Hyperplane d h)

computes an orthogonal vector to h.
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Kernel::Point dimension d

A model for this must provide:

int fo( Kernel::Point d p)

returns the dimension of p
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Kernel::Point of sphere d

A model for this must provide:

bool fo( Kernel::Sphere d s, int i)

returns the ith point defining the sphere s.
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Kernel::Point to vector d

A model for this must provide:

Kernel::Vector d fo( Kernel::Point d p)

converts p to its geometric vector.
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Kernel::Project along d axis d

A model for this must provide:

Kernel::Point d fo( Kernel::Point d p)

returns p projected along the d-axis onto the hyperspace
spanned by the first d−1 standard base vectors.
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Kernel::Side of bounded sphere d

A model for this must provide:

template <class ForwardIterator>
Bounded side fo( ForwardIterator first, ForwardIterator last, Kernel::Point d p)

returns the relative position of point p to the sphere de-
fined by A = tuple [first,last). The order of the points of
A does not matter.
Precondition: orientation(first,last) is not ZERO.
Requirement: The value type of ForwardIterator is
Kernel::Point d.
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Kernel::Side of oriented sphere d

A model for this must provide:

template <class ForwardIterator>
Bounded side fo( ForwardIterator first, ForwardIterator last, Kernel::Point d p)

returns the relative position of point p to the oriented
sphere defined by the points in A = tuple [first,last) The
order of the points in A is important, since it determines
the orientation of the implicitly constructed sphere. If the
points in A are positively oriented, the positive side is the
bounded interior of the sphere.
Precondition: A contains d +1 points in d-space.
Requirement: The value type of ForwardIterator is
Kernel::Point d.
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Kernel::Squared distance d

A model for this must provide:

Kernel::FT fo( Kernel::Point d p, Kernel::Point d q)

computes the square of the Euclidean distance between
the two points p and q.
Precondition: The dimensions of p and q are the same.
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Kernel::Value at d

A model for this must provide:

Kernel::FT fo( Kernel::Hyperplane d h, Kernel::Point d p)

computes the value of h evaluated at p.
Precondition: p and h have the same dimension.
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Kernel::Vector to point d

A model for this must provide:

Kernel::Point d fo( Kernel::Vector d v)

converts v to the affine point 0+ v.
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Chapter 13

2D Circular Geometry Kernel
Pedro Machado Manhães de Castro, Sylvain Pion, and Monique Teillaud
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13.1 Introduction

The goal of the circular kernel is to offer to the user a large set of functionalities on circles and circular arcs in
the plane. All the choices (interface, robustness, representation, and so on) made here are consistent with the
choices made in the CGAL kernel, for which we refer the user to the 2D kernel manual.

In this first release, all functionalities necessary for computing an arrangement of circular arcs and these line
segments are defined. Three traits classes are provided for the CGAL arrangement package.

13.2 Software Design

The design is done in such a way that the algebraic concepts and the geometric concepts are clearly separated.
Circular kernel 2 has therefore two template parameters:

• the first parameter must model the CGAL three dimensional Kernel concept. The circular kernel derives
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from it, and it provides all elementary geometric objects like points, lines, circles, and elementary func-
tionality on them.

• the second parameter is the algebraic kernel, which is responsible for computations on polynomials and
algebraic numbers. It has to be a model of concept AlgebraicKernelForCircles. The robustness of the
package relies on the fact that the algebraic kernel provides exact computations on algebraic objects.

The circular kernel uses the extensibility scheme presented in the 2D kernel manual (see Section 11.5). The
types of Kernel are inherited by the circular kernel and some types are taken from the AlgebraicKernelForCir-
cles parameter. Three new main geometric objects are introduced by Circular kernel 2: circular arcs, points of
circular arcs (used in particular for endpoints of arcs and intersection points between arcs) and line segments
whose endpoints are points of this new type.

In fact, the circular kernel is documented as a concept, CircularKernel, and two models are provided:

• Circular kernel 2<Kernel,AlgebraicKernelForCircles>, the basic kernel,

• and a predefined filtered kernel Exact circular kernel 2, that is based on similar techniques as Exact
predicates exact constructions kernel.

13.3 Examples

The first example shows how to construct circles or circular arcs from points, and how to compute intersections
between them using the global function.� �
#include <CGAL/Exact_circular_kernel_2.h>
#include <CGAL/point_generators_2.h>

typedef CGAL::Exact_circular_kernel_2 Circular_k;

typedef CGAL::Point_2<Circular_k> Point_2;
typedef CGAL::Circle_2<Circular_k> Circle_2;
typedef CGAL::Circular_arc_2<Circular_k> Circular_arc_2;

template <typename T>
double prob_2() {

CGAL::Random_points_in_square_2<Point_2> g(1.0);
double prob = 0.0;
for (int i = 0; i < 10000; i++) {

Point_2 p1, p2, p3, p4, p5, p6;
p1 = *g++; p2 = *g++; p3 = *g++;
p4 = *g++; p5 = *g++; p6 = *g++;

// the pi’s are points inherited from the Cartesian kernel Point_2,
so,
// the orientation predicate can be called on them
if(CGAL::orientation(p1, p2, p3) != CGAL::COUNTERCLOCKWISE)
std::swap(p1, p3);
T o1 = T(p1, p2, p3);
if(CGAL::orientation(p4, p5, p6) != CGAL::COUNTERCLOCKWISE)
std::swap(p4, p6);
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T o2 = T(p4, p5, p6);

std::vector< CGAL::Object > res;
CGAL::intersection(o1, o2, std::back_inserter(res));

prob += (res.size() != 0) ? 1.0 : 0.0;
}
return prob/10000.0;

}

int main()
{

std::cout << "What is the probability that two arcs formed by" <<
std::endl;

std::cout << "three random counterclockwise-oriented points on" <<
std::endl;

std::cout << "an unit square intersect? (wait a second please)" <<
std::endl;

std::cout << "The probability is: " << prob_2<Circular_arc_2>() <<
std::endl << std::endl;

std::cout << "And what about the probability that two circles formed
by"
<< std::endl;

std::cout << "three random counterclockwise-oriented points on" <<
std::endl;

std::cout << "an unit square intersect? (wait a second please)" <<
std::endl;

std::cout << "The probability is: " << prob_2<Circle_2>() << std::endl;
return 0;

}� �
File: examples/Circular_kernel_2/intersecting_arcs.cpp

The following example shows how to use a functor of the kernel.� �
#include <CGAL/Exact_circular_kernel_2.h>
#include <CGAL/point_generators_2.h>

typedef CGAL::Exact_circular_kernel_2 Circular_k;

typedef CGAL::Point_2<Circular_k> Point_2;
typedef CGAL::Circular_arc_2<Circular_k> Circular_arc_2;

int main()
{

int n = 0;
Circular_arc_2 c = Circular_arc_2(Point_2(10,0), Point_2(5,5),
Point_2(0, 0));

for(int i = 0; i <= 10; i++) {
for(int j = 0; j <= 10; j++) {

Point_2 p = Point_2(i, j);
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if(Circular_k().has_on_2_object()(c,p)) {
n++;
std::cout << "(" << i << "," << j << ")" << std::endl;

}
}

}
std::cout << "There are " << n << " points in the [0,..,10]x[0,..,10] "

<< "grid on the circular" << std::endl
<< " arc defined counterclockwisely by the points (0,0),

(5,5), (10,0)"
<< std::endl << "See the points above." << std::endl;

return 0;
}� �
File: examples/Circular_kernel_2/functor_has_on_2.cpp

13.4 Design and Implementation History

The first pieces of prototype code were comparisons of algebraic numbers of degree 2, written by Olivier
Devillers [DFMT00, DFMT02], and that are still used in the current implementation of CGAL::Root of 2.

Some work was then done in the direction of a “kernel” for CGAL.1 and the first design emerged in [EKP+04].

The code of this package was initially written by Sylvain Pion and Monique Teillaud who also wrote the manual.
Athanasios Kakargias had worked on a prototype version of this kernel in 2003. Julien Hazebrouck participated
in the implementation in July and August 2005. The contribution of Pedro Machado Manhães de Castro in
summer 2006 improved significantly the efficiency of this kernel. He also added more functionality in 2008.
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CircularKernel

Refines

Kernel

Has Models

CGAL::Circular kernel 2<Kernel,AlgebraicKernelForCircles>
CGAL::Exact circular kernel 2

Types

A model of CircularKernel is supposed to provide some basic types

CircularKernel:: Linear kernel Model of LinearKernel.
CircularKernel:: Algebraic kernel Model of AlgebraicKernelForCircles.

CircularKernel:: RT Model of RingNumberType.
CircularKernel:: FT Model of FieldNumberType.

CircularKernel:: Root of 2 Model of RootOf 2.
CircularKernel:: Root for circles 2 2 Model of AlgebraicKernelForCircles::RootForCircles

2 2.
CircularKernel:: Polynomial 1 2 Model of AlgebraicKernelForCircles::Polynomial 1 2.
CircularKernel:: Polynomial for circles 2 2 Model of AlgebraicKernelForCircles::PolynomialForCircles

2 2.

and to define the following geometric objects

CircularKernel:: Point 2 Model of Kernel::Point 2.
CircularKernel:: Circle 2 Model of Kernel::Circle 2.
CircularKernel:: Line arc 2 Model of CircularKernel::LineArc 2.
CircularKernel:: Circular arc 2 Model of CircularKernel::CircularArc 2.
CircularKernel:: Circular arc point 2 Model of CircularKernel::CircularArcPoint 2.

Moreover, a model of CircularKernel must provide predicates, constructions and other functionalities.

Predicates

CircularKernel:: Compare x 2 Model of CircularKernel::CompareX 2.
CircularKernel:: Compare y 2 Model of CircularKernel::CompareY 2.
CircularKernel:: Compare xy 2 Model of CircularKernel::CompareXY 2.

CircularKernel:: Equal 2 Model of CircularKernel::Equal 2.

CircularKernel:: Compare y at x 2 Model of CircularKernel::CompareYatX 2.
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CircularKernel:: Compare y to right 2 Model of CircularKernel::CompareYtoRight 2.

CircularKernel:: Has on 2 Model of CircularKernel::HasOn 2.

CircularKernel:: Do overlap 2 Model of CircularKernel::DoOverlap 2.

CircularKernel:: Do intersect 2 Model of CircularKernel::DoIntersect 2.

CircularKernel:: Bounded side 2 Model of CircularKernel::BoundedSide 2.
CircularKernel:: Has on bounded side 2 Model of CircularKernel::HasOnBoundedSide 2.
CircularKernel:: Has on unbounded side 2 Model of CircularKernel::HasOnUnboundedSide 2.

CircularKernel:: In x range 2 Model of CircularKernel::InXRange 2.

CircularKernel:: Is vertical 2 Model of CircularKernel::IsVertical 2.

CircularKernel:: Is x monotone 2 Model of CircularKernel::IsXMonotone 2.
CircularKernel:: Is y monotone 2 Model of CircularKernel::IsYMonotone 2.

Constructions

CircularKernel:: Construct line 2 Model of CircularKernel::ConstructLine 2.

CircularKernel:: Construct circle 2 Model of CircularKernel::ConstructCircle 2.

CircularKernel:: Construct circular arc point 2 Model of CircularKernel::ConstructCircularArcPoint
2.

CircularKernel:: Construct line arc 2 Model of CircularKernel::ConstructLineArc 2.

CircularKernel:: Construct circular arc 2 Model of CircularKernel::ConstructCircularArc 2.

CircularKernel:: Compute circular x 2 Model of CircularKernel::ComputeCircularX 2
CircularKernel:: Compute circular y 2 Model of CircularKernel::ComputeCircularY 2

CircularKernel:: Construct circular min vertex 2

Model of CircularKernel::ConstructCircularMinVertex
2.

CircularKernel:: Construct circular max vertex 2

Model of CircularKernel::ConstructCircularMaxVertex
2.

CircularKernel:: Construct circular source vertex 2

Model of CircularKernel::ConstructCircularSourceVertex
2.
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CircularKernel:: Construct circular target vertex 2

Model of CircularKernel::ConstructCircularTargetVertex
2.

CircularKernel:: Intersect 2 Model of CircularKernel::Intersect 2.

CircularKernel:: Split 2 Model of CircularKernel::Split 2.

CircularKernel:: Make x monotone 2 Model of CircularKernel::MakeXMonotone 2.
CircularKernel:: Make xy monotone 2 Model of CircularKernel::MakeXYMonotone 2.

Link with the algebraic kernel

CircularKernel:: Get equation Model of CircularKernel::GetEquation.

Operations

As in the Kernel concept, for each of the function objects above, there must exist a member function that
requires no arguments and returns an instance of that function object. The name of the member function is the
uncapitalized name of the type returned with the suffix object appended. For example, for the function object
CircularKernel::Construct circular arc 2 the following member function must exist:

Construct circular arc 2

ck.construct circular arc 2 object() const

See Also

Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 581
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CGAL::Circular kernel 2<Kernel,AlgebraicKernelForCircles>

#include <CGAL/Circular kernel 2.h>

Is Model for the Concepts

CircularKernel

Parameters

The first parameter of the circular kernel must be instantiated with a model of the Kernel concept. The Circular
kernel 2 class template derives from this first parameter, in order to reuse all needed functionalities on basic
objects provided by a model of the Kernel concept.

The second parameter, AlgebraicKernelForCircles, is meant to provide the circular kernel with all the algebraic
functionalities required for the manipulation of algebraic curves.

Inherits From

Kernel

Types

The circular kernel uses basic number types of the algebraic kernel:
typedef AlgebraicKernelForCircles::RT RT; Ring number type.

typedef AlgebraicKernelForCircles::FT FT; Field number type.

In fact, the two number types AlgebraicKernelForCircles::RT and Kernel::RT must coincide, as well as Alge-
braicKernelForCircles::FT and Kernel::FT .

The following types are available, as well as all the functionality on them described in the CircularKernel
concept.

typedef Line arc 2<Circular kernel 2> Line arc 2;
typedef Circular arc 2<Circular kernel 2> Circular arc 2;
typedef Circular arc point 2<Circular kernel 2>

Circular arc point 2;

See Also

Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 581
AlgebraicKernelForCircles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1223
CGAL::Exact circular kernel 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1170

1169



C
la

ss

CGAL::Exact circular kernel 2

#include <CGAL/Exact circular kernel 2.h>

Definition

A typedef to a circular kernel that provides both exact geometric predicates and exact geometric constructions.
This kernel uses some geometric filtering (based on bounding boxes) to gain efficiency.

Is Model for the Concepts

CircularKernel

See Also

CGAL::Circular kernel 2<Kernel,AlgebraicKernelForCircles> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1169
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CircularKernel::CircularArc 2

Concept for arcs of circles.

Refines

CopyConstructible, Assignable, DefaultConstructible

Has Models

CGAL::Circular arc 2<CircularKernel>
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CircularKernel::LineArc 2

Definition

Concept for line segments supported by a line that is a model of Kernel::Line 2 and whose endpoints are models
of the CircularKernel::CircularArcPoint 2 concept.

Refines

CopyConstructible, Assignable, DefaultConstructible

Has Models

CGAL::Line arc 2<CircularKernel>
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CircularKernel::CircularArcPoint 2

Definition

Concept for points on circles, circular arcs or line arcs.

Refines

CopyConstructible, Assignable, DefaultConstructible

Has Models

CGAL::Circular arc point 2<CircularKernel>
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CGAL::Circular arc 2<CircularKernel>

#include <CGAL/Circular arc 2.h>

Is Model for the Concepts

CircularKernel::CircularArc 2

Creation

Circular arc 2<CircularKernel> ca( Circle 2<CircularKernel> c);

Constructs an arc from a full circle.

Circular arc 2<CircularKernel> ca( Circle 2<CircularKernel> c,
Circular arc point 2<CircularKernel> p,
Circular arc point 2<CircularKernel> q)

Constructs the circular arc supported by c, whose source is p
and whose target is q when traversing the circle in counterclock-
wise direction.
Precondition: p and q lie on c.

Circular arc 2<CircularKernel> ca( Point 2<CircularKernel> p,
Point 2<CircularKernel> q,
Point 2<CircularKernel> r)

Constructs an arc that is supported by the circle of type Circle
2<CircularKernel> passing through the points p, q and r. The
source and target are respectively p and r, when traversing the
supporting circle in the counterclockwise direction. Note that,
depending on the orientation of the point triple (p,q,r), q may
not lie on the arc.
Precondition: p, q, and r are not collinear.

Access Functions

Circle 2<CircularKernel> ca.supporting circle()

Point 2<CircularKernel> ca.center() const returns the center of the supporting circle.
CircularKernel::FT ca.squared radius() const

returns the squared radius of the supporting
circle.

A circular arc is not oriented. Still, its source and target endpoints can be defined, supposing that its supporting
circle in traversed the counterclockwise direction from source to target.
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Circular arc point 2<CircularKernel> ca.source()
Circular arc point 2<CircularKernel> ca.target()

When the methods source and target return the same point, then the arc is in fact a full circle.

When an arc is x-monotone, its left and right points can be accessed directly:

Circular arc point 2<CircularKernel> ca.left() Precondition: ca.is x monotone().
Circular arc point 2<CircularKernel> ca.right() Precondition: ca.is x monotone().

Bbox 2 ca.bbox() const Returns a bounding box containing the arc.

Query Functions

bool ca.is x monotone() Tests whether the arc is x-monotone.
bool ca.is y monotone() Tests whether the arc is y-monotone.

Operations

bool ca1 == ca2 Test for equality. Two arcs are equal, iff their
non-oriented supporting circles are equal
(i.e. they have same center and same squared
radius) and their endpoints are equal.

bool ca1 != ca2 Test for non-equality

I/O

istream& std::istream& is >> Circular arc 2 & ca
ostream& std::ostream& os << Circular arc 2 ca

See Also

CGAL::Circular arc point 2<CircularKernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1178
CGAL::Line arc 2<CircularKernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1176
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CGAL::Line arc 2<CircularKernel>

#include <CGAL/Line arc 2.h>

Is Model for the Concepts

CircularKernel::LineArc 2

Creation

Line arc 2<CircularKernel> la( Line 2<CircularKernel> l,
Circular arc point 2<CircularKernel> p1,
Circular arc point 2<CircularKernel> p2)

Construct the line segment supported by l, whose source is p1
and whose target is p2.
Precondition: p1 and p2 lie on l.

Line arc 2<CircularKernel> la( Line 2<CircularKernel> l,
Point 2<CircularKernel> p1,
Point 2<CircularKernel> p2)

Same.

Line arc 2<CircularKernel> la( Segment 2<CircularKernel> s);

Access Functions

Line 2<CircularKernel> la.supporting line()

Circular arc point 2<CircularKernel> la.source()
Circular arc point 2<CircularKernel> la.target()

Circular arc point 2<CircularKernel> la.left()
Circular arc point 2<CircularKernel> la.right()

Bbox 2 la.bbox() const Returns a bounding box containing the line
segment.

Query Functions

bool la.is vertical()
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Operations

bool la1 == la2 Test for equality. Two arcs are equal, iff their
non-oriented supporting lines are equal (i.e.
they contain the same set of points) and their
endpoints are equal.

bool la1 != la2 Test for non-equality.

I/O

istream& std::istream& is >> Line arc 2 & ca
ostream& std::ostream& os << Line arc 2 ca

The format for input/output is, for each line arc: a Line 2 (the supporting line) and two Circular arc point 2
(the two endpoints), under the condition that the endpoints are actually lying on the line.

See Also

CGAL::Circular arc point 2<CircularKernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1178
CGAL::Circular arc 2<CircularKernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1174
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CGAL::Circular arc point 2<CircularKernel>

#include <CGAL/Circular arc point 2.h>

Is Model for the Concepts

CircularKernel::CircularArcPoint 2

Creation

Circular arc point 2<CircularKernel> p( CircularKernel::Point 2 q);

Circular arc point 2<CircularKernel> p( CircularKernel::Root for circles 2 2 r);

Access Functions

CircularKernel::Root of 2 p.x() x-coordinate of the point.
CircularKernel::Root of 2 p.y() y-coordinate of the point.

Bbox 2 p.bbox() const Returns a bounding box around the point.

Operations

bool p == q Test for equality. Two points are equal, iff their x and y
coordinates are equal.

bool p != q Test for nonequality.

bool p < q Returns true iff p is lexicographically smaller than q, i.e.
either if p.x() < q.x() or if p.x() == q.x() and p.y() <
q.y().

bool p > q Returns true iff p is lexicographically greater than q.

bool p <= q Returns true iff p is lexicographically smaller than or
equal to q.

bool p >= q Returns true iff p is lexicographically greater than or equal
to q.

I/O

istream& std::istream& is >> Circular arc point 2 & cp
ostream& std::ostream& os << Circular arc point 2 ce
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See Also

CGAL::Circular arc 2<CircularKernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1174
CGAL::Line arc 2<CircularKernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1176
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CircularKernel::ConstructLine 2

Refines

Kernel::ConstructLine 2

A model fo of this type must provide:

CircularKernel::Line 2 fo( CircularKernel::LineArc 2)

Constructs the supporting line of a line segment.

CircularKernel::Line 2 fo( CircularKernel::Polynomial 1 2)

Constructs a line from an equation.

See Also

CircularKernel::GetEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1211
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CircularKernel::ConstructCircle 2

Refines

Kernel::ConstructCircle 2

A model fo of this type must provide:

CircularKernel::Circle 2

fo( CircularKernel::CircularArc 2)

Constructs the supporting circle of a circular arc.

CircularKernel::Circle 2

fo( CircularKernel::Polynomial for circles 2 2)

Constructs a circle from an equation.

See Also

CircularKernel::GetEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1211
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CircularKernel::ConstructCircularArcPoint 2

A model fo of this type must provide:

CircularKernel::Circular arc point 2

fo( CircularKernel::Root for circles 2 2 r)

CircularKernel::Circular arc point 2

fo( CircularKernel::Point 2 p)
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CircularKernel::ConstructLineArc 2

A model fo of this type must provide:

CircularKernel::Line arc 2

fo.operator()( CircularKernel::Line 2 l,
CircularKernel::Circular arc point 2 p1,
CircularKernel::Circular arc point 2 p2)

Constructs the line segment supported by l, whose source
is p1 and whose target is p2.
Precondition: p1 and p2 lie on l.

CircularKernel::Line arc 2

fo( CircularKernel::Segment 2 s)

CircularKernel::Line arc 2

fo( CircularKernel::Point 2 p1, CircularKernel::Point 2 p2)

CircularKernel::Line arc 2

fo.operator()( CircularKernel::Line 2 l,
CircularKernel::Circle 2 c1,
bool b1,
CircularKernel::Circle 2 c2,
bool b2)

Constructs the line segment whose supporting line is l,
whose source endpoint is the bth

1 intersection of l with c1,
and whose target endpoint is the bth

2 intersection of l and
c2, where intersections are ordered lexicographically.
Precondition: l intersects both c1 and c2, and the arc de-
fined by the intersections has non-zero length.

CircularKernel::Line arc 2

fo.operator()( CircularKernel::Line 2 l,
CircularKernel::Line 2 l1,
CircularKernel::Line 2 l2)

Same, for intersections defined by lines instead of circles.
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CircularKernel::ConstructCircularArc 2

A model fo of this type must provide:

CircularKernel::Circular arc 2

fo( CircularKernel::Circle 2 c)

Constructs an arc from a full circle.

CircularKernel::Circular arc 2

fo.operator()( CircularKernel::Circle 2 c,
CircularKernel::Circular arc point 2 p1,
CircularKernel::Circular arc point 2 p2)

Construct the circular arc supported by c, whose source
is p1 and whose target is p2 when traversing the circle in
counterclockwise direction.
Precondition: p1 and p2 lie on c.

CircularKernel::Circular arc 2

fo.operator()( CircularKernel::Circle 2 c,
CircularKernel::Circle 2 c1,
bool b1,
CircularKernel::Circle 2 c2,
bool b2)

Constructs the unique circular arc whose supporting cir-
cle is c, and whose source is the intersection of c and c1
with index b1, and whose target is the intersection of c
and c2 of index b2, where intersections are ordered lexi-
cographically, and when traversing the circle in counter-
clockwise direction.
Precondition: c intersects both c1 and c2, and the arc
defined by the intersections has non-zero length.

CircularKernel::Circular arc 2

fo.operator()( CircularKernel::Circle 2 c,
CircularKernel::Line 2 l1,
bool b1,
CircularKernel::Line 2 l2,
bool b2)

Same, for intersections defined by lines instead of circles.
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CircularKernel::Circular arc 2

fo.operator()( CircularKernel::Point 2 p,
CircularKernel::Point 2 q,
CircularKernel::Point 2 r)

Constructs an arc that is supported by the circle of type
CircularKernel::Circle 2 passing through the points p,
q and r. The source and target are respectively p and r,
when traversing the supporting circle in the counterclock-
wise direction. Note that, depending on the orientation of
the point triple (p,q,r), q may not lie on the arc.
Precondition: p, q, and r are not collinear.
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CircularKernel::ConstructCircularMinVertex 2

A model fo of this type must provide:

CircularKernel::Circular arc point 2

fo( CircularKernel::Circular arc 2 c)

Constructs the x-minimal vertex of c.
Precondition: The arc c is x-monotone.

CircularKernel::Circular arc point 2

fo( CircularKernel::Line arc 2 l)

Same, for a line segment.
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CircularKernel::ConstructCircularMaxVertex 2

A model fo of this type must provide:

CircularKernel::Circular arc point 2

fo( CircularKernel::Circular arc 2 c)

Constructs the x-maximal vertex of c.
Precondition: The arc c is x-monotone.

CircularKernel::Circular arc point 2

fo( CircularKernel::Line arc 2 l)

Same, for a line segment.
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CircularKernel::ConstructCircularSourceVertex 2

A model fo of this type must provide:

CircularKernel::Circular arc point 2

fo( CircularKernel::Circular arc 2 c)

Constructs the source vertex of c.

CircularKernel::Circular arc point 2

fo( CircularKernel::Line arc 2 l)

Same, for a line segment.
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CircularKernel::ConstructCircularTargetVertex 2

A model fo of this type must provide:

CircularKernel::Circular arc point 2

fo( CircularKernel::Circular arc 2 c)

Constructs the target vertex of c.

CircularKernel::Circular arc point 2

fo( CircularKernel::Line arc 2 l)

Same, for a line segment.
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CircularKernel::ConstructBbox 2

A model fo of this type must provide operators to construct a bounding box of geometric objects:

CGAL::Bbox 2 fo( CircularKernel::Circular arc point 2 p)

CGAL::Bbox 2 fo( CircularKernel::Line arc 2 l)

CGAL::Bbox 2 fo( CircularKernel::Circular arc 2 c)
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CircularKernel::CompareX 2

Refines

Kernel::CompareX 2

An object fo of this type must provide in addition:

Comparison result fo.operator()( CircularKernel::Circular arc point 2 p,
CircularKernel::Circular arc point 2 q)

Compares the x-coordinates of p and q.

See Also

CircularKernel::CompareY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1192
CircularKernel::CompareXY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1193
CircularKernel::Equal 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1200
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CircularKernel::CompareY 2

Refines

Kernel::CompareY 2

An object fo of this type must provide in addition:

Comparison result fo.operator()( CircularKernel::Circular arc point 2 p,
CircularKernel::Circular arc point 2 q)

Compares the y-coordinates of p and q.

See Also

CircularKernel::CompareX 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1191
CircularKernel::CompareXY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1193
CircularKernel::Equal 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1200
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CircularKernel::CompareXY 2

Refines

Kernel::CompareXY 2

An object fo of this type must provide in addition:

Comparison result fo.operator()( CircularKernel::Circular arc point 2 p,
CircularKernel::Circular arc point 2 q)

Compares p and q according to the lexicographic order-
ing on x- and y-coordinates.

See Also

CircularKernel::CompareX 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1191
CircularKernel::CompareY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1192
CircularKernel::Equal 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1200
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CircularKernel::CompareYatX 2

An object fo of this type must provide two operators that compare a point p and an arc a on the vertical line
passing through p.

Comparison result fo( CircularKernel::Circular arc point 2 p, CircularKernel::Circular arc 2 a)

For a circular arc.
Precondition: The arc a must be monotone and p must
be in the vertical range of a.

Comparison result fo( CircularKernel::Circular arc point 2 p, CircularKernel::Line arc 2 a)

Same for a segment.
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CircularKernel::CompareYtoRight 2

An object fo of this type must provide operators that compare vertically two arcs on the right side of a common
point p:

Comparison result fo.operator()( Circular kernel 2::Circular arc 2 a1,
Circular kernel 2::Circular arc 2 a2,
Circular kernel 2::Circular arc point 2 p)

For two circular arcs.
Precondition: p must be a common point to a1 and a2,
and a1 and a2 must be defined to the right of p.

Comparison result fo.operator()( Circular kernel 2::Line arc 2 a1,
Circular kernel 2::Line arc 2 a2,
Circular kernel 2::Circular arc point 2 p)

Same for two segments.

Comparison result fo.operator()( Circular kernel 2::Line arc 2 a1,
Circular kernel 2::Circular arc 2 a2,
Circular kernel 2::Circular arc point 2 p)

For a segment and an arc.

Comparison result fo.operator()( Circular kernel 2::Circular arc 2 a1,
Circular kernel 2::Line arc 2 a2,
Circular kernel 2::Circular arc point 2 p)

Same as previous.
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CircularKernel::MakeXMonotone 2

A model fo of this type must provide:

template < class OutputIterator >
OutputIterator fo( CircularKernel::Circular arc 2 ca, OutputIterator oit)

Splits the arc ca into x-monotone arcs that are returned
through the output iterator. Note that, to ensure an easy
interface with the Arrangement 2 package, the arcs are
returned as CGAL::Object’s (see the ArrangementTraits
2 concept).

For the sake of completeness, the operator() must also be defined for a Line arc 2. In this case, the input line
arc itself is the only arc returned through the OutputIterator.

See Also

CircularKernel::MakeXYMonotone 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1197
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CircularKernel::MakeXYMonotone 2

A model fo of this type must provide:

template < class OutputIterator >
OutputIterator fo( CircularKernel::Circular arc 2 ca, OutputIterator oit)

Splits the arc ca into xy-monotone arcs that are returned
through the output iterator. Note that, to ensure an easy
interface with the Arrangement 2 package, the arcs are
returned as CGAL::Object’s (see the ArrangementTraits
2 concept).

For the sake of completeness, the operator() must also be defined for a Line arc 2. In this case, the input line
arc itself is the only arc returned through the OutputIterator.

See Also

CircularKernel::MakeXMonotone 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1196
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CircularKernel::Intersect 2

Refines

Kernel::Intersect 2

A model fo of this type must provide:

template < class OutputIterator >
OutputIterator fo( Type1 obj1, Type2 obj2, OutputIterator intersections)

Copies in the output iterator the intersection elements be-
tween the two objects. intersections iterates on elements
of type CGAL::Object, in lexicographic order.

where Type 1 and Type 2 can both be either

• CircularKernel::Line 2 or

• CircularKernel::Line arc 2 or

• CircularKernel::Circle 2 or

• CircularKernel::Circular arc 2.

Depending on the types Type 1 and Type 2, these elements can be assigned to

• std::pair<CircularKernel::Circular arc point 2, unsigned>, where the unsigned integer is the multiplic-
ity of the corresponding intersection point between obj 1 and obj 2,

• CircularKernel::Circular arc 2 in case of an overlap of two circular arcs,

• CircularKernel::Line arc 2 in case of an overlap of two line segments or

• CircularKernel::Line 2 or CircularKernel::Circle 2 in case of two equal input lines or circles.

See Also

CGAL::intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1553
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CircularKernel::Split 2

A model fo of this type must provide:

void fo.operator()( CircularKernel::Circular arc 2 a,
CircularKernel::Circular arc point 2 p,
CircularKernel::Circular arc 2 &a1,
CircularKernel::Circular arc 2 &a2)

Splits arc a at point p, which creates arcs a1 and a2.
Precondition: The point lies on the input arc.

void fo.operator()( CircularKernel::Line arc 2 l,
CircularKernel::Circular arc point 2 p,
CircularKernel::Line arc 2 &l1,
CircularKernel::Line arc 2 &l2)

Same for a line arc.
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CircularKernel::Equal 2

Definition

Testing equality between objects.

Refines

Kernel::Equal 2

An object fo of this type must provide in addition:

bool fo.operator()( CircularKernel::Circular arc point 2 p0,
CircularKernel::Circular arc point 2 p1)

For two points.

bool fo( CircularKernel::Circular arc 2 a0, CircularKernel::Circular arc 2 a1)

For two arcs.

bool fo( CircularKernel::Line arc 2 a0, CircularKernel::Line arc 2 a1)

For two segments.

For the sake of completeness, the operator() must also be defined for a Line arc 2 and a Circular arc 2 as
arguments (in any order), and it always returns false.

See Also

CircularKernel::CompareX 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1191
CircularKernel::CompareY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1192
CircularKernel::CompareXY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1193
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CircularKernel::HasOn 2

Definition

To test whether a point lies on a curve.

Refines

Kernel::HasOn 2

An object fo of this type must provide:

bool fo( CircularKernel::Line 2 l, CircularKernel::Circular arc point 2 p)

For a line.

bool fo( CircularKernel::Circle 2 c, CircularKernel::Circular arc point 2 p)

For a circle.

bool fo( CircularKernel::Line arc 2 l, CircularKernel::Circular arc point 2 p)

For a line arc.

bool fo( CircularKernel::Circular arc 2 c, CircularKernel::Circular arc point 2 p)

For a circular arc.
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CircularKernel::DoOverlap 2

Definition

Testing whether the interiors of two curves overlap.

Refines

Kernel::DoOverlap 2

An object fo of this type must provide:

bool fo( CircularKernel::Line arc 2 l0, CircularKernel::Line arc 2 l1)

For two line arcs.

bool fo( CircularKernel::Circular arc 2 a0, CircularKernel::Circular arc 2 a1)

For two circular arcs.
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CircularKernel::DoIntersect 2

Definition

Testing whether two curves intersect.

Refines

Kernel::DoIntersect 2

An object fo of this type must provide:

bool fo( Type1 obj1, Type2 obj2)

determines if two geometric objects of type Type1 and
Type2 intersect or not.

for all pairs Type1 and Type2, where the types Type1 and Type2 can be any of the following:

• CircularKernel::Line 2

• CircularKernel::Line arc 2

• CircularKernel::Circle 2

• CircularKernel::Circular arc 2

See Also

CGAL::do intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 730
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CircularKernel::BoundedSide 2

Refines

Kernel::BoundedSide 2

An object fo of this type must provide:

Bounded side fo( CircularKernel::Circle 2 s, CircularKernel::Circular arc point 2 p)

See Also

CircularKernel::HasOnBoundedSide 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1205
CircularKernel::HasOnUnboundedSide 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1206
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CircularKernel::HasOnBoundedSide 2

Refines

Kernel::HasOnBoundedSide 2

An object fo of this type must provide:

bool fo( CircularKernel::Circle 2 s, CircularKernel::Circular arc point 2 p)

See Also

CircularKernel::BoundedSide 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1204
CircularKernel::HasOnUnboundedSide 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1206
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CircularKernel::HasOnUnboundedSide 2

Refines

Kernel::HasOnUnboundedSide 2

An object fo of this type must provide:

bool fo( CircularKernel::Circle 2 s, CircularKernel::Circular arc point 2 p)

See Also

CircularKernel::BoundedSide 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1204
CircularKernel::HasOnBoundedSide 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1205
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CircularKernel::InXRange 2

Definition

To test whether a point lies in the vertical range of a curve.

An object fo of this type must provide:

bool fo( CircularKernel::Line arc 2 l, CircularKernel::Circular arc point 2 p)

For a line arc.

bool fo( CircularKernel::Circular arc 2 c, CircularKernel::Circular arc point 2 p)

For a circular arc.
Precondition: c is x-monotone.
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CircularKernel::IsVertical 2

Refines

Kernel::IsVertical 2

An object fo of this type must provide:

bool fo( CircularKernel::Line arc 2 l)

For a line arc.

bool fo( CircularKernel::Circular arc 2 c)

For a circular arc, always returns false.
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CircularKernel::IsXMonotone 2

An object fo of this type must provide:

bool fo( CircularKernel::Circular arc 2 c)

Tests whether the arc is x-monotone.

bool fo( CircularKernel::Line arc 2 l)

For a line arc, always returns true.
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CircularKernel::IsYMonotone 2

An object fo of this type must provide:

bool fo( CircularKernel::Circular arc 2 c)

Tests whether the arc is y-monotone.

bool fo( CircularKernel::Line arc 2 l)

For a line arc, always returns true.
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CircularKernel::GetEquation

A model fo of this type must provide:

CircularKernel::Polynomial 1 2

fo( CircularKernel::Line 2 c)

Returns the equation of the line.

CircularKernel::Polynomial for circles 2 2

fo( CircularKernel::Circle 2 c)

Returns the equation of the circle.

See Also

CircularKernel::ConstructLine 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1180
CircularKernel::ConstructCircle 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1181

1211



C
on

ce
pt

F
un

ct
or

CircularKernel::ComputeCircularX 2

A model fo of this type must provide:

CircularKernel::Root of 2

fo( CircularKernel::Circular arc point 2 p)

Computes the x-coordinate of the point.
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CircularKernel::ComputeCircularY 2

A model fo of this type must provide:

CircularKernel::Root of 2

fo( CircularKernel::Circular arc point 2 p)

Computes the y-coordinate of the point.
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CGAL::x extremal point

#include <CGAL/global functions circular kernel 2.h>

Circular arc point 2<CircularKernel>

x extremal point( Circle 2<CircularKernel> c, bool b)

Returns the leftmost (resp. rightmost) point of the circle
if b is true (resp. false).
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CGAL::y extremal point

#include <CGAL/global functions circular kernel 2.h>

Circular arc point 2<CircularKernel>

y extremal point( Circle 2<CircularKernel> c, bool b)

Returns the bottommost (ressp. topmost) point of the cir-
cle if b is true (resp. false).
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CGAL::x extremal points

#include <CGAL/global functions circular kernel 2.h>

template < class OutputIterator >
OutputIterator x extremal points( Circle 2<CircularKernel> c, OutputIterator res)

Copies in the output iterator the x-extremal points of the
circle. res iterates on elements of type Circular arc
point 2<CircularKernel>, sorted in x.
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CGAL::y extremal points

#include <CGAL/global functions circular kernel 2.h>

template < class OutputIterator >
OutputIterator y extremal points( Circle 2<CircularKernel> c, OutputIterator res)

Copies in the output iterator the y-extremal points of the
circle. res iterates on elements of type Circular arc
point 2<CircularKernel>, sorted in y.
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CGAL::has on

#include <CGAL/global functions circular kernel 2.h>

bool has on( Circle 2<CircularKernel> c, Circular arc point 2<CircularKernel> p)

Checks whether the point lies on the circle.
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CGAL::compare y to right

CGAL::Comparison result

compare y to right( Circular arc 2<CircularKernel> ca1,
Circular arc 2<CircularKernel> ca2,
Circular arc point 2<CircularKernel> &p)

Compares vertically the two arcs, to the right of the point
p,
Precondition: p is an intersection point of the arcs, and
the arcs are defined to the right of p.
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CGAL::has in x range

#include <CGAL/global functions circular kernel 2.h>

bool has in x range( Circular arc 2<CircularKernel> ca,
Circular arc point 2<CircularKernel> p)

Checks whether the point lies in the vertical range defined
by the arc.

bool has in x range( Line arc 2<CircularKernel> ca,
Circular arc point 2<CircularKernel> p)

Checks whether the point lies in the vertical range defined
by the line segment.
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CGAL::make x monotone

#include <CGAL/global functions circular kernel 2.h>

template < class OutputIterator >
OutputIterator make x monotone( Circular arc 2<CircularKernel> ca, OutputIterator res)

Copies in the output iterator the x-monotone sub-arcs of
ca.
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CGAL::make xy monotone

#include <CGAL/global functions circular kernel 2.h>

template < class OutputIterator >
OutputIterator make xy monotone( Circular arc 2<CircularKernel> ca, OutputIterator res)

Copies in the output iterator the xy-monotone sub-arcs of
ca.
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AlgebraicKernelForCircles

Definition

The AlgebraicKernelForCircles concept is meant to provide the curved kernel with all the algebraic functional-
ities required for the manipulation of circular arcs.

Has Models

Algebraic kernel for circles 2 2

Types

A model of AlgebraicKernelForCircles is supposed to provide

AlgebraicKernelForCircles:: RT A model of RingNumberType.
AlgebraicKernelForCircles:: FT A model of FieldNumberType<RT>.

AlgebraicKernelForCircles:: Polynomial 1 2 A model of AlgebraicKernelForCircles::Polynomial 1
2, for bivariate polynomials of degree up to 1.

AlgebraicKernelForCircles:: Polynomial for circles 2 2

A model of AlgebraicKernelForCircles::PolynomialForCircles
2 2, for bivariate polynomials of degree up to 2 that can
store equations of circles.

AlgebraicKernelForCircles:: Root of 2 A model of RootOf 2, for algebraic numbers of degree up
to 2.

AlgebraicKernelForCircles:: Root for circles 2 2

A model of AlgebraicKernelForCircles::RootForCircles
2 2, for solutions of systems of two models of
AlgebraicKernelForCircles::PolynomialForCircles
2 2.

AlgebraicKernelForCircles:: Construct polynomial 1 2

A model of AlgebraicKernelForCircles::ConstructPolynomial
1 2.

AlgebraicKernelForCircles:: Construct polynomial for circles 2 2

A model of AlgebraicKernelForCircles::ConstructPolynomialForCircles
2 2.

AlgebraicKernelForCircles:: Compare x A model of the concept AlgebraicKernelForCir-
cles::CompareX.
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AlgebraicKernelForCircles:: Compare y A model of the concept AlgebraicKernelForCir-
cles::CompareY .

AlgebraicKernelForCircles:: Compare xy A model of the concept AlgebraicKernelForCir-
cles::CompareXY .

AlgebraicKernelForCircles:: Sign at A model of the concept AlgebraicKernelForCir-
cles::SignAt.

AlgebraicKernelForCircles:: X critical points A model of the concept AlgebraicKernelForCir-
cles::XCriticalPoints.

AlgebraicKernelForCircles:: Y critical points A model of the concept AlgebraicKernelForCir-
cles::YCriticalPoints.

AlgebraicKernelForCircles:: Solve A model of the concept AlgebraicKernelForCir-
cles::Solve.

See Also

CircularKernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1166
CGAL::Circular kernel 2<Kernel,AlgebraicKernelForCircles> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1169
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CGAL::Algebraic kernel for circles 2 2<RT>

#include <CGAL/Algebraic kernel for circles 2 2.h>

Is Model for the Concepts

AlgebraicKernelForCircles
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AlgebraicKernelForCircles::RootForCircles 2 2

Definition

Concept to represent the roots of a system of two equations of degree 2 in two variables x and y that are models
of concept AlgebraicKernelForCircles::PolynomialForCircles 2 2

Operations

The comparison operator == must be provided.

bool p == q

Has Models

CGAL::Root for circles 2 2

See Also

AlgebraicKernelForCircles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1223
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CGAL::Root for circles 2 2<FT>

#include <CGAL/Root for circles 2 2.h>

Is Model for the Concepts

AlgebraicKernelForCircles::RootForCircles 2 2
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AlgebraicKernelForCircles::Polynomial 1 2

Definition

Concept to represent bivariate polynomials of degree 1 whose coefficients are of a type that is a model of the
concept RingNumberType.

Refines

CopyConstructible, Assignable, DefaultConstructible

Has Models

CGAL::Polynomial 1 2

See Also

AlgebraicKernelForCircles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1223
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CGAL::Polynomial 1 2<RT>

#include <CGAL/Polynomials 1 2.h>

Is Model for the Concepts

AlgebraicKernelForCircles::Polynomial 1 2
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AlgebraicKernelForCircles::PolynomialForCircles 2 2

Definition

Concept to represent bivariate polynomials of degree up to 2 capable of storing equations of circles, whose
center’s coordinates, as well as the square of the radius, are of a type that is a model of the concept FieldNum-
berType.

Refines

CopyConstructible, Assignable, DefaultConstructible

Creation

Operations

The comparison operator == must be provided.

bool AlgebraicKernelForCircles:: PolynomialForCircles 2 2 p == q

Has Models

CGAL::Polynomial for circles 2 2

See Also

AlgebraicKernelForCircles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1223
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CGAL::Polynomial for circles 2 2<FT>

#include <CGAL/Polynomials 2 2.h>

Is Model for the Concepts

AlgebraicKernelForCircles::PolynomialForCircles 2 2

See Also

CGAL::Sqrt extension<NT,ROOT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 220
AlgebraicKernelForCircles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1223
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AlgebraicKernelForCircles::CompareX

A model fo of this type must provide:

template < class OutputIterator >
CGAL::Comparison result

fo.operator()( AlgebraicKernelForCircles::Root for circles 2 2 r1,
AlgebraicKernelForCircles::Root for circles 2 2 r2)

Compares the x (first) variables of two Root for circles
2 2.

See Also

AlgebraicKernelForCircles::CompareY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1233
AlgebraicKernelForCircles::CompareXY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1234
CircularKernel::CompareX 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1191
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AlgebraicKernelForCircles::CompareY

Definition

A model fo of this type must provide:

template < class OutputIterator >
CGAL::Comparison result

fo.operator()( AlgebraicKernelForCircles::Root for circles 2 2 r1,
AlgebraicKernelForCircles::Root for circles 2 2 r2)

Compares the y (second) variables of two Root for
circles 2 2.

See Also

AlgebraicKernelForCircles::CompareX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1232
AlgebraicKernelForCircles::CompareXY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1234
CircularKernel::CompareY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1192
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AlgebraicKernelForCircles::CompareXY

Definition

A model fo of this type must provide:

template < class OutputIterator >
CGAL::Comparison result

fo.operator()( AlgebraicKernelForCircles::Root for circles 2 2 r1,
AlgebraicKernelForCircles::Root for circles 2 2 r2)

Compares two Root for circles 2 2 lexicographically.

See Also

AlgebraicKernelForCircles::CompareX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1232
AlgebraicKernelForCircles::CompareY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1233
CircularKernel::CompareXY 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1193
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AlgebraicKernelForCircles::SignAt

Definition

A model fo of this type must provide:

template < class OutputIterator >
CGAL::Sign fo.operator()( AlgebraicKernelForCircles::Polynomial 1 2 p,

AlgebraicKernelForCircles::Root for circles 2 2 r)

Computes the sign of polynomial p evaluated at a root r.

template < class OutputIterator >
CGAL::Sign fo.operator()( AlgebraicKernelForCircles::Polynomial for circles 2 2 p,

AlgebraicKernelForCircles::Root for circles 2 2 r)

Same as previous.
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AlgebraicKernelForCircles::ConstructPolynomial 1 2

A model fo of this type must provide:

AlgebraicKernelForCircles::Polynomial 1 2

fo.operator()( AlgebraicKernelForCircles::RT a,
AlgebraicKernelForCircles::RT b,
AlgebraicKernelForCircles::RT c)

Constructs polynomial ax+by+c.

See Also

CircularKernel::ConstructLine 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1180
CircularKernel::GetEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1211
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AlgebraicKernelForCircles::ConstructPolynomialForCircles 2 2

A model fo of this type must provide:

AlgebraicKernelForCircles::PolynomialForCircles 2 2

fo.operator()( const AlgebraicKernelForCircles::FT a,
const AlgebraicKernelForCircles::FT b,
const AlgebraicKernelForCircles::FT rsq)

Constructs polynomial (x-a) ˆ2 + (y-b) ˆ2 - rsq.

See Also

CircularKernel::ConstructCircle 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1181
CircularKernel::GetEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1211
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AlgebraicKernelForCircles::Solve

Definition

A model fo of this type must provide:

template < class OutputIterator >
OutputIterator fo.operator()( AlgebraicKernelForCircles::Polynomial 1 2 p1,

AlgebraicKernelForCircles::Polynomial 1 2 p2,
OutputIterator res)

Copies in the output iterator the common roots of p1 and
p2, with their multiplicity, as objects of type std::pair<
AlgebraicKernelForCircles::Root for circles 2 2, int>.

template < class OutputIterator >
OutputIterator fo.operator()( AlgebraicKernelForCircles::Polynomial 1 2 p1,

AlgebraicKernelForCircles::Polynomial for circles 2 2 p2,
OutputIterator res)

Same as previous.

template < class OutputIterator >
OutputIterator fo.operator()( AlgebraicKernelForCircles::Polynomial for circles 2 2 p1,

AlgebraicKernelForCircles::Polynomial 1 2 p2,
OutputIterator res)

Same as previous.

template < class OutputIterator >
OutputIterator fo.operator()( AlgebraicKernelForCircles::Polynomial for circles 2 2 p1,

AlgebraicKernelForCircles::Polynomial for circles 2 2 p2,
OutputIterator res)

Same as previous.
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AlgebraicKernelForCircles::XCriticalPoints

Definition

A model fo of this type must provide:

template < class OutputIterator >
OutputIterator fo.operator()( AlgebraicKernelForCircles::Polynomial for circles 2 2 p,

OutputIterator res)

Copies in the output iterator the x-critical
points of polynomial p, as objects of type
AlgebraicKernelForCircles::Root for circles 2 2.

template < class OutputIterator >
AlgebraicKernelForCircles::Root for circles 2 2

fo( AlgebraicKernelForCircles::Polynomial for circles 2 2 p, bool b)

Computes the x-critical point with smallest (resp. largest)
x of polynomial p if b is true (resp. false).

See Also

AlgebraicKernelForCircles::YCriticalPoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1240
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AlgebraicKernelForCircles::YCriticalPoints

Definition

A model fo of this type must provide:

template < class OutputIterator >
OutputIterator fo.operator()( AlgebraicKernelForCircles::Polynomial for circles 2 2 p,

OutputIterator res)

Copies in the output iterator the y-critical
points of polynomial p, as objects of type
AlgebraicKernelForCircles::Root for circles 2 2.

template < class OutputIterator >
AlgebraicKernelForCircles::Root for circles 2 2

fo( AlgebraicKernelForCircles::Polynomial for circles 2 2 p, bool i)

Computes the y-critical point with smallest (resp. largest)
y of polynomial p if b is true (resp. false).

See Also

AlgebraicKernelForCircles::XCriticalPoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1239
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3D Spherical Geometry Kernel
Pedro Machado Manhães de Castro, Frédéric Cazals, Sébastien Loriot, and Monique Teillaud
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14.1 Introduction

The goal of the 3D spherical kernel is to offer to the user a large set of functionalities on spheres, circles
and circular arcs, in the 3D space or restricted on a given sphere. These functionalities require computing on
algebraic numbers, which motivates the creation of a new kernel concept extending the CGAL Kernel concept,
that is restricted to objects and functionality in a FieldNumberType.

All the choices (interface, robustness, representation, and so on) made here are consistent with the choices made
in the CGAL kernel, for which we refer the user to the kernel manual (Chapter 11).

14.2 Spherical Kernel Objects

New main geometric objects are introduced by Spherical kernel 3: circular arcs ((model of
SphericalKernel::CircularArc 3), points of circular arcs (model of SphericalKernel::CircularArcPoint 3), and
line segments (model of SphericalKernel::LineArc 3) whose endpoints are points of this new type.
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SphericalKernel::CircularArcPoint 3 is used in particular for endpoints of arcs and intersection points between
spheres, circles or arcs. The coordinates of these points are algebraic numbers of degree two. Therefore,
general predicates offered by the Kernel on Point 3, which have coordinates in a FieldNumberType, would
require heavy algebraic computations in algebraic extensions of higher degrees and thus are not provided on
them, which explains the need for a new point type.

A consistent set of predicates and constructions is offered on these new types.

General functionalities

The spherical kernel currently implements a set of fundamental functionalities like intersection, comparisons,
inclusion, etc. More might be provided in the future, as long as only algebraic numbers of degree two are used.

Functionalities relative to a sphere

The interface of the underlying objects is extended by providing additional operations that make sense only if
the objects are considered on the same sphere. For example, the result of the comparison of the cylindrical or
spherical coordinates of two points is well-defined only when looking at them on a given common sphere. The
presentation of these operations requires the following definitions:

Coordinate system. Let consider a sphere with center c and radius r. Using the Cartesian frame centered at c,
we define a cylindrical coordinate system (θ,z) on that sphere, with θ ∈ [0,2π) and z ∈ [−r,r]. θ is given in
radian and measured in the xy-plane around the z-axis, starting from x > 0, y = 0. The z-extremal points of a
sphere are its North and South poles defined as (θ,r) and (θ,−r) respectively, for any value of θ. Observe that
each point on the sphere different from a pole corresponds to a unique pair (θ,z).

Definition of a meridian. Given a sphere and its associated cylindrical coordinate system, a meridian of that
sphere is a circular arc consisting of the points having the same theta-coordinate (the poles are the end points).
A plane containing the two poles of that sphere defines two meridians, one on each side of the line passing
through the poles. A vector M whose direction is different from that of the latter line defines a unique meridian
on that sphere. The plane of that meridian is defined by the direction of M and the two poles. The sense of M
disambiguates the choice among the pair of meridians thus defined. On Fig. 14.1, the normal vectors n0 and n1
define two meridians of S: the circular arcs A0 and A1 respectively.

Types of circles on a sphere. Given a sphere, a circle on that sphere is termed polar if it goes through only
one pole, bipolar if it goes through the two poles of that sphere and threaded if it separates the sphere into
two connected components, each containing one pole. Any other circle is termed normal. These definitions are
illustrated on Fig. 14.2.

θ-extremal points. Given a sphere one has: a θ-extremal point of a normal circle is a point of tangency between
the circle and a meridian anchored at the poles of that sphere. Each normal circle defines two such points; the
θ-extremal point of a polar circle is the pole the circle goes through. No such point is defined on a bipolar or a
threaded circle. These definitions are illustrated on Fig. 14.2. Notice that the θ-extremal points should not be
confused with the endpoints of an arbitrary arc on a sphere.

The θ-coordinate of a θ-extremal point of a normal circle on a sphere is well defined. For a polar circle on a
sphere, the plane containing the two poles and which is tangent to that circle contains two different meridians.
The θ-values of these meridians are the two θ-coordinates associated to the same θ-extremal point of a polar
circle.

θ-monotone circular arcs. An arc on a sphere is said to be θ-monotone if any meridian on that sphere intersects
that arc in at most one point. With this definition, a circular arc on a threaded circle is always θ-monotone,
and an arc on a polar or normal circle is θ-monotone if it does not contain a θ-extremal point, unless it is an
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Figure 14.1: Definition of two meridians on S, a sphere of center c. The intersection of the plane P (passing
through the two poles of S) and the sphere S is a circle. The two poles of S split that circle into two circular
arcs A0 and A1, each being a meridian of S. The θ-coordinates of meridians A0 and A1 are θ0 and θ1 = θ0 + π

respectively.

north pole

south pole

Normal

Threaded

Bipolar

Polar
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Figure 14.2: The four types of circles on a sphere. Black dots are the θ-extremal points.

endpoint. No such arc is defined on a bipolar circle.
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14.3 Software Design

The design of Spherical kernel 3 is similar to the design of Circular kernel 2 (see Chapter 13). It has two
template parameters:

• the first parameter must model the CGAL three dimensional Kernel concept. The spherical kernel derives
from it, and it provides all elementary geometric objects like points, lines, spheres, circles and elementary
functionality on them.

• the second parameter is the algebraic kernel, which is responsible for computations on polynomials and
algebraic numbers. It must model the concept AlgebraicKernelForSpheres. The robustness of the package
relies on the fact that the algebraic kernel provides exact computations on algebraic objects.

The 3D spherical kernel uses the extensibility scheme presented in the kernel manual (see Section 11.5). The
types of Kernel are inherited by the 3D spherical kernel and some types are taken from the AlgebraicKernelFor-
Spheres parameter. Spherical kernel 3 introduces new geometric objects as mentioned in Section 14.2.

In fact, the spherical kernel is documented as a concept, SphericalKernel and two models are provided:

• Spherical kernel 3<Kernel,AlgebraicKernelForSpheres>, the basic kernel,

• and a predefined kernel Exact spherical kernel 3.

14.4 Examples

The first example shows how to construct spheres and compute intersections on them using the global function.� �
#include <CGAL/Exact_spherical_kernel_3.h>
#include <CGAL/Random.h>

typedef CGAL::Exact_spherical_kernel_3 Spherical_k;

typedef CGAL::Point_3<Spherical_k> Point_3;
typedef CGAL::Sphere_3<Spherical_k> Sphere_3;

int main() {

CGAL::Random generatorOfgenerator;
int random_seed = generatorOfgenerator.get_int(0, 123456);
CGAL::Random theRandom(random_seed);
int count = 0;

std::cout << "We will compute the approximate probability that 3
spheres wit"

<< "h radius 1 intersect on a 5x5x5 box, it might take some time." <<
std::endl;

for(int i=0; i<10000; i++) {

double x1 = theRandom.get_double(0.0,5.0);
double y1 = theRandom.get_double(0.0,5.0);
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double z1 = theRandom.get_double(0.0,5.0);
double r = 1.0;
double x2 = theRandom.get_double(0.0,5.0);
double y2 = theRandom.get_double(0.0,5.0);
double z2 = theRandom.get_double(0.0,5.0);
double x3 = theRandom.get_double(0.0,5.0);
double y3 = theRandom.get_double(0.0,5.0);
double z3 = theRandom.get_double(0.0,5.0);

Sphere_3 s1 = Sphere_3(Point_3(x1,y1,z1), r);
Sphere_3 s2 = Sphere_3(Point_3(x2,y2,z2), r);
Sphere_3 s3 = Sphere_3(Point_3(x3,y3,z3), r);

std::vector< CGAL::Object > intersecs;
CGAL::intersection(s1, s2, s3, std::back_inserter(intersecs));
if(intersecs.size() > 0) count++;

}

std::cout << "The approximate probability that 3 spheres with radius 1"
<< std::endl;

std::cout << "choosen (uniformly) randomly on a 5x5x5 box intersect is:
"

<< ((double)count)/((double)(10000)) << std::endl;

return 0;
}� �
File: examples/Circular_kernel_3/intersecting_spheres.cpp

The second example illustrates the use of a functor.� �
#include <CGAL/Exact_spherical_kernel_3.h>
#include <CGAL/Random.h>

typedef CGAL::Exact_spherical_kernel_3 Spherical_k;

typedef CGAL::Point_3<Spherical_k> Point_3;
typedef CGAL::Circular_arc_3<Spherical_k> Circular_arc_3;

int main()
{

int n = 0;
Circular_arc_3 c = Circular_arc_3(Point_3(10,10,0), Point_3(5,5,5),
Point_3(0, 0, 0));

for(int i = 0; i <= 10; i++) {
for(int j = 0; j <= 10; j++) {

for(int k = 0; k <= 10; k++) {
Point_3 p = Point_3(i, j, k);
if(Spherical_k().has_on_3_object()(c,p)) {

n++;
std::cout << "(" << i << "," << j << "," << k << ")" <<

std::endl;
}
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}
}

}

std::cout << "There are " << n << " points in the "
<< "[0,..,10]x[0,..,10]x[0,...,10] "
<< "grid on the circular" << std::endl
<< " arc defined by the points (10,10,0), (5,5,5), (0,0,0)"
<< std::endl << "See the points above." << std::endl;

return 0;
}� �
File: examples/Circular_kernel_3/functor_has_on_3.cpp

The third example illustrates the use of a functor on objects on the same sphere. The intersection points of two
circles on the same sphere are computed and their cylindrical coordinates are then compared.� �
#include <CGAL/Exact_spherical_kernel_3.h>

typedef CGAL::Exact_spherical_kernel_3 SK;

int main(){
//construction of 3 spheres from their centers and squared radii
SK::Sphere_3 s1(SK::Point_3(0,0,0),2);
SK::Sphere_3 s2(SK::Point_3(0,1,0),1);
SK::Sphere_3 s3(SK::Point_3(1,0,0),3);

//construct two circles lying on sphere s1
SK::Circle_3 C1(s1,s2);
SK::Circle_3 C2(s1,s3);

SK::Intersect_3 inter;
//create a functor to compare theta-coordinates on sphere s1
SK::Compare_theta_z_3 cmp(s1);
std::vector< CGAL::Object > intersections;
inter(C1,C2,std::back_inserter(intersections));

//unsigned integer indicates multiplicity of intersection point
std::pair<SK::Circular_arc_point_3,unsigned> p1=

CGAL::object_cast< std::pair<SK::Circular_arc_point_3,unsigned>
>(intersections[0]);

std::pair<SK::Circular_arc_point_3,unsigned> p2=
CGAL::object_cast< std::pair<SK::Circular_arc_point_3,unsigned>
>(intersections[1]);

SK::Circular_arc_point_3 t_extreme[2];
//Compute theta extremal points of circle C1 on sphere s1
CGAL::theta_extremal_points(C1,s1,t_extreme);

//The theta coordinates of theta extremal points of C1 enclose that of
each intersection point.

assert(cmp(t_extreme[0],p1.first)==CGAL::SMALLER);
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assert(cmp(t_extreme[0],p2.first)==CGAL::SMALLER);
assert(cmp(t_extreme[1],p1.first)==CGAL::LARGER);
assert(cmp(t_extreme[1],p2.first)==CGAL::LARGER);

return 0;
}� �
File: examples/Circular_kernel_3/functor_compare_theta_3.cpp

14.5 Design and Implementation History

This package follows the 2D circular kernel package (see Chapter 13), which induced the basic choices of
design.

Julien Hazebrouck and Damien Leroy participated in a first prototype.

The first version of the package was co-authored by Pedro Machado Manhães de Castro and Monique Teil-
laud, and integrated in CGAL 3.4. Frédéric Cazals and Sébastien Loriot extended the package by providing
functionalities restricted on a given sphere [dCCLT09].

Sylvain Pion is acknowledged for helpful discussions.

This work was partially supported by the IST Programme of the 6th Framework Programme of the EU as a
STREP (FET Open Scheme) Project under Contract No IST-006413 (ACS - Algorithms for Complex Shapes).
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14.6 Geometric Concepts

SphericalKernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1255

Object types

SphericalKernel::CircularArc 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1267
SphericalKernel::CircularArcPoint 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1261
SphericalKernel::LineArc 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1264

Functors

SphericalKernel::ConstructPlane 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1271
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SphericalKernel

Refines

Kernel

Has Models

CGAL::Spherical kernel 3<Kernel,AlgebraicKernelForSpheres>
CGAL::Exact spherical kernel 3

Types

A model of SphericalKernel is supposed to provide some basic types

SphericalKernel:: Linear kernel Model of Kernel.
SphericalKernel:: Algebraic kernel Model of AlgebraicKernelForSpheres.

SphericalKernel:: Root of 2 Model of RootOf 2.
SphericalKernel:: Root for spheres 2 3 Model of AlgebraicKernelForSpheres::RootForSpheres

2 3.
SphericalKernel:: Polynomial 1 3 Model of AlgebraicKernelForSpheres::Polynomial 1 3.
SphericalKernel:: Polynomials for line 3 Model of AlgebraicKernelForSpheres::PolynomialsForLines

3.
SphericalKernel:: Polynomial for spheres 2 3 Model of AlgebraicKernelForSpheres::PolynomialForSpheres

2 3.
SphericalKernel:: Polynomials for circle 3 Model of AlgebraicKernelForSpheres::PolynomialsForCircles

3.

and to define the following geometric objects

SphericalKernel:: Point 3 Model of Kernel::Point 3.
SphericalKernel:: Vector 3 Model of Kernel::Vector 3.
SphericalKernel:: Line 3 Model of Kernel::Line 3.
SphericalKernel:: Plane 3 Model of Kernel::Plane 3.
SphericalKernel:: Sphere 3 Model of Kernel::Sphere 3.
SphericalKernel:: Circle 3 Model of Kernel::Circle 3.

SphericalKernel:: Line arc 3 Model of SphericalKernel::LineArc 3.
SphericalKernel:: Circular arc 3 Model of SphericalKernel::CircularArc 3.
SphericalKernel:: Circular arc point 3 Model of SphericalKernel::CircularArcPoint 3.

Moreover, a model of SphericalKernel must provide predicates, constructions and other functionalities.

Predicates

SphericalKernel:: Compare x 3 Model of SphericalKernel::CompareX 3.
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SphericalKernel:: Compare y 3 Model of SphericalKernel::CompareY 3.
SphericalKernel:: Compare z 3 Model of SphericalKernel::CompareZ 3.
SphericalKernel:: Compare xy 3 Model of SphericalKernel::CompareXY 3.
SphericalKernel:: Compare xyz 3 Model of SphericalKernel::CompareXYZ 3.
SphericalKernel:: Compare theta 3 Model of SphericalKernel::CompareTheta 3.
SphericalKernel:: Compare theta z 3 Model of SphericalKernel::CompareThetaZ 3.
SphericalKernel:: Compare z at theta 3 Model of SphericalKernel::CompareZAtTheta 3.
SphericalKernel:: Compare z to right 3 Model of SphericalKernel::CompareZToRight 3.

SphericalKernel:: Equal 3 Model of SphericalKernel::Equal 3.

SphericalKernel:: Has on 3 Model of SphericalKernel::HasOn 3.

SphericalKernel:: Do overlap 3 Model of SphericalKernel::DoOverlap 3.

SphericalKernel:: Do intersect 3 Model of SphericalKernel::DoIntersect 3.

SphericalKernel:: Bounded side 3 Model of SphericalKernel::BoundedSide 3.
SphericalKernel:: Has on bounded side 3 Model of SphericalKernel::HasOnBoundedSide 3.
SphericalKernel:: Has on unbounded side 3 Model of SphericalKernel::HasOnUnboundedSide 3.

SphericalKernel:: Is theta monotone 3 Model of SphericalKernel::IsThetaMonotone 3.

Constructions

SphericalKernel:: Construct line 3 Model of SphericalKernel::ConstructLine 3.
SphericalKernel:: Construct plane 3 Model of SphericalKernel::ConstructPlane 3.
SphericalKernel:: Construct sphere 3 Model of SphericalKernel::ConstructSphere 3.
SphericalKernel:: Construct circle 3 Model of SphericalKernel::ConstructCircle 3.

SphericalKernel:: Construct line arc 3 Model of SphericalKernel::ConstructLineArc 3.
SphericalKernel:: Construct circular arc 3 Model of SphericalKernel::ConstructCircularArc 3.
SphericalKernel:: Construct circular arc point 3 Model of SphericalKernel::ConstructCircularArcPoint

3.

SphericalKernel:: Construct circular min vertex 3

Model of SphericalKernel::ConstructCircularMinVertex
3.

SphericalKernel:: Construct circular max vertex 3

Model of SphericalKernel::ConstructCircularMaxVertex
3.

SphericalKernel:: Construct circular source vertex 3

Model of SphericalKernel::ConstructCircularSourceVertex
3.

SphericalKernel:: Construct circular target vertex 3

Model of SphericalKernel::ConstructCircularTargetVertex
3.
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SphericalKernel:: Construct bbox 3 Model of SphericalKernel::ConstructBbox 3.

SphericalKernel:: Intersect 3 Model of SphericalKernel::Intersect 3.

SphericalKernel:: Split 3 Model of SphericalKernel::Split 3.

SphericalKernel:: Make theta monotone 3 Model of SphericalKernel::MakeThetaMonotone 3.

Computations

SphericalKernel:: Compute circular x 3 Model of SphericalKernel::ComputeCircularX 3.
SphericalKernel:: Compute circular y 3 Model of SphericalKernel::ComputeCircularY 3.
SphericalKernel:: Compute circular z 3 Model of SphericalKernel::ComputeCircularZ 3.

SphericalKernel:: Compute approximate squared length 3

Model of SphericalKernel::ComputeApproximateSquaredLength
3.

SphericalKernel:: Compute approximate angle 3 Model of SphericalKernel::ComputeApproximateAngle
3.

Link with the algebraic kernel

SphericalKernel:: Get equation Model of SphericalKernel::GetEquation.

Operations

As in the Kernel concept, for each of the function objects above, there must exist a member function that
requires no arguments and returns an instance of that function object. The name of the member function is the
uncapitalized name of the type returned with the suffix object appended. For example, for the function object
SphericalKernel::Construct circular arc 3 the following member function must exist:

Construct circular arc 3

sk.construct circular arc 3 object() const

For operations on a given sphere, a context sphere must be provided to the following functions:

Compare theta 3 sk.compare theta 3 object( Sphere 3 sphere) const

Compare theta z 3 sk.compare theta z 3 object( Sphere 3 sphere) const

Compare z at theta 3 sk.compare z at theta 3 object( Sphere 3 sphere) const

Compare z to right 3 sk.compare z to right 3 object( Sphere 3 sphere) const

Make theta monotone 3 sk.make theta monotone 3 object( Sphere 3 sphere) const
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Is theta monotone 3 sk.is theta monotone 3 object( Sphere 3 sphere) const

See Also

Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 581
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CGAL::Spherical kernel 3<Kernel,AlgebraicKernelForSpheres>

#include <CGAL/Spherical kernel 3.h>

Is Model for the Concepts

SphericalKernel

Parameters

The first parameter of the spherical kernel must be instantiated with a model of the Kernel concept. The
Spherical kernel 3 class template derives from this first parameter, in order to reuse all needed functionali-
ties on basic objects provided by a model of the Kernel concept.

The second parameter, AlgebraicKernelForSpheres, is meant to provide the spherical kernel with all the alge-
braic functionalities required for the manipulation of algebraic curves.

Inherits From

Kernel

Types

The spherical kernel uses basic number types of the algebraic kernel:

typedef AlgebraicKernelForSpheres::RT RT; Ring number type.
typedef AlgebraicKernelForSpheres::FT FT; Field number type.

In fact, the two number types AlgebraicKernelForSpheres::RT and Kernel::RT must refer to the same type, as
well as AlgebraicKernelForSpheres::FT and Kernel::FT .

The following types are available, as well as all the functionality on them described in the SphericalKernel
concept.

typedef Line arc 3<Spherical kernel 3> Line arc 3;
typedef Circular arc 3<Spherical kernel 3> Circular arc 3;
typedef Circular arc point 3<Spherical kernel 3> Circular arc point 3;

Polynomials for circle 3 is implemented as a std::pair< Polynomial for spheres 2 3, Polynomial 1 3 > and is
a model of AlgebraicKernelForSpheres::PolynomialsForCircles 3.

See Also

Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 581
AlgebraicKernelForSpheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1322
CGAL::Exact spherical kernel 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1260
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CGAL::Exact spherical kernel 3

#include <CGAL/Exact spherical kernel 3.h>

Definition

A typedef to a spherical kernel that provides both exact geometric predicates and exact geometric constructions.

It defines the same types as CGAL::Spherical kernel 3.

Is Model for the Concepts

SphericalKernel
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SphericalKernel::CircularArcPoint 3

Definition

Concept for points on spheres, circles, circular arcs or line arcs.

Refines

CopyConstructible, Assignable, DefaultConstructible

Has Models

CGAL::Circular arc point 3<SphericalKernel>
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CGAL::Circular arc point 3<SphericalKernel>

#include <CGAL/Circular arc point 3.h>

Is Model for the Concepts

SphericalKernel::CircularArcPoint 3

Creation

Circular arc point 3<SphericalKernel> p( Point 3<SphericalKernel> q);

Circular arc point 3<SphericalKernel> p( SphericalKernel::Root for spheres 2 3 r);

Access Functions

SphericalKernel::Root of 2 p.x() x-coordinate of the point.
SphericalKernel::Root of 2 p.y() y-coordinate of the point.
SphericalKernel::Root of 2 p.z() z-coordinate of the point.

Bbox 3 p.bbox() const Returns a bounding box around the point.

Operations

bool p == q Test for equality. Two points are equal, iff their x, y and
z coordinates are equal.

bool p != q Test for nonequality.

bool p < q Returns true iff p is lexicographically smaller than q, i.e.
either if p.x() < q.x() or if p.x() == q.x() and p.y() <
q.y() or if p.x() == q.x() and p.y() == q.y() and p.z() <
q.z().

bool p > q Returns true iff p is lexicographically greater than q.

bool p <= q Returns true iff p is lexicographically smaller than or
equal to q.

bool p >= q Returns true iff p is lexicographically greater than or
equal to q.

I/O

istream& std::istream& is >> Circular arc point 3 & p
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ostream& std::ostream& os << Circular arc point 3 p

See Also

CGAL::Circular arc 3<SphericalKernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1268
CGAL::Line arc 3<SphericalKernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1265
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SphericalKernel::LineArc 3

Definition

Concept for line segments supported by a line that is a model of Kernel::Line 3, and whose endpoints are
models of the SphericalKernel::CircularArcPoint 3 concept.

Refines

CopyConstructible, Assignable, DefaultConstructible

Has Models

CGAL::Line arc 3<SphericalKernel>
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CGAL::Line arc 3<SphericalKernel>

#include <CGAL/Line arc 3.h>

Is Model for the Concepts

SphericalKernel::LineArc 3

Creation

Line arc 3<SphericalKernel> la( Line 3<SphericalKernel> l,
Circular arc point 3<SphericalKernel> p1,
Circular arc point 3<SphericalKernel> p2)

Construct the line segment supported by l, whose source is p1,
and whose target is p2.
Precondition: p1 and p2 lie on l. p1 and p2 are different.

Line arc 3<SphericalKernel> la( Line 3<SphericalKernel> l,
Point 3<SphericalKernel> p1,
Point 3<SphericalKernel> p2)

Same.

Line arc 3<SphericalKernel> la( Segment 3<SphericalKernel> s);

Access Functions

Line 3<SphericalKernel> la.supporting line()

Circular arc point 3<SphericalKernel> la.source()
Circular arc point 3<SphericalKernel> la.target()

Circular arc point 3<SphericalKernel> la.min() Constructs the minimum vertex according to
the lexicographic ordering of coordinates.

Circular arc point 3<SphericalKernel> la.max() Same for the maximum vertex.

Query Functions

bool la.is vertical() Returns true iff the segment is vertical.

Operations
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bool s1 == s2 Test for equality. Two segments are equal,
iff their non-oriented supporting lines are
equal (i.e. they define the same set of
points), and their endpoints are the same.

bool s1 != s2 Test for nonequality.

I/O

istream& std::istream& is >> Line arc 3 & ca
ostream& std::ostream& os << Line arc 3 ca

The format for input/output is, for each line arc: a Line 3 (the supporting line) and two Circular arc point 3
(the two endpoints), under the condition that the endpoints are actually lying on the line.

See Also

CGAL::Circular arc point 3<SphericalKernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1262
CGAL::Circular arc 3<SphericalKernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1268
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SphericalKernel::CircularArc 3

Concept for arcs of circles.

Refines

CopyConstructible, Assignable, DefaultConstructible

Has Models

CGAL::Circular arc 3<SphericalKernel>
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CGAL::Circular arc 3<SphericalKernel>

#include <CGAL/Circular arc 3.h>

Is Model for the Concepts

SphericalKernel::CircularArc 3

Creation

Circular arc 3<SphericalKernel> ca( Circle 3<SphericalKernel> c);

Constructs an arc from a full circle.

Circular arc 3<SphericalKernel> ca( Circle 3<SphericalKernel> c, Circular arc point 3 pt);

Constructs an arc from a full circle, using pt as source and tar-
get.

Circular arc 3<SphericalKernel> ca( Circle 3<SphericalKernel> c,
Circular arc point 3<SphericalKernel> p,
Circular arc point 3<SphericalKernel> q)

Constructs the circular arc supported by c, whose source and
target are p and q, respectively.
Precondition: p and q lie on c and are different.

The circular arc constructed from a circle, a source, and a target, is defined as the set of points of the circle that
lie between the source p1 and the target p2, when traversing the circle counterclockwise seen from the side of
the plane of the circle pointed by its positive normal vectors.

In this definition, we say that a normal vector (a,b,c) is positive if (a,b,c) > (0,0,0) (i.e. (a > 0)||(a ==
0)&&(b > 0)||(a == 0)&&(b == 0)&&(c > 0)).

Circular arc 3<SphericalKernel> ca( Point 3<SphericalKernel> p,
Point 3<SphericalKernel> q,
Point 3<SphericalKernel> r)

Constructs an arc that is supported by the circle of type Circle
3<SphericalKernel> passing through the points p, q and r. The
source and target are respectively p and r, when traversing the
supporting circle in the counterclockwise direction seen from
the side of the plane containing the circle pointed by its positive
normal vectors. Note that, depending on the orientation of the
point triple (p,q,r), q may not lie on the arc.
Precondition: p, q, and r are not collinear.
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Access Functions

Circle 3<SphericalKernel> ca.supporting circle()

Point 3<SphericalKernel> ca.center() const returns the center of the supporting circle.
SphericalKernel::FT ca.squared radius() const

returns the squared radius of the supporting
circle.

Plane 3<SphericalKernel> ca.supporting plane()
Sphere 3<SphericalKernel> ca.diametral sphere()

Circular arc point 3<SphericalKernel>

ca.source()
Circular arc point 3<SphericalKernel>

ca.target()

When the methods source and target return the same point, then the arc is in fact a full circle.

When the arc was constructed from its (full) underlying circle, then source and target both return the smallest
x-extremal point of the circle if the circle is not contained in a plane x = A, and the smallest y-extremal point
otherwise.

Operations

bool a1 == a2 Test for equality. Two arcs are equal, iff their
non-oriented supporting planes are equal, and
the centers and squared radii of their respec-
tive supporting circles are equal, and their
sources and targets are equal.

bool a1 != a2 Test for nonequality.

I/O

istream& std::istream& is >> Circular arc 3 & ca
ostream& std::ostream& os << Circular arc 3 ca

The input/output format of a circular arc consists of the supporting circle represented as a Circle 3 object
followed by the source and target points of the arc represented as two Circular arc point 3 objects. The defined
arc is the unique arc constructed from such three objects.

See Also

CGAL::Circular arc point 3<SphericalKernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1262
CGAL::Line arc 3<SphericalKernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1265
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CGAL::Circle type

Definition

The enum Circle type is used to classify an object of type Circle 3, so as to specify its type (normal,polar,bipolar
or threaded), as defined in section 14.2.

enum type { NORMAL, THREADED, POLAR, BIPOLAR};

See Also

CGAL::classify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1321
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SphericalKernel::ConstructPlane 3

Refines

Kernel::ConstructPlane 3

A model fo of this concept must provide:

SphericalKernel::Plane 3

fo( SphericalKernel::Circular arc 3 a)

Constructs the plane containing the arc.

SphericalKernel::Plane 3

fo( SphericalKernel::Polynomial 1 3 p)

Constructs a plane from an equation.

See Also

SphericalKernel::GetEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1309
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SphericalKernel::ConstructSphere 3

Refines

Kernel::ConstructSphere 3

A model fo of this concept must provide:

SphericalKernel::Sphere 3

fo( SphericalKernel::Circular arc 3 a)

Returns the diametral sphere of the supporting circle of
arc a.

SphericalKernel::Sphere 3

fo( SphericalKernel::Polynomial 2 3 p)

Constructs a sphere from an equation.

See Also

SphericalKernel::GetEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1309
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SphericalKernel::ConstructLine 3

Refines

Kernel::ConstructLine 3

A model fo of this concept must provide:

SphericalKernel::Line 3 fo( SphericalKernel::Line arc 3 s)

Constructs the line containing the segment.

SphericalKernel::Line 3 fo( SphericalKernel::Polynomials for lines 3 p)

Constructs a line from an equation.

See Also

SphericalKernel::GetEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1309
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SphericalKernel::ConstructCircle 3

A model fo of this concept must provide:

SphericalKernel::Circle 3

fo( SphericalKernel::Circular arc 3 a)

Constructs the circle containing the arc.

SphericalKernel::Circle 3

fo( SphericalKernel::Polynomials for circles 3 p)

Constructs a circle from an equation.

See Also

SphericalKernel::GetEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1309
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SphericalKernel::ConstructCircularArcPoint 3

A model fo of this concept must provide:

SphericalKernel::Circular arc point 3

fo( SphericalKernel::Root for spheres 2 3 r)

SphericalKernel::Circular arc point 3

fo( SphericalKernel::Point 3 p)
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SphericalKernel::ConstructLineArc 3

A model fo of this concept must provide:

SphericalKernel::Line arc 3

fo.operator()( SphericalKernel::Line 3 l,
SphericalKernel::Circular arc point 3 p,
SphericalKernel::Circular arc point 3 q)

Constructs the line segment supported by l, whose source
is p and whose target is q.
Precondition: p and q lie on l and are different.

SphericalKernel::Line arc 3

fo( SphericalKernel::Segment 3 s)

SphericalKernel::Line arc 3

fo( SphericalKernel::Point 3 p, SphericalKernel::Point 3 q)
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SphericalKernel::ConstructCircularArc 3

A model fo of this concept must provide:

SphericalKernel::Circular arc 3

fo( SphericalKernel::Circle 3 c)

Constructs an arc from a full circle.

SphericalKernel::Circular arc 3

fo.operator()( SphericalKernel::Circle 3 c,
SphericalKernel::Circular arc point 3 p,
SphericalKernel::Circular arc point 3 q)

Constructs the circular arc supported by c, whose source
and target are p and q, respectively.
Precondition: p and q lie on c and they are different.

The circular arc constructed from a circle, a source, and a target, is defined as the set of points of the circle that
lie between the source p1 and the target p2, when traversing the circle counterclockwise seen from the side of
the plane of the circle pointed by its positive normal vectors.

In this definition, we say that a normal vector (a,b,c) is positive if (a,b,c) > (0,0,0) (i.e. (a > 0)||(a ==
0)&&(b > 0)||(a == 0)&&(b == 0)&&(c > 0)).

SphericalKernel::Circular arc 3

fo.operator()( SphericalKernel::Point 3 p,
SphericalKernel::Point 3 q,
SphericalKernel::Point 3 r)

Constructs an arc that is supported by the circle of type
SphericalKernel::Circle 3 passing through the points p,
q and r. The source and target are respectively p and r,
when traversing the supporting circle in the counterclock-
wise direction seen from the side of the plane containing
the circle pointed by its positive normal vectors. the cir-
cle. Note that, depending on the orientation of the point
triple (p,q,r), q may not lie on the arc.
Precondition: p, q, and r are not collinear.
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SphericalKernel::ConstructCircularMinVertex 3

A model fo of this concept must provide:

SphericalKernel::Circular arc point 3

fo( SphericalKernel::Line arc 3 l)

Constructs the minimal vertex of l with lexicographically
smallest coordinates.
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SphericalKernel::ConstructCircularMaxVertex 3

A model fo of this concept must provide:

SphericalKernel::Circular arc point 3

fo( SphericalKernel::Line arc 3 l)

Constructs the maximal vertex of l with lexicographically
largest coordinates.
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SphericalKernel::ConstructCircularSourceVertex 3

A model fo of this concept must provide:

SphericalKernel::Circular arc point 3

fo( SphericalKernel::Circular arc 3 a)

Constructs the source vertex of a.

SphericalKernel::Circular arc point 3

fo( SphericalKernel::Line arc 3 l)

Same, for a line segment.
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SphericalKernel::ConstructCircularTargetVertex 3

A model fo of this concept must provide:

SphericalKernel::Circular arc point 3

fo( SphericalKernel::Circular arc 3 a)

Constructs the target vertex of a.

SphericalKernel::Circular arc point 3

fo( SphericalKernel::Line arc 3 l)

Same, for a line segment.
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SphericalKernel::ConstructBbox 3

A model fo of this concept must provide operators to construct a bounding box of geometric objects:

CGAL::Bbox 3 fo( SphericalKernel::Circular arc point 3 p)

CGAL::Bbox 3 fo( SphericalKernel::Line arc 3 l)

CGAL::Bbox 3 fo( SphericalKernel::Circular arc 3 a)
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SphericalKernel::Split 3

A model fo of this type must provide:

void fo.operator()( SphericalKernel::Circular arc 3 a,
SphericalKernel::Circular arc point 3 p,
SphericalKernel::Circular arc 3 &a1,
SphericalKernel::Circular arc 3 &a2)

Splits arc a at point p, which creates arcs a1 and a2.
Precondition: The point p lies in the interior of the input
arc a.

void fo.operator()( SphericalKernel::Line arc 3 l,
SphericalKernel::Circular arc point 3 p,
SphericalKernel::Line arc 3 &l1,
SphericalKernel::Line arc 3 &l2)

Same for a line arc.
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SphericalKernel::MakeThetaMonotone 3

A model fo of this concept must provide:

template<class OutputIterator>
OutputIterator fo( SphericalKernel::Circular arc 3 a, OutputIterator res)

Copies in the output iterator the results of the split of
arc a at the θ-extremal point(s) of its supporting cir-
cle relatively to the context sphere used by the function
SphericalKernel::make theta monotone 3 object (Refer
to section 14.2 for the definition of these points.) The out-
put iterator may contain no arc (if the supporting circle is
a bipolar circle), one arc (if a is already θ-monotone), two
arcs (if only one θ-extremal point is on a), or three arcs
(if two θ-extremal points are on a).
Precondition: a lies on the context sphere used by
the function SphericalKernel::make theta monotone 3
object, and the supporting circle of a is not bipolar.

template<class OutputIterator>
OutputIterator fo( SphericalKernel::Circle 3 c, OutputIterator res)

Copies in the output iterator the results of the split of
circle c at its θ-extremal point(s) relatively to the con-
text sphere used by the function SphericalKernel::make
theta monotone 3 object. (Refer to section 14.2 for the
definition of these points.) The output iterator may con-
tain no arc (if the circle is bipolar), one arc (if the circle
is polar or threaded), or two arcs (if the circle is normal).
The source and target are such that the circular arc is
the set of points of the circle that lie between the source
and the target when traversing the circle counterclock-
wise seen from the positive side of the plane of the circle.
In this definition, we say that a normal vector (a,b,c)
is positive if (a > 0)||(a == 0)&&(b > 0)||(a ==
0)&&(b == 0)&&(c > 0).
For a threaded circle, the arc returned the one built using
the full circle.
For a polar circle, the arc returned is the full circle, the
source and target correspond to the pole the circle goes
through.
Precondition: c lies on the context sphere used by
the function SphericalKernel::make theta monotone 3
object, and c is not bipolar.

See Also

SphericalKernel::IsThetaMonotone 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1301
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SphericalKernel::CompareX 3

Refines

Kernel::CompareX 3

An object fo of this type must provide in addition:

Comparison result fo.operator()( SphericalKernel::Circular arc point 3 p,
SphericalKernel::Circular arc point 3 q)

Compares the x-coordinates of p and q.

See Also

SphericalKernel::CompareY 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1286
SphericalKernel::CompareZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1287
SphericalKernel::CompareXY 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1288
SphericalKernel::CompareXYZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1289
SphericalKernel::CompareTheta 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1290
SphericalKernel::CompareThetaZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1291
SphericalKernel::Equal 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1294
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SphericalKernel::CompareY 3

Refines

Kernel::CompareY 3

An object fo of this type must provide in addition:

Comparison result fo.operator()( SphericalKernel::Circular arc point 3 p,
SphericalKernel::Circular arc point 3 q)

Compares the y-coordinates of p and q.

See Also

SphericalKernel::CompareX 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1285
SphericalKernel::CompareZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1287
SphericalKernel::CompareXY 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1288
SphericalKernel::CompareXYZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1289
SphericalKernel::CompareTheta 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1290
SphericalKernel::CompareThetaZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1291
SphericalKernel::Equal 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1294
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SphericalKernel::CompareZ 3

Refines

Kernel::CompareZ 3

An object fo of this type must provide in addition:

Comparison result fo.operator()( SphericalKernel::Circular arc point 3 p,
SphericalKernel::Circular arc point 3 q)

Compares the z-coordinates of p and q.

See Also

SphericalKernel::CompareX 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1285
SphericalKernel::CompareY 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1286
SphericalKernel::CompareXY 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1288
SphericalKernel::CompareXYZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1289
SphericalKernel::CompareTheta 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1290
SphericalKernel::CompareThetaZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1291
SphericalKernel::Equal 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1294
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SphericalKernel::CompareXY 3

Refines

Kernel::CompareXY 3

An object fo of this type must provide in addition:

Comparison result fo.operator()( SphericalKernel::Circular arc point 3 p,
SphericalKernel::Circular arc point 3 q)

Compares p and q according to the lexicographic order-
ing on x- and y-coordinates.

See Also

SphericalKernel::CompareX 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1285
SphericalKernel::CompareY 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1286
SphericalKernel::CompareZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1287
SphericalKernel::CompareXYZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1289
SphericalKernel::CompareTheta 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1290
SphericalKernel::CompareThetaZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1291
SphericalKernel::Equal 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1294
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SphericalKernel::CompareXYZ 3

Refines

Kernel::CompareXYZ 3

An object fo of this type must provide in addition:

Comparison result fo.operator()( SphericalKernel::Circular arc point 3 p,
SphericalKernel::Circular arc point 3 q)

Compares p and q according to the lexicographic order-
ing on x-, y-, and z-coordinates.

See Also

SphericalKernel::CompareX 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1285
SphericalKernel::CompareY 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1286
SphericalKernel::CompareZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1287
SphericalKernel::CompareXY 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1288
SphericalKernel::CompareTheta 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1290
SphericalKernel::CompareThetaZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1291
SphericalKernel::Equal 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1294
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SphericalKernel::CompareTheta 3

An object fo of this type must provide:

Comparison result fo.operator()( SphericalKernel::Circular arc point 3 p,
SphericalKernel::Circular arc point 3 q)

Compares the θ-coordinates of p and q in the cylindrical
coordinate system relative to the context sphere used by
the function SphericalKernel::compare theta 3 object.
Precondition: p and q lie on the context sphere used by
the function SphericalKernel::compare theta 3 object,
but do not coincide with its poles.

Comparison result fo( SphericalKernel::Circular arc point 3 p, SphericalKernel::Vector 3 m)

Compares the θ-coordinates of p and of the meridian de-
fined by m (see section 14.2) in the cylindrical coordinate
system relative to the context sphere used by the function
SphericalKernel::compare theta 3 object.
Precondition: p lies on the context sphere used by the
function SphericalKernel::compare theta 3 object, but
does not coincide with its poles. m 6= (0,0,0) and the
z-coordinate of m is 0.

Comparison result fo( SphericalKernel::Vector 3 m, SphericalKernel::Circular arc point 3 p)

Same as previous, with opposite result.

Comparison result fo( SphericalKernel::Vector 3 m1, SphericalKernel::Vector 3 m2)

Compares the θ-coordinates of the meridians defined by
m1 and by m2 (see section 14.2) in the cylindrical co-
ordinate system relative to the context sphere used by
the function SphericalKernel::compare theta 3 object.
m1 6= (0,0,0), m2 6= (0,0,0) and the z-coordinate of m1
and m2 is 0.

See Also

SphericalKernel::CompareThetaZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1291
SphericalKernel::CompareX 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1285
SphericalKernel::CompareY 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1286
SphericalKernel::CompareZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1287
SphericalKernel::CompareXY 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1288
SphericalKernel::CompareXYZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1289
SphericalKernel::Equal 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1294

1290



C
on

ce
pt

F
un

ct
or

SphericalKernel::CompareThetaZ 3

An object fo of this type must provide:

Comparison result fo.operator()( SphericalKernel::Circular arc point 3 p,
SphericalKernel::Circular arc point 3 q)

Compares p and q according to the lexicographic order-
ing on θ- and z-coordinates in the cylindrical coordinate
system relative to the context sphere used by the function
SphericalKernel::compare theta z 3 object.
Precondition: p and q lie on the context sphere used
by the function SphericalKernel::compare theta z 3
object, but do not coincide with its poles.

See Also

SphericalKernel::CompareTheta 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1290
SphericalKernel::CompareX 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1285
SphericalKernel::CompareY 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1286
SphericalKernel::CompareZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1287
SphericalKernel::CompareXY 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1288
SphericalKernel::CompareXYZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1289
SphericalKernel::Equal 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1294
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SphericalKernel::CompareZAtTheta 3

An object fo of this type must provide:

Comparison result fo.operator()( SphericalKernel::Circular arc 3 a0,
SphericalKernel::Circular arc 3 a1,
SphericalKernel::Vector 3 m)

compares the z-coordinates of the two intersections points
of a0 and a1 with the meridian defined by m (see section
14.2).
Precondition: a0 and a1 lie on the context sphere used
by the function SphericalKernel::compare z at theta 3
object. m 6= (0,0,0) and the z-coordinate of m is 0. Arcs
a0 and a1 are θ-monotone and both intersected by the
meridian defined by m (see section 14.2).

Comparison result fo( SphericalKernel::Circular arc point 3 p, SphericalKernel::Circular arc 3 a)

given a meridian anchored at the poles of the context
sphere used by the function SphericalKernel::compare
z at theta 3 object, and passing through point p, com-
pares the z-coordinate of point p and that of the intersec-
tion of the meridian with a.
Precondition: a and p lie on the context sphere used
by the function SphericalKernel::compare z at theta 3
object, arc a is θ-monotone and the meridian passing
through p intersects arc a.

See Also

SphericalKernel::CompareZToRight 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1293
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SphericalKernel::CompareZToRight 3

An object fo of this type must provide:

Comparison result fo.operator()( SphericalKernel::Circular arc 3 a0,
SphericalKernel::Circular arc 3 a1,
SphericalKernel::Circular arc point 3 p)

Compares the z-coordinates of the intersection points
of both arcs with a meridian anchored at the
poles of the context sphere used by the function
SphericalKernel::compare z to right 3 object, at a θ-
coordinate infinitesimally greater that the θ-coordinate of
point p.
Precondition: a0 and a1 lie on the context sphere used
by the function SphericalKernel::compare z to right 3
object, a0 and a1 are θ-monotone, p lies on a0 and a1
and is not a θ-extremal point of the supporting circle of
a0 or a1.

See Also

SphericalKernel::CompareZAtTheta 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1292
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SphericalKernel::Equal 3

Definition

Testing equality between objects.

Refines

Kernel::Equal 3

An object fo of this type must provide in addition:

bool fo.operator()( SphericalKernel::Circular arc point 3 p0,
SphericalKernel::Circular arc point 3 p1)

For two points.

bool fo( SphericalKernel::Circular arc 3 a0, SphericalKernel::Circular arc 3 a1)

For two arcs. Two arcs are equal, iff their non-oriented
supporting planes are equal, and the centers and squared
radii of their respective supporting circles are equal, and
their sources and targets are equal.

bool fo( SphericalKernel::Line arc 3 a0, SphericalKernel::Line arc 3 a1)

For two segments. Two segments are equal, iff their non-
oriented supporting lines are equal (i.e. they define the
same set of points), and their endpoints are the same.

See Also

SphericalKernel::CompareX 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1285
SphericalKernel::CompareY 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1286
SphericalKernel::CompareZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1287
SphericalKernel::CompareXY 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1288
SphericalKernel::CompareXYZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1289
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SphericalKernel::HasOn 3

Refines

Kernel::HasOn 3

An object fo of this type must provide:

bool fo( Type1 obj1, Type2 obj2)

Returns true when obj1 contains obj2,

where Type1 and Type2 can be respectively:

Type1 Type2
SphericalKernel::Sphere 3, SphericalKernel::Circular arc point 3
SphericalKernel::Plane 3,
SphericalKernel::Line 3,
SphericalKernel::Circle 3,
SphericalKernel::Line arc 3, or
SphericalKernel::Circular arc 3
SphericalKernel::Plane 3, SphericalKernel::Line arc 3
SphericalKernel::Line 3
SphericalKernel::Sphere 3, SphericalKernel::Circular arc 3
SphericalKernel::Circle 3, or
SphericalKernel::Plane 3
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SphericalKernel::DoOverlap 3

Refines

Kernel::DoOverlap 3

An object fo of this type must provide:

bool fo.operator()( SphericalKernel::Line arc 3 l0,
SphericalKernel::Line arc 3 l1,
const bool known equal supporting line = false)

For two line arcs.

bool fo.operator()( SphericalKernel::Circular arc 3 a0,
SphericalKernel::Circular arc 3 a1,
const bool known equal supporting circle = false)

For two circular arcs.

The computation may be faster when the boolean is set to true.
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SphericalKernel::DoIntersect 3

Definition

Testing whether two curves intersect.

Refines

Kernel::DoIntersect 3

An object fo of this type must provide:

bool fo( Type1 obj1, Type2 obj2)

determines if two geometric objects of type Type1 and
Type2 intersect or not.

for all pairs Type1 and Type2, where the types Type1 and Type2 can be either, any of the following:

• SphericalKernel::Plane 3

• SphericalKernel::Line 3

• SphericalKernel::Line arc 3

• SphericalKernel::Sphere 3

• SphericalKernel::Circle 3

See Also

CGAL::do intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 730

1297



C
on

ce
pt

F
un

ct
or

SphericalKernel::BoundedSide 3

Refines

Kernel::BoundedSide 3

An object fo of this type must provide:

Bounded side fo( SphericalKernel::Sphere 3 s, SphericalKernel::Circular arc point 3 p)

For a sphere.

Bounded side fo( SphericalKernel::Circle 3 s, SphericalKernel::Circular arc point 3 p)

For a circle.

See Also

SphericalKernel::HasOnBoundedSide 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1299
SphericalKernel::HasOnUnboundedSide 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1300
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SphericalKernel::HasOnBoundedSide 3

Refines

Kernel::HasOnBoundedSide 3

An object fo of this type must provide:

bool fo( SphericalKernel::Sphere 3 s, SphericalKernel::Circular arc point 3 p)

For a sphere.

bool fo( SphericalKernel::Circle 3 s, SphericalKernel::Circular arc point 3 p)

For a circle.

See Also

SphericalKernel::BoundedSide 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1298
SphericalKernel::HasOnUnboundedSide 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1300
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SphericalKernel::HasOnUnboundedSide 3

Refines

Kernel::HasOnUnboundedSide 3

An object fo of this type must provide:

bool fo( SphericalKernel::Sphere 3 s, SphericalKernel::Circular arc point 3 p)

For a sphere.

bool fo( SphericalKernel::Circle 3 s, SphericalKernel::Circular arc point 3 p)

For a circle.

See Also

SphericalKernel::BoundedSide 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1298
SphericalKernel::HasOnBoundedSide 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1299
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SphericalKernel::IsThetaMonotone 3

An object fo of this type must provide:

bool fo( SphericalKernel::Circular arc 3 a)

Tests whether the arc a is θ-monotone, i.e. the intersec-
tion of any meridian anchored at the poles of the context
sphere used by the function SphericalKernel::is theta
monotone 3 object and the arc a is reduced to at most one
point in general, and two points if a pole of that sphere is
an endpoint of a. Note that a bipolar circle has no such
arcs.
Precondition: a lies on the context sphere used by the
function SphericalKernel::is theta monotone 3 object,
and the supporting circle of a is not bipolar.

See Also

SphericalKernel::MakeThetaMonotone 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1284
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SphericalKernel::Intersect 3

Refines

Kernel::Intersect 3

A model fo of this concept must provide:

template < class OutputIterator >
OutputIterator fo( Type1 obj1, Type2 obj2, OutputIterator intersections)

Copies in the output iterator the intersection elements be-
tween the two objects. intersections iterates on elements
of type CGAL::Object, in lexicographic order when this
ordering is defined on the computed objects.

template < class OutputIterator >
OutputIterator fo( Type1 obj1, Type2 obj2, Type3 obj3, OutputIterator intersections)

Copies in the output iterator the intersection elements be-
tween the three objects. intersections iterates on elements
of type CGAL::Object, in lexicographic order when this
ordering is defined on the computed objects.

For the first operator, Type1 and Type2 can both be either

• SphericalKernel::Sphere 3,

• SphericalKernel::Plane 3,

• SphericalKernel::Line 3,

• SphericalKernel::Circle 3,

• SphericalKernel::Line arc 3 or

• SphericalKernel::Circular arc 3,

depending on the types Type1 and Type2, the computed CGAL::Objects can be assigned to

• std::pair<SphericalKernel::Circular arc point 3, unsigned>, where the unsigned integer is the multi-
plicity of the corresponding intersection point between obj 1 and obj 2,

• Type1, when Type1 and Type2 are equal, and if the two objects obj1 and obj2 are equal,

• SphericalKernel::Line 3 or SphericalKernel::Circle 3 when Type1 and Type2 are two-dimensional ob-
jects intersecting along a curve (2 planes, or 2 spheres, or one plane and one sphere),

• SphericalKernel::Circular arc 3 in case of an overlap of two circular arcs or

• SphericalKernel::Line arc 3 in case of an overlap of two line segments.

1302



For the second operator, Type1, Type2 and Type3 can be either

• SphericalKernel::Sphere 3 or

• SphericalKernel::Plane 3

and depending of these types, the computed CGAL::Objects can be assigned to

• std::pair<SphericalKernel::Circular arc point 3, unsigned>, where the unsigned integer is the multi-
plicity of the corresponding intersection point,

• SphericalKernel::Circle 3 or

• Type1, when Type1, Type2 and Type3 are equal, and if the three objects obj1 and obj2 and obj3 are equal.
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SphericalKernel::ComputeCircularX 3

SphericalKernel::Root of 2

fo( SphericalKernel::Circular arc point 3 p)

returns the x-coordinate of the point p.

1304



C
on

ce
pt

F
un

ct
or

SphericalKernel::ComputeCircularY 3

SphericalKernel::Root of 2

fo( SphericalKernel::Circular arc point 3 p)

returns the y-coordinate of the point p.
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SphericalKernel::ComputeCircularZ 3

SphericalKernel::Root of 2

fo( SphericalKernel::Circular arc point 3 p)

returns the z-coordinate of the point p.
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SphericalKernel::ComputeApproximateSquaredLength 3

Refines

Kernel::ComputeApproximateSquaredLength 3

In addition, an object fo of this type must provide:

double fo( SphericalKernel::Circular arc 3 a)

Computes an approximation of the squared length of the
arc a.
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SphericalKernel::ComputeApproximateAngle 3

An object fo of this type must provide:

double fo( SphericalKernel::Circular arc 3 a)

Computes an approximation of the angle of the arc in ra-
dians a.
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SphericalKernel::GetEquation

A model fo of this concept must provide:

SphericalKernel::Polynomial 1 3

fo( SphericalKernel::Plane 3 p)

Returns the equation of the plane.

SphericalKernel::Polynomial for spheres 2 3

fo( SphericalKernel::Sphere 3 p)

Returns the equation of the sphere.

SphericalKernel::Polynomials for line 3

fo( SphericalKernel::Line 3 c)

Returns the equations of the line.

SphericalKernel::Polynomials for circle 3

fo( SphericalKernel::Circle 3 c)

Returns the equations of the circle.

See Also

SphericalKernel::ConstructPlane 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1271
SphericalKernel::ConstructSphere 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1272
SphericalKernel::ConstructLine 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1273
SphericalKernel::ConstructCircle 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1274
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CGAL::is theta monotone

#include <CGAL/global functions spherical kernel 3.h>

bool is theta monotone( Circular arc 3<SphericalKernel> a,
Sphere 3<SphericalKernel> sphere)

Tests whether the arc a is θ-monotone, i.e. the intersec-
tion of any meridian anchored at the poles sphere and the
arc a is reduced to at most one point in general, and two
points if a pole of sphere is an endpoint of the arc. Note
that a bipolar circle has no such arcs.
Precondition: a lies on sphere, and the supporting circle
of a is not bipolar.

1310



F
un

ct
io

n

CGAL::compare theta

#include <CGAL/global functions spherical kernel 3.h>

Comparison result compare theta( Circular arc point 3<SphericalKernel> p,
Circular arc point 3<SphericalKernel> q,
Sphere 3<SphericalKernel> sphere)

Compares the θ-coordinates of p and q relatively to
sphere.
Precondition: p and q lie on sphere, but do not coincide
with the poles of sphere.

Comparison result compare theta( SphericalKernel::Circular arc point 3 p,
SphericalKernel::Vector 3 m,
SphericalKernel::Sphere 3 sphere)

Compares the θ-coordinates of p and of the meridian de-
fined by m (see section 14.2) in the cylindrical coordinate
system relative to sphere .
Precondition: p lies on sphere, but does not coincide with
its poles. m 6= (0,0,0) and the z-coordinate of m is 0.

Comparison result compare theta( SphericalKernel::Vector 3 m,
SphericalKernel::Circular arc point 3 p)

Same as previous, with opposite result.

See Also

CGAL::compare x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 712
CGAL::compare xy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 714
CGAL::compare xyz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 716
CGAL::compare x at y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 717
CGAL::compare y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 719
CGAL::compare yx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 723
CGAL::compare y at x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 721
CGAL::compare z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 724
CGAL::compare theta z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1312
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CGAL::compare theta z

#include <CGAL/global functions spherical kernel 3.h>

bool compare theta z( Circular arc point 3<SphericalKernel> p,
Circular arc point 3<SphericalKernel> q,
Sphere 3<SphericalKernel> sphere)

Compares p and q according to the lexicographic order-
ing on θ and z-coordinates in the cylindrical coordinate
system relative to sphere.
Precondition: p and q lie on sphere, but do not coincide
with the poles of sphere.

See Also

CGAL::compare x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 712
CGAL::compare xy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 714
CGAL::compare xyz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 716
CGAL::compare x at y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 717
CGAL::compare y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 719
CGAL::compare yx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 723
CGAL::compare y at x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 721
CGAL::compare z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 724
CGAL::compare theta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1311
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CGAL::x extremal point

#include <CGAL/global functions spherical kernel 3.h>

Circular arc point 3<SphericalKernel>

x extremal point( Sphere 3<SphericalKernel> c, bool b)

Returns the point on the sphere that is extremal in the x-
direction, and that is the smallest (resp. largest) of the
two x-extremal points for the lexicographic order if b is
true (resp. false).

Circular arc point 3<SphericalKernel>

x extremal point( Circle 3<SphericalKernel> c, bool b)

Same for a circle.
Precondition: The circle is not contained in a plane or-
thogonal to the x-axis.
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CGAL::y extremal point

#include <CGAL/global functions spherical kernel 3.h>

Circular arc point 3<SphericalKernel>

y extremal point( Sphere 3<SphericalKernel> c, bool b)

Returns the point on the sphere that is extremal in the y-
direction, and that is the smallest (resp. largest) of the
two y-extremal points for the lexicographic order if b is
true (resp. false).

Circular arc point 3<SphericalKernel>

y extremal point( Circle 3<SphericalKernel> c, bool b)

Same for a circle.
Precondition: The circle is not contained in a plane or-
thogonal to the y-axis.
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CGAL::z extremal point

#include <CGAL/global functions spherical kernel 3.h>

Circular arc point 3<SphericalKernel>

z extremal point( Sphere 3<SphericalKernel> c, bool b)

Returns the point on the sphere that is extremal in the z-
direction, and that is the smallest (resp. largest) of the
two z-extremal points for the lexicographic order if b is
true (resp. false).

Circular arc point 3<SphericalKernel>

z extremal point( Circle 3<SphericalKernel> c, bool b)

Same for a circle.
Precondition: The circle is not contained in a plane or-
thogonal to the z-axis.
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CGAL::theta extremal point

#include <CGAL/global functions spherical kernel 3.h>

Circular arc point 3<SphericalKernel>

theta extremal point( Circle 3<SphericalKernel> c,
const Sphere 3<SphericalKernel> sphere,
bool b)

Returns the point on the circle that is extremal in θ using
the cylindrical coordinate system relative to sphere, and
that has the smallest (resp. largest) θ-coordinate of the
two points if b is true (resp. false). See section 14.2 for
definitions.
Precondition: c lies on sphere and is a normal circle.
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CGAL::x extremal points

#include <CGAL/global functions spherical kernel 3.h>

template < class OutputIterator >
OutputIterator x extremal points( Sphere 3<SphericalKernel> c, OutputIterator res)

Copies in the output iterator the x-extremal points of the
sphere. res iterates on elements of type Circular arc
point 3<SphericalKernel>, lexicographically sorted.

template < class OutputIterator >
OutputIterator x extremal points( Circle 3<SphericalKernel> c, OutputIterator res)

Copies in the output iterator the x-extremal points of the
circle. res iterates on elements of type Circular arc
point 3<SphericalKernel>, lexicographically sorted.
Precondition: The circle is not contained in a plane or-
thogonal to the x-axis.
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CGAL::y extremal points

#include <CGAL/global functions spherical kernel 3.h>

template < class OutputIterator >
OutputIterator y extremal points( Sphere 3<SphericalKernel> c, OutputIterator res)

Copies in the output iterator the y-extremal points of the
sphere. res iterates on elements of type Circular arc
point 3<SphericalKernel>, lexicographically sorted.

template < class OutputIterator >
OutputIterator y extremal points( Circle 3<SphericalKernel> c, OutputIterator res)

Copies in the output iterator the y-extremal points of the
circle. res iterates on elements of type Circular arc
point 3<SphericalKernel>, lexicographically sorted.
Precondition: The circle is not contained in a plane or-
thogonal to the y-axis.

1318



F
un

ct
io

n

CGAL::z extremal points

#include <CGAL/global functions spherical kernel 3.h>

template < class OutputIterator >
OutputIterator z extremal points( Sphere 3<SphericalKernel> c, OutputIterator res)

Copies in the output iterator the z-extremal points of the
sphere. res iterates on elements of type Circular arc
point 3<SphericalKernel>, lexicographically sorted.

template < class OutputIterator >
OutputIterator z extremal points( Circle 3<SphericalKernel> c, OutputIterator res)

Copies in the output iterator the z-extremal points of the
circle. res iterates on elements of type Circular arc
point 3<SphericalKernel>, lexicographically sorted.
Precondition: The circle is not contained in a plane or-
thogonal to the z-axis.
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CGAL::theta extremal points

#include <CGAL/global functions spherical kernel 3.h>

template < class OutputIterator >
OutputIterator theta extremal points( Circle 3<SphericalKernel> c,

Sphere 3<SphericalKernel> sphere,
OutputIterator res)

Copies in the output iterator the θ-extremal points of
the circle relatively to sphere. res iterates on elements
of type Circular arc point 3<SphericalKernel>, lexico-
graphically sorted in the cylindrical coordinate system
relative to sphere. See section 14.2 for definitions.
Precondition: c lies on sphere and is a normal circle.
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CGAL::classify

#include <CGAL/global functions spherical kernel 3.h>

CGAL::Circle type classify( Circle 3<SphericalKernel> c, Sphere 3<SphericalKernel> sphere)

Classify a circle according to sphere, as defined in sec-
tion 14.2.
Precondition: c lies on sphere.

See Also

CGAL::Circle type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1270
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AlgebraicKernelForSpheres

Definition

The AlgebraicKernelForSpheres concept is meant to provide the curved kernel with all the algebraic function-
alities required for the manipulation of spheres, circles, and circular arcs in 3D.

Has Models

Algebraic kernel for spheres 2 3

Types

A model of AlgebraicKernelForSpheres is supposed to provide

AlgebraicKernelForSpheres:: RT A model of RingNumberType.
AlgebraicKernelForSpheres:: FT A model of FieldNumberType<RT>.

AlgebraicKernelForSpheres:: Polynomial 1 3 A model of AlgebraicKernelForSpheres::Polynomial 1
3, for trivariate polynomials of degree up to 1.

AlgebraicKernelForSpheres:: Polynomial for spheres 2 3

A model of AlgebraicKernelForSpheres::PolynomialForSpheres
2 3, for trivariate polynomials of degree up to 2 that can
store equations of spheres.

AlgebraicKernelForSpheres:: Polynomials for lines 3

A model of AlgebraicKernelForSpheres::PolynomialsForLines
3, for systems of polynomials that can store equations of
lines in 3D.

AlgebraicKernelForSpheres:: Root of 2 A model of RootOf 2, for algebraic numbers of degree up
to 2.

AlgebraicKernelForSpheres:: Root for spheres 2 3

A model of AlgebraicKernelForSpheres::RootForSpheres
2 3, for solutions of systems of three models of
AlgebraicKernelForSpheres::PolynomialForSpheres 2
3.

AlgebraicKernelForSpheres:: Construct polynomial 1 3

A model of AlgebraicKernelForSpheres::ConstructPolynomial
1 3.
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AlgebraicKernelForSpheres:: Construct polynomial for spheres 2 3

A model of AlgebraicKernelForSpheres::ConstructPolynomialForSpheres
2 3.

AlgebraicKernelForSpheres:: Construct polynomials for lines 3

A model of AlgebraicKernelForSpheres::ConstructPolynomialsForLines
3.

AlgebraicKernelForSpheres:: Compare x A model of the concept AlgebraicKernelFor-
Spheres::CompareX.

AlgebraicKernelForSpheres:: Compare y A model of the concept AlgebraicKernelFor-
Spheres::CompareY .

AlgebraicKernelForSpheres:: Compare z A model of the concept AlgebraicKernelFor-
Spheres::CompareZ.

AlgebraicKernelForSpheres:: Compare xy A model of the concept AlgebraicKernelFor-
Spheres::CompareXY .

AlgebraicKernelForSpheres:: Compare xyz A model of the concept AlgebraicKernelFor-
Spheres::CompareXYZ.

AlgebraicKernelForSpheres:: Sign at A model of the concept AlgebraicKernelFor-
Spheres::SignAt.

AlgebraicKernelForSpheres:: X critical points A model of the concept AlgebraicKernelFor-
Spheres::XCriticalPoints.

AlgebraicKernelForSpheres:: Y critical points A model of the concept AlgebraicKernelFor-
Spheres::YCriticalPoints.

AlgebraicKernelForSpheres:: Z critical points A model of the concept AlgebraicKernelFor-
Spheres::ZCriticalPoints.

AlgebraicKernelForSpheres:: Solve A model of the concept AlgebraicKernelFor-
Spheres::Solve.

See Also

SphericalKernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1255
CGAL::Spherical kernel 3<Kernel,AlgebraicKernelForSpheres> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1259
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CGAL::Algebraic kernel for spheres 2 3<RT>

#include <CGAL/Algebraic kernel for spheres 2 3.h>

Is Model for the Concepts

AlgebraicKernelForSpheres
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AlgebraicKernelForSpheres::Polynomial 1 3

Definition

Concept to represent trivariate polynomials of degree 1 whose coefficients are of a type that is a model of the
concept RingNumberType.

Refines

CopyConstructible, Assignable, DefaultConstructible

Has Models

CGAL::Polynomial 1 3

See Also

AlgebraicKernelForSpheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1322
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CGAL::Polynomial 1 3<RT>

#include <CGAL/Polynomials 1 3.h>

Is Model for the Concepts

AlgebraicKernelForSpheres::Polynomial 1 3
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AlgebraicKernelForSpheres::PolynomialForSpheres 2 3

Definition

Concept to represent trivariate polynomials of degree up to 2 capable of storing equations of spheres, whose
center’s coordinates, as well as the square of the radius, are of a type that is a model of the concept FieldNum-
berType.

Refines

CopyConstructible, Assignable, DefaultConstructible

Creation

Operations

The comparison operator == must be provided.

bool p == q Tests equality of two polynomials.

Has Models

CGAL::Polynomial for spheres 2 3

See Also

AlgebraicKernelForSpheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1322
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CGAL::Polynomial for spheres 2 3<FT>

#include <CGAL/Polynomials 2 3.h>

Is Model for the Concepts

AlgebraicKernelForSpheres::PolynomialForSpheres 2 3

See Also

AlgebraicKernelForSpheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1322

1328



C
on

ce
pt

AlgebraicKernelForSpheres::PolynomialsForLines 3

Definition

Concept to represent a system of polynomials on FieldNumberType capable of storing equations of lines.

Refines

CopyConstructible, Assignable, DefaultConstructible

Has Models

CGAL::Polynomials for lines 3

See Also

AlgebraicKernelForSpheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1322
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CGAL::Polynomials for lines 3<FT>

#include <CGAL/Polynomials for line 3.h>

Is Model for the Concepts

AlgebraicKernelForSpheres::PolynomialsForLines 3

See Also

AlgebraicKernelForSpheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1322
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AlgebraicKernelForSpheres::PolynomialsForCircles 3

Definition

Concept to represent a system of polynomials on FieldNumberType capable of storing equations of circles.

Refines

CopyConstructible, Assignable, DefaultConstructible

See Also

AlgebraicKernelForSpheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1322
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AlgebraicKernelForSpheres::RootForSpheres 2 3

Definition

Concept to represent the roots of a system of three equations of degree 2 in three variables x, y and z that are
models of concept AlgebraicKernelForSpheres::PolynomialForSpheres 2 3.

Operations

The comparison operator == must be provided.

bool r1 == r2 Test equality of two roots of systems.

Has Models

CGAL::Root for spheres 2 3

See Also

AlgebraicKernelForSpheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1322
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CGAL::Root for spheres 2 3<RT>

#include <CGAL/Root for spheres 2 3.h>

Is Model for the Concepts

AlgebraicKernelForSpheres::RootForSpheres 2 3
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AlgebraicKernelForSpheres::CompareX

A model fo of this concept must provide:

CGAL::Comparison result

fo.operator()( AlgebraicKernelForSpheres::Root for spheres 2 3 r1,
AlgebraicKernelForSpheres::Root for spheres 2 3 r2)

Compares the x (first) variables of two Root for spheres
2 3.

See Also

AlgebraicKernelForSpheres::CompareY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1335
AlgebraicKernelForSpheres::CompareZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1336
AlgebraicKernelForSpheres::CompareXY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1337
AlgebraicKernelForSpheres::CompareXYZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1338
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AlgebraicKernelForSpheres::CompareY

Definition

A model fo of this concept must provide:

CGAL::Comparison result

fo.operator()( AlgebraicKernelForSpheres::Root for spheres 2 3 r1,
AlgebraicKernelForSpheres::Root for spheres 2 3 r2)

Compares the y (second) variables of two Root for
spheres 2 3.

See Also

AlgebraicKernelForSpheres::CompareX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1334
AlgebraicKernelForSpheres::CompareZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1336
AlgebraicKernelForSpheres::CompareXY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1337
AlgebraicKernelForSpheres::CompareXYZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1338
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AlgebraicKernelForSpheres::CompareZ

Definition

A model fo of this concept must provide:

CGAL::Comparison result

fo.operator()( AlgebraicKernelForSpheres::Root for spheres 2 3 r1,
AlgebraicKernelForSpheres::Root for spheres 2 3 r2)

Compares the z (third) variables of two Root for
spheres 2 3.

See Also

AlgebraicKernelForSpheres::CompareX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1334
AlgebraicKernelForSpheres::CompareY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1335
AlgebraicKernelForSpheres::CompareXY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1337
AlgebraicKernelForSpheres::CompareXYZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1338
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AlgebraicKernelForSpheres::CompareXY

Definition

A model fo of this concept must provide:

CGAL::Comparison result

fo.operator()( AlgebraicKernelForSpheres::Root for spheres 2 3 r1,
AlgebraicKernelForSpheres::Root for spheres 2 3 r2)

Compares the x and y (the two first) variables of two
Root for spheres 2 3 lexicographically.

See Also

AlgebraicKernelForSpheres::CompareX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1334
AlgebraicKernelForSpheres::CompareY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1335
AlgebraicKernelForSpheres::CompareZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1336
AlgebraicKernelForSpheres::CompareXYZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1338
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AlgebraicKernelForSpheres::CompareXYZ

Definition

A model fo of this concept must provide:

CGAL::Comparison result

fo.operator()( AlgebraicKernelForSpheres::Root for spheres 2 3 r1,
AlgebraicKernelForSpheres::Root for spheres 2 3 r2)

Compares two Root for spheres 2 3 lexicographically.

See Also

AlgebraicKernelForSpheres::CompareX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1334
AlgebraicKernelForSpheres::CompareY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1335
AlgebraicKernelForSpheres::CompareZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1336
AlgebraicKernelForSpheres::CompareXY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1337
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AlgebraicKernelForSpheres::SignAt

Definition

A model fo of this concept must provide:

CGAL::Sign fo.operator()( AlgebraicKernelForSpheres::Polynomial 1 3 p,
AlgebraicKernelForSpheres::Root for spheres 2 3 r)

Computes the sign of polynomial p evaluated at a root r.

CGAL::Sign fo.operator()( AlgebraicKernelForSpheres::Polynomial for spheres 2 3 p,
AlgebraicKernelForSpheres::Root for spheres 2 3 r)

Same as previous.
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AlgebraicKernelForSpheres::ConstructPolynomial 1 3

A model fo of this concept must provide:

AlgebraicKernelForSpheres::Polynomial 1 3

fo.operator()( AlgebraicKernelForSpheres::RT a,
AlgebraicKernelForSpheres::RT b,
AlgebraicKernelForSpheres::RT c,
AlgebraicKernelForSpheres::RT d)

Constructs polynomial ax+by+cz+d.

See Also

SphericalKernel::ConstructPlane 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1271
SphericalKernel::GetEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1309
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AlgebraicKernelForSpheres::ConstructPolynomialForSpheres 2 3

A model fo of this concept must provide:

AlgebraicKernelForSpheres::PolynomialForSpheres 2 3

fo.operator()( AlgebraicKernelForSpheres::FT a,
AlgebraicKernelForSpheres::FT b,
AlgebraicKernelForSpheres::FT c,
AlgebraicKernelForSpheres::FT rsq)

Constructs polynomial (x-a) ˆ2 + (y-b) ˆ2 + (z-c) ˆ2 - rsq.

See Also

SphericalKernel::ConstructSphere 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1272
SphericalKernel::GetEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1309
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AlgebraicKernelForSpheres::ConstructPolynomialsForLines 3

A model fo of this concept must provide:

AlgebraicKernelForSpheres::Polynomials for line 3

fo.operator()( AlgebraicKernelForSpheres::FT a1,
AlgebraicKernelForSpheres::FT a2,
AlgebraicKernelForSpheres::FT b1,
AlgebraicKernelForSpheres::FT b2,
AlgebraicKernelForSpheres::FT c1,
AlgebraicKernelForSpheres::FT c2)

Constructs polynomials a1.t+a2, b1.t+b2, c1.t+c2.

See Also

SphericalKernel::ConstructLine 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1273
SphericalKernel::GetEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1309
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AlgebraicKernelForSpheres::Solve

Definition

A model fo of this concept must provide:

template < class OutputIterator >
OutputIterator fo( Type1 p1, Type2 p2, Type3 p3, OutputIterator res)

Copies in the output iterator the common roots of
p1, p2, and p3, with their multiplicity, as objects of
type std::pair< AlgebraicKernelForSpheres::Root for
spheres 2 3, int>.
Precondition: The set of solutions of the system is 0-
dimensional.

Here, Type1, Type2, and Type3 can all be either AlgebraicKernelForSpheres::Polynomial 1 3 or
AlgebraicKernelForSpheres::Polynomial for spheres 2 3.
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AlgebraicKernelForSpheres::XCriticalPoints

Definition

A model fo of this concept must provide:

template < class OutputIterator >
OutputIterator fo.operator()( AlgebraicKernelForSpheres::Polynomial for spheres 2 3 p,

OutputIterator res)

Copies in the output iterator the x-critical
points of polynomial p, as objects of type
AlgebraicKernelForSpheres::Root for spheres 2 3.

template < class OutputIterator >
AlgebraicKernelForSpheres::Root for spheres 2 3

fo( AlgebraicKernelForSpheres::Polynomial for spheres 2 3 p, bool i)

Computes the ith x-critical point of polynomial p.

See Also

AlgebraicKernelForSpheres::YCriticalPoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1345
AlgebraicKernelForSpheres::ZCriticalPoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1346
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AlgebraicKernelForSpheres::YCriticalPoints

Definition

A model fo of this concept must provide:

template < class OutputIterator >
OutputIterator fo.operator()( AlgebraicKernelForSpheres::Polynomial for spheres 2 3 p,

OutputIterator res)

Copies in the output iterator the y-critical
points of polynomial p, as objects of type
AlgebraicKernelForSpheres::Root for spheres 2 3.

template < class OutputIterator >
AlgebraicKernelForSpheres::Root for spheres 2 3

fo( AlgebraicKernelForSpheres::Polynomial for spheres 2 3 p, bool i)

Computes the ith y-critical point of polynomial p.

See Also

AlgebraicKernelForSpheres::XCriticalPoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1344
AlgebraicKernelForSpheres::ZCriticalPoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1346
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AlgebraicKernelForSpheres::ZCriticalPoints

Definition

A model fo of this concept must provide:

template < class OutputIterator >
OutputIterator fo.operator()( AlgebraicKernelForSpheres::Polynomial for spheres 2 3 p,

OutputIterator res)

Copies in the output iterator the z-critical
points of polynomial p, as objects of type
AlgebraicKernelForSpheres::Root for spheres 2 3.

template < class OutputIterator >
AlgebraicKernelForSpheres::Root for spheres 2 3

fo( AlgebraicKernelForSpheres::Polynomial for spheres 2 3 p, bool i)

Computes the ith z-critical point of polynomial p.

See Also

AlgebraicKernelForSpheres::XCriticalPoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1344
AlgebraicKernelForSpheres::YCriticalPoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1345
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15.1 Introduction

A subset S ⊆ R2 is convex if for any two points p and q in the set the line segment with endpoints p and q is
contained in S. The convex hull of a set S is the smallest convex set containing S. The convex hull of a set of
points P is a convex polygon with vertices in P. A point in P is an extreme point (with respect to P) if it is a
vertex of the convex hull of P. A set of points is said to be strongly convex if it consists of only extreme points.

This chapter describes the functions provided in CGAL for producing convex hulls in two dimensions as well
as functions for checking if sets of points are strongly convex are not. There are also a number of functions
described for computing particular extreme points and subsequences of hull points, such as the lower and upper
hull of a set of points.
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15.2 Convex Hull

CGAL provides implementations of several classical algorithms for computing the counterclockwise sequence
of extreme points for a set of points in two dimensions (i.e., the counterclockwise sequence of points on the
convex hull). The algorithms have different asymptotic running times and require slightly different sets of
geometric primitives. Thus you may choose the algorithm that best fits your setting.

Each of the convex hull functions presents the same interface to the user. That is, the user provides a pair of
iterators, first and beyond, an output iterator result, and a traits class traits. The points in the range [first, beyond)
define the input points whose convex hull is to be computed. The counterclockwise sequence of extreme points
is written to the sequence starting at position result, and the past-the-end iterator for the resulting set of points
is returned. The traits classes for the functions specify the types of the input points and the geometric primitives
that are required by the algorithms. All functions provide an interface in which this class need not be specified
and defaults to types and operations defined in the kernel in which the input point type is defined.

Given a sequence of n input points with h extreme points, the function convex hull 2 uses either the output-
sensitive O(nh) algorithm of Bykat [Byk78] (a non-recursive version of the quickhull [BDH96] algorithm) or
the algorithm of Akl and Toussaint, which requires O(n logn) time in the worst case. The algorithm chosen
depends on the kind of iterator used to specify the input points. These two algorithms are also available via the
functions ch bykat and ch akl toussaint, respectively. Also available are the O(n logn) Graham-Andrew scan
algorithm [And79, Meh84] (ch graham andrew), the O(nh) Jarvis march algorithm [Jar73] (ch jarvis), and
Eddy’s O(nh) algorithm [Edd77] (ch eddy), which corresponds to the two-dimensional version of the quickhull
algorithm. The linear-time algorithm of Melkman for producing the convex hull of simple polygonal chains (or
polygons) is available through the function ch melkman.

15.3 Example using Graham-Andrew’s Algorithm

In the following example a convex hull is constructed from point data read from standard input using Graham
Andrew algorithm. The resulting convex polygon is shown at the standard output console. The same results
could be achieved by substituting the function CGAL::ch graham andrew by other function like CGAL::ch
bykat.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/ch_graham_andrew.h>
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typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_2 Point_2;

int main()
{

CGAL::set_ascii_mode(std::cin);
CGAL::set_ascii_mode(std::cout);
std::istream_iterator< Point_2 > in_start( std::cin );
std::istream_iterator< Point_2 > in_end;
std::ostream_iterator< Point_2 > out( std::cout, "\n" );
CGAL::ch_graham_andrew( in_start, in_end, out );
return 0;

}� �
File: examples/Convex_hull_2/ch_from_cin_to_cout.cpp

15.4 Extreme Points and Hull Subsequences

In addition to the functions for producing convex hulls, there are a number of functions for computing sets
and sequences of points related to the convex hull. The functions lower hull points 2 and upper hull points 2
provide the computation of the counterclockwise sequence of extreme points on the lower hull and upper hull,
respectively. The algorithm used in these functions is Andrew’s variant of Graham’s scan algorithm [And79,
Meh84], which has worst-case running time of O(n logn).

There are also functions available for computing certain subsequences of the sequence of extreme points on
the convex hull. The function ch jarvis march generates the counterclockwise ordered subsequence of extreme
points between a given pair of points and ch graham andrew scan computes the sorted sequence of extreme
points that are not left of the line defined by the first and last input points.

Finally, a set of functions (ch nswe point, ch ns point, ch we point, ch n point, ch s point, ch w point, ch e
point) is provided for computing extreme points of a 2D point set in the coordinate directions.

15.5 Traits Classes

Each of the functions used to compute convex hulls or extreme points is parameterized by a traits class, which
specifies the types and geometric primitives to be used in the computation. There are several implementations
of 2D traits classes provided in the library. The class Convex hull traits 2<R> corresponds to the default traits
class that provides the types and predicates presented in the 2-dimensional CGAL kernel in which the input
points lie. The class Convex hull constructive traits<R> is a second traits class based on CGAL primitives but
differs from Convex hull traits 2 in that some of its primitives reuse intermediate results to speed up computa-
tion.

In addition, the 2D and 3D Linear Geometric Kernel provides three projective traits classes (Projection traits
xy 3<K>, Projection traits zx 3<K, and Projection traits yz 3<K),

which may be used to compute the convex hull of a set of three-dimensional points projected into each of the
three coordinate planes.
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15.6 Convexity Checking

The functions is ccw strongly convex 2 and is cw strongly convex 2 check whether a given sequence of 2D
points forms a (counter)clockwise strongly convex polygon.. These are used in postcondition testing of the
two-dimensional convex hull functions.
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A subset S ⊆ R2 is convex if for any two points p and q in the set the line segment with endpoints p and q is
contained in S. The convex hull of a set S is the smallest convex set containing S. The convex hull of a set of
points P is a convex polygon with vertices in P. A point in P is an extreme point (with respect to P) if it is a
vertex of the convex hull of P.

CGAL provides functions for computing convex hulls in two dimensions as well as functions for testing if a
given set of points is strongly convex or not. There are also a number of functions available for computing
particular extreme points in 2D and subsequences of the hull points, such as the lower hull or upper hull of a set
of points.

15.7 Classified Reference Pages

Assertions

The assertion flags for the convex hull and extreme point algorithms use CH in their names (e.g., CGAL CH
NO POSTCONDITIONS). For the convex hull algorithms, the postcondition check tests only convexity (if not
disabled), but not containment of the input points in the polygon or polyhedron defined by the output points. The
latter is considered an expensive checking and can be enabled by defining CGAL CH CHECK EXPENSIVE.

Concepts

ConvexHullTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1381
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CGAL::ch akl toussaint

Definition

The function ch akl toussaint generates the counterclockwise sequence of extreme points from a given set of
input points.

#include <CGAL/ch akl toussaint.h>

template <class ForwardIterator, class OutputIterator, class Traits>
OutputIterator ch akl toussaint( ForwardIterator first,

ForwardIterator beyond,
OutputIterator result,
Traits ch traits = Default traits())

generates the counterclockwise sequence of extreme
points of the points in the range [first,beyond). The re-
sulting sequence is placed starting at position result, and
the past-the-end iterator for the resulting sequence is re-
turned. It is not specified at which point the cyclic se-
quence of extreme points is cut into a linear sequence.
Precondition: The source range [first,beyond) does not
contain result.

The default traits class Default traits is the kernel in which the type ForwardIterator::value type is defined.

Requirements

1. ForwardIterator::value type and OutputIterator::value type are equivalent to Traits::Point 2.

2. Traits defines the following subset of types from the concept ConvexHullTraits 2 and their corresponding
member functions that return instances of these types:

• Traits::Point 2,

• Traits::Less xy 2,

• Traits::Less yx 2,

• Traits::Left turn 2,

• Traits::Equal 2.

See Also
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Implementation

This function uses the algorithm of Akl and Toussaint [AT78] that requires O(n logn) time for n input points.
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CGAL::ch bykat

Definition

The function ch bykat generates the counterclockwise sequence of extreme points from a given set of input
points.

#include <CGAL/ch bykat.h>

template <class InputIterator, class OutputIterator, class Traits>
OutputIterator ch bykat( InputIterator first,

InputIterator beyond,
OutputIterator result,
Traits ch traits = Default traits)

generates the counterclockwise sequence of extreme
points of the points in the range [first,beyond). The re-
sulting sequence is placed starting at position result, and
the past-the-end iterator for the resulting sequence is re-
turned. It is not specified at which point the cyclic se-
quence of extreme points is cut into a linear sequence.
Precondition: The source range [first,beyond) does not
contain result.

The default traits class Default traits is the kernel in which the type ForwardIterator::value type is defined.

Requirements

1. InputIterator::value type and OutputIterator::value type are equivalent to Traits::Point 2.

2. Traits defines the following subset of types from the concept ConvexHullTraits 2 and their corresponding
member functions that return instances of these types:

• Traits::Point 2,

• Traits::Less signed distance to line 2,

• Traits::Left turn 2,

• Traits::Less xy 2,

• Traits::Equal 2.

See Also
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Implementation

This function implements the non-recursive variation of Eddy’s algorithm [Edd77] described in [Byk78]. This
algorithm requires O(nh) time in the worst case for n input points with h extreme points.
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CGAL::ch eddy

Definition

The function ch eddy generates the counterclockwise sequence of extreme points from a given set of input
points.

#include <CGAL/ch eddy.h>

template <class InputIterator, class OutputIterator, class Traits>
OutputIterator ch eddy( InputIterator first,

InputIterator beyond,
OutputIterator result,
Traits ch traits = Default traits)

generates the counterclockwise sequence of extreme
points of the points in the range [first,beyond). The re-
sulting sequence is placed starting at position result, and
the past-the-end iterator for the resulting sequence is re-
turned. It is not specified at which point the cyclic se-
quence of extreme points is cut into a linear sequence.
Precondition: The source range [first,beyond) does not
contain result.

The default traits class Default traits is the kernel in which the type ForwardIterator::value type is defined.

Requirements

1. InputIterator::value type and OutputIterator::value type are equivalent to Traits::Point 2.

2. Traits defines the following subset of types from the concept ConvexHullTraits 2 and their corresponding
member functions that return instances of these types:

• Traits::Point 2,

• Traits::Equal 2,

• Traits::Less signed distance to line 2,

• Traits::Left turn 2,

• Traits::Less xy 2.

See Also

CGAL::ch akl toussaint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1356
CGAL::ch bykat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1358
CGAL::ch graham andrew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1363
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CGAL::ch melkman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1371
CGAL::convex hull 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1379
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Implementation

This function implements Eddy’s algorithm [Edd77], which is the two-dimensional version of the quickhull
algorithm [BDH96] . This algorithm requires O(nh) time in the worst case for n input points with h extreme
points.
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CGAL::ch e point

Definition

The function ch e point finds a point of a given set of input points with maximal x coordinate.

#include <CGAL/ch selected extreme points 2.h>

template <class ForwardIterator>
void ch e point( ForwardIterator first,

ForwardIterator beyond,
ForwardIterator& e,
Traits ch traits = Default traits)

traverses the range [first,beyond). After execution, the
value of e is an iterator in the range such that *e ≥xy *it
for all iterators it in the range.

The default traits class Default traits is the kernel in which the type ForwardIterator::value type is defined.

Requirements

Traits defines a type Traits::Less xy 2 as described in the concept ConvexHullTraits 2 and the corresponding
member function that returns an instance of this type.

See Also

CGAL::ch nswe point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1373
CGAL::ch n point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1375
CGAL::ch ns point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1374
CGAL::ch s point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1376
CGAL::ch w point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1378
CGAL::ch we point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1377
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CGAL::ch graham andrew

Definition

The function ch graham andrew generates the counterclockwise sequence of extreme points from a given set
of input points.

#include <CGAL/ch graham andrew.h>

template <class InputIterator, class OutputIterator, class Traits>
OutputIterator ch graham andrew( InputIterator first,

InputIterator beyond,
OutputIterator result,
Traits ch traits = Default traits)

generates the counterclockwise sequence of extreme
points of the points in the range [first,beyond). The re-
sulting sequence is placed starting at position result, and
the past-the-end iterator for the resulting sequence is re-
turned. It is not specified at which point the cyclic se-
quence of extreme points is cut into a linear sequence.
Precondition: The source range [first,beyond) does not
contain result.

The default traits class Default traits is the kernel in which the type InputIterator::value type is defined.

Requirements

1. InputIterator::value type and OutputIterator::value type are equivalent to Traits::Point 2.

2. Traits defines the following subset of types from the concept ConvexHullTraits 2 and their corresponding
member functions that return instances of these types:

• Traits::Point 2,

• Traits::Less xy 2,

• Traits::Left turn 2,

• Traits::Equal 2.

See Also

CGAL::ch akl toussaint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1356
CGAL::ch bykat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1358
CGAL::ch eddy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1360
CGAL::ch graham andrew scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1365
CGAL::ch jarvis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1367
CGAL::ch melkman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1371
CGAL::convex hull 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1379
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CGAL::lower hull points 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1393
CGAL::upper hull points 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1395

Implementation

This function implements Andrew’s variant of the Graham scan algorithm [And79] and follows the presentation
of Mehlhorn [Meh84]. This algorithm requires O(n logn) time in the worst case for n input points.
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CGAL::ch graham andrew scan

Definition

The function ch graham andrew scan generates the counterclockwise sequence of extreme points from a given
set of input points that are not left of the line defined by the first and last points in this sequence.

#include <CGAL/ch graham andrew.h>

template <class BidirectionalIterator, class OutputIterator, class Traits>
OutputIterator ch graham andrew scan( BidirectionalIterator first,

BidirectionalIterator beyond,
OutputIterator result,
Traits ch traits = Default traits)

generates the counterclockwise sequence of extreme
points that are not left of pq, where p is the value of first
and q is the value of beyond −1. The resulting sequence
is placed starting at result with p; point q is omitted. The
past-the-end iterator for the sequence is returned.
Precondition: The range [first,beyond) contains at least
two different points. The points in [first,beyond) are
“sorted” with respect to pq, i.e., the sequence of points
in [first,beyond) define a counterclockwise polygon, for
which the Graham-Sklansky-procedure [Skl72] works.

The default traits class Default traits is the kernel in which the type BidirectionalIterator::value type is defined.

Requirements

1. BidirectionalIterator::value type and OutputIterator::value type are equivalent to Traits::Point 2.

2. Traits defines the following two types from the concept ConvexHullTraits 2 and their corresponding
member functions that return instances of these types:

• Traits::Point 2,
• Traits::Left turn 2.

See Also

CGAL::ch graham andrew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1363
CGAL::lower hull points 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1393
CGAL::upper hull points 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1395

Implementation

The function uses Andrew’s variant of the Graham scan algorithm [And79] . This algorithm requires O(n logn)
time in the worst case for n input points.
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Example

In the following example ch graham andrew scan() is used to realize Anderson’s variant [And78] of the Gra-
ham Scan [Gra72]. The points are sorted counterclockwise around the leftmost point using the Less rotate ccw
2 predicate, as defined in the concept ConvexHullTraits 2. According to the definition of Less rotate ccw 2,
the leftmost point is the last point in the sorted sequence and its predecessor on the convex hull is the first point
in the sorted sequence. It is not hard to see that the preconditions of ch graham andrew scan() are satisfied.
Anderson’s variant of the Graham scan is usually inferior to Andrew’s variant because of its higher arithmetic
demand.

template <class InputIterator, class OutputIterator, class Traits>
OutputIterator
ch_graham_anderson( InputIterator first, InputIterator beyond,

OutputIterator result, const Traits& ch_traits)
{
typedef typename Traits::Less_xy_2 Less_xy_2;
typedef typename Traits::Point_2 Point_2;
typedef typename Traits::Less_rotate_ccw_2 Less_rotate_ccw_2;

if (first == beyond) return result;
std::vector< Point_2 > V;
copy( first, beyond, back_inserter(V) );
typename std::vector< Point_2 >::iterator it =

std::min_element(V.begin(), V.end(), Less_xy_2());
std::sort( V.begin(), V.end(), CGAL::bind_1(Less_rotate_ccw_2(), *it) );
if ( *(V.begin()) == *(V.rbegin()) )
{

*result = *(V.begin()); ++result;
return result;

}
return ch_graham_andrew_scan( V.begin(), V.end(), result, ch_traits);

}
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CGAL::ch jarvis

Definition

The function ch jarvis generates the counterclockwise sequence of extreme points from a given set of input
points.

#include <CGAL/ch jarvis.h>

template <class InputIterator, class OutputIterator, class Traits>
OutputIterator ch jarvis( InputIterator first,

InputIterator beyond,
OutputIterator result,
Traits ch traits = Default traits)

generates the counterclockwise sequence of extreme
points of the points in the range [first,beyond). The re-
sulting sequence is placed starting at position result, and
the past-the-end iterator for the resulting sequence is re-
turned. It is not specified at which point the cyclic se-
quence of extreme points is cut into a linear sequence.
Precondition: The source range [first,beyond) does not
contain result.

The default traits class Default traits is the kernel in which the type InputIterator::value type is defined.

Requirements

1. InputIterator::value type and OutputIterator::value type are equivalent to Traits::Point 2.

2. Traits defines the following subset of types from the concept ConvexHullTraits 2 and their corresponding
member functions that return instances of these types:

• Traits::Point 2,

• Traits::Equal 2,

• Traits::Less rotate ccw 2,

• Traits::Less xy 2.

See Also

CGAL::ch akl toussaint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1356
CGAL::ch bykat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1358
CGAL::ch eddy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1360
CGAL::ch graham andrew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1363
CGAL::ch jarvis march . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1369
CGAL::ch melkman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1371
CGAL::convex hull 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1379
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Implementation

This function uses the Jarvis march (gift-wrapping) algorithm [Jar73]. This algorithm requires O(nh) time in
the worst case for n input points with h extreme points.
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CGAL::ch jarvis march

Definition

The function ch jarvis march generates the counterclockwise sequence of extreme points from a given set of
input points that line between two input points.

#include <CGAL/ch jarvis.h>

template <class ForwardIterator, class OutputIterator, class Traits>
OutputIterator ch jarvis march( ForwardIterator first,

ForwardIterator beyond,
Traits::Point 2 start p,
Traits::Point 2 stop p,
OutputIterator result,
Traits ch traits = Default traits)

generates the counterclockwise subsequence of extreme
points between start p and stop p of the points in the
range [first,beyond), starting at position result with point
start p. The last point generated is the point preceding
stop p in the counterclockwise order of extreme points.

Precondition: start p and stop p are extreme points with
respect to the points in the range [first,beyond) and stop p
is an element of range [first,beyond).

The default traits class Default traits is the kernel in which the type ForwardIterator::value type is defined.

Requirements

1. ForwardIterator::value type and OutputIterator::value type are equivalent to Traits::Point 2.

2. Traits defines the following subset of types from the concept ConvexHullTraits 2 and their corresponding
member functions that return instances of these types:

• Traits::Point 2,

• Traits::Equal 2,

• Traits::Less rotate ccw 2.

See Also

CGAL::ch jarvis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1367
CGAL::lower hull points 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1393
CGAL::upper hull points 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1395
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Implementation

The function uses the Jarvis march (gift-wrapping) algorithm [Jar73]. This algorithm requires O(nh) time in the
worst case for n input points with h extreme points.
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CGAL::ch melkman

Definition

The function ch melkman computes the counterclockwise sequence of extreme points of a sequence of points
that forms a simple polyline or polygon.

#include <CGAL/ch melkman.h>

template <class InputIterator, class OutputIterator>
OutputIterator ch melkman( InputIterator first,

InputIterator last,
OutputIterator result,
Traits ch traits = Default traits)

generates the counterclockwise sequence of extreme
points of the points in the range [first, beyond). The re-
sulting sequence is placed starting at position result, and
the past-the-end iterator for the resulting sequence is re-
turned.
Precondition: The source range [first,beyond) corre-
sponds to a simple polyline. [first,beyond) does not con-
tain result

.

The default traits class Default traits is the kernel in which the type InputIterator::value type is defined.

Requirements

1. InputIterator::value type and OutputIterator::value type are equivalent to Traits::Point 2.

2. Traits contains the following subset of types from the concept ConvexHullTraits 2 and their correspond-
ing member functions that return instances of these types:

• Traits::Point 2,
• Traits::Equal 2,
• Traits::Less xy 2,
• Traits::Left turn 2.

See Also

CGAL::ch akl toussaint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1356
CGAL::ch bykat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1358
CGAL::ch eddy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1360
CGAL::ch graham andrew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1363
CGAL::ch jarvis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1367
CGAL::ch melkman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1371
CGAL::convex hull 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1379
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Implementation

It uses an implementation of Melkman’s algorithm [Mel87]. Running time of this is linear.
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CGAL::ch nswe point

Definition

The function ch nswe point finds the four extreme points of a given set of input points using a linear scan of the
input points. That is, it determines the points with maximal y, minimal y, minimal x, and maximal x coordinates.

#include <CGAL/ch selected extreme points 2.h>

template <class ForwardIterator>
void ch nswe point( ForwardIterator first,

ForwardIterator beyond,
ForwardIterator& n,
ForwardIterator& s,
ForwardIterator& w,
ForwardIterator& e,
Traits ch traits = Default traits)

traverses the range [first,beyond). After execution, the
value of n is an iterator in the range such that *n ≥yx *it
for all iterators it in the range. Similarly, for s, w, and e
the inequalities *s≤yx *it, *w≤xy *it, and *e≥xy *it hold
for all iterators it in the range.

Requirements

Traits contains the following subset of types from the concept ConvexHullTraits 2 and their corresponding
member functions that return instances of these types:

• Traits::Less xy 2,

• Traits::Less yx 2.

The default traits class Default traits is the kernel in which the type ForwardIterator::value type is defined.

See Also

CGAL::ch e point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1362
CGAL::ch n point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1375
CGAL::ch ns point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1374
CGAL::ch s point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1376
CGAL::ch w point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1378
CGAL::ch we point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1377
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CGAL::ch ns point

Definition

The function ch ns point finds the points of a given set of input points with minimal and maximal x coordinates.

#include <CGAL/ch selected extreme points 2.h>

template <class ForwardIterator>
void ch ns point( ForwardIterator first,

ForwardIterator beyond,
ForwardIterator& n,
ForwardIterator& s,
Traits ch traits = Default traits)

traverses the range [first,beyond). After execution, the
value of n is an iterator in the range such that *n ≥yx
*it for all iterators it in the range. Similarly, for s the
inequality *s ≤yx *it holds for all iterators in the range.

The default traits class Default traits is the kernel in which the type ForwardIterator::value type is defined.

Requirements

Traits defines the type Traits::Less yx 2 as specified in the concept ConvexHullTraits 2 and the corresponding
member function that returns an instance of this type.

See Also

CGAL::ch e point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1362
CGAL::ch nswe point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1373
CGAL::ch n point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1375
CGAL::ch s point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1376
CGAL::ch w point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1378
CGAL::ch we point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1377
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CGAL::ch n point

Definition

The function ch n point finds a point in a given set of input points with maximal y coordinate.

#include <CGAL/ch selected extreme points 2.h>

template <class ForwardIterator>
void ch n point( ForwardIterator first,

ForwardIterator beyond,
ForwardIterator& n,
Traits ch traits = Default traits)

traverses the range [first,beyond). After execution, the
value of n is an iterator in the range such that *n ≥yx *it
for all iterators it in the range.

The default traits class Default traits is the kernel in which the type ForwardIterator::value type is defined.

Requirements

Traits defines the type Traits::Less yx 2 as specified in the concept ConvexHullTraits 2 and the corresponding
member function that returns an instance of this type.

See Also

CGAL::ch e point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1362
CGAL::ch nswe point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1373
CGAL::ch ns point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1374
CGAL::ch s point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1376
CGAL::ch w point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1378
CGAL::ch we point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1377

1375



F
un

ct
io

n

CGAL::ch s point

Definition

The function ch s point finds a points in a given set of input points with minimal y coordinates.

#include <CGAL/ch selected extreme points 2.h>

template <class ForwardIterator>
void ch s point( ForwardIterator first,

ForwardIterator beyond,
ForwardIterator& s,
Traits ch traits = Default traits)

traverses the range [first,beyond). After execution, the
value of s is an iterator in the range such that *s ≤yx *it
for all iterators it in the range.

The default traits class Default traits is the kernel in which the type ForwardIterator::value type is defined.

Requirements

Traits defines the type Traits::Less yx 2 as specified in the concept ConvexHullTraits 2 and the corresponding
member function that returns an instance of this type.

See Also

CGAL::ch e point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1362
CGAL::ch nswe point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1373
CGAL::ch n point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1375
CGAL::ch ns point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1374
CGAL::ch w point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1378
CGAL::ch we point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1377
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CGAL::ch we point

Definition

The function ch we point finds two points of a given set of input points with minimal and maximal x coordi-
nates.

#include <CGAL/ch selected extreme points 2.h>

template <class ForwardIterator>
void ch we point( ForwardIterator first,

ForwardIterator beyond,
ForwardIterator& w,
ForwardIterator& e,
Traits ch traits = Default traits)

traverses the range [first,beyond). After execution, the
value of w is an iterator in the range such that *w ≤xy
*it for all iterators it in the range. Similarly, for e the
inequality *e ≥xy *it holds for all iterators in the range.

The default traits class Default traits is the kernel in which the type ForwardIterator::value type is defined.

Requirements

Traits defines the type Traits::Less xy 2 as specified in the concept ConvexHullTraits 2 and the corresponding
member function that returns an instance of this type.

See Also

CGAL::ch e point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1362
CGAL::ch nswe point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1373
CGAL::ch n point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1375
CGAL::ch ns point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1374
CGAL::ch s point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1376
CGAL::ch w point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1378
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CGAL::ch w point

Definition

The function ch w point finds a point in a given set of input points with minimal x coordinate.

#include <CGAL/ch selected extreme points 2.h>

template <class ForwardIterator>
void ch w point( ForwardIterator first,

ForwardIterator beyond,
ForwardIterator& w,
Traits ch traits = Default traits)

traverses the range [first,beyond). After execution, the
value of w is an iterator in the range such that *w ≤xy *it
for all iterators it in the range.

Requirements

Traits defines the type Traits::Less xy 2 as specified in the concept ConvexHullTraits 2 and the corresponding
member function that returns an instance of this type.

The default traits class Default traits is the kernel in which the type ForwardIterator::value type is defined.

See Also

CGAL::ch e point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1362
CGAL::ch nswe point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1373
CGAL::ch n point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1375
CGAL::ch ns point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1374
CGAL::ch s point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1376
CGAL::ch we point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1377
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CGAL::convex hull 2

Definition

The function convex hull 2 generates the counterclockwise sequence of extreme points from a given set of input
points.

#include <CGAL/convex hull 2.h>

template <class InputIterator, class OutputIterator>
OutputIterator convex hull 2( InputIterator first,

InputIterator beyond,
OutputIterator result,
Traits ch traits = Default traits)

generates the counterclockwise sequence of extreme
points of the points in the range [first,beyond). The re-
sulting sequence is placed starting at position result, and
the past-the-end iterator for the resulting sequence is re-
turned. It is not specified at which point the cyclic se-
quence of extreme points is cut into a linear sequence.
Precondition: The source range [first,beyond) does not
contain result.

The default traits class Default traits is the kernel in which the type InputIterator::value type is defined.

Requirements

1. InputIterator::value type and OutputIterator::value type are equivalent to Traits::Point 2.

2. Traits contains the following subset of types from the concept ConvexHullTraits 2 and their correspond-
ing member functions that return instances of these types:

• Traits::Point 2,
• Traits::Less signed distance to line 2,
• Traits::Equal 2,
• Traits::Less xy 2,
• Traits::Less yx 2,
• Traits::Left turn 2.

See Also

CGAL::ch akl toussaint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1356
CGAL::ch bykat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1358
CGAL::ch eddy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1360
CGAL::ch graham andrew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1363
CGAL::ch jarvis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1367
CGAL::ch melkman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1371
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Implementation

One of two algorithms is used, depending on the type of iterator used to specify the input points. For input
iterators, the algorithm used is that of Bykat [Byk78], which has a worst-case running time of O(nh), where n is
the number of input points and h is the number of extreme points. For all other types of iterators, the O(n logn)
algorithm of of Akl and Toussaint [AT78] is used.
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ConvexHullTraits 2

Definition

All convex hull and extreme point algorithms provided in CGAL are parameterized with a traits class Traits,
which defines the primitives (objects and predicates) that the convex hull algorithms use. ConvexHullTraits
2 defines the complete set of primitives required in these functions. The specific subset of these primitives
required by each function is specified with each function.

Types

ConvexHullTraits 2:: Point 2 The point type on which the convex hull functions operate.

ConvexHullTraits 2:: Equal 2 Binary predicate object type comparing Point 2s. Must provide
bool operator()(Point 2 p, Point 2 q) where true is returned iff
p ==xy q, false otherwise.

ConvexHullTraits 2:: Less xy 2 Binary predicate object type comparing Point 2s lexicographically.
Must provide bool operator()(Point 2 p, Point 2 q) where true is
returned iff p <xy q. We have p <xy q, iff px < qx or px = qx and
py < qy, where px and py denote x and y coordinate of point p,
respectively.

ConvexHullTraits 2:: Less yx 2 Same as Less xy 2 with the roles of x and y interchanged.

ConvexHullTraits 2:: Left turn 2 Predicate object type that must provide bool operator()(Point 2
p,Point 2 q,Point 2 r), which returns true iff r lies to the left of
the oriented line through p and q.

ConvexHullTraits 2:: Less signed distance to line 2

Predicate object type that must provide bool operator()(Point 2 p,
Point 2 q, Point 2 r,Point 2 s), which returns true iff the signed
distance from r to the line lpq through p and q is smaller than the
distance from s to lpq. It is used to compute the point right of a
line with maximum unsigned distance to the line. The predicate
must provide a total order compatible with convexity, i.e., for any
line segment s one of the endpoints of s is the smallest point among
the points on s, with respect to the order given by Less signed
distance to line 2.

ConvexHullTraits 2:: Less rotate ccw 2

Predicate object type that must provide bool operator()(Point 2 e,
Point 2 p,Point 2 q), where true is returned iff a tangent at e to the
point set {e, p,q} hits p before q when rotated counterclockwise
around e. Ties are broken such that the point with larger distance to
e is smaller!
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Creation

Only a copy constructor is required.

ConvexHullTraits 2 traits( & t);

Operations

The following member functions to create instances of the above predicate object types must exist.
Equal 2 traits.equal 2 object()
Less xy 2 traits.less xy 2 object()
Less yx 2 traits.less yx 2 object()
Less signed distance to line 2

traits.less signed distance to line 2 object()
Less rotate ccw 2 traits.less rotate ccw 2 object()
Left turn 2 traits.left turn 2 object()

Has Models

CGAL::Convex hull constructive traits 2<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1383
CGAL::Convex hull traits 2<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1390
CGAL::Projection traits xy 3<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 604
CGAL::Projection traits yz 3<K>
CGAL::Projection traits zx 3<K>

deprecated

CGAL::Convex hull projective xy traits 2<Point 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1384
CGAL::Convex hull projective xz traits 2<Point 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1386
CGAL::Convex hull projective yz traits 2<Point 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1388

deprecated

See Also

IsStronglyConvexTraits 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1424
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CGAL::Convex hull constructive traits 2<R>

Definition

The class Convex hull constructive traits 2<R> serves as a traits class for all the two-dimensional convex hull
and extreme point calculation function. Unlike the class CGAL::Convex hull traits 2<R>, this class makes use
of previously computed results to avoid redundancy. For example, in the sidedness tests, lines (of type R::Line
2) are constructed, which is equivalent to the precomputation of subdeterminants of the orientation-determinant
for three points.

#include <CGAL/convex hull constructive traits 2.h>

Is Model for the Concepts

ConvexHullTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1381

Types

typedef R::Point 2 Point 2;
typedef R::Less xy 2 Less xy 2;
typedef R::Less yx 2 Less yx 2;
typedef CGAL::r Less dist to line<R> Less signed distance to line 2;
typedef R::Less rotate ccw Less rotate ccw 2;
typedef R::Left turn 2 Left turn 2;
typedef R::Equal 2 Equal 2;

Creation

Convex hull constructive traits 2<R> traits; default constructor.

Operations

Less xy 2 traits.less xy 2 object()
Less yx 2 traits.less yx 2 object()
Less signed distance to line 2 traits.less signed distance to line 2 object()
Less rotate ccw 2 traits.less rotate ccw 2 object()
Left turn 2 traits.left turn 2 object()
Equal 2 traits.equal 2 object()

See Also

CGAL::Convex hull projective xy traits 2<Point 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1384
CGAL::Convex hull projective xz traits 2<Point 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1386
CGAL::Convex hull projective yz traits 2<Point 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1388
CGAL::Convex hull traits 2<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1390
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CGAL::Convex hull projective xy traits 2<Point 3>

The functionality of this class has been generalized to other packages than 2D convex hulls. The more general
class Projection traits xy 3 can be found in the 2D and 3D Linear Geometric Kernel. Note that the deprecated
class was templated by a point class, whereas the new class is templated by a geometric kernel.

deprecated

Definition

The class Convex hull projective xy traits 2<Point 3> serves as a traits class for all the two-dimensional con-
vex hull and extreme point calculation function. This class can be used to compute the convex hull of a set of
3D points projected onto the xy plane (i.e., by ignoring the z coordinate).

#include <CGAL/Convex hull projective xy traits 2.h>

Is Model for the Concepts

ConvexHullTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1381

Types

typedef Point 3 Point 2;
typedef Less xy plane xy 2<Point 3> Less xy 2;
typedef Less yx plane xy 2<Point 3> Less yx 2;
typedef Less dist to line plane xy 2<Point 3> Less signed distance to line 2;
typedef Less rotate ccw plane xy 2<Point 3> Less rotate ccw 2;
typedef Left turn plane xy 2<Point 3> Left turn 2;
typedef Equal xy plane xy 2<Point 3> Equal 2;

Creation

Convex hull projective xy traits 2<Point 3> traits; default constructor.

Operations

Less xy 2 traits.less xy 2 object()
Less yx 2 traits.less yx 2 object()
Less signed distance to line 2 traits.less signed distance to line 2 object()
Less rotate ccw 2 traits.less rotate ccw 2 object()
Left turn 2 traits.left turn 2 object()
Equal 2 traits.equal 2 object()

See Also

CGAL::Convex hull constructive traits 2<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1383
CGAL::Convex hull projective xz traits 2<Point 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1386
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CGAL::Convex hull projective yz traits 2<Point 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1388
CGAL::Convex hull traits 2<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1390

deprecated
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CGAL::Convex hull projective xz traits 2<Point 3>

The functionality of this class has been generalized to other packages than 2D convex hulls. The more general
class Projection traits xy 3 can be found in the 2D and 3D Linear Geometric Kernel. Note that the deprecated
class was templated by a point class, whereas the new class is templated by a geometric kernel.

deprecated

Definition

The class Convex hull projective xz traits 2<Point 3> serves as a traits class for all the two-dimensional con-
vex hull and extreme point calculation function. This class can be used to compute the convex hull of a set of
3D points projected onto the xz plane (i.e., by ignoring the y coordinate).

#include <CGAL/Convex hull projective xz traits 2.h>

Is Model for the Concepts

ConvexHullTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1381

Types

typedef Point 3 Point 2;
typedef Less xy plane xz 2<Point 3> Less xy 2;
typedef Less yx plane xz 2<Point 3> Less yx 2;
typedef Less dist to line plane xz 2<Point 3> Less signed distance to line 2;
typedef Less rotate ccw plane xz 2<Point 3> Less rotate ccw 2;
typedef Left turn plane xz 2<Point 3> Left turn 2;
typedef Equal xy plane xz 2<Point 3> Equal 2;

Creation

Convex hull projective xz traits 2<Point 3> traits; default constructor.

Operations

Less xy 2 traits.less xy 2 object()
Less yx 2 traits.less yx 2 object()
Less signed distance to line 2 traits.less signed distance to line 2 object()
Less rotate ccw 2 traits.less rotate ccw 2 object()
Left turn 2 traits.left turn 2 object()
Equal 2 traits.equal 2 object()

See Also

CGAL::Convex hull constructive traits 2<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1383
CGAL::Convex hull projective xy traits 2<Point 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1384
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CGAL::Convex hull projective yz traits 2<Point 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1388
CGAL::Convex hull traits 2<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1390

deprecated
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CGAL::Convex hull projective yz traits 2<Point 3>

The functionality of this class has been generalized to other packages than 2D convex hulls. The more general
class Projection traits xy 3 can be found in the 2D and 3D Linear Geometric Kernel. Note that the deprecated
class was templated by a point class, whereas the new class is templated by a geometric kernel.

deprecated

Definition

The class Convex hull projective yz traits 2<Point 3> serves as a traits class for all the two-dimensional con-
vex hull and extreme point calculation function. This class can be used to compute the convex hull of a set of
3D points projected onto the yz plane (i.e., by ignoring the x coordinate).

#include <CGAL/Convex hull projective yz traits 2.h>

Is Model for the Concepts

ConvexHullTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1381

Types

typedef Point 3 Point 2;
typedef Less xy plane yz 2<Point 3> Less xy 2;
typedef Less yx plane yz 2<Point 3> Less yx 2;
typedef Less dist to line plane yz 2<Point 3> Less signed distance to line 2;
typedef Less rotate ccw plane yz 2<Point 3> Less rotate ccw 2;
typedef Left turn plane yz 2<Point 3> Left turn 2;
typedef Equal xy plane yz 2<Point 3> Equal 2;

Creation

Convex hull projective yz traits 2<Point 3> traits; default constructor.

Operations

Less xy 2 traits.less xy 2 object()
Less yx 2 traits.less yx 2 object()
Less signed distance to line 2 traits.less signed distance to line 2 object()
Less rotate ccw 2 traits.less rotate ccw 2 object()
Left turn 2 traits.left turn 2 object()
Equal 2 traits.equal 2 object()

See Also

CGAL::Convex hull constructive traits 2<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1383
CGAL::Convex hull projective xz traits 2<Point 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1386
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CGAL::Convex hull projective xy traits 2<Point 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1384
CGAL::Convex hull traits 2<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1390

deprecated
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CGAL::Convex hull traits 2<R>

Definition

The class Convex hull traits 2<R> serves as a traits class for all the two-dimensional convex hull and extreme
point calculation function. This class corresponds to the default traits class for these functions.

#include <CGAL/convex hull traits 2.h>

Is Model for the Concepts

ConvexHullTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1381

Types

typedef R::Point 2 Point 2;
typedef R::Less xy Less xy 2;
typedef R::Less yx Less yx 2;
typedef R::Less signed distance to line 2 Less signed distance to line 2;
typedef R::Less rotate ccw 2 Less rotate ccw 2;
typedef R::Left turn 2 Left turn 2;
typedef R::Equal 2 Equal 2;

Creation

Convex hull traits 2<R> traits( Convex hull traits 2& t); copy constructor.

Operations

Less xy 2 traits.less xy 2 object()
Less yx 2 traits.less yx 2 object()
Less signed distance to line 2 traits.less signed distance to line 2 object()
Less rotate ccw 2 traits.less rotate ccw 2 object()
Left turn 2 traits.left turn 2 object()
Equal 2 traits.equal 2 object()

See Also

CGAL::Convex hull constructive traits 2<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1383
CGAL::Convex hull projective xy traits 2<Point 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1384
CGAL::Convex hull projective xz traits 2<Point 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1386
CGAL::Convex hull projective yz traits 2<Point 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1388
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CGAL::is ccw strongly convex 2

Definition

The function is ccw strongly convex 2 determines if a given sequence of points defines a counterclockwise-
oriented, strongly convex polygon. A set of points is said to be strongly convex if it consists of only extreme
points (i.e., vertices of the convex hull).

#include <CGAL/convexity check 2.h>

template <class ForwardIterator, class Traits>
bool is ccw strongly convex 2( ForwardIterator first,

ForwardIterator beyond,
Traits ch traits = Default traits)

returns true, iff the point elements in [first,beyond) form
a counterclockwise-oriented strongly convex polygon.

The default traits class Default traits is the kernel in which the type ForwardIterator::value type is defined.

Requirements

Traits contains the following subset of types from the concept ConvexHullTraits 2 and their corresponding
member functions that return instances of these types:

• Traits::Less xy 2,

• Traits::Equal 2,

• Traits::Left turn 2.

See Also

CGAL::is cw strongly convex 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1392
CGAL::is strongly convex 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1423

Implementation

The algorithm requires O(n) time for a set of n input points.
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CGAL::is cw strongly convex 2

Definition

The function is cw strongly convex 2 determines if a given sequence of points defines a clockwise-oriented,
strongly convex polygon. A set of points is said to be strongly convex if it consists of only extreme points (i.e.,
vertices of the convex hull).

#include <CGAL/convexity check 2.h>

template <class ForwardIterator, class Traits>
bool is cw strongly convex 2( ForwardIterator first,

ForwardIterator beyond,
Traits ch traits = Default traits)

returns true, iff the point elements in [first,beyond) form
a clockwise-oriented strongly convex polygon.

The default traits class Default traits is the kernel in which the type ForwardIterator::value type is defined.

Requirements

Traits contains the following subset of types from the concept ConvexHullTraits 2 and their corresponding
member functions that return instances of these types:

• Traits::Equal 2,

• Traits::Less xy 2,

• Traits::Left turn 2.

See Also

CGAL::is ccw strongly convex 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1391
CGAL::is strongly convex 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1423

Implementation

The algorithm requires O(n) time for a set of n input points.
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CGAL::lower hull points 2

Definition

The function lower hull points 2 generates the counterclockwise sequence of extreme points on the lower hull
of a given set of input points.

#include <CGAL/convex hull 2.h>

template <class InputIterator, class OutputIterator>
OutputIterator lower hull points 2( InputIterator first,

InputIterator beyond,
OutputIterator result,
Traits ch traits = Default traits)

generates the counterclockwise sequence of extreme
points on the lower hull of the points in the range [first,
beyond). The resulting sequence is placed starting at po-
sition result, and the past-the-end iterator for the resulting
sequence is returned. The sequence starts with the left-
most point; the rightmost point is not included. If there is
only one extreme point (i.e., leftmost and rightmost point
are equal) the extreme point is reported.
Precondition: The source range [first,beyond) does not
contain result.

The default traits class Default traits is the kernel in which the type InputIterator::value type is defined.

The different treatment by CGAL::upper hull points 2 of the case that all points are equal ensures that concate-
nation of lower and upper hull points gives the sequence of extreme points.

Requirements

1. InputIterator::value type and OutputIterator::value type are equivalent to Traits::Point 2.

2. Traits contains the following subset of types from the concept ConvexHullTraits 2 and their correspond-
ing member functions that return instances of these types:

• Traits::Point 2,
• Traits::Equal 2,
• Traits::Less xy 2,
• Traits::Less yx 2,
• Traits::Left turn 2.

See Also

CGAL::ch graham andrew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1363
CGAL::ch graham andrew scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1365
CGAL::upper hull points 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1395
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Implementation

This function uses Andrew’s variant of Graham’s scan algorithm [And79, Meh84]. The algorithm has worst-
case running time of O(n logn) for n input points.
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CGAL::upper hull points 2

Definition

The function upper hull points 2 generates the counterclockwise sequence of extreme points on the upper hull
of a given set of input points.

#include <CGAL/convex hull 2.h>

template <class InputIterator, class OutputIterator>
OutputIterator upper hull points 2( InputIterator first,

InputIterator beyond,
OutputIterator result,
Traits ch traits = Default traits)

generates the counterclockwise sequence of extreme
points on the upper hull of the points in the range [first,
beyond). The resulting sequence is placed starting at po-
sition result, and the past-the-end iterator for the resulting
sequence is returned. The sequence starts with the right-
most point, the leftmost point is not included. If there is
only one extreme point (i.e., the leftmost and rightmost
point are equal), the extreme point is not reported.
Precondition: The source range [first,beyond) does not
contain result.

The default traits class Default traits is the kernel in which the type InputIterator::value type is defined.

The different treatment by CGAL::lower hull points 2 of the case that all points are equal ensures that concate-
nation of lower and upper hull points gives the sequence of extreme points.

Requirements

1. InputIterator::value type and OutputIterator::value type are equivalent to Traits::Point 2.

2. Traits contains the following subset of types from the concept ConvexHullTraits 2 and their correspond-
ing member functions that return instances of these types:

• Traits::Point 2,
• Traits::Equal 2,
• Traits::Less xy 2,
• Traits::Less yx 2,
• Traits::Left turn 2.

See Also

CGAL::ch graham andrew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1363
CGAL::ch graham andrew scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1365
CGAL::lower hull points 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1393
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Implementation

This function uses Andrew’s variant of Graham’s scan algorithm [And79, Meh84]. The algorithm has worst-
case running time of O(n logn) for n input points.
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Chapter 16

3D Convex Hulls
Susan Hert and Stefan Schirra
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16.1 Introduction

A subset S ⊆ R3 is convex if for any two points p and q in the set the line segment with endpoints p and q is
contained in S. The convex hull of a set S is the smallest convex set containing S. The convex hull of a set of
points P ∈ R3 is a convex polytope with vertices in P. A point in P is an extreme point (with respect to P) if it
is a vertex of the convex hull of P. A set of points is said to be strongly convex if it consists of only extreme
points.

This chapter describes the functions provided in CGAL for producing convex hulls in three dimensions as well
as functions for checking if sets of points are strongly convex are not. One can compute the convex hull of a
set of points in three dimensions in one of three ways in CGAL: using a static algorithm, using an incremental
construction algorithm, or using a triangulation to get a fully dynamic computation.
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Figure 16.1: The convex hull of a model made of 192135 points.

16.2 Static Convex Hull Construction

The function convex hull 3 provides an implementation of the quickhull algorithm [BDH96] for three dimen-
sions. There are two versions of this function available, one that can be used when it is known that the output
will be a polyhedron (i.e., there are more than three points and they are not all collinear) and one that handles
all degenerate cases and returns a CGAL::Object, which may be a point, a segment, a triangle, or a polyhedron.
Both versions accept a range of input iterators defining the set of points whose convex hull is to be computed
and a traits class defining the geometric types and predicates used in computing the hull.

16.2.1 Traits Class

The function convex hull 3 is parameterized by a traits class, which specifies the types and geometric primitives
to be used in the computation. If input points from a kernel with exact predicates and non-exact constructions
are used, and a certified result is expected, the traits Convex hull traits 3<R> should be used (R being the input
kernel). Note that the default traits class takes this into account.

16.2.2 Convexity Checking

The function is strongly convex 3 implements the algorithm of Mehlhorn et al. [MNS+96] to determine if the
vertices of a given polytope constitute a strongly convex point set or not. This function is used in postcondition
testing for convex hull 3.
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16.2.3 Example

The following program computes the convex hull of a set of 250 random points chosen from a sphere of radius
100. We assume that the points are not all identical and not all collinear, thus we directly use a polyhedron as
output. Note the usage of the functor Plane from facet together with std::transform to compute the equations
of the plane of each facet of the convex hull.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/algorithm.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/convex_hull_3.h>
#include <vector>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Polyhedron_3<K> Polyhedron_3;
typedef K::Segment_3 Segment_3;

// define point creator
typedef K::Point_3 Point_3;
typedef CGAL::Creator_uniform_3<double, Point_3> PointCreator;

//a functor computing the plane containing a triangular facet
struct Plane_from_facet {

Polyhedron_3::Plane_3 operator()(Polyhedron_3::Facet& f) {
Polyhedron_3::Halfedge_handle h = f.halfedge();
return Polyhedron_3::Plane_3( h->vertex()->point(),

h->next()->vertex()->point(),
h->opposite()->vertex()->point());

}
};

int main()
{

CGAL::Random_points_in_sphere_3<Point_3, PointCreator> gen(100.0);

// generate 250 points randomly on a sphere of radius 100.0
// and copy them to a vector
std::vector<Point_3> points;
CGAL::cpp0x::copy_n( gen, 250, std::back_inserter(points) );

// define polyhedron to hold convex hull
Polyhedron_3 poly;

// compute convex hull of non-collinear points
CGAL::convex_hull_3(points.begin(), points.end(), poly);

std::cout << "The convex hull contains " << poly.size_of_vertices() <<
" vertices" << std::endl;

// assign a plane equation to each polyhedron facet using functor
Plane_from_facet
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std::transform( poly.facets_begin(), poly.facets_end(),
poly.planes_begin(),Plane_from_facet());

return 0;
}� �
File: examples/Convex_hull_3/quickhull_3.cpp

16.3 Incremental Convex Hull Construction

The function convex hull incremental 3 provides an interface similar to convex hull 3 for the d-dimensional
incremental construction algorithm [CMS93] implemented by the class CGAL::Convex hull d<R> that is spe-
cialized to three dimensions. This function accepts an iterator range over a set of input points and returns
a polyhedron, but it does not have a traits class in its interface. It uses the kernel class Kernel used in the
polyhedron type to define an instance of the adapter traits class CGAL::Convex hull d traits 3<Kernel>.

In almost all cases, the static and the dynamic version will be faster than the incremental convex hull algorithm
(mainly because of the lack of efficient filtering and the overhead of the general d-dimension). The incremental
version is provided for completeness and educational purposes. You should use the dynamic version when you
need an efficient incremental convex hull algorithm.

To use the full functionality available with the d-dimensional class CGAL::Convex hull d<R> in three dimen-
sions (e.g., the ability to insert new points and to query if a point lies in the convex hull or not), you can instantiate
the class CGAL::Convex hull d<K> with the adapter traits class CGAL::Convex hull d traits 3<K>, as shown
in the following example.

16.3.1 Example� �
#include <CGAL/Cartesian.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/Convex_hull_d.h>
#include <CGAL/Convex_hull_d_traits_3.h>
#include <CGAL/Convex_hull_d_to_polyhedron_3.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/algorithm.h>
#include <vector>
#include <cassert>

#ifdef CGAL_USE_GMP
#include <CGAL/Gmpq.h>
typedef CGAL::Gmpq RT;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::Quotient<CGAL::MP_Float> RT;
#endif
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typedef CGAL::Cartesian<RT> K;
typedef K::Point_3 Point_3;
typedef CGAL::Polyhedron_3< K> Polyhedron_3;

typedef CGAL::Convex_hull_d_traits_3<K> Hull_traits_3;
typedef CGAL::Convex_hull_d< Hull_traits_3 > Convex_hull_3;
typedef CGAL::Creator_uniform_3<double, Point_3> Creator;

int main ()
{

Convex_hull_3 CH(3); // create instance of the class with dimension ==
3

// generate 250 points randomly on a sphere of radius 100
// and insert them into the convex hull
CGAL::Random_points_in_sphere_3<Point_3, Creator> gen(100);

for (int i = 0; i < 250 ; i++, ++gen)
CH.insert(*gen);

assert(CH.is_valid());

// define polyhedron to hold convex hull and create it
Polyhedron_3 P;
CGAL::convex_hull_d_to_polyhedron_3(CH,P);

std::cout << "The convex hull has " << P.size_of_vertices()
<< " vertices" << std::endl;

return 0;
}� �
File: examples/Convex_hull_3/incremental_hull_class_3.cpp

16.4 Dynamic Convex Hull Construction

Fully dynamic maintenance of a convex hull can be achieved by using the class CGAL::Delaunay triangulation
3. This class supports insertion and removal of points (i.e., vertices of the triangulation) and the convex hull
edges are simply the finite edges of infinite faces. The following example illustrates the dynamic construction
of a convex hull. First, random points from a sphere of a certain radius are generated and are inserted into a
triangulation. Then the number of points of the convex hull are obtained by counting the number of triangulation
vertices incident to the infinite vertex. Some of the points are removed and then the number of points remaining
on the hull are determined. Notice that the vertices incident to the infinite vertex of the triangulation are on the
convex hull but it may be that not all of them are vertices of the hull.

16.4.1 Example� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/Delaunay_triangulation_3.h>
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#include <CGAL/Polyhedron_3.h>
#include <CGAL/convex_hull_3_to_polyhedron_3.h>
#include <CGAL/algorithm.h>

#include <list>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_3 Point_3;
typedef CGAL::Delaunay_triangulation_3<K> Delaunay;
typedef Delaunay::Vertex_handle

Vertex_handle;
typedef CGAL::Polyhedron_3<K>

Polyhedron_3;

int main()
{

CGAL::Random_points_in_sphere_3<Point_3> gen(100.0);
std::list<Point_3> points;

// generate 250 points randomly on a sphere of radius 100.0
// and insert them into the triangulation
CGAL::cpp0x::copy_n(gen, 250, std::back_inserter(points) );
Delaunay T;
T.insert(points.begin(), points.end());

std::list<Vertex_handle> vertices;
T.incident_vertices(T.infinite_vertex(), std::back_inserter(vertices));
std::cout << "This convex hull of the 250 points has "

<< vertices.size() << " points on it." << std::endl;

// remove 25 of the input points
std::list<Vertex_handle>::iterator v_set_it = vertices.begin();
for (int i = 0; i < 25; i++)
{

T.remove(*v_set_it);
v_set_it++;

}

//copy the convex hull of points into a polyhedron and use it
//to get the number of points on the convex hull
Polyhedron_3 chull;
CGAL::convex_hull_3_to_polyhedron_3(T,chull);

std::cout << "After removal of 25 points, there are "
<< chull.size_of_vertices() << " points on the convex hull."

<< std::endl;

return 0;
}� �
File: examples/Convex_hull_3/dynamic_hull_3.cpp
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16.5 Performance

In the following, we compare the running times of the three approaches to compute 3D convex hulls.
For the static version (using CGAL::convex hull 3) and the dynamic version (using CGAL::Delaunay
triangulation 3 and CGAL::convex hull 3 to polyhedron 3), the kernel used was CGAL::Exact predicates
inexact constructions kernel. For the incremental version (using CGAL::convex hull incremental 3), the ker-
nel used was CGAL::Exact predicates exact constructions kernel.

To compute the convex hull of a million of random points in a unit ball the static approach needed 1.63s, while
the dynamic and incremental approaches needed 9.50s and 11.54s respectively. To compute the convex hull
of the model of Figure 16.1 featuring 192135 points, the static approach needed 0.18s, while the dynamic and
incremental approaches needed 1.90s and 6.80s respectively.

The measurements have been performed using CGAL 3.9, using the GNU C++ compiler version 4.3.5, un-
der Linux (Debian distribution), with the compilation options -O3 -DCGAL NDEBUG. The computer used was
equipped with a 64bit Intel Xeon 2.27GHz processor and 12GB of RAM.
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3D Convex Hulls
Reference Manual
Susan Hert and Stefan Schirra

A subset S ⊆ R3 is convex if for any two points p and q in the set the line segment with endpoints p and q is
contained in S. The convex hull of a set S is the smallest convex set containing S. The convex hull of a set of
points P is a convex polytope with vertices in P. A point in P is an extreme point (with respect to P) if it is a
vertex of the convex hull of P.

CGAL provides functions for computing convex hulls in two, three and arbitrary dimensions as well as functions
for testing if a given set of points in is strongly convex or not. This chapter describes the functions available for
three dimensions.

Assertions

The assertion flags for the convex hull and extreme point algorithms use CH in their names (e.g., CGAL CH
NO POSTCONDITIONS). For the convex hull algorithms, the postcondition check tests only convexity (if not
disabled), but not containment of the input points in the polygon or polyhedron defined by the output points. The
latter is considered an expensive checking and can be enabled by defining CGAL CH CHECK EXPENSIVE.

16.6 Classified Reference Pages

Concepts

ConvexHullPolyhedron 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1416
ConvexHullPolyhedronFacet 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1413
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CGAL::convex hull 3

Definition

The function convex hull 3 computes the convex hull of a given set of three-dimensional points Two versions
of this function are available. The first can be used when it is known that the result will be a polyhedron and the
second when a degenerate hull may also be possible.

#include <CGAL/convex hull 3.h>

template <class InputIterator, class Polyhedron 3, class Traits>
void convex hull 3( InputIterator first,

InputIterator last,
Polyhedron 3& P,
Traits ch traits = Default traits)

computes the convex hull of the set of points in the range
[first, last). The polyhedron P is cleared, then the convex
hull is stored in P and the plane equations of each face
are not computed.
Precondition: : There are at least four points in the range
[first, last) not all of which are collinear.

template <class InputIterator, class Traits>
void convex hull 3( InputIterator first,

InputIterator last,
Object& ch object,
Traits ch traits = Default traits)

computes the convex hull of the set of points in the range
[first, last). The result, which may be a point, a segment,
a triangle, or a polyhedron, is stored in ch object. When
the result is a polyhedron, the plane equations of each
face are not computed.

Requirements

Both functions require the following:

1. InputIterator::value type is equivalent to Traits::Point 3.

2. Traits is a model of the concept ConvexHullTraits 3 . For the purposes of checking the postcondition that
the convex hull is valid, Traits should also be a model of the concept IsStronglyConvexTraits 3.

Both functions have an additional requirement for the polyhedron that is to be constructed. For the first version
this is that:

• Polyhedron 3 is a model of ConvexHullPolyhedron 3,
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and for the second, it is required that

• Traits defines a type Polyhedron 3 that is a model of ConvexHullPolyhedron 3.

For both versions, if the kernel R of the points determined by InputIterator::value type is a kernel with ex-
act predicates but inexact constructions (in practice we check R::Has filtered predicates tag is Tag true and
R::FT is a floating point type), then the default traits class of convex hull 3 is Convex hull traits 3<R>, and R
otherwise.

See Also

CGAL::convex hull incremental 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1411
CGAL::ch eddy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1360
CGAL::convex hull 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1379

Implementation

The algorithm implemented by these functions is the quickhull algorithm of Barnard et al. [BDH96].

Example

The following program computes the convex hull of a set of 250 random points chosen from a sphere of radius
100. It then determines if the resulting hull is a segment or a polyhedron. Notice that the traits class is not
necessary in the call to convex hull 3 but is used in the definition of Polyhedron 3.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/algorithm.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/convex_hull_3.h>
#include <vector>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Polyhedron_3<K> Polyhedron_3;
typedef K::Segment_3 Segment_3;

// define point creator
typedef K::Point_3 Point_3;
typedef CGAL::Creator_uniform_3<double, Point_3> PointCreator;

//a functor computing the plane containing a triangular facet
struct Plane_from_facet {

Polyhedron_3::Plane_3 operator()(Polyhedron_3::Facet& f) {
Polyhedron_3::Halfedge_handle h = f.halfedge();
return Polyhedron_3::Plane_3( h->vertex()->point(),

h->next()->vertex()->point(),
h->opposite()->vertex()->point());

}
};
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int main()
{

CGAL::Random_points_in_sphere_3<Point_3, PointCreator> gen(100.0);

// generate 250 points randomly on a sphere of radius 100.0
// and copy them to a vector
std::vector<Point_3> points;
CGAL::cpp0x::copy_n( gen, 250, std::back_inserter(points) );

// define polyhedron to hold convex hull
Polyhedron_3 poly;

// compute convex hull of non-collinear points
CGAL::convex_hull_3(points.begin(), points.end(), poly);

std::cout << "The convex hull contains " << poly.size_of_vertices() <<
" vertices" << std::endl;

// assign a plane equation to each polyhedron facet using functor
Plane_from_facet

std::transform( poly.facets_begin(), poly.facets_end(),
poly.planes_begin(),Plane_from_facet());

return 0;
}� �
File: examples/Convex_hull_3/quickhull_3.cpp
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CGAL::convex hull incremental 3

Definition

The function convex hull incremental 3 computes the convex hull polyhedron from a set of given three-
dimensional points.

This function is provided for completeness and educational purposes. When an efficient incremental implemen-
tation is needed, using CGAL::Delaunay triangulation 3 together with CGAL::convex hull 3 to polyhedron 3
is highly recommended.

#include <CGAL/convex hull incremental 3.h>

template <class InputIterator, class Polyhedron>
void convex hull incremental 3( InputIterator first,

InputIterator beyond,
Polyhedron& P,
bool test correctness = false)

computes the convex hull polyhedron of the points
in the range [first,beyond) and assigns it to P. If
test correctness is set to true, the tests described in
[MNS+96] are used to determine the correctness of the
resulting polyhedron.

Requirements

1. Polyhedron must provide a type Polyhedron::Traits that defines the following types

• Polyhedron::Traits::R, which is a model of the representation class R required by CGAL::Convex
hull d traits 3<R>

• Polyhedron::Traits::Point

2. InputIterator::value type must be the same as Polyhedron::Traits::Point

See Also

CGAL::convex hull 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1408
CGAL::convex hull 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1379

Implementation

This function uses the d-dimensional convex hull incremental construction algorithm [CMS93] with d fixed to
3. The algorithm requires O(n2) time in the worst case and O(n logn) expected time.
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See Also

CGAL::Convex hull d<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1433

Example

The following example computes the convex hull of a set of 250 random points chosen uniformly in a sphere of
radius 100.� �
#include <CGAL/Homogeneous.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/algorithm.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/convex_hull_incremental_3.h>
#include <vector>

#ifdef CGAL_USE_GMP
#include <CGAL/Gmpz.h>
typedef CGAL::Gmpz RT;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float RT;
#endif

typedef CGAL::Homogeneous<RT> K;
typedef K::Point_3 Point_3;
typedef CGAL::Polyhedron_3< K> Polyhedron;
typedef CGAL::Creator_uniform_3<int, Point_3> Creator;

int main()
{

CGAL::Random_points_in_sphere_3<Point_3, Creator> gen(100.0);

std::vector<Point_3> V;
// generate 250 points randomly on a sphere of radius 100.0 and copy
// them to a vector
CGAL::cpp0x::copy_n( gen, 250, std::back_inserter(V) );

Polyhedron P; // define polyhedron to hold convex hull

// compute convex hull
CGAL::convex_hull_incremental_3( V.begin(), V.end(), P, true);

return 0;
}� �
File: examples/Convex_hull_3/incremental_hull_3.cpp
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ConvexHullPolyhedronFacet 3

Definition

The requirements of the facet type of a polyhedron to be built by the function convex hull 3.

Has Models

CGAL::Polyhedron 3<Traits>::Facet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1807

Types

ConvexHullPolyhedronFacet 3:: Plane plane equation type stored in facets.

ConvexHullPolyhedronFacet 3:: Halfedge handle

handle to halfedge.

ConvexHullPolyhedronFacet 3:: Halfedge around facet circulator

circulator of halfedges around a facet.

Creation

ConvexHullPolyhedronFacet 3 f ; default constructor.

Operations

Plane& f .plane()
const Plane& f .plane() const plane equation.

Halfedge handle f .halfedge() an incident halfedge that points to f .
Halfedge around facet circulator

f .facet begin() circulator of halfedges around the facet (counterclock-
wise).

See Also

CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795
ConvexHullPolyhedronVertex 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1415
ConvexHullPolyhedronHalfedge 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1414
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ConvexHullPolyhedronHalfedge 3

Definition

The requirements of the halfedge type required for the polyhedron built by the function convex hull 3.

Has Models

CGAL::Polyhedron 3<Traits>::Halfedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1809

Creation

ConvexHullPolyhedronHalfedge 3 h; default constructor.

Operations

Halfedge handle h.opposite() the opposite halfedge.

Halfedge handle h.next() the next halfedge around the facet.

Halfedge handle h.prev() the previous halfedge around the facet.

bool h.is border() const is true if h is a border halfedge.

Halfedge around facet circulator

h.facet begin() circulator of halfedges around the facet (counterclock-
wise).

Vertex handle h.vertex() the incident vertex of h.

Facet handle h.facet() the incident facet of h. If h is a border halfedge the result
is default construction of the handle.

See Also

CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795
ConvexHullPolyhedronVertex 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1415
ConvexHullPolyhedronFacet 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1413
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ConvexHullPolyhedronVertex 3

Definition

The requirements of the vertex type of the polyhedron to be built by the function convex hull 3.

Has Models

CGAL::Polyhedron 3<Traits>::Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1812.

Creation

ConvexHullPolyhedronVertex 3 v; default constructor.

Operations

Point& v.point()
const Point& v.point() const the point.

See Also

CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795
ConvexHullPolyhedronFacet 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1413
ConvexHullPolyhedronHalfedge 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1414
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ConvexHullPolyhedron 3

Definition

The requirements of the polyhedron type to be built by the function convex hull 3.

Has Models

CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795

Types

ConvexHullPolyhedron 3:: Point 3 type of point stored in a vertex
ConvexHullPolyhedron 3:: Vertex a model of ConvexHullPolyhedronVertex 3
ConvexHullPolyhedron 3:: Halfedge a model of ConvexHullPolyhedronHalfedge 3
ConvexHullPolyhedron 3:: Facet a model of ConvexHullPolyhedronFacet 3
ConvexHullPolyhedron 3:: Halfedge data structure

halfedge data structure

ConvexHullPolyhedron 3:: Halfedge handle handle to halfedge
ConvexHullPolyhedron 3:: Halfedge iterator iterator for halfedge
ConvexHullPolyhedron 3:: Facet handle handle to facet
ConvexHullPolyhedron 3:: Facet iterator iterator for facet

Creation

Only a default constructor is required.

ConvexHullPolyhedron 3 p;

Operations

Facet iterator p.facets begin() iterator over all facets (excluding holes).

Facet iterator p.facets end() past-the-end iterator.

Halfedge iterator p.P.halfedges begin() iterator over all halfedges.

Halfedge iterator p.P.halfedges end() past-the-end iterator.

Halfedge handle p.make tetrahedron( Point 3 p1, Point 3 p2, Point 3 p3, Point 3 p4)

adds a new tetrahedron to the polyhedral surface with its
vertices initialized with p1, p2, p3 and p4. Returns that
halfedge of the tetrahedron which incident vertex is ini-
tialized with p1, the incident vertex of the next halfedge
with p2, and the vertex thereafter with p3. The remaining
fourth vertex is initialized with p4.
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void p.erase facet( Halfedge handle h)

removes the incident facet of h and changes all halfedges
incident to the facet into border edges or removes them
from the polyhedral surface if they were already border
edges.

Halfedge handle p.add vertex and facet to border( Halfedge handle h, Halfedge handle g)

creates a new facet within the hole incident to h and g
by connecting the tip of g with the tip of h with two new
halfedges and a new vertex and filling this separated part
of the hole with a new facet, such that the new facet is
incident to g. Returns the halfedge of the new edge that
is incident to the new facet and the new vertex.

Halfedge handle p.add facet to border( Halfedge handle h, Halfedge handle g)

creates a new facet within the hole incident to h and g
by connecting the tip of g with the tip of h with a new
halfedge and filling this separated part of the hole with a
new facet, such that the new facet is incident to g. Returns
the halfedge of the new edge that is incident to the new
facet.

Halfedge handle p.fill hole( Halfedge handle h)

fills a hole with a newly created facet. Makes all border
halfedges of the hole denoted by h incident to the new
facet. Returns h.

void p.delegate( Modifier base<Halfedge data structure>& m)

calls the operator() of the modifier m. See Modifier base
for a description of modifier design and its usage.
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ConvexHullTraits 3

Definition

Requirements of the traits class to be used with the function convex hull 3.

Types

ConvexHullTraits 3:: Point 3 The point type on which the convex hull algorithm oper-
ates

ConvexHullTraits 3:: Plane 3 a 3D plane
ConvexHullTraits 3:: Segment 3 a 3D segment
ConvexHullTraits 3:: Triangle 3 a 3D triangle
ConvexHullTraits 3:: Vector 3 a 3D vector

ConvexHullTraits 3:: Construct plane 3 Function object type that provides Plane 3
operator()(Point 3 p, Point 3 q, Point 3 r), which
constructs and returns a plane passing through p, q, and
r and oriented in a positive sense when seen from the
positive side of the plane.

ConvexHullTraits 3:: Construct segment 3 Function object type that provides Segment 3
operator()(Point 3 p, Point 3 q), which constructs
and returns the segment with source p and target q.

ConvexHullTraits 3:: Construct triangle 3 Function object type that provides Triangle 3
operator()(Point 3 p, Point 3 q, Point 3 r), which
constructs and returns the triangle with vertices p, q, and
r

ConvexHullTraits 3:: Construct vector 3 Function object type that provides Vector 3
operator()(Point 3 p, Point 3 q), which constructs
and returns the vector q-p

ConvexHullTraits 3:: Equal 3 Predicate object type that provides bool
operator()(Point 3 p, Point 3 q), which determines
if points p and q are equal or not

ConvexHullTraits 3:: Collinear 3 Predicate object type that provides bool
operator()(Point 3 p, Point 3 q, Point 3 r), which
determines if points p, q and r are collinear or not

ConvexHullTraits 3:: Coplanar 3 Predicate object type that provides bool
operator()(Point 3 p, Point 3 q, Point 3 r, Point 3
s), which determines if points p, q, r, and s are coplanar
or not

ConvexHullTraits 3:: Has on positive side 3 Predicate object type that provides bool
operator()(Plane 3 h, Point 3 q), which determines
of the point q is on the positive side of the halfspace h
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ConvexHullTraits 3:: Less distance to point 3 Predicate object type that provides a constructor taking
a single Point 3 object and bool operator()(Point 3 q,
Point 3 r), which returns true iff the distance from q to
p is smaller than the distance from r to p, where p is the
point passed to the object at construction.

ConvexHullTraits 3:: Less signed distance to plane 3

Predicate object type that provides bool
operator()(Plane 3 p, Point 3 q, Point 3 r), which
returns true iff the signed distance from q to p is smaller
than the signed distance from r to p

Creation

Only a copy constructor is required.

ConvexHullTraits 3 traits( & ch);

Operations

For each of the above function and predicate object types, Func obj type, a function must exist with the name
func obj type object that creates an instance of the function or predicate object type. For example:

Construct plane 3 traits.construct plane 3 object()

Has Models

CGAL::Convex hull traits 3<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1420
All kernels of CGAL
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CGAL::Convex hull traits 3<R>

Definition

The class Convex hull traits 3<R> serves as a traits class for the function convex hull 3. This is the default
traits class for this function when R is a kernel with exact predicates but inexact constructions (note below that
the type Plane 3 is a triple of Point 3 and not R::Plane 3).

#include <CGAL/Convex hull traits 3.h>

Is Model for the Concepts

ConvexHullTraits 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1418
IsStronglyConvexTraits 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1424

Types
typedef R::Point 3 Point 3;
typedef R::Segment 3 Segment 3;
typedef R::Triangle 3 Triangle 3;
Convex hull traits 3<R>:: Plane 3; A triple of points, in order to avoid the need for exact

constructions.
typedef R::Vector 3 Vector 3;
typedef Polyhedron default traits 3<R> Poly traits;
typedef Halfedge data structure polyhedron default 3<R> HDS;
typedef Polyhedron 3<Poly traits, HDS> Polyhedron 3;
typedef R::Construct segment 3 Construct segment 3;
typedef R::Construct ray 3 Construct ray 3;
typedef R::Construct plane 3 Construct plane 3;
typedef R::Construct vector 3 Construct vector 3;
typedef R::Construct triangle 3 Construct triangle 3;
typedef R::Construct centroid 3 Construct centroid 3;
typedef R::Construct orthogonal vector 3 Construct orthogonal vector 3;
R::Equal 3 Equal 3;
R::Collinear 3 Collinear 3;
R::Coplanar 3 Coplanar 3;
R::Less distance to point 3 Less distance to point 3;
R::Has on positive side 3 Has on positive side 3;
R::Less signed dist to plane 3 Less signed distance to plane 3;
Projection traits xy 3<R> Traits xy;
Projection traits xz 3<R> Traits xz;
Projection traits yz 3<R> Traits yz;
R::Ray 3 Ray 3;
R::Has on 3 Has on 3;
R::Oriented side 3 Oriented side 3;
R::Do intersect 3 Do intersect 3;

Creation
Convex hull traits 3<R> traits( Convex hull traits 3& t); copy constructor.
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Operations
Construct segment 3 traits.construct segment 3 object() const
Construct ray 3 traits.construct ray 3 object() const
Construct plane 3 traits.construct plane 3 object() const
Construct triangle 3 traits.construct triangle 3 object() const
Construct vector 3 traits.construct vector 3 object() const
Construct centroid 3 traits.construct centroid 3 object() const
Construct orthogonal vector 3 traits.construct orthogonal vector 3 object() const
Equal 3 traits.equal 3 object() const
Collinear 3 traits.collinear 3 object() const
Coplanar 3 traits.coplanar 3 object() const
Has on 3 traits.has on 3 object() const
Less distance to point 3 traits.less distance to point 3 object() const
Has on positive side 3 traits.has on positive side 3 object() const
Oriented side 3 traits.oriented side 3 object() const
Do intersect 3 traits.do intersect 3 object() const
Less signed distance to plane 3 traits.less signed distance to plane 3 object() const

See Also
CGAL::convex hull 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1379
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CGAL::convex hull 3 to polyhedron 3

Definition

The function convex hull 3 to polyhedron 3 fills a polyhedron with the convex hull of a set of 3D points con-
tained into a 3D triangulation of CGAL.

#include <CGAL/convex hull 3 to polyhedron 3.h>

template <class Triangulation 3, class Polyhedron 3>
void convex hull 3 to polyhedron 3( Triangulation 3 T, Polyhedron 3& P)

The polyhedron P is cleared and the convex hull of the set
of 3D points is stored in P. The plane equations of each
face are not computed.
Precondition: T.dimension()==3.

Requirements

This function requires the following:

1. Triangulation 3 is a CGAL 3D triangulation.

2. Polyhedron 3 is an instantiation of CGAL::Polyhedron 3<Traits>.

See Also

CGAL::convex hull 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1408

1422



F
un

ct
io

n

CGAL::is strongly convex 3

Definition

The function is strongly convex 3 determines if the vertices of a given polyhedron represents a strongly convex
set of points or not. A set of points is said to be strongly convex if it consists of only extreme points (i.e., vertices
of the convex hull).

#include <CGAL/convexity check 3.h>

template<class Polyhedron 3, class Traits>
bool is strongly convex 3( Polyhedron 3& P, Traits traits = Default traits)

determines if the set of vertices of the polyhedron P rep-
resent a strongly convex set of points or not.
Precondition: The equations of the facet planes of the
polyhedron must have already been computed.

The default traits class is the kernel in which the type Polyhedron 3::Point 3 is defined.

Requirements

1. Polyhedron 3::Point 3 is equivalent to Traits::Point 3.

2. Traits is a model of the concept IsStronlyConvexTraits 3

3. Polyhedron 3 must define the following types:

• Polyhedron 3::Facet iterator
• Polyhedron 3::Vertex iterator

and the following member functions:

• facets begin()
• facets end()
• vertices begin()
• vertices end()

The vertex type of Polyhedron 3 must be a model of ConvexHullPolyhedronVertex 3; the facet type must
be ConvexHullPolyhedronFacet 3.

See Also

CGAL::is ccw strongly convex 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1391
CGAL::is cw strongly convex 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1392

Implementation

This function implements the tests described in [MNS+96] to determine convexity and requires O(e + f ) time
for a polyhedron with e edges and f faces.
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IsStronglyConvexTraits 3

Definition

Requirements of the traits class used by the function is strongly convex 3, which is used for postcondition
checking by convex hull 3.

Types

IsStronglyConvexTraits 3:: Plane 3 a 3D plane
IsStronglyConvexTraits 3:: Point 3 a 3D point
IsStronglyConvexTraits 3:: Ray 3 a 3D ray
IsStronglyConvexTraits 3:: Triangle 3 a 3D triangle

IsStronglyConvexTraits 3:: Construct ray 3 Function object type that provides Ray 3
operator()(Point 3 p, Point 3 q), which constructs
and returns the ray based at point p and passing though q

IsStronglyConvexTraits 3:: Construct triangle 3 Function object type that provides Triangle 3
operator()(Point 3 p, Point 3 q, Point 3 r), which
constructs and returns the triangle with vertices p, q, and
r

IsStronglyConvexTraits 3:: Coplanar 3 Predicate object type that provides bool
operator()(Point 3 p, Point 3 q, Point 3 r, Point 3
s), which determines if points p, q, r, and s are coplanar
or not

IsStronglyConvexTraits 3:: Do intersect 3 Function object type that provides CGAL::Object
operator()(Triangle 3 t, Ray 3 r), which returns true iff t
and r intersect.

IsStronglyConvexTraits 3:: Has on positive side 3

Predicate object type that provides bool
operator()(Plane 3 h, Point 3 q), which determines
of the point q is on the positive side of the halfspace h

IsStronglyConvexTraits 3:: Oriented side 3 Predicate object type that provides Oriented side
operator()(Plane 3 p, Point 3 q), which determines the
position of point q relative to plane p

Creation

Only a copy constructor is required.

IsStronglyConvexTraits 3 traits( & t);
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Operations

For each of the above function and predicate object types, Func obj type, a function must exist with the name
func obj type object that creates an instance of the function or predicate object type. For example:

Construct ray 3 traits.construct ray 3 object()

Has Models

CGAL::Convex hull traits 3<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1420
All kernels of CGAL

See Also

ConvexHullTraits 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1418
CGAL::is strongly convex 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1423
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Chapter 17

dD Convex Hulls and Delaunay
Triangulations
Susan Hert and Michael Seel
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17.1 Introduction

A subset S ⊆ Rd is convex if for any two points p and q in the set the line segment with endpoints p and q is
contained in S. The convex hull of a set S is the smallest convex set containing S. The convex hull of a set of
points P is a convex polytope with vertices in P. A point in P is an extreme point (with respect to P) if it is a
vertex of the convex hull of P. A set of points is said to be strongly convex if it consist of only extreme points.

This chapter describes the class provided in CGAL for producing convex hull in arbitrary dimensions. There is
an intimate relationship between the Delaunay triangulation of a point set S and the convex hull of lift(S): The
nearest site Delaunay triangulation is the projection of the lower hull and the furthest site Delaunay triangulation
is the upper hull. Here we also describe the companion class to the convex hull class that computes nearest and
furthest site Delaunay triangulations.

17.2 dD Convex Hull

The class CGAL::Convex hull d<R> is used to represent the convex hull of a set of points in d-dimensional
space. This class supports incremental construction of hulls, and provides a rich interface for exploration.
There are also output routines for hulls of dimension 2 and 3.
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The convex hull class is parameterized by a traits class that provides d-dimensional data types and predicates.
The class Convex hull d traits 3 adapts any low-dimensional standard kernel model e.g., Homogeneous<RT>
or Cartesian<FT> for use with Convex hull d, where the dimension is fixed to three. The validity of the
computed convex hull can be checked using the member function is valid, which implements the algorithm of
Mehlhorn et al.[MNS+96] to determine if the vertices of a given polytope constitute a strongly convex point set
or not.

The implementation follows the papers [CMS93] and [BMS94].

17.3 Delaunay Triangulation

There is a class type with a thorough interface providing the construction and exploration of closest and furthest
site Delaunay simplicial complexes in arbitrary higher dimension. The class CGAL::Delaunay d<R, Lifted
R> provides an implementation via the lifting map to higher dimensional convex hulls.. The class supports
incremental construction of Delaunay triangulations and various kind of query operations (in particular, nearest
and furthest neighbor queries and range queries with spheres and simplices).
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dD Convex Hulls and Delaunay
Triangulations
Reference Manual
Susan Hert and Michael Seel

A subset S ⊆ R3 is convex if for any two points p and q in the set the line segment with endpoints p and q is
contained in S. The convex hull of a set S is the smallest convex set containing S. The convex hull of a set of
points P is a convex polytope with vertices in P. A point in P is an extreme point (with respect to P) if it is a
vertex of the convex hull of P.

CGAL provides functions for computing convex hulls in two, three and arbitrary dimensions as well as functions
for testing if a given set of points in is strongly convex or not. This chapter describes the class available for
arbitrary dimensions and its companion class for computing the nearest and furthest side Delaunay triangulation.

17.4 Classified Reference Pages

Concepts

ConvexHullTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1431
DelaunayLiftedTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1441
DelaunayTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1444

Classes

CGAL::Convex hull d traits 3<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1440
CGAL::Convex hull d<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1433
CGAL::Delaunay d< R, Lifted R > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1446
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ConvexHullTraits d

Definition

Requirements of the traits class to be used with the class Convex hull d.

Types

ConvexHullTraits d:: Point d the dD point type on which the convex hull algorithm op-
erates

ConvexHullTraits d:: Hyperplane d a dD plane
ConvexHullTraits d:: Vector d a dD vector
ConvexHullTraits d:: Ray d a dD ray
ConvexHullTraits d:: RT an arithmetic ring type

ConvexHullTraits d:: Construct vector d Function object type that provides Vector d opera-
tor()(int d, CGAL::Null vector), which constructs and re-
turns the null vector.

ConvexHullTraits d:: Construct hyperplane d Function object type that provides Hyperplane d opera-
tor()(ForwardIterator first, ForwardIterator last, Point
d p, CGAL::Oriented side side), which constructs and
returns a hyperplane passing through the points in tu-
ple[first,last) and oriented such that p is on the side
side of the returned hyperplane. When side==ON
ORIENTED BOUNDARY then any hyperplane contain-
ing the tuple is returned.

ConvexHullTraits d:: Vector to point d Function object type that provides Point d
operator()(Vector d v), which constructs and returns the
point defined by 0+ v.

ConvexHullTraits d:: Point to vector d Function object type that provides Vector d
operator()(Point d v), which constructs and returns
the vector defined by p−0.

ConvexHullTraits d:: Orientation d Function object type that provides Orientation opera-
tor()(ForwardIterator first, ForwardIterator last), which
determines the orientation of the points tuple[first,last).

ConvexHullTraits d:: Orthogonal vector d Function object type that provides Vector d
operator()(Hyperplane d h), which constructs and
returns a vector orthogonal to h and pointing from the
boundary into its positive halfspace.

ConvexHullTraits d:: Oriented side d Predicate object type that provides Oriented side
operator()(Hyperplane d h, Point d p), which deter-
mines the oriented side of p with respect to h.
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ConvexHullTraits d:: Has on positive side d Predicate object type that provides bool
operator()(Hyperplane d h, Point d p), which re-
turn true iff p lies in the positive halfspace determined by
h.

ConvexHullTraits d:: Affinely independent d Predicate object type that provides bool opera-
tor()(ForwardIterator first, ForwardIterator last),
which determines if the points tuple[first,last) are
affinely independent.

ConvexHullTraits d:: Contained in simplex d Predicate object type that provides bool opera-
tor()(ForwardIterator first, ForwardIterator last,
Point d p), which determines if p is contained in the
closed simplex defined by the points in tuple[first,last).

ConvexHullTraits d:: Contained in affined hull d

Predicate object type that provides bool opera-
tor()(ForwardIterator first, ForwardIterator last,
Point d p), which determines if p is contained in the
affine hull of the points in tuple[first,last).

ConvexHullTraits d:: Intersect d Predicate object type that provides Object
operator()(Ray d r, Hyperplane d h), which deter-
mines if r and h intersect and returns the corresponding
polymorphic object.

Creation

A default constructor and copy constructor is required.

Operations

For each of the above function and predicate object types, Func obj type, a function must exist with the name
func obj type object that creates an instance of the function or predicate object type. For example:

Construct vector d traits.construct vector d object()

Has Models

CGAL::Cartesian d<FT,LA>
CGAL::Homogeneous d<RT,LA>
CGAL::Convex hull d traits 3<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1440
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CGAL::Convex hull d<R>

Definition

An instance C of type Convex hull d<R> is the convex hull of a multi-set S of points in d-dimensional space.
We call S the underlying point set and d or dim the dimension of the underlying space. We use dcur to denote
the affine dimension of S. The data type supports incremental construction of hulls.

The closure of the hull is maintained as a simplicial complex, i.e., as a collection of simplices. The intersection
of any two is a face of both1. In the sequel we reserve the word simplex for the simplices of dimension dcur.
For each simplex there is a handle of type Simplex handle and for each vertex there is a handle of type Vertex
handle. Each simplex has 1+dcur vertices indexed from 0 to dcur; for a simplex s and an index i, C.vertex(s,i)
returns the i-th vertex of s. For any simplex s and any index i of s there may or may not be a simplex t opposite
to the i-th vertex of s. The function C.opposite simplex(s,i) returns t if it exists and returns Simplex handle()
(the undefined handle) otherwise. If t exists then s and t share dcur vertices, namely all but the vertex with index
i of s and the vertex with index C.index of vertex in opposite simplex(s,i) of t. Assume that t exists and let j
= C.index of vertex in opposite simplex(s,i). Then s = C.opposite simplex(t,j) and i = C.index of vertex in
opposite simplex(t,j).

The boundary of the hull is also a simplicial complex. All simplices in this complex have dimension dcur−1.
For each boundary simplex there is a handle of type Facet handle. Each facet has dcur vertices indexed from
0 to dcur− 1. If dcur > 1 then for each facet f and each index i, 0 ≤ i < dcur, there is a facet g opposite
to the i-th vertex of f . The function C.opposite facet(f,i) returns g. Two neighboring facets f and g share
dcur - 1 vertices, namely all but the vertex with index i of f and the vertex with index C.index of vertex in
opposite facet(f,i) of g. Let j = C.index of vertex in opposite facet(f,i). Then f = C.opposite facet(g,j) and i =
C.index of vertex in opposite facet(g,j).

Types

Convex hull d<R>:: R the representation class.

Convex hull d<R>:: Point d the point type.

Convex hull d<R>:: Hyperplane d the hyperplane type.

Convex hull d<R>:: Simplex handle handle for simplices.

Convex hull d<R>:: Facet handle handle for facets.

Convex hull d<R>:: Vertex handle handle for vertices.

Convex hull d<R>:: Simplex iterator iterator for simplices.

Convex hull d<R>:: Facet iterator iterator for facets.

Convex hull d<R>:: Vertex iterator iterator for vertices.
1The empty set if a facet of every simplex.
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Convex hull d<R>:: Hull vertex iterator iterator for vertices that are part of the convex hull.

Note that each iterator fits the handle concept, i.e. iterators can be used as handles. Note also that all iterator and
handle types come also in a const flavor, e.g., Vertex const iterator is the constant version of Vertex iterator.
Const correctness requires to use the const version whenever the convex hull object is referenced as constant.
The Hull vertex iterator is convertible to Vertex iterator and Vertex handle.

Convex hull d<R>:: Point const iterator const iterator for all inserted points.

Convex hull d<R>:: Hull point const iterator

const iterator for all points that are part of the convex hull.

Creation

Convex hull d<R> C( int d, R Kernel = R());

creates an instance C of type Convex hull d. The dimension of the underlying space
is d and S is initialized to the empty point set. The traits class R specifies the models
of all types and the implementations of all geometric primitives used by the convex
hull class. The default model is one of the d-dimensional representation classes (e.g.,
Homogeneous d).

The data type Convex hull d offers neither copy constructor nor assignment operator.

Requirements

R is a model of the concept ConvexHullTraits d .

Operations

All operations below that take a point x as argument have the common precondition that x is a point of ambient
space.

int C.dimension()

returns the dimension of ambient space

int C.current dimension()

returns the affine dimension dcur of S.

Point d C.associated point( Vertex handle v)

returns the point associated with vertex v.
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Vertex handle C.vertex of simplex( Simplex handle s, int i)

returns the vertex corresponding to the i-th vertex of s.

Precondition: 0≤ i≤ dcur.

Point d C.point of simplex( Simplex handle s, int i)

same as C.associated point(C.vertex of simplex(s,i)).

Simplex handle C.opposite simplex( Simplex handle s, int i)

returns the simplex opposite to the i-th vertex of s (Simplex handle()
if there is no such simplex).
Precondition: 0≤ i≤ dcur.

int C.index of vertex in opposite simplex( Simplex handle s, int i)

returns the index of the vertex opposite to the i-th vertex of s.
Precondition: 0≤ i≤ dcur and there is a simplex opposite to the i-th
vertex of s.

Simplex handle C.simplex( Vertex handle v)

returns a simplex of which v is a node. Note that this simplex is not
unique.

int C.index( Vertex handle v)

returns the index of v in simplex(v).

Vertex handle C.vertex of facet( Facet handle f, int i)

returns the vertex corresponding to the i-th vertex of f .
Precondition: 0≤ i < dcur.

Point d C.point of facet( Facet handle f, int i)

same as C.associated point(C.vertex of facet(f,i)).

Facet handle C.opposite facet( Facet handle f, int i)

returns the facet opposite to the i-th vertex of f (Facet handle() if
there is no such facet).
Precondition: 0≤ i < dcur and dcur > 1.
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int C.index of vertex in opposite facet( Facet handle f, int i)

returns the index of the vertex opposite to the i-th vertex of f .
Precondition: 0≤ i < dcur and dcur > 1.

Hyperplane d C.hyperplane supporting( Facet handle f)

returns a hyperplane supporting facet f . The hyperplane is oriented
such that the interior of C is on the negative side of it.
Precondition: f is a facet of C and dcur > 1.

Vertex handle C.insert( Point d x)

adds point x to the underlying set of points. If x is equal to (the point
associated with) a vertex of the current hull this vertex is returned
and its associated point is changed to x. If x lies outside the current
hull, a new vertex v with associated point x is added to the hull and
returned. In all other cases, i.e., if x lies in the interior of the hull or
on the boundary but not on a vertex, the current hull is not changed
and Vertex handle() is returned. If CGAL CHECK EXPENSIVE is
defined then the validity check is valid(true) is executed as a post
condition.

template <typename Forward iterator>
void C.insert( Forward iterator first, Forward iterator last)

adds S = set [first,last) to the underlying set of points. If any point
S[i] is equal to (the point associated with) a vertex of the current hull
its associated point is changed to S[i].

bool C.is dimension jump( Point d x)

returns true if x is not contained in the affine hull of S.

std::list<Facet handle>

C.facets visible from( Point d x)

returns the list of all facets that are visible from x.

Precondition: x is contained in the affine hull of S.

Bounded side C.bounded side( Point d x)

returns ON BOUNDED SIDE (ON BOUNDARY ,ON
UNBOUNDED SIDE) if x is contained in the interior (lies on
the boundary, is contained in the exterior) of C.
Precondition: x is contained in the affine hull of S.
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void C.clear( int d)

re-initializes C to an empty hull in d-dimensional space.

int C.number of vertices()

returns the number of vertices of C.

int C.number of facets()

returns the number of facets of C.

int C.number of simplices()

returns the number of bounded simplices of C.

void C.print statistics()

gives information about the size of the current hull and the number
of visibility tests performed.

bool C.is valid( bool throw exceptions = false)

checks the validity of the data structure. If throw exceptions ==
thrue then the program throws the following exceptions to inform
about the problem.
chull has center on wrong side of hull facet the hyperplane sup-
porting a facet has the wrong orientation.
chull has local non convexity a ridge is locally non convex.
chull has double coverage the hull has a winding number larger
than 1.

Lists and Iterators

Vertex iterator C.vertices begin() an iterator of C to start the iteration over all vertices of the
complex.

Vertex iterator C.vertices end() the past the end iterator for vertices.

Simplex iterator C.simplices begin() an iterator of C to start the iteration over all simplices of the
complex.

Simplex iterator C.simplices end() the past the end iterator for simplices.

Facet iterator C.facets begin() an iterator of C to start the iteration over all facets of the com-
plex.
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Facet iterator C.facets end() the past the end iterator for facets.

Hull vertex iterator C.hull vertices begin()

an iterator to start the iteration over all vertices of C that are
part of the convex hull.

Hull vertex iterator C.hull vertices end() the past the end iterator for hull vertices.

Point const iterator C.points begin() returns the start iterator for all points that have been inserted
to construct C.

Point const iterator C.points end() returns the past the end iterator for points.

Hull point const iterator

C.hull points begin()

returns an iterator to start the iteration over all points in the
convex hull C. Included are points in the interior of facets.

Hull point const iterator

C.hull points end() returns the past the end iterator for points in the convex hull.

template <typename Visitor>
void C.visit all facets( Visitor V)

each facet of C is visited by the visitor object V . V has to have
a function call operator:
void operator()(Facet handle) const

std::list<Point d> C.all points() returns a list of all points that have been inserted to construct
C.

std::list<Vertex handle>

C.all vertices() returns a list of all vertices of C (also interior ones).

std::list<Simplex handle>

C.all simplices() returns a list of all simplices in C.

std::list<Facet handle>

C.all facets() returns a list of all facets of C.
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Iteration Statements

forall ch vertices(v,C) { “the vertices of C are successively assigned to v” }

forall ch simplices(s,C) { “the simplices of C are successively assigned to s” }

forall ch facets( f ,C) { “the facets of C are successively assigned to f ” }

Implementation

The implementation of type Convex hull d is based on [CMS93] and [BMS94]. The details of the implementa-
tion can be found in the implementation document available at the download site of this package.

The time and space requirements are input dependent. Let C1, C2, C3, . . . be the sequence of hulls constructed
and for a point x let ki be the number of facets of Ci that are visible from x and that are not already facets of Ci−1.
Then the time for inserting x is O(dim∑i ki) and the number of new simplices constructed during the insertion
of x is the number of facets of the hull which were not already facets of the hull before the insertion.

The data type Convex hull d is derived from Regular complex d. The space requirement of regular complexes
is essentially 12(dim + 2) bytes times the number of simplices plus the space for the points. Convex hull d
needs an additional 8+(4+x)dim bytes per simplex where x is the space requirement of the underlying number
type and an additional 12 bytes per point. The total is therefore (16 + x)dim + 32 bytes times the number of
simplices plus 28+ x ·dim bytes times the number of points.

Low Dimensional Conversion Routine

include <CGAL/Convex hull d to polyhedron 3.h>

template <class R, class T, class HDS>
void convex hull d to polyhedron 3( C, Polyhedron 3<T,HDS>& P)

converts the convex hull C to polyhedral surface stored in P.

Precondition: dim == 3 and dcur == 3.

Low Dimensional Output Routines

template <class R>
void d3 surface map( C, GRAPH< typename ::Point d ,int>& G)

constructs the representation of the surface of C as a bidi-
rected LEDA graph G.

Precondition: dim == 3.
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CGAL::Convex hull d traits 3<R>

Definition

The class Convex hull d traits 3<R> serves as a traits class for the class Convex hull d. This is a traits class
that adapts any low-dimensional standard kernel model, e.g. Homogeneous<RT> or Cartesian<FT> for the
fixed 3-dimensional usage of Convex hull d.

#include <CGAL/Convex hull d traits 3.h>

Is Model for the Concepts

ConvexHullTraits d

Creation

Convex hull d traits 3<R> traits; default constructor.
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DelaunayLiftedTraits d

Definition

Requirements of the second traits class to be used with the class Delaunay d.

Types

DelaunayLiftedTraits d:: Point d the dD point type on which the Delaunay algorithm oper-
ates

DelaunayLiftedTraits d:: Hyperplane d a dD plane
DelaunayLiftedTraits d:: Vector d a dD vector
DelaunayLiftedTraits d:: Ray d a dD ray
DelaunayLiftedTraits d:: RT a arithmetic ring type

DelaunayLiftedTraits d:: Construct vector d Function object type that provides Vector d opera-
tor()(int d, CGAL::Null vector), which constructs and re-
turns the null vector.

DelaunayLiftedTraits d:: Construct hyperplane d

Function object type that provides Hyperplane d opera-
tor()(ForwardIterator first, ForwardIterator last, Point
d p, CGAL::Oriented side side), which constructs and
returns a hyperplane passing through the points in tu-
ple[first,last) and oriented such that p is on the side
side of the returned hyperplane. When side==ON
ORIENTED BOUNDARY then any hyperplane contain-
ing the tuple is returned.

DelaunayLiftedTraits d:: Vector to point d Function object type that provides Point d
operator()(Vector d v), which constructs and returns the
point defined by 0+ v.

DelaunayLiftedTraits d:: Point to vector d Function object type that provides Vector d
operator()(Point d v), which constructs and returns
the vector defined by p−0.

DelaunayLiftedTraits d:: Orientation d Function object type that provides Orientation opera-
tor()(ForwardIterator first, ForwardIterator last), which
determines the orientation of the points tuple[first,last).

DelaunayLiftedTraits d:: Orthogonal vector d Function object type that provides Vector d
operator()(Hyperplane d h), which constructs and
returns a vector orthogonal to h and pointing from the
boundary into its positive halfspace.

DelaunayLiftedTraits d:: Oriented side d Predicate object type that provides Oriented side
operator()(Hyperplane d h, Point d p), which deter-
mines the oriented side of p with respect to h.
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DelaunayLiftedTraits d:: Has on positive side d Predicate object type that provides bool
operator()(Hyperplane d h, Point d p), which re-
turn true iff p lies in the positive halfspace determined by
h.

DelaunayLiftedTraits d:: Affinely independent d Predicate object type that provides bool opera-
tor()(ForwardIterator first, ForwardIterator last),
which determines if the points tuple[first,last) are
affinely independent.

DelaunayLiftedTraits d:: Contained in simplex d Predicate object type that provides bool opera-
tor()(ForwardIterator first, ForwardIterator last,
Point d p), which determines if p is contained in the
closed simplex defined by the points in tuple[first,last).

DelaunayLiftedTraits d:: Contained in affined hull d

Predicate object type that provides bool opera-
tor()(ForwardIterator first, ForwardIterator last,
Point d p), which determines if p is contained in the
affine hull of the points in tuple[first,last).

DelaunayLiftedTraits d:: Intersect d Predicate object type that provides Object
operator()(Ray d r, Hyperplane d h), which deter-
mines if r and h intersect and returns the corresponding
polymorphic object.

The previous requirements are all identical to the concept ConvexHullTraits d. The Delaunay class adds the
following requirements.

DelaunayLiftedTraits d:: Project along d axis d Predicate object type that provides DelaunayTraits
d::Point d operator()(Point d p), which determines the
d− 1-dimensional point from the d-dimensional point p
while discarding the last coordinate.

DelaunayLiftedTraits d:: Lift to paraboloid d Predicate object type that provides Point d
operator()(DelaunayTraits d::Point d p), which
determines the d-dimensional point from the d − 1-
dimensional point p while lifting it to the paraboloid of
revolution.

DelaunayLiftedTraits d:: Component accessor d Predicate object type that provides RT
homogeneous(Vector d v,int i) and int dimension(Vector
d v), where the former determines the ith coordinate of v
and the latter the dimension of v.

Creation

A default constructor and copy constructor is required.
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Operations

For each of the above function and predicate object types, Func obj type, a function must exist with the name
func obj type object that creates an instance of the function or predicate object type. For example:

Construct vector d traits.construct vector d object()

Has Models

CGAL::Cartesian d<FT,LA>
CGAL::Homogeneous d<RT,LA>
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DelaunayTraits d

Definition

Requirements of the first traits class to be used with the class Delaunay d.

Types

DelaunayTraits d:: Point d the dD point type on which the Delaunay algorithm oper-
ates

DelaunayTraits d:: Sphere d a dD sphere
DelaunayTraits d:: FT an arithmetic field type

DelaunayTraits d:: Point of sphere d Predicate object type that provides Point d
operator()(Sphere d s, int i), which returns the ith
point defining sphere s.

DelaunayTraits d:: Construct sphere d Predicate object type that provides Sphere d opera-
tor()(int d, ForwardIterator first, ForwardIterator last),
which returns a dD sphere through the points in tu-
ple[first,last).

DelaunayTraits d:: Contained in simplex d Predicate object type that provides bool opera-
tor()(ForwardIterator first, ForwardIterator last,
Point d p), which determines if p is contained in the
closed simplex defined by the points in tuple[first,last).

DelaunayTraits d:: Squared distance d Predicate object type that provides FT operator()(Point d
p,Point d q), which determines the squared distance from
p to q.

DelaunayTraits d:: Affinely independent d Predicate object type that provides bool opera-
tor()(ForwardIterator first, ForwardIterator last),
which determines if the points in tuple[first,last) are
affinely independent.

Creation

A default constructor and copy constructor is required.

Operations

For each of the above function and predicate object types, Func obj type, a function must exist with the name
func obj type object that creates an instance of the function or predicate object type. For example:

Construct sphere d traits.construct sphere d object()
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Has Models

CGAL::Cartesian d<FT,LA>
CGAL::Homogeneous d<RT,LA>
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CGAL::Delaunay d< R, Lifted R >

Definition

An instance DT of type Delaunay d< R, Lifted R > is the nearest and furthest site Delaunay triangulation of a
set S of points in some d-dimensional space. We call S the underlying point set and d or dim the dimension
of the underlying space. We use dcur to denote the affine dimension of S. The data type supports incremental
construction of Delaunay triangulations and various kind of query operations (in particular, nearest and furthest
neighbor queries and range queries with spheres and simplices).

A Delaunay triangulation is a simplicial complex. All simplices in the Delaunay triangulation have dimension
dcur. In the nearest site Delaunay triangulation the circumsphere of any simplex in the triangulation contains
no point of S in its interior. In the furthest site Delaunay triangulation the circumsphere of any simplex contains
no point of S in its exterior. If the points in S are co-circular then any triangulation of S is a nearest as well as a
furthest site Delaunay triangulation of S. If the points in S are not co-circular then no simplex can be a simplex
of both triangulations. Accordingly, we view DT as either one or two collection(s) of simplices. If the points
in S are co-circular there is just one collection: the set of simplices of some triangulation. If the points in S
are not co-circular there are two collections. One collection consists of the simplices of a nearest site Delaunay
triangulation and the other collection consists of the simplices of a furthest site Delaunay triangulation.

For each simplex of maximal dimension there is a handle of type Simplex handle and for each vertex of the
triangulation there is a handle of type Vertex handle. Each simplex has 1 + dcur vertices indexed from 0 to
dcur. For any simplex s and any index i, DT.vertex of(s,i) returns the i-th vertex of s. There may or may not
be a simplex t opposite to the vertex of s with index i. The function DT.opposite simplex(s,i) returns t if it
exists and returns Simplex handle() otherwise. If t exists then s and t share dcur vertices, namely all but the
vertex with index i of s and the vertex with index DT.index of vertex in opposite simplex(s,i) of t. Assume
that t = DT.opposite simplex(s, i) exists and let j = DT.index of vertex in opposite simplex(s, i). Then s =
DT.opposite simplex(t,j) and i = DT.index of vertex in opposite simplex(t,j). In general, a vertex belongs to
many simplices.

Any simplex of DT belongs either to the nearest or to the furthest site Delaunay triangulation or both. The
test DT.simplex of nearest(dt simplex s) returns true if s belongs to the nearest site triangulation and the test
DT.simplex of furthest(dt simplex s) returns true if s belongs to the furthest site triangulation.

Inherits From

Convex hull d<Lifted R>

Types

Delaunay d< R, Lifted R >:: Simplex handle handles to the simplices of the complex.

Delaunay d< R, Lifted R >:: Vertex handle handles to vertices of the complex.

Delaunay d< R, Lifted R >:: Point d the point type

Delaunay d< R, Lifted R >:: Sphere d the sphere type
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enum Delaunay voronoi kind { NEAREST, FURTHEST};

interface flags

To use these types you can typedef them into the global scope after instantiation of the class. We use Vertex
handle instead of Delaunay d< R, Lifted R >::Vertex handle from now on. Similarly we use Simplex handle.

Delaunay d< R, Lifted R >:: Point const iterator the iterator for points.

Delaunay d< R, Lifted R >:: Vertex iterator the iterator for vertices.

Delaunay d< R, Lifted R >:: Simplex iterator the iterator for simplices.

Creation

Delaunay d< R, Lifted R > DT( int d, R k1 = R(), Lifted R k2 = Lifted R());

creates an instance DT of type Delaunay d. The dimension of the underlying space is
d and S is initialized to the empty point set. The traits class R specifies the models of all
types and the implementations of all geometric primitives used by the Delaunay class.
The traits class Lifted R specifies the models of all types and the implementations of all
geometric primitives used by the base class of Delaunay d< R, Lifted R >. The second
template parameter defaults to the first: Delaunay d<R> = Delaunay d<R, Lifted R =
R >.

The data type Delaunay d offers neither copy constructor nor assignment operator.

Requirements

R is a model of the concept DelaunayTraits d . Lifted R is a model of the concept DelaunayLiftedTraits d .

Operations

All operations below that take a point x as an argument have the common precondition that x.dimension() =
DT.dimension().

int DT.dimension() returns the dimension of ambient space

int DT.current dimension()

returns the affine dimension of the current point set, i.e., −1
is S is empty, 0 if S consists of a single point, 1 if all points of
S lie on a common line, etc.

bool DT.is simplex of nearest( Simplex handle s)

returns true if s is a simplex of the nearest site triangulation.
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bool DT.is simplex of furthest( Simplex handle s)

returns true if s is a simplex of the furthest site triangulation.

Vertex handle DT.vertex of simplex( Simplex handle s, int i)

returns the vertex associated with the i-th node of s.
Precondition: 0≤ i≤ dcur.

Point d DT.associated point( Vertex handle v)

returns the point associated with vertex v.

Point d DT.point of simplex( Simplex handle s, int i)

returns the point associated with the i-th vertex of s.
Precondition: 0≤ i≤ dcur.

Simplex handle DT.opposite simplex( Simplex handle s, int i)

returns the simplex opposite to the i-th vertex of s (Simplex
handle() if there is no such simplex).
Precondition: 0≤ i≤ dcur.

int DT.index of vertex in opposite simplex( Simplex handle s, int i)

returns the index of the vertex opposite to the i-th vertex of s.
Precondition: 0≤ i≤ dcur.

Simplex handle DT.simplex( Vertex handle v)

returns a simplex of the nearest site triangulation incident to
v.

int DT.index( Vertex handle v)

returns the index of v in DT.simplex(v).

bool DT.contains( Simplex handle s, Point d x)

returns true if x is contained in the closure of simplex s.

bool DT.empty() decides whether DT is empty.

void DT.clear() re-initializes DT to the empty Delaunay triangulation.
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Vertex handle DT.insert( Point d x)

inserts point x into DT and returns the corresponding Vertex
handle. More precisely, if there is already a vertex v in DT
positioned at x (i.e., associated point(v) is equal to x) then
associated point(v) is changed to x (i.e., associated point(v)
is made identical to x) and if there is no such vertex then a
new vertex v with associated point(v) = x is added to DT . In
either case, v is returned.

Simplex handle DT.locate( Point d x)

returns a simplex of the nearest site triangulation containing
x in its closure (returns Simplex handle() if x lies outside the
convex hull of S).

Vertex handle DT.lookup( Point d x)

if DT contains a vertex v with associated point(v) = x the
result is v otherwise the result is Vertex handle().

Vertex handle DT.nearest neighbor( Point d x)

computes a vertex v of DT that is closest to x, i.e.,
dist(x,associated point(v)) =
min{dist(x, associated point(u)) | u ∈ S }.

std::list<Vertex handle>

DT.range search( Sphere d C)

returns the list of all vertices contained in the closure of sphere
C.

std::list<Vertex handle>

DT.range search( std::vector<Point d> A)

returns the list of all vertices contained in the closure of the
simplex whose corners are given by A.
Precondition: A must consist of d + 1 affinely independent
points in base space.

std::list<Simplex handle>

DT.all simplices( Delaunay voronoi kind k = NEAREST)

returns a list of all simplices of either the nearest or the fur-
thest site Delaunay triangulation of S.
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std::list<Vertex handle>

DT.all vertices( Delaunay voronoi kind k = NEAREST)

returns a list of all vertices of either the nearest or the furthest
site Delaunay triangulation of S.

std::list<Point d> DT.all points() returns S.

Point const iterator DT.points begin() returns the start iterator for points in DT .

Point const iterator DT.points end() returns the past the end iterator for points in DT .

Simplex iterator DT.simplices begin( Delaunay voronoi kind k = NEAREST)

returns the start iterator for simplices of DT .

Simplex iterator DT.simplices end() returns the past the end iterator for simplices of DT .

Implementation

The data type is derived from Convex hull d via the lifting map. For a point x in d-dimensional space let lift(x)
be its lifting to the unit paraboloid of revolution. There is an intimate relationship between the Delaunay trian-
gulation of a point set S and the convex hull of lift(S): The nearest site Delaunay triangulation is the projection
of the lower hull and the furthest site Delaunay triangulation is the upper hull. For implementation details we
refer the reader to the implementation report available from the CGAL server.

The space requirement is the same as for convex hulls. The time requirement for an insert is the time to insert
the lifted point into the convex hull of the lifted points.

Example

The abstract data type Delaunay d has a default instantiation by means of the d-dimensional geometric kernel.

#include <CGAL/Homogeneous_d.h>
#include <CGAL/leda_integer.h>
#include <CGAL/Delaunay_d.h>

typedef leda_integer RT;
typedef CGAL::Homogeneous_d<RT> Kernel;
typedef CGAL::Delaunay_d<Kernel> Delaunay_d;
typedef Delaunay_d::Point_d Point;
typedef Delaunay_d::Simplex_handle Simplex_handle;
typedef Delaunay_d::Vertex_handle Vertex_handle;

int main()
{
Delaunay_d T(2);
Vertex_handle v1 = T.insert(Point_d(2,11));
...

}
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Traits requirements

Delaunay d< R, Lifted R > requires the following types from the kernel traits Lifted R:

RT Point_d Vector_d Ray_d Hyperplane_d

and uses the following function objects from the kernel traits:

Construct_hyperplane_d
Construct_vector_d
Vector_to_point_d / Point_to_vector_d
Orientation_d
Orthogonal_vector_d
Oriented_side_d / Has_on_positive_side_d
Affinely_independent_d
Contained_in_simplex_d
Contained_in_affine_hull_d
Intersect_d
Lift_to_paraboloid_d / Project_along_d_axis_d
Component_accessor_d

Delaunay d< R, Lifted R > requires the following types from the kernel traits R:

FT Point_d Sphere_d

and uses the following function objects from the kernel traits R:

Construct_sphere_d
Squared_distance_d
Point_of_sphere_d
Affinely_independent_d
Contained_in_simplex_d

Low Dimensional Output Routines

template <typename R, typename Lifted R>
template <typename R, typename Lifted R> void

d2 map( Delaunay d<R,Lifted R> D,
GRAPH< typename Delaunay d<R,Lifted R>::Point d, int >& DTG,
typename Delaunay d<R,Lifted R>::Delaunay voronoi kind k = Delaunay

d<R,Lifted R>::NEAREST)

constructs a LEDA graph representation of the nearest
(kind = NEAREST or the furthest (kind = FURTHEST) site
Delaunay triangulation.

Precondition: dim() == 2.
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Chapter 18

2D Polygons
Geert-Jan Giezeman and Wieger Wesselink

Contents
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1455
18.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1456

18.2.1 The Polygon Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1456
18.2.2 Algorithms Operating on Sequences of Points . . . . . . . . . . . . . . . . . . . . . . 1456
18.2.3 Polygons in 3D Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1458
Reference Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1459

18.3 Classified Reference Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1459
18.4 Alphabetical List of Reference Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1460

18.1 Introduction

A polygon is a closed chain of edges. Several algorithms are available for polygons. For some of those algo-
rithms, it is necessary that the polygon is simple. A polygon is simple if edges don’t intersect, except consecutive
edges, which intersect in their common vertex.

The following algorithms are available:

• find the leftmost, rightmost, topmost and bottommost vertex.

• compute the (signed) area.

• check if a polygon is simple.

• check if a polygon is convex.

• find the orientation (clockwise or counterclockwise)

• check if a point lies inside a polygon.

All those operations take two forward iterators as parameters in order to describe the polygon. These parameters
have a point type as value type.
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The type Polygon 2 can be used to represent polygons. Polygons are dynamic. Vertices can be modified,
inserted and erased. They provide the algorithms described above as member functions. Moreover, they provide
ways of iterating over the vertices and edges.

Currently, the Polygon 2 class is a nice wrapper around a container of points, but little more. Especially,
computed values are not cached. That is, when the is simple() member function is called twice or more, the
result is computed each time anew.

18.2 Examples

18.2.1 The Polygon Class

The following example creates a polygon and illustrates the usage of some member functions.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Polygon_2.h>
#include <iostream>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_2 Point;
typedef CGAL::Polygon_2<K> Polygon_2;
using std::cout; using std::endl;

int main()
{

Point points[] = { Point(0,0), Point(5.1,0), Point(1,1), Point(0.5,6)};
Polygon_2 pgn(points, points+4);

// check if the polygon is simple.
cout << "The polygon is " <<

(pgn.is_simple() ? "" : "not ") << "simple." << endl;

// check if the polygon is convex
cout << "The polygon is " <<

(pgn.is_convex() ? "" : "not ") << "convex." << endl;

return 0;
}� �
File: examples/Polygon/Polygon.cpp

18.2.2 Algorithms Operating on Sequences of Points

The following example creates a polygon and illustrates the usage of some global functions that operate on
sequences of points.
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Figure 18.1: A polygon and some points

� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Polygon_2_algorithms.h>
#include <iostream>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_2 Point;
using std::cout; using std::endl;

void check_inside(Point pt, Point *pgn_begin, Point *pgn_end, K traits)
{

cout << "The point " << pt;
switch(CGAL::bounded_side_2(pgn_begin, pgn_end,pt, traits)) {

case CGAL::ON_BOUNDED_SIDE :
cout << " is inside the polygon.\n";
break;

case CGAL::ON_BOUNDARY:
cout << " is on the polygon boundary.\n";
break;

case CGAL::ON_UNBOUNDED_SIDE:
cout << " is outside the polygon.\n";
break;

}
}

int main()
{

Point points[] = { Point(0,0), Point(5.1,0), Point(1,1), Point(0.5,6)};
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// check if the polygon is simple.
cout << "The polygon is "

<< (CGAL::is_simple_2(points, points+4, K()) ? "" : "not ")
<< "simple." << endl;

check_inside(Point(0.5, 0.5), points, points+4, K());
check_inside(Point(1.5, 2.5), points, points+4, K());
check_inside(Point(2.5, 0), points, points+4, K());

return 0;
}� �
File: examples/Polygon/polygon_algorithms.cpp

18.2.3 Polygons in 3D Space

Sometimes it is useful to run a 2D algorithm on 3D data. Polygons may be contours of a 3D object, where the
contours are organized in parallel slices, generated by segmentation of image data from a scanner.

In order to avoid an explixit projection on the xy plane, one can use the traits class Projection traits xy 3<K>
which is part of the 2D and 3D Linear Geometric Kernel,� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Projection_traits_yz_3.h>
#include <CGAL/Polygon_2_algorithms.h>
#include <iostream>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_3 Point_3;

int main()
{

Point_3 points[4] = { Point_3(0,1,1), Point_3(0,2,1), Point_3(0,2,2),
Point_3(0,1,2) };

bool b = CGAL::is_simple_2(points,
points+4,
CGAL::Projection_traits_yz_3<K>());

if (!b){
std::cerr << "Error polygon is not simple" << std::endl;
return 1;

}
return 0;

}� �
File: examples/Polygon/projected_polygon.cpp
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2D Polygons
Reference Manual
Geert-Jan Giezeman and Wieger Wesselink

Assertions

The assertion flags for the polygons and polygon operations use POLYGON in their names (e.g., CGAL
POLYGON NO ASSERTIONS).

18.3 Classified Reference Pages

Concepts

PolygonTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1470

Classes

CGAL::Polygon 2<PolygonTraits 2, Container> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1472

Global Functions

CGAL::area 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1461
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CGAL::area 2

Definition

The function area 2 computes the signed area of a polygon.

#include <CGAL/Polygon 2 algorithms.h>

template <class ForwardIterator, class Traits>
void area 2( ForwardIterator first,

ForwardIterator last,
typename Traits::FT &result,
Traits traits)

Computes the signed area of the polygon defined by the range of points first . . . last. The area is returned in the
parameter result. The sign is positive for counterclockwise polygons, negative for clockwise polygons. If the
polygon is not simple, the area is not well defined. The functionality is also available by the polygon area 2
function, which returns the area instead of taking it as a parameter.

Requirements

1. Traits is a model of the concept PolygonTraits 2. Only the following members of this traits class are
used:

• Compute area 2 : Computes the signed area of the oriented triangle defined by 3 Point 2 passed as
arguments.

• FT

• compute area 2 object()

2. The value type of ForwardIterator must be Traits::Point 2,

See Also

CGAL::polygon area 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1479
PolygonTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1470
CGAL::orientation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1468
CGAL::Polygon 2<PolygonTraits 2, Container> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1472
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CGAL::bbox 2

Definition

#include <CGAL/Polygon 2 algorithms.h>

template <class InputIterator, class Traits>
Bbox 2 bbox 2( InputIterator first, InputIterator last, Traits traits)

Returns the bounding box of the range [first,last).

Requirements

1. Traits is a model of the concept PolygonTraits 2. In fact, only the members Construct bbox 2 and
construct bbox 2 object() are used.

2. The value type of InputIterator must be Traits::Point 2,

See Also

CGAL::Polygon 2<PolygonTraits 2, Container> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1472
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CGAL::bottom vertex 2

Definition

#include <CGAL/Polygon 2 algorithms.h>

template <class ForwardIterator, class Traits>
ForwardIterator bottom vertex 2( ForwardIterator first, ForwardIterator last, Traits traits)

Returns an iterator to the bottommost point from the
range [first,last). In case of a tie, the point with the small-
est x-coordinate is taken.

Requirements

1. Traits is a model of the concept PolygonTraits 2. In fact, only the members Less yx 2 and less yx 2
object() are used.

2. The value type of ForwardIterator must be Traits::Point 2,

See Also

CGAL::left vertex 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1467
CGAL::right vertex 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1480
CGAL::top vertex 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1481
CGAL::Polygon 2<PolygonTraits 2, Container> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1472
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Example
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CGAL::bounded side 2

Definition

The function bounded side 2 computes if a point lies inside a polygon.

#include <CGAL/Polygon 2 algorithms.h>

template <class ForwardIterator, class Traits>
Bounded side bounded side 2( ForwardIterator first,

ForwardIterator last,
Traits::Point 2 point,
Traits traits)

The function bounded side 2 computes if a point lies inside a polygon. The polygon is defined by the sequence
of points first. . . last. Being inside is defined by the odd-even rule. If we take a ray starting at the point and
extending to infinity (in any direction), we count the number of intersections. If this number is odd, the point is
inside, otherwise it is outside. If the point is on a polygon edge, a special value is returned. A simple polygon
divides the plane in an unbounded and a bounded region. According to the definition points in the bounded
region are inside the polygon.

Requirements

1. Traits is a model of the concept PolygonTraits 2. Only the following members of this traits class are
used:

• Compare x 2

• Compare y 2

• Orientation 2

• compare x 2 object()

• compare y 2 object()

• orientation 2 object()

2. The value type of ForwardIterator must be Traits::Point 2,

Implementation

The running time is linear in the number of vertices of the polygon. A horizontal ray is taken to count the
number of intersections. Special care is taken that the result is correct even if there are degeneracies (if the ray
passes through a vertex).

See Also

PolygonTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1470
CGAL::oriented side 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1469
CGAL::Polygon 2<PolygonTraits 2, Container> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1472
CGAL::Bounded side
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CGAL::is convex 2

Definition

The function is convex 2 computes if a polygon is convex.

#include <CGAL/Polygon 2 algorithms.h>

template <class ForwardIterator, class Traits>
bool is convex 2( ForwardIterator first, ForwardIterator last, Traits traits)

Requirements

1. Traits is a model of the concept PolygonTraits 2. Only the following members of this traits class are
used:

• Less xy 2

• Orientation 2

• less xy 2 object

• orientation 2 object

2. ForwardIterator::value type should be Traits::Point 2,

See Also

PolygonTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1470
CGAL::Polygon 2<PolygonTraits 2, Container> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1472
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CGAL::is simple 2

Definition

The function is simple 2 computes if a polygon is simple, that is, if the edges do not intersect, except consecu-
tive edges in their common vertex.

#include <CGAL/Polygon 2 algorithms.h>

template <class ForwardIterator, class Traits>
inline bool is simple 2( ForwardIterator first, ForwardIterator last, Traits traits)

Checks if the polygon defined by the iterator range first . . . last is simple.

Requirements

1. Traits is a model of the concept PolygonTraits 2. Only the following members of this traits class are
used:

• Point 2

• Less xy 2

• Orientation 2

• less xy 2 object()

• orientation 2 object()

2. The value type of ForwardIterator must be Traits::Point 2,

Implementation

The simplicity test is implemented by means of a plane sweep algorithm. The algorithm is quite robust when
used with inexact number types. The running time is O(n log n), where n is the number of vertices of the
polygon.

See Also

PolygonTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1470
CGAL::Polygon 2<PolygonTraits 2, Container> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1472
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CGAL::left vertex 2

Definition

#include <CGAL/Polygon 2 algorithms.h>

template <class ForwardIterator, class Traits>
ForwardIterator left vertex 2( ForwardIterator first, ForwardIterator last, Traits traits)

Returns an iterator to the leftmost point from the range
[first,last). In case of a tie, the point with the smallest
y-coordinate is taken.

Requirements

1. Traits is a model of the concept PolygonTraits 2. In fact, only the members Less xy 2 and less xy 2
object() are used.

2. The value type of ForwardIterator must be Traits::Point 2,

See Also

CGAL::right vertex 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1480
CGAL::top vertex 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1481
CGAL::bottom vertex 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1463
CGAL::Polygon 2<PolygonTraits 2, Container> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1472

1467



F
un

ct
io

n

CGAL::orientation 2

Definition

The function orientation 2 computes if a polygon is clockwise or counterclockwise oriented.

#include <CGAL/Polygon 2 algorithms.h>

template <class ForwardIterator, class Traits>
Orientation orientation 2( ForwardIterator first, ForwardIterator last, Traits traits)

Precondition: is simple 2(first, last, traits);

Requirements

1. Traits is a model of the concept PolygonTraits 2. Only the following members of this traits class are
used:

• Less xy 2

• less xy 2 object()

• orientation 2 object()

2. The value type of ForwardIterator must be Traits::Point 2,

See Also

PolygonTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1470
CGAL::is simple 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1466
CGAL::Polygon 2<PolygonTraits 2, Container> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1472
CGAL::Orientation
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CGAL::oriented side 2

Definition

The function oriented side 2 computes on which side of a polygon a point lies.

#include <CGAL/Polygon 2 algorithms.h>

template <class ForwardIterator, class Traits>
Oriented side oriented side 2( ForwardIterator first,

ForwardIterator last,
Traits::Point 2 point,
Traits traits)

Requirements

1. Traits is a model of the concept PolygonTraits 2. Only the following members of this traits class are
used:

• Less xy 2

• Compare x 2

• Compare y 2

• Orientation 2

• less xy 2 object()

• compare x 2 object()

• compare y 2 object()

• orientation 2 object()

2. The value type of ForwardIterator must be Traits::Point 2,

See Also

PolygonTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1470
CGAL::bounded side 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1464
CGAL::is simple 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1466
CGAL::Polygon 2<PolygonTraits 2, Container> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1472
CGAL::Oriented side
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PolygonTraits 2

Definition

The Polygon 2 class and the functions that implement the functionality found in that class each are parameter-
ized by a traits class that defines the primitives used in the algorithms. The concept PolygonTraits 2 defines this
common set of requirements.

The requirements of PolygonTraits 2 are a subset of the kernel requirements. We only list the types and methods
which are required and refer to the description of the kernel concept for details.

Types

PolygonTraits 2:: FT

PolygonTraits 2:: Point 2 The point type.

PolygonTraits 2:: Segment 2 The segment type.

PolygonTraits 2:: Construct segment 2

PolygonTraits 2:: Equal 2

PolygonTraits 2:: Less xy 2

PolygonTraits 2:: Less yx 2

PolygonTraits 2:: Compare x 2

PolygonTraits 2:: Compare y 2

PolygonTraits 2:: Orientation 2

PolygonTraits 2:: Compute area 2 Computes the signed area of the oriented triangle defined
by 3 Point 2 passed as arguments.

Creation

A default constructor and copy constructor are required.

Operations

The following functions that create instances of the above predicate object types must exist.

Equal 2 traits.equal 2 object()
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Less xy 2 traits.less xy 2 object()

Less yx 2 traits.less yx 2 object()

Compare y 2 traits.compare y 2 object()

Compare x 2 traits.compare x 2 object()

Orientation 2 traits.orientation 2 object()

Compute area 2 traits.compute area 2 object()

Construct segment 2 traits.construct segment 2 object()

Has Models

The kernels supplied by CGAL are models of PolygonTraits 2.
CGAL::Projection traits xy 3<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 604
CGAL::Projection traits yz 3<K>
CGAL::Projection traits zx 3<K>

See Also

CGAL::Polygon 2<PolygonTraits 2, Container> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1472
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CGAL::Polygon 2<PolygonTraits 2, Container>

Definition

The class Polygon 2<PolygonTraits 2, Container> implements polygons. The Polygon 2<PolygonTraits 2,
Container> is parameterized by a traits class and a container class. The latter can be any class that fulfills the
requirements for an STL container. It defaults to the vector class.

#include <CGAL/Polygon 2.h>

Types

Polygon 2<PolygonTraits 2, Container>:: Traits The traits type.
Polygon 2<PolygonTraits 2, Container>:: Container

The container type.

typedef Traits::FT FT; The number type, which is the field type of the points of
the polygon.

typedef Traits::Point 2 Point 2; The point type of the polygon.
typedef Traits::Segment 2

Segment 2; The type of a segment between two points of the polygon.

The following types denote iterators that allow to traverse the vertices and edges of a polygon. Since it is
questionable whether a polygon should be viewed as a circular or as a linear data structure both circulators
and iterators are defined. The circulators and iterators are non-mutable.1 The iterator category is in all cases
bidirectional, except for Vertex iterator, which has the same iterator category as Container::iterator. N.B.
In fact all of them should have the same iterator category as Container::iterator. However, due to compiler
problems this is currently not possible.

For vertices we define

Polygon 2<PolygonTraits 2, Container>:: Vertex iterator
Polygon 2<PolygonTraits 2, Container>:: Vertex circulator

Their value type is Point 2.

For edges we define

Polygon 2<PolygonTraits 2, Container>:: Edge const circulator
Polygon 2<PolygonTraits 2, Container>:: Edge const iterator

Their value type is Segment 2.

1At least conceptually. The enforcement depends on preprocessor flags.
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Creation

Polygon 2<PolygonTraits 2, Container> pgn( Traits p traits = Traits());

Creates an empty polygon pgn.

template <class InputIterator>
Polygon 2<PolygonTraits 2, Container> pgn( InputIterator first,

InputIterator last,
Traits p traits = Traits())

Introduces a polygon pgn with vertices from the sequence
defined by the range [first,last). The value type of In-
putIterator must be Point 2.

Modifiers

void pgn.set( Vertex iterator pos, Point 2 x)

Acts as *pos = x, except that that would be illegal because
the iterator is not mutable.

Vertex iterator pgn.insert( Vertex iterator i, Point 2 q)

Inserts the vertex q before i. The return value points to
the inserted vertex.
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template <class InputIterator>
void pgn.insert( Vertex iterator i, InputIterator first, InputIterator last)

Inserts the vertices in the range [first, last) before i. The
value type of points in the range [first,last) must be Point
2.

void pgn.push back( Point 2 q)

Has the same semantics as p.insert(p.vertices end(), q).

void pgn.erase( Vertex iterator i)

Erases the vertex pointed to by i.

void pgn.erase( Vertex iterator first, Vertex iterator last)

Erases the vertices in the range [first, last).

void pgn.clear() Erases all vertices.

void pgn.reverse orientation()

Reverses the orientation of the polygon. The vertex
pointed to by p.vertices begin() remains the same.

Access Functions

The following methods of the class return circulators and iterators that allow to traverse the vertices and edges.

Vertex iterator pgn.vertices begin() const

Returns a constant iterator that allows to traverse the ver-
tices of the polygon pgn.

Vertex iterator pgn.vertices end() const

Returns the corresponding past-the-end iterator.

Vertex circulator pgn.vertices circulator() const

Returns a mutable circulator that allows to traverse the
vertices of the polygon pgn.

Edge const iterator pgn.edges begin() const

Returns a non-mutable iterator that allows to traverse the
edges of the polygon pgn.
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Edge const iterator pgn.edges end() const

Returns the corresponding past-the-end iterator.

Edge const circulator pgn.edges circulator() const

Returns a non-mutable circulator that allows to traverse
the edges of the polygon pgn.

Predicates

bool pgn.is simple() const Returns whether pgn is a simple polygon.

bool pgn.is convex() const Returns whether pgn is convex.

Orientation pgn.orientation() const

Returns the orientation of pgn. If the number of vertices
p.size() < 3 then COLLINEAR is returned.
Precondition: p.is simple().

Oriented side pgn.oriented side( Point 2 q) const

Returns POSITIVE SIDE, or NEGATIVE SIDE, or ON
ORIENTED BOUNDARY , depending on where point q
is.
Precondition: p.is simple().

Bounded side pgn.bounded side( Point 2 q) const

Returns the symbolic constant ON BOUNDED SIDE,
ON BOUNDARY or ON UNBOUNDED SIDE, depend-
ing on where point q is.
Precondition: p.is simple().

Bbox 2 pgn.bbox() const Returns the smallest bounding box containing pgn.

Traits::FT pgn.area() const Returns the signed area of the polygon pgn. This means
that the area is positive for counter clockwise polygons
and negative for clockwise polygons.

Vertex iterator pgn.left vertex() Returns the leftmost vertex of the polygon pgn with the
smallest x-coordinate.

Vertex iterator pgn.right vertex() Returns the rightmost vertex of the polygon pgn with the
largest x-coordinate.
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Vertex iterator pgn.top vertex() Returns topmost vertex of the polygon pgn with the
largest y-coordinate.

Vertex iterator pgn.bottom vertex() Returns the bottommost vertex of the polygon pgn with
the smallest y-coordinate.

For convenience we provide the following Boolean functions:

bool pgn.is counterclockwise oriented() const
bool pgn.is clockwise oriented() const

bool pgn.is collinear oriented() const
bool pgn.has on positive side( Point 2 q) const
bool pgn.has on negative side( Point 2 q) const
bool pgn.has on boundary( Point 2 q) const
bool pgn.has on bounded side( Point 2 q) const
bool pgn.has on unbounded side( Point 2 q) const

Random access methods

These methods are only available for random access containers.

Point 2 pgn.vertex( std::size t i) const

Returns a (const) reference to the i-th vertex.

Point 2 pgn[ std::size t i] Returns a (const) reference to the i-th vertex.

Segment 2 pgn.edge( std::size t i) const

Returns the i-th edge.

Miscellaneous

std::size t pgn.size() const Returns the number of vertices of the polygon pgn.

bool pgn.is empty() const Returns p.size() == 0.

Container pgn.container() const Returns a const reference to the sequence of vertices of the polygon pgn.

Globally defined operators

template <class Traits, class Container1, class Container2>

bool Polygon 2<Traits,Container1> p1 == Polygon 2<Traits,Container2> p2

Test for equality: two polygons are equal iff there exists a cyclic per-
mutation of the vertices of p2 such that they are equal to the vertices
of p1. Note that the template argument Container of p1 and p2 may be
different.
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template <class Traits, class Container1, class Container2>

bool Polygon 2<Traits,Container1> p1 != Polygon 2<Traits,Container2> p2

Test for inequality.

template <class Transformation, class Traits, class Container>

Polygon 2<Traits,Container>

transform( Transformation t, Polygon 2<Traits,Container> p)

Returns the image of the polygon p under the transformation t.

I/O

The I/O operators are defined for iostream. The format for the iostream is an internal format.

ostream& ostream& os << Polygon 2<Traits,Container> p

Inserts the polygon pgn into the stream os.
Precondition: The insert operator must be defined for Point 2.

istream& istream& is >> Polygon 2<Traits,Container> p

Reads a polygon from stream is and assigns it to pgn.
Precondition: The extract operator must be defined for Point 2.

The information output in the iostream is the number of points followed by the output of the coordinates of the
vertices.

Implementation

The methods is simple, is convex, orientation, oriented side, bounded side, bbox, area, left vertex, right
vertex, top vertex and bottom vertex are all implemented using the algorithms on sequences of 2D points.
See the corresponding global functions for information about which algorithms were used and what complexity
they have.

Example

The following code fragment creates a polygon and checks if it is convex.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Polygon_2.h>
#include <iostream>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_2 Point;
typedef CGAL::Polygon_2<K> Polygon_2;
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using std::cout; using std::endl;

int main()
{

Point points[] = { Point(0,0), Point(5.1,0), Point(1,1), Point(0.5,6)};
Polygon_2 pgn(points, points+4);

// check if the polygon is simple.
cout << "The polygon is " <<

(pgn.is_simple() ? "" : "not ") << "simple." << endl;

// check if the polygon is convex
cout << "The polygon is " <<

(pgn.is_convex() ? "" : "not ") << "convex." << endl;

return 0;
}� �
File: examples/Polygon/Polygon.cpp
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CGAL::polygon area 2

Definition

The function polygon area 2 computes the signed area of a polygon.

#include <CGAL/Polygon 2 algorithms.h>

template <class ForwardIterator, class Traits>
typename Traits::FT polygon area 2( ForwardIterator first, ForwardIterator last, Traits traits)

Computes the signed area of the polygon defined by the range of points first . . . last. The sign is positive for
counterclockwise polygons, negative for clockwise polygons. If the polygon is not simple, the area is not well
defined.

Requirements

1. Traits is a model of the concept PolygonTraits 2. Only the following members of this traits class are
used:

• Compute area 2 : Computes the signed area of the oriented triangle defined by 3 Point 2 passed as
arguments.

• FT

• compute area 2 object

2. ForwardIterator::value type should be Traits::Point 2,

See Also

PolygonTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1470
CGAL::orientation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1468
CGAL::Polygon 2<PolygonTraits 2, Container> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1472
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CGAL::right vertex 2

Definition

#include <CGAL/Polygon 2 algorithms.h>

template <class ForwardIterator, class Traits>
ForwardIterator right vertex 2( ForwardIterator first, ForwardIterator last, Traits traits)

Returns an iterator to the rightmost point from the range
[first,last). In case of a tie, the point with the largest y-
coordinate is taken.

Requirements

1. Traits is a model of the concept PolygonTraits 2. In fact, only the members Less xy 2 and less xy 2
object() are used.

2. The value type of ForwardIterator must be Traits::Point 2,

See Also

CGAL::left vertex 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1467
CGAL::top vertex 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1481
CGAL::bottom vertex 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1463
CGAL::Polygon 2<PolygonTraits 2, Container> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1472
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CGAL::top vertex 2

Definition

#include <CGAL/Polygon 2 algorithms.h>

template <class ForwardIterator, class Traits>
ForwardIterator top vertex 2( ForwardIterator first, ForwardIterator last, Traits traits)

Returns an iterator to the topmost point from the range
[first,last). In case of a tie, the point with the largest x-
coordinate is taken.

Requirements

1. Traits is a model of the concept PolygonTraits 2. In fact, only the members Less yx 2 and less yx 2
object() are used.

2. The value type of ForwardIterator must be Traits::Point 2,

See Also

CGAL::left vertex 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1467
CGAL::right vertex 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1480
CGAL::bottom vertex 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1463
CGAL::Polygon 2<PolygonTraits 2, Container> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1472
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Chapter 19

2D Regularized Boolean Set-Operations
Efi Fogel, Ophir Setter, Ron Wein, Guy Zucker, Baruch Zukerman, and Dan Halperin
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19.1 Introduction

This package consists of the implementation of Boolean set-operations on point sets bounded by weakly x-
monotone curves1 in 2-dimensional Euclidean space. In particular, it contains the implementation of regularized
Boolean set-operations, intersection predicates, and point containment predicates. Figure 35 shows simple
examples of such operations.

Ordinary Boolean set-operations, which distinguish between the interior and the boundary of a polygon, are
not implemented within this package. The Nef 2 package supports these operations for (linear) polygons; see
Chapter 20.

1A continuous planar curve C is weakly x-monotone if every vertical line intersects it at most once, or if it is vertical. Hereafter we refer
to weakly x-monotone curves as x-monotone curves.
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A B intersection(A, B) symmetric-difference(A, B)

Figure 19.1: Examples of Boolean set-operations on general polygons.

In the rest of this chapter we use, unless otherwise stated, the traditional notation to denote regularized opera-
tions; e.g., P∩Q means the regularized intersection of P and Q.

Our package supports the following Boolean set-operations on two point sets P and Q that each is the union of
one or more general polygons:

Intersection computes the intersection R = P∩Q.

Join computes the union R = P∪Q.

Difference computes the difference R = P\Q.

Symmetric Difference computes the symmetric difference P = P⊕Q = (P\Q)∪ (Q\P).

Complement computes the complement R = P.

Intersection predicate tests whether the two sets P and Q overlap, distinguishing three possible scenarios: (i)
the two sets intersect on their interior (that is, their regularized intersection is not empty P∩Q 6= /0); (ii)
the boundaries of two sets intersect but their interiors are disjoint; namely they have a finite number of
common points or even share a boundary curve (still in this case P∩Q = /0; and (iii) the two sets are
disjoint.

In general, the set R, resulting from a regularized Boolean set-operation, is considered as being a closed point-
set; see definition of regularized boolean set operations below.

In the rest of this chapter we review the Boolean set-operations package in more depth. In Section 19.3 we
focus on Boolean set-operations on linear polygons, introducing the notion of polygons with holes and of a
general polygon set. Section 19.4 introduces general polygons. We first discuss polygons whose edges are
either line segments or circular arcs and then explain how to construct and use general polygons whose edges
can be arbitrary weakly x-monotone curves.

19.2 Terms and Definitions

• The counterclockwise cyclic sequence of alternating polygon edges and polygon vertices is referred to as
the polygon (outer) boundary.
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A B C

Figure 19.2: Examples of polygons. (a) A simple polygon. (b) A relatively simple polygon (c) A polygon that
is neither simple nor relatively simple

• A polygon whose curves are pairwise disjoint in their interior, and whose vertices’ degree equals two is
defined as a Simple polygon. Such a polygon has a well-defined interior and exterior and is topologically
equivalent to a disk. Note that while traversing the edges of the relatively simple polygon illustrated above
(B), no curve is crossed over.

• A Relatively simple polygon allows vertices with a degree>2, but all of its edges are disjoint in their
interior. Furthermore, it must be an orientable polygon. Namely when it is inserted into an arrangement
and its outer boundary is traversed, the same face is adjacent to all of the halfedges (no crossing over any
curve during the traversal). Note that while polygon C has the same curves as polygon B, traversal of the
curves leads to crossing over a previously traversed curve, and is therefore neither simple nor relatively
simple.

• A polygon in our context must be relatively simple and its outer boundary vertices must be ordered in a
counterclockwise direction around the interior of the polygon. We extend the notion of a polygon to a
point set in IR2 that has a topology of a polygon and its boundary edges must map to x-monotone curves,
and refer to it as a general polygon. We sometimes use the term polygon instead of general polygon for
simplicity hereafter.

• A polygon with holes represents a point set that may be bounded or unbounded. In case of a bounded
set, its outer boundary is represented as a relatively simple (but not necessarily simple) polygon, whose
vertices are oriented in a counterclockwise order around the interior of the set. In addition, the set
may contain holes, where each hole is represented as a simple polygon, whose vertices are oriented in a
clockwise order around the interior of the hole. Note that an unbounded polygon without holes spans the
entire plane. Vertices of holes may coincide with vertices of the boundary.

• A regularized Boolean set-operation op∗ can be obtained by first taking the interior of the resultant
point set of an ordinary Boolean set-operation (P op Q) and then by taking the closure [Hof04]. That
is, P op∗ Q = closure(interior(P op Q)). Regularized Boolean set-operations appear in Constructive
Solid Geometry (CSG), because regular sets are closed under regularized Boolean set-operations, and
because regularization eliminates lower dimensional features, namely isolated vertices and antennas, thus
simplifying and restricting the representation to physically meaningful solids. Our package provides
regularized operations on polygons and general polygons, where the edges of a general polygon may be
general x-monotone curves, rather than being simple line segments.

19.2.1 Conditions for Valid Polygons

In our context, a polygon must uphold the following conditions:

1. Closed Boundary - the polygon’s outer boundary must be a connected sequence of curves, that start and
end at the same vertex.

1485



2. Simplicity - the polygon must be simple.

3. Orientation - the polygon’s outer boundary must be counter-clockwise oriented.

19.2.2 Conditions for Valid Polygons with Holes

In our context, a polygon with holes must uphold the following conditions:

1. Closed Boundary - both the outer boundary and the holes must be closed polygons as defined above.

2. Simplicity - the outer boundary must be a relatively simple polygon (as defined above). Every hole must
be a simple polygon.

3. Orientation - The polygon with holes must have an outer boundary with counter clockwise orientation.
Every hole’s outer boundary should have clockwise orientation.

4. The holes and the outer boundary must be pairwise disjoint,except maybe on vertices.

• All holes are contained in the outer boundary - holes must be contained inside the outer boundary
and must be disjoint from it (except on vertices).

• Pairwise disjoint holes (on interior) - the polygon’s holes must be pairwise disjoint, except for
intersection on a joint vertex/vertices.

19.3 Boolean Set-Operations on Linear Polygons

The basic library of CGAL includes the Polygon 2<Kernel,Container> class-template that represents a lin-
ear polygon in the plane. The polygon is represented by its vertices stored in a container of objects of type
Kernel::Point 2. The polygon edges are line segments (Kernel::Segment 2 objects) between adjacent points in
the container. By default, the Container is a vector of Kernel::Point 2 objects.

The following function demonstrates how to use the basic access functions of the Polygon 2 class. It accepts a
polygon P and prints it in a readable format:

template<class Kernel, class Container>
void print_polygon (const CGAL::Polygon_2<Kernel, Container>& P)
{
typename CGAL::Polygon_2<Kernel, Container>::Vertex_const_iterator vit;

std::cout << "[ " << P.size() << " vertices:";
for (vit = P.vertices_begin(); vit != P.vertices_end(); ++vit)
std::cout << " (" << *vit << ’)’;

std::cout << " ]" << std::endl;
}

In this section we use the term polygon to indicate a Polygon 2 instance, namely, a polygon having linear edges.
General polygons are only discussed in Section 19.4.

The basic components of our package are the free (global) functions complement() that accepts a single Polygon
2 object, and intersection(), join(),2 difference(), symmetric difference() and the predicate do intersect() that

2The function that computes the union of two polygons is called join(), since the word union is reserved in C++.
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accept two Polygon 2 objects as their input. We explain how these functions should be used through several
examples in the following sections.

A Simple Example

Testing whether two polygons intersect results with a Boolean value, and does not require
any additional data beyond the provision of the two input polygons. The example listed be-
low tests whether the two triangles depicted on the right intersect. It uses, as do the other
example programs in this chapter, the auxiliary header file bso rational nt.h, which defines
the type Number type as GMP’s rational number-type (CGAL::Gmpq), or as the number type
Quotient<MP Float> that is included in the support library of CGAL, based on whether the
GMP library is installed or not. It also uses the function print polygon.h listed above, which
is located in the header file print utils.h.� �
/*! \file do_intersect.cpp
* Determining whether two triangles intersect.
*/

#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Boolean_set_operations_2.h>

typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
typedef Kernel::Point_2 Point_2;
typedef CGAL::Polygon_2<Kernel> Polygon_2;

#include "print_utils.h"

int main ()
{

Polygon_2 P;
P.push_back (Point_2 (-1,1));
P.push_back (Point_2 (0,-1));
P.push_back (Point_2 (1,1));
std::cout << "P = "; print_polygon (P);

Polygon_2 Q;
Q.push_back(Point_2 (-1,-1));
Q.push_back(Point_2 (1,-1));
Q.push_back(Point_2 (0,1));
std::cout << "Q = "; print_polygon (Q);

if ((CGAL::do_intersect (P, Q)))
std::cout << "The two polygons intersect in their interior." <<
std::endl;

else
std::cout << "The two polygons do not intersect." << std::endl;

return 0;
}� �
File: examples/Boolean_set_operations_2/do_intersect.cpp

1487



19.3.1 Polygons with Holes

(a) (b) (c)

Figure 19.3: Operations on simple polygons. (a) The union of two polygons, resulting in a point set whose
outer boundary is defined by a simple polygon and contains a polygonal hole in its interior. (b) The intersection
(darkly shaded) of two polygons (lightly shaded), resulting in two disjoint polygons. (c) The complement
(darkly shaded) of a simple polygon (lightly shaded).

In many cases a binary operation that operates on two simple polygons that have no holes may result in a
set of polygons that contain holes in their interior (see Figure 19.3.1 (a)), or a set of disjoint polygons (see
Figure 19.3.1 (b); a similar set may result from the union, or the symmetric difference, of two disjoint polygons).
Moreover, the complement of a simple polygon is an unbounded set that contains a hole; see Figure 19.3.1 (c).

Regular sets are closed under regularized Boolean set-operations. These operations accept as input, and may
result as output, polygons with holes. A polygon with holes represents a point set that may be bounded or
unbounded. In case of a bounded set, its outer boundary is represented as a relatively simple (but not necessarily
simple) polygon, whose vertices are oriented in a counterclockwise order around the interior of the set. In
addition, the set may contain holes, where each hole is represented as a simple polygon, whose vertices are
oriented in a clockwise order around the interior of the hole. Note that an unbounded polygon without holes
spans the entire plane. Vertices of holes may coincide with vertices of the boundary; see below for an example.

A point set represented by a polygon with holes is considered to be closed. Therefore, the boundaries of the
holes are parts of the set (and not part of the holes). The exact definition of the obtained polygon with holes
as a result of a Boolean set-operation or a sequence of such operations is closely related to the definition of
regularized Boolean set-operations, being the closure of the interior of the corresponding ordinary operation as
explained next.
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Consider, for example, the regular set depicted on the right, which is the result of the union
of three small triangles translated appropriately. Alternatively, the same set can be reached by
taking the difference between a large triangle and a small upside-down triangle. In general,
there are many ways to arrive at a particular point set. However, the set of polygons with holes
obtained through the application of any sequence of operations is unique. The set depicted on
the right is represented as a single polygon having a triangular outer boundary with a single
triangular hole in its interior — and not as three triangles that have no holes at all. As a general
rule, if two point sets are connected, then they belong to the same polygon with holes.

The class template Polygon with holes 2<Kernel,Container> represents polygons with holes as described
above, where the outer boundary and the hole boundaries are realized as Polygon 2<Kernel,Container> ob-
jects. Given an instance P of the Polygon with holes 2 class, you can use the predicate is unbounded() to
check whether P is a unbounded set. If it is bounded, you can obtain the counterclockwise-oriented poly-
gon that represents its outer boundary through the member function outer boundary(). You can also traverse
the holes of P through holes begin() and holes end(). The two functions return iterators of the nested type
Polygon with holes 2::Hole const iterator that defines the valid range of P’s holes. The value type of this
iterator is Polygon 2.

The following function demonstrates how to traverse a polygon with holes. It accepts a Polygon with holes 2
object and uses the auxiliary function print polygon() to prints all its components in a readable format:

template<class Kernel, class Container>
void print_polygon_with_holes(const CGAL::Polygon_with_holes_2<Kernel, Container> & pwh)
{
if (! pwh.is_unbounded()) {
std::cout << "{ Outer boundary = ";
print_polygon (pwh.outer_boundary());

}
else
std::cout << "{ Unbounded polygon." << std::endl;

typename CGAL::Polygon_with_holes_2<Kernel,Container>::Hole_const_iterator hit;
unsigned int k = 1;

std::cout << " " << pwh.number_of_holes() << " holes:" << std::endl;
for (hit = pwh.holes_begin(); hit != pwh.holes_end(); ++hit, ++k) {
std::cout << " Hole #" << k << " = ";
print_polygon (*hit);

}
std::cout << " }" << std::endl;

}

The simple versions of the free functions mentioned therefore accept two Polygon 2 object P and Q as their
input, while their output is given using polygon with holes instances:

• The complement of a simple polygon P is always an unbounded set with a single polygonal hole. The
function complement(P) therefore returns a polygon-with-holes object that represents the complement of
P.

• The union of two polygons P and Q is always a single connected set, unless of course the two input
polygons are completely disjoint. In the latter case P∪Q trivially consists of the two input polygons. The
free function join(P, Q, R) therefore returns a Boolean value indicating whether P∩Q 6= /0. If the two
polygons are not disjoint, it assigns the polygon with holes object R (which it accepts by reference) with
the union of the regularized union operation P∪Q.
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• The other three functions, namely intersection(P, Q, oi), difference(P, Q, oi) and symmetric difference(P,
Q, oi), all have a similar interface. As the result of these operation may consist of several disconnected
components, they all accept an output iterator oi, whose value type is Polygon with holes 2, and adds the
output polygons to its associated container.

Example — Joining and Intersecting Simple Polygons

The following example demonstrates the usage of the free functions join() and intersect() for computing the
union and the intersection of the two simple polygons depicted in Figure 19.3.1 (b). The example uses the
auxiliary function print polygon with holes() listed above, which is located in the header file print utils.h under
the examples folder.� �
/*! \file simple_join_intersect.cpp
* Computing the union and the intersection of two simple polygons.
*/

#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Boolean_set_operations_2.h>
#include <list>

typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
typedef Kernel::Point_2 Point_2;
typedef CGAL::Polygon_2<Kernel> Polygon_2;
typedef CGAL::Polygon_with_holes_2<Kernel>

Polygon_with_holes_2;
typedef std::list<Polygon_with_holes_2> Pwh_list_2;

#include "print_utils.h"

int main ()
{

// Construct the two input polygons.
Polygon_2 P;
P.push_back (Point_2 (0, 0));
P.push_back (Point_2 (5, 0));
P.push_back (Point_2 (3.5, 1.5));
P.push_back (Point_2 (2.5, 0.5));
P.push_back (Point_2 (1.5, 1.5));

std::cout << "P = "; print_polygon (P);

Polygon_2 Q;
Q.push_back (Point_2 (0, 2));
Q.push_back (Point_2 (1.5, 0.5));
Q.push_back (Point_2 (2.5, 1.5));
Q.push_back (Point_2 (3.5, 0.5));
Q.push_back (Point_2 (5, 2));

std::cout << "Q = "; print_polygon (Q);

// Compute the union of P and Q.
Polygon_with_holes_2 unionR;
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if (CGAL::join (P, Q, unionR)) {
std::cout << "The union: ";
print_polygon_with_holes (unionR);

} else
std::cout << "P and Q are disjoint and their union is trivial."

<< std::endl;
std::cout << std::endl;

// Compute the intersection of P and Q.
Pwh_list_2 intR;
Pwh_list_2::const_iterator it;

CGAL::intersection (P, Q, std::back_inserter(intR));

std::cout << "The intersection:" << std::endl;
for (it = intR.begin(); it != intR.end(); ++it) {

std::cout << "--> ";
print_polygon_with_holes (*it);

}

return 0;
}� �
File: examples/Boolean_set_operations_2/simple_join_intersect.cpp

Operations on Polygons with Holes

We have demonstrated that free functions that perform boolean set operations on simple polygons may output
polygons with holes. In addition to these functions, the Boolean set-operations package provides the following
overridden free functions that accept General polygon with holes 2 objects as their input - complement(), in-
tersection(), join(), difference(), symmetric difference() and do intersect() The prototypes of most functions is
the same as of their simpler counterparts that operate on simple polygons. The only exception is complement(P,
oi), which outputs a range of polygons with holes that represents the complement of the polygon with holes P.

The following example demonstrates how to compute the symmetric difference be-
tween two sets that contain holes. Each set is a rectangle that contains a rectangular
hole in its interior, such that the symmetric difference between the two sets is a single
polygon that contains of five holes:

� �
/*! \file symmetric_difference.cpp
* Computing the symmetric difference of two polygons with holes.
*/

#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Boolean_set_operations_2.h>
#include <list>

typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
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typedef Kernel::Point_2 Point_2;
typedef CGAL::Polygon_2<Kernel> Polygon_2;
typedef CGAL::Polygon_with_holes_2<Kernel>

Polygon_with_holes_2;
typedef std::list<Polygon_with_holes_2> Pwh_list_2;

#include "print_utils.h"

int main ()
{

// Construct P - a bounded rectangle that contains a rectangular hole.
Polygon_2 outP;
Polygon_2 holesP[1];

outP.push_back (Point_2 (-3, -5)); outP.push_back (Point_2 (3, -5));
outP.push_back (Point_2 (3, 5)); outP.push_back (Point_2 (-3, 5));
holesP[0].push_back (Point_2 (-1, -3));
holesP[0].push_back (Point_2 (-1, 3));
holesP[0].push_back (Point_2 (1, 3));
holesP[0].push_back (Point_2 (1, -3));

Polygon_with_holes_2 P (outP, holesP, holesP + 1);
std::cout << "P = "; print_polygon_with_holes (P);

// Construct Q - a bounded rectangle that contains a rectangular hole.
Polygon_2 outQ;
Polygon_2 holesQ[1];

outQ.push_back (Point_2 (-5, -3)); outQ.push_back (Point_2 (5, -3));
outQ.push_back (Point_2 (5, 3)); outQ.push_back (Point_2 (-5, 3));
holesQ[0].push_back (Point_2 (-3, -1));
holesQ[0].push_back (Point_2 (-3, 1));
holesQ[0].push_back (Point_2 (3, 1));
holesQ[0].push_back (Point_2 (3, -1));

Polygon_with_holes_2 Q (outQ, holesQ, holesQ + 1);
std::cout << "Q = "; print_polygon_with_holes (Q);

// Compute the symmetric difference of P and Q.
Pwh_list_2 symmR;
Pwh_list_2::const_iterator it;

CGAL::symmetric_difference (P, Q, std::back_inserter(symmR));

std::cout << "The symmetric difference:" << std::endl;
for (it = symmR.begin(); it != symmR.end(); ++it) {

std::cout << "--> ";
print_polygon_with_holes (*it);

}

return 0;
}� �
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File: examples/Boolean_set_operations_2/symmetric_difference.cpp

In some cases it is convenient to connect the outer boundary of a polygon with holes with the holes inside it.
The function connect holes() accepts a polygon with holes, and connects the topmost vertex in each hole with
the polygon feature located directly above it (a vertex or an edge of the outer boundary, or of another hole). It
produces an output sequence of points that match the traversal of all vertices in the connected polygon (note
that there are additional vertices, induced by the vertical walls).� �
/*! \file connect_polygon.cpp
* Connecting a polygon with holes.
*/

#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/connect_holes.h>
#include <list>

typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
typedef Kernel::Point_2 Point_2;
typedef CGAL::Polygon_2<Kernel> Polygon_2;
typedef CGAL::Polygon_with_holes_2<Kernel>

Polygon_with_holes_2;

int main (int argc, char* argv[])
{

// Get the name of the input file from the command line, or use the
default

// pgn_holes.dat file if no command-line parameters are given.
//more data files can be found under test data
//boundary no other connections are made.
const char* filename = (argc > 1) ? argv[1] : "pgn_holes.dat";
std::ifstream input_file (filename);
if (! input_file.is_open())
{

std::cerr << "Failed to open the " << filename <<std::endl;
return -1;

}

// Read a polygon with holes from a file.
Polygon_2 outerP;
unsigned int num_holes;

input_file >> outerP;
input_file >> num_holes;

std::vector<Polygon_2> holes (num_holes);
unsigned int k;

for (k = 0; k < num_holes; k++)
input_file >> holes[k];

Polygon_with_holes_2 P (outerP, holes.begin(), holes.end());

// Connect the outer boundary of the polygon with its holes.
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std::list<Point_2> pts;
std::list<Point_2>::iterator pit;

connect_holes (P, std::back_inserter (pts));

for (pit = pts.begin(); pit != pts.end(); ++pit)
std::cout << ’(’ << *pit << ") ";

std::cout << std::endl;

return (0);
}� �
File: examples/Boolean_set_operations_2/connect_polygon.cpp

19.3.2 Operating on Polygon Sets

We argue that the result of a regularized operations on two polygons (or polygons with holes) P and Q is typically
a collection of several disconnected polygons with holes. It is only natural to represent such a collection in terms
of a class, making it possible to operate on the set resulting from computing, for example, P\Q.

A central component in the Boolean set-operations package is the Polygon set 2<Kernel, Container, Dcel>
class-template. An instance of this class represents a point set formed by the collection of several disconnected
polygons with holes. It employs the Arrangement 2 class to represent this point set in the plane as a planar ar-
rangement; see Chapter 32. The instantiated Dcel type is used to represent the underlying internal arrangement.
It must model the concept GeneralPolygonSetDcel, and defaults to Gps default dcel. You can override this
default, with a different DCEL class, typically an extension of the default. Overriding the default is necessary
only if you intend to obtain the underlying internal arrangement and process it further.

An instance S of a Polygon set 2 class usually represents the result of a sequence of operations that were applied
on some input polygons. The representation of S is unique, regardless of the particular sequence of operations
that were applied in order to arrive at it.

In addition, a polygon-set object can be constructed from a single polygon object or from a polygon-with-holes
object. Once constructed, it is possible to insert new polygons (or polygons with holes) into the set using the
insert() method, as long as the inserted polygons and the existing polygons in the set are disjoint. The Polygon
set 2 class also provides access functions for accessing the polygons with holes it contains, and a few queries.
The most important query is S.oriented side(q), which determined whether the query point q is contained in the
interior of the set S, lies on the boundary of the set, or neither.

The General polygon set 2 class defines the predicate do intersect() and the methods complement(), intersec-
tion(), join(), difference() and symmetric difference() as member functions. The operands to these functions
may be simple polygons (Polygon 2 object), polygons with holes (General polygon with holes 2 objects), or
polygon sets (General polygon set 2 objects). Thus, each of the function mentioned above is actually realized
by a set overriding member functions.

Member functions of the General polygon set 2 that perform Boolean set-operations come in two flavors: for
example, S.join(P, Q) computes the union of P and Q and assigned the result to S, while S.join(P) performs the
operation S←− S∪P. Similarly, S.complement(P) sets S to be the complement of P, while S.complement()
simply negates the set S.
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A Sequence of Set Operations

The free functions reviewed in Section 19.3.1 serve as a wrapper for the polygon-set class, and are only provided
for convenience. A typical such function constructs a pair of General polygon set 2 objects, invokes the appro-
priate method to apply the desired Boolean operation, and transforms the resulting polygon set to the required
output format. Thus, when several operations are performed in a sequence, it is much more efficient to use the
member functions of the General polygon set 2 type directly, as the extraction of the polygons from the inter-
nal representation for some operation, and the reconstruction of the internal representation for the succeeding
operation could be time consuming.

The next example performs a sequence of three Boolean set-operations. First, it com-
putes the union of two simple polygons depicted in Figure 19.3.1 (a). It then computes
the complement of the result of the union operation. Finally, it computes the inter-
section of the result of the complement operation with a rectangle, confining the final
result to the area of the rectangle. The resulting set S is comprised of two components:
a polygon with a hole, and a simple polygon contained in the interior of this hole.� �
/*! \file sequence.cpp
* Performing a sequence of Boolean set-operations.
*/

#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Polygon_2.h>
#include <CGAL/Polygon_with_holes_2.h>
#include <CGAL/Polygon_set_2.h>

#include <list>

typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
typedef Kernel::Point_2 Point_2;
typedef CGAL::Polygon_2<Kernel> Polygon_2;
typedef CGAL::Polygon_with_holes_2<Kernel>

Polygon_with_holes_2;
typedef CGAL::Polygon_set_2<Kernel> Polygon_set_2;

#include "print_utils.h"

int main ()
{

// Construct the two initial polygons and the clipping rectangle.
Polygon_2 P;
P.push_back (Point_2 (0, 1));
P.push_back (Point_2 (2, 0));
P.push_back (Point_2 (1, 1));
P.push_back (Point_2 (2, 2));

Polygon_2 Q;
Q.push_back (Point_2 (3, 1));
Q.push_back (Point_2 (1, 2));
Q.push_back (Point_2 (2, 1));
Q.push_back (Point_2 (1, 0));

Polygon_2 rect;
rect.push_back (Point_2 (0, 0));
rect.push_back (Point_2 (3, 0));
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rect.push_back (Point_2 (3, 2));
rect.push_back (Point_2 (0, 2));

// Perform a sequence of operations.
Polygon_set_2 S;
S.insert (P);
S.join (Q); // Compute the union of P and Q.
S.complement(); // Compute the complement.
S.intersection (rect); // Intersect with the clipping rectangle.

// Print the result.
std::list<Polygon_with_holes_2> res;
std::list<Polygon_with_holes_2>::const_iterator it;

std::cout << "The result contains " <<
S.number_of_polygons_with_holes()

<< " components:" << std::endl;

S.polygons_with_holes (std::back_inserter (res));
for (it = res.begin(); it != res.end(); ++it) {

std::cout << "--> ";
print_polygon_with_holes (*it);

}

return 0;
}� �
File: examples/Boolean_set_operations_2/sequence.cpp

Inserting Non Intersecting Polygons

If you want to compute the union of a polygon P (P may be a simple polygon or a polygon-with-holes object)
with a general-polygon set R, and store the result in R, you can construct a polygon set S(P), and apply the
union operation as follows:

General_polygon_2 S (P);
R.join (S);

As a matter of fact, you can apply the union operation directly:

R.join (P);

However, if you know that the polygon does not intersect any one of the polygons represented by R, you can
use the more efficient method insert():

R.insert (P);

As insert() assumes that P∩R = /0, it does not try to compute intersections between the boundaries of P and
of R. This fact significantly speeds up the insertion process in comparison with the insertion of a non-disjoint
polygon that intersects R.
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The insert() function is also overloaded, so it can also accept a range of polygons. When a range of polygons are
inserted into a polygon set S, all the polygons in the range and the polygons represented by S must be pairwise
disjoint in their interiors.

19.3.3 Performing Aggregated Operations

There are a few options to compute the union of a set of polygons P1, . . .Pm. You can do it incrementally as
follows. At each step compute the union of Sk−1 =

Sk−1
i=1 Pi with Pk and obtain Sk. Namely, if the polygon set is

given as a pair of iterator [begin, end), the following loop computes their union in S.

InputIterator iter = begin;
Polygon_set_2 S (*iter);

while (++iter != end) {
S.join (*iter);
++iter;

}

A second option is to use a divide-and-conquer approach. You bisect the set of polygons into two sets. Compute
the union of each set recursively and obtain the partial results in S1 and S2, and finally, you compute the union
S1 ∪ S2. However, the union operation can be done more efficiently for sparse polygons, having a relatively
small number of intersections, using a third option that simultaneously computes the union of all polygons.
This is done by constructing a planar arrangement of all input polygons, utilizing the sweep-line algorithm, then
extracting the result from the arrangement. Similarly, it is also possible to aggregately compute the intersectionTm

i=1 Pi of a set of input polygons.

Our package provides the free overloaded functions join() and intersect() that aggregately compute the union
and the intersection of a range of input polygons. There is no restriction on the polygons in the range —
naturally, they may intersect each other. The package provides the overloaded free function do intersect(begin,
end) that determines whether the polygons in the range defined by the two input iterators [begin, end) intersect.

The class General polygon set 2 also provides equivalent member functions that aggragately operate on a range
of input polygons or polygons with holes. When such a member function is called, the general polygons
represented by the current object are considered operands as well. Thus, you can easily compute the union of
our polygon range as follows:

Polygon_set_2 S;
S.join (begin, end);

19.4 Boolean Set-Operations on General Polygons

In previous sections only ordinary (linear) polygons were dealt with. Namely, closed point
sets bounded by piecewise linear curves. The Boolean set-operations package allows a more
general geometric mapping of the polygon edges. The operations provided by the package
operate on point sets bounded by x-monotone segments of general curves (e.g., conic arcs
and segments of polynomial functions). For example, the point set depicted on the right is a
general polygon bounded by two x-monotone circular arcs that correspond to the lower half
and the upper half of a circle, respectively.
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Using the topological terminology, a general polygon can represent any simply-connected point set whose
boundary is a strictly simple curve. Such a polygon is a model of the GeneralPolygon 2 concept. A model of
this concept must fulfill the following requirements:

• A general polygon is constructible from a range of pairwise interior disjoint x-monotone curves c1, . . . ,cn.
The target point of the kth curve ck and the source point of the next curve in the range (in a cyclic order)
must coincide, such that this point defines the kth polygon vertex.

• It is possible to traverse the x-monotone curves that form the edges of a general polygon.

The concept GeneralPolygonWithHoles 2 is defined in an analogous way to the definition of
linear polygons with holes. A model of this concept represent a bounded or an unbounded set
that may not be simply connected, and must provide the following operations:

• Construction for a general polygon that represent the outer boundary and a range of general polygons that
represent the holes.

• Accessing the general polygons that represents the outer boundary (in case of a bounded set).

• Traversing the holes.

In Section 19.3 we introduce the classes Polygon 2 and Polygon with holes 2 that model the concepts
GeneralPolygon 2 and GeneralPolygonWithHoles 2 respectively. In this section we introduce other models
of these two concepts.

The central class-template General polygon set 2<Traits,Dcel> is used to represent point sets that are com-
prised of a finite number of pairwise disjoint general polygons with holes, and provides various Boolean set-
operations on such sets. It is parameterized by a traits class and a DCEL class. The former defines the type of
points used to represent polygon vertices and the type of x-monotone curves that represent the polygon edges.
The traits class also provides primitive geometric operations that operate on objects of these types. The DCEL
class is used to represent the underlying internal Arrangement 2 data structure. The instantiated Dcel type is
used to represent the underlying internal arrangement. It must model the concept GeneralPolygonSetDcel, and
defaults to Gps default dcel. You can override this default, with a different DCEL class, typically an exten-
sion of the default. Overriding the default is necessary only if you intend to obtain the underlying internal
arrangement and process it further.

An instantiated General polygon set 2 class defines the nested types General polygon set 2<Traits,Dcel>
::Polygon 2 and General polygon set 2<Traits,Dcel>::Polygon with holes 2, which model the concepts
GeneralPolygon 2 and GeneralPolygonWithHoles 2 respectively.

19.4.1 The Traits-Class Concepts

The traits class used to instantiate the General polygon set 2 class template must model the con-
cept GeneralPolygonSetTraits 2, and is tailored to handle a specific family of curves. The concept
GeneralPolygonSetTraits 2 refines the concept ArrangementDirectionalXMonotoneTraits 2 specified next.

The concept ArrangementDirectionalXMonotoneTraits 2 refines the concept ArrangementXMonotoneTraits
2 (see Section 32.4.1 in the 2D Arrangements chapter). Thus, a model of this concept must define the type
X monotone curve 2, which represents an x-monotone curve, and the type Point 2, with represents a planar
point. Such a point may be an endpoint of an x-monotone curve or an intersection point between two curves.
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It must also provide various geometric predicates and operations on these types listed by the base concept,
such as determining whether a point lies above or below an x-monotone curve, computing the intersections
between two curves, etc. Note that the base concept does not assume that x-monotone curves are directed: an
x-monotone curve is not required to have a designated source and target, it is only required to determine the left
(lexicographically smaller) and the right (lexicographically larger) endpoints of a given curve.

The ArrangementDirectionalXMonotoneTraits 2 concept treats its x-monotone curves as directed objects. It
thus requires two additional operations on x-monotone curves:

• Given an x-monotone curve, compare its source and target points lexicographically.

• Given an x-monotone curve, construct its opposite curve (namely, swap its source and target points).

The traits classes Arr segment traits 2, Arr non caching segment traits, Arr circle segment traits 2, Arr
conic traits 2 and Arr rational arc traits 2, which are bundled in the Arrangement 2 package and distributed
with CGAL, are all models of the refined concept ArrangementDirectionalXMonotoneTraits 2.3

Just as with the case of computations using models of the ArrangementXMonotoneTraits 2 concept, operations
are robust only when exact arithmetic is used. When inexact arithmetic is used, (nearly) degenerate configura-
tions may result in abnormal termination of the program or even incorrect results.

19.4.2 Operating on Polygons with Circular Arcs

Two traits classes are distributed with CGAL. The first one is named Gps segment traits 2, and it is used to
perform Boolean set-operations on ordinary polygons and polygons with holes. In fact, the class Polygon set 2
introduced in Section 19.3.2 is a specialization of General polygon set 2<Gps segment traits 2>. This class
defined its polygon and polygon with holes types, such that the usage of this traits class is encapsulated in the
polygon-set class.

The other predefined traits class is named Gps circle segment traits 2<Kernel> and is parameterized by a geo-
metric CGAL kernel. By instantiating the General polygon set 2 with this traits class, we obtain the represen-
tation of a polygon whose boundary may be comprised of line segments and circular arcs. The circle–segment
traits class provides predicates and constructions on non-linear objects; yet, it uses only rational arithmetic and
is very efficient as a consequence.

The following example uses the Gps circle segment traits 2 class to compute the
union of four rectangles and four circles. Each circle is represented as a general poly-
gon having two x-monotone circular arcs. The union is computed incrementally, re-
sulting with a single polygon with a single hole, as depicted on the right. Note that as
the four circles are disjoint, their union is computed with the insert method, while the
union with the rectangles is computed with the join operator.� �
/*! \file circle_segment.cpp
* Handling circles and linear segments concurrently.
*/

#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Gps_circle_segment_traits_2.h>

3The Arr polyline traits 2 class is not a model of the, ArrangementDirectionalXMonotoneTraits 2 concept, as the x-monotone curve it
defines is always directed from left to right. Thus, an opposite curve cannot be constructed. However, it is not very useful to construct a
polygon whose edges are polylines, as an ordinary polygon with linear edges can represent the same entity.
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#include <CGAL/General_polygon_set_2.h>
#include <CGAL/Lazy_exact_nt.h>

#include <list>

typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
typedef Kernel::Point_2 Point_2;
typedef Kernel::Circle_2 Circle_2;
typedef CGAL::Gps_circle_segment_traits_2<Kernel> Traits_2;

typedef CGAL::General_polygon_set_2<Traits_2> Polygon_set_2;
typedef Traits_2::General_polygon_2 Polygon_2;
typedef Traits_2::General_polygon_with_holes_2

Polygon_with_holes_2;
typedef Traits_2::Curve_2 Curve_2;
typedef Traits_2::X_monotone_curve_2

X_monotone_curve_2;

// Construct a polygon from a circle.
Polygon_2 construct_polygon (const Circle_2& circle)
{

// Subdivide the circle into two x-monotone arcs.
Traits_2 traits;
Curve_2 curve (circle);
std::list<CGAL::Object> objects;
traits.make_x_monotone_2_object() (curve, std::back_inserter(objects));
CGAL_assertion (objects.size() == 2);

// Construct the polygon.
Polygon_2 pgn;
X_monotone_curve_2 arc;
std::list<CGAL::Object>::iterator iter;

for (iter = objects.begin(); iter != objects.end(); ++iter) {
CGAL::assign (arc, *iter);
pgn.push_back (arc);

}

return pgn;
}

// Construct a point from a rectangle.
Polygon_2 construct_polygon (const Point_2& p1, const Point_2& p2,

const Point_2& p3, const Point_2& p4)
{

Polygon_2 pgn;
X_monotone_curve_2 s1(p1, p2); pgn.push_back(s1);
X_monotone_curve_2 s2(p2, p3); pgn.push_back(s2);
X_monotone_curve_2 s3(p3, p4); pgn.push_back(s3);
X_monotone_curve_2 s4(p4, p1); pgn.push_back(s4);
return pgn;

}

// The main program:
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int main ()
{

// Insert four non-intersecting circles.
Polygon_set_2 S;
Polygon_2 circ1, circ2, circ3, circ4;

circ1 = construct_polygon(Circle_2(Point_2(1, 1), 1));
S.insert(circ1);

circ2 = construct_polygon(Circle_2(Point_2(5, 1), 1));
S.insert(circ2);

circ3 = construct_polygon(Circle_2(Point_2(5, 5), 1));
S.insert(circ3);

circ4 = construct_polygon(Circle_2(Point_2(1, 5), 1));
S.insert(circ4);

// Compute the union with four rectangles incrementally.
Polygon_2 rect1, rect2, rect3, rect4;

rect1 = construct_polygon(Point_2(1, 0), Point_2(5, 0),
Point_2(5, 2), Point_2(1, 2));

S.join (rect1);

rect2 = construct_polygon(Point_2(1, 4), Point_2(5, 4),
Point_2(5, 6), Point_2(1, 6));

S.join (rect2);

rect3 = construct_polygon(Point_2(0, 1), Point_2(2, 1),
Point_2(2, 5), Point_2(0, 5));

S.join (rect3);

rect4 = construct_polygon(Point_2(4, 1), Point_2(6, 1),
Point_2(6, 5), Point_2(4, 5));

S.join (rect4);

// Print the output.
std::list<Polygon_with_holes_2> res;
S.polygons_with_holes (std::back_inserter (res));

std::copy (res.begin(), res.end(),
std::ostream_iterator<Polygon_with_holes_2>(std::cout,

"\n"));
std::cout << std::endl;

return 0;
}� �
File: examples/Boolean_set_operations_2/circle_segment.cpp

19.4.3 General Polygon Set Traits Adapter

The concept GeneralPolygon 2 and its generic model General polygon 2<ArrDirectionalXMonotoneTraits>
facilitate the production of general-polygon set traits classes. A model of the concept GeneralPolygon 2 repre-
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sents a simple point-set in the plane bounded by x-monotone curves. As opposed to the plain Traits::Polygon 2
type defined by any traits class, it must define the type X monotone curve 2, which represents an x-monotone
curve of the point-set boundary. It must provide a constructor from a range of such curves, and a pair of methods,
namely curves begin() and curves end(), that can be used to iterate over the point-set boundary curves.

The class-template General polygon 2<ArrDirectionalXMonotoneTraits> models the concept
GeneralPolygon 2. Its sole template parameter must be instantiated with a model of the concept
ArrangementDirectionalXMonotoneTraits 2 from which it obtains the X monotone curve 2 type. It uses
the geometric operations on this type provided by such a model to maintain a container of directed curves of
type X monotone curve 2, which represents a boundary of the general polygon.

The class-template Gps traits 2<ArrDirectionalXMonotoneTraits,GeneralPolygon> models the concept
GeneralPolygonSetTraits 2, and can be used to instantiate the class template General polygon set 2. It serves
as an adapter for a geometric traits class, which models the concept ArrangementDirectionalXMonotoneTraits
2. It can be used for performing set-operations on general polygons. The implementation of the adapter is rather
simple, as it is derived from the instantiated template-parameter ArrXMonotoneTraits 2 inheriting its necessary
types and methods. It further exploits the methods provided by the instantiated parameter GeneralPolygon,
which is a model of the concept GeneralPolygon 2. By default, the GeneralPolygon parameter is defined as
General polygon 2<ArrangementDirectionalXMonotoneTraits 2>.

The code excerpt listed below defines a general-polygon set type that can be used to perform Boolean set-
operations on point sets bounded by the x-monotone curve type defined by the arrangement-traits class Arr
traits 2, which is some representative model of the concept ArrangementDirectionalXMonotoneTraits 2.

#include <CGAL/General_polygon_2.h>
#include <CGAL/Gps_traits_2.h>

typedef CGAL::General_polygon_2<Arr_traits_2> General_polygon_2;
typedef CGAL::Gps_traits_2<Arr_traits_2, General_polygon_2> Traits_2;
typedef CGAL::General_polygon_set_2<Traits_2> General_polygon_set_2;

Instantiating the arrangement-traits Arr traits 2 above with the traits class
that handle Bézier curves Arr bezier traits 2, results with the definition of a
general-polygon set type that can be used to perform Boolean set-operations on
point sets bounded by Bézier curves.
The next example computes the intersection of two general polygons bounded
by Bézier curves read from two input files respectively. The default input files
our example uses (char g.dat and char m.dat) define two general polygons
shaped in the form of the characters g and m in the Times New Roman font
respectively. Their intersection comprises nine simple polygons, as depicted to
the right.

Recall that every Bézier curve is defined by a sequence of control points that form chains (see Section 32.6.7.
The last control point of every curve must be identical to the first control point of its successor. The function
read Bezier polygon() included in the example reads the curves from an input file until they form a closed chain,
which is assumed to be the outer boundary of the polygon. If more curves are available, its starts constructing
polygons that correspond to holes in the area bounded by the outer boundary. Note that this function is also
responsible for subdividing the input Bézier curves into x-monotone subcurves, as required by the Gps traits 2
adapter.� �
/*! \file bezier_traits_adapter.cpp
* Using the traits adaptor to generate a traits class for Bezier

polygons.
*/
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#include <CGAL/basic.h>

#ifndef CGAL_USE_CORE
#include <iostream>
int main ()
{

std::cout << "Sorry, this example needs CORE ..." << std::endl;
return (0);

}
#else

#include <CGAL/Cartesian.h>
#include <CGAL/CORE_algebraic_number_traits.h>
#include <CGAL/Arr_Bezier_curve_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Gps_traits_2.h>
#include <CGAL/Boolean_set_operations_2.h>
#include <CGAL/Timer.h>

#include <fstream>

typedef CGAL::CORE_algebraic_number_traits Nt_traits;
typedef Nt_traits::Rational Rational;
typedef Nt_traits::Algebraic Algebraic;

typedef CGAL::Cartesian<Rational> Rat_kernel;
typedef CGAL::Cartesian<Algebraic> Alg_kernel;
typedef CGAL::Arr_Bezier_curve_traits_2<Rat_kernel, Alg_kernel,

Nt_traits>
Traits_2;

typedef Rat_kernel::Point_2 Rat_point_2;
typedef Traits_2::Curve_2 Bezier_curve_2;
typedef Traits_2::X_monotone_curve_2

X_monotone_curve_2;
typedef CGAL::Gps_traits_2<Traits_2> Gps_traits_2;
typedef Gps_traits_2::General_polygon_2 Polygon_2;
typedef Gps_traits_2::General_polygon_with_holes_2

Polygon_with_holes_2;
typedef std::list<Polygon_with_holes_2> Polygon_set;

/*! Read a general polygon with holes, formed by Bezier curves, from the
* given input file.
*/

bool read_Bezier_polygon (const char* filename, Polygon_with_holes_2& P)
{

// Open the input file.
std::ifstream in_file (filename);

if (! in_file.is_open())
return false;

// Read the number of curves.
unsigned int n_curves;
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unsigned int k;

in_file >> n_curves;

// Read the curves one by one, and construct the general polygon these
// curve form (the outer boundary and the holes inside it).
Traits_2 traits;
Traits_2::Make_x_monotone_2 mk_x_monotone =
traits.make_x_monotone_2_object();

bool first = true;
Rat_point_2 p_0;
std::list<X_monotone_curve_2> xcvs;
Rat_kernel ker;
Rat_kernel::Equal_2 equal = ker.equal_2_object();
std::list<Polygon_2> pgns;

for (k = 0; k < n_curves; k++) {
// Read the current curve and subdivide it into x-monotone subcurves.
Bezier_curve_2 B;
std::list<CGAL::Object> x_objs;
std::list<CGAL::Object>::const_iterator xoit;
X_monotone_curve_2 xcv;

in_file >> B;
mk_x_monotone (B, std::back_inserter (x_objs));

for (xoit = x_objs.begin(); xoit != x_objs.end(); ++xoit) {
if (CGAL::assign (xcv, *xoit))

xcvs.push_back (xcv);
}

// Check if the current curve closes a polygon, namely whether it
target
// point (the last control point) equals the source of the first
curve in
// the current chain.
if (! first) {

if (equal (p_0, B.control_point(B.number_of_control_points() -
1))) {

// Push a new polygon into the polygon list. Make sure that the
polygon

// is counterclockwise oriented if it represents the outer
boundary

// and clockwise oriented if it represents a hole.
Polygon_2 pgn (xcvs.begin(), xcvs.end());
CGAL::Orientation orient = pgn.orientation();

if ((pgns.empty() && orient == CGAL::CLOCKWISE) ||
(! pgns.empty() && orient == CGAL::COUNTERCLOCKWISE))

pgn.reverse_orientation();

pgns.push_back (pgn);
xcvs.clear();
first = true;
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}
}
else {

// This is the first curve in the chain - store its source point.
p_0 = B.control_point(0);
first = false;

}
}

if (! xcvs.empty())
return false;

// Construct the polygon with holes.
std::list<Polygon_2>::iterator pit = pgns.begin();

++pit;
P = Polygon_with_holes_2 (pgns.front(), pit, pgns.end());

return true;
}

// The main program.
int main (int argc, char* argv[])
{

// Get the name of the input files from the command line, or use the
default

// char_g.dat and char_m.dat files if no command-line parameters are
given.

const char* filename1 = (argc > 1) ? argv[1] : "char_g.dat";
const char* filename2 = (argc > 2) ? argv[2] : "char_m.dat";

// Read the general polygons from the input files.
CGAL::Timer timer;
Polygon_with_holes_2 P1, P2;

timer.start();

if (! read_Bezier_polygon (filename1, P1)) {
std::cerr << "Failed to read " << filename1 << " ..." << std::endl;
return 1;

}

if (! read_Bezier_polygon (filename2, P2)) {
std::cerr << "Failed to read " << filename2 << " ..." << std::endl;
return 1;

}

timer.stop();
std::cout << "Constructed the input polygons in " << timer.time()

<< " seconds." << std::endl << std::endl;

// Compute the intersection of the two polygons.
Polygon_set R;
Polygon_set::const_iterator rit;
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timer.reset();
timer.start();
CGAL::intersection (P1, P2, std::back_inserter(R));
timer.stop();

std::cout << "The intersection polygons are of sizes: {";
for (rit = R.begin(); rit != R.end(); ++rit)

std::cout << ’ ’ << rit->outer_boundary().size();
std::cout << " }" << std::endl;
std::cout << "The intersection computation took "

<< timer.time() << " seconds." << std::endl;

return 0;
}

#endif� �
File: examples/Boolean_set_operations_2/bezier_traits_adapter.cpp

19.4.4 Example - Aggregated Operations

In Section 19.3.3 we describe how aggregated union and intersection operations can be applied to a collection of
ordinary polygons or polygons with holes. Naturally, the aggregated operations can be applied also to collections
of general polygons. As was the case with ordinary polygons, using aggregated operations is recommended
when the number of intersections of the input polygons is of the same order of magnitude as the complexity of
the result. If this is not the case, computing the result incrementally may prove faster.

The next example computes the union of eight unit discs whose centers are
placed a unit distance from the origin, as depicted to the right. The example
also allows users to provide a different number of discs through the command
line.

� �
/*! \file set_union.cpp
* Computing the union of a set of circles.
*/

#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Gps_circle_segment_traits_2.h>
#include <CGAL/Boolean_set_operations_2.h>
#include <CGAL/Lazy_exact_nt.h>

#include <list>
#include <cstdlib>
#include <cmath>
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typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
typedef Kernel::Point_2 Point_2;
typedef Kernel::Circle_2 Circle_2;
typedef CGAL::Gps_circle_segment_traits_2<Kernel> Traits_2;

typedef CGAL::General_polygon_set_2<Traits_2> Polygon_set_2;
typedef Traits_2::Polygon_2 Polygon_2;
typedef Traits_2::Polygon_with_holes_2

Polygon_with_holes_2;
typedef Traits_2::Curve_2 Curve_2;
typedef Traits_2::X_monotone_curve_2

X_monotone_curve_2;

// Construct a polygon from a circle.
Polygon_2 construct_polygon (const Circle_2& circle)
{

// Subdivide the circle into two x-monotone arcs.
Traits_2 traits;
Curve_2 curve (circle);
std::list<CGAL::Object> objects;
traits.make_x_monotone_2_object() (curve, std::back_inserter(objects));
CGAL_assertion (objects.size() == 2);

// Construct the polygon.
Polygon_2 pgn;
X_monotone_curve_2 arc;
std::list<CGAL::Object>::iterator iter;

for (iter = objects.begin(); iter != objects.end(); ++iter) {
CGAL::assign (arc, *iter);
pgn.push_back (arc);

}

return pgn;
}

// The main program:
int main (int argc, char* argv[])
{

// Read the number of circles from the command line.
unsigned int n_circles = 8;
if (argc > 1) n_circles = std::atoi(argv[1]);

// Create the circles, equally spaced of the circle xˆ2 + yˆ2 = 1.
const double pi = std::atan(1.0) * 4;
const double n_circles_reciep = 1.0 / n_circles;
const double radius = 1;
const double frac = 2 * pi * n_circles_reciep;
std::list<Polygon_2> circles;
unsigned int k;
for (k = 0; k < n_circles; k++) {

const double angle = frac * k;
const double x = radius * std::sin(angle);
const double y = radius * std::cos(angle);
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Point_2 center = Point_2(x, y);
Circle_2 circle(center, radius);

circles.push_back (construct_polygon (circle));
}

// Compute the union aggragately.
std::list<Polygon_with_holes_2> res;
CGAL::join (circles.begin(), circles.end(), std::back_inserter (res));

// Print the result.
std::copy (res.begin(), res.end(),

std::ostream_iterator<Polygon_with_holes_2>(std::cout,
"\n"));

std::cout << std::endl;

return 0;
}� �
File: examples/Boolean_set_operations_2/set_union.cpp
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Introduction
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CGAL::General polygon set 2<Traits,Dcel>

Definition

An object of the General polygon set 2<Traits,Dcel> class-template represents a point set in the plane bounded
by x monotone curves. Points in the set lie on the boundary or on the positive side of the curves. This class
template provides methods to apply regularized Boolean set-operations and few other utility methods. An
Arrangement 2 data structure is internally used to represent the point set. The arrangement is represented as a
doubly-connected edge-list (DCEL).

The Traits template-parameter should be instantiated with a model of the concept GeneralPolygonSetTraits
2. The traits class defines the types of points, x-monotone curves, general polygons, and general polygons
with holes, that is Traits::Point 2, Traits::X monotone curve 2, Traits::Polygon 2, and Traits::Polygon with
holes 2, respectively. Traits::Point 2 must be the type of the endpoints of Traits::X monotone curve 2, and
Traits::X monotone curve 2 must be the type of the curves that comprise the boundaries of the general poly-
gons. The traits class supports geometric operations on the types above. We sometimes use the term polygon
instead of general polygon for simplicity hereafter.

The template parameter Dcel should be instantiated with a model of the concept GeneralPolygonSetDcel. It is
instantiated by default with the type Gps default dcel<Traits>. You can override this default, with a different
DCEL class, typically an extension of the Gps default dcel class template. Overriding the default is necessary
only if you intend to obtain the underlying internal arrangement and process it further.

The input and output of the Boolean set-operations methods consist of one or more general polygons, some of
which may have holes. In particular, these methods operate on pairs of objects of type General polygon set
2<Traits,Dcel>, or directly on objects of type Traits::Polygon 2 or Traits::Polygon with holes 2. An object of
type Traits::Polygon 2 is a valid operand, only if it is simple and its boundary is oriented counterclockwise.
An object of type Traits::Polygon with holes 2 is valid, only if its outer boundary bounds a relatively simple
general polygon oriented counterclockwise, and each one of its holes is a simple polygon oriented clockwise.
The holes are pairwise disjoint, except perhaps at the vertices, and are contained in the polygon bounded by the
outer boundary. The outer boundary and the holes are also pairwise disjoint, except perhaps at the vertices.

Types

General polygon set 2<Traits,Dcel>:: Traits 2 the traits class in use.
General polygon set 2<Traits,Dcel>:: Polygon 2 the general polygon type. Must model the

GpsTraitsGeneralPolygon 2 Concept.

General polygon set 2<Traits,Dcel>:: Polygon with holes 2

the general polygon with holes type. Must model the
GpsTraitsGeneralPolygonWithHoles 2 Concept.

General polygon set 2<Traits,Dcel>:: Size number of polygons with holes size type.

General polygon set 2<Traits,Dcel>:: Arrangement 2

the arrangement type used internally.
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Creation

General polygon set 2<Traits,Dcel> gps; constructs an empty set of polygons represented by
an empty arrangement.

General polygon set 2<Traits,Dcel> gps( Self other); copy constructor.

General polygon set 2<Traits,Dcel> gps( Traits & traits);

constructs an empty set of polygons that uses the
given traits instance for performing the geometric
operations.

General polygon set 2<Traits,Dcel> gps( Polygon 2 pgn);

constructs a set of polygons that consists of the sin-
gle polygon pgn.

General polygon set 2<Traits,Dcel> gps( Polygon with holes 2 pgn with holes);

constructs a set of polygons that consists of the sin-
gle polygon with holes pgn with holes.

Access Functions

template <class OutputIterator>
OutputIterator gps.polygons with holes( OutputIterator out)

obtains the polygons with holes represented by
gps.

Size gps.number of polygons with holes() const

returns the total number of general polygons rep-
resented by gps.

bool gps.is empty() const returns true if gps represents an empty set.

bool gps.is plane() const returns true if gps represents the entire plane.

Traits& gps.traits() const obtains an instance of the traits. If the traits was
passed as a parameter to the constructor of gps, it
is returned. Otherwise, a newly created instance
is returned.

Arrangement 2 gps.arrangement() const obtains the arrangement data structure that inter-
nally represents the general-polygon set.
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Modifiers

void gps.clear() clears gps.

void gps.insert( Polygon 2 & pgn) inserts pgn into gps.
Precondition: pgn and the point set represented by gps
are disjoint. This precondition enables the use of very
efficient insertion methods. Use the respective over-
loaded method that inserts a polygon of type Polygon
with holes 2, if only a relaxed precondition can be
guaranteed. If even the relaxed precondition cannot be
guaranteed, use the join method.

void gps.insert( Polygon with holes 2 & pgn with holes)

inserts pgn with holes into gps.
Precondition: pgn with holes does not intersect with
the point set represented by gps, except maybe at the
vertices. If this relaxed precondition cannot be guaran-
teed, use the join method.

template <class InputIterator>
void gps.insert( InputIterator begin, InputIterator end)

inserts the range of polygons (or polygons with holes)
into gps. (The value type of the input iterator is used to
distinguish between the two.)
Precondition: If the given range contains objects of
type Polygon with holes 2, then these polygons and the
point set represented by gps are pairwise disjoint, ex-
cept maybe at the vertices. If the given range contains
objects of type Polygon 2, then these polygons and the
point set represented by gps are pairwise disjoint with-
out any exceptions.

template <class InputIterator1, class InputIterator2>
void gps.insert( InputIterator1 pgn begin,

InputIterator1 pgn end,
InputIterator2 pgn with holes begin,
InputIterator2 pgn with holes end)

inserts the two ranges of polygons and polygons with
holes into gps.
Precondition: All polygons in the first range, all poly-
gon with holes in the second range, and the point set
represented by gps are pairwise disjoint, except maybe
at the vertices

void gps.complement() computes the complement of gps.

void gps.complement( Polygon set 2 other) computes the complement of other. gps is overridden
by the result.
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Univariate Operations

In the following univariate and bivariate methods the result is placed in gps after it is cleared.

void gps.intersection( General polygon set 2 other)

computes the intersection of gps and other.

void gps.intersection( Polygon 2 pgn) computes the intersection of gps and pgn.
void gps.intersection( Polygon with holes 2 pgn)

computes the intersection of gps and pgn.

template <class InputIterator>
void gps.intersection( InputIterator begin, InputIterator end)

computes the intersection of a collection of point sets.
The collection consists of the polygons (or polygons
with holes) in the given range and the point set repre-
sented by gps. (The value type of the input iterator is
used to distinguish between the two options.)

template <class InputIterator1, class InputIterator2>
void gps.intersection( InputIterator1 pgn begin,

InputIterator1 pgn end,
InputIterator2 pgn with holes begin,
InputIterator2 pgn with holes end)

computes the intersection of a collection of point sets.
The collection consists of the polygons and polygons
with holes in the given two ranges and the point set rep-
resented by gps.

void gps.join( General polygon set 2 other) computes the union of gps and other.
void gps.join( Polygon 2 pgn) computes the union of gps and pgn.
void gps.join( Polygon with holes 2 pgn) computes the union of gps and pgn.

template <class InputIterator>
void gps.join( InputIterator begin, InputIterator end)

computes the union of the polygons (or polygons with
holes) in the given range and the point set represented
by gps. (The value type of the input iterator is used to
distinguish between the two options.)

template <class InputIterator1, class InputIterator2>
void gps.join( InputIterator1 pgn begin,

InputIterator1 pgn end,
InputIterator2 pgn with holes begin,
InputIterator2 pgn with holes end)

computes the union of the polygons and polygons with
holes in the given two ranges and the point set repre-
sented by gps.
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void gps.difference( General polygon set 2 other)

computes the difference between gps and other.

void gps.difference( Polygon 2 pgn) computes the difference between gps and pgn.
void gps.difference( Polygon with holes 2 pgn) computes the difference between gps and pgn.

void gps.symmetric difference( General polygon set 2 other)

computes the symmetric difference between gps and
other.

void gps.symmetric difference( Polygon 2 pgn) computes the symmetric difference between gps and
pgn.

void gps.symmetric difference( Polygon with holes 2 pgn)

computes the symmetric difference between gps and
pgn.

template <class InputIterator>
void gps.symmetric difference( InputIterator begin, InputIterator end)

computes the symmetric difference (xor) of a collection
of point sets. The collection consists of the polygons (or
polygons with holes) in the given range and the point set
represented by gps. (The value type of the input iterator
is used to distinguish between the two options.)

template <class InputIterator1, class InputIterator2>
void gps.symmetric difference( InputIterator1 pgn begin,

InputIterator1 pgn end,
InputIterator2 pgn with holes begin,
InputIterator2 pgn with holes end)

computes the symmetric difference (xor) of a collection
of point sets. The collection consists of the polygons
and polygons with holes in the given two ranges and the
point set represented by gps.

Bivariate Operations

The following bivariate function replace gps with the result.

void gps.intersection( General polygon set 2 gps1, General polygon set 2 gps2)

computes the intersection of gps1 and gps2.

void gps.join( General polygon set 2 gps1, General polygon set 2 gps2)

computes the union of gps1 and gps2.
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void gps.difference( General polygon set 2 gps1, General polygon set 2 gps2)

computes the difference between gps1 and gps2.

void gps.symmetric difference( General polygon set 2 gps1, General polygon set 2 gps2)

computes the symmetric difference between gps1 and
gps2.

Query Functions

bool gps.do intersect( General polygon set 2 other) returns true if gps and other intersect in
their interior, and false otherwise.

bool gps.do intersect( Polygon 2 pgn) returns true if gps and pgn intersect in
their interior, and false otherwise.

bool gps.do intersect( Polygon with holes 2 pgn) returns true if gps and pgn intersect in
their interior, and false otherwise.

template <class InputIterator>
void gps.do intersect( InputIterator begin, InputIterator end)

returns true if the interior of the point
sets in a collection intersect, and false
otherwise. The collection consists of the
polygons (or polygons with holes) in the
given range and the point set represented
by gps. (The value type of the input it-
erator is used to distinguish between the
two options.)

template <class InputIterator1, class InputIterator2>
void gps.do intersect( InputIterator1 pgn begin,

InputIterator1 pgn end,
InputIterator2 pgn with holes begin,
InputIterator2 pgn with holes end)

returns true if the interior of the point
sets in a collection intersect, and false
otherwise. The collection consists of the
polygons and polygons with holes in the
given two ranges and the point set rep-
resented by gps.

bool gps.locate( Point 2 p, Polygon with holes 2 & pgn)

obtains a polygon with holes that con-
tains the query point p, if exists, through
pgn, and returns true. Otherwise, re-
turns false.
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Oriented side gps.oriented side( Point 2 q) returns either the constant ON
ORIENTED BOUNDARY , ON
POSITIVE SIDE, or ON NEGATIVE
SIDE, iff p lies on the boundary,
properly on the positive side, or
properly on the negative side of gps
respectively.

Oriented side gps.oriented side( General polygon set 2 other)

returns either the constant ON
NEGATIVE SIDE, ON ORIENTED
BOUNDARY , or ON POSITIVE SIDE,
iff other and gps are completely dis-
joint, in contact, or intersect in their
interior, respectively.

Oriented side gps.oriented side( Polygon 2 pgn) returns either the constant ON
NEGATIVE SIDE, ON ORIENTED
BOUNDARY , or ON POSITIVE SIDE,
iff pgn and gps are completely disjoint,
in contact, or intersect in their interior,
respectively.

Oriented side gps.oriented side( Polygon with holes 2 pgn) returns either the constant ON
NEGATIVE SIDE, ON ORIENTED
BOUNDARY , or ON POSITIVE SIDE,
iff pgn and gps are completely disjoint,
in contact, or intersect in their interior,
respectively.

Miscellaneous

bool gps.is valid() const returns true if gps represents a valid
point set.

See Also

Arrangement 2(page ??)
ArrangementXMonotoneTraits 2(page 2273)
Nef 2(page ??)
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GeneralPolygon 2

Refines

GpsTraitsGeneralPolygon 2

Types

GeneralPolygon 2:: X monotone curve 2 represents a planar (weakly) x-monotone curve. The type
of the geometric mapping of the polygonal edges. It must
model the concept ArrTraits::XMonotoneCurve 2.

GeneralPolygon 2:: Curve iterator an iterator over the geometric mapping of the polygon
edges. Its value type is X monotone curve 2.

GeneralPolygon 2:: Curve const iterator a const iterator over the geometric mapping of the poly-
gon edges. Its value type is X monotone curve 2.

Definition

A model of this concept represents a simple general-polygon. The geometric mapping of the edges of the
polygon must be x-monotone curves. The concept requires the ability to access these curves. The general
polygon represented must be simple. That is, the only points of the plane belonging to two curves are the
geometric mapping of the polygon vertices. In addition, the vertices of the represented polygon must be ordered
consistently, and the curved must be directed accordingly. Only counterclockwise oriented polygons are valid
operands of Boolean set-operations. General polygon that represent holes must be clockwise oriented.

Creation

GeneralPolygon 2 polygon; default constructor.
GeneralPolygon 2 polygon( other); copy constructor.
GeneralPolygon 2 polygon = other assignment operator.
template <class InputIterator>
GeneralPolygon 2 polygon( InputIterator begin, InputIterator end);

constructs a general polygon from a given range
of curves.

Access Functions

Curve iterator polygon.curves begin() returns the begin iterator of the curves.
Curve iterator polygon.curves end() returns the past-the-end iterator of the curves.

Curve const iterator polygon.curves begin() returns the begin const iterator of the curves.
Curve const iterator polygon.curves end() returns the past-the-end const iterator of the

curves.
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Modifiers

template <class Iterator>
void polygon.init( Iterator begin, Iterator end)

initializes the polygon with the polygonal chain
given by the range. The value type of Iterator
must be X monotone curve 2.
Precondition: The curves in the range must define
a simple polygon.

Has Models

CGAL::General polygon 2<ArrTraits>
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GeneralPolygonWithHoles 2

Refines

GpsTraitsGeneralPolygonWithHoles 2

Types

GeneralPolygonWithHoles 2:: General polygon 2 the general-polygon type used to represent the
outer boundary and each hole. Must Model the
GeneralPolygon 2 Concept.

GeneralPolygonWithHoles 2:: Hole const iterator a bidirectional iterator over the polygonal holes. Its
value type is General polygon 2.

Definition

A model of this concept represents a general polygon with holes. The concept requires the ability to access the
general polygon that represents the outer boundary and the general polygons that represent the holes.

Creation

GeneralPolygonWithHoles 2 polygon; default constructor.
GeneralPolygonWithHoles 2 polygon( other); copy constructor.
GeneralPolygonWithHoles 2 polygon = other assignment operator.

GeneralPolygonWithHoles 2 polygon( General polygon 2 & outer);

constructs a general polygon with holes that
has no holes using a given general polygon
outer as the outer boundary.

template <class InputIterator>
GeneralPolygonWithHoles 2 polygon( General polygon 2 & outer, InputIterator begin, InputIterator end);

constructs a general polygon with holes us-
ing a given general polygon outer as the outer
boundary and a given range of holes. If outer
is an empty general polygon, then an un-
bounded polygon with holes will be created.
The holes must be contained inside the outer
boundary, and the polygons representing the
holes must be simple and pairwise disjoint,
except perhaps at the vertices.
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Predicates

bool polygon.is unbounded() returns true if the outer boundary is empty,
and false otherwise.

Access Functions

General polygon 2 polygon.outer boundary() const

returns the general polygon that represents the
outer boundary. Note that this polygon is not
necessarily a valid (simple) general polygon
because it may be relatively simple.

Hole const iterator polygon.holes begin() const returns the begin iterator of the holes.
Hole const iterator polygon.holes end() const returns the past-the-end iterator of the holes.

Has Models

CGAL::General polygon with holes 2<General polygon>
CGAL::Polygon with holes 2<Kernel,Container>
CGAL::Gps circle segment traits 2<Kernel>::Polygon with holes 2
CGAL::Gps traits 2<ArrTraits,GeneralPolygon>::Polygon with holes 2
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ArrangementDirectionalXMonotoneTraits 2

Definition

This concept refines the basic arrangement x-monotone traits concept. A model of this concept is able to
handle directed x-monotone curves that intersect in their interior. Namely, an instance of the X monotone
curve 2 type defined by a model of the concept ArrangementXMonotoneTraits 2 is only required to have
a left (lexicographically smaller) endpoint and a right endpoint. If the traits class is also a model of
ArrangementDirectionalXMonotoneTraits 2, the x-monotone curve is also required to have a direction, namely
one of these two endpoint serves as its source and the other as its target.

Refines

ArrangementXMonotoneTraits 2

Functor Types

ArrangementDirectionalXMonotoneTraits 2:: Compare endpoints xy 2

models the concept ArrDirectionalTraits::CompareEndpointsXy 2.

ArrangementDirectionalXMonotoneTraits 2:: Construct opposite 2

models the concept ArrDirectionalTraits::ConstructOpposite 2.

ArrangementDirectionalXMonotoneTraits 2:: Intersect 2

models the concept ArrDirectionalTraits::Intersect 2.

ArrangementDirectionalXMonotoneTraits 2:: Split 2

models the concept ArrDirectionalTraits::Split 2.

ArrangementDirectionalXMonotoneTraits 2:: Are mergeable 2

models the concept ArrDirectionalTraits::AreMergeable 2.

ArrangementDirectionalXMonotoneTraits 2:: Merge 2

models the concept ArrDirectionalTraits::Merge 2.
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Creation

ArrangementDirectionalXMonotoneTraits 2 traits; default constructor.
ArrangementDirectionalXMonotoneTraits 2 traits( other);

copy constructor

ArrangementDirectionalXMonotoneTraits 2

traits = other assignment operator.

Accessing Functor Objects

Compare endpoints xy 2 traits.compare endpoints xy 2 object()
Construct opposite 2 traits.construct opposite 2 object()

Has Models

CGAL::Arr segment traits 2<Kernel>
CGAL::Arr non caching segment traits 2<Kernel>
CGAL::Arr circle segment traits 2<Kernel>
CGAL::Arr conic traits 2<RatKernel,AlgKernel,NtTraits>
CGAL::Arr rational function traits 2<AlgKernel,NtTraits>
CGAL::Arr Bezier curve traits 2<RatKernel,AlgKernel,NtTraits>
CGAL::Arr algebraic segment traits 2<Coefficient>

See Also

ArrangementXMonotoneTraits 2 (page 2273)

1523



C
on

ce
pt

ArrDirectionalTraits::Intersect 2

Refines

Functor

Has Models

ArrangementDirectionalXMonotoneTraits 2::Intersect 2

Output iterator fo.operator()( ArrDirectionalTraits::X monotone curve 2 xc1,
ArrDirectionalTraits::X monotone curve 2 xc2,
Output iterator& oi)

computes the intersections of xc1 and xc2 and in-
serts them in an ascending lexicographic xy-order into
the output iterator oi. The value-type of Output
iterator is CGAL::Object, where each Object wraps ei-
ther a pair<ArrDirectionalTraits::Point 2, ArrDirection-
alTraits::Multiplicity> object, which represents an inter-
section point with its multiplicity (in case the multi-
plicity is undefined or unknown, it is set to 0) or an
ArrDirectionalTraits::X monotone curve 2 object, rep-
resenting an overlapping subcurve of xc1 and xc2. In the
latter case, the overlapping subcurves are given the direc-
tion of xc1 and xc2 if their directions are identical. Oth-
erwise, the overlapping subcurves are given an arbitrary
direction. The operator returns a past-the-end iterator for
the output sequence.
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ArrDirectionalTraits::Split 2

Refines

Functor

Has Models

ArrangementDirectionalXMonotoneTraits 2::Split 2

void fo.operator()( ArrDirectionalTraits::X monotone curve 2 xc,
ArrDirectionalTraits::Point 2 p,
ArrDirectionalTraits::X monotone curve 2& xc1,
ArrDirectionalTraits::X monotone curve 2& xc2)

accepts an input curve xc and a split point p in its interior.
It splits xc at the split point into two subcurves xc1 and
xc2, such that p is xc1’s right endpoint and xc2’s left end-
point. The direction of xc is preserved. That is, in case xc
is directed from left to right, p becomes xc1’s target and
c2’s source; otherwise, p becomes xc2’s target and xc1’s
source.
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ArrDirectionalTraits::AreMergeable 2

Refines

Functor

Has Models

ArrangementDirectionalXMonotoneTraits 2::Are mergeable 2

bool fo.operator()( ArrDirectionalTraits::X monotone curve 2 xc1,
ArrDirectionalTraits::X monotone curve 2 xc2)

accepts two x-monotone curves xc1 and xc2 and deter-
mines whether they can be merged to form a single x-
monotone curve. xc1 and xc2 are mergeable if their un-
derlying curves are identical, they share a common end-
point, and they do not bend to form a non-x-monotone
curve.
Precondition: The target point of xc1 and the source point
xc2 coincide or the source point of xc2 and the target
point xc2 coincide.
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ArrDirectionalTraits::Merge 2

Refines

Functor

Has Models

ArrangementDirectionalXMonotoneTraits 2::Merge 2

void fo.operator()( ArrDirectionalTraits::X monotone curve 2 xc1,
ArrDirectionalTraits::X monotone curve 2 xc2,
ArrDirectionalTraits::X monotone curve 2& xc)

accepts two mergeable x-monotone curves xc1 and xc2
and asigns xc with the merged curve. If the target point of
xc1 and the source point of xc2 coincide; then the source
point of xc1 and the target point of xc2 become the source
and target points of xc, respectively. If the target point of
xc2 and the source point of xc1 coincide; then the source
point of xc2 and the target point of xc1 become the source
and target points of xc, respectively.
Precondition: are mergeable 2(xc1, xc2) is true.
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ArrDirectionalTraits::CompareEndpointsXy 2

Refines

Functor

Has Models

ArrangementDirectionalXMonotoneTraits 2::CompareEndpointsXy 2

Comparison result fo( ArrDirectionalTraits::X monotone curve 2 xc)

accepts an input curve xc and compares its source and
target points. It returns SMALLER if the curve is directed
from lexicographically left to right, and LARGER if it is
directed from lexicographically right to left.
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ArrDirectionalTraits::ConstructOpposite 2

Refines

Functor

Has Models

ArrangementDirectionalXMonotoneTraits 2::ConstructOpposite 2

ArrDirectionalTraits::X monotone curve 2

fo( ArrDirectionalTraits::X monotone curve 2 xc)

accepts an x-monotone curve xc and returns its opposite
curve, namely a curve whose graph is the same as xc’s,
and whose source and target are swapped with respect to
xc’s source and target.
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GeneralPolygonSetTraits 2

Definition

This concept defines the minimal set of geometric predicates needed to perform the Boolean-set operations.
It refines the directional x-monotone arrangement-traits concept. In addition to the Point 2 and X monotone
curve 2 types defined in the generalized concept, it defines a type that represents a general polygon and another
one that represents general polygon with holes. It also requires operations that operate on these types.

Refines

ArrangementDirectionalXMonotoneTraits 2

Types

GeneralPolygonSetTraits 2:: Polygon 2 represents a general polygon. Must be a model of the
GpsTraitsGeneralPolygon 2 concept.

GeneralPolygonSetTraits 2:: Polygon with holes 2 represents a general polygon with holes. Must be a
model of the GpsTraitsGeneralPolygonWithHoles 2
concept.

GeneralPolygonSetTraits 2:: Curve const iterator A const iterator of curves. Its value type is const X
monotone curve 2.

Functor Types

GeneralPolygonSetTraits 2:: Construct polygon 2 a functor that constructs a general polygon from a
range of x-monotone curves. It uses the operator
void operator() (InputIterator begin, Input iterator
end, Polygon 2 & pgn),
parameterized by the InputIterator type.

GeneralPolygonSetTraits 2:: Construct general polygon with holes 2

a functor that constructs a general polygon with holes
from a general polygon and, optionally, a range of
holes. It uses the operator
void operator() (const General polygon 2& pgn
boundary) or
void operator() (const General polygon 2& pgn
boundary, HolesInputIterator h begin, HolesInputIt-
erator h end) parameterized by the HolesInputItera-
tor type.

GeneralPolygonSetTraits 2:: Construct outer boundary

A functor for constructing the outer boundary of a
polygon with holes. It uses the operator
General polygon 2 operator()(const General
polygon with holes 2& pol wh).
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GeneralPolygonSetTraits 2:: Construct holes A functor for constructing the container of holes of a
polygon with holes. It returns the begin/end iterators
for the holes It uses the operator
std::pair<Hole const iterator, Hole const iterator>
operator()(const General polygon with holes 2&
pol wh).

GeneralPolygonSetTraits 2:: Is unbounded A functor for checking if polygon with holes has no
outer boundary. It uses the operator
bool operator()(const General polygon with holes
2& pol wh).

Creation

GeneralPolygonSetTraits 2 traits; default constructor.
GeneralPolygonSetTraits 2 traits( other); copy constructor
GeneralPolygonSetTraits 2

traits = other assignment operator.

Accessing Functor Objects

Construct polygon 2 traits.construct polygon 2 object()

returns a functor that constructs a polygon.

Construct curves 2 traits.construct curves 2 object()

returns a functor that obtains the curves of a polygon.

Construct general polygon with holes 2

traits.construct polygon with holes 2 object() const

returns a functor that constructs a polygon with holes.

Construct outer boundary

traits.construct outer boundary object() const

returns a functor that obtains the outer boundary of a
polygon with holes.

Construct holes traits.construct holes object() const

returns a functor that obtains begin/end iterators over
a container of holes.
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Is unbounded traits.construct is unbounded object()

returns a functor that determines if the polygon with
holes is unbounded

Has Models

CGAL::Gps segment traits 2<Kernel,Container,ArrSegmentTraits>
CGAL::Gps circle segment traits 2<Kernel>
CGAL::Gps traits 2<ArrTraits,GeneralPolygon>

See Also

ArrangementDirectionalXMonotoneTraits 2(page 1522)
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CGAL::General polygon 2<ArrTraits>

Definition

The class General polygon 2<ArrTraits> models the concept GeneralPolygon 2. It represents a simple general-
polygon. It is parameterized with the type ArrTraits that models the concept ArrangementDirectionalXMono-
toneTraits. The latter is a refinement of the concept ArrangementXMonotoneTraits 2. In addition to the re-
quirements of the concept ArrangementXMonotoneTraits 2, a model of the concept ArrangementDirectionalX-
MonotoneTraits must support the following functions:

• Given an x-monotone curve, construct its opposite curve.

• Given an x-monotone curve, compare its two endpoints lexicographically.

This class supports a few convenient operations in addition to the requirements that the concept
GeneralPolygon 2 lists.

#include <CGAL/General polygon 2.h>

Types

General polygon 2<ArrTraits>:: Size number of edges size type.

Creation

Operations

Size polygon.size() returns the number of edges of polygon.

Modifiers

void polygon.clear() clears polygon.

void polygon.reverse orientation() reverses the orientation of the polygon.
Precondition: is simple().

Predicates

bool polygon.is empty() returns true if polygon is empty, and false otherwise.

Orientation polygon.orientation() returns the orientation of polygon.
Precondition: is simple().

Is Model for the Concepts

GeneralPolygon 2
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CGAL::Polygon with holes 2<Kernel,Container>

Definition

The class Polygon with holes 2<Kernel,Container> models the concept GeneralPolygonWithHoles 2. It rep-
resents a linear polygon with holes. It is parameterized with two types (Kernel and Container) that are used to
instantiate the type CGAL::Polygon 2<Kernel,Container>. The latter is used to represents the outer boundary
and the boundary of the holes (if any exist).

#include <CGAL/Polygon with holes 2.h>

Is Model for the Concepts

GeneralPolygonWithHoles 2
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CGAL::Polygon set 2<Kernel,Container,Dcel>

Definition

The class Polygon set 2<Kernel,Container,Dcel> represents sets of linear polygons with holes. The first
two template parameters (Kernel and Container) are used to instantiate the type CGAL::Polygon 2<
Kernel,Container>. This type is used to represents the outer boundary of every set member and the boundaries
of all holes of every set member.

The third template parameter Dcel should be instantiated with a model of the concept GeneralPolygonSetD-
cel. It is instantiated by default with the type Gps default dcel<Traits>. You can override this default, with a
different DCEL class, typically an extension of the Gps default dcel class template. Overriding the default is
necessary only if you intend to obtain the underlying internal arrangement and process it further.

#include <CGAL/Polygon set 2.h>

Inherits From

General polygon set 2<Gps segment traits 2<Kernel,Container> >

See Also

General polygon set 2(page 1511)
Gps segment traits 2(page 1537)
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CGAL::General polygon with holes 2<Polygon>

Definition

The class General polygon with holes 2<Polygon> models the concept GeneralPolygonWithHoles 2. It rep-
resents a general polygon with holes. It is parameterized with a type Polygon used to define the exposed type
General polygon 2. This type represents the outer boundary of the general polygon and the outer boundaries
of each hole.

#include <CGAL/General polygon with holes 2.h>

typedef Polygon General polygon 2;

Is Model for the Concepts

GeneralPolygonWithHoles 2
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CGAL::Gps segment traits 2<Kernel,Container,ArrSegmentTraits>

Definition

The traits class Gps segment traits 2<Kernel,Container,ArrSegmentTraits> models the concept
GeneralPolygonSetTraits 2. It enables Boolean set-operations on (linear) polygons. It defines the ex-
posed type Polygon 2 to be CGAL::Polygon 2<Kernel,Container>. By default, the template parameter
Container is instantiated by std::vector<Kernel::Point 2> and the template parameter ArrSegmentTraits is
instantiated by CGAL::Arr segment traits 2<Kernel>.

#include <CGAL/Gps segment traits 2.h>

typedef CGAL::Polygon 2<Kernel,Container>

Polygon 2;

Is Model for the Concepts

GeneralPolygonSetTraits 2

See Also

CGAL::Arr segment traits 2<Kernel>(page ??)
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CGAL::Gps circle segment traits 2<Kernel>

Definition

The traits class Gps circle segment traits 2<Kernel> models the GeneralPolygonSetTraits 2 concept. It en-
ables Boolean set-operations on general polygons bounded by linear segments or circular arcs. It should be
parameterized with a kernel.

#include <CGAL/Gps circle segment traits 2.h>

Is Model for the Concepts

GeneralPolygonSetTraits 2

See Also

CGAL::Arr circle segment traits 2<Kernel>(page ??)
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CGAL::Gps traits 2<ArrTraits,GeneralPolygon t>

Definition

The traits class Gps traits 2<ArrTraits,GeneralPolygon t> models the concept GeneralPolygonSetTraits
2. It inherits from the instantiated type of the template parameter ArrTraits, which must model the con-
cept ArrangementDirectionalXMonotoneTraits, (which in turn refines the concept ArrangementXMonotone-
Traits). The template parameter GeneralPolygon t must be instantiated with a model of the concept of
GpsTraitsGeneralPolygon 2. By default, the latter is instantiated by CGAL::General polygon 2<ArrTraits>
.

#include <CGAL/Gps traits 2.h>

Is Model for the Concepts

GeneralPolygonSetTraits 2
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CGAL::Gps default dcel<Traits>

Definition

The class Gps default dcel<Traits> is the default DCEL class used by the General polygon set 2 and Polygon
set 2 class-templates to represent the underlying internal Arrangement 2 data structure.

#include <CGAL/Boolean set operations 2/Gps default dcel.h>

Is Model for the Concepts

GeneralPolygonSetDcel

Inherits From

Arr dcel base<Arr vertex base<typename Traits ::Point 2>,
Arr halfedge base<typename Traits ::X monotone curve 2>,
Gps face base>

Types

Gps default dcel<Traits>:: template <class T> rebind

allows the rebinding of the DCEL with a different traits
class T .

1540



C
on

ce
pt

GeneralPolygonSetDcel

Definition

A doubly-connected edge-list (DCEL for short) data-structure. It consists of three containers of records: vertices
V , halfedges E, and faces F . It maintains the incidence relation among them. The halfedges are ordered in pairs
sometimes referred to as twins, such that each halfedge pair represent an edge.

A model of the GeneralPolygonSetDcel concept must provide the following types and operations. (In addi-
tion to the requirements here, the local types Vertex,Halfedge, Face Hole and Isolated vertex must be models
of the concepts ArrangementDcelVertex(page 2236), ArrangementDcelHalfedge(page 2238), GeneralPolygon-
SetDcelFace (page 1544), ArrangementDcelHole(page 2243), and ArrangementDcelIsolatedVertex (page 2244)
respectively.) Notice that this concept differs from the concept ArrangemenDcel only in the type Face.

Types

GeneralPolygonSetDcel:: Vertex the vertex type.
GeneralPolygonSetDcel:: Halfedge the halfedge type.
GeneralPolygonSetDcel:: Face the face type.
GeneralPolygonSetDcel:: Hole the hole type.
GeneralPolygonSetDcel:: Isolated vertex the isolated vertex type.

GeneralPolygonSetDcel:: Size used to represent size values (e.g., size t).

GeneralPolygonSetDcel:: Vertex iterator a bidirectional iterator over the vertices. Its value-type is
Vertex.

GeneralPolygonSetDcel:: Halfedge iterator a bidirectional iterator over the halfedges. Its value-type
is Halfedge.

GeneralPolygonSetDcel:: Face iterator a bidirectional iterator over the faces. Its value-type is
Face.

The non-mutable iterators Vertex const iterator, Halfedge const iterator and Face const iterator are also de-
fined.

Creation

GeneralPolygonSetDcel dcel; constructs an empty DCEL with one unbounded face.

Face* dcel.assign( Self other, const Face *uf)

assigns the contents of the other DCEL whose unbounded
face is given by uf , to dcel. The function returns a pointer
to the unbounded face of dcel after the assignment.
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Access Functions

Size dcel.size of vertices() const

returns the number of vertices.

Size dcel.size of halfedges() const

returns the number of halfedges (always even).

Size dcel.size of faces() const

returns the number of faces.

Size dcel.size of holes() const

returns the number of holes (the number of connected
components).

Size dcel.size of isolated vertices() const

returns the number of isolated vertices.

The following operations have an equivalent const operations that return the corresponding non-mutable itera-
tors:

Vertex iterator dcel.vertices begin() returns a begin-iterator of the vertices in dcel.
Vertex iterator dcel.vertices end() returns a past-the-end iterator of the vertices in dcel.

Halfedge iterator dcel.halfedges begin()

returns a begin-iterator of the halfedges in dcel.

Halfedge iterator dcel.halfedges end() returns a past-the-end iterator of the halfedges in dcel.

Vertex iterator dcel.faces begin() returns a begin-iterator of the faces in dcel.
Vertex iterator dcel.faces end() returns a past-the-end iterator of the faces in dcel.

Modifiers

The following operations allocate a new element of the respective type. Halfedges are always allocated in pairs
of opposite halfedges. The halfedges and their opposite pointers are automatically set.

Vertex* dcel.new vertex() creates a new vertex.
Halfedge* dcel.new edge() creates a new pair of twin halfedges.
Face* dcel.new face() creates a new face.
Hole* dcel.new hole() creates a new hole record.
Isolated vertex* dcel.new isolated vertex()

creates a new isolated vertex record.

void dcel.delete vertex( Vertex* v)

deletes the vertex v.
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void dcel.delete edge( Halfedge* e)

deletes the halfedge e as well as its twin.

void dcel.delete face( Face* f)

deletes the face f .

void dcel.delete hole( Hole* ho)

deletes the hole ho.

void dcel.delete isolated vertex( Isolated vertex* iv)

deletes the isolated vertex iv.

Has Models

Arr dcel base<V,H,F>(page 2245)
Arr default dcel<Traits> (page 2247)
Arr face extended dcel<Traits,FData,V,H,F> (page 2248)
Arr extended dcel<Traits,VData,HData,FData,V,H,F> (page 2249)

See Also

ArrangementDcelVertex(page 2236)
ArrangementDcelHalfedge(page 2238)
GeneralPolygonSetDcelFace(page 1544)
ArrangementDcelHole(page 2243)
ArrangementDcelIsolatedVertex (page 2244)
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GeneralPolygonSetDcelFace

Definition

A face record in a DCEL data structure used by the General polygon set 2 and Polygon set 2 class-templates
to represent the underlying internal Arrangement 2 data structure.

Refines

ArrangementDcelFace

Creation

GeneralPolygonSetDcelFace f ; default constructor.

void f .assign( Self other) assigns f with the contents of the other face.

Access Functions

bool f .contained() const returns true if the face is contained in the general-polygon
set, and false otherwise.

bool f .visited() returns true if the face has been visited, and false other-
wise. This is used internally by the some of the opera-
tions of the General polygon set 2 class that traverse the
arrangement faces.

Modifiers

void f .set contained( bool flag)

marks the face as contained (if flag is true), or as a hole
(if it is false).

void f .set visited( bool flag)

marks the face as visited (if flag is true), or as not vis-
ited (if it is false). This is used internally by the some
of the operations of the General polygon set 2 class that
traverse the arrangement faces.

See Also

ArrangementDcel(page 2232)
ArrangementDcelVertex(page 2236)
ArrangementDcelHalfedge(page 2238)
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CGAL::complement

Definition

#include <CGAL/Boolean set operations 2.h>

void complement( Type pgn, Type & res)

Each one of these functions computes the complement of a given polygon pgn, and stores the resulting polygon
with holes in res.

Arg Type
Polygon 2
General polygon 2

OutputIterator complement( Type pgn, OutputIterator oi)

Each one of these functions computes the complement of a given polygon pgn, inserts the resulting polygons
with holes into an output container through a given output iterator oi, and returns the output iterator. The value
type of the OutputIterator is either Polygon with holes 2 or General polygon with holes 2.

Arg Type
Polygon with holes 2
General polygon with holes 2

template <class Kernel, class Container>
void complement( Polygon 2<Kernel, Container> pgn,

Polygon with holes 2<Kernel, Container> & res)

template <class Traits>
void complement( General polygon 2<Traits> pgn,

General polygon with holes 2<Traits> & res)

template <class Traits, class OutputIterator>
OutputIterator complement( Polygon with holes 2<Kernel, Container> pgn, OutputIterator oi)
template <class Traits, class OutputIterator>
OutputIterator complement( General polygon with holes 2<General polygon 2<Traits> > pgn,

OutputIterator oi)

See Also

CGAL::do intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 2218
CGAL::intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1553
CGAL::join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1555
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CGAL::difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1547
CGAL::symmetric difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1557
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CGAL::difference

Definition

#include <CGAL/Boolean set operations 2.h>

OutputIterator difference( Type1 p1, Type2 p2, OutputIterator oi)

Each one of these functions computes the difference between two given polygons p1 and p2, and inserts the
resulting polygons with holes into an output container through the output iterator oi. The value type of the
OutputIterator is either Polygon with holes 2 or General polygon with holes 2.

Arg 1 Type Arg 2 Type
Polygon 2 Polygon 2
Polygon 2 Polygon with holes 2
Polygon with holes 2 Polygon 2
Polygon with holes 2 Polygon with holes 2
General polygon 2 General polygon 2
General polygon 2 General polygon with holes 2
General polygon with holes 2 General polygon 2
General polygon with holes 2 General polygon with holes 2

template <class Kernel, class Container, class OutputIterator>
OutputIterator difference( Polygon 2<Kernel, Container> p1,

Polygon 2<Kernel, Container> p2,
OutputIterator oi)

template <class Kernel, class Container, class OutputIterator>
OutputIterator difference( Polygon 2<Kernel, Container> p1,

Polygon with holes 2<Kernel,Container> p2,
OutputIterator oi)

template <class Kernel, class Container, class OutputIterator>
OutputIterator difference( Polygon with holes 2<Kernel, Container> p1,

Polygon 2<Kernel, Container> p2,
OutputIterator oi)

template <class Kernel, class Container, class OutputIterator>
OutputIterator difference( Polygon with holes 2<Kernel, Container> p1,

Polygon with holes 2<Kernel, Container> p2,
OutputIterator oi)

template <class Traits, class OutputIterator>
OutputIterator difference( General polygon 2<Traits> p1,

General polygon 2<Traits> p2,
OutputIterator oi)

template <class Traits, class OutputIterator>
OutputIterator difference( General polygon with holes 2<General polygon 2<Traits> > p1,

General polygon 2<Traits> p2,
OutputIterator oi)
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template <class Traits, class OutputIterator>
OutputIterator difference( General polygon 2<Traits> p1,

General polygon with holes 2<General polygon 2<Traits> > p2,
OutputIterator oi)

template <class Polygon, class OutputIterator>
OutputIterator difference( General polygon with holes 2<Polygon> p1,

General polygon with holes 2<Polygon> p2)

See Also

CGAL::do intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 2218
CGAL::intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1553
CGAL::join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1555
CGAL::symmetric difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1557

1548



F
un

ct
io

n

CGAL::do intersect

Definition

#include <CGAL/Boolean set operations 2.h>

bool do intersect( Type1 p1, Type2 p2)

Each one of these functions return true, if the two given polygons p1 and p2 intersect in their interior, and false
otherwise.

Arg 1 Type Arg 2 Type
Polygon 2 Polygon 2
Polygon 2 Polygon with holes 2
Polygon with holes 2 Polygon 2
Polygon with holes 2 Polygon with holes 2
General polygon 2 General polygon 2
General polygon 2 General polygon with holes 2
General polygon with holes 2 General polygon 2
General polygon with holes 2 General polygon with holes 2

template <class Kernel, class Container>
bool do intersect( Polygon 2<Kernel, Container> p1, Polygon 2<Kernel, Container> p2)
template <class Kernel, class Container>
bool do intersect( Polygon 2<Kernel, Container> p1, Polygon with holes 2<Kernel, Container> p2)
template <class Kernel, class Container>
bool do intersect( Polygon with holes 2<Kernel, Container> p1, Polygon 2<Kernel, Container> p2)
template <class Kernel, class Container>
bool do intersect( Polygon with holes 2<Kernel, Container> p1,

Polygon with holes 2<Kernel, Container> p2)

template <class Traits>
bool do intersect( General polygon 2<Traits> p1, General polygon 2<Traits> p2)
template <class Traits>
bool do intersect( General polygon 2<Traits> p1,

General polygon with holes 2<General polygon 2<Traits> > p2)

template <class Traits>
bool do intersect( General polygon with holes 2<General polygon 2<Traits> > p1,

General polygon 2<Traits> p2)

template <class Polygon>
bool do intersect( General polygon with holes 2<Polygon> p1,

General polygon with holes 2<Polygon> p2)

template <class InputIterator>
bool do intersect( InputIterator begin, InputIterator end)
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Returns true, if the set of general polygons (or general polygons with holes) in the given range intersect in their
interior, and false otherwise. (The value type of the input iterator is used to distinguish between the two).

template <class InputIterator1, class InputIterator2>
bool do intersect( InputIterator1 pgn begin1,

InputIterator1 pgn end1,
InputIterator2 pgn begin2,
InputIterator2 pgn end2)

Returns true, if the set of general polygons and general polygons with holes in the given two ranges respectively
intersect in their interior, and false otherwise.

See Also

CGAL::intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1553
CGAL::join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1555
CGAL::difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1547
CGAL::symmetric difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1557
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CGAL::oriented side

Definition

#include <CGAL/Boolean set operations 2.h>

Oriented side oriented side( Type1 p1, Type2 p2)

Each one of these functions returns ON POSITIVE SIDE if the two given polygons p1 and p2 intersect in their
interior, ON NEGATIVE SIDE if p1 and p2 do not intersect at all, and ON ORIENTED BOUNDARY if p1 and
p2 intersect only in their boundaries.

Arg 1 Type Arg 2 Type
Polygon 2 Polygon 2
Polygon 2 Polygon with holes 2
Polygon with holes 2 Polygon 2
Polygon with holes 2 Polygon with holes 2
General polygon 2 General polygon 2
General polygon 2 General polygon with holes 2
General polygon with holes 2 General polygon 2
General polygon with holes 2 General polygon with holes 2

template <class Kernel, class Container>
Oriented side oriented side( Polygon 2<Kernel, Container> p1, Polygon 2<Kernel, Container> p2)
template <class Kernel, class Container>
Oriented side oriented side( Polygon 2<Kernel, Container> p1,

Polygon with holes 2<Kernel, Container> p2)

template <class Kernel, class Container>
Oriented side oriented side( Polygon with holes 2<Kernel, Container> p1,

Polygon 2<Kernel, Container> p2)

template <class Kernel, class Container>
Oriented side oriented side( Polygon with holes 2<Kernel, Container> p1,

Polygon with holes 2<Kernel, Container> p2)

template <class Traits>
Oriented side oriented side( General polygon 2<Traits> p1, General polygon 2<Traits> p2)
template <class Traits>
Oriented side oriented side( General polygon 2<Traits> p1,

General polygon with holes 2<General polygon 2<Traits> > p2)

template <class Traits>
Oriented side oriented side( General polygon with holes 2<General polygon 2<Traits> > p1,

General polygon 2<Traits> p2)

template <class Polygon>
Oriented side oriented side( General polygon with holes 2<Polygon> p1,

General polygon with holes 2<Polygon> p2)

1551



See Also

CGAL::do intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2218
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CGAL::intersection

Definition

#include <CGAL/Boolean set operations 2.h>

OutputIterator intersection( Type1 p1, Type2 p2, OutputIterator oi)

Each one of these functions computes the intersection of two given polygons p1 and p2, inserts the resulting
polygons with holes into an output container through a given output iterator oi, and returns the output iterator.
The value type of the OutputIterator is either Polygon with holes 2 or General polygon with holes 2.

Arg 1 Type Arg 2 Type
Polygon 2 Polygon 2
Polygon 2 Polygon with holes 2
Polygon with holes 2 Polygon 2
Polygon with holes 2 Polygon with holes 2
General polygon 2 General polygon 2
General polygon 2 General polygon with holes 2
General polygon with holes 2 General polygon 2
General polygon with holes 2 General polygon with holes 2

template <class Kernel, class Container, class OutputIterator>
OutputIterator intersection( Polygon 2<Kernel, Container> p1,

Polygon 2<Kernel, Container> p2,
OutputIterator oi)

template <class Kernel, class Container, class OutputIterator>
OutputIterator intersection( Polygon 2<Kernel, Container> p1,

Polygon with holes 2<Kernel, Container> p2,
OutputIterator oi)

template <class Kernel, class Container, class OutputIterator>
OutputIterator intersection( Polygon with holes 2<Kernel, Container> p1,

Polygon 2<Kernel, Container> p2,
OutputIterator oi)

template <class Kernel, class Container, class OutputIterator>
OutputIterator intersection( Polygon with holes 2<Kernel, Container> p1,

Polygon with holes 2<Kernel, Container> p2,
OutputIterator oi)

template <class Traits, class OutputIterator>
OutputIterator intersection( General polygon 2<Traits> p1,

General polygon 2<Traits> p2,
OutputIterator oi)

template <class Traits, class OutputIterator>
OutputIterator intersection( General polygon with holes 2<General polygon 2<Traits> > p1,

General polygon 2<Traits> p2,
OutputIterator oi)
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template <class Traits, class OutputIterator>
OutputIterator intersection( General polygon 2<Traits> p1,

General polygon with holes 2<General polygon 2<Traits> > p2,
OutputIterator oi)

template <class Polygon, class OutputIterator>
OutputIterator intersection( General polygon with holes 2<Polygon> p1,

General polygon with holes 2<Polygon> p2,
OutputIterator oi)

template <class InputIterator, class OutputIterator>
OutputIterator intersection( InputIterator begin, InputIterator end, OutputIterator oi)

Computes the intersection of the general polygons (or general polygons with holes) in the given range. (The
value type of the input iterator is used to distinguish between the two.) The result, represented by a set of general
polygon with holes, is inserted into an output container through a given output iterator oi. The output iterator is
returned. The value type of the OutputIterator is Traits::Polygon with holes 2.

template <class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator intersection( InputIterator1 pgn begin1,

InputIterator1 pgn end1,
InputIterator2 pgn begin2,
InputIterator2 pgn end2,
OutputIterator oi)

Computes the intersection of the general polygons and general polygons with holes in the given two ranges. The
result, represented by a set of general polygon with holes, is inserted into an output container through a given
output iterator oi. The output iterator is returned. The value type of the OutputIterator is Traits::Polygon with
holes 2.

See Also

CGAL::do intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 2218
CGAL::join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1555
CGAL::difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1547
CGAL::symmetric difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1557
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CGAL::join

Definition

#include <CGAL/Boolean set operations 2.h>

bool join( Type1 p1, Type2 p2, General polygon with holes 2 & p)

Each one of these functions computes the union of two given polygons p1 and p2. If the two given polygons
overlap, it returns true, and places the resulting polygon in p. Otherwise, it returns false.

Arg 1 Type Arg 2 Type
Polygon 2 Polygon 2
Polygon 2 Polygon with holes 2
Polygon with holes 2 Polygon 2
Polygon with holes 2 Polygon with holes 2
General polygon 2 General polygon 2
General polygon 2 General polygon with holes 2
General polygon with holes 2 General polygon 2
General polygon with holes 2 General polygon with holes 2

template <class Kernel, class Container>
bool join( Polygon 2<Kernel, Container> p1,

Polygon 2<Kernel, Container> p2,
General polygon with holes 2<Polygon 2<Kernel, Container> > & p)

template <class Kernel, class Container>
bool join( Polygon 2<Kernel, Container> p1,

Polygon with holes 2<Kernel,Container> p2,
General polygon with holes 2<Polygon 2<Kernel, Container> > & p)

template <class Kernel, class Container>
bool join( Polygon with holes 2<Kernel, Container> p2,

Polygon 2<Kernel, Container> p1,
General polygon with holes 2<Polygon 2<Kernel, Container> > & p)

template <class Kernel, class Container>
bool join( Polygon with holes 2<Kernel, Container> p2,

Polygon with holes 2<Kernel, Container> p1,
General polygon with holes 2<Polygon 2<Kernel, Container> > & p)

template <class Traits>
bool join( General polygon 2<Traits> p1,

General polygon 2<Traits> p2,
General polygon with holes 2<General polygon 2<Traits> > & p)

template <class Traits>
bool join( General polygon 2<Traits> p1,

General polygon with holes 2<General polygon 2<Traits> > p2,
General polygon with holes 2<General polygon 2<Traits> > & p)
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template <class Traits>
bool join( General polygon with holes 2<General polygon 2<Traits> > p2,

General polygon 2<Traits> p1,
General polygon with holes 2<General polygon 2<Traits> > & p)

template <class Polygon>
bool join( General polygon with holes 2<Polygon> p1,

General polygon with holes 2<Polygon> p2,
Traits::Polygon with holes 2 & p)

template <class InputIterator, class OutputIterator>
OutputIterator join( InputIterator begin, InputIterator end, OutputIterator oi)

Computes the union of the general polygons (or general polygons with holes) in the given range. (The value
type of the input iterator is used to distinguish between the two.) The result, represented by a set of general
polygon with holes, is inserted into an output container through a given output iterator oi. The output iterator is
returned. The value type of the OutputIterator is Traits::Polygon with holes 2.

template <class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator join( InputIterator1 pgn begin1,

InputIterator1 pgn end1,
InputIterator2 pgn begin2,
InputIterator2 pgn end2,
OutputIterator oi)

Computes the union of the general polygons and general polygons with holes in the given two ranges. The
result, represented by a set of general polygon with holes, is inserted into an output container through a given
output iterator oi. The output iterator is returned. The value type of the OutputIterator is Traits::Polygon with
holes 2.

See Also

CGAL::do intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 2218
CGAL::intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1553
CGAL::difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1547
CGAL::symmetric difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1557
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CGAL::symmetric difference

Definition

#include <CGAL/Boolean set operations 2.h>

OutputIterator intersection( Type1 p1, Type2 p2, OutputIterator oi)

Each one of these functions computes the symmetric difference between two given polygons p1 and p2, and
inserts the resulting polygons with holes into an output container through the output iterator oi. The value type
of the OutputIterator is either Polygon with holes 2 or General polygon with holes 2.

Arg 1 Type Arg 2 Type
Polygon 2 Polygon 2
Polygon 2 Polygon with holes 2
Polygon with holes 2 Polygon 2
Polygon with holes 2 Polygon with holes 2
General polygon 2 General polygon 2
General polygon 2 General polygon with holes 2
General polygon with holes 2 General polygon 2
General polygon with holes 2 General polygon with holes 2

template <class Kernel, class Container, class OutputIterator>
OutputIterator symmetric difference( Polygon 2<Kernel, Container> p1,

Polygon 2<Kernel, Container> p2,
OutputIterator oi)

template <class Kernel, class Container, class OutputIterator>
OutputIterator symmetric difference( Polygon 2<Kernel, Container> p1,

Polygon with holes 2<Kernel, Container> p2,
OutputIterator oi)

template <class Kernel, class Container, class OutputIterator>
OutputIterator symmetric difference( Polygon with holes 2<Kernel, Container> p1,

Polygon 2<Kernel, Container> p2,
OutputIterator oi)

template <class Kernel, class Container, class OutputIterator>
OutputIterator symmetric difference( Polygon with holes 2<Kernel, Container> p1,

Polygon with holes 2<Kernel, Container> p2,
OutputIterator oi)

template <class Traits, class OutputIterator>
OutputIterator symmetric difference( General polygon 2<Traits> p1,

General polygon 2<Traits> p2,
OutputIterator oi)

template <class Traits, class OutputIterator>
OutputIterator symmetric difference( General polygon with holes 2<General polygon 2<Traits> > p1,

General polygon 2<Traits> p2,
OutputIterator oi)
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template <class Traits, class OutputIterator>
OutputIterator symmetric difference( General polygon 2<Traits> p1,

General polygon with holes 2<General polygon 2<Traits> > p2,
OutputIterator oi)

template <class Polygon, class OutputIterator>
OutputIterator symmetric difference( General polygon with holes 2<Polygon> p1,

General polygon with holes 2<Polygon> p2,
OutputIterator oi)

template <class InputIterator, class OutputIterator>
OutputIterator symmetric difference( InputIterator begin, InputIterator end, OutputIterator oi)

Computes the symmetric difference of the general polygons (or general polygons with holes) in the given range.
A point is contained in the symmetric difference, if and only if it is contained in odd number of input polygons.
(The value type of the input iterator is used to distinguish between the two.) The result, represented by a set of
general polygon with holes, is inserted into an output container through a given output iterator oi. The output
iterator is returned. The value type of the OutputIterator is Traits::Polygon with holes 2.

template <class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator symmetric difference( InputIterator1 pgn begin1,

InputIterator1 pgn end1,
InputIterator2 pgn begin2,
InputIterator2 pgn end2,
OutputIterator oi)

Computes the union of the general polygons and general polygons with holes in the given two ranges. A point is
contained in the symmetric difference, if and only if it is contained in odd number of input polygons. The result,
represented by a set of general polygon with holes, is inserted into an output container through a given output
iterator oi. The output iterator is returned. The value type of the OutputIterator is Traits::Polygon with holes 2.

See Also

CGAL::do intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 2218
CGAL::intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1553
CGAL::join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1555
CGAL::difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1547
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CGAL::connect holes

Definition

#include <CGAL/connect holes.h>

template <class Kernel, class Container, class OutputIterator>
OutputIterator connect holes( Polygon with holes 2<Kernel,Container> pwh, OutputIterator oi)

Connects the holes of pwh with its outer boundary. This is done by locating the topmost vertex in each hole in
the polygon with holes pwh, and connecting it by a vertical segment to the polygon feature located directly above
it (a vertex or an edge of the outer boundary, or of another hole). The function produces an output sequence of
points, which corresponds to the traversal of the vertices of the input polygon; this traversal starts from the outer
boundary and moves to the holes using the auxiliary vertical segments that were added to connect the polygon
with its holes. The value-type of oi is Kernel::Point 2.

Precondition: The input polygon with holes pwh is bounded (namely it has a valid outer boundary).
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CGAL::operator<<

Definition

This operator exports a polygon with holes, a general polygon, or a general polygon with holes P to the output
stream out. The output is in ASCII format.

An ASCII and a binary format exist. The format can be selected with the CGAL modifiers for streams, set
ascii mode and set binary mode respectively. The modifier set pretty mode can be used to allow for (a few)
structuring comments in the output. Otherwise, the output would be free of comments. The default for writing
is ASCII without comments.

#include <CGAL/Polygon with holes 2.h> template <class Kernel, class Container>

ostream& ostream& out << CGAL::Polygon with holes 2<Kernel,Container> P

The number of points of the outer boundary is exported followed by the points themselves in counterclockwise
order. Then, the number of holes is exported, and for each hole, the number of points on its outer boundary is
exported followed by the points themselves in clockwise order.

#include <CGAL/General polygon 2.h> template <class ArrTraits>

ostream& ostream& out << CGAL::General polygon 2<ArrTraits> P

The number of curves of the outer boundary is exported followed by the curves themselves in counterclockwise
order.

#include <CGAL/General polygon with holes 2.h> template <class Polygon>

ostream& ostream& out << CGAL::General polygon with holes 2<Polygon> P

The number of curves of the outer boundary is exported followed by the curves themselves in counterclockwise
order. Then, the number of holes is exported, and for each hole, the number of curves on its outer boundary is
exported followed by the curves themselves in clockwise order.

See Also

CGAL::Polygon 2<PolygonTraits 2, Container> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1472
CGAL::General polygon 2<ArrTraits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1533
CGAL::General polygon with holes 2<Polygon> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1536
operator>> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1561
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CGAL::operator>>

Definition

This operator imports a polygon with holes, a general polygon, or a general polygon with holes from the input
stream in.

An ASCII and a binary format exist. The stream detects the format automatically and can read both.

#include <CGAL/Polygon with holes 2.h> template <class Kernel, Class Container>

istream& istream& in >> CGAL::Polygon with holes 2<Kernel, Container>& P

The format consists of the number of points of the outer boundary followed by the points themselves in counter-
clockwise order, followed by the number of holes, and for each hole, the number of points of the outer boundary
is followed by the points themselves in clockwise order.

#include <CGAL/General polygon 2.h> template <class ArrTraits>

istream& istream& in >> CGAL::General polygon 2<ArrTraits>& P

The format consists of the number of curves of the outer boundary followed by the curves themselves in coun-
terclockwise order.

#include <CGAL/General polygon with holes 2.h> template <class Polygon>

istream& istream& in >> CGAL::General polygon with holes 2<Polygon>& P

The format consists of the number of curves of the outer boundary followed by the curves themselves in counter-
clockwise order, followed by the number of holes, and for each hole, the number of curves on its outer boundary
is followed by the curves themselves in clockwise order.

See Also

CGAL::Polygon 2<PolygonTraits 2, Container> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1472
CGAL::General polygon 2<ArrTraits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1533
CGAL::General polygon with holes 2<Polygon> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1536
operator<< . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1560
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GpsTraitsGeneralPolygon 2

Definition

A model of this concept represents a simple general polygon.

Refines

DefaultConstructible, CopyConstructible, Assignable.

Generalizes

GeneralPolygon 2

Has Models

GeneralPolygonSetTraits 2::Polygon 2 CGAL::Polygon 2<PolygonTraits 2, Container>

See Also

GeneralPolygon 2
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GpsTraitsGeneralPolygonWithHoles 2

Definition

A model of this concept represents a general polygon with holes.

Refines

DefaultConstructible, CopyConstructible, Assignable.

Generalizes

GeneralPolygonWithHoles 2

Has Models

GeneralPolygonSetTraits 2::Polygon with holes2

See Also

GeneralPolygonWithHoles 2
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Chapter 20

2D Boolean Operations on Nef Polygons
Michael Seel
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20.1 Introduction

When working with polygonal and polyhedral sets, the mathematical model determines the kind of point set
that can be represented. Nef polyhedra are the most general rectilinear polyhedral model.

Topological simpler models that are contained in the domain of Nef polyhedra are:

• convex polytopes normally defined as the convex hull of a nonempty finite set of points. Convex polytopes
are compact closed and manifold sets.

• elementary polyhedra normally defined as the union of a finite number of convex polytopes.

• polyhedral sets nomally defined as the intersection of a finite number of closed halfspaces. Such sets are
closed and convex but need not to be compact.

• linear polyhedra normally defined as the set of all points belonging to the simplices of a simplicial com-
plex.

A planar Nef polyhedron is any set that can be obtained from a finite set of open halfspaces by set complement
and set intersection operations. Due to the fact that all other binary set operations like union, difference and
symmetric difference can be reduced to intersection and complement calculations, Nef polyhedra are also closed
under those operations. Apart from the set complement operation there are more topological unary set operations
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that are closed in the domain of Nef polyhedra. Given a Nef polyhedron one can determine its interior, its
boundary, and its closure, and also composed operations like regularization (defined to be the closure of the
interior or a point set).

Figure 20.1: Two Nef polyhedra in the plane. A closed halfspace on the left and a complex polyhedron on the
right. Note that the points on the squared boundary are at infinity.

20.2 Construction and Composition

Following the above definition, the data type Nef polyhedron 2<T> allows construction of elementary Nef
polyhedra and the binary and unary composition by the mentioned set operations.

In the following examples skip the typedefs at the beginning at first and take the types Point and Line to be
models of the standard two-dimensional CGAL kernel (CGAL::Point 2<K> and CGAL::Line 2<K>). Their
user interface is thus defined in the corresponding reference pages.� �
#include <CGAL/Gmpz.h>
#include <CGAL/Filtered_extended_homogeneous.h>
#include <CGAL/Nef_polyhedron_2.h>

typedef CGAL::Gmpz RT;
typedef CGAL::Filtered_extended_homogeneous<RT> Extended_kernel;
typedef CGAL::Nef_polyhedron_2<Extended_kernel> Nef_polyhedron;
typedef Nef_polyhedron::Point Point;
typedef Nef_polyhedron::Line Line;

int main() {

Nef_polyhedron N1(Nef_polyhedron::COMPLETE);

Line l(2,4,2); // l : 2x + 4y + 2 = 0
Nef_polyhedron N2(l,Nef_polyhedron::INCLUDED);
Nef_polyhedron N3 = N2.complement();
CGAL_assertion(N1 == N2.join(N3));

Point p1(0,0), p2(10,10), p3(-20,15);
Point triangle[3] = { p1, p2, p3 };
Nef_polyhedron N4(triangle, triangle+3);
Nef_polyhedron N5 = N2.intersection(N4);
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CGAL_assertion(N5 <= N2 && N5 <= N4);

return 0;
}� �
File: examples/Nef_2/nef_2_construction.cpp

Planar halfspaces (as used in the definition) are modelled by oriented lines. In the previous example N1 is the
Nef polyhedron representing the full plane, N2 is the closed halfspace left of the oriented line with equation
2x+4y+2 = 0 including the line, N3 is the complement of N2 and therefore it must hold that N2∪N3 = N1.

Additionally one can construct Nef polyhedra from iterator ranges that hold simple polygonal chains. In the
example N4 is the triangle spanned by the vertices (0,0), (10,10), (−20,15). Note that the construction from a
simple polygonal chain has several cases and preconditions that are described in the reference manual page of
Nef polyhedron 2<T>. The operator<= in the last assertion is a subset-or-equal comparison of two polyhedra.

Nef polyhedra have input and output operators that allows one to output them via streams and read them from
streams. Graphical output is currently possible. For an elaborate example see the demo programs in the directory
demo/Nef 2.

20.3 Exploration

By recursively composing binary and unary operations one can end with a very complex rectilinear structure.
To explore that structure there is a data type Nef polyhedron 2<T>::Explorer that allows read-only exploration
of the rectilinear structure. To understand its usability we need more knowledge about the representation of Nef
polyhedra.

The rectilinear structure underlying a Nef polyhedron is stored in a selective plane map. Plane map here means
a straightline embedded bidirected graph with face objects such that each point in the plane can be uniquely
assigned to an object (vertex, edge, face) of the planar subdivision defined by the graph. Selective means that
each object (vertex, edge, face) has a Boolean value associated with it to indicate set inclusion or exclusion.

The plane map is defined by the interface data type Nef polyhedron 2<T>::Topological explorer. Embedding
the vertices by standard affine points does not suffice to model the unboundedness of halfspaces and ray-like
structures. Therefore the planar subdivision is bounded symbolically by an axis-parallel square box of infimax-
imal size centered at the origin of our coordinate system. All structures extending to infinity are pruned by the
box. Lines and rays have symbolic endpoints on the box. Faces are circularly closed. Infimaximal here means
that its geometric extend is always large enough (but finite for our intuition). Assume you approach the box
with an affine point, then this point is always inside the box. The same holds for straight lines; they always
intersect the box. There are more accurate notions of “large enough”, but the previous propositions are enough
at this point. Due to the fact that the infimaximal box is included in the plane map, the vertices and edges are
partitioned with respect to this box.

Vertices inside the box are called standard vertices and they are embedded by affine points of type Ex-
plorer::Point. Vertices on the box are called non-standard vertices and they get their embedding where a ray
intersects the box (their embedding is defined by an object of type Explorer::Ray). By their straightline embed-
ding, edges represent either segments, rays, lines, or box segments depending on the character of their source
and target vertices.

During exploration, box objects can be tracked down by the interface of Nef polyhedron 2<T>::Explorer that
is derived from Nef polyhedron 2<T>::Topological explorer and adds just the box exploration functionality to
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the interface of the latter. In the following code fragment we iterate over all vertices of a Nef polyhedron and
check whether their embedding is an affine point or a point on the infimaximal frame.� �
typedef Nef_polyhedron::Explorer Explorer;
Explorer E = N4.explorer();
Explorer::Vertex_const_iterator v;
for (v = E.vertices_begin(); v != E.vertices_end(); ++v)

if ( E.is_standard(v) )
Explorer::Point p = E.point(v) // affine embedding of v

else /* non-standard */
Explorer::Ray r = E.ray(v) // extended embedding of v� �

Note that box edges only serve as boundary edges (combinatorically) to close the faces that extend to infinity
(geometrically). Their status can be queried by the following operation:� �
typedef Nef_polyhedron::Explorer Explorer;
Explorer E = N4.explorer();
Explorer::Halfedge_const_iterator e;
for (e = E.halfedges_begin(); e != E.halfedges_end(); ++e)

if ( E.is_frame_edge(e) ) // e is part of square box.� �

20.4 Traits Classes

Now finally we clarify what the template parameter of class Nef polyhedron 2<T> actually models. T carries
the implementation of a so-called extended geometric kernel.

Currently there are three kernel models: CGAL::Extended cartesian<FT>, CGAL::Extended homogeneous<
RT>, and CGAL::Filtered extended homogeneous<RT>. The latter is the most optimized one. The former two
are simpler versions corresponding to the simple planar affine kernels. Actually, it holds that (type equality in
pseudo-code notation):� �
CGAL::Nef_polyhedron_2< CGAL::Extended_cartesian<FT> >::Point

== CGAL::Cartesian<FT>::Point_2

CGAL::Nef_polyhedron_2< CGAL::Extended_homogeneous<RT> >::Point
== CGAL::Homogeneous<RT>::Point_2

CGAL::Nef_polyhedron_2< CGAL::Filtered_extended_homogeneous<RT> >::Point
== CGAL::Homogeneous<RT>::Point_2� �

Similar equations hold for the types Line and Direction in the local scope of Nef polyhedron 2<...>.

advanced

For its notions and requirements see the desciption of the concept ExtendedKernelTraits 2 in the reference
manual.

advanced
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20.5 Implementation

The underlying set operations are realized by an efficient and complete algorithm for the overlay of two plane
maps. The algorithm is efficient in the sense that its running time is bounded by the size of the inputs plus the
size of the output times a logarithmic factor. The algorithm is complete in the sense that it can handle all inputs
and requires no general position assumption.
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2D Boolean Operations on Nef Polygons
Reference Manual
Michael Seel

Planar Nef Polyhedra are whatever can be constructed with a finite number of Boolean operations on halfspaces.
See the user manual pages for a detailed introduction.

20.6 Classified Reference Pages

Concepts

ExtendedKernelTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1585

Classes

CGAL::Extended cartesian<FT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1590
CGAL::Extended homogeneous<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1591
CGAL::Filtered extended homogeneous<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1592
CGAL::Nef polyhedron 2<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1572
CGAL::Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1583
CGAL::Topological explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1578

20.7 Alphabetical List of Reference Pages

Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1583
ExtendedKernelTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1585
Extended cartesian<FT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1590
Extended homogeneous<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1591
Filtered extended homogeneous<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1592
Nef polyhedron 2<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1572
Topological explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1578
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CGAL::Nef polyhedron 2<T>

Definition

An instance of data type Nef polyhedron 2<T> is a subset of the plane that is the result of forming complements
and intersections starting from a finite set H of halfspaces. Nef polyhedron 2 is closed under all binary set
operations intersection, union, difference, complement and under the topological operations boundary, closure,
and interior.

The template parameter T is specified via an extended kernel concept. T must be a model of the concept
ExtendedKernelTraits 2.

#include <CGAL/Nef polyhedron 2.h>

Types

Nef polyhedron 2<T>:: Line the oriented lines modeling halfplanes

Nef polyhedron 2<T>:: Point the affine points of the plane.

Nef polyhedron 2<T>:: Direction directions in our plane.

Nef polyhedron 2<T>:: Polygons tag tag for calling polygon constructor.

Nef polyhedron 2<T>:: Polylines tag tag for calling polyline constructor.

enum Boundary { EXCLUDED, INCLUDED}; construction selection.

enum Content { EMPTY, COMPLETE}; construction selection

Creation

Nef polyhedron 2<T> N( Content plane = EMPTY);

creates an instance N of type Nef polyhedron 2<T> and initializes it to the empty set
if plane == EMPTY and to the whole plane if plane == COMPLETE.

Nef polyhedron 2<T> N( Line l, Boundary line = INCLUDED);

creates a Nef polyhedron N containing the halfplane left of l including l if
line==INCLUDED, excluding l if line==EXCLUDED.
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template <class Forward iterator>
Nef polyhedron 2<T> N( Forward iterator it, Forward iterator end, Boundary b = INCLUDED);

creates a Nef polyhedron N from the simple polygon P spanned by the list of points
in the iterator range [it,end) and including its boundary if b = INCLUDED excluding
the boundary otherwise. Forward iterator has to be an iterator with value type Point.
This construction expects that P is simple. The degenerate cases where P contains no
point, one point or spans just one segment (two points) are correctly handled. In all
degenerate cases there’s only one unbounded face adjacent to the degenerate polygon.
If b == INCLUDED then N is just the boundary. If b == EXCLUDED then N is the
whole plane without the boundary.

template <class Forward iterator>
Nef polyhedron 2<T> N( Forward iterator it, Forward iterator end, Polygons tag);

The iterator range [it, end) defines a set point ranges, each of which defines the bound-
ary of simple polygon.

template <class Forward iterator>
Nef polyhedron 2<T> N( Forward iterator it, Forward iterator end, Polylines tag);

The iterator range [it, end) defines a set point ranges, each of which defines a polyline.

Operations

void N.clear( Content plane = EMPTY)

makes N the empty set if plane == EMPTY and the
full plane if plane == COMPLETE.

bool N.is empty() returns true if N is empty, false otherwise.

bool N.is plane() returns true if N is the whole plane, false otherwise.

Constructive Operations

Nef polyhedron 2<T> N.complement() returns the complement of N in the plane.

Nef polyhedron 2<T> N.interior() returns the interior of N.

Nef polyhedron 2<T> N.closure() returns the closure of N.

Nef polyhedron 2<T> N.boundary() returns the boundary of N.

Nef polyhedron 2<T> N.regularization() returns the regularized polyhedron (closure of inte-
rior).
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Nef polyhedron 2<T> N.intersection( N1) returns N ∩ N1.

Nef polyhedron 2<T> N.join( N1) returns N ∪ N1. Note that “union” is a keyword of
C++ and cannot be used for this operation.

Nef polyhedron 2<T> N.difference( N1) returns N − N1.

Nef polyhedron 2<T> N.symmetric difference( N1)

returns the symmectric difference N - T ∪ T - N.

Additionally there are operators *,+,-, ˆ,! which implement the binary operations intersection, join, difference,
symmetric difference, and the unary operation complement, respectively. There are also the corresponding
modification operations *=,+=,-=, ˆ=.

There are also comparison operations like <,<=,>,>=,==,!= which implement the relations subset, subset or
equal, superset, superset or equal, equality, inequality, respectively.

Exploration - Point location - Ray shooting

As Nef polyhedra are the result of forming complements and intersections starting from a set H of halfspaces
that are defined by oriented lines in the plane, they can be represented by an attributed plane map M = (V,E,F).
For topological queries within M the following types and operations allow exploration access to this structure.

Types

Nef polyhedron 2<T>:: Explorer

a decorator to examine the underlying plane map. See the manual page of Explorer.

Nef polyhedron 2<T>:: Object handle

a generic handle to an object of the underlying plane map. The kind of object (vertex,
halfedge, face) can be determined and the object can be assigned to a corresponding
handle by the three functions:
bool assign(Vertex const handle& h, Object handle)
bool assign(Halfedge const handle& h, Object handle)
bool assign(Face const handle& h, Object handle)
where each function returns true iff the assignment to h was done.

enum Location mode { DEFAULT, NAIVE, LMWT};

selection flagfor the point location mode. LMWT stands for Locally Minimum Weight
Triangulation, a locally optimized constrained triangulation where the weight corre-
sponds to the length of the edges of the triangulation.
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Operations

bool N.contains( Object handle h)

returns true iff the object h is contained in the set represented by N.

bool N.contained in boundary( Object handle h)

returns true iff the object h is contained in the 1-skeleton of N.

Object handle N.locate( Point p, Location mode m = DEFAULT)

returns a generic handle h to an object (face, halfedge, vertex) of the under-
lying plane map that contains the point p in its relative interior. The point
p is contained in the set represented by N if N.contains(h) is true. The lo-
cation mode flag m allows one to choose between different point location
strategies.

Object handle N.ray shoot( Point p, Direction d, Location mode m = DEFAULT)

returns a handle h with N.contains(h), that can be converted to a Vertex
/Halfedge /Face const handle as described above. The object returned is
intersected by the ray starting in p with direction d and has minimal distance
to p. The operation returns an empty Object handle if the ray shoot along d
does not hit any object h of N with N.contains(h). The location mode flag m
allows one to choose between different point location strategies.

Object handle N.ray shoot to boundary( Point p, Direction d, Location mode m = DEFAULT)

returns a handle h, that can be converted to a Vertex /Halfedge const handle
as described above. The object returned is part of the 1-skeleton of N, in-
tersected by the ray starting in p with direction d and has minimal distance
to p. The operation returns an empty Object handle if the ray shoot along d
does not hit any 1-skeleton object h of N. The location mode flag m allows
one to choose between different point location strategies.

Explorer N.explorer()

returns a decorator object that allows read-only access of the underlying
plane map. See the manual page Explorer for its usage.

Implementation

Nef polyhedra are implemented on top of a halfedge data structure and use linear space in the number of vertices,
edges and facets. Operations like empty take constant time. The operations clear, complement, interior, closure,
boundary, regularization, input and output take linear time. All binary set operations and comparison operations
take time O(n logn) where n is the size of the output plus the size of the input.
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The point location and ray shooting operations are implemented in two flavors. The NAIVE operations run in
linear query time without any preprocessing, the DEFAULT operations (equals LMWT) run in sub-linear query
time, but preprocessing is triggered with the first operation. Preprocessing takes time O(N2), the sub-linear
point location time is either logarithmic when LEDA’s persistent dictionaries are present or if not then the point
location time is worst-case linear, but experiments show often sublinear runtimes. Ray shooting equals point
location plus a walk in the constrained triangulation overlayed on the plane map representation. The cost of the
walk is proportional to the number of triangles passed in direction d until an obstacle is met. In a minimum
weight triangulation of the obstacles (the plane map representing the polyhedron) the theory provides a O(

√
n)

bound for the number of steps. Our locally minimum weight triangulation approximates the minimum weight
triangulation only heuristically (the calculation of the minimum weight triangulation is conjectured to be NP
hard). Thus we have no runtime guarantee but a strong experimental motivation for its approximation.

Example

Nef polyhedra are parameterized by a so-called extended geometric kernel. There are three kernels, one based
on a homogeneous representation of extended points called Extended homogeneous<RT> where RT is a ring
type providing additionally a gcd operation, one based on a Cartesian representation of extended points called
Extended cartesian<NT> where NT is a field type, and finally Filtered extended homogeneous<RT> (an op-
timized version of the first). The following example uses the filtered homogeneous kernel to construct the
intersection of two halfspaces.� �
#include <CGAL/Gmpz.h>
#include <CGAL/Filtered_extended_homogeneous.h>
#include <CGAL/Nef_polyhedron_2.h>

typedef CGAL::Gmpz RT;
typedef CGAL::Filtered_extended_homogeneous<RT> Extended_kernel;
typedef CGAL::Nef_polyhedron_2<Extended_kernel> Nef_polyhedron;
typedef Nef_polyhedron::Line Line;

int main()
{

Nef_polyhedron N1(Line(1,0,0));
Nef_polyhedron N2(Line(0,1,0), Nef_polyhedron::EXCLUDED);
Nef_polyhedron N3 = N1 * N2; // line (*)
return 0;

}� �
File: examples/Nef_2/nef_2_intersection.cpp

After line (*) N3 is the intersection of N1 and N2. The member types of Nef polyhedron 2< Extended
homogeneous<NT> > map to corresponding types of the standard CGAL geometry kernel (type equality in
pseudo-code notation):� �
CGAL::Nef_polyhedron_2< CGAL::Extended_cartesian<FT> >::Point

== CGAL::Cartesian<FT>::Point_2

CGAL::Nef_polyhedron_2< CGAL::Extended_homogeneous<RT> >::Point
== CGAL::Homogeneous<RT>::Point_2

CGAL::Nef_polyhedron_2< CGAL::Filtered_extended_homogeneous<RT> >::Point
== CGAL::Homogeneous<RT>::Point_2� �
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The same holds for the types Line and Direction in the local scope of Nef polyhedron 2<...>.
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CGAL::Topological explorer

Definition

An instance D of the data type Topological explorer is a decorator for interfacing the topological structure of a
plane map P (read-only).

A plane map P consists of a triple (V,E,F) of vertices, edges, and faces. We collectively call them objects. An
edge e is a pair of vertices (v,w) with incidence operations v = source(e), w = target(e). The list of all edges
with source v is called the adjacency list A(v).

Edges are paired into twins. For each edge e = (v,w) there’s an edge twin(e) = (w,v) and twin(twin(e)) == e1.

An edge e = (v,w) knows two adjacent edges en = next(e) and ep = previous(e) where source(en) = w, pre-
vious(en) = e and target(ep) = v and next(ep) = e. By this symmetric previous-next relationship all edges are
partitioned into face cycles. Two edges e and e′ are in the same face cycle if e = next∗(e′). All edges e in the
same face cycle have the same incident face f = face(e). The cyclic order on the adjacency list of a vertex v =
source(e) is given by cyclic adj succ(e) = twin(previous(e)) and cyclic adj pred(e) = next(twin(e)).

A vertex v is embedded via coordinates point(v). By the embedding of its source and target an edge corresponds
to a segment. P has the property that the embedding is always order-preserving. This means a ray fixed in
point(v) of a vertex v and swept around counterclockwise meets the embeddings of target(e) (e ∈ A(v)) in the
cyclic order defined by the list order of A.

The embedded face cycles partition the plane into maximal connected subsets of points. Each such set corre-
sponds to a face. A face is bounded by its incident face cycles. For all the edges in the non-trivial face cycles
it holds that the face is left of the edges. There can also be trivial face cycles in form of isolated vertices in the
interior of a face. Each such vertex v knows its surrounding face f = face(v).

Plane maps are attributed, for each object u ∈ V ∪E ∪F we attribute an information mark(u) of type Mark.
Mark fits the concepts assignable, default-constructible, and equal-comparable.

Types

Topological explorer:: Plane map The underlying plane map type

Topological explorer:: Point The point type of vertices.

Topological explorer:: Mark All objects (vertices, edges, faces) are attributed by a
Mark object.

Topological explorer:: Size type The size type.

Local types are handles, iterators and circulators of the following kind: Vertex const handle, Vertex const
iterator, Halfedge const handle, Halfedge const iterator, Face const handle, Face const iterator. Addition-
ally the following circulators are defined.

Topological explorer:: Halfedge around vertex const circulator

circulating the outgoing halfedges in A(v).
1The existence of the edge pairs makes P a bidirected graph, the twin links make P a map.
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Topological explorer:: Halfedge around face const circulator

circulating the halfedges in the face cycle of a face f .

Topological explorer:: Hole const iterator iterating all holes of a face f . The type is convertible to
Halfedge const handle.

Topological explorer:: Isolated vertex const iterator

iterating all isolated vertices of a face f . The type gener-
alizes Vertex const handle.

Operations

Vertex const handle D.source( Halfedge const handle e)

returns the source of e.

Vertex const handle D.target( Halfedge const handle e)

returns the target of e.

Halfedge const handle D.twin( Halfedge const handle e)

returns the twin of e.

bool D.is isolated( Vertex const handle v)

returns true iff A(v) = /0.

Halfedge const handle D.first out edge( Vertex const handle v)

returns one halfedge with source v. It’s the
starting point for the circular iteration over the
halfedges with source v.
Precondition: !is isolated(v).

Halfedge const handle D.last out edge( Vertex const handle v)

returns the halfedge with source v that is the
last in the circular iteration before encountering
first out edge(v) again.
Precondition: !is isolated(v).

Halfedge const handle D.cyclic adj succ( Halfedge const handle e)

returns the edge after e in the cyclic ordered
adjacency list of source(e).
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Halfedge const handle D.cyclic adj pred( Halfedge const handle e)

returns the edge before e in the cyclic ordered
adjacency list of source(e).

Halfedge const handle D.next( Halfedge const handle e)

returns the next edge in the face cycle contain-
ing e.

Halfedge const handle D.previous( Halfedge const handle e)

returns the previous edge in the face cycle con-
taining e.

Face const handle D.face( Halfedge const handle e)

returns the face incident to e.

Face const handle D.face( Vertex const handle v)

returns the face incident to v.
Precondition: is isolated(v).

Halfedge const handle D.halfedge( Face const handle f)

returns a halfedge in the bounding face cycle
of f (Halfedge const handle() if there is no
bounding face cycle).

Iteration

Vertex const iterator D.vertices begin() iterator over vertices of the map.

Vertex const iterator D.vertices end() past-the-end iterator for vertices.

Halfedge const iterator D.halfedges begin() iterator over halfedges of the map.

Halfedge const iterator D.halfedges end() past-the-end iterator for halfedges.

Face const iterator D.faces begin() iterator over faces of the map.

Face const iterator D.faces end() past-the-end iterator for faces
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Halfedge around vertex const circulator

D.out edges( Vertex const handle v)

returns a circulator for the cyclic adjacency list
of v.

Halfedge around face const circulator

D.face cycle( Face const handle f)

returns a circulator for the outer face cycle of f .

Hole const iterator D.holes begin( Face const handle f)

returns an iterator for all holes in the interior
of f . A Hole iterator can be assigned to a
Halfedge around face const circulator.

Hole const iterator D.holes end( Face const handle f)

returns the past-the-end iterator of f .

Isolated vertex const iterator

D.isolated vertices begin( Face const handle f)

returns an iterator for all isolated vertices in the
interior of f .

Isolated vertex const iterator

D.isolated vertices end( Face const handle f)

returns the past the end iterator of f .

Associated Information

The type Mark is the general attribute of an object.

Point D.point( Vertex const handle v)

returns the embedding of v.

Mark D.mark( Vertex const handle v)

returns the mark of v.
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Mark D.mark( Halfedge const handle e)

returns the mark of e.

Mark D.mark( Face const handle f)

returns the mark of f .

Statistics and Integrity

Size type D.number of vertices() returns the number of vertices.

Size type D.number of halfedges() returns the number of halfedges.

Size type D.number of edges() returns the number of halfedge pairs.

Size type D.number of faces() returns the number of faces.

Size type D.number of face cycles() returns the number of face cycles.

Size type D.number of connected components()

calculates the number of connected compo-
nents of P.

void D.print statistics( std::ostream& os = std::cout)

print the statistics of P: the number of vertices,
edges, and faces.

void D.check integrity and topological planarity( bool faces=true)

checks the link structure and the genus of P.
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CGAL::Explorer

Definition

An instance E of the data type Explorer is a decorator to explore the structure of the plane map underlying
the Nef polyhedron. It inherits all topological adjacency exploration operations from Topological explorer.
Explorer additionally allows one to explore the geometric embedding.

The position of each vertex is given by a so-called extended point, which is either a standard affine point or
the tip of a ray touching an infinimaximal square frame centered at the origin. A vertex v is called a standard
vertex if its embedding is a standard point and non-standard if its embedding is a non-standard point. By the
straightline embedding of their source and target vertices, edges correspond to either affine segments, rays or
lines or are part of the bounding frame.
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Figure 20.2: Extended geometry: standard vertices are marked by S, non-standard vertices are marked by N.
A: The possible embeddings of edges: an affine segment s1, an affine ray s2, an affine line s3. B: A plane
map embedded by extended geometry: note that the frame is arbitrarily large, the 6 vertices on the frame are at
infinity, the two faces represent a geometrically unbounded area, however they are topologically closed by the
frame edges. No standard point can be placed outside the frame.

Inherits From

Topological explorer

Types

Explorer:: Point the point type of finite vertices.

Explorer:: Ray the ray type of vertices on the frame.

Iterators, handles, and circulators are inherited from Topological explorer.

Creation

Explorer is copy constructable and assignable. An object can be obtained via the Nef polyhedron 2::explorer()
method of Nef polyhedron 2.
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Operations

bool E.is standard( Vertex const handle v)

returns true iff v’s position is a standard point.

Point E.point( Vertex const handle v)

returns the standard point that is the embedding of v.
Precondition: E.is standard(v).

Ray E.ray( Vertex const handle v)

returns the ray defining the non-standard point on the
frame.
Precondition: !E.is standard(v).

bool E.is frame edge( Halfedge const handle e)

returns true iff e is part of the infinimaximal frame.
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ExtendedKernelTraits 2

Definition

ExtendedKernelTraits 2 is a kernel concept providing extended geometry2. Let K be an instance of the data
type ExtendedKernelTraits 2. The central notion of extended geometry are extended points. An extended
point represents either a standard affine point of the Cartesian plane or a non-standard point representing the
equivalence class of rays where two rays are equivalent if one is contained in the other.

Let R be an infinimaximal number3, F be the square box with corners NW (−R,R), NE(R,R), SE(R,−R), and
SW (−R,−R). Let p be a non-standard point and let r be a ray defining it. If the frame F contains the source
point of r then let p(R) be the intersection of r with the frame F , if F does not contain the source of r then
p(R) is undefined. For a standard point let p(R) be equal to p if p is contained in the frame F and let p(R)
be undefined otherwise. Clearly, for any standard or non-standard point p, p(R) is defined for any sufficiently
large R. Let f be any function on standard points, say with k arguments. We call f extensible if for any k points
p1, . . . , pk the function value f (p1(R), . . . , pk(R)) is constant for all sufficiently large R. We define this value as
f (p1, . . . , pk). Predicates like lexicographic order of points, orientation, and incircle tests are extensible.

An extended segment is defined by two extended points such that it is either an affine segment, an affine ray, an
affine line, or a segment that is part of the square box. Extended directions extend the affine notion of direction
to extended objects.

This extended geometry concept serves two purposes. It offers functionality for changing between standard
affine and extended geometry. At the same time it provides extensible geometric primitives on the extended
geometric objects.

Types

Affine kernel types

ExtendedKernelTraits 2:: Standard kernel the standard affine kernel.

ExtendedKernelTraits 2:: Standard RT the standard ring type.

ExtendedKernelTraits 2:: Standard point 2 standard points.

ExtendedKernelTraits 2:: Standard segment 2 standard segments.

ExtendedKernelTraits 2:: Standard line 2 standard oriented lines.

ExtendedKernelTraits 2:: Standard direction 2 standard directions.

ExtendedKernelTraits 2:: Standard ray 2 standard rays.

2It is called extended geometry for simplicity, though it is not a real geometry in the classical sense.
3A finite but very large number.
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ExtendedKernelTraits 2:: Standard aff transformation 2

standard affine transformations.

Extended kernel types

ExtendedKernelTraits 2:: RT the ring type of our extended kernel.

ExtendedKernelTraits 2:: Point 2 extended points.

ExtendedKernelTraits 2:: Segment 2 extended segments.

ExtendedKernelTraits 2:: Direction 2 extended directions.

enum Point type { SWCORNER,
LEFTFRAME,
NWCORNER,
BOTTOMFRAME,
STANDARD,
TOPFRAME,
SECORNER,
RIGHTFRAME,
NECORNER}

a type descriptor for extended points.

Operations

Interfacing the affine kernel types

Point 2 K.construct point( Standard point 2 p)

creates an extended point and initializes it to the standard
point p.

Point 2 K.construct point( Standard line 2 l)

creates an extended point and initializes it to the equiv-
alence class of all the rays underlying the oriented line
l.

Point 2 K.construct point( Standard point 2 p1, Standard point 2 p2)

creates an extended point and initializes it to the equiv-
alence class of all the rays underlying the oriented line
l(p1,p2).
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Point 2 K.construct point( Standard point 2 p, Standard direction 2 d)

creates an extended point and initializes it to the equiva-
lence class of all the rays underlying the ray starting in p
in direction d.

Point 2 K.construct opposite point( Standard line 2 l)

creates an extended point and initializes it to the equiv-
alence class of all the rays underlying the oriented line
opposite to l.

Point type K.type( Point 2 p) determines the type of p and returns it.

bool K.is standard( Point 2 p)

returns true iff p is a standard point.

Standard point 2 K.standard point( Point 2 p)

returns the standard point represented by p.
Precondition: K.is standard(p).

Standard line 2 K.standard line( Point 2 p)

returns the oriented line representing the bundle of rays
defining p.
Precondition: !K.is standard(p).

Standard ray 2 K.standard ray( Point 2 p)

a ray defining p.
Precondition: !K.is standard(p).

Point 2 K.NE() returns the point on the northeast frame corner.

Point 2 K.SE() returns the point on the southeast frame corner.

Point 2 K.NW() returns the point on the northwest frame corner.

Point 2 K.SW() returns the point on the southwest frame corner.

Geometric kernel calls

Point 2 K.source( Segment 2 s)

returns the source point of s.
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Point 2 K.target( Segment 2 s)

returns the target point of s.

Segment 2 K.construct segment( Point 2 p, Point 2 q)

constructs a segment pq.

int K.orientation( Segment 2 s, Point 2 p)

returns the orientation of p with respect to the line
through s.

int K.orientation( Point 2 p1, Point 2 p2, Point 2 p3)

returns the orientation of p3 with respect to the line
through p1p2.

bool K.left turn( Point 2 p1, Point 2 p2, Point 2 p3)

return true iff the p3 is left of the line through p1p2.

bool K.is degenerate( Segment 2 s)

return true iff s is degenerate.

int K.compare xy( Point 2 p1, Point 2 p2)

returns the lexicographic order of p1 and p2.

int K.compare x( Point 2 p1, Point 2 p2)

returns the order on the x-coordinates of p1 and p2.

int K.compare y( Point 2 p1, Point 2 p2)

returns the order on the y-coordinates of p1 and p2.

Point 2 K.intersection( Segment 2 s1, Segment 2 s2)

returns the point of intersection of the lines supported by
s1 and s2.
Precondition: the intersection point exists.
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Direction 2 K.construct direction( Point 2 p1, Point 2 p2)

returns the direction of the vector p2 - p1.

bool K.strictly ordered ccw( Direction 2 d1, Direction 2 d2, Direction 2 d3)

returns true iff d2 is in the interior of the counterclock-
wise angular sector between d1 and d3.

bool K.strictly ordered along line( Point 2 p1, Point 2 p2, Point 2 p3)

returns true iff p2 is in the relative interior of the segment
p1p3.

bool K.contains( Segment 2 s, Point 2 p)

returns true iff s contains p.

bool K.first pair closer than second( Point 2 p1, Point 2 p2, Point 2 p3, Point 2 p4)

returns true iff ‖p1− p2‖< ‖p3− p4‖.

const char* K.output identifier() returns a unique identifier for kernel object Input/Output.
Usually this should be the name of the model.

Has Models

CGAL::Extended cartesian<FT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1590
CGAL::Extended homogeneous<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1591
CGAL::Filtered extended homogeneous<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1592
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CGAL::Extended cartesian<FT>

Definition

The class Extended cartesian<FT> serves as a traits class for the class CGAL::Nef polyhedron 2<T>. It uses a
polynomial component representation based on a field number type FT .

#include <CGAL/Extended cartesian.h>

Is Model for the Concepts

ExtendedKernelTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1585

Creation

Extended cartesian<FT> traits; default constructor.

Requirements

To make a field number type FT model work with this class, you must provide a traits class for this number
type: CGAL::Number type traits<FT model> (See the support library manual.)

Operations

Fits all operation requirements of the concept.

See Also

CGAL::Extended homogeneous<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1591
CGAL::Filtered extended homogeneous<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1592
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CGAL::Extended homogeneous<RT>

Definition

The class Extended homogeneous<RT> serves as a traits class for the class CGAL::Nef polyhedron 2<T>. It
uses a polynomial component representation based on a Euclidean ring number type RT .

#include <CGAL/Extended homogeneous.h>

Is Model for the Concepts

ExtendedKernelTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1585

Creation

Extended homogeneous<RT> traits; default constructor.

Requirements

To make an Euclidean ring number type RT model work with this class the number type must support a gcd
computation in namespace CGAL::NTS. CGAL provides a function template for this, which will be used by
default when your number type is not one of the built-in number types, one of the number types distrubuted
with CGAL or one of the LEDA number types.

Operations

Fits all operation requirements of the concept.

See Also

CGAL::Extended cartesian<FT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1590
CGAL::Filtered extended homogeneous<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1592
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CGAL::Filtered extended homogeneous<RT>

Definition

The class Filtered extended homogeneous<RT> serves as a traits class for the class CGAL::Nef polyhedron 2<
T>. It uses a polynomial component representation based on a ring number type RT .

#include <CGAL/Filtered extended homogeneous.h>

Is Model for the Concepts

ExtendedKernelTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1585

Creation

Filtered extended homogeneous<RT> traits; default constructor.

Operations

Fits all operation requirements of the concept.

See Also

CGAL::Extended cartesian<FT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1590
CGAL::Extended homogeneous<RT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1591
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21.1 Introduction

Nef polyhedra are defined as a subset of the d-dimensional space obtained by a finite number of set complement
and set intersection operations on halfspaces.

Due to the fact that all other binary set operations like union, difference and symmetric difference can be reduced
to intersection and complement calculations, Nef polyhedra are also closed under those operations. Also, Nef
polyhedra are closed under topological unary set operations. Given a Nef polyhedron one can determine its
interior, its boundary, and its closure.

Additionally, a d-dimensional Nef polyhedron has the property, that its boundary is a (d-1)-dimensional Nef
polyhedron. This property can be used as a way to represent 3-dimensional Nef polyhedra by means of planar
Nef polyhedra. This is done by intersecting the neighborhood of a vertex in a 3D Nef polyhedron with an
ε-sphere. The result is a planar Nef polyhedron embedded on the sphere.

The intersection of a halfspace going through the center of the ε-sphere, with the ε-sphere, results in a halfsphere
which is bounded by a great circle. A binary operation of two halfspheres cuts the great circles into great arcs.
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Figure 21.1: Two spherical Nef polyhedra. A closed halfspace on the left and a complex polyhedron on the
right. The different colors indicate selected and unselected regions, lines and points.

shalfloopopposite shalfloop

incident sface

The incidence structure of planar Nef polyhedra can be reused. The items are denoted as svertex, shal f edge and
s f ace, analogous to their counterparts in Nef polyhedron S2. Additionally, there is the shalfloop reprsenting
the great circles. The incidences are illustrated in the figure above.

21.2 Restricted Spherical Geometry

We introduce geometric objects that are part of the spherical surface S2 and operations on them. We define types
Sphere point, Sphere circle, Sphere segment, and Sphere direction. Sphere points are points on S2, Sphere
circles are oriented great circles of S2, Sphere segments are oriented parts of Sphere circles bounded by a pair
of Sphere points, and Sphere directions are directions that are part of great circles. (a direction is usually
defined to be a vector without length, that floats around in its underlying space and can be used to specify a
movement at any point of the underlying space; in our case we use directions only at points that are part of the
great circle that underlies also the direction.)

Note that we have to consider special geometric properties of the objects. For example two points that are part
of a great circle define two Sphere segments, and two arbitrary Sphere segments can intersect in two points.

If we restrict our geometric objects to a so-called perfect hemisphere of S2
1 then the restricted objects behave

like in classical geometry, e.g., two points define exactly one segment, two segments intersect in at most one

1A perfect hemisphere of S2 is an open half-sphere plus an open half-circle in the boundary of the open half-sphere plus one endpoint
of the half-circle.

1594



interior point (non-degenerately), or three non-cocircular sphere points can be qualified as being positively or
negatively oriented.

21.3 Example Programs

21.3.1 First Example

In this first example Nef polyhedron S2 is parametrized with a CGAL Kernel as traits class. The types compris-
ing the spherical geometry can be retrieved from the type Nef polyhedron S2<Traits> as is done in the example
with the type Sphere circle. Then three Nef polyhedra are created: N1 is a halfsphere including the boundary,
N2 is another halfsphere without the boundary, and N3 is the intersection of N1 and N2.� �
#include <CGAL/Gmpz.h>
#include <CGAL/Homogeneous.h>
#include <CGAL/Nef_polyhedron_S2.h>

typedef CGAL::Gmpz RT;
typedef CGAL::Homogeneous<RT> Kernel;
typedef CGAL::Nef_polyhedron_S2<Kernel> Nef_polyhedron;
typedef Nef_polyhedron::Sphere_circle Sphere_circle;

int main()
{

Nef_polyhedron N1(Sphere_circle(1,0,0));
Nef_polyhedron N2(Sphere_circle(0,1,0), Nef_polyhedron::EXCLUDED);
Nef_polyhedron N3 = N1 * N2;
return 0;

}� �
File: examples/Nef_S2/nef_s2_simple.cpp

21.3.2 Construction and Combinations

Th example shows the different types of constructors: N1 is the complete sphere, N2 is a halfsphere which
includes the boundary, N3 is created with the copy constructor, N4 is created as an arrangement of a set of
Sphere segments, and N5 is created as the empty set.

The example also shows the use of unary set operations, binary operations, and binary predicates: N3 is defined
as the complement of N2, N1 is compared with the union of N2 and N3, N5 is united with N2 and then
intersected with N4. At last, it is tested if N5 is a subset of N2 and if N5 is not equal to N4.� �
#include <CGAL/Gmpz.h>
#include <CGAL/Homogeneous.h>
#include <CGAL/Nef_polyhedron_S2.h>

typedef CGAL::Gmpz RT;
typedef CGAL::Homogeneous<RT> Kernel;
typedef CGAL::Nef_polyhedron_S2<Kernel> Nef_polyhedron;
typedef Nef_polyhedron::Sphere_point Sphere_point;
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typedef Nef_polyhedron::Sphere_segment Sphere_segment;
typedef Nef_polyhedron::Sphere_circle Sphere_circle;

int main() {

Nef_polyhedron N1(Nef_polyhedron::COMPLETE);

Sphere_circle c(1,1,1); // c : x + y + z = 0
Nef_polyhedron N2(c, Nef_polyhedron::INCLUDED);
Nef_polyhedron N3(N2.complement());
CGAL_assertion(N1 == N2.join(N3));

Sphere_point p1(1,0,0), p2(0,1,0), p3(0,0,1);
Sphere_segment s1(p1,p2), s2(p2,p3), s3(p3,p1);
Sphere_segment triangle[3] = { s1, s2, s3 };
Nef_polyhedron N4(triangle, triangle+3);
Nef_polyhedron N5;
N5 += N2;
N5 = N5.intersection(N4);
CGAL_assertion(N5 <= N2 && N5 != N4);

return 0;
}� �
File: examples/Nef_S2/nef_s2_construction.cpp

21.3.3 Exploration

By recursively composing binary and unary operations one can end with a very complex rectilinear structure.
Nef polyhedron S2 allows read-only exploration of the structure.

In the following example, a random Nef polyhedron S2 S created from n halfspheres is explored. Each sface is
composed of one outer sface cycles and an arbitrary number of inner sfaces cycles. The outer cycle is either an
shalfloop or a cycle of shalfedges. An inner cycles additionally can be an isolated vertex. The example shows
how to get the entry item it to all sface cycles of an sface sf and how to find out what type of item it is.

The macro CGAL forall sface cycles of is equivalent to a for-loop on the range [sf->sface cycles begin(), sf-
>sface cycles end()). An SFace cycle const iterator either represents a SVertex const handle, a SHalfede
const handle or a SHalfloop const handle. In order to find out which handle type is represented, the functions
is svertex(), is shafledge() and is shalfloop() are provided. Afterwards the iterator can be casted to the proper
handle type.� �
#include <CGAL/Gmpq.h>
#include <CGAL/Cartesian.h>
#include <CGAL/Nef_polyhedron_S2.h>
#include <CGAL/Nef_S2/create_random_Nef_S2.h>

typedef CGAL::Gmpq FT;
typedef CGAL::Cartesian<FT> Kernel;
typedef CGAL::Nef_polyhedron_S2<Kernel> Nef_polyhedron_S2;
typedef Nef_polyhedron_S2::SVertex_const_handle SVertex_const_handle;
typedef Nef_polyhedron_S2::SHalfedge_const_handle SHalfedge_const_handle;
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typedef Nef_polyhedron_S2::SHalfloop_const_handle SHalfloop_const_handle;
typedef Nef_polyhedron_S2::SFace_const_iterator SFace_const_iterator;
typedef Nef_polyhedron_S2::SFace_cycle_const_iterator

SFace_cycle_const_iterator;

int main() {

Nef_polyhedron_S2 S;
CGAL::create_random_Nef_S2(S,5);

int i=0;
SFace_const_iterator sf;
CGAL_forall_sfaces(sf,S) {

SFace_cycle_const_iterator it;
std::cout << "the sface cycles of sface " << i++;
std::cout << " start with an " << std::endl;
CGAL_forall_sface_cycles_of(it,sf) {

if (it.is_svertex()) {
std::cout << " svertex at position ";
std::cout << SVertex_const_handle(it)->point() << std::endl;

}
else if (it.is_shalfedge()) {

std::cout << " shalfedge from ";
std::cout << SHalfedge_const_handle(it)->source()->point() << "

to ";
std::cout << SHalfedge_const_handle(it)->target()->point() <<

std::endl;
}
else if (it.is_shalfloop()) {

std::cout << " shalfloop lying in the plane ";
std::cout << SHalfloop_const_handle(it)->circle() << std::endl;

}
else

std::cout << "something is wrong" << std::endl;
}

}
return 0;

}� �
File: examples/Nef_S2/nef_s2_exploration.cpp

21.3.4 Point Location

Using the locate function, it is possible to retrive an item at a certain location on the sphere. In the following
example, the item at location Sphere point(1,0,0) in a random Nef polyhedron S2 is retrieved. locate returns an
instance of type Object handle, which is a container for any handle type. Here, it either a SVertex const handle,
a SHalfedge const handle, a SHafloop const handle or a SFace const handle. The function CGAL::assign
performs the cast operation and returns a boolean which indicates whether the cast was successful or not.� �
#include <CGAL/Gmpq.h>
#include <CGAL/Cartesian.h>
#include <CGAL/Nef_polyhedron_S2.h>

1597



#include <CGAL/Nef_S2/create_random_Nef_S2.h>

typedef CGAL::Gmpq FT;
typedef CGAL::Cartesian<FT> Kernel;
typedef CGAL::Nef_polyhedron_S2<Kernel> Nef_polyhedron_S2;
typedef Nef_polyhedron_S2::SVertex_const_handle SVertex_const_handle;
typedef Nef_polyhedron_S2::SHalfedge_const_handle SHalfedge_const_handle;
typedef Nef_polyhedron_S2::SHalfloop_const_handle SHalfloop_const_handle;
typedef Nef_polyhedron_S2::SFace_const_handle SFace_const_handle;
typedef Nef_polyhedron_S2::Object_handle Object_handle;
typedef Nef_polyhedron_S2::Sphere_point Sphere_point;

int main() {

Nef_polyhedron_S2 S;
CGAL::create_random_Nef_S2(S,5);

SVertex_const_handle sv;
SHalfedge_const_handle se;
SHalfloop_const_handle sl;
SFace_const_handle sf;
Object_handle o = S.locate(Sphere_point(1,0,0));
if(CGAL::assign(sv,o))

std::cout << "Locating svertex" << std::endl;
else if(CGAL::assign(se,o))

std::cout << "Locating shalfedge" << std::endl;
else if(CGAL::assign(sl,o))

std::cout << "Locating shalfloop" << std::endl;
else if(CGAL::assign(sf,o))

std::cout << "Locating sface" << std::endl;
else {

std::cout << "something wrong" << std::endl;
return 1;

}
return 0;

}� �
File: examples/Nef_S2/nef_s2_point_location.cpp

21.3.5 Visualization

Nef polyhedron S2 provides an interface for OpenGL visualization via a Qt widget. The usage is shown in the
following example:� �
#include <CGAL/basic.h>

#include <CGAL/Gmpz.h>
#include <CGAL/Homogeneous.h>
#include <CGAL/Nef_polyhedron_S2.h>
#include <CGAL/Nef_S2/create_random_Nef_S2.h>
#include <CGAL/IO/Qt_widget_Nef_S2.h>
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#include <qapplication.h>

typedef CGAL::Gmpz RT;
typedef CGAL::Homogeneous<RT> Kernel;
typedef CGAL::Nef_polyhedron_S2<Kernel> Nef_polyhedron_S2;

int main(int argc, char* argv[]) {

Nef_polyhedron_S2 S;
create_random_Nef_S2(S,5);

QApplication a(argc, argv);
CGAL::Qt_widget_Nef_S2<Nef_polyhedron_S2>* w =

new CGAL::Qt_widget_Nef_S2<Nef_polyhedron_S2>(S);
a.setMainWidget(w);
w->show();
return a.exec();

}� �
File: demo/Nef_S2/nef_S2.cpp
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2D Boolean Operations on Nef Polygons
Embedded on the Sphere
Reference Manual
Peter Hachenberger, Lutz Kettner, and Michael Seel

Nef polyhedra are defined as a subset of the d-dimensional space obtained by a finite number of set complement
and set intersection operations on halfspaces.

Due to the fact that all other binary set operations like union, difference and symmetric difference can be reduced
to intersection and complement calculations, Nef polyhedra are also closed under those operations. Also, Nef
polyhedra are closed under topological unary set operations. Given a Nef polyhedron one can determine its
interior, its boundary, and its closure.

Additionally, a d-dimensional Nef polyhedron has the property, that its boundary is a (d-1)-dimensional Nef
polyhedron. This property can be used as a way to represent 3-dimensional Nef polyhedra by means of planar
Nef polyhedra. This is done by intersecting the neighborhood of a vertex in a 3D Nef polyhedron with an
ε-sphere. The result is a planar Nef polyhedron embedded on the sphere.

The intersection of a halfspace going through the center of the ε-sphere, with the ε-sphere, results in a halfsphere
which is bounded by a great circle. A binary operation of two halfspheres cuts the great circles into great arcs.

The incidence structure of planar Nef polyhedra can be reused. The items are denoted as svertex, shal f edge and
s f ace, analogous to their counterparts in Nef polyhedron 2. Additionally, there is the shalfloop representing
the great circles.
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CGAL::Nef polyhedron S2<Traits>

Definition

An instance of data type Nef polyhedron S2<Traits> is a subset of the sphere S2 that is the result of forming
complements and intersections starting from a finite set H of halfspaces bounded by a plane containing the
origin. Halfspaces correspond to hemispheres of S2 and are therefore modeled by oriented great circles of
type Sphere circle. Nef polyhedron S2 is closed under all binary set operations intersection, union, difference,
complement and under the topological operations boundary, closure, and interior.

#include <CGAL/Nef polyhedron S2.h>

Parameters

template < class Nef polyhedronTraits S2,
class Nef polyhedronItems S2 = CGAL::SM items,
class Nef polyhedronMarks = bool

class Nef polyhedron S2;

The first parameter requires one of the following exact kernels: Homogeneous, Simple homogeneous
parametrized with Gmpz, leda integer or any other number type modeling Z, or Cartesian, Simple cartesian
parametrized with Gmpq, leda rational,Quotient<Gmpz> or any other number type modeling Q.

The second parameter and the third parameter are for future considerations. Neither Nef polyhedronItems
S2 nor Nef polyhedronMarks is specifed, yet. Do not use other than the default types for these two template
parameters.

Types

Nef polyhedron S2<Traits>:: Sphere point points in the sphere surface.
Nef polyhedron S2<Traits>:: Sphere segment segments in the sphere surface.
Nef polyhedron S2<Traits>:: Sphere circle oriented great circles modeling spatial half-

spaces.

Nef polyhedron S2<Traits>:: SVertex const handle non-mutable handle to svertex.
Nef polyhedron S2<Traits>:: SHalfedge const handle non-mutable handle to shalfedge.
Nef polyhedron S2<Traits>:: SHalfloop const handle non-mutable handle to shalfloop.
Nef polyhedron S2<Traits>:: SFace const handle non-mutable handle to sface.

Nef polyhedron S2<Traits>:: SVertex const iterator non-mutable iterator over all svertices.
Nef polyhedron S2<Traits>:: SHalfedge const iterator non-mutable iterator over all shalfedges.
Nef polyhedron S2<Traits>:: SHalfloop const iterator non-mutable iterator over all shalfloops.
Nef polyhedron S2<Traits>:: SFace const iterator non-mutable iterator over all sfaces.

Nef polyhedron S2<Traits>:: SHalfedge around svertex const circulator

circulating the adjacency list of an svertex v.
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Nef polyhedron S2<Traits>:: SHalfedge around sface const circulator

circulating the sface cycle of an sface f .

Nef polyhedron S2<Traits>:: SFace cycle const iterator iterating all sface cycles of an sface f . The iterator
has method bool is svertex(), bool is shalfedge(),
bool is shalfloop(), and can be converted to
the corresponding handles SVertex const handle,
SHalfedge const handle, or SHalfloop const
handle.

Nef polyhedron S2<Traits>:: Mark attributes of objects (vertices, edges, faces).

Nef polyhedron S2<Traits>:: size type size type

enum Boundary { EXCLUDED, INCLUDED}; construction selection.

enum Content { EMPTY, COMPLETE}; construction selection.

Creation

Nef polyhedron S2<Traits> N( Content sphere = EMPTY);

creates an instance N of type Nef polyhedron S2<K> and initializes it to the empty set
if sphere == EMPTY and to the whole sphere if sphere == COMPLETE.

Nef polyhedron S2<Traits> N( Sphere circle c, Boundary circle = INCLUDED);

creates a Nef polyhedron N containing the half-sphere left of c including c if cir-
cle==INCLUDED, excluding c if circle==EXCLUDED.

template <class Forward iterator>
Nef polyhedron S2<Traits> N( Forward iterator first,

Forward iterator beyond,
Boundary b = INCLUDED)

creates a Nef polyhedron N from the set of sphere segments in the iterator range
[first,beyond). If the set of sphere segments is a simple polygon that separates the
sphere surface into two regions, then the polygonal region that is left of the segment
*first is selected. The polygonal region includes its boundary if b = INCLUDED and
excludes the boundary otherwise. Forward iterator has to be an iterator with value
type Sphere segment.

Operations

void N.clear( Content plane = EMPTY)

makes N the empty set if plane == EMPTY and the full
plane if plane == COMPLETE.
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bool N.is empty() returns true if N is empty, false otherwise.

bool N.is sphere() returns true if N is the whole sphere, false otherwise.

Constructive Operations

Nef polyhedron S2<K> N.complement() returns the complement of N in the plane.

Nef polyhedron S2<K> N.interior() returns the interior of N.

Nef polyhedron S2<K> N.closure() returns the closure of N.

Nef polyhedron S2<K> N.boundary() returns the boundary of N.

Nef polyhedron S2<K> N.regularization() returns the regularized polyhedron (closure of interior).

Nef polyhedron S2<K> N.intersection( Nef polyhedron S2<K> N1)

returns N ∩ N1.

Nef polyhedron S2<K> N.join( Nef polyhedron S2<K> N1)

returns N ∪ N1.

Nef polyhedron S2<K> N.difference( Nef polyhedron S2<K> N1)

returns N − N1.

Nef polyhedron S2<K> N.symmetric difference( Nef polyhedron S2<K> N1)

returns the symmectric difference N - T ∪ T - N.

Additionally there are operators *,+,-, ˆ,! which implement the binary operations intersection, union, differ-
ence, symmetric difference, and the unary operation complement respectively. There are also the corresponding
modification operations *=,+=,-=, ˆ=.

There are also comparison operations like <,<=,>,>=,==,!= which implement the relations subset, subset or
equal, superset, superset or equal, equality, inequality, respectively.

Statistics and Integrity

Size type N.number of svertices() returns the number of svertices.
Size type N.number of shalfedges() returns the number of shalfedges.

Size type N.number of sedges() returns the number of sedges.
Size type N.number of shalfloops() returns the number of shalfloops.
Size type N.number of sloops() returns the number of sloops.
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Size type N.number of sfaces() returns the number of sfaces.
Size type N.number of sface cycles() returns the number of sface cycles.
Size type N.number of connected components()

calculates the number of connected components of P.

void N.print statistics( std::ostream& os = std::cout)

print the statistics of P: the number of vertices, edges, and faces.

void N.check integrity and topological planarity( bool faces=true)

checks the link structure and the genus of P.

Exploration - Point location - Ray shooting

As Nef polyhedra are the result of forming complements and intersections starting from a set H of half-spaces
that are defined by oriented lines in the plane, they can be represented by an attributed plane map M = (V,E,F).
For topological queries within M the following types and operations allow exploration access to this structure.

Types

Nef polyhedron S2<Traits>:: Object handle

a generic handle to an object of the underlying plane map. The kind of object (vertex,
halfedge, face) can be determined and the object can be assigned to a corresponding
handle by the three functions:
bool assign(Vertex const handle& h, Object handle)
bool assign(Halfedge const handle& h, Object handle)
bool assign(Face const handle& h, Object handle)
where each function returns true iff the assignment to h was done.

Operations

bool N.contains( Object handle h)

returns true iff the object h is contained in the set represented by N.

bool N.contained in boundary( Object handle h)

returns true iff the object h is contained in the 1-skeleton of N.

Object handle N.locate( Sphere point p)

returns a generic handle h to an object (face, halfedge, vertex) of the under-
lying plane map that contains the point p in its relative interior. The point
p is contained in the set represented by N if N.contains(h) is true. The lo-
cation mode flag m allows one to choose between different point location
strategies.
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Object handle N.ray shoot( Sphere point p, Sphere direction d)

returns a handle h with N.contains(h) that can be converted to a Vertex
/Halfedge /Face const handle as described above. The object returned is
intersected by the ray starting in p with direction d and has minimal distance
to p. The operation returns an empty Object handle if the ray shoot along d
does not hit any object h of N with N.contains(h).

Object handle N.ray shoot to boundary( Sphere point p, Sphere direction d)

returns a handle h that can be converted to a Vertex /Halfedge const handle
as described above. The object returned is part of the 1-skeleton of N, in-
tersected by the ray starting in p with direction d and has minimal distance
to p. The operation returns an empty Object handle if the ray shoot along d
does not hit any 1-skeleton object h of N. The location mode flag m allows
one to choose between different point location strategies.

Iteration

bool N.has shalfloop() const

returns true iff there is a shalfloop.

SHalfloop const handle N.shalfloop() const returns access to the sloop.

The list of all objects can be accessed via iterator ranges. For comfortable iteration we also provide iterations
macros. The iterator range access operations are of the following kind:
SVertex iterator svertices begin()/svertices end()
SHalfedge iterator shalfedges begin()/shalfedges end()
SHalfloop iterator shalfloops begin()/shalfloops end()
SFace iterator sfaces begin()/sfaces end()

The macros are then CGAL forall svertices(v,M), CGAL forall shalfedges(e,M), CGAL forall sfaces(f,M),
CGAL forall sface cycles of(fc,F) where M is a sphere map and F is a sface.

Input and Output

A Nef polyhedron N can be visualized in an open GL window. The output operator is defined in the file
CGAL/IO/Nef polyhedron 2 Window stream.h.

Implementation

Nef polyhedra are implemented on top of a halfedge data structure and use linear space in the number of vertices,
edges and facets. Operations like empty take constant time. The operations clear, complement, interior, closure,
boundary, regularization, input and output take linear time. All binary set operations and comparison operations
take time O(n logn) where n is the size of the output plus the size of the input.

The point location and ray shooting operations are implemented in the naive way. The operations run in linear
query time without any preprocessing.
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CGAL::Nef polyhedron S2<Traits>::Sphere point

Definition

An object p of type Sphere point<R> is a point on the surface of a unit sphere. Such points correspond to the
nontrivial directions in space and similarly to the equivalence classes of all nontrivial vectors under normaliza-
tion.

Types

Sphere point:: RT ring number type.

Creation

Sphere point p; creates some sphere point.

Sphere point p( RT x, RT y, RT z); creates a sphere point corresponding to the point of intersection of the
ray starting at the origin in direction (x,y,z) and the surface of S2.

Operations

Access to the coordinates is provided by the following operations. Note that the vector (x,y,z) is not normalized.

RT p.x() the x-coordinate.

RT p.y() the y-coordinate.

RT p.z() the z-coordinate.

bool p == q Equality.

bool p != q Inequality.

Sphere point p.antipode() returns the antipode of p.
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CGAL::Nef polyhedron S2<Traits>::Sphere segment

Definition

An object s of type Sphere segment is a segment in the surface of a unit sphere that is part of a great circle
trough the origin. Sphere segments are represented by two sphere points p and q plus an oriented plane h that
contains p and q. The plane determines the sphere segment as follows. Let c be the circle in the intersection of
h and S2. Then s is that part of c that is swept, when we rotate p into q in counterclockwise rotation around the
normal vector of h as seen from the positive halfspace.

Creation

Sphere segment s; creates some sphere segment.

Sphere segment s( Sphere point p1, Sphere point p2, bool shorter arc=true);

creates a spherical segment spanning the shorter arc from p1 to p2 if shorter arc
== true. Otherwise the longer arc is created.
Precondition: p1 != p2 and p1 != p2.opposite().

Sphere segment s( Sphere point p1, Sphere point p2, Sphere circle c);

creates a spherical segment spanning the arc from p1 to p2 as part of the oriented
circle c (p1 == p2 or p1 == p2.opposite() are possible.)
Precondition: p1 and p2 are contained in c.

Sphere segment s( Sphere circle c1, Sphere circle c2);

creates the spherical segment as part of c1 that is part of the halfsphere left of
the oriented circle c2.
Precondition: c1 != c2 as unoriented circles.

Operations

Sphere point s.source() the source point of s.

Sphere point s.target() the target point of s.

Sphere circle s.sphere circle() the great circle supporting s.

Sphere segment s.opposite() returns the sperical segment oriented from target() to source()
with the same point set as s.

Sphere segment s.complement() returns the sperical segment oriented from target() to source()
with the point set completing s to a full circle.
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bool s.is short() a segment is short iff it is shorter than a half-circle.

bool s.is long() a segment is long iff it is longer than a half-circle.

bool s.is degenerate() return true iff s is degenerate,
i.e. source and target are the same.

bool s.is halfcircle() return true iff s is a perfect half-circle, i.e. source().antipode
== target().

bool s.has on( Sphere point p)

return true iff s contains p.

bool s.has in relative interior( Sphere point p)

return true iff s contains p in its relative interior.
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CGAL::Nef polyhedron S2<Traits>::Sphere circle

Definition

An object c of type Sphere circle is an oriented great circle on the surface of a unit sphere. Such circles corre-
spond to the intersection of an oriented plane (that contains the origin) and the surface of S2. The orientation
of the great circle is that of a counterclockwise walk along the circle as seen from the positive halfspace of the
oriented plane.

Types

Sphere circle:: RT ring type.

Sphere circle:: Plane 3 plane a Sphere circle lies in.

Creation

Sphere circle c; creates some great circle.

Sphere circle c( Sphere point p, Sphere point q);

If p and q are opposite of each other, then we create the unique
great circle on S2 which contains p and q. This circle is ori-
ented such that a walk along c meets p just before the shorter
segment between p and q. If p and q are opposite of each
other then we create any great circle that contains p and q.

Sphere circle c( Plane 3 h); creates the circle corresponding to the plane h.
Precondition: h contains the origin.

Sphere circle c( RT x, RT y, RT z); creates the circle orthogonal to the vector (x,y,z).

Sphere circle c( Sphere circle c, Sphere point p);

creates a great circle orthogonal to c that contains p.
Precondition: p is not part of c.

Operations

Sphere circle c.opposite() Returns a sphere circle in the oppostie direction of c.

bool c.has on( Sphere point p) returns true iff c contains p.

Plane 3 c.plane() returns the plane supporting c.

Sphere point c.orthogonal pole() returns the point that is the pole of the hemisphere left of c.
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Global functions

bool equal as sets( const c1, const c2)

returns true iff c1 and c2 are equal as unoriented circles.
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CGAL::Nef polyhedron S2<Traits>::SVertex

Definition

Figure 21.2 illustrates the incidence of a svertex on a sphere map.

The member function out sedge returns the first outgoing shalfedge, and incident sface returns the incident
sface.

#include <CGAL/Nef polyhedron S2.h>

Types

The following types are the same as in Nef polyhedron S2<Traits>.

SVertex:: Mark type of mark.

SVertex:: Sphere point sphere point type stored in SVertex.

SVertex:: SVertex const handle const handle to SVertex.
SVertex:: SHalfedge const handle const handle to SHalfedge.
SVertex:: SFace const handle const handle to SFace.

Creation

There is no need for a user to create a SVertex explicitly. The class Nef polyhedron S2<Traits> manages the
needed svertices internally.

Operations

Mark e.mark() const the mark of e .

Sphere point e.point() const the sphere point of e .

bool e.is isolated() const

returns —true— if e has no adjacent sedges.

SVertex const handle e.twin() const the twin of e .

SHalfedge const handle e.out sedge() const the first out sedge of e .

SFace const handle e.incident sface() const

the incident sface of e .
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See Also

CGAL::Nef polyhedron S2<Traits>::SHalfedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1615
CGAL::Nef polyhedron S2<Traits>::SFace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1619
CGAL::Nef polyhedron S2<Traits>::Sphere point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1608
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CGAL::Nef polyhedron S2<Traits>::SHalfedge

Definition

A shalfedge is a great arc on a sphere map. The figure below depicts the relationship between a shalfedge and
its incident shalfedges, svertices, and sfaces on a sphere map. A shalfedge is an oriented sedge between two
svertices. It is always paired with a shalfedge pointing in the opposite direction. The twin() member function
returns this shalfedge of opposite orientation.

inciden t svertex

ne
xt 

sh
alf

ed
ge

 

opposite shalfedge

shalfedge previous shalfedge

incident sface

Figure 21.2: Incidences of an SHalfedge

The snext() member function points to the successor shalfedge around this sface while the sprev() member
function points to the preceding shalfedge. An successive assignments of the form se = se->snext() cycles
counterclockwise around the sface (or hole).

Similarly, the successive assignments of the form se = se->snext()->twin() cycle clockwise around the svertex
and traverse all halfedges incident to this svertex. The assignment se = se->cyclic adj succ() can be used as a
shortcut.

A const circulator is provided for each of the two circular orders. The circulators are bidirectional and assignable
to SHalfedge const handle.

#include <CGAL/Nef polyhedron S2.h>

Types

The following types are the same as in Nef polyhedron S2<Traits>.

SHalfedge:: Mark type of mark.

SHalfedge:: Sphere circle sphere circle type stored in SHalfedge.

SHalfedge:: SVertex const handle const handle to SVertex.
SHalfedge:: SHalfedge const handle const handle to SHalfedge.
SHalfedge:: SFace const handle const handle to SFace.

Creation

There is no need for a user to create a SHalfedge explicitly. The class Nef polyhedron S2<Traits> manages the
needed shalfedges internally.
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Operations

Mark se.mark() const the mark of se .

Sphere circle se.circle() const the sphere circle of se .

SHalfedge const handle se.twin() const the twin of se .

SVertex const handle se.source() const the source svertex of se .

SVertex const handle se.target() const equals twin()->source().

SHalfedge const handle se.sprev() const the SHalfedge previous to se in a sface cycle.

SHalfedge const handle se.snext() const the next SHalfedge of se in a sface cycle.

SHalfedge const handle se.cyclic adj pred() const

the edge before se in the cyclic ordered adjacency list of
source().

SHalfedge const handle se.cyclic adj succ() const

the edge after se in the cyclic ordered adjacency list of
source().

SFace const handle se.incident sface() const

the incident sface of se .

bool se.in outer sface cycle() const

determines whether se is in an outer sface cycle.

bool se.in inner sface cycle() const

determines whether se is in an inner sface cycle.

See Also

CGAL::Nef polyhedron S2<Traits>::SVertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1613
CGAL::Nef polyhedron S2<Traits>::SFace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1619
CGAL::Nef polyhedron S2<Traits>::Sphere circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1611
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CGAL::Nef polyhedron S2<Traits>::SHalfloop

Definition

A sloop is a great circle on a sphere. A shalfloop is an oriented sloop. It is always paired with a shalfloop
whose supporting Sphere circle is pointing in the opposite direction. The twin() member function returns this
shalfloop of opposite orientation. Each Nef polyhedron S2 can only have one sloop (resp. two shalfloops).

The figure below depicts the relationship between a shalfloop and sfaces on a sphere map.

shalfloopopposite shalfloop

incident sface

Figure 21.3: Incidences of an SHalfloop

#include <CGAL/Nef polyhedron S2.h>

Types

The following types are the same as in Nef polyhedron S2<Traits>.

SHalfloop:: Mark type of mark.

SHalfloop:: Sphere circle sphere circle type stored in SHalfloop.

SHalfloop:: SHalfloop const handle const handle to SHalfloop.
SHalfloop:: SFace const handle const handle to SFace.

Creation

There is no need for a user to create a SHalfloop explicitly. The class Nef polyhedron S2<Traits> manages the
needed shalfloops internally.

Operations

Mark se.mark() const the mark of se .

Sphere circle se.circle() const the sphere circle of se .
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SHalfloop const handle se.twin() const the twin of se .

SFace const handle se.incident sface() const

the incident sface of se .

See Also

CGAL::Nef polyhedron S2<Traits>::SFace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1619
CGAL::Nef polyhedron S2<Traits>::Sphere circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1611
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CGAL::Nef polyhedron S2<Traits>::SFace

Definition

Figures 21.2 and 21.3 illustrate the incidences of an sface. An sface is described by its boundaries. An entry
item to each boundary cycle can be accessed using the iterator range (sface cycles begin()/sface cycles end()).
Additionally, Nef polyhedron S2 provides the macro CGAL forall sface cylces of . The iterators are of type
SFace cycle const iterator and represent either a shalfedge, a shalfloop, or a svertex.

#include <CGAL/Nef polyhedron S2.h>

Types

The following types are the same as in Nef polyhedron S2<Traits>.

SFace:: Mark type of mark.

SFace:: Object list list of Object handles.

SFace:: Vertex const handle const handle to Vertex.
SFace:: Volume const handle const handle to Volume.
SFace:: SFace const handle const handle to SFace.
SFace:: SFace cycle const iterator const iterator over the entries to all sface cycles of a

sface.

Creation

There is no need for a user to create a SFace explicitly. The class Nef polyhedron S2<Traits> manages the
needed sfaces internally.

Operations

Mark sf .mark() const the mark of sf .

SFace cycle const iterator sf .sface cycle begin() const

iterator over the entries to all sface cycles of sf .

SFace cycle const iterator sf .sface cycle end() const

past-the-end iterator.

See Also

CGAL::Nef polyhedron S2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1603
CGAL::Nef polyhedron S2<Traits>::SVertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1613
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CGAL::Nef polyhedron S2<Traits>::SFace cycle iterator

Definition

The type SFace cycle iterator iterates over a list of Object handles. Each item of that list can either be assigned
to SVertex handle, SHalfedge handle or SHalfloop handle. To find out which of these assignment works out,
the member functions is svertex(), is shalfedge() and is shalfloop() are provided.

#include <CGAL/Nef polyhedron S2.h>

Types

SFace cycle iterator:: SVertex handle const handle to SVertex.
SFace cycle iterator:: SHalfedge handle const handle to SHalfedge.
SFace cycle iterator:: SHalfloop handle const handle to SHalfloop.

Creation

SFace cycle iterator sfc; default constructor.

Operations

bool sfc.is svertex() const returns true if sfc represents a SVertex handle.
bool sfc.is shalfedge() const returns true if sfc represents a SHalfedge handle.
bool sfc.is shalfloop() const returns true if sfc represents a SHalfloop handle.

SVertex handle SVertex handle(sfc) casts sfc to SVertex handle.
SHalfedge handle SHalfedge handle(sfc) casts sfc to SHalfedge handle.
SHalfloop handle SHalfloop handle(sfc) casts sfc to SHalfloop handle.

See Also

CGAL::Nef polyhedron S2<Traits>::SVertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1613
CGAL::Nef polyhedron S2<Traits>::SHalfedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1615
CGAL::Nef polyhedron S2<Traits>::SHalfloop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1617

1620



C
la

ss

CGAL::Qt widget Nef S2<Nef polyhedron S2>

Definition

The class Qt widget Nef S2 uses the OpenGL interface of Qt in order to display a Nef polyhedron S2. Its
purpose is to provide an easy to use viewer for Nef polyhedron S2. There are no means provided to enhance
the functionality of the viewer.

In addition to the functions inherited from the Qt class QGLWidget, Qt widget Nef S2 only has a single public
constructor. For the usage of Qt widget Nef S2 see the example below.

#include <CGAL/IO/Qt widget Nef S2.h>

Parameters

The template parameter expects an instantiation of Nef polyhedron S2<Traits>.

Creation

Qt widget Nef S2<Nef polyhedron S2> W( Nef polyhedron S2 N);

Creates a widget W for displaying the Nef polyhedron S2
N.

See Also

CGAL::Nef polyhedron S2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1603

Example

This example creates some random Sphere segments and distributes them on two Nef polyhedron 2. The two
Nef polyhedra are combined by a symmetric diffrence and the result is displayed in a Qt widget.� �
#include <CGAL/basic.h>

#include <CGAL/Gmpz.h>
#include <CGAL/Homogeneous.h>
#include <CGAL/Nef_polyhedron_S2.h>
#include <CGAL/Nef_S2/create_random_Nef_S2.h>
#include <CGAL/IO/Qt_widget_Nef_S2.h>
#include <qapplication.h>

typedef CGAL::Gmpz RT;
typedef CGAL::Homogeneous<RT> Kernel;
typedef CGAL::Nef_polyhedron_S2<Kernel> Nef_polyhedron_S2;

int main(int argc, char* argv[]) {
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Nef_polyhedron_S2 S;
create_random_Nef_S2(S,5);

QApplication a(argc, argv);
CGAL::Qt_widget_Nef_S2<Nef_polyhedron_S2>* w =

new CGAL::Qt_widget_Nef_S2<Nef_polyhedron_S2>(S);
a.setMainWidget(w);
w->show();
return a.exec();

}� �
File: demo/Nef_S2/nef_S2.cpp
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2D Polygon Partitioning
Susan Hert

Contents
22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1623
22.2 Monotone Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1623
22.3 Convex Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1624

Reference Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1627
22.4 Classified Reference Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1627
22.5 Alphabetical List of Reference Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1628

22.1 Introduction

A partition of a polygon P is a set of polygons such that the interiors of the polygons do not intersect and the
union of the polygons is equal to the interior of the original polygon P. This chapter describes functions for
partitioning planar polygons into two types of subpolygons — y-monotone polygons and convex polygons. The
partitions are produced without introducing new (Steiner) vertices.

All the partitioning functions present the same interface to the user. That is, the user provides a pair of input
iterators, first and beyond, an output iterator result, and a traits class traits. The points in the range [first,
beyond) are assumed to define a simple polygon whose vertices are in counterclockwise order. The computed
partition polygons, whose vertices are also oriented counterclockwise, are written to the sequence starting at
position result and the past-the-end iterator for the resulting sequence of polygons is returned. The traits classes
for the functions specify the types of the input points and output polygons as well as a few other types and
function objects that are required by the various algorithms.

22.2 Monotone Partitioning

A y-monotone polygon is a polygon whose vertices v1, . . . ,vn can be divided into two chains v1, . . . ,vk and
vk, . . . ,vn,v1, such that any horizontal line intersects either chain at most once. For producing a y-monotone
partition of a given polygon, the sweep-line algorithm presented in [dBvKOS97] is implemented by the function
y monotone partition 2. This algorithm runs in O(n logn) time and requires O(n) space. This algorithm does
not guarantee a bound on the number of polygons produced with respect to the optimal number.

1623



Figure 22.1: Examples of an optimal convex partition (left) and an approximately optimal convex partition
(right).

For checking the validity of the partitions produced by y monotone partition 2, we provide a function is y
monotone 2, which determines if a sequence of points in 2D defines a y-monotone polygon or not. For examples
of the use of these functions, see the corresponding reference pages.

22.3 Convex Partitioning

Three functions are provided for producing convex partitions of polygons. One produces a partition that is
optimal in the number of pieces. The other two functions produce approximately optimal convex partitions.
Both these functions produce convex decompositions by first decomposing the polygon into simpler polygons;
the first uses a triangulation and the second a monotone partition. These two functions both guarantee that
they will produce no more than four times the optimal number of convex pieces but they differ in their runtime
complexities. Though the triangulation-based approximation algorithm often results in fewer convex pieces,
this is not always the case.

An optimal convex partition can be produced using the function optimal convex partition 2. This function
provides an implementation of Greene’s dynamic programming algorithm for optimal partitioning [Gre83].
This algorithm requires O(n4) time and O(n3) space in the worst case.

The function approx convex partition 2 implements the simple approximation algorithm of Hertel and
Mehlhorn [HM83] that produces a convex partitioning of a polygon from a triangulation by throwing out un-
necessary triangulation edges. The triangulation used in this function is one produced by the 2-dimensional
constrained triangulation package of CGAL. For a given triangulation, this convex partitioning algorithm re-
quires O(n) time and space to construct a decomposition into no more than four times the optimal number of
convex pieces.

The sweep-line approximation algorithm of Greene [Gre83], which, given a monotone partition of a polygon,
produces a convex partition in O(n logn) time and O(n) space, is implemented by the function greene approx
convex partition 2. The function y monotone partition 2 described in Section 22.2 is used to produce the
monotone partition. This algorithm provides the same worst-case approximation guarantee as the algorithm of
Hertel and Mehlhorn implemented with approx convex partition 2 but can sometimes produce better results
(i.e., convex partitions with fewer pieces).
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Examples of the uses of all of these functions are provided with the corresponding reference pages.
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2D Polygon Partitioning
Reference Manual
Susan Hert

A partition of a polygon is a set of polygons such that the interiors of the polygons do not intersect and the
union of the polygons is equal to the interior of the original polygon. Functions are available for partitioning
planar polygons into two types of subpolygons — y-monotone polygons and convex polygons.

The function that produces a y-monotone partitioning is based on the algorithm presented in [dBvKOS97] which
requires O(n logn) time and O(n) space for a polygon with n vertices and guarantees nothing about the number
of polygons produced with respect to the optimal number. Three functions are provided for producing con-
vex partitions. Two of these functions produce approximately optimal partitions and one results in an optimal
partition, where “optimal” is defined in terms of the number of partition polygons. The two functions that im-
plement approximation algorithms are guaranteed to produce no more than four times the optimal number of
convex pieces. The optimal partitioning function provides an implementation of Greene’s dynamic program-
ming algorithm [Gre83], which requires O(n4) time and O(n3) space to produce a convex partitioning. One
of the approximation algorithms is also due to Greene [Gre83] and requires O(n logn) time and O(n) space to
produce a convex partitioning given a y-monotone partitioning. The other approximation algorithm is a result
of Hertel and Mehlhorn [HM83], which requires O(n) time and space to produce a convex partitioning from a
triangulation of a polygon. Each of the partitioning functions uses a traits class to supply the primitive types
and predicates used by the algorithms.

Assertions

The assertion flags for this package use PARTITION in their names (e.g., CGAL PARTITION NO
POSTCONDITIONS). The precondition checks for the planar polygon partitioning functions are: counterclock-
wise ordering of the input vertices and simplicity of the polygon these vertices represent. The postcondition
checks are: simplicity, counterclockwise orientation, and convexity (or y-monotonicity) of the partition poly-
gons and validity of the partition (i.e., the partition polygons are nonoverlapping and the union of these polygons
is the same as the original polygon) .

22.4 Classified Reference Pages

Concepts

ConvexPartitionIsValidTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1635
IsYMonotoneTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1642
OptimalConvexPartitionTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1649
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CGAL::approx convex partition 2

Definition

Function that produces a set of convex polygons that represent a partitioning of a polygon defined on a sequence
of points. The number of convex polygons produced is no more than four times the minimal number.

#include <CGAL/partition 2.h>

template <class InputIterator, class OutputIterator, class Traits>
OutputIterator approx convex partition 2( InputIterator first,

InputIterator beyond,
OutputIterator result,
Traits traits = Default traits)

computes a partition of the polygon defined by the points
in the range [first, beyond) into convex polygons. The
counterclockwise-oriented partition polygons are written
to the sequence starting at position result. The past-the-
end iterator for the resulting sequence of polygons is re-
turned.
Precondition: The points in the range [first, beyond) de-
fine a simple counterclockwise-oriented polygon.

Requirements

1. Traits is a model of the concept PartitionTraits 2 and, for the purposes of checking the postcondition that
the partition produced is valid, it should also be a model of the concept ConvexPartitionIsValidTraits 2.

2. OutputIterator::value type should be Traits::Polygon 2.

3. InputIterator::value type should be Traits::Point 2, which should also be the type of the points stored in
an object of type Traits::Polygon 2.

4. Points in the range [ f irst,beyond) must define a simple polygon whose vertices are oriented counter-
clockwise.

The default traits class Default traits is Partition traits 2, with the representation type determined by
InputIterator1::value type.

See Also

CGAL::convex partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1633
CGAL::greene approx convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1636
CGAL::optimal convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1646
CGAL::partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1651
CGAL::Partition is valid traits 2<Traits, PolygonIsValid> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1657
CGAL::y monotone partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1662
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Implementation

This function implements the algorithm of Hertel and Mehlhorn [HM83] and is based on the class
CGAL::Constrained triangulation 2. Given a triangulation of the polygon, the function requires O(n) time
and space for a polygon with n vertices.

Example

The following program computes an approximately optimal convex partitioning of a polygon using the default
traits class and stores the partition polygons in the list partition polys.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Partition_traits_2.h>
#include <CGAL/partition_2.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/random_polygon_2.h>
#include <cassert>
#include <list>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Partition_traits_2<K> Traits;
typedef Traits::Point_2 Point_2;
typedef Traits::Polygon_2 Polygon_2;
typedef Polygon_2::Vertex_iterator

Vertex_iterator;
typedef std::list<Polygon_2> Polygon_list;
typedef CGAL::Creator_uniform_2<int, Point_2> Creator;
typedef CGAL::Random_points_in_square_2<Point_2, Creator>

Point_generator;

void make_polygon(Polygon_2& polygon)
{

polygon.push_back(Point_2(391, 374));
polygon.push_back(Point_2(240, 431));
polygon.push_back(Point_2(252, 340));
polygon.push_back(Point_2(374, 320));
polygon.push_back(Point_2(289, 214));
polygon.push_back(Point_2(134, 390));
polygon.push_back(Point_2( 68, 186));
polygon.push_back(Point_2(154, 259));
polygon.push_back(Point_2(161, 107));
polygon.push_back(Point_2(435, 108));
polygon.push_back(Point_2(208, 148));
polygon.push_back(Point_2(295, 160));
polygon.push_back(Point_2(421, 212));
polygon.push_back(Point_2(441, 303));

}

int main()
{

Polygon_2 polygon;
Polygon_list partition_polys;
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/*
CGAL::random_polygon_2(50, std::back_inserter(polygon),

Point_generator(100));
*/

make_polygon(polygon);
CGAL::approx_convex_partition_2(polygon.vertices_begin(),

polygon.vertices_end(),
std::back_inserter(partition_polys));

assert(CGAL::convex_partition_is_valid_2(polygon.vertices_begin(),
polygon.vertices_end(),
partition_polys.begin(),
partition_polys.end()));

return 0;
}� �
File: examples/Partition_2/approx_convex_partition_2.cpp
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CGAL::convex partition is valid 2

Definition

Function that determines if a given set of polygons represents a valid convex partitioning for a given sequence
of points that represent a simple, counterclockwise-oriented polygon. A convex partition is valid if the polygons
do not overlap, the union of the polygons is the same as the original polygon given by the sequence of points,
and if each partition polygon is convex.

#include <CGAL/partition is valid 2.h>

template<class InputIterator, class ForwardIterator, class Traits>
bool convex partition is valid 2( InputIterator point first,

InputIterator point beyond,
ForwardIterator poly first,
ForwardIterator poly beyond,
Traits traits = Default traits)

determines if the polygons in the range [poly first, poly
beyond) define a valid convex partition of the polygon de-
fined by the points in the range [point first, point beyond).
The function returns true iff the partition is valid and other-
wise returns false.
Precondition: The points in the range [point first, point
beyond) define a simple, counterclockwise-oriented polygon.

Requirements

1. Traits is a model of the concept ConvexPartitionIsValidTraits 2.

2. InputIterator::value type should be Traits::Point 2, which should also be the type of the points stored in
an object of type Traits::Polygon 2.

3. ForwardIterator::value type should be Traits::Polygon 2.

The default traits class Default traits is Partition traits 2, with the representation type determined by
InputIterator::value type.

See Also

CGAL::approx convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1630
CGAL::greene approx convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1636
CGAL::optimal convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1646
CGAL::partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1651
CGAL::is convex 2
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Implementation

This function calls partition is valid 2 using the function object Is convex 2 to determine the convexity of each
partition polygon. Thus the time required by this function is O(n logn + e loge) where n is the total number of
vertices in the partition polygons and e the total number of edges.

Example

See the example presented with the function approx convex partition 2 for an illustration of the use of this
function.

advanced
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ConvexPartitionIsValidTraits 2

Definition

Requirements of a traits class used by convex partition is valid 2 for testing the validity of a convex partition
of a polygon.

Types

All types required by the concept PartitionIsValidTraits 2 are required except the function object type Is valid.
The following type is required instead:

ConvexPartitionIsValidTraits 2:: Is convex 2 Model of the concept PolygonIsValid that tests if a sequence
of points is convex or not.

Creation

Only a copy constructor is required.

ConvexPartitionIsValidTraits 2 traits( & tr);

Operations

The following function that creates an instance of the above predicate object type must exist instead of the
function is valid object required by PartitionIsValidTraits 2.

Is convex 2 traits.is convex 2 object( t)

Has Models

CGAL::Partition traits 2<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1659

See Also

CGAL::approx convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1630
CGAL::greene approx convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1636
CGAL::Is convex 2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1643
CGAL::optimal convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1646
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CGAL::greene approx convex partition 2

Definition

Function that produces a set of convex polygons that represent a partitioning of a polygon defined on a sequence
of points. The number of convex polygons produced is no more than four times the minimal number.

#include <CGAL/partition 2.h>

template <class InputIterator, class OutputIterator, class Traits>
OutputIterator greene approx convex partition 2( InputIterator first,

InputIterator beyond,
OutputIterator result,
Traits traits = Default traits)

computes a partition of the polygon defined by the points
in the range [first, beyond) into convex polygons. The
counterclockwise-oriented partition polygons are written to
the sequence starting at position result. The past-the-end it-
erator for the resulting sequence of polygons is returned.
Precondition: The points in the range [first, beyond) define a
simple, counterclockwise-oriented polygon.

Requirements

1. Traits is a model of the concepts PartitionTraits 2 and YMonotonePartitionTraits 2. For the pur-
pose of checking the validity of the y-monotone partition produced as a preprocessing step for the
convex partitioning, it must also be a model of YMonotonePartitionIsValidTraits 2. For the pur-
pose of checking the postcondition that the convex partition is valid, Traits must also be a model of
ConvexPartitionIsValidTraits 2.

2. OutputIterator::value type is equivalent to Traits::Polygon 2.

3. InputIterator::value type is equivalent to Traits::Point 2, which should also be equivalent to the type of
the points stored in an object of type Traits::Polygon 2.

The default traits class Default traits is Partition traits 2, with the representation type determined by
InputIterator::value type.

See Also

CGAL::approx convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1630
CGAL::convex partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1633
CGAL::optimal convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1646
CGAL::partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1651
CGAL::y monotone partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1662
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Implementation

This function implements the approximation algorithm of Greene [Gre83] and requires O(n logn) time and
O(n) space to produce a convex partitioning given a y-monotone partitioning of a polygon with n vertices. The
function y monotone partition 2 is used to produce the monotone partition.

Example

The following program computes an approximately optimal convex partitioning of a polygon using the default
traits class and stores the partition polygons in the list partition polys.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Partition_traits_2.h>
#include <CGAL/partition_2.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/random_polygon_2.h>
#include <cassert>
#include <list>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Partition_traits_2<K> Traits;
typedef Traits::Point_2 Point_2;
typedef Traits::Polygon_2 Polygon_2;
typedef Polygon_2::Vertex_iterator

Vertex_iterator;
typedef std::list<Polygon_2> Polygon_list;
typedef CGAL::Creator_uniform_2<int, Point_2> Creator;
typedef CGAL::Random_points_in_square_2< Point_2, Creator >

Point_generator;

void make_polygon(Polygon_2& polygon)
{

polygon.push_back(Point_2(391, 374));
polygon.push_back(Point_2(240, 431));
polygon.push_back(Point_2(252, 340));
polygon.push_back(Point_2(374, 320));
polygon.push_back(Point_2(289, 214));
polygon.push_back(Point_2(134, 390));
polygon.push_back(Point_2( 68, 186));
polygon.push_back(Point_2(154, 259));
polygon.push_back(Point_2(161, 107));
polygon.push_back(Point_2(435, 108));
polygon.push_back(Point_2(208, 148));
polygon.push_back(Point_2(295, 160));
polygon.push_back(Point_2(421, 212));
polygon.push_back(Point_2(441, 303));

}

int main()
{

Polygon_2 polygon;
Polygon_list partition_polys;
Traits partition_traits;
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/*
CGAL::random_polygon_2(50, std::back_inserter(polygon),

Point_generator(100));
*/

make_polygon(polygon);
CGAL::greene_approx_convex_partition_2(polygon.vertices_begin(),

polygon.vertices_end(),

std::back_inserter(partition_polys),
partition_traits);

assert(CGAL::convex_partition_is_valid_2(polygon.vertices_begin(),
polygon.vertices_end(),
partition_polys.begin(),
partition_polys.end(),
partition_traits));

return 0;
}� �
File: examples/Partition_2/greene_approx_convex_partition_2.cpp
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CGAL::is y monotone 2

Definition

Function for testing the y-monotonicity of a sequence of points.

#include <CGAL/is y monotone 2.h>

template<class InputIterator, class Traits>
bool is y monotone 2( InputIterator first, InputIterator beyond, Traits traits)

Determines if the sequence of points in the range [first, be-
yond) define a y-monotone polygon or not. If so, the function
returns true, otherwise it returns false.

Requirements

1. Traits is a model of the concept IsYMonotoneTraits 2.

2. InputIterator::value type should be Traits::Point 2.

The default traits class Default traits is the kernel in which the type InputIterator::value type is defined.

See Also

CGAL::Is y monotone 2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1645
CGAL::y monotone partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1662
CGAL::y monotone partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1665

Implementation

This function requires O(n) time for a polygon with n vertices.

Example

The following program computes a y-monotone partitioning of a polygon using the default traits class and
stores the partition polygons in the list partition polys. It then asserts that each of the partition polygons is, in
fact, a y-monotone polygon and that the partition is valid. (Note that the assertions are superfluous unless the
postcondition checking done by y monotone partition 2 has been turned off during compilation.)� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Partition_traits_2.h>
#include <CGAL/partition_2.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/random_polygon_2.h>
#include <cassert>
#include <list>
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typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Partition_traits_2<K> Traits;
typedef Traits::Point_2 Point_2;
typedef Traits::Polygon_2 Polygon_2;
typedef std::list<Polygon_2> Polygon_list;
typedef CGAL::Creator_uniform_2<int, Point_2> Creator;
typedef CGAL::Random_points_in_square_2<Point_2, Creator>

Point_generator;

void make_polygon(Polygon_2& polygon)
{

polygon.push_back(Point_2(391, 374));
polygon.push_back(Point_2(240, 431));
polygon.push_back(Point_2(252, 340));
polygon.push_back(Point_2(374, 320));
polygon.push_back(Point_2(289, 214));
polygon.push_back(Point_2(134, 390));
polygon.push_back(Point_2( 68, 186));
polygon.push_back(Point_2(154, 259));
polygon.push_back(Point_2(161, 107));
polygon.push_back(Point_2(435, 108));
polygon.push_back(Point_2(208, 148));
polygon.push_back(Point_2(295, 160));
polygon.push_back(Point_2(421, 212));
polygon.push_back(Point_2(441, 303));

}

int main( )
{

Polygon_2 polygon;
Polygon_list partition_polys;

/*
CGAL::random_polygon_2(50, std::back_inserter(polygon),

Point_generator(100));
*/

make_polygon(polygon);
CGAL::y_monotone_partition_2(polygon.vertices_begin(),

polygon.vertices_end(),
std::back_inserter(partition_polys));

std::list<Polygon_2>::const_iterator poly_it;
for (poly_it = partition_polys.begin(); poly_it !=
partition_polys.end();

poly_it++)
{

assert(CGAL::is_y_monotone_2((*poly_it).vertices_begin(),
(*poly_it).vertices_end()));

}

assert(CGAL::partition_is_valid_2(polygon.vertices_begin(),
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polygon.vertices_end(),
partition_polys.begin(),
partition_polys.end()));

return 0;
}� �
File: examples/Partition_2/y_monotone_partition_2.cpp
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IsYMonotoneTraits 2

Definition

Requirements of a traits class to be used with the function is y monotone 2 that tests whether a sequence of 2D
points defines a y-monotone polygon or not.

Types

The following two types are required:

IsYMonotoneTraits 2:: Point 2 The point type of the polygon vertices.

IsYMonotoneTraits 2:: Less yx 2 Predicate object type that compares Point 2s lexicographi-
cally. Must provide bool operator()(Point 2 p, Point 2 q)
where true is returned iff p <xy q. We have p <xy q, iff
px < qx or px = qx and py < qy, where px and py denote x
and y coordinate of point p resp.

Creation

Only a copy constructor is required.

IsYMonotoneTraits 2 traits( & tr);

Operations

The following function that creates an instance of the above predicate object type must exist:

Less yx 2 traits.less yx 2 object()

Has Models

CGAL::Partition traits 2<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1659
CGAL::Kernel traits 2

See Also

CGAL::Is y monotone 2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1645
CGAL::y monotone partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1662
CGAL::y monotone partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1665
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CGAL::Is convex 2<Traits>

Definition

Function object class for testing if a sequence of points represents a convex polygon or not.

#include <CGAL/polygon function objects.h>

Is Model for the Concepts

PolygonIsValid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1661

Creation

Is convex 2<Traits> f ( Traits t); Traits satisfies the requirements of the function is convex 2

Operations

template<class InputIterator>
bool f ( InputIterator first, InputIterator beyond)

returns true iff the points of type Triats::Point 2 in the range
[first,beyond) define a convex polygon.

See Also

CGAL::convex partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1633
CGAL::Partition is valid traits 2<Traits, PolygonIsValid> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1657

Implementation

This test requires O(n) time for a polygon with n vertices.
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CGAL::Is vacuously valid<Traits>

Definition

Function object class that indicates all sequences of points are valid.

#include <CGAL/polygon function objects.h>

Is Model for the Concepts

PolygonIsValid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1661

Creation

Is vacuously valid<Traits> f ( Traits t);

Operations

template<class InputIterator>
bool f ( InputIterator first, InputIterator beyond) returns true.

See Also

CGAL::partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1651
CGAL::Partition is valid traits 2<Traits, PolygonIsValid> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1657

Implementation

This test requires O(1) time.
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CGAL::Is y monotone 2<Traits>

Definition

Function object class that tests whether a sequence of points represents a y-monotone polygon or not.

#include <CGAL/polygon function objects.h>

Is Model for the Concepts

PolygonIsValid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1661

Creation

Is y monotone 2<Traits> f ( Traits t); Traits is a model of the concept IsYMonotoneTraits 2

Operations

template<class InputIterator>
bool f ( InputIterator first, InputIterator beyond)

returns true iff the points of type Traits::Point 2 in the range
[first,beyond) define a y-monotone polygon.

See Also

CGAL::convex partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1633
CGAL::Partition is valid traits 2<Traits, PolygonIsValid> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1657

Implementation

This test requires O(n) time for a polygon with n vertices.
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CGAL::optimal convex partition 2

Function that produces a set of convex polygons that represent a partitioning of a polygon defined on a sequence
of points. The number of convex polygons produced is minimal.

#include <CGAL/partition 2.h>

template <class InputIterator, class OutputIterator, class Traits>
OutputIterator optimal convex partition 2( InputIterator first,

InputIterator beyond,
OutputIterator result,
Traits traits = Default traits)

computes a partition of the polygon defined by the points
in the range [first, beyond) into convex polygons. The
counterclockwise-oriented partition polygons are written to
the sequence starting at position result. The past-the-end it-
erator for the resulting sequence of polygons is returned.
Precondition: The points in the range [first, beyond) define a
simple, counterclockwise-oriented polygon.

Requirements

1. Traits is a model of the concept OptimalConvexPartitionTraits 2. For the purposes of checking the
postcondition that the partition is valid, Traits should also be a model of ConvexPartitionIsValidTraits 2.

2. OutputIterator::value type should be Traits::Polygon 2.

3. InputIterator::value type should be Traits::Point 2, which should also be the type of the points stored in
an object of type Traits::Polygon 2.

The default traits class Default traits is Partition traits 2, with the representation type determined by
InputIterator::value type.

See Also

CGAL::approx convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1630
CGAL::convex partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1633
CGAL::greene approx convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1636
CGAL::partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1651
CGAL::Partition is valid traits 2<Traits, PolygonIsValid> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1657

Implementation

This function implements the dynamic programming algorithm of Greene [Gre83], which requires O(n4) time
and O(n3) space to produce a partitioning of a polygon with n vertices.
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Example

The following program computes an optimal convex partitioning of a polygon using the default traits class and
stores the partition polygons in the list partition polys. It then asserts that the partition produced is valid. The
traits class used for testing the validity is derived from the traits class used to produce the partition with the
function object class CGAL::Is convex 2 used to define the required Is valid type. (Note that this assertion is
superfluous unless the postcondition checking for optimal convex partition 2 has been turned off.)� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Partition_traits_2.h>
#include <CGAL/Partition_is_valid_traits_2.h>
#include <CGAL/polygon_function_objects.h>
#include <CGAL/partition_2.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/random_polygon_2.h>
#include <cassert>
#include <list>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Partition_traits_2<K> Traits;
typedef CGAL::Is_convex_2<Traits> Is_convex_2;
typedef Traits::Polygon_2 Polygon_2;
typedef Traits::Point_2 Point_2;
typedef Polygon_2::Vertex_const_iterator

Vertex_iterator;
typedef std::list<Polygon_2> Polygon_list;
typedef CGAL::Partition_is_valid_traits_2<Traits, Is_convex_2>

Validity_traits;
typedef CGAL::Creator_uniform_2<int, Point_2> Creator;
typedef CGAL::Random_points_in_square_2<Point_2, Creator>

Point_generator;

void make_polygon(Polygon_2& polygon)
{

polygon.push_back(Point_2(391, 374));
polygon.push_back(Point_2(240, 431));
polygon.push_back(Point_2(252, 340));
polygon.push_back(Point_2(374, 320));
polygon.push_back(Point_2(289, 214));
polygon.push_back(Point_2(134, 390));
polygon.push_back(Point_2( 68, 186));
polygon.push_back(Point_2(154, 259));
polygon.push_back(Point_2(161, 107));
polygon.push_back(Point_2(435, 108));
polygon.push_back(Point_2(208, 148));
polygon.push_back(Point_2(295, 160));
polygon.push_back(Point_2(421, 212));
polygon.push_back(Point_2(441, 303));

}

int main()
{

Polygon_2 polygon;
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Polygon_list partition_polys;
Traits partition_traits;
Validity_traits validity_traits;

/*
CGAL::random_polygon_2(50, std::back_inserter(polygon),

Point_generator(100));
*/

make_polygon(polygon);
CGAL::optimal_convex_partition_2(polygon.vertices_begin(),

polygon.vertices_end(),
std::back_inserter(partition_polys),
partition_traits);

assert(CGAL::partition_is_valid_2(polygon.vertices_begin(),
polygon.vertices_end(),
partition_polys.begin(),
partition_polys.end(),
validity_traits));

return 0;
}� �
File: examples/Partition_2/optimal_convex_partition_2.cpp
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OptimalConvexPartitionTraits 2

Definition

Requirements of a traits class to be used with the function optimal convex partition 2 that computes an optimal
convex partition of a polygon.

Refines

PartitionTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1655

Types

In addition to the types listed with the concept PartitionTraits 2, the following types are required:

OptimalConvexPartitionTraits 2:: Segment 2 A segment type

OptimalConvexPartitionTraits 2:: Ray 2 A ray type

OptimalConvexPartitionTraits 2:: Object 2 A general object type that can be either a point or a segment

OptimalConvexPartitionTraits 2:: Construct segment 2

Function object type that provides Segment 2
operator()(Point 2 p, Point 2 q), which constructs and
returns the segment defined by the points p and q.

OptimalConvexPartitionTraits 2:: Construct ray 2

Function object type that provides Ray 2 operator()(Point 2
p, Point 2 q), which constructs and returns the ray from point
p through point q.

OptimalConvexPartitionTraits 2:: Collinear are ordered along line 2

Predicate object type that determines orderings of Point 2s
on a line. Must provide bool operator()(Point 2 p, Point 2
q, Point 2 r) that returns true, iff q lies between p and r and
p, q, and r satisfy the precondition that they are collinear.

OptimalConvexPartitionTraits 2:: Are stritcly ordered along line 2

Predicate object type that determines orderings of Point 2s.
Must provide bool operator()(Point 2 p, Point 2 q, Point 2
r) that returns true, iff the three points are collinear and q lies
strictly between p and r. Note that false should be returned
if q==p or q==r.
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OptimalConvexPartitionTraits 2:: Intersect 2 Function object type that provides Object 2
operator()(Segment 2 s1, Segment 2 s2) that returns
the intersection of two segments (which may be either a
segment or a point).

OptimalConvexPartitionTraits 2:: Assign 2 Function object type that provides bool operator()(Segment
2 s1, Object 2 o) that returns true if o is a segment and as-
signs the value of o to s1; returns false otherwise.

Creation

Only a copy constructor is required.

OptimalConvexPartitionTraits 2 traits( & tr);

Operations

In addition to the functions required by PartitionTraits 2, the following functions that create instances of the
above function object types must exist:

Collinear are ordered along line 2 traits.collinear are ordered along line 2 object() const

Construct segment 2 traits.construct segment 2 object() const

Construct ray 2 traits.construct ray 2 object() const

Are strictly ordered along line 2 traits.are strictly ordered along line 2 object() const

Has Models

CGAL::Partition traits 2<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1659

See Also

CGAL::convex partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1633
CGAL::Partition is valid traits 2<Traits, PolygonIsValid> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1657
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CGAL::partition is valid 2

Definition

Function that determines if a given set of polygons represents a valid partition for a given sequence of points
that define a simple, counterclockwise-oriented polygon. A valid partition is one in which the polygons are
nonoverlapping and the union of the polygons is the same as the original polygon.

#include <CGAL/partition is valid 2.h>

template<class InputIterator, class ForwardIterator, class Traits>
bool partition is valid 2( InputIterator point first,

InputIterator point beyond,
ForwardIterator poly first,
ForwardIterator poly beyond,
Traits traits = Default traits)

returns true iff the polygons in the range [poly first, poly
beyond) define a valid partition of the polygon defined by
the points in the range [point first, point beyond) and false
otherwise. Each polygon must also satisfy the property tested
by Traits::Is valid().
Precondition: Points in the range [point first, point beyond)
define a simple, counterclockwise-oriented polygon.

Requirements

1. Traits is a model of the concept PartitionIsValidTraits 2 and the concept defining the requirements for
the validity test implemented by Traits::Is valid().

2. InputIterator::value type should be Traits::Point 2, which should also be the type of the points stored in
an object of type Traits::Polygon 2.

3. ForwardIterator::value type should be Traits::Polygon 2.

The default traits class Default traits is Partition traits 2, with the representation type determined by
InputIterator::value type.

See Also

CGAL::approx convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1630
CGAL::greene approx convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1636
CGAL::is y monotone 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1639
CGAL::optimal convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1646
CGAL::Partition is valid traits 2<Traits, PolygonIsValid> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1657
CGAL::y monotone partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1662
CGAL::is convex 2
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Implementation

This function requires O(n logn + e loge + Σ
p
i=1mi) where n is the total number of vertices of the p partition

polygons, e is the total number of edges of the partition polygons and mi is the time required by Traits::Is
valid() to test if partition polygon pi is valid.

Example

See the example presented with the function optimal convex partition 2 for an illustration of the use of this
function.

advanced
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PartitionIsValidTraits 2

Definition

Requirements of a traits class that is used by partition is valid 2, convex partition is valid 2, and y monotone
partition is valid 2 for testing if a given set of polygons are nonoverlapping and if their union is a poly-
gon that is the same as a polygon represented by a given sequence of points. Note that the traits class for
partition is valid 2 may have to satisfy additional requirements if each partition polygon is to be tested for
having a particular property; see, for example, the descriptions of the function is convex 2 and the concept
YMonotonePartitionTraits 2 for the additional requirements for testing for convexity and y-monotonicity, re-
spectively.

Types

PartitionIsValidTraits 2:: Point 2 The point type on which the partitioning algorithm operates.

PartitionIsValidTraits 2:: Polygon 2 The polygon type created by the partitioning function. This
type should provide a nested type Vertex const iterator that
is the type of the non-mutable iterator over the polygon ver-
tices.

PartitionIsValidTraits 2:: Is valid A model of the concept PolygonIsValid

PartitionIsValidTraits 2:: Less xy 2 Predicate object type that compares Point 2s lexicographi-
cally. Must provide bool operator()(Point 2 p, Point 2 q)
where true is returned iff p <xy q. We have p <xy q, iff
px < qx or px = qx and py < qy, where px and py denote
the x and y coordinates of point p, respectively.

PartitionIsValidTraits 2:: Left turn 2 Predicate object type that provides bool operator()(Point 2
p,Point 2 q,Point 2 r), which returns true iff r lies to the left
of the oriented line through p and q.

PartitionIsValidTraits 2:: Orientation 2 Predicate object type that provides CGAL::Orientation
operator()(Point 2 p, Point 2 q, Point 2 r) that returns
CGAL::LEFT TURN, if r lies to the left of the oriented line
l defined by p and q, returns CGAL::RIGHT TURN if r lies
to the right of l, and returns CGAL::COLLINEAR if r lies on
l.

Creation

Only a copy constructor is required.

PartitionIsValidTraits 2 traits( & tr);
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Operations

The following functions that create instances of the above predicate object types must exist.

Orientation 2 traits.is valid object()

Less xy 2 traits.less xy 2 object()

Left turn 2 traits.left turn 2 object()

Orientation 2 traits.orientation 2 object()

Has Models

CGAL::Partition is valid traits 2<Traits, PolygonIsValid> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1657

See Also

CGAL::approx convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1630
CGAL::greene approx convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1636
CGAL::optimal convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1646
CGAL::y monotone partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1662

advanced
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PartitionTraits 2

Definition

The polygon partitioning functions are each parameterized by a traits class that defines the primitives used in
the algorithms. Many requirements are common to all traits classes. The concept PartitionTraits 2 defines this
common set of requirements.

Types

PartitionTraits 2:: Point 2 The point type on which the partitioning algorithm operates.

PartitionTraits 2:: Polygon 2 The polygon type to be created by the partitioning algo-
rithm. For testing the validity postcondition of the parti-
tion, this type should provide a nested type Vertex const
iterator that is the type of the iterator over the polygon ver-
tices and member functions Vertex const iterator vertices
begin() and Vertex const iterator vertices end().

PartitionTraits 2:: Less xy 2 Predicate object type that compares Point 2s lexicographi-
cally. Must provide bool operator()(Point 2 p, Point 2 q)
where true is returned iff p <xy q. We have p <xy q, iff
px < qx or px = qx and py < qy, where px and py denote
the x and y coordinates of point p, respectively.

PartitionTraits 2:: Less yx 2 Same as Less xy 2 with the roles of x and y interchanged.

PartitionTraits 2:: Left turn 2 Predicate object type that provides bool operator()(Point 2
p,Point 2 q,Point 2 r), which returns true iff r lies to the left
of the oriented line through p and q.

PartitionTraits 2:: Orientation 2 Predicate object type that provides CGAL::Orientation
operator()(Point 2 p, Point 2 q, Point 2 r) that returns
CGAL::LEFT TURN, if r lies to the left of the oriented line
l defined by p and q, returns CGAL::RIGHT TURN if r lies
to the right of l, and returns CGAL::COLLINEAR if r lies on
l.

PartitionTraits 2:: Compare y 2 Predicate object type that provides CGAL::Comparision
result operator()(Point 2 p, Point 2 q) to compare the
y values of two points. The operator must return
CGAL::SMALLER if py < qy, CGAL::LARGER if py > qy
and CGAL::EQUAL if py = qy.

PartitionTraits 2:: Compare x 2 The same as Compare y 2, except that x coordinates are
compared instead of y.
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Creation

A copy constructor and default constructor are required.

PartitionTraits 2 traits;

PartitionTraits 2 traits( & tr);

Operations

The following functions that create instances of the above predicate object types must exist.

Less yx 2 traits.less yx 2 object()

Less xy 2 traits.less xy 2 object()

Left turn 2 traits.left turn 2 object()

Orientation 2 traits.orientation 2 object()

Compare y 2 traits.compare y 2 object()

Compare x 2 traits.compare x 2 object()

Has Models

CGAL::Partition traits 2<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1659

See Also

CGAL::approx convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1630
CGAL::greene approx convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1636
CGAL::optimal convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1646
CGAL::y monotone partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1662
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CGAL::Partition is valid traits 2<Traits, PolygonIsValid>

Definition

Class that derives a traits class for partition is valid 2 from a given traits class by defining the validity testing
function object in terms of a supplied template parameter.

#include <CGAL/Partition is valid traits 2.h>

Inherits From

Traits

Is Model for the Concepts

PartitionIsValidTraits 2

Types

typedef PolygonIsValid Is valid;
typedef Traits::Point 2 Point 2;
typedef Traits::Polygon 2 Polygon 2;
typedef Traits::Less xy 2 Less xy 2;
typedef Traits::Left turn 2 Left turn 2;
typedef Traits::Orientation 2 Orientation 2;

Operations

The constructors and member functions for creating instances of the above types are inherited from Traits. In
addition, the following member function is defined:

Is valid traits.is valid object( Traits traits) const

function returning an instance of Is valid

See Also

CGAL::Is convex 2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1643
CGAL::Is vacuously valid<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1644
CGAL::Is y monotone 2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1645
CGAL::Partition traits 2<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1659
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Example

See the example presented with the function optimal convex partition 2 for an illustration of the use of this
traits class.

advanced
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CGAL::Partition traits 2<R>

Definition

Traits class that can be used with all the 2-dimensional polygon partitioning algorithms. It is parameterized by
a representation class R.

#include <CGAL/Partition traits 2.h>

Is Model for the Concepts

ConvexPartitionIsValidTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1635
IsYMonotoneTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1642
OptimalConvexPartitionTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1649
PartitionTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1655
YMonotonePartitionIsValidTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1667
YMonotonePartitionTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1668

Types

typedef R::Line 2 Line 2;
typedef R::Segment 2 Segment 2;
typedef R::Ray 2 Ray 2;
typedef R::Less yx 2 Less yx 2;
typedef R::Less xy 2 Less xy 2;
typedef R::Left turn 2 Left turn 2;
typedef R::Orientation 2 Orientation 2;
typedef R::Compare y 2 Compare y 2;
typedef R::Compare x 2 Compare x 2;
typedef R::Construct line 2 Construct line 2;
typedef R::Construct ray 2 Construct ray 2;
typedef R::Construct segment 2 Construct segment 2;
typedef R::Collinear are ordered along line 2 Collinear are ordered along line 2;
typedef R::Are strictly ordered along line 2 Are strictly ordered along line 2;
typedef CGAL::Polygon traits 2<R> Poly Traits;
typedef Poly Traits::Point 2 Point 2;
typedef std::list<Point 2> Container;
typedef CGAL::Polygon 2<Poly Traits, Container> Polygon 2;
typedef R::Less xy 2 Less xy;
typedef Poly Traits::Vector 2 Vector 2;
typedef R::FT FT;
typedef Partition traits 2<R> Self;
typedef CGAL::Is convex 2<Self> Is convex 2;
typedef CGAL::Is y monotone 2<Self> Is y monotone 2;

Creation

A default constructor and copy constructor are defined.
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Partition traits 2<R> traits;

Partition traits 2<R> traits( Partition traits 2& tr);

Operations

For each predicate object type Pred object type listed above (i.e., Less yx 2, Less xy 2, Left turn
2, Orientation 2, Compare y 2, Compare x 2, Construct line 2, Construct ray 2, Construct segment 2,
Collinear are ordered along line 2, Are strictly ordered along line 2, Is convex 2, Is y monotone 2) there
is a corresponding function of the following form defined:

Pred object type traits.pred object type object() Returns an instance of Pred object type.

See Also

CGAL::approx convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1630
CGAL::convex partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1633
CGAL::greene approx convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1636
CGAL::optimal convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1646
CGAL::partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1651
CGAL::Partition is valid traits 2<Traits, PolygonIsValid> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1657
CGAL::y monotone partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1662
CGAL::y monotone partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1665
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PolygonIsValid

Definition

Function object that determines if a sequence of points represents a valid partition polygon or not, where “valid”
can assume any of several meanings (e.g., convex or y-monotone).

Creation

PolygonIsValid f ( Traits t); Traits is a model of the concept required by the function that
checks for validity of the polygon.

Operations

template<class InputIterator>
bool f ( InputIterator first, InputIterator beyond)

returns true iff the points of type Traits::Point 2 in the range
[first,beyond) define a valid polygon.

Has Models

CGAL::Is convex 2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1643
CGAL::Is y monotone 2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1645

See Also

CGAL::approx convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1630
CGAL::convex partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1633
CGAL::greene approx convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1636
CGAL::optimal convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1646
CGAL::partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1651
CGAL::y monotone partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1662
CGAL::y monotone partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1665
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CGAL::y monotone partition 2

Definition

Function that produces a set of y-monotone polygons that represent a partitioning of a polygon defined on a
sequence of points.

#include <CGAL/partition 2.h>

template <class InputIterator, class OutputIterator, class Traits>
OutputIterator y monotone partition 2( InputIterator first,

InputIterator beyond,
OutputIterator result,
Traits traits = Default traits)

computes a partition of the polygon defined by the points
in the range [first, beyond) into y-monotone polygons. The
counterclockwise-oriented partition polygons are written to
the sequence starting at position result. The past-the-end it-
erator for the resulting sequence of polygons is returned.
Precondition: The points in the range [first, beyond) define a
simple, counterclockwise-oriented polygon.

Requirements

1. Traits is a model of the concept YMonotonePartitionTraits 2 and, for the purposes of checking the post-
condition that the partition is valid, it should also be a model of YMonotonePartitionIsValidTraits 2.

2. OutputIterator::value type should be Traits::Polygon 2.

3. InputIterator::value type should be Traits::Point 2, which should also be the type of the points stored in
an object of type Traits::Polygon 2.

The default traits class Default traits is Partition traits 2, with the representation type determined by
InputIterator::value type.

See Also

CGAL::approx convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1630
CGAL::greene approx convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1636
CGAL::optimal convex partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1646
CGAL::partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1651
CGAL::y monotone partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1665

Implementation

This function implements the algorithm presented by de Berg et al. [dBvKOS97] which requires O(n logn) time
and O(n) space for a polygon with n vertices.
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Example

The following program computes a y-monotone partitioning of a polygon using the default traits class and stores
the partition polygons in the list partition polys. It then asserts that each partition polygon produced is, in fact,
y-monotone and that the partition is valid. (Note that these assertions are superfluous unless the postcondition
checking for y monotone partition 2 has been turned off.)� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Partition_traits_2.h>
#include <CGAL/partition_2.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/random_polygon_2.h>
#include <cassert>
#include <list>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Partition_traits_2<K> Traits;
typedef Traits::Point_2 Point_2;
typedef Traits::Polygon_2 Polygon_2;
typedef std::list<Polygon_2> Polygon_list;
typedef CGAL::Creator_uniform_2<int, Point_2> Creator;
typedef CGAL::Random_points_in_square_2<Point_2, Creator>

Point_generator;

void make_polygon(Polygon_2& polygon)
{

polygon.push_back(Point_2(391, 374));
polygon.push_back(Point_2(240, 431));
polygon.push_back(Point_2(252, 340));
polygon.push_back(Point_2(374, 320));
polygon.push_back(Point_2(289, 214));
polygon.push_back(Point_2(134, 390));
polygon.push_back(Point_2( 68, 186));
polygon.push_back(Point_2(154, 259));
polygon.push_back(Point_2(161, 107));
polygon.push_back(Point_2(435, 108));
polygon.push_back(Point_2(208, 148));
polygon.push_back(Point_2(295, 160));
polygon.push_back(Point_2(421, 212));
polygon.push_back(Point_2(441, 303));

}

int main( )
{

Polygon_2 polygon;
Polygon_list partition_polys;

/*
CGAL::random_polygon_2(50, std::back_inserter(polygon),

Point_generator(100));
*/

make_polygon(polygon);
CGAL::y_monotone_partition_2(polygon.vertices_begin(),
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polygon.vertices_end(),
std::back_inserter(partition_polys));

std::list<Polygon_2>::const_iterator poly_it;
for (poly_it = partition_polys.begin(); poly_it !=
partition_polys.end();

poly_it++)
{

assert(CGAL::is_y_monotone_2((*poly_it).vertices_begin(),
(*poly_it).vertices_end()));

}

assert(CGAL::partition_is_valid_2(polygon.vertices_begin(),
polygon.vertices_end(),
partition_polys.begin(),
partition_polys.end()));

return 0;
}� �
File: examples/Partition_2/y_monotone_partition_2.cpp
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CGAL::y monotone partition is valid 2

Definition

Function that determines if a given set of polygons represents a valid y-monotone partitioning for a given
sequence of points that define a simple, counterclockwise-oriented polygon. A valid partition is one in which
the polygons are nonoverlapping and the union of the polygons is the same as the original polygon and each
polygon is y-monotone

#include <CGAL/partition is valid 2.h>

template<class InputIterator, class ForwardIterator, class Traits>
bool y monotone partition is valid 2( InputIterator point first,

InputIterator point beyond,
ForwardIterator poly first,
ForwardIterator poly beyond,
Traits traits = Default traits)

determines if the polygons in the range [poly first, poly
beyond) define a valid y-monotone partition of the polygon
represented by the points in the range [point first, point
beyond). The function returns true iff the partition is valid
and otherwise returns false.
Precondition: Points in the range [point first, point beyond)
define a simple, counterclockwise-oriented polygon.

Requirements

1. Traits is a model of the concept YMonotonePartitionIsValidTraits 2.

2. InputIterator::value type should be Traits::Point 2, which should also be the type of the points stored in
an object of type Traits::Polygon 2.

3. ForwardIterator::value type should be Traits::Polygon 2.

The default traits class Default traits is Partition traits 2, with the representation type determined by
InputIterator::value type.

See Also

CGAL::y monotone partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1662
CGAL::is y monotone 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1639
CGAL::partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1651
CGAL::Partition is valid traits 2<Traits, PolygonIsValid> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1657
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Implementation

This function uses the function partition is valid 2 together with the function object Is y monotone 2 to deter-
mine if each polygon is y-monotone or not. Thus the time required is O(n logn + e loge) where n is the total
number of vertices of the partition polygons and e is the total number of edges.

Example

See the example presented with the function y monotone partition 2 for an illustration of the use of this func-
tion.

advanced
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YMonotonePartitionIsValidTraits 2

Definition

Requirements of a traits class that is used by y monotone partition is valid 2 for testing the validity of a y-
monotone partition of a polygon.

Types

All types required by the concept PartitionIsValidTraits 2 are required except the function object type Is valid.
The following type is required instead:

YMonotonePartitionIsValidTraits 2:: Is y monotone 2

Model of the concept PolygonIsValid that tests if a sequence
of points is y-monotone or not.

Creation

Only a copy constructor is required.

YMonotonePartitionIsValidTraits 2 traits( & tr);

Operations

The following function that creates an instance of the above predicate object type must exist instead of the
function is valid object required by PartitionIsValidTraits 2.

Is y monotone 2 traits.is y monotone 2 object( t)

Has Models

CGAL::Partition traits 2<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1659

See Also

CGAL::partition is valid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1651
CGAL::y monotone partition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1662
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YMonotonePartitionTraits 2

Definition

Requirements of a traits class to be used with the function y monotone partition 2.

Refines

PartitionTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1655

Types

In addition to the types defined for the concept PartitionTraits 2, the following types are also required:

YMonotonePartitionTraits 2:: Line 2

YMonotonePartitionTraits 2:: Compare x at y 2

Predicate object type that provides CGAL::Comparision
result operator()(Point 2 p, Line 2 h) to compare the x coor-
dinate of p and the horizontal projection of p on h.

YMonotonePartitionTraits 2:: Construct line 2

Function object type that provides Line 2 operator()(Point 2
p, Point 2 q), which constructs and returns the line defined
by the points p and q.

YMonotonePartitionTraits 2:: Is horizontal 2 Function object type that provides bool operator()(Line 2 l),
which returns true iff the line l is horizontal.

Creation

A copy constructor and default constructor are required.

YMonotonePartitionTraits 2 traits;

YMonotonePartitionTraits 2 traits( YMonotonePartitionTraits tr);

Operations

In addition to the functions required for the concept PartitionTraits 2, the following functions that create in-
stances of the above function object types must exist.

Construct line 2 traits.construct line 2 object()
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Compare x at y 2 traits.compare x at y 2 object()

Is horizontal 2 traits.is horizontal 2 object()

Has Models

CGAL::Partition traits 2<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1659
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Chapter 23

2D Straight Skeleton and Polygon
Offsetting
Fernando Cacciola
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23.1 Definitions

23.1.1 2D Contour

A 2D contour is a closed sequence (a cycle) of 3 or more connected 2D oriented straight line segments called
contour edges. The endpoints of the contour edges are called vertices. Each contour edge shares its endpoints
with at least two other contour edges.
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If the edges intersect only at the vertices and at most are coincident along a line but do not cross one another,
the contour is classified as simple.
A contour is topologically equivalent to a disk and if it is simple, is said to be a Jordan Curve.
Contours partition the plane in two open regions: one bounded and one unbounded. If the bounded region of a
contour is only one singly-connected set, the contour is said to be strictly-simple.
The Orientation of a contour is given by the order of the vertices around the region they bound. It can be
CLOCKWISE (CCW) or COUNTERCLOCKWISE (CW).
The bounded side of a contour edge is the side facing the bounded region of the contour. If the contour is
oriented CCW, the bounded side of an edge is its left side.

A contour with a null edge (a segment of length zero given by two consecutive coincident vertices), or with
edges not connected to the bounded region (an antenna: 2 consecutive edges going forth and back along the
same line), is said to be degenerate (collinear edges are not considered a degeneracy).

23.1.2 2D Polygon with Holes

A 2D polygon is a contour.
A 2D polygon with holes is a contour, called the outer contour, having zero or more contours, called inner
contours, or holes, in its bounded region. The intersection of the bounded region of the outer contour and
the unbounded regions of each inner contour is the interior of the polygon with holes. The orientation of the
holes must be opposite to the orientation of the outer contour and there cannot be any intersection among any
contour. A hole cannot be in the bounded region of any other hole.
A polygon with holes is strictly-simple if its interior is a singly-connected set.
The orientation of a polygon with holes is the orientation of its outer contour. The bounded side of any edge,
whether of the outer contour or a hole, is the same for all edges. That is, if the outer contour is oriented CCW
and the holes CW, both contour and hole edges face the polygon interior to their left.

Throughout the rest of this chapter the term polygon will be used as a shortcut for polygon with holes.

Figure 23.1: Examples of strictly simple polygons: One with no holes and two edges coincident (left) and one
with 2 holes (right).
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Figure 23.2: Examples of non-simple polygons: One folding into itself, that is, non-planar (left), one with a
vertex touching an edge (right), and one with a hole crossing into the outside (bottom)

23.1.3 Inward Offset of a Non-degenerate Strictly-Simple Polygon with Holes

For any 2D non-degenerate strictly-simple polygon with holes called the source, there can exist a set of 0, 1
or more inward offset polygons with holes, or just offset polygons for short, at some euclidean distance t > 0
(each being strictly simple and non-degenerate). Any contour edge of such offset polygon, called an offset edge
corresponds to some contour edge of the source polygon, called its source edge. An offset edge is parallel to its
source edge and has the same orientation. The Euclidean distance between the lines supporting an offset edge
and its source edge is exactly t.
An offset edge is always located to the bounded side of its source edge (which is an oriented straight line
segment).
An offset polygon can have less, equal or more sides as its source polygon.
If the source polygon has no holes, no offset polygon has holes. If the source polygon has holes, any of the
offset polygons can have holes itself, but it might as well have no holes at all (if the distance is sufficiently
large).
Each offset polygon has the same orientation as the source polygon.

Figure 23.3: Offset contours of a sample polygon
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23.1.4 Straight Skeleton of a 2D Non-degenerate Strictly-Simple Polygon with Holes

The 2D straight skeleton of a non-degenerate strictly-simple polygon with holes [AAAG95] is a special parti-
tioning of the polygon interior into straight skeleton regions corresponding to the monotone areas traced by a
continuous inward offsetting of the contour edges. Each region corresponds to exactly 1 contour edge.
These regions are bounded by angular bisectors of the supporting lines of the contour edges and each such
region is itself a non-convex non-degenerate strictly-simple polygon.

Figure 23.4: Straight skeleton of a complex shaggy contour

Angular Bisecting Lines and Offset Bisectors

Given two points and a line passing through them, the perpendicular line passing through the midpoint is the
bisecting line (or bisector) of those points.

Two non-parallel lines, intersecting at a point, are bisected by two other lines passing through that intersection
point.

Two parallel lines are bisected by another parallel line placed halfway in between.

Given just one line, any perpendicular line can be considered the bisecting line (any bisector of any two points
along the single line).

The bisecting lines of two edges are the lines bisecting the supporting lines of the edges (if the edges are parallel
or collinear, there is just one bisecting line).

The halfplane to the bounded side of the line supporting a contour edge is called the offset zone of the contour
edge.

Given any number of contour edges (not necessarily consecutive), the intersection of their offset zones is called
their combined offset zone.

Any two contour edges define an offset bisector, as follows: If the edges are non-parallel, their bisecting lines
can be decomposed as 4 rays originating at the intersection of the supporting lines. Only one of these rays
is contained in the combined offset zone of the edges (which one depends on the possible combinations of
orientations). This ray is the offset bisector of the non-parallel contour edges.

If the edges are parallel (but not collinear) and have opposite orientation, the entire and unique bisecting line is
their offset bisector. If the edges are parallel but have the same orientation, there is no offset bisector between
them.

If the edges are collinear and have the same orientation, their offset bisector is given by a perpendicular ray to the
left of the edges which originates at the midpoint of the combined complement of the edges. (The complement
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Figure 23.5: Other examples: A vertex-event (left), the case of several collinear edges (middle), and the case of
a validly simple polygon with tangent edges (right).
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of an edge/segment are the two rays along its supporting line which are not the segment and the combined
complement of N collinear segments is the intersection of the complements of each segment). If the edges are
collinear but have opposite orientation, there is no offset bisector between them.

Faces, Edges and Vertices

Each region of the partitioning defined by a straight skeleton is called a face. Each face is bounded by straight
line segments, called edges. Exactly one edge per face is a contour edge (corresponds to a side of the polygon)
and the rest of the edges, located in the interior of the polygon, are called skeleton edges, or bisectors.

The bisectors of the straight skeleton are segments of the offset bisectors as defined previously. Since an offset
bisector is a ray of a bisecting line of 2 contour edges, each skeleton edge (or bisector) is uniquely given by two
contour edges. These edges are called the defining contour edges of the bisector.

The intersection of the edges are called vertices. Although in a simple polygon, only 2 edges intersect at a
vertex, in a straight skeleton, 3 or more edges intersect a any given vertex. That is, vertices in a straight skeleton
have degree >= 3.

A contour vertex is a vertex for which 2 of its incident edges are contour edges.

A skeleton vertex is a vertex who’s incident edges are all skeleton edges.

A contour bisector is a bisector who’s defining contour edges are consecutive. Such a bisector is incident upon
1 contour vertex and 1 skeleton vertex and touches the input polygon at exactly 1 endpoint.

An inner bisector is a bisector who’s defining contour edges are not consecutive. Such a bisector is incident
upon 2 skeleton vertices and is strictly contained in the interior of the polygon.

23.2 Representation

This CGAL package represents a straight skeleton as a specialized Halfedge Data Structure (HDS) whose ver-
tices embeds 2D Points (see the StraightSkeleton 2 concept in the reference manual for details).

Its halfedges, by considering the source and target points, implicitly embeds 2D oriented straight line segments
(each halfedge per see does not embed a segment explicitly).

A face of the straight skeleton is represented as a face in the HDS. Both contour and skeleton edges are rep-
resented by pairs of opposite HDS halfedges, and both contour and skeleton vertices are represented by HDS
vertices.

In a HDS, a border halfedge is a halfedge which is incident upon an unbounded face. In the case of the straight
skeleton HDS, such border halfedges are oriented such that their left side faces outwards the polygon. Therefore,
the opposite halfedge of any border halfedge is oriented such that its left side faces inward the polygon.

This CGAL package requires the input polygon (with holes) to be non-degenerate, strictly-simple, and oriented
counter-clockwise.

The skeleton halfedges are oriented such that their left side faces inward the region they bound. That is, the
vertices (both contour and skeleton) of a face are circulated in counter-clockwise order. There is one and only
one contour halfedge incident upon any face.
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The contours of the input polygon are traced by the border halfedges of the HDS (those facing outward), but in
the opposite direction. That is, the vertices of the contours can only by traced from the straight skeleton data
structure by circulating the border halfedges, and the resulting vertex sequence will be reversed w.r.t the input
vertex sequence.

A skeleton edge, according to the definition given in the previous section, is defined by 2 contour edges. In
the representation, each one of the opposite halfedges that represent a skeleton edge is associated with one of
the opposite halfedges that correspond to one of its defining contour edges. Thus, the 2 opposite halfedges of a
skeleton edge link the edge to its 2 defining contour edges.

Starting from any border contour halfedge, circulating the structure walks through border counter halfedges and
traces the vertices of the polygon’s contours (in opposite order).

Starting from any non-border but contour halfedge, circulating the structure walks counter-clockwise around
the face corresponding to that contour halfedge. The vertices around a face always describe a non-convex
non-degenerate strictly-simple polygon.

A vertex is the intersection of contour and/or skeleton edges. Since a skeleton edge is defined by 2 contour
edges, any vertex is itself defined by a unique set of contour edges. These are called the defining contour edges
of the vertex.

A vertex is identified by it’s set of defining contour edges. Two vertices are distinct if they have differing sets of
defining contour edges. Note that vertices can be distinct even if they are geometrically embedded at the same
point.

The degree of a vertex is the number of halfedges around the vertex incident upon (pointing to) the vertex. As
with any halfedge data structure, there is one outgoing halfedge for each incoming (incident) halfedge around a
vertex. The degree of the vertex counts only incoming (incident) halfedges.

In a straight skeleton, the degree of a vertex is not only the number of incident halfedges around the vertex but
also the number of defining contour halfedges. The vertex itself is the point where all the defining contour edges
simultaneously collide.

Contour vertices have exactly two defining contour halfedges, which are the contour edges incident upon the
vertex; and 3 incident halfedges. One and only one of the incident halfedges is a skeleton halfedge. The degree
of a contour vertex is exactly 3.

Skeleton vertices have at least 3 defining contour halfedges and 3 incident skeleton halfedges. If more than 3
edges collide simultaneously at the same point and time (like in any regular polygon with more than 3 sides), the
corresponding skeleton vertex will have more than 3 defining contour halfedges and incident skeleton halfedges.
That is, the degree of a skeleton vertex is >= 3 (the algorithm initially produces nodes of degree 3 but in the
end all coincident nodes are merged to form higher degree nodes). All halfedges incident upon a skeleton vertex
are skeleton halfedges.

The defining contour halfedges and incident halfedges around a vertex can be traced using the circulators pro-
vided by the vertex class. The degree of a vertex is not cached and cannot be directly obtained from the vertex,
but you can calculate this number by manually counting the number of incident halfedges around the vertex.

Each vertex stores a 2D point and a time, which is the euclidean distance from the vertex’s point to the lines
supporting each of the defining contour edges of the vertex (the distance is the same to each line). Unless the
polygon is convex, this distance is not equidistant to the edges, as in the case of a Medial Axis, therefore, the
time of a skeleton vertex does not correspond to the distance from the polygon to the vertex (so it cannot be
used to obtain the deep of a region in a shape, for instance).
If the polygon is convex, the straight skeleton is exactly equivalent to the polygon’s Voronoi diagram and each
vertex time is the equidistance to the defining edges.
Contour vertices have time zero.
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Figure 23.6: Straight Skeleton Data Structure
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23.3 API

23.3.1 Create a Straight Skeleton

The straight skeleton data structure is defined by the StraightSkeleton 2 concept and modeled in the Straight
skeleton 2<Traits,Items,Alloc> class.

The simplest way to construct a straight skeleton is via the free functions create interior straight skeleton 2
and create exterior straight skeleton 2, as shown in the following example:� �
#include<boost/shared_ptr.hpp>

#include<CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include<CGAL/Polygon_2.h>
#include<CGAL/create_straight_skeleton_2.h>

#include "print.h"

typedef CGAL::Exact_predicates_inexact_constructions_kernel K ;

typedef K::Point_2 Point ;
typedef CGAL::Polygon_2<K> Polygon_2 ;
typedef CGAL::Straight_skeleton_2<K> Ss ;

typedef boost::shared_ptr<Ss> SsPtr ;

int main()
{

Polygon_2 poly ;

poly.push_back( Point(-1,-1) ) ;
poly.push_back( Point(0,-12) ) ;
poly.push_back( Point(1,-1) ) ;
poly.push_back( Point(12,0) ) ;
poly.push_back( Point(1,1) ) ;
poly.push_back( Point(0,12) ) ;
poly.push_back( Point(-1,1) ) ;
poly.push_back( Point(-12,0) ) ;

// You can pass the polygon via an iterator pair
SsPtr iss =
CGAL::create_interior_straight_skeleton_2(poly.vertices_begin(),
poly.vertices_end());

// Or you can pass the polygon directly, as below.

// To create an exterior straight skeleton you need to specify a
maximum offset.

double lMaxOffset = 5 ;
SsPtr oss = CGAL::create_exterior_straight_skeleton_2(lMaxOffset,
poly);

print_straight_skeleton(*iss);
print_straight_skeleton(*oss);
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return 0;
}� �
File: examples/Straight_skeleton_2/Create_straight_skeleton_2.cpp

The input to these functions is the polygon, which can be given as an iterator pair or directly as a Polygon 2
object. In the case of the exterior skeleton, a maximum offset must be specified as well (see the ref manual for
details on this max offset parameter).

23.3.2 Create a Straight Skeleton from a Polygon With Holes

If Polygon with holes 2 is used, you can pass an instance of it directly to the function creating the interior
skeleton, as shown below. Notice that a different header must be included in this case.� �
#include<boost/shared_ptr.hpp>

#include<CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include<CGAL/Polygon_with_holes_2.h>
#include<CGAL/create_straight_skeleton_from_polygon_with_holes_2.h>

#include "print.h"

typedef CGAL::Exact_predicates_inexact_constructions_kernel K ;

typedef K::Point_2 Point ;
typedef CGAL::Polygon_2<K> Polygon_2 ;
typedef CGAL::Polygon_with_holes_2<K> Polygon_with_holes ;
typedef CGAL::Straight_skeleton_2<K> Ss ;

typedef boost::shared_ptr<Ss> SsPtr ;

int main()
{

Polygon_2 outer ;

outer.push_back( Point(-1,-1) ) ;
outer.push_back( Point(0,-12) ) ;
outer.push_back( Point(1,-1) ) ;
outer.push_back( Point(12,0) ) ;
outer.push_back( Point(1,1) ) ;
outer.push_back( Point(0,12) ) ;
outer.push_back( Point(-1,1) ) ;
outer.push_back( Point(-12,0) ) ;

Polygon_2 hole ;

hole.push_back( Point(-1,0) ) ;
hole.push_back( Point(0,1 ) ) ;
hole.push_back( Point(1,0 ) ) ;
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hole.push_back( Point(0,-1) ) ;

Polygon_with_holes poly( outer ) ;

poly.add_hole( hole ) ;

SsPtr iss = CGAL::create_interior_straight_skeleton_2(poly);

print_straight_skeleton(*iss);

return 0;
}� �
File: examples/Straight_skeleton_2/Create_straight_skeleton_from_polygon_with_holes_2.cpp

23.3.3 Create Offset Polygons from a Straight Skeleton

If you already have a straight skeleton instance, the simpler way to generate offset polygons is to call create
offset polygons 2 as shown in the next example, passing the desired offset and the straight skeleton. You can
reuse the same skeleton to generate offsets at a different distance, which is recommended because producing
the straight skeleton is much slower then generating offset polygons.� �
#include<vector>

#include<boost/shared_ptr.hpp>

#include<CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include<CGAL/Polygon_2.h>
#include<CGAL/create_offset_polygons_2.h>

#include "print.h"

typedef CGAL::Exact_predicates_inexact_constructions_kernel K ;

typedef K::Point_2 Point ;
typedef CGAL::Polygon_2<K> Polygon_2 ;
typedef CGAL::Straight_skeleton_2<K> Ss ;

typedef boost::shared_ptr<Polygon_2> PolygonPtr ;
typedef boost::shared_ptr<Ss> SsPtr ;

typedef std::vector<PolygonPtr> PolygonPtrVector ;

int main()
{

Polygon_2 poly ;

poly.push_back( Point(-1,-1) ) ;
poly.push_back( Point(0,-12) ) ;
poly.push_back( Point(1,-1) ) ;
poly.push_back( Point(12,0) ) ;
poly.push_back( Point(1,1) ) ;
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poly.push_back( Point(0,12) ) ;
poly.push_back( Point(-1,1) ) ;
poly.push_back( Point(-12,0) ) ;

SsPtr ss = CGAL::create_interior_straight_skeleton_2(poly);

double lOffset = 1 ;

PolygonPtrVector offset_polygons =
CGAL::create_offset_polygons_2<Polygon_2>(lOffset,*ss);

print_polygons(offset_polygons);

return 0;
}� �
File: examples/Straight_skeleton_2/Create_offset_polygons_2.cpp

23.3.4 Create Offset Polygons from a Polygon (With or Without Holes)

If you need offset polygons at just one single distance, you can hide away the construction of the straight
skeleton by calling directly the functions create interior skeleton and offset polygons 2 and create exterior
skeleton and offset polygons 2 as shown in the following examples:� �
#include<vector>

#include<boost/shared_ptr.hpp>

#include<CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include<CGAL/Polygon_2.h>
#include<CGAL/create_offset_polygons_2.h>

#include "print.h"

typedef CGAL::Exact_predicates_inexact_constructions_kernel K ;

typedef K::FT FT ;
typedef K::Point_2 Point ;
typedef CGAL::Polygon_2<K> Polygon_2 ;
typedef CGAL::Straight_skeleton_2<K> Ss ;

typedef boost::shared_ptr<Polygon_2> PolygonPtr ;
typedef boost::shared_ptr<Ss> SsPtr ;

typedef std::vector<PolygonPtr> PolygonPtrVector ;

int main()
{

Polygon_2 poly ;

poly.push_back( Point(-1,-1) ) ;
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poly.push_back( Point(0,-12) ) ;
poly.push_back( Point(1,-1) ) ;
poly.push_back( Point(12,0) ) ;
poly.push_back( Point(1,1) ) ;
poly.push_back( Point(0,12) ) ;
poly.push_back( Point(-1,1) ) ;
poly.push_back( Point(-12,0) ) ;

FT lOffset = 1 ;

PolygonPtrVector inner_offset_polygons =
CGAL::create_interior_skeleton_and_offset_polygons_2(lOffset,poly);

PolygonPtrVector outer_offset_polygons =
CGAL::create_exterior_skeleton_and_offset_polygons_2(lOffset,poly);

print_polygons(inner_offset_polygons);
print_polygons(outer_offset_polygons);

return 0;
}� �
File: examples/Straight_skeleton_2/Create_skeleton_and_offset_polygons_2.cpp

... and using a Polygon with holes 2 directly when available:� �
#include<vector>
#include<iterator>
#include<iostream>
#include<iomanip>
#include<string>

#include<boost/shared_ptr.hpp>

#include<CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include<CGAL/Polygon_with_holes_2.h>
#include<CGAL/create_offset_polygons_from_polygon_with_holes_2.h>

#include "print.h"

typedef CGAL::Exact_predicates_inexact_constructions_kernel K ;

typedef K::Point_2 Point ;
typedef CGAL::Polygon_2<K> Polygon_2 ;
typedef CGAL::Polygon_with_holes_2<K> Polygon_with_holes ;
typedef CGAL::Straight_skeleton_2<K> Ss ;

typedef boost::shared_ptr<Polygon_2> PolygonPtr ;
typedef boost::shared_ptr<Ss> SsPtr ;

typedef std::vector<PolygonPtr> PolygonPtrVector ;

int main()
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{
Polygon_2 outer ;

outer.push_back( Point(-1,-1) ) ;
outer.push_back( Point(0,-12) ) ;
outer.push_back( Point(1,-1) ) ;
outer.push_back( Point(12,0) ) ;
outer.push_back( Point(1,1) ) ;
outer.push_back( Point(0,12) ) ;
outer.push_back( Point(-1,1) ) ;
outer.push_back( Point(-12,0) ) ;

Polygon_2 hole ;

hole.push_back( Point(-1,0) ) ;
hole.push_back( Point(0,1 ) ) ;
hole.push_back( Point(1,0 ) ) ;
hole.push_back( Point(0,-1) ) ;

Polygon_with_holes poly( outer ) ;

poly.add_hole( hole ) ;

double lOffset = 0.2 ;

PolygonPtrVector offset_polygons =
CGAL::create_interior_skeleton_and_offset_polygons_2(lOffset,poly);

print_polygons(offset_polygons);

return 0;
}� �
File: examples/Straight_skeleton_2/Create_saop_from_polygon_with_holes_2.cpp

If the input polygon has holes, there can be holes in the offset polygons. However, the polygons generated by
all the offsetting functions shown before do not have any parent-hole relationship computed; that is, they just
instances of Polygon 2 instead of Polygon with holes 2. If Polygon with holes 2 are available and you need
the offsetting to produce them, you can call the function arrange offset polygons 2 passing the result of any of
the offsetting functions described so far. That function arranges the offset polygons detecting and distributing
holes within parents. As a shortcut, you can use the function create interior skeleton and offset polygon with
holes 2 as shown below:� �
#include<vector>

#include<boost/shared_ptr.hpp>

#include<CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include<CGAL/Polygon_with_holes_2.h>
#include<CGAL/create_offset_polygons_from_polygon_with_holes_2.h>

#include "print.h"
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typedef CGAL::Exact_predicates_inexact_constructions_kernel K ;

typedef K::Point_2 Point ;
typedef CGAL::Polygon_2<K> Polygon_2 ;
typedef CGAL::Polygon_with_holes_2<K> PolygonWithHoles ;
typedef CGAL::Straight_skeleton_2<K> Ss ;

typedef boost::shared_ptr<PolygonWithHoles> PolygonWithHolesPtr ;

typedef std::vector<PolygonWithHolesPtr> PolygonWithHolesPtrVector;

int main()
{

Polygon_2 outer ;

outer.push_back( Point( 0.0, 0.0) ) ;
outer.push_back( Point(10.0, 0.0) ) ;
outer.push_back( Point(10.0, 4.5) ) ;
outer.push_back( Point(12.0, 4.5) ) ;
outer.push_back( Point(12.0, 2.0) ) ;
outer.push_back( Point(16.0, 2.0) ) ;
outer.push_back( Point(16.0, 8.0) ) ;
outer.push_back( Point(12.0, 8.0) ) ;
outer.push_back( Point(12.0, 5.5) ) ;
outer.push_back( Point(10.0, 5.5) ) ;
outer.push_back( Point(10.0,10.0) ) ;
outer.push_back( Point( 0.0,10.0) ) ;

Polygon_2 hole ;

hole.push_back( Point(3.0,3.0) ) ;
hole.push_back( Point(3.0,7.0) ) ;
hole.push_back( Point(7.0,7.0) ) ;
hole.push_back( Point(7.0,3.0) ) ;

PolygonWithHoles poly( outer ) ;

poly.add_hole( hole ) ;

double lOffset = 1 ;

PolygonWithHolesPtrVector offset_poly_with_holes =
CGAL::create_interior_skeleton_and_offset_polygons_with_holes_2(lOffset,poly);

print_polygons_with_holes(offset_poly_with_holes);

return 0;
}� �

File: examples/Straight_skeleton_2/Create_skeleton_and_offset_polygons_with_holes_2.cpp
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advanced

Consider an input polygon with parallel edges separated a distance 2 ∗ t. If you produce an offset polygon at
distance t, these parallel edges will just collapse each other and vanish from the result, keeping the output as
a simple polygon, just like the input. However, if you request an offset polygon at a distance t− epsilon, the
result will still be a simple polygon but with edges that are so close to each other that will almost intersect. If
a kernel with exact constructions is used, the offsetting algorithm can guarantee that the output contains only
simple polygons. However, if inexact constructions are used the roundoff in the coordinates of the output points
will cause parallel edges that almost collapse-but not so-to become really collinear or even cross each other.

Thus, it is neccessary to use a kernel with exact constructions if offset polygons must be simple, yet computing
a straight skeleton using that kernel is very slow, much more than computing the offset polygons. To help with
this, it is possible to construct the straight skeleton using the recommended kernel Exact predicates inexact
constructions kernel, then convert the skeleton to a different kernel via the function convert straight skeleton 2
and input the converted skeleton to the offsetting functions.

All the offsetting functions that take polygons as input (and create the straight skeleton under the hood) apply
that optimization automatically: that is, the output polygons are defined over the same kernel of the input
polygons, whatever that is, yet the straight skeleton is constructed with the faster recommended kernel and
converted if necessary.

Notice how some of the examples above use Exact predicates exact constructions kernel. In all cases, the
straight skeleton is constructed using Exact predicates inexact constructions kernel.

advanced

23.3.5 Low level API

All the high level functions described above are just wrappers around the low level API described here. This
low level API is richer and provides options and configurations not covered by any of those functions.

The straight skeleton construction algorithm is encapsulated in the class Straight skeleton builder 2<
Gt,Ss,Visitor> which is parameterized on a geometric traits (class Straight skeleton builder traits<Kernel>)
and the Straight Skeleton class (Ss).

The offset contours construction algorithm is encapsulated in the class Polygon offset builder 2<
Ss,Gt,Container> which is parameterized on the Straight Skeleton class (Ss), a geometric traits (class Polygon
offset builder traits<Kernel>) and a container type where the resulting offset polygons are generated.

To construct the straight skeleton of a polygon with holes the user must:

(1) Instantiate the straight skeleton builder.

(2) Enter one contour at a time, starting from the outer contour, via the method enter contour. The input
polygon with holes must be non-degenerate, strictly-simple and counter-clockwise oriented (see the definitions
at the beginning of this chapter). Collinear edges are allowed. The insertion order of each hole is unimportant
but the outer contour must be entered first.

(3) Call construct skeleton once all the contours have been entered. You cannot enter another contour once the
skeleton has been constructed.

To construct a set of inward offset contours the user must:

(1) Construct the straight skeleton of the source polygon with holes.
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(2) Instantiate the polygon offset builder passing in the straight skeleton as a parameter.

(3) Call construct offset contours passing the desired offset distance and an output iterator that can store a
boost::shared ptr of Container instances into a resulting sequence (typically, a back insertion iterator)

Each element in the resulting sequence is an offset contour, given by a boost::shared ptr holding a dynamically
allocated instance of the Container type. Such a container can be any model of the VertexContainer 2 concept,
for example, a CGAL::Polygon 2, or just a std::vector of 2D points.

The resulting sequence of offset contours can contain both outer and inner contours. Each offset hole (inner
offset contour) would logically belong in the interior of some of the outer offset contours. However, this al-
gorithm returns a sequence of contours in arbitrary order and there is no indication whatsoever of the parental
relationship between inner and outer contours.

On the other hand, each outer contour is counter-clockwise oriented while each hole is clockwise-oriented. And
since offset contours do form simple polygons with holes, it is guaranteed that no hole will be inside another
hole, no outer contour will be inside any other contour, and each hole will be inside exactly 1 outer contour.

Parental relationships are not automatically reconstructed by this algorithm because this relation is not directly
given by the input polygon with holes and must be done as a post processing step. The function arrange offset
polygons 2 can be used to do that efficiently.

A user can reconstruct the parental relationships as a post processing operation by testing each inner contour
(which is identified by being clockwise) against each outer contour (identified as being counter-clockwise) for
insideness.

This algorithm requires exact predicates but not exact constructions Therefore, the Exact predicates inexact
constructions kernel should be used.� �
#include<vector>
#include<iterator>
#include<iostream>
#include<iomanip>
#include<string>

#include<boost/shared_ptr.hpp>

#include<CGAL/Cartesian.h>
#include<CGAL/Polygon_2.h>
#include<CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include<CGAL/Straight_skeleton_builder_2.h>
#include<CGAL/Polygon_offset_builder_2.h>
#include<CGAL/compute_outer_frame_margin.h>

#include "print.h"

//
// This example illustrates how to use the CGAL Straight Skeleton package
// to construct an offset contour on the outside of a polygon
//

// This is the recommended kernel
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;

typedef Kernel::Point_2 Point_2;
typedef CGAL::Polygon_2<Kernel> Contour;
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typedef boost::shared_ptr<Contour> ContourPtr;
typedef std::vector<ContourPtr> ContourSequence ;

typedef CGAL::Straight_skeleton_2<Kernel> Ss;

typedef Ss::Halfedge_iterator Halfedge_iterator;
typedef Ss::Halfedge_handle Halfedge_handle;
typedef Ss::Vertex_handle Vertex_handle;

typedef CGAL::Straight_skeleton_builder_traits_2<Kernel>
SsBuilderTraits;

typedef CGAL::Straight_skeleton_builder_2<SsBuilderTraits,Ss> SsBuilder;

typedef CGAL::Polygon_offset_builder_traits_2<Kernel>
OffsetBuilderTraits;

typedef CGAL::Polygon_offset_builder_2<Ss,OffsetBuilderTraits,Contour>
OffsetBuilder;

int main()
{

// A start-shaped polygon, oriented counter-clockwise as required for
outer contours.

Point_2 pts[] = { Point_2(-1,-1)
, Point_2(0,-12)
, Point_2(1,-1)
, Point_2(12,0)
, Point_2(1,1)
, Point_2(0,12)
, Point_2(-1,1)
, Point_2(-12,0)
} ;

std::vector<Point_2> star(pts,pts+8);

// We want an offset contour in the outside.
// Since the package doesn’t support that operation directly, we use
the following trick:

// (1) Place the polygon as a hole of a big outer frame.
// (2) Construct the skeleton on the interior of that frame (with the
polygon as a hole)

// (3) Construc the offset contours
// (4) Identify the offset contour that corresponds to the frame and
remove it from the result

double offset = 3 ; // The offset distance

// First we need to determine the proper separation between the polygon
and the frame.

// We use this helper function provided in the package.
boost::optional<double> margin =
CGAL::compute_outer_frame_margin(star.begin(),star.end(),offset);

// Proceed only if the margin was computed (an extremely sharp corner
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might cause overflow)
if ( margin )
{

// Get the bbox of the polygon
CGAL::Bbox_2 bbox = CGAL::bbox_2(star.begin(),star.end());

// Compute the boundaries of the frame
double fxmin = bbox.xmin() - *margin ;
double fxmax = bbox.xmax() + *margin ;
double fymin = bbox.ymin() - *margin ;
double fymax = bbox.ymax() + *margin ;

// Create the rectangular frame
Point_2 frame[4]= { Point_2(fxmin,fymin)

, Point_2(fxmax,fymin)
, Point_2(fxmax,fymax)
, Point_2(fxmin,fymax)
} ;

// Instantiate the skeleton builder
SsBuilder ssb ;

// Enter the frame
ssb.enter_contour(frame,frame+4);

// Enter the polygon as a hole of the frame (NOTE: as it is a hole we
insert it in the opposite orientation)
ssb.enter_contour(star.rbegin(),star.rend());

// Construct the skeleton
boost::shared_ptr<Ss> ss = ssb.construct_skeleton();

// Proceed only if the skeleton was correctly constructed.
if ( ss )
{

print_straight_skeleton(*ss);

// Instantiate the container of offset contours
ContourSequence offset_contours ;

// Instantiate the offset builder with the skeleton
OffsetBuilder ob(*ss);

// Obtain the offset contours
ob.construct_offset_contours(offset,

std::back_inserter(offset_contours));

// Locate the offset contour that corresponds to the frame
// That must be the outmost offset contour, which in turn must be

the one
// with the largetst unsigned area.
ContourSequence::iterator f = offset_contours.end();
double lLargestArea = 0.0 ;
for (ContourSequence::iterator i = offset_contours.begin(); i !=
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offset_contours.end(); ++ i )
{

double lArea = CGAL_NTS abs( (*i)->area() ) ; //Take abs() as
Polygon_2::area() is signed.

if ( lArea > lLargestArea )
{

f = i ;
lLargestArea = lArea ;

}
}

// Remove the offset contour that corresponds to the frame.
offset_contours.erase(f);

print_polygons(offset_contours);
}

}

return 0;
}� �
File: examples/Straight_skeleton_2/Low_level_API.cpp

23.3.6 Exterior Skeletons and Exterior Offset contours

This CGAL package can only construct the straight skeleton and offset contours in the interior of a polygon with
holes. However, constructing exterior skeletons and exterior offsets is possible:

Say you have some polygon made of 1 outer contour C0 and 1 hole C1, and you need to obtain some exterior
offset contours.
The interior region of a polygon with holes is connected while the exterior region is not: there is an unbounded
region outside the outer contour, and one bounded region inside each hole. To construct an offset contour you
need to construct an straight skeleton. Thus, to construct exterior offset contours for a polygon with holes, you
need to construct, separately, the exterior skeleton of the outer contour and the interior skeleton of each hole.
Constructing the interior skeleton of a hole is directly supported by this CGAL package; you just need to input
the hole’s vertices in reversed order as if it were an outer contour.
Constructing the exterior skeleton of the outer contour is possible by means of the following trick: place the
contour as a hole of a big rectangle (call it frame). If the frame is sufficiently separated from the contour, the
resulting skeleton will be practically equivalent to a real exterior skeleton.
To construct exterior offset contours in the inside of each hole you just use the skeleton constructed in the
interior, and, if required, revert the orientation of each resulting offset contour.
Constructing exterior offset contours in the outside of the outer contour is just a little bit more involved: Since
the contour is placed as a hole of a frame, you will always obtain 2 offset contours for any given distance; one
is the offseted frame and the other is the offseted contour. Thus, from the resulting offset contour sequence, you
always need to discard the offsetted frame, easily identified as the offset contour with the largest area.
It is necessary to place the frame sufficiently away from the contour. If it is not, it could occur that the outward
offset contour collides and merges with the inward offset frame, resulting in 1 instead of 2 offset contours.
However, the proper separation between the contour and the frame is not directly given by the offset distance at
which you want the offset contour. That distance must be at least the desired offset plus the largest euclidean
distance between an offset vertex and its original.
This CGAL packages provides a helper function to compute the required separation: compute outer frame
margin
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If you use this function to place the outer frame you are guaranteed to obtain an offset contour corresponding
exclusively to the frame, which you can always identify as the one with the largest area and which you can
simple remove from the result (to keep just the relevant outer contours).

Figure 23.7: Exterior skeleton obtained using a frame (left) and 2 sample exterior offset contours (right)

23.4 Straight Skeletons, Medial Axis and Voronoi Diagrams

The straight skeleton of a polygon is similar to the medial axis and the Voronoi diagram of a polygon in the
way it partitions it; however, unlike the medial axis and Voronoi diagram, the bisectors are not equidistant to
its defining edges but to the supporting lines of such edges. As a result, Straight Skeleton bisectors might not
be located in the center of the polygon and so cannot be regarded as a proper Medial Axis in its geometrical
meaning.

On the other hand, only reflex vertices (whose internal angle > pi) are the source of deviations of the bisectors
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from its center location. Therefore, for convex polygons, the straight skeleton, the medial axis and the Voronoi
diagram are exactly equivalent, and, if a non-convex polygon contains only vertices of low reflexivity, the
straight skeleton bisectors will be placed nearly equidistant to their defining edges, producing a straight skeleton
pretty much alike a proper medial axis.

23.5 Usages of the Straight Skeletons

The most natural usage of straight skeletons is offsetting: growing and shrinking polygons (provided by this
CGAL package).

Another usage, perhaps its very first, is roof design: The straight skeleton of a polygonal roof directly gives
the layout of each tent. If each skeleton edge is lifted from the plane a height equal to its offset distance, the
resulting roof is ”correct” in that water will always fall down to the contour edges (roof border) regardless of
were in the roof it falls. [LD03] gives an algorithm for roof design based on the straight skeleton.

Just like medial axes, 2D straight skeletons can also be used for 2D shape description and matching. Essen-
tially, all the applications of image-based skeletonization (for which there is a vast literature) are also direct
applications of the straight skeleton, specially since skeleton edges are simply straight line segments.

Consider the subgraph formed only by inner bisectors (that is, only the skeleton halfedges which are not incident
upon a contour vertex). Call this subgraph a skeleton axis. Each node in the skeleton axis whose degree is >= 3
roots more than one skeleton tree. Each skeleton tree roughly corresponds to a region in the input topologically
equivalent to a rectangle; that is, without branches. For example, a simple letter ”H” would contain 2 higher
degree nodes separating the skeleton axis in 5 trees; while the letter ”@” would contain just 1 higher degree
node separating the skeleton axis in 2 curly trees.

Since a skeleton edge is a 2D straight line, each branch in a skeleton tree is a polyline. Thus, the path-length of
the tree can be directly computed. Furthermore, the polyline for a particular tree can be interpolated to obtain
curve-related information.

Pruning each skeleton tree cutting off branches whose length is below some threshold; or smoothing a given
branch, can be used to reconstruct the polygon without undesired details, or fit into a particular canonical shape.

Each skeleton edge in a skeleton branch is associated with 2 contour edges which are facing each other. If
the polygon has a bottleneck (it almost touches itself), a search in the skeleton graph measuring the distance
between each pair of contour edges will reveal the location of the bottleneck, allowing you to cut the shape in
two. Likewise, if two shapes are too close to each other along some part of their boundaries (a near contact zone),
a similar search in an exterior skeleton of the two shapes at once would reveal the parts of near contact, allowing
you to stitch the shapes. These cut and stitch operations can be directly executed in the straight skeleton itself
instead of the input polygon (because the straight skeleton contains a graph of the connected contour edges).

23.6 Straight Skeleton of a General Figure in the Plane

A straight skeleton can also be defined for a general multiply-connected planar directed straight-line graph
[AA95] by considering all the edges as embedded in an unbounded region. The only difference is that in this
case some faces will be only partially bounded.

The current version of this CGAL package can only construct the straight skeleton in the interior of a simple
polygon with holes, that is it doesn’t handle general polygonal figures in the plane.
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This chapter introduces the concepts and classes that correspond to the CGAL 2D Straight Skeleton package.
The packages provides an algorithm for the construction of the straight skeleton in the interior of a simple
polygon with holes and an algorithm for the construction of inward offset contours based on the straight skeleton.
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StraightSkeleton 2

Definition

The concept StraightSkeleton 2 describes the requirements for the data structure used to represent a straight
skeleton. It refines the concept HalfedgeDS and adds additional requirements on the nested types Vertex,
Halfedge, and Face of the halfedge data structure.

Refines

HalfedgeDS

Types

StraightSkeleton 2:: Vertex A model of the StraightSkeletonVertex 2 concept used to
represent the vertices of the straight skeleton

StraightSkeleton 2:: Halfedge A model of the StraightSkeletonHalfedge 2 concept used to
represent the halfedges of the straight skeleton

StraightSkeleton 2:: Face Any model of the StraightSkeletonFace 2 concept used to
represent the faces of the straight skeleton

Has Models

CGAL::Straight skeleton 2<Traits,Items,Alloc>.

This concept explicitly protects all the modifying operations of the base HalfedgeDS concept. Only the algo-
rithm classes, or clients explicitly bypassing the protection mechanism, can modify a straight skeleton.
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StraightSkeletonVertex 2

Definition

The concept StraightSkeletonVertex 2 describes the requirements for the vertex type of the StraightSkeleton 2
concept. It is a refinement of the HalfedgeDSVertex concept with support for storage of the incident halfedge.
The StraightSkeletonVertex 2 concept requires the geometric embedding to be a 2D point.

Refines

HalfedgeDSVertex

Types

StraightSkeletonVertex 2:: Point 2 The type of the 2D point being the geometric embedding of
the vertex

StraightSkeletonVertex 2:: FT A model of the SqrtFieldNumberType concept representing
the time of a vertex (an Euclidean distance)

StraightSkeletonVertex 2:: Halfedge around vertex const circulator
StraightSkeletonVertex 2:: Halfedge around vertex circulator

The circulator type used to visit all the incident halfedges
around a vertex

StraightSkeletonVertex 2:: Defining contour halfedge const circulator
StraightSkeletonVertex 2:: Defining contour halfedge circulator

The circulator type used to visit all the defining contour
halfedges of a vertex

Creation

StraightSkeletonVertex 2 v; Default constructor
StraightSkeletonVertex 2 v( int id, Point 2 p); Constructs a contour vertex with ID number id, at the point p

StraightSkeletonVertex 2 v( int id, Point 2 p, FT time);

Constructs a skeleton vertex with ID number id, at point p
and time time.

Access Functions

int v.id() const The ID of the vertex.
Point 2 v.point() const The vertex point.
FT v.time() const The time of the vertex: the distance from the vertex point to

the lines supporting the defining contour edges

Halfedge handle v.primary bisector()
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Halfedge const handle

v.primary bisector() const

Returns the skeleton halfedge incident upon the vertex
(called the primary bisector).

Halfedge around vertex circulator

v.halfedge around vertex begin()
Halfedge around vertex const circulator

v.halfedge around vertex begin() const

Returns a bi-directional circulator pointing to one of the in-
cident halfedges (which one is unspecified).
There will always be as many incident halfedges as the de-
gree of the vertex.
If this is a contour vertex, its degree is exactly 3, and from
the halfedges pointed to by the circulator, 2 are contour and
1 is a bisector.
If this is an skeleton vertex, its degree is at least 3 and all of
the halfedges pointed to by the circulator are bisectors.
Each halfedge pointed to by this circulator is the one which
is oriented towards the vertex (according to the geometric
embedding).

Defining contour halfedge circulator

v.defining contour halfedges begin()
Defining contour halfedge const circulator

v.defining contour halfedges begin() const

Returns a bi-directional circulator pointing to one of the
defining contour halfedges of the vertex (which one is un-
specified).
There will always be as many incident defining contour
halfedges as the degree of the vertex.
Each halfedge pointed to by this circulator is the one having
its left side facing inwards (which happens to be the contour
halfedge for which is border() is false).

Queries

bool v.is contour() const Returns true iff this is a contour vertex.
bool v.is skeleton() const Returns true iff this is a skeleton vertex.

Has Models

CGAL::Straight skeleton vertex base 2<Refs,Point,FT>.
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See Also

StraightSkeleton 2
StraightSkeletonHalfedge 2
CGAL::Straight skeleton vertex base 2<Refs,Point,FT>
CGAL::Straight skeleton halfedge base 2<Refs>
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StraightSkeletonHalfedge 2

Definition

The concept StraightSkeletonHalfedge 2 describes the requirements for the halfedge type of
the StraightSkeleton 2 concept. It is a refinement of the HalfedgeDSHalfedge concept. The
StraightSkeletonHalfedge 2 concept requires no geometric embedding at all. The only geometric em-
bedding used by the Straight Skeleton Data Structure are the 2D points in the contour and skeleton vertices.
However, for any halfedge, there is a 2D segment implicitly given by its source and target vertices.

Refines

HalfedgeDSHalfedge

Creation

StraightSkeletonHalfedge 2 h; Default Constructor.

StraightSkeletonHalfedge 2 h( int id); Constructs a halfedge with ID id.
It is the links to other halfedges what determines if this is a
contour edge, a contour-skeleton edge or an inner-skeleton
edge.

Access Functions
Halfedge handle h.defining contour edge()
Halfedge const handle

h.defining contour edge() const

If this is a bisector halfedge, returns a handle to the inward-
facing (non-border) contour halfedge corresponding to the
defining contour edge which is to its left; if this is a contour
halfedge, returns a handle to itself if is border() is false, or
to its opposite if it is true.

Queries

bool h.is bisector() const Returns true iff this is a bisector (or skeleton) halfedge (i.e.
is not a contour halfedge).

bool h.is inner bisector() const

Returns true iff this is a bisector and is inner (i.e. is not
incident upon a contour vertex).

1699



Has Models

CGAL::Straight skeleton halfedge 2<Refs>.

See Also

StraightSkeleton 2
StraightSkeletonHalfedge 2
CGAL::Straight skeleton vertex base 2<Refs,Point,FT>
CGAL::Straight skeleton halfedge base 2<Refs>
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StraightSkeletonFace 2

Definition

The concept StraightSkeletonFace 2 describes the requirements for the face type of the StraightSkeleton 2
concept. It is a refinement of the HalfedgeDSFace concept with support for storage of the incident halfedge.

Refines

HalfedgeDSFace

Creation

StraightSkeletonFace 2 f ; Default constructor
StraightSkeletonFace 2 f ( int id); Constructs a face with ID number id

Access Functions

int f .id() const The ID of the face.

Has Models

CGAL::Straight skeleton face base 2<Refs>.

See Also

StraightSkeleton 2
CGAL::Straight skeleton face base 2<Refs>
CGAL::Straight skeleton vertex base 2<Refs,Point,FT>
CGAL::Straight skeleton halfedge base 2<Refs>
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StraightSkeletonItemsConverter 2

Definition

The concept StraightSkeletonItemsConverter 2 describes the requirements for items converter passed as the
third template argument to the class Straight skeleton converter 2<SrcSs,TgtSs,ItemsConverter>. It converts
the HDS items from one type of straight skeleton to another

Types

StraightSkeletonItemsConverter 2:: Source vertex const handle

A constant handle to a model of the StraightSkeletonVertex 2
concept used to represent the vertices of the straight skeleton
of the source type.

StraightSkeletonItemsConverter 2:: Source halfedge const handle

A constant handle to model of the StraightSkeletonHalfedge
2 concept used to represent the halfedges of the straight
skeleton of the source type.

StraightSkeletonItemsConverter 2:: Source face const handle

A constant handle to model of the StraightSkeletonFace 2
concept used to represent the faces of the straight skeleton of
the source type.

StraightSkeletonItemsConverter 2:: Tarvet vertex

A model of the StraightSkeletonVertex 2 concept used to
represent the vertices of the straight skeleton of the target
type.

StraightSkeletonItemsConverter 2:: Target halfedge

A model of the StraightSkeletonHalfedge 2 concept used to
represent the halfedges of the straight skeleton of the target
type.

StraightSkeletonItemsConverter 2:: Target face

Any model of the StraightSkeletonFace 2 concept used to
represent the faces of the straight skeleton of the target type.

Operations

Target vertex conv.operator()( Source vertex const handle v) const

returns a new vertex with the same data as v converted to the
corresponding target types.
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Target halfedge conv.operator()( Source halfedge const handle h) const

returns a new halfedge with the same data as h converted to
the corresponding target types.

Target face conv.operator()( Source face const handle f) const

returns a new face with the same data as f converted to the
corresponding target types.

Has Models

CGAL::Straight skeleton items converter 2<TgtSs,SrcSs,NTConverter>

See Also

CGAL::Straight skeleton converter 2<SrcSs,TgtSs,ItemsCvt> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1722
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StraightSkeletonBuilder 2 Visitor

Definition

The concept StraightSkeletonBuilder 2 Visitor describes the requirements of the visitor class required by the
algorithm class Straight skeleton builder 2<Gt,Ss,Visitor> in its third template parameter.

Types

StraightSkeletonBuilder 2 Visitor:: Halfedge const handle

A constant handle to a straight skeleton halfedge.

StraightSkeletonBuilder 2 Visitor:: Vertex const handle

A constant handle to a straight skeleton vertex.

Creation

Operations

void v.on contour edge entered( Halfedge const handle const&) const

Called for each contour halfedge added to the skeleton).

void v.on initialization started( std::size t number of vertices) const

Called before the initialization stage (when initial events are
discovered) is started.

void v.on contour vertex processed( Vertex const handle const& v,
bool is reflex,
bool is degenerate) const

Called after the events for contour vertex v have been discov-
ered. is reflex is true if this vertex has an internal angle > PI,
or is degenerate is true if the internal angle is = PI.

void v.on edge event created( Vertex const handle const& node0,
Vertex const handle const& node1) const

Called after an edge event for nodes node0 and node1 has
been discovered and put on the queue for later processing.

void v.on split event created( Vertex const handle const& node) const

Called after a slipt event for node node has been discovered
and put on the queue for later processing.

void v.on pseudo split event created( Vertex const handle const& node0,
Vertex const handle const& node1) const

Called after a pseudo slipt event for nodes node0 and node1
has been discovered and put on the queue for later process-
ing.
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void v.on initialization finished() const

Called after all initial events have been discovered.

void v.on propagation started() const

Called before the propagation stage (when events are poped
off the queue and processed) is started.

void v.on anihiliation event processed( Vertex const handle const& node0,
Vertex const handle const& node1) const

Called after an anhiliation event for nodes node0 and node1
has been processed. A new skeleton edge between these
nodes has been added.

void v.on edge event processed( Vertex const handle const& seed0,
Vertex const handle const& seed1,
Vertex const handle const& newnode) const

Called after an edge for nodes seed0 and seed1 has been pro-
cessed. Skeleton vertex newnode and edges from node0 to
newnode and node1 to newnode has been added.

void v.on split event processed( Vertex const handle const& seed,
Vertex const handle const& newnode0,
Vertex const handle const& newnode1) const

Called after a split event for node seed has been processed.
Skeleton vertices newnode0 and newnode1 have been added.
An skeleton edge from seed to newnode0 has been added. In
the final skeleton, newnode1 is removed and only newnode0
remains.

void v.on pseudo split event processed( Vertex const handle const& seed0,
Vertex const handle const& seed1,
Vertex const handle const& newnode0,
Vertex const handle const& newnode1) const

Called after a pseudo split event for nodes seed0 and
seed1 has been processed. Skeleton vertices newnode0 and
newnode1 have been added. Skeleton edges from seed0 to
newnode0 and seed1 to newnode1 has been added.

void v.on vertex processed( Vertex const handle const& v) const

Called after vertex v has been marked as already processed.

void v.on propagation finished() const

Called after all events have been processed.

void v.on cleanup started() const

Called when the skeleton clean up (when multiple nodes are
merged) is started.

void v.on cleanup finished() const

Called when clean up finished.
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void v.on algorithm finished( bool finished ok) const

Called when the algorithm terminated. finished ok is false if
it terminated before completion or the resulting skeleton was
found to be invalid.

void v.on error( char const* msg) const

Called whenever an error was detected. msg is whatever error
message accompanies the error. This pointer can be null.

Has Models

CGAL::Dummy straight skeleton builder 2 visitor<Ss>.

See Also

CGAL::Straight skeleton builder 2<Gt,Ss>
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StraightSkeletonBuilderTraits 2

Definition

The concept StraightSkeletonBuilderTraits 2 describes the requirements for the geometric traits class required
by the algorithm class Straight skeleton builder 2<Gt,Ss>.

Types

StraightSkeletonBuilderTraits 2:: Kernel A model of the Kernel concept.
StraightSkeletonBuilderTraits 2:: FT A SqrtFieldNumberType provided by the kernel. This type

is used to represent the coordinates of the input points, of the
skeleton nodes and as the event time stored in the skeleton
nodes.

boost::tuple<FT,FT> Vertex; A pair of (x,y) coordinates representing a 2D Cartesian point.

boost::tuple<Vertex,Vertex>

Edge; A pair of vertices representing an edge
boost::tuple<Edge,Edge,Edge>

EdgeTriple; A triple of edges representing an event

StraightSkeletonBuilderTraits 2:: Equal 2

A predicate object type being a model of the Kernel::Equal 2 function ob-
ject concept.

StraightSkeletonBuilderTraits 2:: Left turn 2

A predicate object type being a model of the Kernel::LeftTurn 2 function
object concept.

StraightSkeletonBuilderTraits 2:: Collinear 2

A predicate object type being a model of the Kernel::Collinear 2 function
object concept.

StraightSkeletonBuilderTraits 2:: Do ss event exist 2

A predicate object type.
Must provide bool operator()( EdgeTriple const& et) const, which deter-
mines if, given the 3 oriented lines defined by the 3 input edges (3 pair of
points), there exist an Euclidean distance t ≥ 0 for which the corresponding
3 offset lines at t (parallel lines at an Euclidean distance of t) intersect in a
single point.

Precondition: each edge in the triple must properly define an oriented line,
that is, such points cannot be coincident.
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StraightSkeletonBuilderTraits 2:: Compare ss event times 2

A predicate object type.
Must provide Comparison result operator()( EdgeTriple const& x, Ed-
geTriple const& y) const, which compares the times for the events
determined by the edge-triples x and y.
The time of an event given by an edge triple (which defines 3 oriented
lines) is the Euclidean distance t at which the corresponding offset lines at t
intersect in a single point.

Precondition: x and y must be edge-triples corresponding to events that
actually exist (as determined by the predicate Exist sls event 2).

StraightSkeletonBuilderTraits 2:: Compare ss event distance to seed 2

A predicate object type.
Must provide Comparison result operator()( Point 2 const& p, EdgeTriple
const& x, EdgeTriple const& y), which compares the Euclidean distance of
the points of event for x and y to the point p.
The point of an event given by an edge triple (which defines 3 oriented
lines) is the intersection point of the 3 corresponding offset lines at the time
t of the event.
It must also provide Comparison result operator( EdgeTriple const&
seed, EdgeTriple const& x, EdgeTriple const& y)() which makes the same
comparison as the first overload but where the seed point is given implicitly
as the point of event for seed.

Precondition: seed, x and y must be edge-triples corresponding to events
that actually exist (as determined by the predicate Exist sls event 2).

StraightSkeletonBuilderTraits 2:: Is ss event inside offset zone 2

A predicate object type.
Must provide bool operator()( EdgeTriple const& e, EdgeTriple const&
zone), which determines if the point of event for e is inside the offset zone
defined by the 3 oriented lines given by zone.
An offset zone given by 3 oriented lines is the intersection of the halfplanes
to the left of each oriented line.

Precondition: e must be an edge-triple corresponding to an event that ac-
tually exist (as determined by the predicate Exist sls event 2), and the 3
oriented lines given by zone must be well defined (no point-pair can have
coincident points).

StraightSkeletonBuilderTraits 2:: Are ss events simultaneous 2

A predicate object type.
Must provide bool operator()( EdgeTriple const& x, EdgeTriple const& y),
which determines if the events given by x and y are coincident in time and
space; that is, both triples of offset lines intersect at the same point and at
the same Euclidean distance from their sources.

Precondition: x and y must be edge-triples corresponding to events that
actually exist (as determined by the predicate Exist sls event 2).
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StraightSkeletonBuilderTraits 2:: Construct ss event time and point 2

A construction object type.
Must provide boost::tuple< boost::optional<FT>, boost::optional<Point
2> > operator()( EdgeTriple const& e), which given the 3 oriented lines
defined by the 3 input edges (3 pair of points), returns the Euclidean
distance t ≥ 0 and intersection point at which the corresponding 3 offset
lines at t intersect.
If the values cannot be computed, not even approximately (because of
overflow for instance), an empty optional must be returned.

Precondition: e must be an edge-triple corresponding to an event that actu-
ally exist (as determined by the predicate Exist sls event 2).

StraightSkeletonBuilderTraits 2:: Construct ss vertex 2

A construction object type.
Must provide Vertex operator()( Point 2 const& p), which given a Point 2
p returns a Vertex encapsulating the corresponding (x,y) pair of Cartesian
coordinates.

StraightSkeletonBuilderTraits 2:: Construct ss edge 2

A construction object type.
Must provide Edge operator()( Point 2 const& s, Point 2 const& t), which
given source and target points s and t returns an Edge encapsulating the
corresponding input segment (in Cartesian coordinates.)

StraightSkeletonBuilderTraits 2:: Construct ss triedge 2

A construction object type.
Must provide Triedge operator()( Edge const& e0, Edge const& e1, Edge
const& e2), which given the 3 edges that define an event, e0, e1 and e2,
returns a Triedge encapsulating them.

Has Models

CGAL::Straight skeleton builder traits 2<K>.

See Also

CGAL::Straight skeleton builder 2<Gt,Ss>
CGAL::Straight skeleton builder traits 2<K>
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PolygonOffsetBuilderTraits 2

Definition

The concept PolygonOffsetBuilderTraits 2 describes the requirements for the geometric traits class required by
the algorithm class Polygon offset builder 2<Ss,Gt,Polygon 2>.

Types

PolygonOffsetBuilderTraits 2:: Kernel A model of the Kernel concept.
PolygonOffsetBuilderTraits 2:: FT A SqrtFieldNumberType provided by the kernel. This type

is used to represent the coordinates of the input points and to
specify the desired offset distance.

PolygonOffsetBuilderTraits 2:: Point 2 A 2D point type
boost::tuple<FT,FT> Vertex; A pair of (x,y) coordinates representing a 2D Cartesian point.

boost::tuple<Vertex,Vertex>

Edge; A pair of vertices representing an edge
boost::tuple<Edge,Edge,Edge>

EdgeTriple; A triple of edges representing an event

PolygonOffsetBuilderTraits 2:: Compare offset against event time 2

A predicate object type.
Must provide Comparison result operator()( FT d, EdgeTriple const& et)
const, which compares the Euclidean distance d with the event time for et.
Such event time is the Euclidean distance at which the offset lines intersect in
a single point. The source of such offset lines is given by the 3 oriented lines
defined by the edge-triple et
Precondition: et must be an edge-triple corresponding to an event that actually
exist (that is, there must exist an offset distance t > 0 at which the offset lines
do intersect at a single point.

PolygonOffsetBuilderTraits 2:: Construct offset point 2

A construction object type.
Must provide boost::optional<Point 2> operator()( FT t, Edge const& x,
Edge const& y) const, which constructs the point of intersection of the lines
obtained by offsetting the oriented lines given by x and y an Euclidean
distance t. If the point cannot be computed, not even approximately (because
of overflow for instance), an empty optional must be returned.

Precondition: x and y must intersect in a single point

PolygonOffsetBuilderTraits 2:: Construct ss vertex 2

A construction object type.
Must provide Vertex operator()( Point 2 const& p), which given a Point 2 p
returns a Vertex encapsulating the corresponding (x,y) pair of Cartesian coor-
dinates.
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PolygonOffsetBuilderTraits 2:: Construct ss edge 2

A construction object type.
Must provide Edge operator()( Point 2 const& s, Point 2 const& t), which
given source and target points s and t returns an Edge encapsulating the cor-
responding input segment (in Cartesian coordinates.)

PolygonOffsetBuilderTraits 2:: Construct ss triedge 2

A construction object type.
Must provide Triedge operator()( Edge const& e0, Edge const& e1, Edge
const& e2), which given the 3 edges that define an event, e0, e1 and e2, re-
turns a Triedge encapsulating them.

Has Models

CGAL::Polygon offset builder traits 2<K>.

See Also

CGAL::Polygon offset builder 2<Ss,Gt,Polygon 2>
CGAL::Polygon offset builder traits 2<K>
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VertexContainer 2

Introduction

A model for the VertexContainer 2 concept defines the requirements for a resizable container of 2D points. It
is used to output the offset polygons generated by the Polygon offset builder 2<Ssds,Gt,Container> class.

Types

VertexContainer 2:: Point 2 A 2D point type used to represent a vertex. Must be a model
of the Kernel::Point 2 concept

VertexContainer 2:: size type A unsigned integral type that can represent the number of
vertices in the container.

Creation

VertexContainer 2 c; Default constructor

size type c.size() const Returns the number of vertices in the container.

void c.push back( Point 2 v) const

Adds the vertex v to the container, resizing its capacity if
required.

Has Models

CGAL::Polygon 2

Any standard BackInsertionSequence, such as vector, list or deque, with a value type being a model of the
Kernel::Point 2 concept.
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CGAL::create interior straight skeleton 2

Definition

The function create interior straight skeleton 2 creates a straight skeleton in the interior of a 2D polygon with
holes.

#include <CGAL/create straight skeleton 2.h>

template<class PointIterator, class HoleIterator, class K>
boost::shared ptr< Straight skeleton 2<K> >

create interior straight skeleton 2( PointIterator outer contour vertices begin,
PointIterator outer contour vertices end,
HoleIterator holes begin,
HoleIterator holes end,
K k = Exact predicates inexact constructions

kernel)

returns a new Straight skeleton 2<K> in the interior of
the 2D polygon with holes whose outer boundary is given
by the point sequence [outer contour vertices begin,outer
contour vertices end] and its holes given by [holes
begin,holes end].

template<class PointIterator, class K>
boost::shared ptr< Straight skeleton 2<K> >

create interior straight skeleton 2( PointIterator outer contour vertices begin,
PointIterator outer contour vertices end,
K k = Exact predicates inexact constructions

kernel)

returns a new Straight skeleton 2<K> in the interior of
the 2D polygon whose outer boundary is given by
the point sequence [outer contour vertices begin,outer
contour vertices end].

template<class Polygon, class K>
boost::shared ptr< Straight skeleton 2<K> >

create interior straight skeleton 2( Polygon outer contour,
K k = Exact predicates inexact constructions

kernel)

returns a new Straight skeleton 2<K> in the interior of the
2D polygon outer contour.

1. K is any CGAL kernel.
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2. PointIterator::value type is equivalent to K2::Point 2. A cartesian converter is used to convert from
K2::Point 2 to K::Point 2

3. HoleIterator::value type and Polygon are Polygon 2<K> or a standard container of K2::Point 2 elements

#include <CGAL/create straight skeleton from polygon with holes 2.h>

template<class K>
boost::shared ptr< Straight skeleton 2<K> >

create interior straight skeleton 2( Polygon with holes<K> poly with holes,
K k = Exact predicates inexact constructions

kernel)

returns a new Straight skeleton 2<K> in the interior of the
2D polygon with holes poly with holes.

See Also

create exterior straight skeleton 2
Straight skeleton builder 2<Gt,Ss>
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CGAL::create exterior straight skeleton 2

Definition

The function create exterior straight skeleton 2 creates a straight skeleton in the exterior of a 2D polygon with
holes.

#include <CGAL/create straight skeleton 2.h>

template<class FT, class PointIterator, class K>
boost::shared ptr< Straight skeleton 2<K> >

create exterior straight skeleton 2( FT max offset,
PointIterator vertices begin,
PointIterator vertices end,
K k = Exact predicates inexact constructions

kernel)

returns a new Straight skeleton 2<K> in the limited exterior
of the 2D polygon P given by the point sequence [vertices
begin,vertices end]. The skeleton in the limited exterior of
P is the skeleton in the interior of a polygon Q with P as its
hole and a rectangular frame F as outer boundary. The outer
boundary F is constructed by enlarging the bounding box
of P a distance d. d is a margin sufficiently large to allow
an outer offset at dinstance max offset to be obtained from
this exterior skeleton, as computed by the function compute
outer frame margin

template<class FT, class Polygon, class K>
boost::shared ptr< Straight skeleton 2<K> >

create exterior straight skeleton 2( FT max offset,
Polygon P,
K k = Exact predicates inexact constructions

kernel)

returns a new Straight skeleton 2<K> in the limited exterior
of the 2D polygon P . The skeleton in the limited exterior of
P is the skeleton in the interior of a polygon Q with P as its
hole and a rectangular frame F as outer boundary. The outer
boundary F is constructed by enlarging the bounding box
of P a distance d. d is a margin sufficiently large to allow
an outer offset at dinstance max offset to be obtained from
this exterior skeleton, as computed by the function compute
outer frame margin

Requirements
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1. K is any CGAL kernel.

2. PointIterator::value type is equivalent to K2::Point 2. A cartesian converter is used to convert from
K2::Point 2 to K::Point 2

3. Polygon is Polygon 2<K> or a standard container of K2::Point 2 elements

See Also

create interior straight skeleton 2
Straight skeleton builder 2<Gt,Ss,Visitor>
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CGAL::Straight skeleton 2<Traits,Items,Alloc>

Definition

The class Straight skeleton 2<Traits,Items,Alloc> provides a model for the StraightSkeleton 2 concept which
is the class type used to represent a straight skeleton.
It inherits from HalfedgeDS vector<Traits,Items,Alloc>

#include <CGAL/Straight skeleton 2.h>

Is Model for the Concepts

StraightSkeleton 2
DefaultConstructible
CopyConstructible
Assignable

See Also

StraightSkeletonVertex 2
StraightSkeletonHalfedge 2
StraightSkeleton 2

The only purpose of this class is to protect all the modifying operations in a HalfedgeDS. Normal users should
not modify a straight skeleton. If an advanced user needs to get access to the modifying operations, it must call
the required methods through the ::Base class.
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CGAL::Straight skeleton vertex base 2<Refs,Point,FT>

Definition

The class Straight skeleton vertex base 2<Refs,Point,FT> provides a model for the StraightSkeletonVertex 2
concept which is the vertex type required by the StraightSkeleton 2 concept. The class Straight skeleton vertex
base 2<Refs,Point,FT> has three template arguments: the first is the model of the StraightSkeleton 2 concept
(the vertex container), the second is a Point type, and the third is a model of the SqrtFieldNumberType, which
is the numeric type used to represent the time of a vertex (a Euclidean distance).

This class can be used as a base class allowing users of the straight skeleton data structure to decorate a vertex
with additional data. The concrete vertex class must be given in the HalfedgeDSItems template parameter of the
instantiation of the HalfedgeDS default class used as the model for the Straight skeleton 2 concept.

#include <CGAL/Straight skeleton vertex base 2.h>

Is Model for the Concepts

StraightSkeletonVertex 2
DefaultConstructible
CopyConstructible
Assignable

See Also

StraightSkeletonVertex 2
StraightSkeletonHalfedge 2
StraightSkeleton 2
CGAL::Straight skeleton halfedge base 2<Refs>
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CGAL::Straight skeleton halfedge base 2<Refs>

Definition

The class Straight skeleton halfedge base 2<Refs> provides a model for the StraightSkeletonHalfedge 2 con-
cept which is the halfedge type required by the StraightSkeleton 2 concept. The class Straight skeleton
halfedge base 2<Refs> has only one template argument: a model of the StraightSkeleton 2 concept (the
halfedge container).

This class can be used as a base class allowing users of the straight skeleton data structure to decorate a halfedge
with additional data. The concrete halfedge class must be given in the HalfedgeDSItems template parameter of
the instantiation of the HalfedgeDS default class used as the model for the Straight skeleton 2 concept.

#include <CGAL/Straight skeleton halfedge base 2.h>

Is Model for the Concepts

StraightSkeletonHalfedge 2
DefaultConstructible
CopyConstructible
Assignable

See Also

StraightSkeletonHalfedge 2
StraightSkeletonVertex 2
StraightSkeleton 2
CGAL::Straight skeleton vertex base 2<Refs,Point,FT>
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CGAL::Straight skeleton face base 2<Refs>

Definition

The class Straight skeleton face base 2<Refs> provides a model for the StraightSkeletonFace 2 concept which
is the face type required by the StraightSkeleton 2 concept. The class Straight skeleton face base 2<Refs> has
only one template argument: the model of the StraightSkeleton 2 concept (the face container).

This class can be used as a base class allowing users of the straight skeleton data structure to decorate a face
with additional data. The concrete face class must be given in the HalfedgeDSItems template parameter of the
instantiation of the HalfedgeDS default class used as the model for the Straight skeleton 2 concept.

#include <CGAL/Straight skeleton face base 2.h>

Is Model for the Concepts

StraightSkeletonFace 2
DefaultConstructible
CopyConstructible
Assignable

See Also

StraightSkeletonFace 2
StraightSkeletonVertex 2
StraightSkeletonHalfedge 2
StraightSkeleton 2
CGAL::Straight skeleton vertex base 2<Refs>
CGAL::Straight skeleton halfedge base 2<Refs>
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CGAL::Straight skeleton items converter 2<SrcSs, TgtSs, NTCon-
verter>

Definition

Straight skeleton items converter 2<SrcSs, TgtSs, NTConverter>is a model of the
StraightSkeletonItemsConverter 2 concept

The first and second template parameters are the target and source straight skeleton types, resp.

The third template parameter NTConverter is a function object that must provide TgtSs:Traits::FT opera-
tor()(SrcSs::Traits::FT n) that converts n to an TgtSs::Traits::FT which has the same value. The default value
of this parameter is CGAL::NT converter<SrcSs::Traits::FT, TgtSs::Traits::FT>.

Is Model for the Concepts

StraightSkeletonItemsConverter 2
DefaultConstructible
CopyConstructible
Assignable

#include <CGAL/Straight skeleton converter 2.h>

Creation

Straight skeleton items converter 2<SrcSs, TgtSs, NTConverter> conv;

Default constructor.

See Also

CGAL::Straight skeleton 2<Traits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1717
CGAL::Straight skeleton converter 2<SrcSs,TgtSs,ItemsCvt> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1722
CGAL::Straight skeleton builder 2<Gt,Ss,Visitor> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1726
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CGAL::Straight skeleton converter 2<SrcSs,TgtSs,ItemsCvt>

Definition

The class Straight skeleton converter 2<SrcSs,TgtSs,ItemsCvt> converts a straight skeleton instantiated using
certain traits into another straight skeleton instantiated using a different traits.

The first and second template parameters are the source and target straight skeleton types, resp.

The third template parameter ItemsConverter is a function object that must model the concept
StraightSkeletonItemsConverter 2. The default value of this parameter is CGAL::Straight skeleton items
converter 2<SrcSs,TgtSs>.

This conversion can be used to produce a straight skeleton with the fast Exact predicates inexact constructions
kernel but then input that skeleton into Polygon offset builder<Ss,Gt,Container> instantiated with the slower
Exact predicates exact constructions kernel obtaining only simple offset polygons without paying the runtime
overhead of exact constructions for the straight skeleton itself.

Types

SrcSs Source skeleton; The SrcSs template parameter corresponding to the source
straight skeleton.

TgtSs Target skeleton; The TgtSs template parameter corresponding to the target
straight skeleton.

ItemsCvt Items converter; The ItemsCvt template parameter corresponding to the items
converter.

#include <CGAL/Straight skeleton converter 2.h>

Creation

Straight skeleton converter 2<SrcSs,TgtSs,ItemsCvt> c( Items converter c);

Default constructor

Operations

boost::shared ptr<Target skeleton>

c.operator()( Source skeleton const& s) const

returns a new straight skeleton data structure with the same
combinatorial and geometric data as s using the items con-
verter to convert the geometric embeeding to the types of the
target traits.
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See Also

StraightSkeletonItemsConverter 2
Straight skeleton items converter 2<SrcSs,TgtSs,NTConverter>
convert straight skeleton 2<SrcSs,TgtSs,NTConverter>
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CGAL::convert straight skeleton 2<TgtSs,SrcSs,ItemsCvt>

Definition

The function convert straight skeleton 2<TgtSs,SrcSs,ItemsCvt> converts a straight skeleton instantiated using
certain traits into another straight skeleton instantiated using a different traits.

#include <CGAL/Straight skeleton converter 2.h>

boost::shared ptr<Target skeleton, Source skeleton, Items converter>

convert straight skeleton 2( Source skeleton s,
Items converted ic = Items converter())

returns a new straight skeleton data structure with the same
combinatorial and geometric data as s using the items con-
verter ic to convert the geometric embedding to the types of
the target skeleton.
The first template parameter is the type of the target straight
skeleton. This template parameter is not bound to a function
argument so it must be explicitly specified.

See Also

StraightSkeletonItemsConverter 2
Straight skeleton items converter 2<SrcSs,TgtSs,NTConverter>
Straight skeleton converter 2<SrcSs,TgtSs,ItemsConverter>
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CGAL::Straight skeleton builder traits 2<Kernel>

Definition

The class Straight skeleton builder traits 2<Kernel> provides a model for the StraightSkeletonBuilderTraits 2
concept which is the traits class required by the Straight skeleton builder 2 algorithm class. The class Straight
skeleton builder traits 2<Kernel> has one template argument: a 2D CGAL Kernel. This parameter must be a
model for the Kernel concept, such as the Exact predicates inexact constructions kernel, which is the recom-
mended one.
It is unspecified which subset of the kernel is used into the output sequence and the returned iterator will be
equal to out.

For any given input polygon, it in this traits class (and by extension in the builder class). This is to avoid
restricting the choices in the implementation.

#include <CGAL/Straight skeleton builder traits 2.h>

Is Model for the Concepts

StraightSkeletonBuilderTraits 2
DefaultConstructible
CopyConstructible

See Also

CGAL::Straight skeleton builder 2<Gt,Ssds>
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CGAL::Straight skeleton builder 2<Gt,Ss,Visitor>

Definition

The class Straight skeleton builder 2<Gt,Ss,Visitor> encapsulates the construction of the 2D straight skele-
ton in the interior of a polygon with holes. Its first template parameter, Gt, must be a model
of the StraightSkeletonBuilderTraits 2 concept, its second template parameter, Ss, must be a model
of the StraightSkeleton 2 concept, and its third template paramter, Visitor, must be a model of the
StraightSkeletonBuilder 2 Visitor concept. If this last parameter is ommitted, the class CGAL::Dummy
straight skeleton builder 2 visitor<Skel> is used.

#include <CGAL/Straight skeleton builder 2.h>

Types

Straight skeleton builder 2<Gt,Ss,Visitor>:: Gt

The geometric traits (first template parameter)

Straight skeleton builder 2<Gt,Ss,Visitor>:: Ss

The straight skeleton (second template parameter)

Straight skeleton builder 2<Gt,Ss,Visitor>:: Point 2

The 2D point type as defined by the geometric traits

Creation

Straight skeleton builder 2<Gt,Ss,Visitor> b; Default constructs the builder class.

Methods

template<class InputPointIterator> 1726



Straight skeleton builder 2&

b.enter contour( InputPointIterator aBegin, InputPointIterator aEnd)

Defines the contours that form the non-degenerate strictly-
simple polygon with holes whose straight skeleton is to be
built.
Each contour must be input in turn starting with the outer
contour and following with the holes (if any). The order
of the holes is unimportant but the outer contour must be
entered first. The outer contour must be oriented counter-
clockwise while holes must be oriented clockwise.
It is an error to enter more than one outer contour or to enter
a hole which is not inside the outer contour or inside another
hole. It is also an error to enter a contour which crosses or
touches any one another. It is possible however to enter a
contour that touches itself in such a way that its interior re-
gion is still well defined and singly-connected (see the User
Manual for examples).
The sequence [aBegin,aEnd) must iterate over each 2D point
that corresponds to a vertex of the contour being entered.
Vertices cannot be coincident (except consecutively since the
method simply skip consecutive coincident vertices). Con-
secutive collinear edges are allowed.
InputPointIterator must be an InputIterator whose value type
is Point 2.

boost::shared ptr<Ss>

b.construct skeleton()

Constructs and returns the 2D straight skeleton in the inte-
rior of the polygon with holes as defined by the contours en-
tered first by calling enter contour. All the contours of the
polygon with holes must be entered before calling construct
skeleton.
After construct skeleton completes, you cannot enter more
contours and/or call construct skeleton() again. If you need
another straight skeleton for another polygon you must in-
stantiate and use another builder.
The result is a dynamically allocated instance of the Ss class,
wrapped in a boost::shared ptr.
If the construction process fails for whatever reason (such as
a nearly-degenerate vertex whose internal or external angle
is almost zero), the return value will be null, represented by
a default constructed shared ptr.
The algorithm automatically checks the consistency of the
result, thus, if it is not null, it is guaranteed to be valid.

Algorithm

The implemented algorithm is closely based on [FO98] with the addition of vertex events as described in [EE98].

It simulates a grassfire propagation of moving polygon edges as they move inward at constant and equal speed.
That is, the continuous inward offsetting of the polygon.
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Since edges move at equal speed their movement can be characterized in a simpler setup as the movement of
vertices. Vertices move along the angular bisector of adjacent edges.
The trace of a moving vertex is described by the algorithm as a bisector. Every position along a bisector
corresponds to the vertex between two offset (moved) edges. Since edges move at constant speed, every position
along a bisector also corresponds to the distance those two edges moved so far.
From the perspective of a dynamic system of moving edges, such a distance can be regarded as an instant
(in time). Therefore, every distinct position along a bisector corresponds to a distinct instant in the offsetting
process.
As they move inward, edges can expand or contract w.r.t to the endpoints sharing a vertex. If a vertex has
an internal angle < pi, its incident edges will contract but if its internal angle > pi, they will expand. The
movement of the edges, along with their extent change, result in collisions between non-adjacent edges. These
collisions are called events, and they occur when the colliding edges have moved a certain distance, that is, at
certain instants.
If non-consecutive edges E(j),E(k) move while edge E(i) contracts, they can collide at the point when E(i) shrinks
to nothing (that is, the three edges might meet at a certain offset). This introduces a topological change in the
polygon: Edges E(j),E(k) are now adjacent, edge E(i) disappears, and a new vertex appears. This topological
change is called an edge event.
Similarly, consecutive expanding edges E(i),E(i+1) sharing a reflex vertex (internal angle >= pi) might collide
with any edge E(j) on the rest of the same connected component of the polygon boundary (even far away from
the initial edge’s position). This also introduces a topological change: E(j) gets split in two edges and the
connected component having E(i),E(i+1) and E(j) is split in two unconnected parts: one having E(i) and the
corresponding subsegment of E(j) and the other with E(i+1) and the rest of E(j). This is called a split event.
If a reflex vertex hits not an edge E(j) but another reflex vertex E(j),E(j+1), and vice-versa (the reflex vertex V(j)
hits V(i)), there is no actual split and the two unconnected parts have E(i),E(j) and E(i+1),E(j+1) (or E(i),E(j+1)
and E(i+1),E(j)). This topological change is called a vertex event. Although similar to a split event in the sense
that two new unconnected contours emerge introducing two new contour vertices, in the case of a vertex event
one of the new contour vertices might be reflex; that is, a vertex event may result in one of the offset polygons
having a reflex contour vertex which was not in the original polygon.

Edges movement is described by vertices movement, and these by bisectors. Therefore, the collision between
edges E(j),E(i),E(k) (all in the same connected component) occurs when the moving vertices E(j)->E(i) and
E(i)->E(k) meet ; that is, when the two bisectors describing the moving vertices intersect (Note: as the edges
move inward and events occur, a vertex between edges A and B might exist even if A and B are not consecutive;
that is, j and k are not necessarily i-1 and i+1 respectively, although initially they are).
Similarly, the collision between E(i),E(i+1) with E(j) (all in the same connected component) occurs when the
bisector corresponding to the moving vertex E(i)->E(i+1) hits the moving edge E(j).
Since each event changes the topology of the moving polygon, it is not possible or practical to foresee all events
at once. Rather, the algorithm starts by estimating an initial set of potential events and from there it computes
one next event at a time based on the previous one. The chaining of events is governed by their relative instants:
events that occur first are processed first.
An initial set of potential split events is first computed independently (the computation of a potential split event
is based solely on a reflex vertex and all other edges in the same connected component); and an initial set of
potential edge events between initially consecutive bisectors is first computed independently (based solely on
each bisector pair under consideration).
Events occur at certain instants and the algorithm must be able to order them accordingly. The correctness of
the algorithm is uniquely and directly governed by the correct computation and ordering of the events. Any
potential event might no longer be applicable after the topological change introduced by a prior event.
A grassfire propagation picks the next unprocessed event (starting from the first) and if it is still applicable
processes it. Processing an event involves connecting edges, adding a new skeleton vertex (which corresponds
the a contour vertex of the offset polygon) and calculating one new potential future event (which can be either
an edge event or a split event -because of a prior vertex event-), based on the topological change just introduced.
The propagation finishes when there are no new future events.
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See Also

StraightSkeletonBuilderTraits 2
StraightSkeletonVertex 2
StraightSkeletonHalfedge 2
StraightSkeleton 2
CGAL::Straight skeleton builder traits 2<K>
CGAL::Straight skeleton vertex base 2<Refs,P,FT>
CGAL::Straight skeleton halfedge base 2<Refs>
CGAL::Straight skeleton 2<Traits,Items,Alloc>
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CGAL::Dummy straight skeleton builder 2 visitor<Ss>

Definition

The class Dummy straight skeleton builder 2 visitor<Ss> provides a model for the StraightSkeletonBuilder 2
Visitor concept which is the visitor type required by the StraightSkeletonBuilder 2 concept. The class Dummy
straight skeleton builder 2 visitor<Ss> has only one template argument: a model of the StraightSkeleton 2
concept.

This class is the default visitor parameter of the straight skeleton builder. All its methods are empty.

#include <CGAL/Straight skeleton builder 2.h>

Is Model for the Concepts

StraightSkeletonBuilder 2 Visitor
DefaultConstructible

See Also

CGAL::Straight skeleton builder 2<Gt,Ss,Visitor>
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CGAL::create offset polygons 2

Definition

The function create offset polygons 2 creates a straight skeleton in the interior of a 2D polygon with holes.

#include <CGAL/create straight skeleton 2.h>

template<class Polygon, class FT, class Straight skeleton, class K>
std::vector< boost::shared ptr<Polygon> >

create offset polygons 2( FT offset,
Straight skeleton s,
,
K k = Exact predicates inexact constructions kernel)

returns a container with all the offset polygons at distance
o f f set obtained from the straight skeleton s.

1. K is any CGAL kernel.

2. FT is any number type implicitly convertible to K::FT .

3. Straight skeleton is Straight skeleton 2<K2>. If K! = K2 the straight skeleton is converted to Straight
skeleton 2<K>.

4. Polygon is a model of VertexContainer 2. If this first template parameter is omitted, Polygon 2 is used.

See Also

create interior skeleton 2
create exterior skeleton 2
create interior skeleton and offset polygons 2
create exterior skeleton and offset polygons 2
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CGAL::arrange offset polygons 2

Definition

The function arrange offset polygons 2 arranges the sequence of Polygon 2 objects obtained by create offset
polygons 2 into Polygon with holes 2 objects by determining geometric parent-hole relationships using a sim-
ple algorithm based on the particular characteristics of offset polygons. This function should not be used to
arrange arbitrary polygons into polygons with holes unless they meet the requirements specified below.

#include <CGAL/arrange offset polygons 2.h>

template<class K, class InputPolygonPtrIterator, class OutputPolygonWithHolesPtrIterator>
void arrange offset polygons 2( InputPolygonPtrIterator begin,

InputPolygonPtrIterator end,
OutputPolygonWithHolesPtrIterator out,
K k)

determines parent-hole relationships among the polygons
given by [begin,end] creating boost::shared ptr< Polygon
with holes 2<K> > objects added to the output sequence
given out. A CLOCKWISE oriented polygon H is a hole of
a COUNTERCLOCKWISE polygon P, iff at least one vertex
of H is ON BOUNDED SIDE of P.

Requirements

1. K is any CGAL kernel.

2. InputPolygonPtrIterator is an input iterator whose value type is a smart ptr (such as boost::shared ptr)
whose element type is Polygon 2<K>.

3. InputPolygonPtrIterator is an output iterator whose value type is a smart ptr (such as boost::shared ptr)
whose element type is Polygon with holes 2<K>.

4. The input polygons must be simple.

5. The set of input polygons are unique and interior disjoint. That is, given distinct polygons P and Q, there
are vertices of P which are not on the boundary of Q and are all on the bounded or unbounded side of Q
(but not both).

See Also

create exterior straight skeleton 2
Straight skeleton builder 2<Gt,Ss>
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CGAL::create interior skeleton and offset polygons 2

Definition

The function create interior skeleton and offset polygons 2 creates inner offset polygons directly from an in-
put polygon via a temporarily created straight skeleton.

#include <CGAL/create offset polygons 2.h>

template<class FT, class Polygon, class HoleIterator, class OffsettingK, class SkeletonK>
std::vector< boost::shared ptr<Polygon> >

create interior skeleton and offset polygons 2( FT offset,
Polygon outer boundary,
HoleIterator holes begin,
HoleIterator holes end,
OffsettingK ofk = CGAL::Exact

predicates inexact constructions kernel,
SkeletonK ssk = CGAL::Exact

predicates inexact constructions kernel)

returns a container with all the inner offset polygons at dis-
tance o f f set of the 2D polygon with holes whose outer
boundary is outer boundary and its holes are given by
[holes begin,holes end]. A temporary straight skeleton is
constructed in the interior of the input polygon to ob-
tain the offsets. The construction of this skeleton is the
most expensive operation, therefore, to construct offsets
at more than one single distance, use the separate func-
tions create interior straight skeleton 2 and create offset
polygons 2 instead.

template<class FT, class Polygon, class OffsettingK, class SkeletonK>
std::vector< boost::shared ptr<Polygon> >

create interior skeleton and offset polygons 2( FT offset,
Polygon poly,
OffsettingK ofk = CGAL::Exact

predicates inexact constructions kernel,
SkeletonK ssk = CGAL::Exact

predicates inexact constructions kernel)

returns a container with all the inner offset polygons at dis-
tance o f f set of the 2D polygon poly. A temporary straight
skeleton is constructed in the interior of the input polygon
to obtain the offsets. The construction of this skeleton is
the most expensive operation, therefore, to construct off-
sets at more than one single distance, use the separate func-
tions create interior straight skeleton 2 and create offset
polygons 2 instead.
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#include <CGAL/create offset polygons from polygon with holes 2.h>

template<class FT, class OffsettingK, class SkeletonK>
std::vector< boost::shared ptr< Polygon 2<OffsettingK> > >

create interior skeleton and offset polygons 2( FT offset,
CGAL::Polygon with holes<

OffsettingK> poly with holes,
OffsettingK ofk = CGAL::Exact

predicates inexact constructions kernel,
SkeletonK ssk = CGAL::Exact

predicates inexact constructions kernel)

returns a container with all the inner offset polygons at dis-
tance o f f set of the 2D polygon with holes polywithholes.
A temporary straight skeleton is constructed in the interior
of the input polygon to obtain the offsets. The construc-
tion of this skeleton is the most expensive operation, there-
fore, to construct offsets at more than one single distance,
use the separate functions create interior straight skeleton
2 and create offset polygons 2 instead.

template<class FT, class OffsettingK, class SkeletonK>
std::vector< boost::shared ptr< Polygon with holes 2<OffsettingK> > >

create interior skeleton and offset polygons with holes 2( FT offset,
CGAL::Polygon 2<

OffsettingK> poly,
OffsettingK ofk =

CGAL::Exact predicates inexact constructions kernel,
SkeletonK ssk =

CGAL::Exact predicates inexact constructions kernel)

returns a container with all the inner offset polygons with
holes at distance o f f set of the 2D polygon poly. This
is equivalent to arrange offset polygons 2(create interior
skeleton and offset polygons 2(offset,poly,okk,ssk)).

template<class FT, class OffsettingK, class SkeletonK>
std::vector< boost::shared ptr< Polygon with holes 2<OffsettingK> > >

create interior skeleton and offset polygons with holes 2( FT offset,
CGAL::Polygon with

holes 2<OffsettingK> poly with holes,
OffsettingK ofk =

CGAL::Exact predicates inexact constructions kernel,
SkeletonK ssk =

CGAL::Exact predicates inexact constructions kernel)

returns a container with all the inner offset poly-
gons with holes at distance o f f set of the 2D poly-
gon with holes polywithholes. This is equivalent
to arrange offset polygons 2(create interior skeleton and
offset polygons 2(offset,poly with holes,okk,ssk)).
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1. OffsettingK is the CGAL kernel used to instantiate Polygon offset builder traits 2<K> for constructing
the offset polygons.

2. SkeletonK is the CGAL kernel used to instantiate Straight skeleton builder traits 2<K> for construct-
ing the straight skeleton. If SkeletonK != OffsettingK the constructed straight skeleton is converted to
Straight skeleton 2<OffsettingK>.

3. FT is any number type implicitly convertible to OffsettingK::FT .

4. Straight skeleton is Straight skeleton 2<K2>. If K! = K2 the straight skeleton is converted to Straight
skeleton 2<K>.

5. HoleIterator::value type and Polygon are CGAL::Polygon 2<OffsettingK> or a standard container of
OffsettingK::Point 2 elements

See Also

create exterior straight skeleton 2
Straight skeleton builder 2<Gt,Ss>
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CGAL::create exterior skeleton and offset polygons 2

Definition

The function create exterior skeleton and offset polygons 2 creates outer offset polygons directly from an in-
put polygon via a temporarily created straight skeleton.

#include <CGAL/create offset polygons 2.h>

template<class FT, class Polygon, class OffsettingK, class SkeletonK>
std::vector< boost::shared ptr<Polygon> >

create exterior skeleton and offset polygons 2( FT offset,
Polygon poly,
OffsettingK ofk = Exact predicates

inexact constructions kernel,
SkeletonK ssk = Exact predicates

inexact constructions kernel)

returns a container with all the outer offset polygons at
distance o f f set of the 2D polygon poly. A temporary
straight skeleton is constructed in the limited exterior of the
input polygon to obtain the offsets. The construction of
this skeleton is the most expensive operation, therefore, to
construct offsets at more than one single distance, use the
separate functions create exterior straight skeleton 2 and
create offset polygons 2 instead. The exterior skeleton is
limited by an outer rectangular frame placed at a margin suf-
ficiently large to allow the offset polygons to be constructed.

#include <CGAL/create offset polygons from polygon with holes 2.h>

template<class FT, class OffsettingK, class SkeletonK>
std::vector< boost::shared ptr< Polygon with holes 2<OffsettingK> > >

create exterior skeleton and offset polygons with holes 2( FT offset,
CGAL::Polygon 2<

OffsettingK> poly with holes,
OffsettingK ofk = Exact

predicates inexact constructions kernel,
SkeletonK ssk = Exact

predicates inexact constructions kernel)

returns a container with all the outer offset polygons with
holes at distance o f f set of the 2D polygon poly. This
is equivalent to arrange offset polygons 2(create exterior
skeleton and offset polygons 2(offset,poly,okk,ssk)).

Requirements
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1. OffsettingK is the CGAL kernel used to instantiate Polygon offset builder traits 2<K> for constructing
the offset polygons.

2. SkeletonK is the CGAL kernel used to instantiate Straight skeleton builder traits 2<K> for construct-
ing the straight skeleton. If SkeletonK != OffsettingK the constructed straight skeleton is converted to
Straight skeleton 2<OffsettingK>.

3. FT is any number type implicitly convertible to OffsettingK::FT .

4. Straight skeleton is Straight skeleton 2<K2>. If K! = K2 the straight skeleton is converted to Straight
skeleton 2<K>.

See Also

create exterior straight skeleton 2
Straight skeleton builder 2<Gt,Ss>
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CGAL::Polygon offset builder traits 2<Kernel>

Definition

The class Polygon offset builder traits 2<Kernel> provides a model for the PolygonOffsetBuilderTraits 2 con-
cept which is the traits class required by the Polygon offset builder 2 algorithm class. The class Polygon offset
builder traits 2<Kernel> has one template argument: a 2D CGAL Kernel. This parameter must be a model for
the Kernel concept, such as the Exact predicates inexact constructions kernel, which is the recommended one.
It is unspecified which subset of the kernel is used in this traits class (and by extension in the builder class).
This is to avoid restricting the choices in the implementation.

#include <CGAL/Polygon offset builder traits 2.h>

Is Model for the Concepts

PolygonOffsetBuilderTraits 2
DefaultConstructible
CopyConstructible

See Also

CGAL::Polygon offset builder 2<Ss,Gt,Polygon 2>
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CGAL::Polygon offset builder 2<Ss,Gt,Container>

Definition

The class Polygon offset builder 2<Ss,Gt,Container> encapsulates the construction of inward offset contours
of a 2D simple polygon with holes. The construction is based on the straight skeleton of the interior of the
polygon. Its first template parameter, Ss, must be a model of the StraightSkeleton 2 concept, its second template
parameter, Gt, must be a model of the StraightSkeletonBuilderTraits 2 concept, and its third template parameter
must be a model of the VertexContainer 2 concept.

#include <CGAL/Polygon offset builder 2.h>

Types

Polygon offset builder 2<Ss,Gt,Container>:: Ss

The straight skeleton (first template parameter)

Polygon offset builder 2<Ss,Gt,Container>:: Gt

The geometric traits (second template parameter)

Polygon offset builder 2<Ss,Gt,Container>:: Container

The container of 2D vertices that represents each offset con-
tour generated by the algorithm (third template parameter)

Polygon offset builder 2<Ss,Gt,Container>:: FT

The SqrtFieldNumberType used to specify the desired offset
distance, provided by the geometric traits Gt.

Creation

Polygon offset builder 2<Ss,Gt,Container> b( Ss ss);

Constructs the builder class using the given Straight Skeleton
instance.

Methods

template<class OutputIterator>
1739



OutputIterator b.construct offset contours( FT t, OutputIterator out)

Given the straight skeleton passed in the constructor
which corresponds to the interior of a non-degenerate
strictly-simple polygon with holes P, returns all the offset
contours of P at the Euclidean distance t.
Such offset contours are polygons in the interior of P. Pro-
vided exact constructions are used, these polygons are
simple.
For any offset distance t there are 0, 1 or more offset con-
tours.
For each resulting offset contour, a default constructed
instance of Container type (which must be a model of
the VertexContainer 2 concept), is dynamically allocated
and each offset vertex is added to it.
A boost::shared ptr holding onto the dynamically allo-
cated container is inserted into the output sequence via
the OutputIterator out.
OutputIterator must be a model of the OutputIterator cat-
egory whose value type is a boost::shared ptr holding
the dynamically allocated instances of type Container.
The method returns an OutputIterator past-the-end of the
resulting sequence, which contains each offset contour
generated.
You can call construct offset contours with different off-
set distances (there is no need to construct the builder
again). If you call it with an offset distance so large that
there are no offset contours at that distance, no contour is
inserted into the output sequence and the returned iterator
will be equal to out.
For any given input polygon, its offset polygons at a cer-
tain distance are composed of several contours. This
method returns all such contours in an unspecified or-
der and with no parental relationship between them (that
is why it is called construct offset contours and not
construct offset polygons).
Those offset contours in the resulting sequence which are
oriented counter-clockwise are outer contours and those
oriented clockwise are holes. It is up to the user to match
each hole to its parent in order to reconstruct the parent-
hole relationship of the conceptual output. It is sufficient
to test each hole against each parent as there won’t be a
hole inside a hole, a parent inside any other contour, or a
hole inside more than one parent. The recommended insi-
deness test is to perform a regularized Boolean set opera-
tion. do intersect from the Boolean Set Operations pack-
age will work fine in our case since it is guaranteed that
no hole would cross halfway outside any parent (in the
presence of such cases, subtracting the parent from the
hole works better as it correctly rejects halfway holes).
If there are degenerate, or nearly degenerate vertices; that
is, vertices whose internal or external angle approaches
0, numerical overflow may prevent some of the polygon
contours to be constructed. If that happens, the failed
contour just won’t be added into the resulting sequence.
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See Also

VertexContainer 2
PolygonOffsetBuilderTraits 2
CGAL::Polygon offset builder traits 2<Kernel>
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CGAL::compute outer frame margin

Definition

The function compute outer frame margin computes the separation required between a polygon and the outer
frame used to obtain an exterior skeleton suitable for the computation of outer offset polygons at a given dis-
tance.

#include <CGAL/compute outer frame margin.h>

template <class InputIterator, class Traits>
boost::optional< typename Traits::FT >

compute outer frame margin( InputIterator first,
InputIterator beyond,
typename Traits::FT offset,
Traits traits = Default traits)

Given a non-degenerate strictly-simple 2D polygon whose
vertices are passed in the range [first,beyond), calculates the
largest euclidean distance d between each input vertex and
its corresponding offset vertex at a distance offset.
If such a distance can be approximately computed, returns
an optional<FT> with the value d + (offset * 1.05). If the
distance cannot be computed, not even approximately, due
to overflow for instance, returns an empty optional<FT> (an
absent result).
This result is the required separation between the input
polygon and the rectangular frame used to construct an
exterior offset contour at distance offset (which is done by
placing the polygon as a hole of that frame).
Such a separation must be computed in this way because
if the frame is too close to the polygon, the inward offset
contour from the frame could collide with the outward offset
contour of the polygon, resulting in a merged contour offset
instead of two contour offsets, one of them corresponding to
the frame.
Simply using 2*offset as the separation is incorrect since
offset is the distance between an offset line and its original,
not between an offset vertex and its original. The later,
which is calculated by this function and needed to place the
frame sufficiently away from the polygon, can be thousands
of times larger than offset.
If the result is absent, any attempt to construct an exterior
offset polygon at distance offset will fail. This will occur
whenever the polygon has a vertex with an internal angle
approaching 0 (because the offset vertex of a vertex whose
internal angle equals 0 is at infinity ).

Precondition: offset > 0.
Precondition: The range [first,beyond) contains the vertices
of a non-degenerate strictly-simple 2D polygon.
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The default traits class Default traits is an instance of the class Polygon offset builder traits 2<Kernel> pa-
rameterized on the kernel in which the type InputIterator::value type is defined.

Requirements

1. InputIterator::value type is equivalent to Traits::Point 2.

2. Traits must be a model for PolygonOffsetBuilderTraits 2

See Also

PolygonOffsetBuilderTraits 2
CGAL::Polygon offset builder traits 2<Kernel>
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24.1 Introduction

Given two sets A,B ∈ Rd , their Minkowski sum, denoted by A⊕B, is the set {a+b | a ∈ A,b ∈ B}. Minkowski
sums are used in many applications, such as motion planning and computer-aided design and manufacturing.
This package contains functions for computing planar Minkowski sums of two polygons (namely A and B are
two closed polygons in R2), and for a polygon and a disc (an operation also known as offsetting or dilating a
polygon).

24.2 Computing the Minkowski Sum of Two Polygons

Computing the Minkowski sum of two convex polygons P and Q with m and n vertices respectively is very easy,
as P⊕Q is a convex polygon bounded by copies of the m + n edges, and these edges are sorted by the angle
they form with the x-axis. As the two input polygons are convex, their edges are already sorted by the angle
they form with the x-axis. The Minkowski sum can therefore be computed in O(m + n) time, by starting from
two bottommost vertices in P and in Q and performing “merge sort” on the edges.

If the polygons are not convex, it is possible to use one of the following approaches:
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Figure 24.1: Computing the convolution of a convex polygon and a non-convex polygon (left). The convolution
consists of a single self-intersecting cycle, drawn as a sequence of arrows (right). The winding number asso-
ciated with each face of the arrangement induced by the segments forming the cycle appears in dashed circles.
The Minkowski sum of the two polygons is shaded.

Decomposition: We decompose P and Q into convex sub-polygons, namely we obtain two sets of convex
polygons P1, . . . ,Pk and Q1, . . . ,Q` such that

Sk
i=1 Pi = P and

S`
i= j Q j = Q. We then calculate the pairwise

sums Si j = Pi⊕Q j using the simple procedure described above, and compute the union P⊕Q =
S

i j Si j.

This approach relies on a decomposition strategy that computes the convex decomposition of the input
polygons and its performance depends on the quality of the decomposition.

Convolution: Let us denote the vertices of the input polygons by P = (p0, . . . , pm−1) and Q = (q0, . . . ,qn−1).
We assume that both P and Q have positive orientations (i.e. their boundaries wind in a counterclockwise
order around their interiors) and compute the convolution of the two polygon boundaries. The convolution
of these two polygons [GRS83], denoted P∗Q, is a collection of line segments of the form [pi +q j, pi+1 +
q j],1 where the vector pipi+1 lies between qj−1qj and qjqj+1,2 and — symmetrically — of segments of
the form [pi +q j, pi +q j+1], where the vector qjqj+1 lies between pi−1pi and pipi+1.

The segments of the convolution form a number of closed (not necessarily simple) polygonal curves called
convolution cycles. The Minkowski sum P⊕Q is the set of points having a non-zero winding number
with respect to the cycles of P∗Q.3 See Figure 24.1 for an illustration.

The number of segments in the convolution of two polygons is usually smaller than the number of seg-
ments that constitute the boundaries of the sub-sums Si j when using the decomposition approach. As
both approaches construct the arrangement of these segments and extract the sum from this arrangement,
computing Minkowski sum using the convolution approach usually generates a smaller intermediate ar-
rangement, hence it is faster and consumes less space.

24.2.1 Computing Minkowski Sum using Convolutions

The function minkowski sum 2 (P, Q) accepts two simple polygons P and Q, represented using the Polygon
2<Kernel,Container> class-template and uses the convolution method in order to compute and return their
Minkowski sum S = P⊕Q.

As the input polygons may not be convex, their Minkowski sum may not be simply connected and con-
tain polygonal holes; see for example Figure 24.1. S is therefore an instance of the Polygon with holes 2<
Kernel,Container> class-template, defined in the Boolean Set-Operations package: The outer boundary of S

1Throughout this chapter, we increment or decrement an index of a vertex modulo the size of the polygon.
2We say that a vector v lies between two vectors u and w if we reach v strictly before reaching w if we move all three vectors to the

origin and rotate u counterclockwise. Note that this also covers the case where u has the same direction as v.
3Informally speaking, the winding number of a point p ∈ R2 with respect to some planar curve γ is an integer number counting how

many times does γ wind in a counterclockwise direction around p.
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Figure 24.2: Computing the Minkowski sum of two triangles, as done in the example program Minkowski sum
2/sum triangles.cpp.

is a polygon that can be accessed using S.outer boundary(), and its polygonal holes are given by the range
[S.holes begin(), S.holes end()) (where S contains S.number of holes() holes in its interior).

The following example program constructs the Minkowski sum of two triangles, as depicted in Figure 24.2.
The result in this case is a convex hexagon. This program, as other example programs in this chapter, includes
the auxiliary header file ms rational nt.h which defines Number type as either Gmpq or Quotient<MP Float>,
depending on whether the GMP library is installed or not. The file print util.h includes auxiliary functions for
printing polygons.� �
#include "ms_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/minkowski_sum_2.h>
#include <iostream>

#include "print_utils.h"

typedef CGAL::Cartesian<Number_type> Kernel;
typedef Kernel::Point_2 Point_2;
typedef CGAL::Polygon_2<Kernel> Polygon_2;
typedef CGAL::Polygon_with_holes_2<Kernel> Polygon_with_holes_2;

int main ()
{

// Construct the first polygon (a triangle).
Polygon_2 P;

P.push_back (Point_2 (0, 0));
P.push_back (Point_2 (6, 0));
P.push_back (Point_2 (3, 5));

// Construct the second polygon (a triangle).
Polygon_2 Q;

Q.push_back (Point_2 (0, 0));
Q.push_back (Point_2 (2, -2));
Q.push_back (Point_2 (2, 2));

// Compute the Minkowski sum.
Polygon_with_holes_2 sum = minkowski_sum_2 (P, Q);
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Figure 24.3: Computing the Minkowski sum of two non-convex polygons P and Q, as done in the example
programs Minkowski sum 2/sum with holes.cpp and Minkowski sum 2/sum by decomposition.cpp.

CGAL_assertion (sum.number_of_holes() == 0);

std::cout << "P = "; print_polygon (P);
std::cout << "Q = "; print_polygon (Q);
std::cout << "P (+) Q = "; print_polygon (sum.outer_boundary());

return (0);
}� �
File: examples/Minkowski_sum_2/sum_triangles.cpp

In the following program we compute the Minkowski sum of two polygons that are read from an input file. In
this case, the sum is not simple and contains four holes, as illustrated in Figure 24.3. Note that this example
uses the predefined CGAL kernel with exact constructions. In general, instantiating polygons with this kernel
yields the fastest running times for Minkowski-sum computations.� �
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/minkowski_sum_2.h>
#include <iostream>
#include <fstream>

#include "print_utils.h"

struct Kernel : public CGAL::Exact_predicates_exact_constructions_kernel
{};

typedef Kernel::Point_2 Point_2;
typedef CGAL::Polygon_2<Kernel> Polygon_2;
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typedef CGAL::Polygon_with_holes_2<Kernel>
Polygon_with_holes_2;

int main ()
{

// Open the input file.
std::ifstream in_file ("rooms_star.dat");

if (! in_file.is_open())
{

std::cerr << "Failed to open the input file." << std::endl;
return (1);

}

// Read the two polygons from the file and compute their Minkowski sum.
Polygon_2 P, Q;

in_file >> P >> Q;
in_file.close();

// Compute and print the Minkowski sum.
Polygon_with_holes_2 sum = minkowski_sum_2 (P, Q);

std::cout << "P (+) Q = "; print_polygon_with_holes (sum);

return (0);
}� �
File: examples/Minkowski_sum_2/sum_with_holes.cpp

24.2.2 Decomposition Strategies

In order to compute Minkowski sums using the decomposition method, it is possible to call the func-
tion minkowski sum 2 (P, Q, decomp), where decomp is an instance of a class that models the concept
PolygonConvexDecomposition 2, namely it should provide a method named decompose() that receives a planar
polygon and returns a range of convex polygons that represents its convex decomposition.

The Minkowski-sum package includes four models of the concept PolygonConvexDecomposition 2. The first
three are classes that wrap the decomposition functions included in the Planar Polygon Partitioning package,
while the fourth is an implementation of a decomposition algorithm introduced in [AFH02]. The convex de-
compositions that it creates usually yield efficient running times for Minkowski sum computations:

• The class Optimal convex decomposition<Kernel> uses the dynamic-programming algorithm of
Greene [Gre83] for computing an optimal decomposition of a polygon into a minimal number of con-
vex sub-polygons. The main drawback of this strategy is that it runs in O(n4) time and O(n3) in the worst
case,where n is the number of vertices in the input polygon.

• The class Hertel Mehlhorn convex decomposition<Kernel> implements the approximation algorithm
suggested by Hertel and Mehlhorn [HM83], which triangulates the input polygon and proceeds by throw-
ing away unnecessary triangulation edges. This algorithm requires O(n) time and space and guarantees
that the number of sub-polygons it generates is not more than four times the optimum.

1749



• The class Greene convex decomposition<Kernel> is an implementation of Greene’s approximation al-
gorithm [Gre83], which computes a convex decomposition of the polygon based on its partitioning into
y-monotone polygons. This algorithm runs in O(n logn) time and O(n) space, and has the same approxi-
mation guarantee as Hertel and Mehlhorn’s algorithm.

• The class Small side angle bisector convex decomposition<Kernel> uses a heuristic improvement to the
angle-bisector decomposition method suggested by Chazelle and Dobkin [CD85], which runs in O(n2)
time. It starts by examining each pair of reflex vertices in the input polygon such that the entire interior of
the diagonal connecting these vertices is contained in the polygon. Out of all available pairs, the vertices
pi and p j are selected such that the number of reflex vertices from pi to p j (or from p j to pi) is minimal.
The polygon is split by the diagonal pi p j and we continue recursively on both resulting sub-polygons. In
case it is not possible to eliminate two reflex vertices at once any more, each reflex vertex is eliminated
by a diagonal that is closest to the angle bisector emanating from this vertex.

The following example demonstrates the computation of the Minkowski sum of the same input polygons as
used in Minkowski sum 2/sum with holes.cpp (as depicted in Figure 24.3), using the small-side angle-bisector
decomposition strategy:� �
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/minkowski_sum_2.h>
#include <CGAL/Small_side_angle_bisector_decomposition_2.h>
#include <iostream>
#include <fstream>

#include "print_utils.h"

struct Kernel : public CGAL::Exact_predicates_exact_constructions_kernel
{};

typedef Kernel::Point_2 Point_2;
typedef CGAL::Polygon_2<Kernel> Polygon_2;
typedef CGAL::Polygon_with_holes_2<Kernel>

Polygon_with_holes_2;

int main ()
{

// Open the input file.
std::ifstream in_file ("rooms_star.dat");

if (! in_file.is_open())
{

std::cerr << "Failed to open the input file." << std::endl;
return (1);

}

// Read the two polygons from the file and compute their Minkowski sum.
Polygon_2 P, Q;

in_file >> P >> Q;
in_file.close();

// Compute the Minkowski sum using the decomposition approach.
CGAL::Small_side_angle_bisector_decomposition_2<Kernel> ssab_decomp;
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Figure 24.4: (a) Offsetting a convex polygon. (b) Computing the offset of a non-convex polygon by decompos-
ing it to convex sub-polygons. (c) Offsetting a non-convex polygon by computing its convolution with a disc.
The convolution cycle induces an arrangement with three faces, whose winding numbers are shown enclosed in
dashed circles.

Polygon_with_holes_2 sum = minkowski_sum_2 (P, Q, ssab_decomp);

std::cout << "P (+) Q = "; print_polygon_with_holes (sum);

return (0);
}� �
File: examples/Minkowski_sum_2/sum_by_decomposition.cpp

24.3 Offsetting a Polygon

The operation of computing the Minkowski sum P⊕Br of a polygon P with br, a disc of radius r centered at
the origin, is widely known as offsetting the polygon P by a radius r.

Let P = (p0, . . . , pn−1) be the polygon vertices, ordered in a counterclockwise orientation around its interior. If
P is a convex polygon the offset is easily computed by shifting each polygon edge by r away from the polygon,
namely to the right side of the edge. As a result we obtain a collection of n disconnected offset edges. Each
pair of adjacent offset edges, induced by pi−1 pi and pi pi+1, are connected by a circular arc of radius r, whose
supporting circle is centered at pi. The angle that defines such a circular arc equals 180◦−∠(pi−1, pi, pi+1); see
Figure 24.4(a) for an illustration. The running time of this simple process is of course linear with respect to the
size of the polygon.

If P is not convex, its offset can be obtained by decomposing it to convex sub-polygons P1, . . .Pm such thatSm
i=1 Pi = P, computing the offset of each sub-polygon and finally calculating the union of these sub-offsets

(see Figure 24.4(b)). However, as was the case with the Minkowski sum of a pair of polygons, here it is also
more efficient to compute the convolution cycle of the polygon with the disc Br,4 which can be constructed by
applying the process described in the previous paragraph. The only difference is that a circular arc induced by a
reflex vertex pi is defined by an angle 540◦−∠(pi−1, pi, pi+1); see Figure 24.4(c) for an illustration. We finally
compute the winding numbers of the faces of the arrangement induced by the convolution cycle to obtain the
offset polygon.

4As the disc is convex, it is guaranteed that the convolution curve is comprised of a single cycle.
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Figure 24.5: Approximating the offset edge o1o2 induced by the polygon edge p1 p2 by two line segments o′1q′

and q′o′2.

24.3.1 Approximating the Offset with a Guaranteed Error-Bound

Let us assume that we are given a counterclockwise-oriented polygon P = (p0, . . . , pn−1), whose vertices all have
rational coordinates (i.e., for each vertex pi = (xi,yi) we have xi,yi ∈Q, and we wish to compute its Minkowski
sum with a disc of radius r, where r is also a rational number. The boundary of this sum is comprised of line
segments and circular arcs, where:

• Each circular arc is supported by a circle of radius r centered at one of the polygon vertices. The equation
of this circle is (x− xi)2 +(y− yi)2 = r2, and has only rational coefficients.

• Each line segment is supported by a line parallel to one of the polygon edges pi pi+1, which lies at distance
r from this edge. If we denote the supporting line of pi pi+1 by ax+by+c = 0, where a,b,c ∈Q, then the
offset edge is supported by the line ax+by+(c+` ·r) = 0, where ` is the length of the edge pi pi+1 and is
in general not a rational number. The line segments that comprise the offset boundaries therefore cannot
be represented as segments of lines with rational coefficients. We mention that the locus of all points that
lie at distance r from the line ax+by+ c = 0 is given by:

(ax+by+ c)2

a2 +b2 = r2 .

Thus, the linear offset edges are segments of curves of an algebraic curve of degree 2 (a conic curve)
with rational coefficients. This curve is actually a pair of the parallel lines ax + by +(c± ` · r) = 0. In
Section 24.3.2 we use this representation to construct the offset polygon in an exact manner using the
traits class for conic arcs.

The class-template Gps circle segment traits 2<Kernel>, included in the Boolean Set-Operations package is
used for representing general polygons whose edges are circular arcs or line segments, and for applying set
operations (e.g. intersection, union, etc.) on such general polygon. It should be instantiated with a geometric
kernel that employs exact rational arithmetic, such that the curves that comprise the polygon edges should be
arcs of circles with rational coefficients or segments of lines with rational coefficients. As in our case the line
segments do not satisfy this requirement, we apply a simple approximation scheme, such that each irrational
line segment is approximated by two rational segments:

1. Consider the example depicted in Figure 24.5, where the exact offset edge o1o2 is obtained by shifting
the polygon edge p1 p2 by a vector whose length is r that form an angle φ with the x-axis. We select two
points o′1 and o′2 with rational coordinates on the two circles centered at p1 and p2, respectively. These
points are selected such that if we denote the angle that the vector pjoj forms with the x-axis by φ′j (for
j = 1,2), we have φ′1 < φ < φ′2.
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Figure 24.6: The offset computation performed by the example programs Minkowski sum 2/approx offset.cpp
and Minkowski sum 2/exact offset.cpp. The input polygon is shaded and the boundary of its offset is drawn in
a thick black line.

2. We construct two tangents to the two circles at o′1 and o′2, respectively. The tangent lines have rational
coefficients.

3. We compute the intersection point of the two tangents, denoted q′. The two line segments o′1q′ and q′o′2
approximate the original offset edge o1o2.

The function approximated offset 2 (P, r, eps) accepts a polygon P, an offset radius r and ε > 0. It constructs
an approximation for the offset of P by the radius r using the procedure explained above. Furthermore, it
is guaranteed that the approximation error, namely the distance of the point q′ from o1o2 is bounded by ε.
Using this function, we are capable of working with the Gps circle segment traits 2<Kernel> class, which
considerably speeds up the (approximate) construction of the offset polygon and the application of set operations
on such polygons. The function returns an object of the nested type Gps circle segment traits 2<Kernel>
::Polygon with holes 2 representing the approximated offset polygon (recall that if P is not convex, its offset
may not be simple and may contain holes, whose boundary is also comprised of line segments and circular arcs).

The following example demonstrates the construction of an approximated offset of a non-convex polygon, as
depicted in Figure 24.6. Note that we use a geometric kernel parameterized with a filtered rational number-type.
Using filtering considerably speeds up the construction of the offset.� �
#include "ms_rational_nt.h"
#include <CGAL/Lazy_exact_nt.h>
#include <CGAL/Cartesian.h>
#include <CGAL/approximated_offset_2.h>
#include <CGAL/offset_polygon_2.h>
#include <CGAL/Timer.h>
#include <iostream>

typedef CGAL::Lazy_exact_nt<Number_type> Lazy_exact_nt;

struct Kernel : public CGAL::Cartesian<Lazy_exact_nt> {};
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typedef CGAL::Polygon_2<Kernel> Polygon_2;

typedef CGAL::Gps_circle_segment_traits_2<Kernel> Gps_traits_2;
typedef Gps_traits_2::Polygon_2 Offset_polygon_2;
typedef Gps_traits_2::Polygon_with_holes_2

Offset_polygon_with_holes_2;

int main ()
{

// Open the input file.
std::ifstream in_file ("spiked.dat");

if (! in_file.is_open())
{

std::cerr << "Failed to open the input file." << std::endl;
return (1);

}

// Read the input polygon.
Polygon_2 P;

in_file >> P;
in_file.close();

std::cout << "Read an input polygon with "
<< P.size() << " vertices." << std::endl;

// Approximate the offset polygon.
const Number_type radius = 5;
const double err_bound = 0.00001;
Offset_polygon_with_holes_2 offset;
CGAL::Timer timer;

timer.start();
offset = approximated_offset_2 (P, radius, err_bound);
timer.stop();

std::cout << "The offset polygon has "
<< offset.outer_boundary().size() << " vertices, "
<< offset.number_of_holes() << " holes." << std::endl;

std::cout << "Offset computation took "
<< timer.time() << " seconds." << std::endl;

return (0);
}� �
File: examples/Minkowski_sum_2/approx_offset.cpp

24.3.2 Computing the Exact Offset

As we previously mentioned, it is possible to represent offset polygons in an exact manner, if we treat their edges
as arcs of conic curves with rational coefficients. The function offset polygon 2 (P, r, traits) computes the offset
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of the polygon P by a rational radius r in an exact manner. The traits parameter should be an instance of an
arrangement-traits class that is capable of handling conic arcs in an exact manner; using the Arr conic traits 2
class with the number types provided by the CORE library is the preferred option. The function returns an
object of the nested type Gps traits 2<ArrConicTraits>::Polygons with holes 2 (see the documentation of the
Boolean Set-Operations package for more details on the traits-class adapter Gps traits 2), which represented
the exact offset polygon.

The following example demonstrates the construction of the offset of the same polygon that serves as an input
for the example program Minkowski sum 2/approx offset.cpp, presented in the previous subsection (see also
Figure 24.6). Note that the resulting polygon is smaller than the one generated by the approximated-offset
function (recall that each irrational line segment in this case is approximated by two rational line segments), but
the offset computation is considerably slower:� �
#include <CGAL/basic.h>

#ifndef CGAL_USE_CORE
#include <iostream>
int main ()
{

std::cout << "Sorry, this example needs CORE ..." << std::endl;
return (0);

}
#else

#include <CGAL/Cartesian.h>
#include <CGAL/CORE_algebraic_number_traits.h>
#include <CGAL/Arr_conic_traits_2.h>
#include <CGAL/offset_polygon_2.h>
#include <CGAL/Timer.h>
#include <iostream>

typedef CGAL::CORE_algebraic_number_traits Nt_traits;
typedef Nt_traits::Rational Rational;
typedef Nt_traits::Algebraic Algebraic;

struct Rat_kernel : public CGAL::Cartesian<Rational> {};
struct Alg_kernel : public CGAL::Cartesian<Algebraic> {};
struct Conic_traits_2 : public CGAL::Arr_conic_traits_2<Rat_kernel,

Alg_kernel,
Nt_traits> {};

typedef CGAL::Polygon_2<Rat_kernel> Polygon_2;

typedef CGAL::Gps_traits_2<Conic_traits_2> Gps_traits_2;
typedef Gps_traits_2::Polygon_2 Offset_polygon_2;
typedef Gps_traits_2::Polygon_with_holes_2

Offset_polygon_with_holes_2;

int main ()
{

// Open the input file.
std::ifstream in_file ("spiked.dat");

if (! in_file.is_open())
{
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std::cerr << "Failed to open the input file." << std::endl;
return (1);

}

// Read the input polygon.
Polygon_2 P;

in_file >> P;
in_file.close();

std::cout << "Read an input polygon with "
<< P.size() << " vertices." << std::endl;

// Compute the offset polygon.
Conic_traits_2 traits;
const Rational radius = 5;
Offset_polygon_with_holes_2 offset;
CGAL::Timer timer;

timer.start();
offset = offset_polygon_2 (P, radius, traits);
timer.stop();

std::cout << "The offset polygon has "
<< offset.outer_boundary().size() << " vertices, "
<< offset.number_of_holes() << " holes." << std::endl;

std::cout << "Offset computation took "
<< timer.time() << " seconds." << std::endl;

return (0);
}

#endif� �
File: examples/Minkowski_sum_2/exact_offset.cpp

advanced

Both functions approximated offset 2() and offset polygon 2() also have overloaded versions that accept a de-
composition strategy and use the polygon-decomposition approach to compute (or approximate) the offset.
These functions are less efficient than their counterparts that employ the convolution approach, and are only
included in the package for the sake of completeness.

advanced

24.3.3 Computing Inner Offsets

An operation closely related to the offset computation, is obtaining the inner offset of a polygon, or insetting it
by a given radius. The inset of a polygon P with radius r is the set of points iside P whose distance from the
polygon boundary, denoted ∂P, is at least r — namely: {p∈ P | dist(p,∂P)≥ r}. Note that the resulting set may
not be connected in case P is a non-convex polygon that has some narrow components, and thus is characterized
by a (possibly empty) set of polygons whose edges are line segments and circular arcs of radius r.
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The offset can be computed using the convolution method if we traverse the polygon in a clockwise orientation
(and not in counterclockwise orientation, as done in case of ofsetting a polygon). As in case of the offset
functions, the Minkowski-sum package contains two functions for insetting a simple polygon:

The function approximated inset 2 (P, r, eps, oi) accepts a polygon P, an inset radius r and ε > 0. It constructs
an approximation for the inset of P by the radius r, with the approximation error bounded by ε. The function
returns its output via the output iterator oi, whose value-type must be Gps circle segment traits 2<Kernel>
::Polygon 2 representing the polygons that approximates the inset polygon.� �
#include "ms_rational_nt.h"
#include <CGAL/Lazy_exact_nt.h>
#include <CGAL/Cartesian.h>
#include <CGAL/approximated_offset_2.h>
#include <CGAL/offset_polygon_2.h>
#include <CGAL/Timer.h>
#include <iostream>

typedef CGAL::Lazy_exact_nt<Number_type> Lazy_exact_nt;

struct Kernel : public CGAL::Cartesian<Lazy_exact_nt> {};
typedef CGAL::Polygon_2<Kernel> Polygon_2;

typedef CGAL::Gps_circle_segment_traits_2<Kernel> Gps_traits_2;
typedef Gps_traits_2::Polygon_2 Offset_polygon_2;
typedef Gps_traits_2::Polygon_with_holes_2

Offset_polygon_with_holes_2;

int main ()
{

// Open the input file.
std::ifstream in_file ("tight.dat");

if (! in_file.is_open())
{

std::cerr << "Failed to open the input file." << std::endl;
return (1);

}

// Read the input polygon.
Polygon_2 P;

in_file >> P;
in_file.close();

std::cout << "Read an input polygon with "
<< P.size() << " vertices." << std::endl;

// Approximate the offset polygon.
const Number_type radius = 1;
const double err_bound = 0.00001;
std::list<Offset_polygon_2> inset_polygons;
std::list<Offset_polygon_2>::iterator iit;
CGAL::Timer timer;
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timer.start();
approximated_inset_2 (P, radius, err_bound,

std::back_inserter (inset_polygons));
timer.stop();

std::cout << "The inset comprises "
<< inset_polygons.size() << " polygon(s)." << std::endl;

for (iit = inset_polygons.begin(); iit != inset_polygons.end(); ++iit)
{

std::cout << " Polygon with "
<< iit->size() << " vertices." << std::endl;

}
std::cout << "Inset computation took "

<< timer.time() << " seconds." << std::endl;
return (0);

}� �
File: examples/Minkowski_sum_2/approx_inset.cpp

Similarly, the function inset polygon 2 (P, r, traits, oi) computes the exact inset of P with radius r, and returns
its output via the given output iterator oi. The traits parameter should be an instance of an arrangement-traits
class that is capable of handling conic arcs in an exact manner, whereas oi’s value-type must be Gps traits 2<
ArrConicTraits>::Polygons 2.� �
#include <CGAL/basic.h>

#ifndef CGAL_USE_CORE
#include <iostream>
int main ()
{

std::cout << "Sorry, this example needs CORE ..." << std::endl;
return (0);

}
#else

#include <CGAL/Cartesian.h>
#include <CGAL/CORE_algebraic_number_traits.h>
#include <CGAL/Arr_conic_traits_2.h>
#include <CGAL/offset_polygon_2.h>
#include <CGAL/Timer.h>
#include <iostream>

typedef CGAL::CORE_algebraic_number_traits Nt_traits;
typedef Nt_traits::Rational Rational;
typedef Nt_traits::Algebraic Algebraic;

struct Rat_kernel : public CGAL::Cartesian<Rational> {};
struct Alg_kernel : public CGAL::Cartesian<Algebraic> {};
struct Conic_traits_2 : public CGAL::Arr_conic_traits_2<Rat_kernel,

Alg_kernel,
Nt_traits> {};

typedef CGAL::Polygon_2<Rat_kernel> Polygon_2;
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typedef CGAL::Gps_traits_2<Conic_traits_2> Gps_traits_2;
typedef Gps_traits_2::Polygon_2 Offset_polygon_2;

int main ()
{

// Open the input file.
std::ifstream in_file ("tight.dat");

if (! in_file.is_open())
{

std::cerr << "Failed to open the input file." << std::endl;
return (1);

}

// Read the input polygon.
Polygon_2 P;

in_file >> P;
in_file.close();

std::cout << "Read an input polygon with "
<< P.size() << " vertices." << std::endl;

// Compute the inner offset of the polygon.
Conic_traits_2 traits;
const Rational radius = 1;
std::list<Offset_polygon_2> inset_polygons;
std::list<Offset_polygon_2>::iterator iit;
CGAL::Timer timer;

timer.start();
inset_polygon_2 (P, radius, traits,

std::back_inserter (inset_polygons));
timer.stop();

std::cout << "The inset comprises "
<< inset_polygons.size() << " polygon(s)." << std::endl;

for (iit = inset_polygons.begin(); iit != inset_polygons.end(); ++iit)
{

std::cout << " Polygon with "
<< iit->size() << " vertices." << std::endl;

}
std::cout << "Inset computation took "

<< timer.time() << " seconds." << std::endl;
return (0);

}

#endif� �

File: examples/Minkowski_sum_2/exact_inset.cpp
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advanced

Unlike the offset functions, there are no overloaded versions of the inset functions that use convex polygon
decomposition to compute insets, as this method cannot be easily generalized for inset computations.

advanced

In this context let us mention that there exist overloaded versions of the functions approximated offset 2 (P, r,
eps) and offset polygon 2 (P, r, traits) that accept a polygon with holes P and computed its offset. This ofset is
obtain by taking the outer offset of P’s outer boundary, and computing the inner offsets of P’s holes. The former
polygon defines the output boundary of P⊕Br, and the latter define the holes within the result.
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Planar Minkowski Sums
Reference Manual
Ron Wein

Introduction

This package consist of functions for computing the Minkowksi sum of two polygons in the plane. Namely,
given two polygons P,Q ∈ R2 it computes P⊕Q = {p+q | p ∈ P,q ∈ Q}.

In addition, the package also includes functions for offsetting a polygon, namely computing its Minkowski sum
with a disc of a given radius, and for insetting a polygon (namely computing its inner offset). It is possible to
compute the exact representation of the offset (or the inset), or to approximate it with guaranteed error bounds,
in order to speed up the computation time.
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PolygonConvexDecomposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1770

Classes

CGAL::Small side angle bisector decomposition 2<Kernel,Container> . . . . . . . . . . . . . . . . . . . . . . . . . page 1771
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CGAL::minkowski sum 2

#include <CGAL/minkowski sum 2.h>

template<class Kernel, class Container>
Polygon with holes 2<Kernel,Container>

minkowski sum 2( Polygon 2<Kernel,Container> P,
Polygon 2<Kernel,Container> Q)

Computes the Minkowski sum P⊕Q of the two given poly-
gons. The function computes the convolution cycles of the
two polygons and extract the regions having positive wind-
ing number with respect to these cycles. This method work
very efficiently, regardless of whether P and Q are convex or
non-convex. Note that as the input polygons may not be con-
vex, their Minkowski sum may not be a simple polygon. The
result is therefore represented as a polygon with holes.
Precondition: Both P and Q are simple polygons.

template<class Kernel, class Container, class DecompositionStrategy>
Polygon with holes 2<Kernel,Container>

minkowski sum 2( Polygon 2<Kernel,Container> P,
Polygon 2<Kernel,Container> Q,
DecompositionStrategy decomp)

Computes the Minkowski sum P⊕Q of the two given poly-
gons. If the input polygons P and Q are not convex, the func-
tion decomposes them into convex sub-polygons P1, . . . ,Pk
and Q1, . . . ,Q` and computes the union of pairwise sub-sums
(namely

S
i, j (Pi⊕Q j)). The decomposition is performed us-

ing the given decomposition strategy decomp, which must be
an instance of a class that models the concept PolygonCon-
vexDecomposition. Note that as the input polygons may not
be convex, their Minkowski sum may not be a simple poly-
gon. The result is therefore represented as a polygon with
holes.
Precondition: Both P and Q are simple polygons.
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CGAL::approximated offset 2

#include <CGAL/approximated offset 2.h>

template<class Kernel, class Container>
typename Gps circle segment traits 2<Kernel>::Polygon with holes 2

approximated offset 2( Polygon 2<Kernel, Container> P,
typename Kernel::FT r,
double eps)

Provides a guaranteed approximation of the offset of the
given polygon P by a given radius r — namely, the function
computes the Minkowski sum P⊕Br, where Br is a disc of
radius r centered at the origin. The function actually outputs
a set S that contains the Minkowski sum, such that the ap-
proximation error is bounded by eps. Note that as the input
polygon may not be convex, its offset may not be a simple
polygon. The result is therefore represented as a polygon
with holes, whose edges are either line segments or circular
arcs.
Precondition: P is a simple polygon.

template<class Kernel, class Container>
typename Gps circle segment traits 2<Kernel>::Polygon with holes 2

approximated offset 2( Polygon with holes 2<Kernel, Container> wh,
typename Kernel::FT r,
double eps)

Provides a guaranteed approximation of offset the given
polygon with holes pwh by a given radius r, such that the
approximation error is bounded by eps. It does so by offset-
ting outer boundary of pwh and insetting its holes. The result
is represented as a generalized polygon with holes, such that
the edges of the polygon correspond to line segment and cir-
cular arcs.
Precondition: pwh is not unbounded (it has a valid outer
boundary).

template<class Kernel, class Container, class DecompositionStrategy>
typename Gps circle segment traits 2<Kernel>::Polygon with holes 2

approximated offset 2( Polygon 2<Kernel, Container> P,
typename Kernel::FT r,
double eps,
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DecompositionStrategy decomp)

Provides a guaranteed approximation of the offset of the
given polygon P by a radius r, as described above. If the
input polygon P is not convex, the function decomposes it
into convex sub-polygons P1, . . . ,Pk and computes the union
of the sub-offsets (namely

S
i (Pi⊕Br)). The decomposition

is performed using the given decomposition strategy decomp,
which must be an instance of a class that models the concept
PolygonConvexDecomposition.
Precondition: P is a simple polygon.
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CGAL::approximated inset 2

#include <CGAL/approximated offset 2.h>

template<class Kernel, class Container, class OutputIterator>
OutputIterator approximated inset 2( Polygon 2<Kernel, Container> pgn,

typename Kernel::FT r,
double eps,
OutputIterator oi)

Provides a guaranteed approximation of the inset, or inner
offset, of the given polygon P by a given radius r. Namely,
the function computes the set of points inside the poly-
gon whose distance from P’s boundary is at least r: {p ∈
P | dist(p,∂P) ≥ r}, with the approximation error bounded
by eps. Note that as the input polygon may not be convex, its
inset may comprise several disconnected components. The
result is therefore represented as a sequence of generalized
polygons, whose edges are either line segments or circular
arcs. The output sequence is returned via the output iterator
oi, whose value-type must be Gps circle segment traits 2<
Kernel>::Polygon 2.
Precondition: P is a simple polygon.
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CGAL::offset polygon 2

#include <CGAL/offset polygon 2.h>

template<class ConicTraits, class Container>
typename Gps traits 2<ConicTraits>::Polygon with holes 2

offset polygon 2( Polygon 2<typename ConicTraits::Rat kernel, Container> P,
typename ConicTraits::Rat kernel::FT r,
ConicTraits traits)

Computes the offset of the given polygon P by a given radius
r — namely, the function computes the Minkowski sum P⊕
Br, where Br is a disc of radius r centered at the origin. Note
that as the input polygon may not be convex, its offset may
not be a simple polygon. The result is therefore represented
as a generalized polygon with holes, such that the edges of
the polygon correspond to line segments and circular arcs,
both are special types of conic arcs, as represented by the
traits class.
Precondition: P is a simple polygon.

template<class ConicTraits, class Container>
typename Gps traits 2<ConicTraits>::Polygon with holes 2

offset polygon 2( Polygon with holes 2<typename ConicTraits::Rat kernel, Con-
tainer> pwh,

typename ConicTraits::Rat kernel::FT r,
ConicTraits traits)

Computes the offset of the given polygon with holes pwh by
a given radius r. It does so by offsetting outer boundary of
pwh and insetting its holes. The result is represented as a
generalized polygon with holes, such that the edges of the
polygon correspond to line segments and circular arcs, both
are special types of conic arcs, as represented by the traits
class.
Precondition: pwh is not unbounded (it has a valid outer
boundary).

template<class ConicTraits, class Container, class DecompositionStrategy>
typename Gps traits 2<ConicTraits>::Polygon with holes 2

offset polygon 2( Polygon 2<typename ConicTraits::Rat kernel, Container> P,
typename ConicTraits::Rat kernel::FT r,
DecompositionStrategy decomp,
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ConicTraits traits)

Computes the exact representation of the offset of the given
polygon P by a radius r, as described above. If P is not con-
vex, the function decomposes it into convex sub-polygons
P1, . . . ,Pk and computes the union of sub-offsets (namelyS

i (Pi⊕Br)). The decomposition is performed using the
given decomposition strategy decomp, which must be an in-
stance of a class that models the concept PolygonConvexDe-
composition.
Precondition: P is a simple polygon.
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CGAL::inset polygon 2

#include <CGAL/offset polygon 2.h>

template<class ConicTraits, class Container, class OutputIterator>
OutputIterator inset polygon 2( Polygon 2<typename ConicTraits::Rat kernel, Container> P,

typename ConicTraits::Rat kernel::FT r,
ConicTraits traits,
OutputIterator oi)

Computes the inset, or inner offset, of the given polygon P
by a given radius r — namely, the function computes the set
of points inside the polygon whose distance from P’s bound-
ary is at least r: {p ∈ P | dist(p,∂P) ≥ r}. Note that as the
input polygon may not be convex, its inset may comprise sev-
eral disconnected components. The result is therefore repre-
sented as a sequence of generalized polygons, such that the
edges of each polygon correspond to line segments and cir-
cular arcs, both are special types of conic arcs, as represented
by the traits class. The output sequence is returned via the
output iterator oi, whose value-type must be Gps traits 2<
ConicTraits>::Polygon 2.
Precondition: P is a simple polygon.
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PolygonConvexDecomposition 2

A model of the PolygonConvexDecomposition 2 concept is capable of decomposing an input polygon P into a
set of convex sub-polygons P1, . . . ,Pk, such that ∪k

i=1Pk = P.

Types

PolygonConvexDecomposition 2:: Kernel the geometric kernel type.
PolygonConvexDecomposition 2:: Point 2 the point type, used to represent polygon vertices.
PolygonConvexDecomposition 2:: Polygon 2 the polygon type.

Creation

PolygonConvexDecomposition 2 decomp; default constructor.

Operations

template <class OutputIterator>
OutputIterator decomp( Polygon 2 P, OutputIterator oi)

decomposes the input polygon P into convex sub-polygons,
and writes them to the output iterator oi. The value-type of
the output iterator must be Polygon 2. The function returns
a past-the-end iterator for the convex sub-polygons.

Has Models

Small side angle bisector decomposition 2<Kernel,Container> (page 1771)
Optimal convex decomposition 2<Kernel,Container> (page 1772)
Hertel Mehlhorn convex decomposition 2<Kernel,Container> (page 1773)
Greene convex decomposition 2<Kernel,Container> (page 1774)
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CGAL::Small side angle bisector decomposition 2<Kernel,Container>

Definition

The Small side angle bisector decomposition 2<Kernel,Container> class implements a simple yet efficient
heuristic for decomposing an input polygon into convex sub-polygons. It is based on the algorithm suggested by
Flato and Halperin [FH00], but without introducing Steiner points. The algorithm operates in two major steps.
In the first step, it tries to subdivide the polygon by connect two reflex vertices with an edge. When this is not
possible any more, it eliminates the reflex vertices one by one by connecting them to other convex vertices, such
that the new edge best approximates the angle bisector of the reflex vertex. The algorithm operates in O(n2)
time an takes O(n) space at the worst case, where n is the size of the input polygon.

The Polygon 2 type defined by the class is simply Polygon 2<Kernel,Container>. The Container parameter is
by default std::vector<typename Kernel::Point 2>.

#include <CGAL/Small side angle bisector decomposition 2.h>

Is Model for the Concepts

PolygonConvexDecomposition 2
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CGAL::Optimal convex decomposition 2<Kernel,Container>

Definition

The Optimal convex decomposition 2<Kernel,Container> class provides an implementation of Greene’s dy-
namic programming algorithm for optimal decomposition of a polygon into convex sub-polygons [Gre83].
Note that this algorithm requires O(n4) time and O(n3) space in the worst case, where n is the size of the input
polygon.

The Polygon 2 type defined by the class is simply Polygon 2<Kernel,Container>. The Container parameter is
by default std::vector<typename Kernel::Point 2>.

#include <CGAL/Polygon convex decomposition 2.h>

Is Model for the Concepts

PolygonConvexDecomposition 2

See Also

CGAL::optimal convex partition 2(page 1646)
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CGAL::Hertel Mehlhorn convex decomposition 2<Kernel,Container>

Definition

The Hertel Mehlhorn convex decomposition 2<Kernel,Container> class implements the approximation algo-
rithm of Hertel and Mehlhorn for decomposing a polygon into convex sub-polygons [HM83]. This algorithm
constructs a triangulation of the input polygon and proceeds by removing unnecessary triangulation edges.
Given the triangulation, the algorithm requires O(n) time and space to construct a convex decomposition (where
n is the size of the input polygon), whose size is guaranteed to be no more than four times the size of the optimal
decomposition.

The Polygon 2 type defined by the class is simply Polygon 2<Kernel,Container>. The Container parameter is
by default std::vector<typename Kernel::Point 2>.

#include <CGAL/Polygon convex decomposition 2.h>

Is Model for the Concepts

PolygonConvexDecomposition 2

See Also

CGAL::approx convex partition 2(page 1630)
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CGAL::Greene convex decomposition 2<Kernel,Container>

Definition

The Greene convex decomposition 2<Kernel,Container> class implements the approximation algorithm of
Greene for the decomposition of an input polygon into convex sub-polygons [Gre83]. This algorithm takes
O(n logn) time and O(n) space, where n is the size of the input polygon, and outputs a decomposition whose
size is guaranteed to be no more than four times the size of the optimal decomposition.

The Polygon 2 type defined by the class is simply Polygon 2<Kernel,Container>. The Container parameter is
by default std::vector<typename Kernel::Point 2>.

#include <CGAL/Polygon convex decomposition 2.h>

Is Model for the Concepts

PolygonConvexDecomposition 2

See Also

CGAL::greene approx convex partition 2(page 1636)
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Chapter 25

3D Polyhedral Surfaces
Lutz Kettner
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25.1 Introduction

Polyhedral surfaces in three dimensions are composed of vertices, edges, facets and an incidence relationship on
them. The organization beneath is a halfedge data structure, which restricts the class of representable surfaces
to orientable 2-manifolds – with and without boundary. If the surface is closed we call it a polyhedron, for
example, see the above model of a hammerhead:

The polyhedral surface is realized as a container class that manages vertices, halfedges, facets with their inci-
dences, and that maintains the combinatorial integrity of them. It is based on the highly flexible design of the
halfedge data structure, see the introduction in Chapter 26 and [Ket99]. However, the polyhedral surface can be
used and understood without knowing the underlying design. Some of the examples in this chapter introduce
also gradually into first applications of this flexibility.
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25.2 Definition

A polyhedral surface CGAL::Polyhedron 3<PolyhedronTraits 3> in three dimensions consists of vertices V ,
edges E, facets F and an incidence relation on them. Each edge is represented by two halfedges with opposite
orientations. The incidences stored with a halfedge are illustrated in the following figure:

incident vertex

ne
xt

 ha
lfe

dg
e

opposite halfedge

halfedge previous halfedge

incident facet

Vertices represent points in space. Edges are straight line segments between two endpoints. Facets are planar
polygons without holes. Facets are defined by the circular sequence of halfedges along their boundary. The
polyhedral surface itself can have holes (with at least two facets surrounding it since a single facet cannot have
a hole). The halfedges along the boundary of a hole are called border halfedges and have no incident facet. An
edge is a border edge if one of its halfedges is a border halfedge. A surface is closed if it contains no border
halfedges. A closed surface is a boundary representation for polyhedra in three dimensions. The convention is
that the halfedges are oriented counterclockwise around facets as seen from the outside of the polyhedron. An
implication is that the halfedges are oriented clockwise around the vertices. The notion of the solid side of a
facet as defined by the halfedge orientation extends to polyhedral surfaces with border edges although they do
not define a closed object. If normal vectors are considered for the facets, normals point outwards (following
the right-hand rule).

The strict definition can be found in [Ket99]. One implication of this definition is that the polyhedral surface
is always an orientable and oriented 2-manifold with border edges, i.e., the neighborhood of each point on the
polyhedral surface is either homeomorphic to a disc or to a half disc, except for vertices where many holes and
surfaces with boundary can join. Another implication is that the smallest representable surface avoiding self
intersections is a triangle (for polyhedral surfaces with border edges) or a tetrahedron (for polyhedra). Boundary
representations of orientable 2-manifolds are closed under Euler operations. They are extended with operations
that create or close holes in the surface.

Other intersections besides the incidence relation are not allowed. However, this is not automatically ver-
ified in the operations, since self intersections are not easy to check efficiently. CGAL::Polyhedron 3<
PolyhedronTraits 3> does only maintain the combinatorial integrity of the polyhedral surface (using Euler
operations) and does not consider the coordinates of the points or any other geometric information.

CGAL::Polyhedron 3<PolyhedronTraits 3> can represent polyhedral surfaces as well as polyhedra. The inter-
face is designed in such a way that it is easy to ignore border edges and work only with polyhedra.

25.3 Example Programs

The polyhedral surface is based on the highly flexible design of the halfedge data structure. Examples for this
flexibility can be found in Section 25.5 and in Section 26.3. This design is not a prerequisite to understand the
following examples. See also the Section 25.6 below for some advanced examples.
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25.3.1 First Example Using Defaults

The first example instantiates a polyhedron using a kernel as traits class. It creates a tetrahedron and stores the
reference to one of its halfedges in a Halfedge handle. Handles, also know as trivial iterators, are used to keep
references to halfedges, vertices, or facets for future use. There is also a Halfedge iterator type for enumerating
halfedges. Such an iterator type can be used wherever a handle is required. Respective Halfedge const handle
and Halfedge const iterator for a constant polyhedron and similar handles and iterators with Vertex and Facet
prefix are provided too.

The example continues with a test if the halfedge actually refers to a tetrahedron. This test checks the connected
component referred to by the halfedge h and not the polyhedral surface as a whole. This examples works only
on the combinatorial level of a polyhedral surface. The next example adds the geometry.� �
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Polyhedron_3.h>

typedef CGAL::Simple_cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
typedef Polyhedron::Halfedge_handle Halfedge_handle;

int main() {
Polyhedron P;
Halfedge_handle h = P.make_tetrahedron();
if ( P.is_tetrahedron(h))

return 0;
return 1;

}� �
File: examples/Polyhedron/polyhedron_prog_simple.cpp

25.3.2 Example with Geometry in Vertices

We add geometry to the our construction of a tetrahedron. Four points are passed as arguments to the con-
struction. This example demonstrates in addition the use of the vertex iterator and the access to the point in
the vertices. Note the natural access notation v->point(). Similarly, all information stored in a vertex, halfedge,
and facet can be accessed with a member function given a handle or iterator. For example, given a halfedge
handle h we can write h->next() to get a halfedge handle to the next halfedge, h->opposite() for the opposite
halfedge, h->vertex() for the incident vertex at the tip of h, and so on. The output of the program will be
“1 0 0\n0 1 0\n0 0 1\n0 0 0\n”.� �
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Polyhedron_3.h>
#include <iostream>

typedef CGAL::Simple_cartesian<double> Kernel;
typedef Kernel::Point_3 Point_3;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
typedef Polyhedron::Vertex_iterator Vertex_iterator;

int main() {
Point_3 p( 1.0, 0.0, 0.0);
Point_3 q( 0.0, 1.0, 0.0);
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Point_3 r( 0.0, 0.0, 1.0);
Point_3 s( 0.0, 0.0, 0.0);

Polyhedron P;
P.make_tetrahedron( p, q, r, s);
CGAL::set_ascii_mode( std::cout);
for ( Vertex_iterator v = P.vertices_begin(); v != P.vertices_end();
++v)

std::cout << v->point() << std::endl;
return 0;

}� �
File: examples/Polyhedron/polyhedron_prog_tetra.cpp

The polyhedron offers a point iterator for convenience. The above for loop simplifies to a single statement by
using std::copy and the ostream iterator adaptor.� �
std::copy( P.points_begin(), P.points_end(),

std::ostream_iterator<Point_3>(std::cout,"\n"));� �
25.3.3 Example for Affine Transformation

An affine transformation A can act as a functor transforming points and a point iterator is conveniently defined
for polyhedral surfaces. So, assuming we want only the point coordinates of a polyhedron P transformed,
std::transform does the job in a single line.� �
std::transform( P.points_begin(), P.points_end(), P.points_begin(), A);� �
25.3.4 Example Computing Plane Equations

The polyhedral surface has already provisions to store a plane equation for each facet. However, it does not
provide a function to compute plane equations.

This example computes the plane equations of a polyhedral surface. The actual computation is implemented
in the compute plane equations function. Depending on the arithmetic (exact/inexact) and the shape of
the facets (convex/non-convex) different methods are useful. We assume here strictly convex facets and exact
arithmetic. In our example a homogeneous representation with int coordinates is sufficient. The four plane
equations of the tetrahedron are the output of the program.� �
#include <CGAL/Homogeneous.h>
#include <CGAL/Polyhedron_3.h>
#include <iostream>
#include <algorithm>

struct Plane_equation {
template <class Facet>
typename Facet::Plane_3 operator()( Facet& f) {

typename Facet::Halfedge_handle h = f.halfedge();
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typedef typename Facet::Plane_3 Plane;
return Plane( h->vertex()->point(),

h->next()->vertex()->point(),
h->next()->next()->vertex()->point());

}
};

typedef CGAL::Homogeneous<int> Kernel;
typedef Kernel::Point_3 Point_3;
typedef Kernel::Plane_3 Plane_3;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;

int main() {
Point_3 p( 1, 0, 0);
Point_3 q( 0, 1, 0);
Point_3 r( 0, 0, 1);
Point_3 s( 0, 0, 0);
Polyhedron P;
P.make_tetrahedron( p, q, r, s);
std::transform( P.facets_begin(), P.facets_end(), P.planes_begin(),

Plane_equation());
CGAL::set_pretty_mode( std::cout);
std::copy( P.planes_begin(), P.planes_end(),

std::ostream_iterator<Plane_3>( std::cout, "\n"));
return 0;

}� �
File: examples/Polyhedron/polyhedron_prog_planes.cpp

25.3.5 Example with a Vector Instead of a List Representation

The polyhedron class template has actually four parameters, where three of them have default values. Using
the default values explicitly in our examples above for three parameter—ignoring the fourth parameter, which
would be a standard allocator for container class— the definition of a polyhedron looks like:� �
typedef CGAL::Polyhedron_3< Traits,

CGAL::Polyhedron_items_3,
CGAL::HalfedgeDS_default> Polyhedron;� �

The CGAL::Polyhedron items 3 class contains the types used for vertices, edges, and facets. The
CGAL::HalfedgeDS default class defines the halfedge data structure used, which is a list-based representa-
tion in this case. An alternative is a vector-based representation. Using a vector provides random access for
the elements in the polyhedral surface and is more space efficient, but elements cannot be deleted arbitrarily.
Using a list allows arbitrary deletions, but provides only bidirectional iterators and is less space efficient. The
following example creates again a tetrahedron with given points, but in a vector-based representation.

The vector-based representation resizes automatically if the reserved capacity is not sufficient for the new items
created. Upon resizing all handles, iterators, and circulators become invalid. Their correct update in the halfedge
data structure is costly, thus it is advisable to reserve enough space in advance as indicated with the alternative
constructor in the comment.
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advanced

Note that the polyhedron and not the underlying halfedge data structure triggers the resize operation, since the
resize operation requires some preconditions, such as valid incidences, to be fulfilled that only the polyhedron
can guarantee.

advanced� �
#include <CGAL/Cartesian.h>
#include <CGAL/HalfedgeDS_vector.h>
#include <CGAL/Polyhedron_3.h>
#include <iostream>

typedef CGAL::Cartesian<double> Kernel;
typedef Kernel::Point_3 Point_3;
typedef CGAL::Polyhedron_3< Kernel,

CGAL::Polyhedron_items_3,
CGAL::HalfedgeDS_vector> Polyhedron;

int main() {
Point_3 p( 1.0, 0.0, 0.0);
Point_3 q( 0.0, 1.0, 0.0);
Point_3 r( 0.0, 0.0, 1.0);
Point_3 s( 0.0, 0.0, 0.0);

Polyhedron P; // alternative constructor: Polyhedron P(4,12,4);
P.make_tetrahedron( p, q, r, s);
CGAL::set_ascii_mode( std::cout);
std::copy( P.points_begin(), P.points_end(),

std::ostream_iterator<Point_3>( std::cout, "\n"));
return 0;

}� �
File: examples/Polyhedron/polyhedron_prog_vector.cpp

25.3.6 Example with Circulator Writing Object File Format (OFF)

We create a tetrahedron and write it to std::cout using the Object File Format (OFF) [Phi96]. This example
makes use of STL algorithms (std::copy, std::distance), STL std::ostream iterator, and CGAL circulators.
The polyhedral surface provides convenient circulators for the counterclockwise circular sequence of halfedges
around a facet and the clockwise circular sequence of halfedges around a vertex.

However, the computation of the vertex index in the inner loop of the facet output is not advisable with the
std::distance function, since it takes linear time for non random-access iterators, which leads to quadratic run-
time. For better runtime the vertex index needs to be stored separately and computed once before writing the
facets. It can be stored, for example, in the vertex itself or in a hash-structure. See also the following Sec-
tion 25.4 for file I/O.� �
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Polyhedron_3.h>
#include <iostream>

typedef CGAL::Simple_cartesian<double> Kernel;
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typedef Kernel::Point_3 Point_3;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
typedef Polyhedron::Facet_iterator Facet_iterator;
typedef Polyhedron::Halfedge_around_facet_circulator

Halfedge_facet_circulator;

int main() {
Point_3 p( 0.0, 0.0, 0.0);
Point_3 q( 1.0, 0.0, 0.0);
Point_3 r( 0.0, 1.0, 0.0);
Point_3 s( 0.0, 0.0, 1.0);

Polyhedron P;
P.make_tetrahedron( p, q, r, s);

// Write polyhedron in Object File Format (OFF).
CGAL::set_ascii_mode( std::cout);
std::cout << "OFF" << std::endl << P.size_of_vertices() << ’ ’

<< P.size_of_facets() << " 0" << std::endl;
std::copy( P.points_begin(), P.points_end(),

std::ostream_iterator<Point_3>( std::cout, "\n"));
for ( Facet_iterator i = P.facets_begin(); i != P.facets_end();
++i) {

Halfedge_facet_circulator j = i->facet_begin();
// Facets in polyhedral surfaces are at least triangles.
CGAL_assertion( CGAL::circulator_size(j) >= 3);
std::cout << CGAL::circulator_size(j) << ’ ’;
do {

std::cout << ’ ’ << std::distance(P.vertices_begin(),
j->vertex());

} while ( ++j != i->facet_begin());
std::cout << std::endl;

}
return 0;

}� �
File: examples/Polyhedron/polyhedron_prog_off.cpp

25.3.7 Example Using Euler Operators to Build a Cube

Euler operators are the natural way of modifying polyhedral surfaces. We provide a set of operations for
polyhedra: split facet(), join facet(), split vertex(), join vertex(), split loop(), and join loop(). We add further
convenient operators, such as split edge(). However, they could be implemented using the six operators above.
Furthermore, we provide more operators to work with polyhedral surfaces with border edges, for example,
creating and deleting holes. We refer to the references manual for the definition and illustrative figures of the
Euler operators.

The following example implements a function that appends a unit cube to a polyhedral surface. To keep track
of the different steps during the creation of the cube a sequence of sketches might help with labels for the
different handles that occur in the program code. The following Figure shows six selected steps from the
creation sequence. These steps are also marked in the program code.
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#include <CGAL/Simple_cartesian.h>
#include <CGAL/Polyhedron_3.h>
#include <iostream>

template <class Poly>
typename Poly::Halfedge_handle make_cube_3( Poly& P) {

// appends a cube of size [0,1]ˆ3 to the polyhedron P.
CGAL_precondition( P.is_valid());
typedef typename Poly::Point_3 Point;
typedef typename Poly::Halfedge_handle Halfedge_handle;
Halfedge_handle h = P.make_tetrahedron( Point( 1, 0, 0),

Point( 0, 0, 1),
Point( 0, 0, 0),
Point( 0, 1, 0));

Halfedge_handle g = h->next()->opposite()->next(); //
Fig. (a)
P.split_edge( h->next());
P.split_edge( g->next());
P.split_edge( g); //
Fig. (b)
h->next()->vertex()->point() = Point( 1, 0, 1);
g->next()->vertex()->point() = Point( 0, 1, 1);
g->opposite()->vertex()->point() = Point( 1, 1, 0); //
Fig. (c)
Halfedge_handle f = P.split_facet( g->next(),

g->next()->next()->next()); //
Fig. (d)
Halfedge_handle e = P.split_edge( f);
e->vertex()->point() = Point( 1, 1, 1); //
Fig. (e)
P.split_facet( e, f->next()->next()); //
Fig. (f)
CGAL_postcondition( P.is_valid());
return h;

}

typedef CGAL::Simple_cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
typedef Polyhedron::Halfedge_handle Halfedge_handle;

int main() {
Polyhedron P;
Halfedge_handle h = make_cube_3( P);
return (P.is_tetrahedron(h) ? 1 : 0);

}� �
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File: examples/Polyhedron/polyhedron_prog_cube.cpp

25.4 File I/O

Simple file I/O for polyhedral surfaces is already provided in the library. The file I/O considers so far only
the topology of the surface and its point coordinates. It ignores a possible plane equation or any user-added
attributes, such as color.

The default file format supported in CGAL for output as well as for input is the Object File Format, OFF, with
file extension .off, which is also understood by Geomview [Phi96]. For OFF an ASCII and a binary format
exist. The format can be selected with the CGAL modifiers for streams, set ascii mode and set binary mode
respectively. The modifier set pretty mode can be used to allow for (a few) structuring comments in the output.
Otherwise, the output would be free of comments. The default for writing is ASCII without comments. Both,
ASCII and binary format, can be read independent of the stream setting. Since this file format is the default
format, iostream operators are provided for it.

#include <CGAL/IO/Polyhedron iostream.h>

template <class PolyhedronTraits 3>
ostream& ostream& out << CGAL::Polyhedron 3<PolyhedronTraits 3> P

template <class PolyhedronTraits 3>
istream& istream& in >> CGAL::Polyhedron 3<PolyhedronTraits 3>& P

Additional formats supported for writing are OpenInventor (.iv) [Wer94], VRML 1.0 and 2.0 (.wrl)
[BPP95, VRM96, HW96], and Wavefront Advanced Visualizer object format (.obj). Another convenient out-
put function writes a polyhedral surface to a Geomview process spawned from the CGAL program. These output
functions are provided as stream operators, now acting on the stream type of the respective format.

#include <CGAL/IO/Polyhedron inventor ostream.h>
#include <CGAL/IO/Polyhedron VRML 1 ostream.h>
#include <CGAL/IO/Polyhedron VRML 2 ostream.h>
#include <CGAL/IO/Polyhedron geomview ostream.h>

template <class PolyhedronTraits 3>
Inventor ostream& Inventor ostream& out << CGAL::Polyhedron 3<PolyhedronTraits 3> P

template <class PolyhedronTraits 3>
VRML 1 ostream& VRML 1 ostream& out << CGAL::Polyhedron 3<PolyhedronTraits 3> P

template <class PolyhedronTraits 3>
VRML 2 ostream& VRML 2 ostream& out << CGAL::Polyhedron 3<PolyhedronTraits 3> P

template <class PolyhedronTraits 3>
Geomview stream& Geomview stream& out << CGAL::Polyhedron 3<PolyhedronTraits 3> P

All these file formats have in common that they represent a surface as a set of facets. Each facet is a list of
indices pointing into a set of vertices. Vertices are represented as coordinate triples. The file I/O for polyhedral
surfaces CGAL::Polyhedron 3 imposes certain restrictions on these formats. They must represent a permissible
polyhedral surface, e.g., a 2-manifold and no isolated vertices, see Section 25.1.
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Some example programs around the different file formats are provided in the distribution under
examples/Polyhedron IO/ and demo/Polyhedron IO/. We show an example converting OFF input into
VRML 1.0 output.� �
// examples/Polyhedron_IO/polyhedron2vrml.cpp
// ----------------------------------------

#include <CGAL/Simple_cartesian.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>
#include <CGAL/IO/Polyhedron_VRML_1_ostream.h>
#include <iostream>

typedef CGAL::Simple_cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;

int main() {
Polyhedron P;
std::cin >> P;
CGAL::VRML_1_ostream out( std::cout);
out << P;
return ( std::cin && std::cout) ? 0 : 1;

}� �
25.5 Extending Vertices, Halfedges, and Facets

In Section 25.3.5 we have seen how to change the default list representation� �
typedef CGAL::Polyhedron_3< Traits,

CGAL::Polyhedron_items_3,
CGAL::HalfedgeDS_default> Polyhedron;� �

to a vector based representation of the underlying halfedge data structure. Now we want to look a bit closer at
the second template argument, Polyhedron items 3, that specifies what kind of vertex, halfedge, and facet is
used. The implementation of Polyhedron items 3 looks a bit involved with nested wrapper class templates.
But ignoring this technicality, what remains are three local typedefs that define the Vertex, the Halfedge, and
the Face for the polyhedral surface. Note that we use here Face instead of facet. Face is the term used for the
halfedge data structure. Only the top layer of the polyhedral surface gives alias names renaming face to facet.� �
class Polyhedron_items_3 {
public:

template < class Refs, class Traits>
struct Vertex_wrapper {

typedef typename Traits::Point_3 Point;
typedef CGAL::HalfedgeDS_vertex_base<Refs, CGAL::Tag_true, Point>

Vertex;
};
template < class Refs, class Traits>
struct Halfedge_wrapper {

typedef CGAL::HalfedgeDS_halfedge_base<Refs>
Halfedge;
};
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template < class Refs, class Traits>
struct Face_wrapper {

typedef typename Traits::Plane_3 Plane;
typedef CGAL::HalfedgeDS_face_base<Refs, CGAL::Tag_true, Plane>

Face;
};

};� �
If we look up in the reference manual the definitions of the three classes used in the typedefs, we will see the
confirmation that the default polyhedron uses all supported incidences, a point in the vertex class, and a plane
equation in the face class. Note how the wrapper class provides two template parameters, Refs, which we
discuss a bit later, and Traits, which is the geometric traits class used by the polyhedral surface and which
provides us here with the types for the point and the plane equation.

Using this example code we can write our own items class. Instead, we illustrate an easier way if we only want
to exchange one class. We use a simpler face without the plane equation but with a color attribute added. To
simplify the creation of a vertex, halfedge, or face class, it is always recommended to derive from one of the
given base classes. Even if the base class would contain no data it would provide convenient type definitions.
So, we derive from the base class, repeat the mandatory constructors if necessary—which is not the case for
faces but would be for vertices—and add the color attribute.� �
template <class Refs>
struct My_face : public CGAL::HalfedgeDS_face_base<Refs> {

CGAL::Color color;
};� �
The new items class is derived from the old items class and the wrapper containing the face typedef gets over-
ridden. Note that the name of the wrapper and its template parameters are fixed. They cannot be changed even
if, as in this example, a template parameter is not used.� �
struct My_items : public CGAL::Polyhedron_items_3 {

template <class Refs, class Traits>
struct Face_wrapper {

typedef My_face<Refs> Face;
};

};� �
When we use our new items class with the polyhedral surface, our new face class is used in the halfedge data
structure and the color attribute is available in the type Polyhedron::Facet. However, Polyhedron::Facet
is not the same type as our local face typedef for My face, but it is derived therefrom. Thus, everything that
we put in the local face type except constructors is then available in the Polyhedron::Facet type. For more
details, see the Chapter 26 on the halfedge data structure design.

Pulling all pieces together, the full example program illustrates how easy the color attribute can be accessed
once it is defined.� �
#include <CGAL/Simple_cartesian.h>
#include <CGAL/IO/Color.h>
#include <CGAL/Polyhedron_3.h>

// A face type with a color member variable.
template <class Refs>
struct My_face : public CGAL::HalfedgeDS_face_base<Refs> {

CGAL::Color color;
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};

// An items type using my face.
struct My_items : public CGAL::Polyhedron_items_3 {

template <class Refs, class Traits>
struct Face_wrapper {

typedef My_face<Refs> Face;
};

};

typedef CGAL::Simple_cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel, My_items> Polyhedron;
typedef Polyhedron::Halfedge_handle Halfedge_handle;

int main() {
Polyhedron P;
Halfedge_handle h = P.make_tetrahedron();
h->facet()->color = CGAL::RED;
return 0;

}� �
File: examples/Polyhedron/polyhedron_prog_color.cpp

We come back to the first template parameter, Refs, of the wrapper classes. This parameter provides us with
local types that allow us to make further references between vertices, halfedges, and facets, which have not
already been prepared for in the current design. These local types are Vertex handle, Halfedge handle,
Face handle, and there respective ... const handle. We add now a new vertex reference to a face class as
follows. Encapsulation and access functions could be added for a more thorough design, but we omit that here
for the sake of brevity. The integration of the face class with the items class works as illustrated above.� �
template <class Refs>
struct My_face : public CGAL::HalfedgeDS_face_base<Refs> {

typedef typename Refs::Vertex_handle Vertex_handle;
Vertex_handle vertex_ref;

};� �
More advanced examples can be found in the Section 26.3 illustrating further the design of the halfedge data
structure.

25.6 Advanced Example Programs

25.6.1 Example Creating a Subdivision Surface

This program reads a polyhedral surface from the standard input and writes a refined polyhedral surface to the
standard output. Input and output are in the Object File Format, OFF, with the common file extension .off,
which is also understood by Geomview [Phi96].

The refinement is a single step of the
√

3-scheme for creating a subdivision surface [Kob00]. Each step subdi-
vides a facet into triangles around a new center vertex, smoothes the position of the old vertices, and flips the
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old edges. The program is organized along this outline. In each of these parts, the program efficiently uses the
knowledge that the newly created vertices, edges, and facets have been added to the end of the sequences. The
program needs additional processing memory only for the smoothing step of the old vertices.

The above figure shows three example objects, each subdivided four times. The initial ob-
ject for the left sequence is the closed surface of three unit cubes glued together to a cor-
ner. The example program shown here can handle only closed surfaces, but the extended example
examples/Polyhedron/polyhedron prog subdiv with boundary.cpp handles surfaces with boundary.
So, the middle sequence starts with the same surface where one of the facets has been removed. The boundary
subdivides to a nice circle. The third sequence creates a sharp edge using a trick in the object presentation.
The sharp edge is actually a hole whose vertex coordinates pinch the hole shut to form an edge. The example
directory examples/Polyhedron/ contains the OFF files used here.� �
#include <CGAL/Cartesian.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath>

typedef CGAL::Cartesian<double> Kernel;
typedef Kernel::Vector_3 Vector;
typedef Kernel::Point_3 Point;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;

typedef Polyhedron::Vertex Vertex;
typedef Polyhedron::Vertex_iterator

Vertex_iterator;
typedef Polyhedron::Halfedge_handle

Halfedge_handle;
typedef Polyhedron::Edge_iterator

Edge_iterator;
typedef Polyhedron::Facet_iterator

Facet_iterator;
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typedef Polyhedron::Halfedge_around_vertex_const_circulator
HV_circulator;

typedef Polyhedron::Halfedge_around_facet_circulator
HF_circulator;

void create_center_vertex( Polyhedron& P, Facet_iterator f) {
Vector vec( 0.0, 0.0, 0.0);
std::size_t order = 0;
HF_circulator h = f->facet_begin();
do {

vec = vec + ( h->vertex()->point() - CGAL::ORIGIN);
++ order;

} while ( ++h != f->facet_begin());
CGAL_assertion( order >= 3); // guaranteed by definition of
polyhedron
Point center = CGAL::ORIGIN + (vec / static_cast<double>(order));
Halfedge_handle new_center = P.create_center_vertex( f->halfedge());
new_center->vertex()->point() = center;

}

struct Smooth_old_vertex {
Point operator()( const Vertex& v) const {

CGAL_precondition((CGAL::circulator_size( v.vertex_begin()) & 1)
== 0);

std::size_t degree = CGAL::circulator_size( v.vertex_begin()) /
2;

double alpha = ( 4.0 - 2.0 * std::cos( 2.0 * CGAL_PI / degree)) /
9.0;

Vector vec = (v.point() - CGAL::ORIGIN) * ( 1.0 - alpha);
HV_circulator h = v.vertex_begin();
do {

vec = vec + ( h->opposite()->vertex()->point() -
CGAL::ORIGIN)

* alpha / static_cast<double>(degree);
++ h;
CGAL_assertion( h != v.vertex_begin()); // even degree

guaranteed
++ h;

} while ( h != v.vertex_begin());
return (CGAL::ORIGIN + vec);

}
};

void flip_edge( Polyhedron& P, Halfedge_handle e) {
Halfedge_handle h = e->next();
P.join_facet( e);
P.split_facet( h, h->next()->next());

}

void subdiv( Polyhedron& P) {
if ( P.size_of_facets() == 0)

return;
// We use that new vertices/halfedges/facets are appended at the end.
std::size_t nv = P.size_of_vertices();
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Vertex_iterator last_v = P.vertices_end();
-- last_v; // the last of the old vertices
Edge_iterator last_e = P.edges_end();
-- last_e; // the last of the old edges
Facet_iterator last_f = P.facets_end();
-- last_f; // the last of the old facets

Facet_iterator f = P.facets_begin(); // create new center vertices
do {

create_center_vertex( P, f);
} while ( f++ != last_f);

std::vector<Point> pts; // smooth the old vertices
pts.reserve( nv); // get intermediate space for the new points
++ last_v; // make it the past-the-end position again
std::transform( P.vertices_begin(), last_v, std::back_inserter( pts),

Smooth_old_vertex());
std::copy( pts.begin(), pts.end(), P.points_begin());

Edge_iterator e = P.edges_begin(); // flip the old edges
++ last_e; // make it the past-the-end position again
while ( e != last_e) {

Halfedge_handle h = e;
++e; // careful, incr. before flip since flip destroys current

edge
flip_edge( P, h);

};
CGAL_postcondition( P.is_valid());

}

int main() {
Polyhedron P;
std::cin >> P;
P.normalize_border();
if ( P.size_of_border_edges() != 0) {

std::cerr << "The input object has border edges. Cannot
subdivide."

<< std::endl;
std::exit(1);

}
subdiv( P);
std::cout << P;
return 0;

}� �
File: examples/Polyhedron/polyhedron_prog_subdiv.cpp

25.6.2 Example Using the Incremental Builder and Modifier Mechanism

A utility class CGAL::Polyhedron incremental builder 3 helps in creating polyhedral surfaces from a list of
points followed by a list of facets that are represented as indices into the point list. This is particularly useful
for implementing file reader for common file formats. It is used here to create a triangle.
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A modifier mechanism allows to access the internal representation of the polyhedral surface, i.e., the halfedge
data structure, in a controlled manner. A modifier is basically a callback mechanism using a function object.
When called, the function object receives the internal halfedge data structure as a parameter and can modify it.
On return, the polyhedron can check the halfedge data structure for validity. Such a modifier object must always
return with a halfedge data structure that is a valid polyhedral surface. The validity check is implemented as an
expensive postcondition at the end of the delegate() member function, i.e., it is not called by default, only when
expensive checks are activated.

In this example, Build triangle is such a function object derived from CGAL::Modifier base<HalfedgeDS>.
The delegate() member function of the polyhedron accepts this function object and calls its operator() with a
reference to its internally used halfedge data structure. Thus, this member function in Build triangle can create
the triangle in the halfedge data structure.� �
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Polyhedron_incremental_builder_3.h>
#include <CGAL/Polyhedron_3.h>

// A modifier creating a triangle with the incremental builder.
template <class HDS>
class Build_triangle : public CGAL::Modifier_base<HDS> {
public:

Build_triangle() {}
void operator()( HDS& hds) {

// Postcondition: ‘hds’ is a valid polyhedral surface.
CGAL::Polyhedron_incremental_builder_3<HDS> B( hds, true);
B.begin_surface( 3, 1, 6);
typedef typename HDS::Vertex Vertex;
typedef typename Vertex::Point Point;
B.add_vertex( Point( 0, 0, 0));
B.add_vertex( Point( 1, 0, 0));
B.add_vertex( Point( 0, 1, 0));
B.begin_facet();
B.add_vertex_to_facet( 0);
B.add_vertex_to_facet( 1);
B.add_vertex_to_facet( 2);
B.end_facet();
B.end_surface();

}
};

typedef CGAL::Simple_cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
typedef Polyhedron::HalfedgeDS HalfedgeDS;

int main() {
Polyhedron P;
Build_triangle<HalfedgeDS> triangle;
P.delegate( triangle);
CGAL_assertion( P.is_triangle( P.halfedges_begin()));
return 0;

}� �
File: examples/Polyhedron/polyhedron_prog_incr_builder.cpp
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Polyhedral surfaces in three dimensions are composed of vertices, edges, facets and an incidence relationship on
them. The organization beneath is a halfedge data structure, which restricts the class of representable surfaces
to orientable 2-manifolds – with and without boundary. If the surface is closed we call it a polyhedron.

The polyhedral surface is realized as a container class managing vertices, halfedges, facets with their incidences,
and maintaining the combinatorial integrity of them. Its local types for the vertices, halfedges and facets are
documented separately. A default traits class, a default items class and an incremental builder conclude the
references. The polyhedral surface is based on the highly flexible design of the halfedge data structure, see the
reference for HalfedgeDS in Chapter 26.3.7 or [Ket99], but the default instantiation of the polyhedral surface
can be used without knowing the halfedge data structure.
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CGAL::Polyhedron 3<Traits>

Definition

A polyhedral surface Polyhedron 3<Traits> consists of vertices V , edges E, facets F and an incidence relation
on them. Each edge is represented by two halfedges with opposite orientations.

incident vertex

ne
xt

 ha
lfe

dg
e

opposite halfedge

halfedge previous halfedge

incident facet

Vertices represent points in 3d-space. Edges are straight line segments between two endpoints. Facets are planar
polygons without holes defined by the circular sequence of halfedges along their boundary. The polyhedral
surface itself can have holes. The halfedges along the boundary of a hole are called border halfedges and have
no incident facet. An edge is a border edge if one of its halfedges is a border halfedge. A surface is closed if it
contains no border halfedges. A closed surface is a boundary representation for polyhedra in three dimensions.
The convention is that the halfedges are oriented counterclockwise around facets as seen from the outside of
the polyhedron. An implication is that the halfedges are oriented clockwise around the vertices. The notion
of the solid side of a facet as defined by the halfedge orientation extends to polyhedral surfaces with border
edges although they do not define a closed object. If normal vectors are considered for the facets, normals point
outwards (following the right hand rule).

The strict definition can be found in [Ket99]. One implication of this definition is that the polyhedral surface
is always an orientable and oriented 2-manifold with border edges, i.e., the neighborhood of each point on the
polyhedral surface is either homeomorphic to a disc or to a half disc, except for vertices where many holes and
surfaces with boundary can join. Another implication is that the smallest representable surface is a triangle (for
polyhedral surfaces with border edges) or a tetrahedron (for polyhedra). Boundary representations of orientable
2-manifolds are closed under Euler operations. They are extended with operations that create or close holes in
the surface.

Other intersections besides the incidence relation are not allowed, although they are not automatically handled,
since self intersections are not easy to check efficiently. Polyhedron 3<Traits> does only maintain the combi-
natorial integrity of the polyhedral surface (using Euler operations) and does not consider the coordinates of the
points or any geometric information.

The class Polyhedron 3<Traits> can represent polyhedral surfaces as well as polyhedra. The interface is de-
signed in such a way that it is easy to ignore border edges and work only with polyhedra.

The sequence of edges can be ordered in the data structure on request such that the sequence starts with the non-
border edges and ends with the border edges. Border edges are then itself ordered such that the halfedge which
is incident to the facet comes first and the halfedge incident to the hole comes thereafter. This normalization
step counts simultaneously the number of border edges. This number is zero if and only if the surface is a
closed polyhedron. Note that this class does not maintain this counter nor the halfedge order during further
modifications. There is no automatic caching done for auxiliary information.

#include <CGAL/Polyhedron 3.h>
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Parameters

The full template declaration of Polyhedron 3<Traits> states four template parameters:

template < class PolyhedronTraits 3,
class PolyhedronItems 3 = CGAL::Polyhedron items 3,
template < class T, class I> class HalfedgeDS = CGAL::HalfedgeDS default,
class Alloc = CGAL ALLOCATOR(int)>

class Polyhedron 3;

The first parameter requires a model of the PolyhedronTraits 3 concept as argument, for example
CGAL::Polyhedron traits 3. The second parameter expects a model of the PolyhedronItems 3 concept. By
default, the class CGAL::Polyhedron items 3 is preselected. The third parameter is a class template. A model
of the HalfedgeDS concept is expected. By default, the class CGAL::HalfedgeDS default is preselected, which
is a list based implementation of the halfedge data structure. The fourth parameter Alloc requires a standard
allocator for STL container classes. The rebind mechanism from Alloc will be used to create appropriate allo-
cators internally. A default is provided with the macro CGAL ALLOCATOR(int) from the <CGAL/memory.h>
header file.

Types

Polyhedron 3<Traits>:: Traits traits class selected for PolyhedronTraits 3.
Polyhedron 3<Traits>:: Items items class selected for PolyhedronItems 3.
Polyhedron 3<Traits>:: HalfedgeDS instantiated halfedge data structure.

Polyhedron 3<Traits>:: size type size type of HalfedgeDS.
Polyhedron 3<Traits>:: difference type difference type of HalfedgeDS.
Polyhedron 3<Traits>:: iterator category iterator category of HalfedgeDS for all iterators.
Polyhedron 3<Traits>:: circulator category circulator category of all circulators; bidirectional category if

the Items::Halfedge provides a prev() member function, other-
wise forward category.

Polyhedron 3<Traits>:: allocator type allocator type Alloc.

Polyhedron 3<Traits>:: Vertex vertex type.
Polyhedron 3<Traits>:: Halfedge halfedge type.
Polyhedron 3<Traits>:: Facet facet type.

Polyhedron 3<Traits>:: Point 3 point stored in vertices.
Polyhedron 3<Traits>:: Plane 3 plane equation stored in facets (if supported).

The following handles, iterators, and circulators have appropriate non-mutable counterparts, i.e., const handle,
const iterator, and const circulator. The mutable types are assignable to their non-mutable counterparts. Both
circulators are assignable to the Halfedge iterator. The iterators are assignable to the respective handle types.
Wherever the handles appear in function parameter lists, the corresponding iterators can be used as well. For
convenience, the Edge iterator enumerates every other halfedge. It is based on the CGAL::N step adaptor
class. For convenience, the Point iterator enumerates all points in the polyhedral surface in the same order as
the Vertex iterator, but with the value type Point. It is based on the CGAL::Iterator project adaptor. Similarly,
a Plane iterator is provided.

Polyhedron 3<Traits>:: Vertex handle handle to vertex.
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Polyhedron 3<Traits>:: Halfedge handle handle to halfedge.
Polyhedron 3<Traits>:: Facet handle handle to facet.

Polyhedron 3<Traits>:: Vertex iterator iterator over all vertices.
Polyhedron 3<Traits>:: Halfedge iterator iterator over all halfedges.
Polyhedron 3<Traits>:: Facet iterator iterator over all facets.

Polyhedron 3<Traits>:: Halfedge around vertex circulator

circulator of halfedges around a vertex (cw).

Polyhedron 3<Traits>:: Halfedge around facet circulator

circulator of halfedges around a facet (ccw).

Polyhedron 3<Traits>:: Edge iterator iterator over all edges (every other halfedge).
Polyhedron 3<Traits>:: Point iterator iterator over all points.
Polyhedron 3<Traits>:: Plane iterator iterator over all plane equations.

advanced

Types for Tagging Optional Features

The following types are equal to either CGAL::Tag true or CGAL::Tag false, depending on whether the named
feature is supported or not.

Polyhedron 3<Traits>:: Supports vertex halfedge Vertex::halfedge().
Polyhedron 3<Traits>:: Supports vertex point Vertex::point().
Polyhedron 3<Traits>:: Supports halfedge prev Halfedge::prev().
Polyhedron 3<Traits>:: Supports halfedge vertex Halfedge::vertex().
Polyhedron 3<Traits>:: Supports halfedge facet Halfedge::facet().
Polyhedron 3<Traits>:: Supports facet halfedge Facet::halfedge().
Polyhedron 3<Traits>:: Supports facet plane Facet::plane().
Polyhedron 3<Traits>:: Supports removal supports removal of individual elements.

advanced

Creation

Polyhedron 3<Traits> P( Traits traits = Traits());

Polyhedron 3<Traits> P( size type v, size type h, size type f, Traits traits = Traits());

a polyhedron P with storage reserved for v vertices, h halfedges, and f facets.
The reservation sizes are a hint for optimizing storage allocation.

void P.reserve( size type v, size type h, size type f)

reserve storage for v vertices, h halfedges, and f facets. The reservation sizes
are a hint for optimizing storage allocation. If the capacity is already greater
than the requested size nothing happens. If the capacity changes all iterators and
circulators might invalidate.
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Halfedge handle P.make tetrahedron()

a tetrahedron is added to the polyhedral surface. Returns a halfedge of the tetra-
hedron.

Halfedge handle P.make tetrahedron( Point p1, Point p2, Point p3, Point p4)

a tetrahedron is added to the polyhedral surface with its vertices initialized to
p1, p2, p3, and p4. Returns that halfedge of the tetrahedron which incident vertex
is initialized to p1. The incident vertex of the next halfedge is p2, and the vertex
thereafter is p3. The remaining fourth vertex is initialized to p4.

Halfedge handle P.make triangle()

a triangle with border edges is added to the polyhedral surface. Returns a non-
border halfedge of the triangle.

Halfedge handle P.make triangle( Point p1, Point p2, Point p3)

a triangle with border edges is added to the polyhedral surface with its vertices
initialized to p1, p2, and p3. Returns that non-border halfedge of the triangle
which incident vertex is initialized to p1. The incident vertex of the next halfedge
is p2, and the vertex thereafter is p3.

Access Member Functions

bool P.empty() const returns true if P is empty.

size type P.size of vertices() const number of vertices.
size type P.size of halfedges() const number of halfedges (incl. border halfedges).
size type P.size of facets() const number of facets.

size type P.capacity of vertices() const

space reserved for vertices.

size type P.capacity of halfedges() const

space reserved for halfedges.

size type P.capacity of facets() const space reserved for facets.

size t P.bytes() const bytes used for the polyhedron.
size t P.bytes reserved() const bytes reserved for the polyhedron.

allocator type P.get allocator() const allocator object.

Vertex iterator P.vertices begin() iterator over all vertices.
Vertex iterator P.vertices end() past-the-end iterator.
Halfedge iterator P.halfedges begin() iterator over all halfedges.
Halfedge iterator P.halfedges end() past-the-end iterator.
Facet iterator P.facets begin() iterator over all facets (excluding holes).
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Facet iterator P.facets end() past-the-end iterator.

Edge iterator P.edges begin() iterator over all edges.
Edge iterator P.edges end() past-the-end iterator.

Point iterator P.points begin() iterator over all points.
Point iterator P.points end() past-the-end iterator.

Plane iterator P.planes begin() iterator over all plane equations.
Plane iterator P.planes end() past-the-end iterator.

Traits P.traits() const returns the traits class.

Combinatorial Predicates

bool P.is closed() const

returns true if there are no border edges.

bool P.is pure bivalent() const

returns true if all vertices have exactly two incident edges.

bool P.is pure trivalent() const

returns true if all vertices have exactly three incident edges.

bool P.is pure triangle() const

returns true if all facets are triangles.

bool P.is pure quad() const

returns true if all facets are quadrilaterals.

bool P.is triangle( Halfedge const handle h) const

true iff the connected component denoted by h is a triangle.

bool P.is tetrahedron( Halfedge const handle h) const

true iff the connected component denoted by h is a tetrahedron.
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Euler Operators (Combinatorial Modifications)

The following Euler operations modify consistently the combinatorial structure of the polyhedral surface. The
geometry remains unchanged.

h

g

h

split_facet(h,g)

join_facet(h)

split_vertex(h,g)

join_vertex(h)g

h

h

Halfedge handle P.split facet( Halfedge handle h, Halfedge handle g)

splits the facet incident to h and g into two facets with a new diagonal between
the two vertices denoted by h and g respectively. The second (new) facet is
a copy of the first facet. Returns h->next() after the operation, i.e., the new
diagonal. The new face is to the right of the new diagonal, the old face is to the
left. The time is proportional to the distance from h to g around the facet.
Precondition: h and g are incident to the same facet. h != g (no loops). h->
next() != g and g->next() != h (no multi-edges).

Halfedge handle P.join facet( Halfedge handle h)

joins the two facets incident to h. The facet incident to h->opposite() gets re-
moved. Both facets might be holes. Returns the predecessor of h around the
facet. The invariant join facet( split facet( h, g)) returns h and keeps the poly-
hedron unchanged. The time is proportional to the size of the facet removed
and the time to compute h->prev().
Precondition: The degree of both vertices incident to h is at least three (no
antennas).
Requirement: Supports removal ≡ CGAL::Tag true.

Halfedge handle P.split vertex( Halfedge handle h, Halfedge handle g)

splits the vertex incident to h and g into two vertices, the old vertex remains
and a new copy is created, and connects them with a new edge. Let hnew be
h->next()->opposite() after the split, i.e., a halfedge of the new edge. The split
regroups the halfedges around the two vertices. The halfedge sequence hnew,
g->next()->opposite(), . . . , h remains around the old vertex, while the halfedge
sequence hnew->opposite(), h->next()->opposite() (before the split), . . . , g is
regrouped around the new vertex. The split returns hnew, i.e., the new halfedge
incident to the old vertex. The time is proportional to the distance from h to g
around the vertex.
Precondition: h and g are incident to the same vertex. h != g (antennas are not
allowed).
Note: A special application of the split is split vertex(h,h->next()->opposite())
which is equivalent to an edge split of the halfedge h->next() that creates a new
vertex on the halfedge h->next(). See also split edge(h) below.
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Halfedge handle P.join vertex( Halfedge handle h)

joins the two vertices incident to h. The vertex denoted by h->opposite() gets
removed. Returns the predecessor of h around the vertex, i.e., h->opposite()-
>prev(). The invariant join vertex( split vertex( h, g)) returns h and keeps the
polyhedron unchanged. The time is proportional to the degree of the vertex
removed and the time to compute h->prev() and h->opposite()->prev().
Precondition: The size of both facets incident to h is at least four (no multi-
edges).
Requirement: Supports removal ≡ CGAL::Tag true.

Halfedge handle P.split edge( Halfedge handle h)

splits the halfedge h into two halfedges inserting a new vertex that is a
copy of h->opposite()->vertex(). Is equivalent to split vertex( h->prev(), h->
opposite()). The call of prev() can make this method slower than a direct call
of split vertex() if the previous halfedge is already known and computing it
would be costly when the halfedge data structure does not support the prev()
member function. Returns the new halfedge hnew pointing to the inserted ver-
tex. The new halfedge is followed by the old halfedge, i.e., hnew->next() ==
h.

Halfedge handle P.flip edge( Halfedge handle h)

performs an edge flip. It returns h after rotating the edge h one vertex in the
direction of the face orientation.
Precondition: h != Halfedge handle() and both facets incident to h are trian-
gles.

h
g

create_center_vertex(h)

erase_center_vertex(g)

Halfedge handle P.create center vertex( Halfedge handle h)

barycentric triangulation of h->facet(). Creates a new vertex, a copy of h->
vertex(), and connects it to each vertex incident to h->facet() splitting h->facet()
into triangles. h remains incident to the original facet, all other triangles are
copies of this facet. Returns the halfedge h->next() after the operation, i.e., a
halfedge pointing to the new vertex. The time is proportional to the size of the
facet.
Precondition: h is not a border halfedge.
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Halfedge handle P.erase center vertex( Halfedge handle g)

reverses create center vertex. Erases the vertex pointed to by g and all inci-
dent halfedges thereby merging all incident facets. Only g->facet() remains.
The neighborhood of g->vertex() may not be triangulated, it can have larger
facets. Returns the halfedge g->prev(). Thus, the invariant h == erase center
vertex( create center vertex(h)) holds if h is not a border halfedge. The time is
proportional to the sum of the size of all incident facets.
Precondition: None of the incident facets of g->vertex() is a hole. There are at
least two distinct facets incident to the facets that are incident to g->vertex().
(This prevents the operation from collapsing a volume into two facets glued
together with opposite orientations, such as would happen with any vertex of a
tetrahedron.)
Requirement: Supports removal ≡ CGAL::Tag true.

Euler Operators Modifying Genus

h

i

h

j

i

g
split_loop(h,i,j)

join_loop(h,g)
j

Halfedge handle P.split loop( Halfedge handle h, Halfedge handle i, Halfedge handle j)

cuts the polyhedron into two parts along the cycle (h, i, j) (edge j runs on
the backside of the three dimensional figure above). Three new vertices (one
copy for each vertex in the cycle) and three new halfedges (one copy for each
halfedge in the cycle), and two new triangles are created. h, i, j will be incident
to the first new triangle. The return value will be the halfedge incident to the
second new triangle which is the copy of h-opposite().
Precondition: h, i, j denote distinct, consecutive vertices of the polyhedron and
form a cycle: i.e., h->vertex() == i->opposite()->vertex(), . . . , j->vertex() ==
h->opposite()->vertex(). The six facets incident to h, i, j are all distinct.

Halfedge handle P.join loop( Halfedge handle h, Halfedge handle g)

glues the boundary of the two facets denoted by h and g together and returns h.
Both facets and the vertices along the facet denoted by g gets removed. Both
facets may be holes. The invariant join loop( h, split loop( h, i, j)) returns h
and keeps the polyhedron unchanged.
Precondition: The facets denoted by h and g are different and have equal degree
(i.e., number of edges).
Requirement: Supports removal ≡ CGAL::Tag true.
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Modifying Facets and Holes

Halfedge handle P.make hole( Halfedge handle h)

removes the incident facet of h and changes all halfedges incident to the facet
into border edges. Returns h. See erase facet(h) for a more generalized variant.
Precondition: None of the incident halfedges of the facet is a border edge.
Requirement: Supports removal ≡ CGAL::Tag true.

Halfedge handle P.fill hole( Halfedge handle h)

fills a hole with a newly created facet. Makes all border halfedges of the hole
denoted by h incident to the new facet. Returns h.
Precondition: h.is border().

h

g

add_facet_to_border(h,g)

g

h

erase_facet(h) erase_facet(h)

add_vertex_and_facet_
to_border(h,g)

h
h

Halfedge handle P.add vertex and facet to border( Halfedge handle h, Halfedge handle g)

creates a new facet within the hole incident to h and g by connecting the tip
of g with the tip of h with two new halfedges and a new vertex and filling this
separated part of the hole with a new facet, such that the new facet is incident
to g. Returns the halfedge of the new edge that is incident to the new facet and
the new vertex.
Precondition: h->is border(), g->is border(), h != g, and g can be reached
along the same hole starting with h.

Halfedge handle P.add facet to border( Halfedge handle h, Halfedge handle g)

creates a new facet within the hole incident to h and g by connecting the vertex
denoted by g with the vertex denoted by h with a new halfedge and filling this
separated part of the hole with a new facet, such that the new facet is incident
to g. Returns the halfedge of the new edge that is incident to the new facet.
Precondition: h->is border(), g->is border(), h != g, h->next() != g, and g can
be reached along the same hole starting with h.

Erasing
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void P.erase facet( Halfedge handle h)

removes the incident facet of h and changes all halfedges incident to the facet
into border edges or removes them from the polyhedral surface if they were
already border edges. If this creates isolated vertices they get removed as well.
See make hole(h) for a more specialized variant.
Precondition: h->is border() == false.
Requirement: Supports removal ≡ CGAL::Tag true.

void P.erase connected component( Halfedge handle h)

removes the vertices, halfedges, and facets that belong to the connected com-
ponent of h.
Requirement: Supports removal ≡ CGAL::Tag true.

unsigned int P.keep largest connected components( unsigned int nb components to keep)

Erases the small connected components and the isolated vertices. Keep nb
components to keep largest connected components. Returns the number of
connected components erased (ignoring isolated vertices).
Requirement: supports vertices, halfedges, and removal operation.

void P.clear()

removes all vertices, halfedges, and facets.

Operations with Border Halfedges

advanced

Halfedges incident to a hole are called border halfedges. An halfedge is a border edge if itself or its opposite
halfedge are border halfedges. The only requirement to work with border halfedges is that the Halfedge class
provides a member function is border() returning a bool. Usually, the halfedge data structure supports facets
and a NULL facet pointer will indicate a border halfedge, but this is not the only possibility. The is border()
predicate divides the edges into two classes, the border edges and the non-border edges. The following normal-
ization reorganizes the sequential storage of the edges such that the non-border edges precede the border edges,
and that for each border edge the latter one of the two halfedges is a border halfedge (the first one is a non-
border halfedge in conformance with the polyhedral surface definition). The normalization stores the number of
border halfedges and the halfedge iterator the border edges start at within the data structure. Halfedge insertion
or removal and changing the border status of a halfedge invalidate these values. They are not automatically
updated.

void P.normalize border()

sorts halfedges such that the non-border edges precede the border edges. For
each border edge the halfedge iterator will reference the halfedge incident to
the facet right before the halfedge incident to the hole.
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size type P.size of border halfedges() const

number of border halfedges.
Precondition: last normalize border() call still valid, see above.

size type P.size of border edges() const

number of border edges. Since each border edge of a polyhedral surface
has exactly one border halfedge, this number is equal to size of border
halfedges().
Precondition: last normalize border() call still valid, see above.

Halfedge iterator P.border halfedges begin()

halfedge iterator starting with the border edges. The range [halfedges
begin(), border halfedges begin()) denotes all non-border halfedges. The
range [border halfedges begin(), halfedges end()) denotes all border edges.
Precondition: last normalize border() call still valid, see above.

Edge iterator P.border edges begin()

edge iterator starting with the border edges. The range [edges begin(),
border edges begin()) denotes all non-border edges. The range [border
edges begin(), edges end()) denotes all border edges.
Precondition: last normalize border() call still valid, see above.

advanced

Miscellaneous

void P.inside out()

reverses facet orientations (incl. plane equations if supported).

bool P.is valid( bool verbose = false, int level = 0) const

returns true if the polyhedral surface is combinatorially consistent. If verbose
is true, statistics are printed to cerr. For level == 1 the normalization of
the border edges is checked too. This method checks in particular level 3 of
CGAL::Halfedge data structure decorator::is valid from page 26.4 and that
each facet is at least a triangle and that the two incident facets of a non-border
edge are distinct.

bool P.normalized border is valid( bool verbose = false) const

returns true if the border halfedges are in normalized representation, which
is when enumerating all halfedges with the iterator: The non-border edges
precede the border edges and for border edges, the second halfedge is the
border halfedge. The halfedge iterator border halfedges begin() denotes the
first border edge. If verbose is true, statistics are printed to cerr.
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advanced

void P.delegate( CGAL::Modifier base<HDS>& m)

calls the operator() of the modifier m. See CGAL::Modifier base for a de-
scription of modifier design and its usage.
Precondition: The polyhedral surface must be valid when the modifier returns
from execution.

advanced

See Also

CGAL::Polyhedron 3<Traits>::Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1812
CGAL::Polyhedron 3<Traits>::Halfedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1809
CGAL::Polyhedron 3<Traits>::Facet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1807
PolyhedronTraits 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1823
CGAL::Polyhedron traits 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1824
PolyhedronItems 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1818
CGAL::Polyhedron items 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1820
HalfedgeDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1843
CGAL::HalfedgeDS default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1867
CGAL::Polyhedron incremental builder 3<HDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1814
CGAL::Modifier base.

Example

This example program instantiates a polyhedron using the default traits class and creates a tetrahedron.� �
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Polyhedron_3.h>

typedef CGAL::Simple_cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
typedef Polyhedron::Halfedge_handle Halfedge_handle;

int main() {
Polyhedron P;
Halfedge_handle h = P.make_tetrahedron();
if ( P.is_tetrahedron(h))

return 0;
return 1;

}� �
File: examples/Polyhedron/polyhedron_prog_simple.cpp
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CGAL::Polyhedron 3<Traits>::Facet

Definition

A facet optionally stores a plane equation, and a reference to an incident halfedge that points to the facet. Type
tags indicate whether these member functions are supported. Figure 25.1 depicts the relationship between a
halfedge and its incident halfedges, vertices, and facets. The circulator is assignable to the Halfedge handle.
The circulator is bidirectional if the halfedge provided to the polyhedron with the Items template argument
provides a member function prev(), otherwise it is of the forward category.

#include <CGAL/Polyhedron 3.h>

Types

Facet:: Vertex type of incident vertices.
Facet:: Halfedge type of incident halfedges.
Facet:: Plane 3 plane equation type stored in facets.

Facet:: Vertex handle handle to vertex.
Facet:: Halfedge handle handle to halfedge.
Facet:: Facet handle handle to facet.
Facet:: Halfedge around facet circulator circulator of halfedges around a facet.

Facet:: Vertex const handle
Facet:: Halfedge const handle
Facet:: Facet const handle
Facet:: Halfedge around facet const circulator

Facet:: Supports facet halfedge ≡ CGAL::Tag true or CGAL::Tag false.
Facet:: Supports facet plane ≡ CGAL::Tag true or CGAL::Tag false.

Creation

Facet f ; default constructor.

Operations available if Supports facet plane ≡ CGAL::Tag true

Plane 3& f .plane()
const Plane 3& f .plane() const plane equation.

Operations available if Supports facet halfedge ≡ CGAL::Tag true

Halfedge handle f .halfedge()
Halfedge const handle f .halfedge() const an incident halfedge that points to f .
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Halfedge around facet circulator

f .facet begin()

Halfedge around facet const circulator

f .facet begin() const

circulator of halfedges around the facet (counterclockwise).

void f .set halfedge( Halfedge handle h)

sets incident halfedge to h.
Precondition: h is incident, i.e., h->facet() == f .

std::size t f .facet degree() const

the degree of the facet, i.e., number of edges on the boundary
of this facet.

bool f .is triangle() const

returns true if the facet is a triangle.

bool f .is quad() const returns true if the facet is a quadrilateral.

See Also

CGAL::Polyhedron 3<Traits>::Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1812
CGAL::Polyhedron 3<Traits>::Halfedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1809
CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795
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CGAL::Polyhedron 3<Traits>::Halfedge

Definition

Figure 25.1 depicts the relationship between a halfedge and its incident halfedges, vertices, and facets. A
halfedge is an oriented edge between two vertices. It is always paired with a halfedge pointing in the opposite
direction. The opposite() member function returns this halfedge of opposite orientation. If a halfedge is incident
to a facet the next() member function points to the successor halfedge around this facet. For border edges the
next() member function points to the successor halfedge along the hole. For more than two border edges at a
vertex, the next halfedge along a hole is not uniquely defined, but a consistent assignment of the next halfedge
will be maintained in the data structure. An invariant is that successive assignments of the form h = h->next()
cycle counterclockwise around the facet (or hole) and traverse all halfedges incident to this facet (or hole). A
similar invariant is that successive assignments of the form h = h->next()->opposite() cycle clockwise around
the vertex and traverse all halfedges incident to this vertex. Two circulators are provided for these circular
orders.

incident vertex

ne
xt

 ha
lfe

dg
e

opposite halfedge

halfedge previous halfedge

incident facet

Vertex

Point& point()

Halfedge_handle  halfedge()

Halfedge

Halfegde_handle  opposite()

Halfedge_handle  next()

Halfedge_handle  prev()

Vertex_handle  vertex()

Facet_handle  facet()

Facet

Normal& normal()

Plane& plane()

Halfedge_handle  halfedge()

Figure 25.1: The three classes Vertex, Halfedge, and Facet of the polyhedral surface. Member functions with
shaded background are mandatory. The others are optionally supported.

The incidences encoded in opposite() and next() are available for each instantiation of polyhedral surfaces. The
other incidences are optionally available as indicated with type tags. The prev() member function points to the
preceding halfedge around the same facet. It is always available, though it might perform a search around the
facet using the next() member function to find the previous halfedge if the underlying halfedge data structure
does not provide an efficient prev() member function for halfedges. Handles to the incident vertex and facet are
optionally stored.

The circulators are assignable to the Halfedge handle. The circulators are bidirectional if the halfedge provided
to the polyhedron with the Items template argument provides a member function prev(), otherwise they are of
the forward category.

#include <CGAL/Polyhedron 3.h>

Types

Halfedge:: Vertex type of incident vertices.
Halfedge:: Facet type of incident facets.

Halfedge:: Vertex handle handle to vertex.
Halfedge:: Halfedge handle handle to halfedge.
Halfedge:: Facet handle handle to facet.
Halfedge:: Halfedge around vertex circulator circulator of halfedges around a vertex.
Halfedge:: Halfedge around facet circulator circulator of halfedges around a facet.
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Halfedge:: Vertex const handle
Halfedge:: Halfedge const handle
Halfedge:: Facet const handle
Halfedge:: Halfedge around vertex const circulator
Halfedge:: Halfedge around facet const circulator

Halfedge:: Supports halfedge prev ≡ CGAL::Tag true or CGAL::Tag false.
Halfedge:: Supports halfedge vertex ≡ CGAL::Tag true or CGAL::Tag false.
Halfedge:: Supports halfedge face ≡ CGAL::Tag true or CGAL::Tag false.

Creation

Halfedge h; default constructor.

Operations

Halfedge handle h.opposite()
Halfedge const handle h.opposite() const the opposite halfedge.

Halfedge handle h.next()
Halfedge const handle h.next() const the next halfedge around the facet.

Halfedge handle h.prev()
Halfedge const handle h.prev() const the previous halfedge around the facet.

Halfedge handle h.next on vertex()
Halfedge const handle h.next on vertex() const the next halfedge around the vertex (clockwise). Is

equal to h.next()->opposite().

Halfedge handle h.prev on vertex()
Halfedge const handle h.prev on vertex() const the previous halfedge around the vertex (counterclock-

wise). Is equal to h.opposite()->prev().

bool h.is border() const is true if h is a border halfedge.
bool h.is border edge() const is true if h or h.opposite() is a border halfedge.

Halfedge around vertex circulator

h.vertex begin()

Halfedge around vertex const circulator

h.vertex begin() const circulator of halfedges around the vertex (clockwise).

Halfedge around facet circulator

h.facet begin()
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Halfedge around facet const circulator

h.facet begin() const circulator of halfedges around the facet (counterclock-
wise).

std::size t h.vertex degree() const the degree of the incident vertex, i.e., number of edges
emanating from this vertex.

bool h.is bivalent() const returns true if the incident vertex has exactly two inci-
dent edges.

bool h.is trivalent() const returns true if the incident vertex has exactly three in-
cident edges.

std::size t h.facet degree() const the degree of the incident facet, i.e., number of edges
on the boundary of this facet.

bool h.is triangle() const returns true if the incident facet is a triangle.
bool h.is quad() const returns true if the incident facet is a quadrilateral.

Operations available if Supports halfedge vertex ≡ CGAL::Tag true

Vertex handle h.vertex()
Vertex const handle h.vertex() const the incident vertex of h.

Operations available if Supports halfedge facet ≡ CGAL::Tag true

Facet handle h.facet()
Facet const handle h.facet() const the incident facet of h. If h is a border halfedge the

result is default construction of the handle.

See Also

CGAL::Polyhedron 3<Traits>::Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1812
CGAL::Polyhedron 3<Traits>::Facet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1807
CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795

Implementation

The member functions prev() and prev on vertex() work in constant time if Supports halfedge prev ≡
CGAL::Tag true. Otherwise both methods search for the previous halfedge around the incident facet.
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CGAL::Polyhedron 3<Traits>::Vertex

Definition

A vertex optionally stores a point and a reference to an incident halfedge that points to the vertex. Type tags
indicate whether these member functions are supported. Figure 25.1 depicts the relationship between a halfedge
and its incident halfedges, vertices, and facets. The circulator is assignable to the Halfedge handle. The cir-
culator is bidirectional if the halfedge provided to the polyhedron with the Items template argument provides a
member function prev(), otherwise it is of the forward category.

#include <CGAL/Polyhedron 3.h>

Types

Vertex:: Halfedge type of incident halfedges.
Vertex:: Facet type of incident facets.
Vertex:: Point 3 point type stored in vertices.

Vertex:: Vertex handle handle to vertex.
Vertex:: Halfedge handle handle to halfedge.
Vertex:: Facet handle handle to facet.
Vertex:: Halfedge around vertex circulator circulator of halfedges around a vertex.

Vertex:: Vertex const handle
Vertex:: Halfedge const handle
Vertex:: Facet const handle
Vertex:: Halfedge around vertex const circulator

Vertex:: Supports vertex halfedge ≡ CGAL::Tag true or CGAL::Tag false.
Vertex:: Supports vertex point ≡ CGAL::Tag true or CGAL::Tag false.

Creation

Vertex v; default constructor.
Vertex v( Point p); vertex initialized with a point.

Operations available if Supports vertex point ≡ CGAL::Tag true

Point 3& v.point()
const Point 3& v.point() const the point.
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Operations available if Supports vertex halfedge ≡ CGAL::Tag true

Halfedge handle v.halfedge()
Halfedge const handle v.halfedge() const an incident halfedge that points to v.

Halfedge around vertex circulator

v.vertex begin()

Halfedge around vertex const circulator

v.vertex begin() const

circulator of halfedges around the vertex (clockwise).

void v.set halfedge( Halfedge handle h)

sets incident halfedge to h.
Precondition: h is incident, i.e., h->vertex() == v.

std::size t v.vertex degree() const

the degree of the vertex, i.e., number of edges emanating from
this vertex.

bool v.is bivalent() const

returns true if the vertex has exactly two incident edges.

bool v.is trivalent() const

returns true if the vertex has exactly three incident edges.

See Also

CGAL::Polyhedron 3<Traits>::Halfedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1809
CGAL::Polyhedron 3<Traits>::Facet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1807
CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795
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CGAL::Polyhedron incremental builder 3<HDS>

Definition

The auxiliary class Polyhedron incremental builder 3<HDS> supports the incremental construction of polyhe-
dral surfaces, which is for example convenient when constructing polyhedral surfaces from file formats, such
as the Object File Format (OFF) [Phi96], OpenInventor [Wer94] or VRML [BPP95, VRM96]. Polyhedron
incremental builder 3<HDS> needs access to the internal halfedge data structure of type HDS of the polyhedral
surface. It is intended to be used within a modifier, see CGAL::Modifier base.

The incremental builder might be of broader interest for other uses of the halfedge data structures, but it is
specifically bound to the definition of polyhedral surfaces given here. During construction all conditions of
polyhedral surfaces are checked and in case of violation an error status is set. A diagnostic message will be
issued to cerr if the verbose flag has been set at construction time.

The incremental construction starts with a list of all point coordinates and concludes with a list of all facet
polygons. Edges are not explicitly specified. They are derived from the vertex incidence information provided
from the facet polygons. The polygons are given as a sequence of vertex indices. The halfedge data structure
HDS must support vertices (i.e., Supports halfedge vertex ≡ CGAL::Tag true). Vertices and facets can be
added in arbitrary order as long as a call to add vertex to facet() refers only to a vertex index that is already
known. Some methods return already handles to vertices, facets, and halfedges newly constructed. They can be
used to initialize additional fields, however, the incidences in the halfedge-data structure are not stable and are
not allowed to be changed.

The incremental builder can work in two modes: RELATIVE INDEXING (the default), in which a polyhedral
surface already contained in the halfedge data structure is ignored and all indices are relative to the newly added
surface, or ABSOLUTE INDEXING, in which all indices are absolute indices including an already existing
polyhedral surface. The former mode allows to create easily independent connected components, while the
latter mode allows to to continue the construction of an existing surface, the absolute indexing allows to address
existing vertices when creating new facets.

#include <CGAL/Polyhedron incremental builder 3.h>

Types

Polyhedron incremental builder 3<HDS>:: HalfedgeDS halfedge data structure HDS.
Polyhedron incremental builder 3<HDS>:: Point 3 point type of the vertex.
Polyhedron incremental builder 3<HDS>:: size type size type.

typedef typename HalfedgeDS::Vertex handle Vertex handle;
typedef typename HalfedgeDS::Halfedge handle Halfedge handle;
typedef typename HalfedgeDS::Face handle Facet handle;

Constants

enum { RELATIVE INDEXING, ABSOLUTE INDEXING};

two different indexing modes.
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Creation

Polyhedron incremental builder 3<HDS> B( HDS& hds, bool verbose = false);

stores a reference to the halfedge data structure hds of a polyhe-
dral surface in its internal state. An existing polyhedral surface in
hds remains unchanged. The incremental builder appends the new
polyhedral surface. If verbose is true, diagnostic messages will be
printed to cerr in case of malformed input data.

Surface Creation

To build a polyhedral surface, the following regular expression gives the correct and allowed order and nesting
of method calls from this section:

begin surface (add vertex | (begin facet add vertex to facet∗ end facet))∗ end surface

void B.begin surface( size type v,
size type f,
size type h = 0,
int mode = RELATIVE INDEXING)

starts the construction. v is the number of new vertices to expect, f
the number of new facets, and h the number of new halfedges. If
h is unspecified (== 0) it is estimated using Euler’s equation (plus
5% for the so far unknown holes and genus of the object). These
values are used to reserve space in the halfedge data structure hds.
If the representation supports insertion these values do not restrict
the class of constructible polyhedra. If the representation does not
support insertion the object must fit into the reserved sizes.
If mode is set to ABSOLUTE INDEXING the incremental builder
uses absolute indexing and the vertices of the old polyhedral surface
can be used in new facets (needs preprocessing time linear in the
size of the old surface). Otherwise relative indexing is used starting
with new indices for the new construction.

Vertex handle B.add vertex( Point 3 p)

adds a new vertex for p and returns its handle.

Facet handle B.begin facet() starts a new facet and returns its handle.

void B.add vertex to facet( size type i)

adds a vertex with index i to the current facet. The first point added
with add vertex() has the index 0 if mode was set to RELATIVE
INDEXING, otherwise the first vertex in the referenced hds has the
index 0.
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Halfedge handle B.end facet() ends a newly constructed facet. Returns the handle to the halfedge
incident to the new facet that points to the vertex added first. The
halfedge can be safely used to traverse the halfedge cycle around
the new facet.

void B.end surface() ends the construction.

Additional Operations

template <class InputIterator>
Halfedge handle B.add facet( InputIterator first, InputIterator beyond)

is a synonym for begin facet(), a call to add vertex to facet() for
each value in the range [first,beyond), and a call to end facet().
Returns the return value of end facet().
Precondition: The value type of InputIterator is std::size t. All
indices must refer to vertices already added.

template <class InputIterator>
bool B.test facet( InputIterator first, InputIterator beyond)

returns true if a facet described by the vertex indices in the
range [first,beyond) can be successfully inserted, e.g., with add
facet(first,beyond).
Precondition: The value type of InputIterator is std::size t. All
indices must refer to vertices already added.

Vertex handle B.vertex( std::size t i)

returns handle for the vertex of index i, or Vertex handle if there is
no i-th vertex.

bool B.error() const returns error status of the builder.

void B.rollback() undoes all changes made to the halfedge data structure since the last
begin surface() in relative indexing, and deletes the whole surface
in absolute indexing. It needs a new call to begin surface() to start
inserting again.

bool B.check unconnected vertices()

returns true if unconnected vertices are detected. If verbose was
set to true (see the constructor above) debug information about the
unconnected vertices is printed.

bool B.remove unconnected vertices()

returns true if all unconnected vertices could be removed success-
fully. This happens either if no unconnected vertices had appeared
or if the halfedge data structure supports the removal of individual
elements.
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See Also

CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795
HalfedgeDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1843
CGAL::Modifier base.

Example

A modifier class creates a new triangle in the halfedge data structure using the incremental builder.� �
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Polyhedron_incremental_builder_3.h>
#include <CGAL/Polyhedron_3.h>

// A modifier creating a triangle with the incremental builder.
template <class HDS>
class Build_triangle : public CGAL::Modifier_base<HDS> {
public:

Build_triangle() {}
void operator()( HDS& hds) {

// Postcondition: ‘hds’ is a valid polyhedral surface.
CGAL::Polyhedron_incremental_builder_3<HDS> B( hds, true);
B.begin_surface( 3, 1, 6);
typedef typename HDS::Vertex Vertex;
typedef typename Vertex::Point Point;
B.add_vertex( Point( 0, 0, 0));
B.add_vertex( Point( 1, 0, 0));
B.add_vertex( Point( 0, 1, 0));
B.begin_facet();
B.add_vertex_to_facet( 0);
B.add_vertex_to_facet( 1);
B.add_vertex_to_facet( 2);
B.end_facet();
B.end_surface();

}
};

typedef CGAL::Simple_cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
typedef Polyhedron::HalfedgeDS HalfedgeDS;

int main() {
Polyhedron P;
Build_triangle<HalfedgeDS> triangle;
P.delegate( triangle);
CGAL_assertion( P.is_triangle( P.halfedges_begin()));
return 0;

}� �
File: examples/Polyhedron/polyhedron_prog_incr_builder.cpp
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PolyhedronItems 3

Definition

The PolyhedronItems 3 concept extends the HalfedgeDSItems concept on page 1873. In addition to the
requirements stated there, a model for this concept must fulfill the following requirements for the lo-
cal PolyhedronItems 3::Vertex wrapper<Refs,Traits>::Vertex type and PolyhedronItems 3::Face wrapper<
Refs,Traits>::Face type in order to support the point for vertices and the optional plane equation for facets.
Note that the items class uses face instead of facet. Only the polyhedral surface renames faces to facets.

Refines

HalfedgeDSItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1854

Types in PolyhedronItems 3::Vertex wrapper<Refs,Traits>::Vertex

Vertex:: Point point type stored in vertices. A HalfedgeDS has no dimen-
sion, so this type is named Point and not Point 3.

Vertex:: Supports vertex point ≡ CGAL::Tag true. A point is always required.

Operations

Point& v.point()
const Point& v.point() const point.

Types in PolyhedronItems 3::Face wrapper<Refs,Traits>::Face

Types for (optionally) associated geometry in faces. If it is not supported the respective type has to be defined,
although it can be an arbitrary dummy type, such as void* or Tag false.

Face:: Plane plane type stored in faces. A HalfedgeDS has no dimension,
so this type is named Plane and not Plane 3.

Face:: Supports face plane either CGAL::Tag true or CGAL::Tag false.

Operations required if Supports face plane ≡ CGAL::Tag true

Plane& f .plane()
const Plane& f .plane() const plane equation.

Has Models

CGAL::Polyhedron items 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1820
CGAL::Polyhedron min items 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1822
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See Also

CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795
HalfedgeDSItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1854
CGAL::HalfedgeDS items 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1873
CGAL::HalfedgeDS vertex base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1883
CGAL::HalfedgeDS halfedge base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1871
CGAL::HalfedgeDS face base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1868

Example

We define our own items class based on the available CGAL::HalfedgeDS face base base class for faces. We
derive the the Halfedge wrapper without further modifications from the CGAL::HalfedgeDS items 2, replace
the Face wrapper definition with our new definition, and also replace the Vertex wrapper with a definition that
uses Point 3 instead of Point 2 as point type. The result is a model for the PolyhedronItems 3 concept similar
to the available CGAL::Polyhedron items 3 class. See also there for another illustrative example.� �
#include <CGAL/HalfedgeDS_bases.h>

struct My_items : public CGAL::HalfedgeDS_items_2 {
template < class Refs, class Traits>
struct Vertex_wrapper {

typedef typename Traits::Point_3 Point;
typedef CGAL::HalfedgeDS_vertex_base< Refs, CGAL::Tag_true,

Point> Vertex;
};
template < class Refs, class Traits>
struct Face_wrapper {

typedef typename Traits::Plane_3 Plane;
typedef CGAL::HalfedgeDS_face_base< Refs, CGAL::Tag_true, Plane>

Face;
};

};� �
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CGAL::Polyhedron items 3

Definition

The class Polyhedron items 3 is a model of the PolyhedronItems 3 concept. It provides definitions for vertices
with points, halfedges, and faces with plane equations. The polyhedron traits class must provide the respective
types for the point and the plane equation. Vertices and facets both contain a halfedge handle to an incident
halfedge.

#include <CGAL/Polyhedron items 3.h>

Is Model for the Concepts

PolyhedronItems 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1818

Types in Polyhedron items 3::Vertex wrapper<Refs,Traits>::Vertex

typedef Traits::Point 3 Point;
typedef CGAL::Tag true Supports vertex point;

Types in Polyhedron items 3::Face wrapper<Refs,Traits>::Face

typedef Traits::Plane 3 Plane;
typedef CGAL::Tag true Supports face plane;

Creation

Polyhedron items 3 items; default constructor.

Operations

Supported as required by the PolyhedronItems 3 concept.

See Also

CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795
CGAL::Polyhedron min items 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1822
CGAL::HalfedgeDS min items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1879
CGAL::HalfedgeDS items 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1873

Example

The following example program defines a new face class based on the CGAL::HalfedgeDS face base and
adds a new color member variable. The new face class is used to replace the face definition in the
CGAL::Polyhedron items 3 class. The main function illustrates the access to the new member variable. See
also the PolyhedronItems 3 concept for another illustrative example.
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#include <CGAL/Simple_cartesian.h>
#include <CGAL/IO/Color.h>
#include <CGAL/Polyhedron_3.h>

// A face type with a color member variable.
template <class Refs>
struct My_face : public CGAL::HalfedgeDS_face_base<Refs> {

CGAL::Color color;
};

// An items type using my face.
struct My_items : public CGAL::Polyhedron_items_3 {

template <class Refs, class Traits>
struct Face_wrapper {

typedef My_face<Refs> Face;
};

};

typedef CGAL::Simple_cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel, My_items> Polyhedron;
typedef Polyhedron::Halfedge_handle Halfedge_handle;

int main() {
Polyhedron P;
Halfedge_handle h = P.make_tetrahedron();
h->facet()->color = CGAL::RED;
return 0;

}� �
File: examples/Polyhedron/polyhedron_prog_color.cpp
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CGAL::Polyhedron min items 3

Definition

The class Polyhedron min items 3 is a minimal model of the PolyhedronItems 3 concept. It provides defini-
tions for vertices containing points, halfedges, and faces. The polyhedron traits class must provide the respective
type for the point. Vertices and facets both do not contain a halfedge handle to an incident halfedge.

#include <CGAL/Polyhedron min items 3.h>

Is Model for the Concepts

PolyhedronItems 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1818

Types in Polyhedron min items 3::Vertex wrapper<Refs,Traits>::Vertex

typedef Traits::Point 3 Point;
typedef CGAL::Tag true Supports vertex point;

Types in Polyhedron min items 3::Face wrapper<Refs,Traits>::Face

typedef CGAL::Tag false Supports face plane;

Creation

Polyhedron min items 3 items; default constructor.

Operations

Supported as required by the PolyhedronItems 3 concept.

See Also

CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795
CGAL::Polyhedron items 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1820
CGAL::HalfedgeDS min items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1879
CGAL::HalfedgeDS items 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1873
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PolyhedronTraits 3

Required types and member functions for the PolyhedronTraits 3 concept. This geometric traits concept is used
in the polyhedral surface data structure CGAL::Polyhedron 3<Traits>. This concept is a subset of the 3d kernel
traits and any CGAL kernel model can be used directly as template argument.

Refines

CopyConstructable, Assignable.

Types

PolyhedronTraits 3:: Point 3 point type.

PolyhedronTraits 3:: Plane 3 plane equation. Even if plane equations are not supported
with a particular polyhedral surface this type has to be de-
fined (some dummy type).

PolyhedronTraits 3:: Construct opposite plane 3

is an unary function object that reverses the plane orienta-
tion. Must provide Plane 3 operator()(Plane 3 plane) that
returns the reversed plane. Required only if plane equations
are supported and the inside out() method is used to reverse
the polyhedral surface orientation.

Creation

PolyhedronTraits 3 traits( traits2); copy constructor.

PolyhedronTraits 3& traits = traits2 assignment.

Operations

Construct opposite plane 3 traits.construct opposite plane 3 object()

returns an instance of this function object.

Has Models

CGAL::Polyhedron traits 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1824
CGAL::Polyhedron traits with normals 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1826
All models of the CGAL::Kernel concept, e.g., Simple cartesian<FieldNumberType>.

See Also

CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795
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CGAL::Polyhedron traits 3<Kernel>

Definition

The class Polyhedron traits 3<Kernel> is a model of the PolyhedronTraits 3 concept. It defines the ge-
ometric types and primitive operations used in the polyhedral surface data structure CGAL::Polyhedron 3<
PolyhedronTraits 3> in terms of the CGAL Kernel. It keeps a local copy of the kernel which makes it suitable
for kernels with local state.

#include <CGAL/Polyhedron traits 3.h>

Is Model for the Concepts

PolyhedronTraits 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1823

Types

Polyhedron traits 3<Kernel>:: Kernel the Kernel model.
typedef Kernel::Point 3 Point 3;
typedef Kernel::Plane 3 Plane 3;
typedef Kernel::Construct opposite plane 3 Construct opposite plane 3;

Creation

Polyhedron traits 3<Kernel> traits; default constructor, uses Kernel() as local reference
to the kernel.

Polyhedron traits 3<Kernel> traits( Kernel kernel); stores kernel as local reference.

Operations

Construct opposite plane 3 traits.construct opposite plane 3 object() forwarded to kernel.

See Also

CGAL::Polyhedron traits with normals 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1826

Implementation

Since the PolyhedronTraits 3 concept is a subset of the 3D kernel concept, this class just forwards the relevant
types and access member functions from its template argument. However, it is useful for testing sufficiency of
requirements.

Example

Instantiation of a polyhedral surface with the Cartesian kernel based on double coordinates.
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#include <CGAL/Simple_cartesian.h>
#include <CGAL/Polyhedron_3.h>

typedef CGAL::Simple_cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
typedef Polyhedron::Halfedge_handle Halfedge_handle;

int main() {
Polyhedron P;
Halfedge_handle h = P.make_tetrahedron();
if ( P.is_tetrahedron(h))

return 0;
return 1;

}� �
File: examples/Polyhedron/polyhedron_prog_simple.cpp
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CGAL::Polyhedron traits with normals 3<Kernel>

Definition

The class Polyhedron traits with normals 3<Kernel> is a model of the PolyhedronTraits 3 concept. It defines
the geometric types and primitive operations used in the polyhedral surface data structure CGAL::Polyhedron
3<PolyhedronTraits 3>. Polyhedron traits with normals 3<Kernel> uses the normal vector from Kernel for
the plane equation in facets. It keeps a local copy of the kernel which makes it suitable for kernels with local
state.

#include <CGAL/Polyhedron traits with normals 3.h>

Is Model for the Concepts

PolyhedronTraits 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1823

Types

Polyhedron traits with normals 3<Kernel>:: Kernel the Kernel model.
typedef Kernel::Point 3 Point 3;
typedef Kernel::Vector 3 Plane 3;

typedef Kernel::Construct opposite vector 3 Construct opposite plane 3;

Creation

Polyhedron traits with normals 3<Kernel> traits; default constructor, uses Kernel() as
local reference to the kernel.

Polyhedron traits with normals 3<Kernel> traits( Kernel kernel); stores kernel as local reference.

Operations

Construct opposite plane 3 traits.construct opposite plane 3 object()

forwarded to kernel.

See Also

CGAL::Polyhedron traits 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1824

Example

We use this traits class to instantiate a polyhedral surface with a normal vector and no plane equation for each
facet. We compute the normal vector assuming exact arithmetic (integers in this example) and convex planar
facets.
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#include <CGAL/Homogeneous.h>
#include <CGAL/Polyhedron_traits_with_normals_3.h>
#include <CGAL/Polyhedron_3.h>
#include <iostream>
#include <algorithm>

struct Normal_vector {
template <class Facet>
typename Facet::Plane_3 operator()( Facet& f) {

typename Facet::Halfedge_handle h = f.halfedge();
// Facet::Plane_3 is the normal vector type. We assume the
// CGAL Kernel here and use its global functions.
return CGAL::cross_product(

h->next()->vertex()->point() - h->vertex()->point(),
h->next()->next()->vertex()->point() -

h->next()->vertex()->point());
}

};

typedef CGAL::Homogeneous<int> Kernel;
typedef Kernel::Point_3 Point_3;
typedef Kernel::Vector_3 Vector_3;
typedef CGAL::Polyhedron_traits_with_normals_3<Kernel> Traits;
typedef CGAL::Polyhedron_3<Traits> Polyhedron;

int main() {
Point_3 p( 1, 0, 0);
Point_3 q( 0, 1, 0);
Point_3 r( 0, 0, 1);
Point_3 s( 0, 0, 0);
Polyhedron P;
P.make_tetrahedron( p, q, r, s);
std::transform( P.facets_begin(), P.facets_end(), P.planes_begin(),

Normal_vector());
CGAL::set_pretty_mode( std::cout);
std::copy( P.planes_begin(), P.planes_end(),

std::ostream_iterator<Vector_3>( std::cout, "\n"));
return 0;

}� �
File: examples/Polyhedron/polyhedron_prog_normals.cpp
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CGAL::operator<<

Definition

This operator writes the polyhedral surface P to the output stream out using the Object File Format, OFF, with
file extension .off, which is also understood by GeomView [Phi96]. The output is in ASCII format. From the
polyhedral surface, only the point coordinates and facets are written. Neither normal vectors nor color attributes
are used.

For OFF an ASCII and a binary format exist. The format can be selected with the CGAL modifiers for streams,
set ascii mode and set binary mode respectively. The modifier set pretty mode can be used to allow for (a few)
structuring comments in the output. Otherwise, the output would be free of comments. The default for writing
is ASCII without comments.

#include <CGAL/IO/Polyhedron iostream.h>

template <class PolyhedronTraits 3>
ostream& ostream& out << CGAL::Polyhedron 3<PolyhedronTraits 3> P

See Also

CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795
operator>> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1829
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CGAL::operator>>

Definition

This operator reads a polyhedral surface in Object File Format, OFF, with file extension .off, which is also
understood by Geomview [Phi96], from the input stream in and appends it to the polyhedral surface P. Only
the point coordinates and facets from the input stream are used to build the polyhedral surface. Neither normal
vectors nor color attributes are evaluated. If the stream in does not contain a permissible polyhedral surface the
ios::badbit of the input stream in is set and P remains unchanged.

For OFF an ASCII and a binary format exist. The stream detects the format automatically and can read both.

#include <CGAL/IO/Polyhedron iostream.h>

template <class PolyhedronTraits 3>
istream& istream& in >> CGAL::Polyhedron 3<PolyhedronTraits 3>& P

See Also

CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795
CGAL::Polyhedron incremental builder 3<HDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1814
operator<< . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1828

Implementation

This operator is implemented using the modifier mechanism for polyhedral surfaces and the
CGAL::Polyhedron incremental builder 3 class, which allows the construction in a single, efficient scan pass
of the input and handles also all the possible flexibility of the polyhedral surface.
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Chapter 26

Halfedge Data Structures
Lutz Kettner
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26.5 Alphabetical List of Reference Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1842

26.1 Introduction

A halfedge data structure (abbreviated as HalfedgeDS, or HDS for template parameters) is an edge-centered
data structure capable of maintaining incidence information of vertices, edges and faces, for example for planar
maps, polyhedra, or other orientable, two-dimensional surfaces embedded in arbitrary dimension. Each edge
is decomposed into two halfedges with opposite orientations. One incident face and one incident vertex are
stored in each halfedge. For each face and each vertex, one incident halfedge is stored. Reduced variants of the
halfedge data structure can omit some of these information, for example the halfedge pointers in faces or the
storage of faces at all.

The halfedge data structure is a combinatorial data structure, geometric interpretation is added by classes built
on top of the halfedge data structure. These classes might be more convenient to use than the halfedge data
structure directly, since the halfedge data structure is meant as an implementation layer. See for example the
CGAL::Polyhedron 3 class in Chapter 25.

The data structure provided here is also known as the FE-structure [Wei85], as halfedges [Män88, BFH95] or
as the doubly connected edge list (DCEL) [dBvKOS97], although the original reference for the DCEL [MP78]
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Figure 26.1: Responsibilities of the different layers in the halfedge data-structure design.

describes a different data structure. The halfedge data structure can also be seen as one of the variants of the
quad-edge data structure [GS85]. In general, the quad-edge data can represent non-orientable 2-manifolds, but
the variant here is restricted to orientable 2-manifolds only. An overview and comparison of these different data
structures together with a thorough description of the design implemented here can be found in [Ket99].

The design presented here is a revised and incompatible version of the previous design [Ket98] as used in CGAL
R2.2 and earlier releases. Files and identifier names are disjoint with the old design which allows for both
versions to co-exists. However, classes using a halfedge data structure can only use one design. For example
the polyhedral surface Polyhedron 3 uses by default the new design. See Chapter 25 for how to still select the
old implementation.

26.2 Software Design

Figure 26.1 illustrates the responsibilities of the three layers of the software design, with the
CGAL::Polyhedron 3 as an example for the top layer. The items provide the space for the information that
is actually stored, i.e., with member variables and access member functions in Vertex, Halfedge, and Face re-
spectively. Halfedges are required to provide a reference to the next halfedge and to the opposite halfedge.
Optionally they may provide a reference to the previous halfedge, to the incident vertex, and to the incident
face. Vertices and faces may be empty. Optionally they may provide a reference to the incident halfedge. The
options mentioned are supported in the halfedge data structure and the polyhedron, for example, Euler oper-
ations update the optional references if they are present. Furthermore, the item classes can be extended with
arbitrary attributes and member functions, which will be promoted by inheritance to the actual classes used for
the polyhedron.

Vertices, halfedges, and faces are passed as local types of the Items class to the halfedge data structure and
polyhedron. Implementations for vertices, halfedges and faces are provided that fulfill the mandatory part of
the requirements. They can be used as base classes for extensions by the user. Richer implementations are also
provided to serve as defaults; for polyhedra they provide all optional incidences, a three-dimensional point in
the vertex type and a plane equation in the face type.

The Halfedge data structure, concept HalfedgeDS, is responsible for the storage organization of the items.
Currently, implementations using internally a bidirectional list or a vector are provided. The HalfedgeDS defines
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the handles and iterators belonging to the items. These types are promoted to the declaration of the items
themselves and are used there to provide the references to the incident items. This promotion of types is done
with a template parameter Refs of the item types. The halfedge data structure provides member functions to
insert and delete items, to traverse all items, and it gives access to the items.

There are two different models for the HalfedgeDS concept available, HalfedgeDS list and HalfedgeDS vector,
and more might come. Therefore we have kept their interface small and factored out common functional-
ity into separate helper classes, HalfedgeDS decorator, HalfedgeDS const decorator, and HalfedgeDS items
decorator, which are not shown in Figure 26.1, but would be placed at the side of the HalfedgeDS since they
broaden that interface but do not hide it. These helper classes contain operations that are useful to implement
the operations in the next layer, for example, the polyhedron. They add, for example, the Euler operations and
partial operations from which further Euler operations can be built, such as inserting an edge into the ring of
edges at a vertex. Furthermore, the helper classes contain adaptive functionality. For example, if the prev()
member function is not provided for halfedges, the find prev() member function of a helper class searches in
the positive direction along the face for the previous halfedge. But if the prev() member function is provided,
the find prev() member function simply calls it. This distinction is resolved at compile time with a technique
called compile-time tags, similar to iterator tags in [SL95].

The Polyhedron 3 as an example for the third layer adds the geometric interpretation, provides an easy-to-use
interface of high-level functions, and unifies the access to the flexibility provided underneath. It renames face to
facet, which is more common for three-dimensional surfaces. The interface is designed to protect the integrity
of the internal representation, the handles stored in the items can no longer directly be written by the user. The
polyhedron adds the convenient and efficient circulators, see Circulator, for accessing the circular sequence of
edges around a vertex or around a facet. To achieve this, the Polyhedron 3 derives new vertices, halfedges and
facets from those provided in Items. These new items are those actually used in the HalfedgeDS, which gives
us the coherent type structure in this design, especially if compared to our previous design.

26.3 Example Programs

26.3.1 The Default Halfedge Data Structure

The following example program uses the default halfedge data structure and the decorator class. The default
halfedge data structure uses a list-based representation. All incidences of the items and a point type for vertices
are defined. The trivial traits class provides the type used for the point. The program creates a loop, consisting
of two halfedges, one vertex and two faces, and checks its validity.

face1 face2

vertex

halfedgeloop:

� �
#include <CGAL/HalfedgeDS_default.h>
#include <CGAL/HalfedgeDS_decorator.h>

struct Traits { typedef int Point_2; };
typedef CGAL::HalfedgeDS_default<Traits> HDS;
typedef CGAL::HalfedgeDS_decorator<HDS> Decorator;
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int main() {
HDS hds;
Decorator decorator(hds);
decorator.create_loop();
CGAL_assertion( decorator.is_valid());
return 0;

}� �
File: examples/HalfedgeDS/hds_prog_default.cpp

26.3.2 A Minimal Halfedge Data Structure

The following program defines a minimal halfedge data structure using the minimal items class
CGAL::HalfedgeDS min items and a list-based halfedge data structure. The result is a data structure main-
taining only halfedges with next and opposite pointers. No vertices or faces are stored. The data structure
represents an undirected graph.� �
#include <CGAL/HalfedgeDS_min_items.h>
#include <CGAL/HalfedgeDS_default.h>
#include <CGAL/HalfedgeDS_decorator.h>

// no traits needed, argument can be arbitrary dummy.
typedef CGAL::HalfedgeDS_default<int, CGAL::HalfedgeDS_min_items> HDS;
typedef CGAL::HalfedgeDS_decorator<HDS> Decorator;

int main() {
HDS hds;
Decorator decorator(hds);
decorator.create_loop();
CGAL_assertion( decorator.is_valid());
return 0;

}� �
File: examples/HalfedgeDS/hds_prog_graph.cpp

26.3.3 The Default with a Vector Instead of a List

The default halfedge data structure uses a list internally and the maximal base classes. We change the list to a
vector representation here. Again, a trivial traits class provides the type used for the point. Note that for the
vector storage the size of the halfedge data structure should be reserved beforehand, either with the constructor
as shown in the example or with the reserve() member function. One can later resize the data structure with
further calls to the reserve() member function, but only if the data structure is in a consistent, i.e., valid, state.� �
#include <CGAL/HalfedgeDS_items_2.h>
#include <CGAL/HalfedgeDS_vector.h>
#include <CGAL/HalfedgeDS_decorator.h>

struct Traits { typedef int Point_2; };
typedef CGAL::HalfedgeDS_vector< Traits, CGAL::HalfedgeDS_items_2> HDS;
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typedef CGAL::HalfedgeDS_decorator<HDS> Decorator;

int main() {
HDS hds(1,2,2);
Decorator decorator(hds);
decorator.create_loop();
CGAL_assertion( decorator.is_valid());
return 0;

}� �
File: examples/HalfedgeDS/hds_prog_vector.cpp

26.3.4 Example Adding Color to Faces

This example re-uses the base class available for faces and adds a member variable color.� �
#include <CGAL/HalfedgeDS_items_2.h>
#include <CGAL/HalfedgeDS_default.h>
#include <CGAL/IO/Color.h>

// A face type with a color member variable.
template <class Refs>
struct My_face : public CGAL::HalfedgeDS_face_base<Refs> {

CGAL::Color color;
My_face() {}
My_face( CGAL::Color c) : color(c) {}

};

// An items type using my face.
struct My_items : public CGAL::HalfedgeDS_items_2 {

template <class Refs, class Traits>
struct Face_wrapper {

typedef My_face<Refs> Face;
};

};

struct My_traits { // arbitrary point type, not used here.
typedef int Point_2;

};

typedef CGAL::HalfedgeDS_default<My_traits, My_items> HDS;
typedef HDS::Face Face;
typedef HDS::Face_handle Face_handle;

int main() {
HDS hds;
Face_handle f = hds.faces_push_back( Face( CGAL::RED));
f->color = CGAL::BLUE;
CGAL_assertion( f->color == CGAL::BLUE);
return 0;

}� �
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File: examples/HalfedgeDS/hds_prog_color.cpp

26.3.5 Example Defining a More Compact Halfedge

advanced

The halfedge data structure as presented here is slightly less space efficient as, for example, the winged-edge
data structure [Bau75], the DCEL [MP78] or variants of the quad-edge data structure [GS85]. On the other
hand, it does not require any search operations during traversals. A comparison can be found in [Ket99].

The following example trades traversal time for a compact storage representation using traditional C techniques
(i.e., type casting and the assumption that pointers, especially those from malloc or new, point to even ad-
dresses). The idea goes as follows: The halfedge data structure allocates halfedges pairwise. Concerning the
vector-based data structure this implies that the absolute value of the difference between a halfedge and its
opposite halfedge is always one with respect to C pointer arithmetic. We can replace the opposite pointer by
a single bit encoding the sign of this difference. We will store this bit as the least significant bit in the next
halfedge handle. Furthermore, we do not implement a pointer to the previous halfedge. What remains are three
pointers per halfedge.

We use the static member function halfedge handle() to convert from pointers to halfedge handles.
The same solution can be applied to the list-based halfedge data structure CGAL::HalfedgeDS list, see
examples/HalfedgeDS/hds prog compact2.cpp. Here is the example for the vector-based data structure.� �
#include <CGAL/HalfedgeDS_items_2.h>
#include <CGAL/HalfedgeDS_vector.h>
#include <CGAL/HalfedgeDS_decorator.h>
#include <cstddef>

// Define a new halfedge class. We assume that the Halfedge_handle can
// be created from a pointer (e.g. the HalfedgeDS is based here on the
// In_place_list or a std::vector with such property) and that halfedges
// are allocated in pairs. We encode the opposite pointer in a single

bit,
// which is stored in the lower bit of the next-pointer. We use the
// static member function HDS::halfedge_handle to translate pointer to
// handles.
template <class Refs>
class My_halfedge {
public:

typedef Refs HDS;
typedef My_halfedge<Refs> Base_base;
typedef My_halfedge<Refs> Base;
typedef My_halfedge<Refs> Self;
typedef CGAL::Tag_false Supports_halfedge_prev;
typedef CGAL::Tag_true
Supports_halfedge_vertex;
typedef CGAL::Tag_true Supports_halfedge_face;
typedef typename Refs::Vertex_handle Vertex_handle;
typedef typename Refs::Vertex_const_handle Vertex_const_handle;
typedef typename Refs::Halfedge Halfedge;
typedef typename Refs::Halfedge_handle Halfedge_handle;
typedef typename Refs::Halfedge_const_handle Halfedge_const_handle;
typedef typename Refs::Face_handle Face_handle;
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typedef typename Refs::Face_const_handle Face_const_handle;
private:

std::ptrdiff_t nxt;
public:

My_halfedge() : nxt(0), f( Face_handle()) {}

Halfedge_handle opposite() {
// Halfedge could be different from My_halfedge (e.g. pointer for
// linked list). Get proper handle from ’this’ pointer first, do
// pointer arithmetic, then convert pointer back to handle again.
Halfedge_handle h = HDS::halfedge_handle(this); // proper handle
if ( nxt & 1)

return HDS::halfedge_handle( &* h + 1);
return HDS::halfedge_handle( &* h - 1);

}
Halfedge_const_handle opposite() const { // same as above

Halfedge_const_handle h = HDS::halfedge_handle(this); // proper
handle

if ( nxt & 1)
return HDS::halfedge_handle( &* h + 1);

return HDS::halfedge_handle( &* h - 1);
}
Halfedge_handle next() {

return HDS::halfedge_handle((Halfedge*)(nxt & (˜
std::ptrdiff_t(1))));
}
Halfedge_const_handle next() const {

return HDS::halfedge_handle((const Halfedge*)
(nxt & (˜ std::ptrdiff_t(1))));

}
void set_opposite( Halfedge_handle h) {

CGAL_precondition(( &* h - 1 == &* HDS::halfedge_handle(this)) ||
( &* h + 1 == &* HDS::halfedge_handle(this)));

if ( &* h - 1 == &* HDS::halfedge_handle(this))
nxt |= 1;

else
nxt &= (˜ std::ptrdiff_t(1));

}
void set_next( Halfedge_handle h) {

CGAL_precondition( ((std::ptrdiff_t)(&*h) & 1) == 0);
nxt = ((std::ptrdiff_t)(&*h)) | (nxt & 1);

}
private: // Support for the Vertex_handle.

Vertex_handle v;
public:

// the incident vertex.
Vertex_handle vertex() { return v; }
Vertex_const_handle vertex() const { return v; }
void set_vertex( Vertex_handle w) { v = w; }

private:
Face_handle f;

public:
Face_handle face() { return f; }
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Face_const_handle face() const { return f; }
void set_face( Face_handle g) { f = g; }
bool is_border() const { return f == Face_handle();
}

};

// Replace halfedge in the default items type.
struct My_items : public CGAL::HalfedgeDS_items_2 {

template <class Refs, class Traits>
struct Halfedge_wrapper {

typedef My_halfedge<Refs> Halfedge;
};

};

struct Traits { typedef int Point_2; };
typedef CGAL::HalfedgeDS_vector<Traits, My_items> HDS;
typedef CGAL::HalfedgeDS_decorator<HDS> Decorator;

int main() {
HDS hds(1,2,2);
Decorator decorator(hds);
decorator.create_loop();
CGAL_assertion( decorator.is_valid());
return 0;

}� �
File: examples/HalfedgeDS/hds_prog_compact.cpp

advanced

26.3.6 Example Using the Halfedge Iterator

Two edges are created in the default halfedge data structure. The halfedge iterator is used to count the halfedges.� �
#include <CGAL/HalfedgeDS_default.h>
#include <CGAL/HalfedgeDS_decorator.h>

struct Traits { typedef int Point_2; };
typedef CGAL::HalfedgeDS_default<Traits> HDS;
typedef CGAL::HalfedgeDS_decorator<HDS> Decorator;
typedef HDS::Halfedge_iterator Iterator;

int main() {
HDS hds;
Decorator decorator(hds);
decorator.create_loop();
decorator.create_segment();
CGAL_assertion( decorator.is_valid());
int n = 0;
for ( Iterator i = hds.halfedges_begin(); i != hds.halfedges_end();
++i )

++n;
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CGAL_assertion( n == 4); // == 2 edges
return 0;

}� �
File: examples/HalfedgeDS/hds_prog_halfedge_iterator.cpp

26.3.7 Example for an Adapter to Build an Edge Iterator

Three edges are created in the default halfedge data structure. The adapter N step adaptor is used to declare
the edge iterator used in counting the edges.� �
#include <CGAL/HalfedgeDS_default.h>
#include <CGAL/HalfedgeDS_decorator.h>
#include <CGAL/N_step_adaptor.h>

struct Traits { typedef int Point_2; };
typedef CGAL::HalfedgeDS_default<Traits> HDS;
typedef CGAL::HalfedgeDS_decorator<HDS> Decorator;
typedef HDS::Halfedge_iterator Halfedge_iterator;
typedef CGAL::N_step_adaptor< Halfedge_iterator, 2> Iterator;

int main() {
HDS hds;
Decorator decorator(hds);
decorator.create_loop();
decorator.create_segment();
CGAL_assertion( decorator.is_valid());
int n = 0;
for ( Iterator e = hds.halfedges_begin(); e != hds.halfedges_end();
++e)

++n;
CGAL_assertion( n == 2); // == 2 edges
return 0;

}� �
File: examples/HalfedgeDS/hds_prog_edge_iterator.cpp
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Halfedge Data Structure
Reference Manual
Lutz Kettner

A halfedge data structure (abbreviated as HalfedgeDS, or HDS for template parameters) is an edge-centered
data structure capable of maintaining incidence information of vertices, edges and faces, for example for planar
maps or polyhedral surfaces. It is a combinatorial data structure, geometric interpretation is added by classes
built on top of the halfedge data structure. These classes might be more convenient to use than the halfedge data
structure directly, since the halfedge data structure is meant as an implementation layer. See for example the
CGAL::Polyhedron 3 class in Chapter 25.6.2.

The data structure provided here is known as the FE-structure [Wei85], as halfedges [Män88, BFH95] or as
the doubly connected edge list (DCEL) [dBvKOS97], although the original reference for the DCEL [MP78]
describes a related but different data structure. The halfedge data structure can also be seen as one of the
variants of the quad-edge data structure [GS85]. In general, the quad-edge data can represent non-orientable
2-manifolds, but the variant here is restricted to orientable 2-manifolds only. An overview and comparison of
these different data structures together with a thorough description of the design implemented here can be found
in [Ket99].
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HalfedgeDS<Traits,Items,Alloc>

Definition

The concept of a halfedge data structure (abbreviated as HalfedgeDS, or HDS for template parameters) defines
an edge-centered data structure capable of maintaining incidence information of vertices, edges, and faces, for
example for planar maps or polyhedral surfaces. It is a combinatorial data structure, geometric interpretation is
added by classes built on top of the halfedge data structure.

The data structure defined here is known as the FE-structure [Wei85], as halfedges [Män88, BFH95] or as
the doubly connected edge list (DCEL) [dBvKOS97], although the original reference for the DCEL [MP78]
describes a different data structure. The halfedge data structure can also be seen as one of the variants of the
quad-edge data structure [GS85]. In general, the quad-edge data can represent non-orientable 2-manifolds, but
the variant here is restricted to orientable 2-manifolds only. An overview and comparison of these different data
structures together with a thorough description of the design implemented here can be found in [Ket99].

Each edge is represented by two halfedges with opposite orientations. Each halfedge can store a reference to
an incident face and an incident vertex. For each face and each vertex an incident halfedge is stored. Reduced
variants of the halfedge data structure can omit some of these incidences, for example the reference to halfedges
in vertices or the storage of vertices at all. See Figure 26.2 for the incidences, the mandatory and optional
member functions possible for vertices, halfedges, and faces.

incident vertex

ne
xt

 ha
lfe

dg
e

opposite halfedge

halfedge previous halfedge
Vertex

Figure 26.2: The three classes Vertex, Halfedge, and Face of the halfedge data structure. Member functions
with shaded background are mandatory. The others are optionally supported.

A HalfedgeDS<Traits,Items,Alloc> organizes the internal storage of its items. Examples are a list-based or a
vector-based storage. The HalfedgeDS<Traits,Items,Alloc> exhibits most of the characteristics of the container
class used internally, for example the iterator category. A vector resizes automatically when a new item exceeds
the reserved space. Since resizing is an expensive operation for a HalfedgeDS<Traits,Items,Alloc> in general
and only possible in a well defined state of the data structure (no dangling handles), it must be called explicitly in
advance for a HalfedgeDS<Traits,Items,Alloc> before inserting new items beyond the current capacity. Classes
built on top of a HalfedgeDS<Traits,Items,Alloc> are advised to call the reserve() member function before
creating new items.

Parameters

A HalfedgeDS<Traits,Items,Alloc> is a class template and will be used as argument for other class templates,
for example CGAL::Polyhedron 3. The template parameters to instantiate the HalfedgeDS<Traits,Items,Alloc>
will be provided by this other class template. Therefore, the three template parameters and their meaning are
mandatory. We distinguish between the template HalfedgeDS<Traits,Items,Alloc> and an instantiation of it.
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Traits is a traits class that will be passed to the item types in Items. It will not be used in HalfedgeDS<
Traits,Items,Alloc> itself. Items is a model of the HalfedgeDSItems concept. Alloc is an allocator that fulfills
all requirements of allocators for STL container classes. The rebind mechanism from Alloc will be used to
create appropriate allocators internally. A default argument is mandatory for Alloc, for example, the macro
CGAL ALLOCATOR(int) from the <CGAL/memory.h> header file can be used as default allocator.

Types

HalfedgeDS<Traits,Items,Alloc>:: Traits traits class.
HalfedgeDS<Traits,Items,Alloc>:: Items model of HalfedgeDSItems concept.

HalfedgeDS<Traits,Items,Alloc>:: size type size type.
HalfedgeDS<Traits,Items,Alloc>:: difference type difference type.
HalfedgeDS<Traits,Items,Alloc>:: iterator category iterator category for all iterators.
HalfedgeDS<Traits,Items,Alloc>:: allocator type allocator type Alloc.

HalfedgeDS<Traits,Items,Alloc>:: Vertex model of HalfedgeDSVertex concept.
HalfedgeDS<Traits,Items,Alloc>:: Halfedge model of HalfedgeDSHalfedge concept.
HalfedgeDS<Traits,Items,Alloc>:: Face model of HalfedgeDSFace concept.

The following handles and iterators have appropriate non-mutable counterparts, i.e., const handle and const
iterator. The mutable types are assignable to their non-mutable counterparts. The iterators are assignable to the
respective handle types. Wherever the handles appear in function parameter lists, the corresponding iterators
can be used as well. Note: The handle types must have a default constructor that creates a unique and always
the same handle value. It will be used in analogy to NULL for pointers.

HalfedgeDS<Traits,Items,Alloc>:: Vertex handle handle to vertex.
HalfedgeDS<Traits,Items,Alloc>:: Halfedge handle handle to halfedge.
HalfedgeDS<Traits,Items,Alloc>:: Face handle handle to face.

HalfedgeDS<Traits,Items,Alloc>:: Vertex iterator iterator over all vertices.
HalfedgeDS<Traits,Items,Alloc>:: Halfedge iterator iterator over all halfedges.
HalfedgeDS<Traits,Items,Alloc>:: Face iterator iterator over all faces.

advanced

Types for Tagging Optional Features

The following types are equal to either CGAL::Tag true or CGAL::Tag false, depending on whether the named
feature is supported or not.
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HalfedgeDS<Traits,Items,Alloc>:: Supports vertex halfedge Vertex::halfedge().
HalfedgeDS<Traits,Items,Alloc>:: Supports halfedge prev Halfedge::prev().
HalfedgeDS<Traits,Items,Alloc>:: Supports halfedge vertex Halfedge::vertex().
HalfedgeDS<Traits,Items,Alloc>:: Supports halfedge face Halfedge::face().
HalfedgeDS<Traits,Items,Alloc>:: Supports face halfedge Face::halfedge().
HalfedgeDS<Traits,Items,Alloc>:: Supports removal removal of individual elements.

The following dependencies among these options must be regarded:

Vertices are supported⇐⇒ Supports halfedge vertex ≡ CGAL::Tag true.
Faces are supported⇐⇒ Supports halfedge face ≡ CGAL::Tag true.
Supports vertex halfedge ≡ CGAL::Tag true =⇒ Supports halfedge vertex ≡ CGAL::Tag true.
Supports vertex point ≡ CGAL::Tag true =⇒ Supports halfedge vertex ≡ CGAL::Tag true.
Supports face halfedge ≡ CGAL::Tag true =⇒ Supports halfedge face ≡ CGAL::Tag true.

advanced

advanced

Static Member Functions

When writing an items type, such as a user defined vertex, certain functions need to create a handle but know-
ing only a pointer, for example, the this-pointer. The following static member functions of HalfedgeDS<
Traits,Items,Alloc> create such a corresponding handle for an item type from a pointer. This conversion en-
capsulates possible adjustments for hidden data members in the true item type, such as linked-list pointers.
Note that the user provides item types with the Items template argument, which may differ from the Vertex,
Halfedge, and Face types defined in HalfedgeDS<Traits,Items,Alloc>. If they differ, they are derived from the
user provided item types. We denote the user item types with Vertex base, Halfedge base, and Face base in
the following. The fully qualified name for Vertex base would be for example – assuming that the type Self
refers to the instantiated HalfedgeDS –

typedef typename Items::template Vertex wrapper<Self,Traits> Vertex wrapper;
typedef typename Vertex wrapper::Vertex Vertex base;

Implementing these functions relies on the fundamental assumption that an iterator (or handle) of the internally
used container class can be constructed from a pointer of a contained item only. This is true and controlled
by us for CGAL::In place list. It is true for the std::vector of major STL distributions, but not necessarily
guaranteed. We might switch to an internal implementation if need arises.

static Vertex handle HalfedgeDS::vertex handle( Vertex base* v)
static Vertex const handle HalfedgeDS::vertex handle( const Vertex base* v)

static Halfedge handle HalfedgeDS::halfedge handle( Halfedge base* h)
static Halfedge const handle HalfedgeDS::halfedge handle( const Halfedge base* h)

static Face handle HalfedgeDS::face handle( Face base* f)
static Face const handle HalfedgeDS::face handle( const Face items* f)

advanced
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Creation

HalfedgeDS<Traits,Items,Alloc> hds; empty halfedge data structure.

HalfedgeDS<Traits,Items,Alloc> hds( size type v, size type h, size type f );

storage reserved for v vertices, h halfedges, and f faces.

HalfedgeDS<Traits,Items,Alloc> hds( hds2); copy constructor.
Precondition: hds2 contains no dangling handles.

HalfedgeDS<Traits,Items,Alloc>& hds = hds2 assignment operator.
Precondition: hds2 contains no dangling handles.

void hds.reserve( size type v, size type h, size type f)

reserves storage for v vertices, h halfedges, and f faces. If
all capacities are already greater or equal than the requested
sizes nothing happens. Otherwise, hds will be resized and
all handles, iterators and circulators invalidate.
Precondition: If resizing is necessary hds contains no dan-
gling handles.

Access Member Functions

Size hds.size of vertices() const number of vertices.
Size hds.size of halfedges() const

number of halfedges.

Size hds.size of faces() const number of faces.
Size hds.capacity of vertices() const

space reserved for vertices.

Size hds.capacity of halfedges() const

space reserved for halfedges.

Size hds.capacity of faces() const

space reserved for faces.

size t hds.bytes() const bytes used for hds.
size t hds.bytes reserved() const bytes reserved for hds.

allocator type hds.get allocator() const allocator object.

The following member functions return the non-mutable iterator if hds is declared const.

Vertex iterator hds.vertices begin() iterator over all vertices.
Vertex iterator hds.vertices end()
Halfedge iterator hds.halfedges begin() iterator over all halfedges
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Halfedge iterator hds.halfedges end()
Face iterator hds.faces begin() iterator over all faces.
Face iterator hds.faces end()

Insertion

Note that the vertex-related and the face-related member functions may not be provided for a HalfedgeDS<
Traits,Items,Alloc> that does not support vertices or faces respectively.

Vertex handle hds.vertices push back( const Vertex& v)

appends a copy of v to hds. Returns a handle of the new
vertex.

Halfedge handle hds.edges push back( const Halfedge& h, const Halfedge& g)

appends a copy of h and a copy of g to hds and makes
them opposite to each other. Returns a handle of the copy
of h.

Halfedge handle hds.edges push back( const Halfedge& h)

appends a copy of h and a copy of h−> opposite() to hds
and makes them opposite to each other. Returns a handle
of the copy of h.
Precondition: h->opposite() denotes a halfedge.

Face handle hds.faces push back( const Face& f)

appends a copy of f to hds. Returns a handle of the new
face.

Removal

Erasing single elements is optional and indicated with the type tag Supports removal. The pop back and
the clear member functions are mandatory. If vertices or faces are not supported for a HalfedgeDS<
Traits,Items,Alloc> the pop back and the clear member functions must be provided as null operations.

void hds.vertices pop front() removes the first vertex if vertices are supported and
Supports removal ≡ CGAL::Tag true.

void hds.vertices pop back() removes the last vertex.

void hds.vertices erase( Vertex handle v) removes the vertex v if vertices are supported and
Supports removal ≡ CGAL::Tag true.

void hds.vertices erase( Vertex handle first, Vertex handle last)

removes the range of vertices [first, last) if vertices are
supported and Supports removal ≡ CGAL::Tag true.
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void hds.edges pop front() removes the first two halfedges if Supports removal ≡
CGAL::Tag true.

void hds.edges pop back() removes the last two halfedges.

void hds.edges erase( Halfedge handle h) removes the pair of halfedges h and h->opposite() if
Supports removal ≡ CGAL::Tag true.

void hds.edges erase( Halfedge handle first, Halfedge handle last)

removes the range of edges [first, last) if Supports
removal ≡ CGAL::Tag true.

void hds.faces pop front() removes the first face if faces are supported and Supports
removal ≡ CGAL::Tag true.

void hds.faces pop back() removes the last face.

void hds.faces erase( Face handle f) removes the face f if faces are supported and Supports
removal ≡ CGAL::Tag true.

void hds.faces erase( Face handle first, Face handle last)

removes the range of faces [first, last) if faces are sup-
ported and Supports removal ≡ CGAL::Tag true.

void hds.vertices clear() removes all vertices.
void hds.edges clear() removes all halfedges.
void hds.faces clear() removes all faces.

void hds.clear() removes all elements.

advanced

Operations with Border Halfedges

The following notion of border halfedges is particular useful where the halfedge data structure is used to model
surfaces with boundary, i.e., surfaces with missing faces or open regions. Halfedges incident to an open region
are called border halfedges. A halfedge is a border edge if the halfedge itself or its opposite halfedge is a border
halfedge. The only requirement to work with border halfedges is that the Halfedge class provides a member
function is border() returning a bool. Usually, the halfedge data structure supports faces and the value of the
default constructor of the face handle will indicate a border halfedge, but this may not be the only possibility.
The is border() predicate divides the edges into two classes, the border edges and the non-border edges. The
following normalization reorganizes the sequential storage of the edges such that the non-border edges precede
the border edges, and that for each border edge the latter of the two halfedges is a border halfedge (the first
one might be a border halfedge too). The normalization stores the number of border halfedges, as well as
the halfedge iterator where the border edges start at, within the halfedge data structure. These values will be
invalid after further halfedge insertions or removals and changes in the border status of a halfedge. There is no
automatic update required.
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void hds.normalize border()

sorts halfedges such that the non-border edges precede the border edges.
For each border edge that is incident to a face, the halfedge iterator will
reference the halfedge incident to the face right before the halfedge incident
to the open region.

Size hds.size of border halfedges() const

number of border halfedges. An edge with no incident face counts as two
border halfedges.
Precondition: normalize border() has been called and no halfedge inser-
tion or removal and no change in border status of the halfedges have oc-
curred since then.

Size hds.size of border edges() const

number of border edges. If size of border edges() is equal to size of
border halfedges() all border edges are incident to a face on one side and
to an open region on the other side.
Precondition: normalize border() has been called and no halfedge inser-
tion or removal and no change in border status of the halfedges have oc-
curred since then.

Halfedge iterator hds.border halfedges begin()

halfedge iterator starting with the border edges. The range [halfedges
begin(), border halfedges begin()) denotes all non-border edges. The
range [border halfedges begin(), halfedges end()) denotes all border
edges.
Precondition: normalize border() has been called and no halfedge inser-
tion or removal and no change in border status of the halfedges have oc-
curred since then.

advanced

Has Models
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HalfedgeDSFace

Definition

The concept HalfedgeDSFace defines the requirements for the local Face type in the HalfedgeDS concept. It is
also required in the Face wrapper<Refs,Traits> member class template of an items class, see the HalfedgeD-
SItems concept.

A face optionally stores a reference to an incident halfedge that points to the face. A type tag indicates whether
the related member functions are supported. Figure 26.3 depicts the relationship between a halfedge and its
incident halfedges, vertices, and faces.

For the protection of the integrity of the data structure classes such as CGAL::Polyhedron 3 are allowed to
redefine the modifying member functions to be private. In order to make them accessible for the halfedge data
structure they must be derived from a base class Base where the modifying member functions are still public.
(The protection can be bypassed by the user, but not by accident.)

Types

HalfedgeDSFace:: HalfedgeDS instantiated HalfedgeDS ( ≡ Refs).
HalfedgeDSFace:: Base base class that allows modifications.
HalfedgeDSFace:: Vertex model of HalfedgeDSVertex.
HalfedgeDSFace:: Halfedge model of HalfedgeDSHalfedge.
HalfedgeDSFace:: Vertex handle handle to vertex.
HalfedgeDSFace:: Halfedge handle handle to halfedge.
HalfedgeDSFace:: Face handle handle to face.
HalfedgeDSFace:: Vertex const handle
HalfedgeDSFace:: Halfedge const handle
HalfedgeDSFace:: Face const handle
HalfedgeDSFace:: Supports face halfedge CGAL::Tag true or CGAL::Tag false.

Creation

HalfedgeDSFace f ; default constructor.

Operations available if Supports face halfedge ≡ CGAL::Tag true

Halfedge handle f .halfedge()
Halfedge const handle f .halfedge() const incident halfedge that points to f .
void f .set halfedge( Halfedge handle h) sets incident halfedge to h.

Has Models

CGAL::HalfedgeDS face base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1868
CGAL::HalfedgeDS face min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1870
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HalfedgeDSItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1854
HalfedgeDSVertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1856
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HalfedgeDSHalfedge

Definition

The concept HalfedgeDSHalfedge defines the requirements for the local Halfedge type in the HalfedgeDS con-
cept. It is also required in the Halfedge wrapper<Refs,Traits> member class template of an items class, see the
HalfedgeDSItems concept.

A halfedge is an oriented edge between two vertices. It is always paired with a halfedge pointing in the opposite
direction. The opposite() member function returns this halfedge of opposite orientation. The next() member
function points to the successor halfedge along the face – or if the halfedge is a border halfedge – along the
open region. A halfedge optionally stores a reference to the previous halfedge along the face, a reference to an
incident vertex, and a reference to an incident face. Type tags indicate whether the related member functions
are supported. Figure 26.3 depicts the relationship between a halfedge and its incident halfedges, vertices, and
faces.

incident vertex

ne
xt

 ha
lfe

dg
e

opposite halfedge

halfedge previous halfedge

Vertex

Figure 26.3: The three classes Vertex, Halfedge, and Face of the halfedge data structure. Member functions
with shaded background are mandatory. The others are optionally supported.

For the protection of the integrity of the data structure classes such as CGAL::Polyhedron 3 are allowed to
redefine the modifying member functions to be private. In order to make them accessible for the halfedge data
structure they must be derived from a base class Base where the modifying member functions are still public.
Even more protection is provided for the set opposite() member function. The base class Base base provides
access to it. (The protection could be bypassed also by an user, but not by accident.)

Types

HalfedgeDSHalfedge:: HalfedgeDS instantiated HalfedgeDS ( ≡ Refs).
HalfedgeDSHalfedge:: Base base class that allows modifications.
HalfedgeDSHalfedge:: Base base base class to access set opposite().
HalfedgeDSHalfedge:: Vertex model of HalfedgeDSVertex.
HalfedgeDSHalfedge:: Face model of HalfedgeDSFace.

HalfedgeDSHalfedge:: Vertex handle handle to vertex.
HalfedgeDSHalfedge:: Halfedge handle handle to halfedge.
HalfedgeDSHalfedge:: Face handle handle to face.
HalfedgeDSHalfedge:: Vertex const handle
HalfedgeDSHalfedge:: Halfedge const handle
HalfedgeDSHalfedge:: Face const handle

HalfedgeDSHalfedge:: Supports halfedge prev CGAL::Tag true or CGAL::Tag false.
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HalfedgeDSHalfedge:: Supports halfedge vertex ˜
HalfedgeDSHalfedge:: Supports halfedge face ˜

Creation

HalfedgeDSHalfedge h; default constructor.

Operations

Halfedge handle h.opposite()
Halfedge const handle h.opposite() const the opposite halfedge.
void h.set opposite( Halfedge handle h) sets opposite halfedge to h.

Halfedge handle h.next()
Halfedge const handle h.next() const the next halfedge around the face.
void h.set next( Halfedge handle h) sets next halfedge to h.

bool h.is border() const is true if h is a border halfedge.

Operations available if Supports halfedge prev ≡ CGAL::Tag true

Halfedge handle h.prev()
Halfedge const handle h.prev() const the previous halfedge around the face.
void h.set prev( Halfedge handle h) sets prev halfedge to h.

Operations available if Supports halfedge vertex ≡ CGAL::Tag true

Vertex handle h.vertex()
Vertex const handle h.vertex() const the incident vertex of h.
void h.set vertex( Vertex handle v) sets incident vertex to v.

Operations available if Supports halfedge face ≡ CGAL::Tag true

Face handle h.face()
Face const handle h.face() const the incident face of h. If h is a border

halfedge the result is default construction of
the handle.

void h.set face( Face handle f) sets incident face to f .

Has Models

CGAL::HalfedgeDS halfedge base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1871
CGAL::HalfedgeDS halfedge min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1872

See Also

HalfedgeDS<Traits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1843
HalfedgeDSItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1854
HalfedgeDSVertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1856
HalfedgeDSFace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1850
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HalfedgeDSItems

Definition

The concept HalfedgeDSItems wraps the three item types – vertex, halfedge, and face – for a halfedge data struc-
ture. A HalfedgeDSItems contains three member class templates named Vertex wrapper, Halfedge wrapper,
and Face wrapper, each with two template parameters, Refs and Traits. Refs requires an instantiated halfedge
data structure HalfedgeDS as argument, Traits is a geometric traits class supplied by the class that uses the
halfedge data structure as internal representation. Traits is not used by the halfedge data structure itself. These
three member class templates provide a local type named Vertex, Halfedge, and Face respectively. The require-
ments on these types are described on page 1856, page 1852, and page 1850 respectively.

Types

HalfedgeDSItems:: Vertex wrapper<Refs,Traits>::Vertex model of HalfedgeDSVertex.
HalfedgeDSItems:: Halfedge wrapper<Refs,Traits>::Halfedge model of HalfedgeDSHalfedge.
HalfedgeDSItems:: Face wrapper<Refs,Traits>::Face model of HalfedgeDSFace.

Has Models

CGAL::HalfedgeDS min items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1879
CGAL::HalfedgeDS items 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1873
CGAL::Polyhedron items 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1820

See Also

HalfedgeDS<Traits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1843
HalfedgeDSVertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1856
HalfedgeDSHalfedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1852
HalfedgeDSFace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1850
PolyhedronItems 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1818
CGAL::HalfedgeDS vertex base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1883
CGAL::HalfedgeDS halfedge base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1871
CGAL::HalfedgeDS face base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1868

Example

The following example shows the canonical implementation of the CGAL::HalfedgeDS min items class. It uses
the base classes for the item types that are provided in the library.� �
struct HalfedgeDS_min_items {

template < class Refs, class Traits>
struct Vertex_wrapper {

typedef CGAL::HalfedgeDS_vertex_min_base< Refs> Vertex;
};
template < class Refs, class Traits>
struct Halfedge_wrapper {

typedef CGAL::HalfedgeDS_halfedge_min_base< Refs> Halfedge;
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};
template < class Refs, class Traits>
struct Face_wrapper {

typedef CGAL::HalfedgeDS_face_min_base< Refs> Face;
};

};� �
See page 1873 for an example implementation of the CGAL::HalfedgeDS items 2 class.
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HalfedgeDSVertex

Definition

The concept HalfedgeDSVertex defines the requirements for the local Vertex type in the HalfedgeDS concept. It
is also required in the Vertex wrapper<Refs,Traits> member class template of an items class, see the HalfedgeD-
SItems concept.

A vertex optionally stores a reference to an incident halfedge that points to the vertex. A type tag indicates
whether the related member functions are supported. Figure 26.3 depicts the relationship between a halfedge
and its incident halfedges, vertices, and faces.

For the protection of the integrity of the data structure classes such as CGAL::Polyhedron 3 are allowed to
redefine the modifying member functions to be private. In order to make them accessible for the halfedge data
structure they must be derived from a base class Base where the modifying member functions are still public.
(The protection could be bypassed by an user, but not by accident.)

Types

HalfedgeDSVertex:: HalfedgeDS instantiated HalfedgeDS ( ≡ Refs).
HalfedgeDSVertex:: Base base class that allows modifications.
HalfedgeDSVertex:: Halfedge model of HalfedgeDSHalfedge.
HalfedgeDSVertex:: Face model of HalfedgeDSFace.
HalfedgeDSVertex:: Vertex handle handle to vertex.
HalfedgeDSVertex:: Halfedge handle handle to halfedge.
HalfedgeDSVertex:: Face handle handle to face.
HalfedgeDSVertex:: Vertex const handle
HalfedgeDSVertex:: Halfedge const handle
HalfedgeDSVertex:: Face const handle
HalfedgeDSVertex:: Supports vertex halfedge CGAL::Tag true or CGAL::Tag false.

Creation

HalfedgeDSVertex v; default constructor.

Operations available if Supports vertex halfedge ≡ CGAL::Tag true

Halfedge handle v.halfedge()
Halfedge const handle v.halfedge() const incident halfedge that points to v.
void v.set halfedge( Halfedge handle h) sets incident halfedge to h.

Has Models

CGAL::HalfedgeDS vertex base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1883
CGAL::HalfedgeDS vertex min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1885
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See Also

HalfedgeDS<Traits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1843
HalfedgeDSItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1854
HalfedgeDSHalfedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1852
HalfedgeDSFace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1850
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CGAL::HalfedgeDS const decorator<HDS>

Definition

The classes CGAL::HalfedgeDS items decorator<HDS>, CGAL::HalfedgeDS decorator<HDS>, and
CGAL::HalfedgeDS const decorator<HDS> provide additional functions to examine and to modify a halfedge
data structure HDS. The class CGAL::HalfedgeDS items decorator<HDS> provides additional functions
for vertices, halfedges, and faces of a halfedge data structure without knowing the containing halfedge data
structure. The class CGAL::HalfedgeDS decorator<HDS> stores a reference to the halfedge data structure
and provides functions that modify the halfedge data structure, for example Euler-operators. The class
CGAL::HalfedgeDS const decorator<HDS> stores a const reference to the halfedge data structure. It contains
non-modifying functions, for example the test for validness of the data structure.

All these additional functions take care of the different capabilities a halfedge data structure may have or may
not have. The functions evaluate the type tags of the halfedge data structure to decide on the actions. If a
particular feature is not supported nothing is done. Note that for example the creation of new halfedges is
mandatory for all halfedge data structures and will not appear here again.

#include <CGAL/HalfedgeDS const decorator.h>

Inherits From

CGAL::HalfedgeDS items decorator<HDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1875

Creation

HalfedgeDS const decorator<HDS> D( const HDS& hds);

keeps internally a const reference to hds.

Validness Checks

A halfedge data structure has no definition of validness of its own, but a useful set of tests is defined with the
following levels:

Level 0 The number of halfedges is even. All pointers except the vertex pointer and the face pointer for border
halfedges are unequal to their respective default construction value. For all halfedges h: The opposite
halfedge is different from h and the opposite of the opposite is equal to h. The next of the previous
halfedge is equal to h. For all vertices v: the incident vertex of the incident halfedge of v is equal to v. The
halfedges around v starting with the incident halfedge of v form a cycle. For all faces f : the incident face
of the incident halfedge of f is equal to f . The halfedges around f starting with the incident halfedge of
f form a cycle. Redundancies among internal variables are tested, e.g., that iterators enumerate as many
items as the related size value indicates.

Level 1 All tests of level 0. For all halfedges h: The incident vertex of h exists and is equal to the incident
vertex of the opposite of the next halfedge. The incident face (or hole) of h is equal to the incident face
(or hole) of the next halfedge.
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Level 2 All tests of level 1. The sum of all halfedges that can be reached through the vertices must be equal to
the number of all halfedges, i.e., all halfedges incident to a vertex must form a single cycle.

Level 3 All tests of level 2. The sum of all halfedges that can be reached through the faces must be equal to
the number of all halfedges, i.e., all halfedges surrounding a face must form a single cycle (no holes in
faces).

Level 4 All tests of level 3 and normalized border is valid.

bool

D.is valid( bool verbose = false, int level = 0) const

returns true if the halfedge data structure hds is valid with respect to the level value as
defined above. If verbose is true, statistics are written to cerr.

bool

D.normalized border is valid( bool verbose = false) const

returns true if the border halfedges are in normalized representation, which is when enu-
merating all halfedges with the halfedge iterator the following holds: The non-border edges
precede the border edges. For border edges, the second halfedge is a border halfedge. (The
first halfedge may or may not be a border halfedge.) The halfedge iterator border halfedges
begin() denotes the first border edge. If verbose is true, statistics are written to cerr.

See Also

CGAL::HalfedgeDS items decorator<HDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1875
CGAL::HalfedgeDS decorator<HDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1860

Example

The following program fragment illustrates the implementation of a is valid() member function for a simplified
polyhedron class. We assume here that the level three check is the appropriate default for polyhedral surfaces.� �
namespace CGAL {

template <class Traits>
class Polyhedron {

typedef HalfedgeDS_default<Traits> HDS;
HDS hds;

public:
// ...
bool is_valid( bool verb = false, int level = 0) const {

Verbose_ostream verr(verb);
verr << "begin Polyhedron::is_valid( verb=true, level = " <<

level
<< "):" << std::endl;

HalfedgeDS_const_decorator<HDS> decorator(hds);
bool valid = decorator.is_valid( verb, level + 3);
// further checks ...

}
};

}� �
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CGAL::HalfedgeDS decorator<HDS>

Definition

The classes CGAL::HalfedgeDS items decorator<HDS>, CGAL::HalfedgeDS decorator<HDS>, and
CGAL::HalfedgeDS const decorator<HDS> provide additional functions to examine and to modify a halfedge
data structure HDS. The class CGAL::HalfedgeDS items decorator<HDS> provides additional functions
for vertices, halfedges, and faces of a halfedge data structure without knowing the containing halfedge data
structure. The class CGAL::HalfedgeDS decorator<HDS> stores a reference to the halfedge data structure
and provides functions that modify the halfedge data structure, for example Euler-operators. The class
CGAL::HalfedgeDS const decorator<HDS> stores a const reference to the halfedge data structure. It contains
non-modifying functions, for example the test for validness of the data structure.

All these additional functions take care of the different capabilities a halfedge data structure may have or may
not have. The functions evaluate the type tags of the halfedge data structure to decide on the actions. If a
particular feature is not supported nothing is done. Note that for example the creation of new halfedges is
mandatory for all halfedge data structures and will not appear here again.

#include <CGAL/HalfedgeDS decorator.h>

Inherits From

CGAL::HalfedgeDS items decorator<HDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1875

Creation

HalfedgeDS decorator<HDS> D( HDS& hds); keeps internally a reference to hds.

Creation of New Items

Vertex handle D.vertices push back( Vertex v) appends a copy of v to hds if vertices are sup-
ported. Returns a handle of the new vertex, or
Vertex handle() otherwise.

Face handle D.faces push back( Face f) appends a copy of f to hds if faces are sup-
ported. Returns a handle of the new face, or
Face handle() otherwise.

Creation of New Composed Items

Halfedge handle D.create loop() returns handle of a halfedge from a newly cre-
ated loop in hds consisting of a single closed
edge, one vertex and two faces (if supported re-
spectively).

Halfedge handle D.create segment() returns a halfedge from a newly created seg-
ment in hds consisting of a single open edge,
two vertices and one face (if supported respec-
tively).
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Removal of Elements

The following member functions do not update affected incidence relations except if mentioned otherwise.

void D.vertices pop front() removes the first vertex if vertices are supported.
Requirement: Supports removal ≡ CGAL::Tag true.

void D.vertices pop back() removes the last vertex if vertices are supported.
void D.vertices erase( Vertex handle v) removes the vertex v if vertices are supported.

Requirement: Supports removal ≡ CGAL::Tag true.
void D.vertices erase( Vertex handle first, Vertex handle last)

removes the range [first, last) if vertices are supported.
Requirement: Supports removal ≡ CGAL::Tag true.

void D.faces pop front() removes the first face if faces are supported.
Requirement: Supports removal ≡ CGAL::Tag true.

void D.faces pop back() removes the last face if faces are supported.
void D.faces erase( Face handle f) removes the face f if faces are supported.

Requirement: Supports removal ≡ CGAL::Tag true.
void D.faces erase( Face handle first, Face handle last)

removes the range [first, last) if faces are supported.
Requirement: Supports removal ≡ CGAL::Tag true.

void D.erase face( Halfedge handle h) removes the face incident to h from hds and changes all
halfedges incident to the face into border edges or removes them
from the halfedge data structure if they were already border
edges. If this creates isolated vertices they get removed as well.
See make hole(h) for a more specialized variant.
Precondition: h->is border() == false.
Requirement: If faces are supported, Supports removal ≡
CGAL::Tag true.

void D.erase connected component( Halfedge handle h)

removes the vertices, halfedges, and faces that belong to the con-
nected component of h.
Precondition: For all halfedges g in the connected component
g.next() != Halfedge handle().
Requirement: Supports removal ≡ CGAL::Tag true.

unsigned int

D.keep largest connected components( unsigned int nb components to keep)

Erases the small connected components and the isolated ver-
tices. Keep nb components to keep largest connected compo-
nents. Returns the number of connected components erased (ig-
noring isolated vertices).
Requirement: supports vertices, halfedges, and removal opera-
tion.
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Modifying Functions (For Border Halfedges)

void D.make hole( Halfedge handle h)

removes the face incident to h from hds and creates a hole.
Precondition: h != Halfedge handle() and !(h->is border()).
Requirement: If faces are supported, Supports removal ≡ CGAL::Tag true.

Halfedge handle D.fill hole( Halfedge handle h)

fills the hole incident to h with a new face from hds. Returns h.
Precondition: h != Halfedge handle() and h->is border().

Halfedge handle D.fill hole( Halfedge handle h, Face f)

fills the hole incident to h with a copy of face f . Returns h.
Precondition: h != Halfedge handle() and h->is border().

Halfedge handle D.add face to border( Halfedge handle h, Halfedge handle g)

extends the surface with a new face from hds into the hole incident to h and
g. It creates a new edge connecting the vertex denoted by g with the vertex
denoted by h and fills this separated part of the hole with a new face, such
that the new face is incident to g. Returns the new halfedge that is incident to
the new face.
Precondition: h != Halfedge handle(), g != Halfedge handle(), h->is
border(), g->is border() and g can be reached along the hole starting with
h.

Halfedge handle D.add face to border( Halfedge handle h, Halfedge handle g, Face f)

extends the surface with a copy of face f into the hole incident to h and g.
It creates a new edge connecting the tip of g with the tip of h and fills this
separated part of the hole with a copy of face f , such that the new face is
incident to g. Returns the new halfedge that is incident to the new face.
Precondition: h != Halfedge handle(), g != Halfedge handle(), h->is
border(), g->is border() and g can be reached along the hole starting with
h.

Modifying Functions (Euler Operators)

The following Euler operations modify consistently the combinatorial structure of the halfedge data structure.
The geometry remains unchanged. Note that well known graph operations are also captured with these Euler
operators, for example an edge contraction is equal to a join vertex() operation, or an edge removal to join
face().

Given a halfedge data structure hds and a halfedge handle h four special applications of the Euler operators are
worth mentioning: split vertex(h,h) results in an antenna emanating from the tip of h; split vertex(h,h->next()->
opposite()) results in an edge split of the halfedge h->next with a new vertex in-between; split face(h,h) results
in a loop directly following h; and split face(h,h->next()) results in a bridge parallel to the halfedge h->next with
a new face in-between.
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split_vertex(h,g)

join_vertex(h)g

h

h

join_face(h)

split_face(h,g)

Halfedge handle D.split face( Halfedge handle h, Halfedge handle g)

splits the face incident to h and g into two faces with a new diagonal between
the two vertices denoted by h and g respectively. The second (new) face
obtained from hds is a copy of the first face. Returns h->next() after the
operation, i.e., the new diagonal. The new face is to the right of the new
diagonal, the old face is to the left. The time is proportional to the distance
from h to g around the face.

Halfedge handle D.join face( Halfedge handle h)

joins the two faces incident to h. The face incident to h->opposite() gets
removed from hds. Both faces might be holes. Returns the predecessor of h
around the face. The invariant join face( split face( h, g)) returns h and keeps
the data structure unchanged. The time is proportional to the size of the face
removed and the time to compute h->prev().
Requirement: Supports removal ≡ CGAL::Tag true.

Halfedge handle D.split vertex( Halfedge handle h, Halfedge handle g)

splits the vertex incident to h and g into two vertices and connects them with
a new edge. The second (new) vertex obtained from hds is a copy of the first
vertex. Returns h->next()->opposite() after the operation, i.e., the new edge
in the orientation towards the new vertex. The time is proportional to the
distance from h to g around the vertex.

Halfedge handle D.join vertex( Halfedge handle h)

joins the two vertices incident to h. The vertex denoted by h->opposite() gets
removed by hds. Returns the predecessor of h around the vertex, i.e., h->
opposite()->prev(). The invariant join vertex( split vertex( h, g)) returns h
and keeps the polyhedron unchanged. The time is proportional to the degree
of the vertex removed and the time to compute h->prev() and h->opposite()-
>prev().
Requirement: Supports removal ≡ CGAL::Tag true.
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create_center_vertex(h)

erase_center_vertex(g)

Halfedge handle D.create center vertex( Halfedge handle h)

barycentric triangulation of h->face(). Creates a new vertex, a copy of h-
>vertex(), and connects it to each vertex incident to h->face() splitting h->
face() into triangles. h remains incident to the original face, all other triangles
are copies of this face. Returns the halfedge h->next() after the operation, i.e.,
a halfedge pointing to the new vertex. The time is proportional to the size of
the face.
Precondition: h is not a border halfedge.

Halfedge handle D.erase center vertex( Halfedge handle g)

reverses create center vertex. Erases the vertex pointed to by g and all in-
cident halfedges thereby merging all incident faces. Only g->face() remains.
The neighborhood of g->vertex() may not be triangulated, it can have larger
faces. Returns the halfedge g->prev(). Thus, the invariant h == erase center
vertex( create center vertex(h)) holds if h is not a border halfedge. The time
is proportional to the sum of the size of all incident faces.
Precondition: None of the incident faces of g->vertex() is a hole. There are
at least two distinct faces incident to the faces that are incident to g->vertex().
(This prevents the operation from collapsing a volume into two faces glued
together with opposite orientations, such as would happen with any vertex of
a tetrahedron.)
Requirement: Supports removal ≡ CGAL::Tag true.
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Halfedge handle D.split loop( Halfedge handle h, Halfedge handle i, Halfedge handle j)

cuts the halfedge data structure into two parts along the cycle (h, i, j). Three
new vertices (one copy for each vertex in the cycle) and three new halfedges
(one copy for each halfedge in the cycle), and two new triangles are cre-
ated. h, i, j will be incident to the first new triangle. The return value will
be the halfedge incident to the second new triangle which is the copy of h-
opposite().
Precondition: h, i, j denote distinct, consecutive vertices of the halfedge data
structure and form a cycle: i.e., h->vertex() == i->opposite()->vertex(), . . . ,
j->vertex() == h->opposite()->vertex().

Halfedge handle D.join loop( Halfedge handle h, Halfedge handle g)

glues the boundary of the two faces denoted by h and g together and returns
h. Both faces and the vertices along the face denoted by g gets removed. Both
faces may be holes. The invariant join loop( h, split loop( h, i, j)) returns h
and keeps the data structure unchanged.
Precondition: The faces denoted by h and g are different and have equal
degree (i.e., number of edges).
Requirement: Supports removal ≡ CGAL::Tag true.

Validness Checks

These operations are the same as for CGAL::HalfedgeDS const decorator<HDS>. See their documentation on
page 1858.

bool D.is valid( bool verbose = false, int level = 0) const

bool D.normalized border is valid( bool verbose = false) const

Miscellaneous

void D.inside out() reverses face orientations.
Precondition: is valid() of level three.
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See Also

CGAL::HalfedgeDS items decorator<HDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1875
CGAL::HalfedgeDS const decorator<HDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1858

Example

The following program fragment illustrates the implementation of the Euler operator split vertex() for a simpli-
fied polyhedron class.� �
template <class Traits>
namespace CGAL {

class Polyhedron {
typedef HalfedgeDS_default<Traits> HDS;
HDS hds;

public:
// ...
Halfedge_handle split_vertex( Halfedge_handle h, Halfedge_handle

g) {
HalfedgeDS_decorator<HDS> D(hds);
// Stricter preconditions than for HalfedgeDS only.
CGAL_precondition( D.get_vertex(h) == D.get_vertex(g));
CGAL_precondition( h != g);
return D.split_vertex( h, g);

}
};

}� �
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CGAL::HalfedgeDS default<Traits,HalfedgeDSItems,Alloc>

Definition

template < class Traits,
class HalfedgeDSItems = CGAL::HalfedgeDS items 2,
class Alloc = CGAL ALLOCATOR(int)>

class HalfedgeDS default;

The class HalfedgeDS default<Traits,HalfedgeDSItems,Alloc> is a model for the HalfedgeDS concept. The
second template parameter HalfedgeDSItems has a default argument CGAL::HalfedgeDS items 2. The
third template parameter Alloc uses the CGAL default allocator as default setting. HalfedgeDS default<
Traits,HalfedgeDSItems,Alloc> is a list-based representation with bidirectional iterators that supports removal.

#include <CGAL/HalfedgeDS default.h>

Is Model for the Concepts

HalfedgeDS<Traits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1843

Types

typedef bidirectional iterator tag iterator category;
typedef CGAL::Tag true Supports removal;

See Also

CGAL::HalfedgeDS list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1880
CGAL::HalfedgeDS vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1882
HalfedgeDSItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1854
CGAL::HalfedgeDS items 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1873
CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795
CGAL::HalfedgeDS items decorator<HDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1875
CGAL::HalfedgeDS decorator<HDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1860
CGAL::HalfedgeDS const decorator<HDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1858

Implementation

Currently, HalfedgeDS default<Traits,HalfedgeDSItems,Alloc> is derived from CGAL::HalfedgeDS list<
Traits>. The copy constructor and the assignment operator need O(n) time with n the total number of vertices,
halfedges, and faces. The former suboptimal implementation with an O(n logn) runtime has been replaced with
a faster implementation based on hashing for the pointer lookup.
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CGAL::HalfedgeDS face base<Refs>

Definition

The class HalfedgeDS face base<Refs> is a model of the HalfedgeDSFace concept. Refs is an instantiation
of a HalfedgeDS. The template declaration of HalfedgeDS face base<Refs> has three parameters with some
defaults that allow to select various flavors of faces. The declaration is best explained with the two following
declarations, essentially hiding an implementation dependent default setting:

template <class Refs, class T = CGAL::Tag true>
class HalfedgeDS face base;

template <class Refs, class T, class Plane>
class HalfedgeDS face base;

HalfedgeDS face base<Refs> defines a face including a reference to an incident halfedge.

CGAL::HalfedgeDS face base<Refs,CGAL::Tag false> is a face without a reference to an incident halfedge.
It is empty besides the required type definitions. It can be used for deriving own faces. See also
CGAL::HalfedgeDS face min base<Refs>.

CGAL::HalfedgeDS face base<Refs,CGAL::Tag true,Plane> is a face with a reference to an incident halfedge
and it stores a plane equation of type Plane. It can be used as a face for a model of the PolyhedronItems 3
concept.

CGAL::HalfedgeDS face base<Refs,CGAL::Tag false,Plane> is a face without a reference to an incident
halfedge and it stores a plane equation of type Plane. It can be used as a face for a model of the PolyhedronItems
3 concept.

#include <CGAL/HalfedgeDS face base.h>

Is Model for the Concepts

HalfedgeDSFace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1850

Types

HalfedgeDS face base<Refs>:: Plane plane type for three argument version.

Creation

HalfedgeDS face base<Refs> f ; default constructor.
HalfedgeDS face base<Refs> f ( Plane pln); initialized with plane pln.

Operations

Plane& f .plane()
const Plane& f .plane() const
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See Also

HalfedgeDS<Traits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1843
HalfedgeDSItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1854
PolyhedronItems 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1818
CGAL::HalfedgeDS items 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1873
CGAL::HalfedgeDS vertex base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1883
CGAL::HalfedgeDS halfedge base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1871
CGAL::HalfedgeDS face min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1870
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CGAL::HalfedgeDS face min base<Refs>

The class HalfedgeDS face min base<Refs> is a model of the HalfedgeDSFace concept. Refs is an instantia-
tion of a HalfedgeDS. It is equivalent to CGAL::HalfedgeDS face base< Refs, CGAL::Tag false>. It is empty
besides the required type definitions. It can be used for deriving own faces.

#include <CGAL/HalfedgeDS face min base.h>

Is Model for the Concepts

HalfedgeDSFace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1850

Creation

HalfedgeDS face min base<Refs> f ; default constructor.

See Also

HalfedgeDS<Traits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1843
HalfedgeDSItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1854
PolyhedronItems 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1818
CGAL::HalfedgeDS min items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1879
CGAL::HalfedgeDS vertex min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1885
CGAL::HalfedgeDS halfedge min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1872
CGAL::HalfedgeDS face base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1868
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CGAL::HalfedgeDS halfedge base<Refs>

Definition

The class HalfedgeDS halfedge base<Refs> is a model of the HalfedgeDSHalfedge concept. Refs is an instan-
tiation of a HalfedgeDS. The full declaration states four template parameters:

template < class Refs,
class Tag prev = CGAL::Tag true,
class Tag vertex= CGAL::Tag true,
class Tag face = CGAL::Tag true>

class HalfedgeDS halfedge base;

If Tag prev ≡ CGAL::Tag true a reference to the previous halfedge is supported.

If Tag vertex ≡ CGAL::Tag true an incident vertex is supported.

If Tag face ≡ CGAL::Tag true an incident face is supported.

In all cases, a reference to the next halfedge and to the opposite halfedge is supported.

#include <CGAL/HalfedgeDS halfedge base.h>

Is Model for the Concepts

HalfedgeDSHalfedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1852

Creation

HalfedgeDS halfedge base<Refs> h; default constructor.

See Also

HalfedgeDS<Traits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1843
HalfedgeDSItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1854
PolyhedronItems 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1818
CGAL::HalfedgeDS items 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1873
CGAL::HalfedgeDS vertex base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1883
CGAL::HalfedgeDS face base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1868
CGAL::HalfedgeDS halfedge min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1872
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CGAL::HalfedgeDS halfedge min base<Refs>

Definition

The class HalfedgeDS halfedge min base<Refs> is a model of the HalfedgeDSHalfedge concept. Refs is an
instantiation of a HalfedgeDS. It is equivalent to CGAL::HalfedgeDS halfedge base< Refs, CGAL::Tag false,
CGAL::Tag false, CGAL::Tag false>. The class contains support for the next and the opposite pointer and the
required type definitions. It can be used for deriving own halfedges.

#include <CGAL/HalfedgeDS halfedge min base.h>

Is Model for the Concepts

HalfedgeDSHalfedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1852

Creation

HalfedgeDS halfedge min base<Refs> h; default constructor.

See Also

HalfedgeDS<Traits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1843
HalfedgeDSItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1854
PolyhedronItems 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1818
CGAL::HalfedgeDS min items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1879
CGAL::HalfedgeDS vertex min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1885
CGAL::HalfedgeDS face min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1870
CGAL::HalfedgeDS halfedge base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1871
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CGAL::HalfedgeDS items 2

Definition

The class HalfedgeDS items 2 is a model of the HalfedgeDSItems concept. It uses the default types for vertices,
halfedges, and faces that declare all incidences supported by a HalfedgeDS. The vertex also contains a point of
type Traits::Point 2, where Traits is the template argument of the corresponding HalfedgeDS.

#include <CGAL/HalfedgeDS items 2.h>

Is Model for the Concepts

HalfedgeDSItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1854

See Also

CGAL::HalfedgeDS min items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1879
CGAL::Polyhedron items 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1820
HalfedgeDS<Traits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1843
PolyhedronItems 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1818
CGAL::HalfedgeDS vertex base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1883
CGAL::HalfedgeDS halfedge base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1871
CGAL::HalfedgeDS face base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1868

Example

The following example shows the canonical implementation of the HalfedgeDS items 2 class. It uses the base
classes for the item types that are provided in the library.� �
struct HalfedgeDS_items_2 {

template < class Refs, class Traits>
struct Vertex_wrapper {

typedef typename Traits::Point_2 Point;
typedef CGAL::HalfedgeDS_vertex_base< Refs, Tag_true, Point>

Vertex;
};
template < class Refs, class Traits>
struct Halfedge_wrapper {

typedef CGAL::HalfedgeDS_halfedge_base< Refs> Halfedge;
};
template < class Refs, class Traits>
struct Face_wrapper {

typedef CGAL::HalfedgeDS_face_base< Refs> Face;
};

};� �
The following example shows a class definition for a new items class derived from the HalfedgeDS items 2
class. It replaces the Face wrapper with a new definition of a face that contains a member variable for color.
The new face makes use of the face base class provided in the library.
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� �
// A face type with a color member variable.
template <class Refs>
struct My_face : public CGAL::HalfedgeDS_face_base<Refs> {

CGAL::Color color;
My_face() {}
My_face( CGAL::Color c) : color(c) {}

};

// An items type using my face.
struct My_items : public CGAL::HalfedgeDS_items_2 {

template <class Refs, class Traits>
struct Face_wrapper {

typedef My_face<Refs> Face;
};

};� �
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CGAL::HalfedgeDS items decorator<HDS>

Definition

The classes CGAL::HalfedgeDS items decorator<HDS>, CGAL::HalfedgeDS decorator<HDS>, and
CGAL::HalfedgeDS const decorator<HDS> provide additional functions to examine and to modify a halfedge
data structure HDS. The class CGAL::HalfedgeDS items decorator<HDS> provides additional functions
for vertices, halfedges, and faces of a halfedge data structure without knowing the containing halfedge data
structure. The class CGAL::HalfedgeDS decorator<HDS> stores a reference to the halfedge data structure
and provides functions that modify the halfedge data structure, for example Euler-operators. The class
CGAL::HalfedgeDS const decorator<HDS> stores a const reference to the halfedge data structure. It contains
non-modifying functions, for example the test for validness of the data structure.

All these additional functions take care of the different capabilities a halfedge data structure may have or may
not have. The functions evaluate the type tags of the halfedge data structure to decide on the actions. If a
particular feature is not supported nothing is done. Note that for example the creation of new halfedges is
mandatory for all halfedge data structures and will not appear here again.

#include <CGAL/HalfedgeDS items decorator.h>

Types

HalfedgeDS items decorator<HDS>:: HalfedgeDS halfedge data structure.
HalfedgeDS items decorator<HDS>:: Traits traits class.
HalfedgeDS items decorator<HDS>:: Vertex vertex type of HalfedgeDS.
HalfedgeDS items decorator<HDS>:: Halfedge halfedge type of HalfedgeDS.
HalfedgeDS items decorator<HDS>:: Face face type of HalfedgeDS.

HalfedgeDS items decorator<HDS>:: Vertex handle
HalfedgeDS items decorator<HDS>:: Halfedge handle
HalfedgeDS items decorator<HDS>:: Face handle
HalfedgeDS items decorator<HDS>:: Vertex iterator
HalfedgeDS items decorator<HDS>:: Halfedge iterator
HalfedgeDS items decorator<HDS>:: Face iterator

The respective const handle’s and const iterator’s are available as well.

HalfedgeDS items decorator<HDS>:: size type
HalfedgeDS items decorator<HDS>:: difference type
HalfedgeDS items decorator<HDS>:: iterator category

HalfedgeDS items decorator<HDS>:: Supports vertex halfedge
HalfedgeDS items decorator<HDS>:: Supports halfedge prev
HalfedgeDS items decorator<HDS>:: Supports halfedge vertex
HalfedgeDS items decorator<HDS>:: Supports halfedge face
HalfedgeDS items decorator<HDS>:: Supports face halfedge
HalfedgeDS items decorator<HDS>:: Supports removal
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Creation

HalfedgeDS items decorator<HDS> D; default constructor.

Access Functions

Halfedge handle D.get vertex halfedge( Vertex handle v) returns the incident halfedge of v if supported,
Halfedge handle() otherwise.

Vertex handle D.get vertex( Halfedge handle h) returns the incident vertex of h if supported,
Vertex handle() otherwise.

Halfedge handle D.get prev( Halfedge handle h) returns the previous halfedge of h if sup-
ported, Halfedge handle() otherwise.

Halfedge handle D.find prev( Halfedge handle h) returns the previous halfedge of h. Uses
the prev() method if supported or performs a
search around the face using next().

Halfedge handle D.find prev around vertex( Halfedge handle h)

returns the previous halfedge of h. Uses
the prev() method if supported or performs a
search around the vertex using next().

Face handle D.get face( Halfedge handle h) returns the incident face of h if supported,
Face handle() otherwise.

Halfedge handle D.get face halfedge( Face handle f) returns the incident halfedge of f if sup-
ported, Halfedge handle() otherwise.

Corresponding member functions for const handle’s are provided as well.

Modifying Functions (Composed)

void D.close tip( Halfedge handle h) const makes h->opposite() the successor of h.

void D.close tip( Halfedge handle h, Vertex handle v) const

makes h->opposite() the successor of h and
sets the incident vertex of h to v.

void D.insert tip( Halfedge handle h, Halfedge handle v) const

inserts the tip of the edge h into the halfedges
around the vertex pointed to by v. Halfedge
h->opposite() is the new successor of v and h-
>next() will be set to v->next(). The vertex of
h will be set to the vertex v refers to if vertices
are supported.

void D.remove tip( Halfedge handle h) const removes the edge h->next()->opposite() from
the halfedge circle around the vertex referred
to by h. The new successor halfedge of h will
be h->next()->opposite()->next().
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void D.insert halfedge( Halfedge handle h, Halfedge handle f) const

inserts the halfedge h between f and f->
next(). The face of h will be the one f refers
to if faces are supported.

void D.remove halfedge( Halfedge handle h) const

removes edge h->next() from the halfedge cir-
cle around the face referred to by h. The new
successor of h will be h->next()->next().

void D.set vertex in vertex loop( Halfedge handle h, Vertex handle v) const

loops around the vertex incident to h and sets
all vertex pointers to v.
Precondition: h != Halfedge handle().

void D.set face in face loop( Halfedge handle h, Face handle f) const

loops around the face incident to h and sets all
face pointers to f .
Precondition: h != Halfedge handle().

Halfedge handle D.flip edge( Halfedge handle h) const performs an edge flip. It returns h after rotat-
ing the edge h one vertex in the direction of
the face orientation.
Precondition: h != Halfedge handle() and
both incident faces of h are triangles.

Modifying Functions (Primitives)

void D.set vertex halfedge( Vertex handle v, Halfedge handle g) const

sets the incident halfedge of v to g.

void D.set vertex halfedge( Halfedge handle h) const sets the incident halfedge of the vertex in-
cident to h to h.

void D.set vertex( Halfedge handle h, Vertex handle v) const

sets the incident vertex of h to v.

void D.set prev( Halfedge handle h, Halfedge handle g) const

sets the previous link of h to g.

void D.set face( Halfedge handle h, Face handle f) const sets the incident face of h to f .
void D.set face halfedge( Face handle f, Halfedge handle g) const

sets the incident halfedge of f to g.

void D.set face halfedge( Halfedge handle h) const sets the incident halfedge of the face inci-
dent to h to h.
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See Also

CGAL::HalfedgeDS decorator<HDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1860
CGAL::HalfedgeDS const decorator<HDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1858

Example

The following program fragment illustrates how a refined halfedge class for a polyhedron can make use of
the find prev() member function to implement a prev() member function that works regardless of whether the
halfedge data structure HDS provides a prev() member function for its halfedges or not. In the case that not,
the implementation given here runs in time proportional to the size of the incident face. For const-correctness a
second implementation with signature Halfedge const handle prev() const; is needed.

Note also the use of the static member function halfedge handle() of the halfedge data structure. It converts a
pointer to the halfedge into a halfedge handle. This conversion encapsulates possible adjustments for hidden
data members in the true halfedge type, such as linked-list pointers.� �
struct Polyhedron_halfedge {

// ...
Halfedge_handle prev() {

CGAL::HalfedgeDS_items_decorator<HDS> decorator;
return decorator.find_prev( HDS::halfedge_handle(this));

}
};� �
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CGAL::HalfedgeDS min items

Definition

The class HalfedgeDS min items is a model of the HalfedgeDSItems concept. It defines types for vertices,
halfedges, and faces that declare the minimal required incidences for a HalfedgeDS, which are the next() and
the opposite() member function for halfedges.

#include <CGAL/HalfedgeDS min items.h>

Is Model for the Concepts

HalfedgeDSItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1854

See Also

CGAL::HalfedgeDS items 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1873
CGAL::Polyhedron items 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1820
HalfedgeDS<Traits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1843
PolyhedronItems 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1818
CGAL::HalfedgeDS vertex min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1885
CGAL::HalfedgeDS halfedge min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1872
CGAL::HalfedgeDS face min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1870

Example

The following example shows the canonical implementation of the CGAL::HalfedgeDS min items class. It uses
the base classes for the item types that are provided in the library.� �
struct HalfedgeDS_min_items {

template < class Refs, class Traits>
struct Vertex_wrapper {

typedef CGAL::HalfedgeDS_vertex_min_base< Refs> Vertex;
};
template < class Refs, class Traits>
struct Halfedge_wrapper {

typedef CGAL::HalfedgeDS_halfedge_min_base< Refs> Halfedge;
};
template < class Refs, class Traits>
struct Face_wrapper {

typedef CGAL::HalfedgeDS_face_min_base< Refs> Face;
};

};� �
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CGAL::HalfedgeDS list<Traits,HalfedgeDSItems,Alloc>

Definition

The class HalfedgeDS list<Traits,HalfedgeDSItems,Alloc> is a model for the HalfedgeDS concept.
HalfedgeDS list<Traits,HalfedgeDSItems,Alloc> is a list-based representation with bidirectional iterators that
supports removal.

#include <CGAL/HalfedgeDS list.h>

Is Model for the Concepts

HalfedgeDS<Traits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1843

Types

typedef bidirectional iterator tag iterator category;
typedef CGAL::Tag true Supports removal;

Operations

Besides operations required from the concept HalfedgeDS<Traits,Items,Alloc>, this class supports additionally:

void hds.vertices splice( Vertex iterator target, Self &source, Vertex iterator first, Vertex iterator last)

inserts elements in the range [first, last) before position target and removes the elements
from source. It takes constant time if &source == &hds; otherwise, it takes linear time
in the size of the range.
Precondition: [first, last) is a valid range in source. target is not in the range [first, last).

void hds.halfedges splice( Halfedge iterator target,
Self &source,
Halfedge iterator first,
Halfedge iterator last)

inserts elements in the range [first, last) before position target and removes the elements
from source. It takes constant time if &source == &hds; otherwise, it takes linear time
in the size of the range.
Precondition: [first, last) is a valid range in source. target is not in the range [first, last).

void hds.faces splice( Face iterator target, Self &source, Face iterator first, Face iterator last)

inserts elements in the range [first, last) before position target and removes the elements
from source. It takes constant time if &source == &hds; otherwise, it takes linear time
in the size of the range.
Precondition: [first, last) is a valid range in source. target is not in the range [first, last).
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See Also

CGAL::HalfedgeDS default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1867
CGAL::HalfedgeDS vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1882
HalfedgeDSItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1854
CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795
CGAL::HalfedgeDS items decorator<HDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1875
CGAL::HalfedgeDS decorator<HDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1860
CGAL::HalfedgeDS const decorator<HDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1858

Implementation

HalfedgeDS list<Traits,HalfedgeDSItems,Alloc> uses internally the CGAL::In place list container class. The
copy constructor and the assignment operator need O(n) time with n the total number of vertices, halfedges,
and faces. The former suboptimal implementation with an O(n logn) runtime has been replaced with a faster
implementation based on hashing for the pointer lookup.

CGAL ALLOCATOR(int) is used as default argument for the Alloc template parameter.
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CGAL::HalfedgeDS vector<Traits,HalfedgeDSItems,Alloc>

Definition

The class HalfedgeDS vector<Traits,HalfedgeDSItems,Alloc> is a model for the HalfedgeDS concept.
HalfedgeDS vector<Traits,HalfedgeDSItems,Alloc> is a vector-based representation with random access iter-
ators that does not support removal.

#include <CGAL/HalfedgeDS vector.h>

Is Model for the Concepts

HalfedgeDS<Traits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1843

Types

typedef random access iterator tag iterator category;
typedef CGAL::Tag false Supports removal;

See Also

CGAL::HalfedgeDS default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1867
CGAL::HalfedgeDS list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1880
HalfedgeDSItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1854
CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795
CGAL::HalfedgeDS items decorator<HDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1875
CGAL::HalfedgeDS decorator<HDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1860
CGAL::HalfedgeDS const decorator<HDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1858

Implementation

HalfedgeDS vector<Traits,HalfedgeDSItems,Alloc> uses internally the STL std::vector container class. We
require that we can create a std::vector::iterator from a pointer. If this will not be true any longer for any major
STL distribution we might switch to an internal implementation of a vector.

The capacity is restricted to the reserved size. Allocations are not possible beyond the capacity without calling
reserve again. All handles and iterators are invalidated upon a reserve call that increases the capacity.

CGAL ALLOCATOR(int) is used as default argument for the Alloc template parameter.
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CGAL::HalfedgeDS vertex base<Refs>

Definition

The class HalfedgeDS vertex base<Refs> is a model of the HalfedgeDSVertex concept. Refs is an instantiation
of a HalfedgeDS. The template declaration of HalfedgeDS vertex base<Refs> has three parameters with some
defaults that allow to select various flavors of vertices. The declaration is best explained with the two following
declarations, essentially hiding an implementation dependent default setting:

template <class Refs, class T = CGAL::Tag true>
class HalfedgeDS vertex base;

template <class Refs, class T, class Point>
class HalfedgeDS vertex base;

HalfedgeDS vertex base<Refs> defines a vertex including a reference to an incident halfedge.

CGAL::HalfedgeDS vertex base<Refs,CGAL::Tag false> is a vertex without a reference to an incident
halfedge. It is empty besides the required type definitions. It can be used for deriving own vertex imple-
mentations. See also CGAL::HalfedgeDS vertex min base<Refs>.

CGAL::HalfedgeDS vertex base<Refs,CGAL::Tag true,Point> is a vertex with a reference to an incident
halfedge and it stores a point of type Point. It can be used as a vertex for a model of the PolyhedronItems
3 concept.

CGAL::HalfedgeDS vertex base<Refs,CGAL::Tag false,Point> is a vertex without a reference to an incident
halfedge and it stores a point of type Point. It can be used as a vertex for a model of the PolyhedronItems 3
concept.

#include <CGAL/HalfedgeDS vertex base.h>

Is Model for the Concepts

HalfedgeDSVertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1856

Types

HalfedgeDS vertex base<Refs>:: Point point type for three argument version.

Creation

HalfedgeDS vertex base<Refs> v; default constructor.
HalfedgeDS vertex base<Refs> v( Point p); initialized with point p.

Operations

Point& v.point()
const Point& v.point() const
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See Also

HalfedgeDS<Traits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1843
HalfedgeDSItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1854
PolyhedronItems 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1818
CGAL::HalfedgeDS items 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1873
CGAL::HalfedgeDS halfedge base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1871
CGAL::HalfedgeDS face base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1868
CGAL::HalfedgeDS vertex min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1885
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CGAL::HalfedgeDS vertex min base<Refs>

Definition

The class HalfedgeDS vertex min base<Refs> is a model of the HalfedgeDSVertex concept. Refs is an instan-
tiation of a HalfedgeDS. It is equivalent to CGAL::HalfedgeDS vertex base< Refs, CGAL::Tag false>. It is
empty besides the required type definitions. It can be used for deriving own vertices.

#include <CGAL/HalfedgeDS vertex min base.h>

Is Model for the Concepts

HalfedgeDSVertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1856

Creation

HalfedgeDS vertex min base<Refs> v; default constructor.

See Also

HalfedgeDS<Traits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1843
HalfedgeDSItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1854
PolyhedronItems 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1818
CGAL::HalfedgeDS min items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1879
CGAL::HalfedgeDS halfedge min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1872
CGAL::HalfedgeDS face min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1870
CGAL::HalfedgeDS vertex base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1883
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27.1 Introduction

A d-dimensional combinatorial map is a data structure representing an orientable subdivided d-dimensional
object obtained by taking dD cells, and allowing to glue dD cells along (d-1)D cells. It provides a description
of all the cells of the subdivision (for example vertices and edges), together with incidence and adjacency
relationships. This package is a generalization of the halfedge data structure to higher dimension.1

We denote i-cell for an i-dimensional cell (for example in 3D, 0-cells are vertices, 1-cells are edges, 2-cells are
facets, and 3-cells are volumes). A boundary relation is defined on these cells, giving for each i-cell c the set
of (i-1)-cells contained in the boundary of c. Two cells c1 and c2 are incident if there is a path of cells, starting
from the cell of biggest dimension to the other cell, such that each cell of the path (except the first one) belongs
to the boundary of the previous cell in the path. Two i-cells c3 and c4 are adjacent if there is an (i-1)-cell
incident to both c3 and c4. You can see an example of a 2D object and a 3D object in Figure 27.1 showing some
cells of the subdivision and some adjacency and incidence relations.

f1 e1

e3
f3

e2

v1
f2

vol2e4
vol1

vol3

v2

f5

f4

Figure 27.1: Example of subdivided objects that can be described by combinatorial maps. Left: A 2D object
composed of three facets (2-cells), named f1, f2 and f3, nine edges (1-cells) and seven vertices (0-cells). f1 and
f2 are adjacent along edge e1, thus e1 is incident both to f1 and f2. Vertex v1 is incident to edge e1, thus v1
is incident to f1 and f2 by transitivity. Right: A 3D object (only partially represented for vertices and edges)
composed of three volumes (3-cells), named vol1, vol2 and vol3, twelve facets (2-cells) (there is one facet f4
between vol1 and vol2, and similarly between vol1 and vol3 and vol2 and vol3), sixteen edges (1-cells), and
eight vertices (0-cells). vol1 and vol2 are adjacent along facet f4, thus f4 is incident both to vol1 and vol2. Edge
e4 is incident to the three facets between vol1 and vol2, vol1 and vol3, and vol2 and vol3. e4 is also incident to
the three volumes by transitivity.

A combinatorial map is an edge-centered data structure describing the cells and the incidence and adjacency
relations, using only one basic element called dart, and a set of pointers between these darts. A dart can be
thought as a part of an oriented edge (1-cell), together with a part of incident cells of dimensions 0, 2, 3,. . . , d.
When a dart d0 describes a part of an i-cell c, we say that d0 belongs to c, and that c contains d0. Let us look
at the example in Figure 27.2 showing the 2D and 3D combinatorial maps describing the two objects given in
Figure 27.1.

First let us start in 2D (Figure 27.2 (Left)). Facet f1 is described by four darts. These darts are linked together
with pointers. Starting from a dart and following a β1 pointer, we get to a dart which belongs to the same facet

1A 2D combinatorial map is equivalent to a halfedge data structure: there is a one-to-one mapping between elements of both data
structures, halfedges corresponding to darts.
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Figure 27.2: Combinatorial maps representing the objects given in Figure 27.1. Left: The 2D combinatorial
map which contains 12 darts. Right: The 3D combinatorial map which contains 54 darts (18 for each volume).

but to the next edge (1-cell, which explains the index 1 of β1). Starting from any dart and following β1 pointers,
we can reach exactly all the darts describing the facet. Starting from a dart and following a β2 pointer, we get
to a dart which belongs to the same edge but to the neighboring facet (2-cell, which explains the index 2 of β2).
Starting from any dart and following β2 pointers, we can reach exactly all the darts describing the edge (in 2D
one or two darts).

Things are slightly different for vertices. Indeed, each βi points to a dart belonging to a different i-cell, but also
to a different 0-cell (vertex). This is so because two linked darts have opposite orientations. For this reason,
starting from any dart belonging to a vertex v, we have to follow β2 then β1 to reach exactly the darts describing
the vertex v. In fact, by composing two βis, we always obtain a dart belonging to the same vertex (if we do not
start by following a β1 pointer).

The main interest of combinatorial map definition based on darts and βi pointers is to be able to increase the
dimension ”only” by adding new pointers. We can verify this fact by studying the 3D example (Figure 27.2
(Right)). In addition to β1 and β2 of the 2D case, there is a new pointer β3.

If we take a closer look at the central edge e4 shown in Figure 27.3 (Left), we can see that it is described by
six darts linked together. Starting from a dart and following a β3 pointer, we get to a dart which belongs to
the same edge, to the same facet, but to the neighboring volume (a 3-cell, which explains the index 3 in β3).
Similarly, starting from a dart and following a β2 pointer, we get to a dart which belongs to the same edge, to
the same volume, but to the neighboring facet (2-cell). Starting from any of these six darts and following β2 and
β3 pointers, we can reach exactly the six darts describing edge e4.

For facets, by following a β1 pointer, we get to a dart which belongs to the same facet, to the same volume,
but to the next edge (1-cell, which explains the index 1 of β1). Starting from any dart and following β1 and β3
pointers, we can reach exactly all the darts describing the facet (see Figure 27.3 (Right)). For volumes, starting
from any dart and following β1 and β2 pointers, we can reach exactly all the darts describing the volume.

For vertices, we have to follow β2 then β1, and β3 then β1 to reach exactly the darts describing the vertex v.
Indeed, as in 2D, we have to compose two βis to obtain a dart belonging to the same vertex (if we do not start
by following a β1 pointer).

In some cases, the general rule that by following a βi we get a dart which belongs to the neighboring i-cell is not
true, as for example for darts belonging to the boundary of the represented object. For example, in Figure 27.1
(Left), any dart d0 that does not belong to edge e1, e2 and e3 belongs to a 2-cell, and there is no neighboring
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Figure 27.3: Two zooms on the 3D combinatorial map given in Figure 27.2 (Right). Left: Zoom around the
central edge e4 which details the six darts belonging to the edge. Right: Zoom around the facet between volumes
vol2 and vol3 which details the eight darts belonging to the facet.

facet along the edge containing d0. Another example is in Figure 27.1 (Right), for any dart d0 that belongs to
facet f5. d0 belongs to volume vol2, but there is no neighboring volume along this facet. The general rule is also
not true for unbounded cells. For example if we remove a dart in Figure 27.2 (Left), we obtain an unbounded
facet having a dart without next dart for β1, and if we remove a facet in Figure 27.2 (Right), we obtain an
unbounded volume having some darts without neighboring facet for β2. In such a case, there is a particular
value called ∅ used to describe that a dart d0 is not linked to another dart in dimension i.

Combinatorial maps are defined in any dimension. A 0D combinatorial map is a set of isolated darts describing
isolated vertices. A 1D combinatorial map describes paths or cycles of darts corresponding to paths or cycles of
edges, and equivalent to double linked lists. The most useful cases are 2D and 3D combinatorial maps. Since
2D combinatorial maps are equivalent to halfedge data structure, notions are illustrated in 3D in the following
examples to help the reader understand this specific case. But it is important to keep in mind that one main
interest of combinatorial maps is their generic definition in any dimension, and that everything presented in this
manual is valid in any dimension.

A dD combinatorial map is useful when you want to describe dD objects and the adjacency relations between
these objects, and you want to be able to efficiency traverse these objects by using the different relations. For
example, we can use a 3D combinatorial map to describe a 3D segmented image: each 3-cell corresponds to a
region in the image and each 2-cell corresponds to a contact area between two regions.

A combinatorial map does not contain any geometrical information. However, this package allows to associate
any information to the cells of the combinatorial map. A specific information, which is often used in practice,
consists in adding linear geometry to a combinatorial map by associating a point to each vertex of the map2:
this is the object of the Linear cell complex package. This package can for example be useful to describe 3D
buildings as set of walls, rooms, doors and windows (both combinatorial and geometrical descriptions) and all
the adjacency relations between these elements allowing for example to move a camera in a given building from
rooms to rooms by traversing doors.

2When an object has a point associated to each vertex, each edge is thus a straight line segment, which explains the name ”linear
geometry”.
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Figure 27.4: Example of a 3D combinatorial map. Left: A 3D object made of two volumes adjacent along
facet f2. Right: The corresponding 3D combinatorial map. Darts are drawn with arrows, sometimes numbered.
Two darts linked by β1 are drawn consecutively (for example β1(10)=11), and two darts linked by β2 are drawn
parallel, in reverse orientations, with a little gray segment joining them (for example β2(1)=10). β3 pointers are
represented by blue segments (for example β3(1)=5).

27.2 Data Structure Presentation

In this section, we describe dD combinatorial maps in terms of data structure and operations. Mathematical
definitions are provided in Section 27.7, and a package description is given in Section 27.3.

27.2.1 Combinatorial Map and Darts

A dD combinatorial map is a set of darts D. A dart d0 is an element that can be linked with d+1 darts by pointers
called βi, with 0≤i≤d. Dart d0 is said i-free when βi(d0)=∅. Each βi, for 2≤i≤d, is its own inverse, i.e., if
dart d0 is not i-free, then βi(βi(d0))=d0. This is different for β0 and β1: β0 is the inverse of β1, i.e., if darts d1
and d2 are such that β1(d1)=d2, then β0(d2)=d1. Given dart d1, if there is no dart d2 such that β1(d2)=d1, then
β0(d1)=∅. ∅ is a constant, which does not belong to the set of darts D of the combinatorial map. However, by
definition ∅ is linked with itself for all βis: ∀i, 0≤i≤d, βi(∅)=∅.

A combinatorial map is without i-boundary if there is no i-free dart, and it is without boundary if it is without
i-boundary for all dimensions 1≤i≤d.

We show in Figure 27.4 a 3D object and the corresponding 3D combinatorial map. This map has 40 darts rep-
resented by arrows, some darts being numbered. In this combinatorial map, we have for example β1(1)=2,
β2(1)=10, and β3(1)=5. This combinatorial map is without 1-boundary and 2-boundary, but has some 3-
boundary, because some darts are 3-free, for example β3(10)=∅ and β3(12)=∅.

27.2.2 Cells as Sets of Darts

A cell in a dD combinatorial map is implicitly represented by a subset of darts. In this section, we will see how
to retrieve all cells containing a given dart, how to retrieve all darts belonging to a cell containing a given dart,
and how incidence and adjacency relations are defined in terms of darts.

The first important property of a combinatorial map is that each dart belongs to an i-cell, ∀i, 0≤i≤d. For
example in 3D, a dart belongs to a vertex, an edge, a facet, and a volume. This means that a 3D combinatorial
map containing an isolated dart contains exactly one vertex, one edge, one facet and one volume.
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The second important property is that cells of a combinatorial map correspond to specific orbits. Given a set
S⊆{β1,. . .,βd} and a dart d0, the orbit 〈S〉(d0) is the set of darts that can be reached from d0 by following any
combination of any βi’s in S and their inverses (to simplify notations, we can use for example 〈β1,β4〉(d0) to
denote 〈S〉(d0) with S={β1,β4}).

Given a dart d0, in general, βi(d0) (with 1≤i≤d) belongs to the same cells as d0, only the i-cell and 0-cell are
different. There are two exceptions: (1) if d0 is i-free, then βi(d0)=∅; (2) if βi(d0) belongs to the same i-cell as
d0 (case of multi-incidence). For example if an edge is an isolated loop, it is incident twice to the same vertex,
then given a dart d0 belonging to this edge, β1(d0) goes to the next edge, which is in fact the same edge.

Since βi(d0) (with 1≤i≤d) allows to change the current i-cell, all the darts that can be reached from d0 by using
any combination of β j’s, ∀j, 1≤j≤d and j6=i and their inverse are contained in the same i-cell as d0. The i-cell
containing d0 is defined in terms of orbit by 〈β1,. . .,βi−1,βi+1,. . .,βd〉(d0).

There is a special case for vertices. Given a dart d0, the set of darts contained in the same vertex as d0 are the
darts that can be reached from d0 by using any combination of βi◦β j, ∀i,j, 1≤i<j≤d, and their inverse. The
0-cell containing d0 is defined in terms of orbit by 〈{βi◦β j|∀i,j: 1≤i<j≤d}〉(d0).

Orbit 〈β1,. . .,βd〉(d0) is the connected component containing dart d0. A combinatorial map is connected if this
set is equal to the set of all the darts of the combinatorial map.

A last important property of cells is that for all dimensions i the set of i-cells forms a partition of the set of darts
D, i.e. for any i, the union of the sets of darts of all the i-cells is equal to D, and the sets of darts of two different
i-cells are disjoint.

Let us give some examples of cells in 3D, for the 3D combinatorial map of Figure 27.4:

• All the darts belonging to the same edge can be obtained by any combination of β2 and β3: for example
edge e of the object corresponds in the combinatorial map to the set of darts {1,5,9,10}. Given any dart
belonging to this edge, we retrieve all the other darts by, for example, a breadth-first traversal. In terms of
orbits, this 1-cell corresponds to 〈β2,β3〉(1).

• All the darts belonging to the same facet can be obtained by any combination of β1 and β3: for example
facet f2 corresponds in the combinatorial map to the set of darts {1,2,3,4,5,6,7,8}. Facet f1 corresponds to
the set of darts {10,11,12,13}. Note that these last darts are 3-free since there is no other volume sharing
this facet. In terms of orbits, f2 corresponds to 〈β1,β3〉(1) and f1 corresponds to 〈β1,β3〉(10).

• All the darts belonging to the same volume can be obtained by any combination of β1 and β2: for example
volume vol1 corresponds in the combinatorial map to the set of the twenty-four darts representing the
cube. In terms of orbits, vol1 corresponds to 〈β1,β2〉(1).

• All the darts belonging to the same vertex can be obtained by any combination of β1◦β2, β1◦β3 and
β2◦β3 and their inverse functions. In our example, vertex v of the object corresponds in the combi-
natorial map to the set of darts {1,6,9,11,14,15}. Starting from dart 1, we obtain for example dart
14=(β1◦β2)−1(1)=β2◦β0(1), dart 11=β1◦β2(1), and dart 9=β2◦β3(1). Intuitively, the set of darts corre-
sponding to a vertex contains all the darts represented by arrows starting from this vertex. In terms of
orbits, v corresponds to 〈β1◦β2, β1◦β3, β2◦β3〉(1).

Using this definition of cells as sets of darts, we can retrieve all the incidence and adjacency relations between
the cells of the subdivision in a combinatorial map. Two cells are incident if the intersection of their two sets
of darts is non empty (whatever the dimension of the two cells). Two i-cells c1 and c2, 1≤i≤d, are adjacent if
there is d1∈c1 and d2∈c2 such that d1=βi(d2) (or d2=βi(d1) for i=1).

In the example of Figure 27.4, vertex v and edge e are incident since the intersection of the two corresponding
sets of darts is {1,9}6= /0. Vertex v is incident to facet f2 since the intersection of the two corresponding sets of
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darts is {1,6}6= /0. Edge e and facet f1 are incident since the intersection of the two corresponding sets of darts
is {10}6= /0. Finally, facets f1 and f2 are adjacent because 10∈f1, 1∈f2 and 10=β2(1).

We can consider i-cells in a dimension d’ with i≤d’≤ d. The idea is to consider the i-cells as if the combinatorial
map was in d’ dimension. For that, we only take into account the β js for j≤d’. The i-cell containing d0 in
dimension d’ is the orbit 〈β1,. . .,βi−1,βi+1,. . .,βd′〉(d0), and the 0-cell is the orbit 〈{βi◦β j|∀i,j: 2≤i<j≤d’}〉(d0).
By default, i-cells are considered in dimension d, the dimension of the combinatorial map.

In the example of Figure 27.4, the 2-cell containing dart 1 is facet f2 which is the set of darts {1,2,3,4,5,6,7,8}.
If we consider the same 2-cell in dimension 2, we obtain the set of darts {1,2,3,4}. Intuitively we ”forget” β3
and we obtain the set of darts of the facet containing dart 1 restricted to the volume containing this dart.

27.2.3 How to Associate Information to Cells

Combinatorial maps only describe the cells of the subdvision, and all the incidence and adjacency relations
between these cells. This is not enough for many applications which need to associate information to cells.
This can be geometric or non-geometric information, such as 3D points associated to vertices, the edge length
associated to edges, or a color or normal to a facet.

To answer this need, a combinatorial map allows to create attributes which are able to store any information,
and to associate attributes to cells of the combinatorial map. We denote i-attributes for the attributes associated
with i-cells. Attributes may exist for only some of the dimensions, and if they exist for dimension i, they do not
necessarily exist for each of the i-cells. More precisely, i-attributes are associated to i-cells by an injection:

• two different i-cells are associated to two different i-attributes;

• an i-cell may have no associated i-attribute.

Since i-cells are not explicitely represented in combinatorial maps, the association between i-cells and i-
attributes is transferred to darts: if attribute a is associated to i-cell c, all the darts belonging to c are associated
to a.

We can see two examples of combinatorial maps having some attributes in Figure 27.5. In the first example
(Left), a 2D combinatorial map has 1-attributes containing a float, for example corresponding to the length of
the associated 1-cell, and 2-attributes containing a color in RGB format. In the second example (Right), a 3D
combinatorial map has 2-attributes containing a color in RGB format.

27.2.4 Combinatorial Map Properties

There are some conditions that a combinatorial map must satisfy to be valid. Some of them have already been
given about the β pointers (see Section 27.2.1) and about the association between darts and attributes (see
Section 27.2.3).

There is an additional condition related to the type of represented objects, which are quasi-manifold orientable
dD objects. A dD quasi-manifold is an object obtained by taking some isolated d-cells, and allowing to glue
d-cells along (d-1)-cells. It is orientable if it is possible to embed it in the Euclidean space and to define a global
”left” and ”right” direction in each point of the embedded object. In 2D, quasi-manifolds are manifolds, but this
is no longer true in higher dimension as we can see in the example presented in Figure 27.6. In this example, the
object to the right is not a manifold since the neighborhood of the point p in the object is not homeomorphic3 to
a 3D ball.

3Intuitively, two objects are homeomorphic if each object can be continuously deformed into the second one. In such a case, the two
objects have exactly the same topological properties.
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Figure 27.5: Example of combinatorial maps with attributes. Attributes are represented by black rectangles
containing an information, and association between darts and attributes are represented by small lines. Left: A
2D combinatorial map with 1-attributes containing a double, for example corresponding to the length of the
1-cell, and 2-attributes containing a color in RGB format. Only three edges of the combinatorial map, among
the nine, are associated to a 1-attribute. All the 2-cells are associated to a 2-attribute. Right: A 3D combinatorial
map with 2-attributes containing a color in RGB format. Only three 2-cells of the combinatorial map, among
the ten, are associated to a 2-attribute.

p

Figure 27.6: Example of a 3D quasi-manifold which is not a manifold. The object to the right is made of the
four pyramids (shown to the left) glued together along facets, thus it is a quasi-manifold.
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Combinatorial maps can only represent quasi-manifolds due to the definition of β pointers. As we have seen in
Section 27.2.2, βi(d0) (with 1≤i≤d) belongs to the same cells as d0, only the i-cell and 0-cell are different. In
other words, βi links two i-cells that share a common (i-1)-cell: it is not possible to link more than two i-cells
along a same (i-1)-cell. For this reason, it is not possible to describe non quasi-manifold objects as those shown
in Figure 27.7 by combinatorial maps.

Figure 27.7: Three examples of non quasi-manifold objects. Left: A 2D object which is not a quasi-manifold
since the two 2-cells share a common vertex but no common 1-cell. Middle: A 3D object which is not a quasi-
manifold since is it not only composed by 3D cells glued together (there is an isolated 2-cell in dark gray).
Right: A 3D object which is not a quasi-manifold since the two 3-cells share a common edge but no common
2-cell.

Due to this additional condition, any objects can not be represented by a combinatorial map but only orientable
quasi-manifolds. We need to study now the inverse relation. Does any set of darts linked together by βi’s, with
0≤i≤d correspond to a quasi-manifold? As we can see in Figure 27.8, the answer is no.
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Figure 27.8: Two examples of darts linked together by some β0, β1, β2 and β3 which does not represent a 3D
quasi-manifold, and thus which are not 3D combinatorial map. Left: In this example, all the darts are 3-free
except β3(1)=5 and β3(4)=6 (and vice-versa). Right: In this example, darts linked by β3 are not in the same
order in both 3-cells.

In the first example (Left), there are two 3-cells (one to the left for the cube, a second to the right for the pyramid)
which are ”partially adjacent” along one 2-cell. Indeed, only two darts of the 2-cell are linked by β3. We have
β3(1)=5 and β3(4)=6 (and reciprocally). This configuration is not possible in a quasi-manifold: two d-cells are
always glue along an ”entire” (d-1)-cells.

But as we can see in the second example (Right), the condition that all the darts of the cell are linked in not
sufficient. Indeed, in this example, all the darts of the 2-cell between the cube and the pyramid are linked
together by β3. However, this configuration does not correspond to an orientable 3D quasi-manifold. Indeed,
the operation of gluing two d-cells along one (d-1)-cell must preserve the initial (d-1)-cell.
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CMap,Info_,Tag,OnMerge,OnSplit

Figure 27.9: UML diagram of the main classes of the package. k is the number of non void attributes.

To avoid these two kinds of configurations, conditions are added on β pointers compositions (see Section 27.7,
condition (4) of the definition of combinatorial maps). Intuitively these conditions say that if two darts are
linked by βi, then all the required darts are linked by βi two by two in such a way that neighborhood relations
are preserved.

We say that a combinatorial map is valid if it satisfies all the conditions on β pointers and on association between
darts and attributes. High level operations provided on combinatorial maps ensure that these conditions are
always satisfied. Sometimes, it can be useful to use low level operations in a specific algorithm, for example to
modify locally a combinatorial map in a really fast way. In such a case, additional operations may be needed to
restore these validity conditions.

27.3 Software Design

The diagram in Figure 27.9 shows the different classes of the package. Combinatorial map is the main class
(see Section 27.3.1). It allows to manage darts (see Section 27.3.3) and attributes (see Section 27.3.4). Users
can customize a combinatorial map thanks to an items class (see Section 27.3.2), which defines the dart type
and the attribute types. These types may be different for different dimensions, and they may also be void. The
darts and attributes are accessed through handles. A handle is a model of the Handle concept, thus supporting
the two dereference operators operator* and operator->.

27.3.1 Combinatorial Maps

The class Combinatorial map<d,Items,Alloc> is a model of the CombinatorialMap concept. It has three tem-
plate parameters standing for the dimension of the combinatorial map (an unsigned int), an items class (a model
of the CombinatorialMapItems concept), and an allocator which must be a model of the allocator concept of the
STL. Default classes are provided for the items and the allocator classes.

The main role of the class Combinatorial map is the storage and the management of darts. It allows to create
or remove an isolated dart from the combinatorial map. The Dart handle type defines a handle to the type
of used darts (given in the items class). Combinatorial map provides several ranges which allow to iterate
over specific subsets of darts of the combinatorial map (see Section 27.4.1). It also defines several methods
to link and to unlink darts by βis (see Section 27.5.1). We said that a dart d0 is i-free if βi(d0)=∅. The ∅
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constant is represented in the class Combinatorial map through a static const Dart handle called null dart
handle. Finally, some high level operations are defined as global functions taking a Combinatorial map as
argument (see Section 27.5.2)

The second role of the class Combinatorial map is the storage and the management of attributes. It allows to
create or remove an attribute, and provides methods to associate attributes and cells. A range is defined for each
i-attribute allowing to iterate over all the i-attributes of the combinatorial map. Finally, Combinatorial map
defines several types allowing to manage the attributes. We can use Combinatorial map::Attribute handle<
i>::type for a handle to the i-attributes (and the const version Combinatorial map::Attribute const handle<i>
::type) and Combinatorial map::Attribute type<i>::type for the type of the i-attributes.

27.3.2 Combinatorial Map Items

The CombinatorialMapItems concept defines dart and attribute types of a combinatorial map. It contains one in-
ner class named Dart wrapper, having one template parameter, CMap, a model of CombinatorialMap concept.
The Dart wrapper<CMap> class provides two local types: Dart which must be a model of the Dart concept,
and Attributes which defines the attributes and their types.

The Attributes tuple must contain at most d+1 types (one for each possible cell dimension of the combinatorial
map). Each type of the tuple must be either a model of the CellAttribute concept or void. The first type
corresponds to 0-attributes, the second to 1-attributes and so on. If the ith type in the tuple is void, (i-1)-
attributes are disabled: we say that (i-1)-attributes are void. Otherwise, (i-1)-attributes are enabled and have
the given type: we say (i-1)-attributes are non void. If the size of the tuple is k, with k<dimension+1, ∀i:
k≤i≤dimension, i-attributes are void.

The class Combinatorial map min items<d> is a model of the CombinatorialMapItems concept which can be
used for default behaviors. It defines CGAL::Dart<d,CMap> as type of dart, and Attributes as empty tuple.

27.3.3 Darts

The class Dart<d,CMap>, a model of the Dart concept, defines a dD dart. It has two template parameters
standing for the dimension of the combinatorial map, and a model of the CombinatorialMap concept, which
provides the two types Dart handle and Dart const handle.

Each instance d0 of Dart<d,CMap> stores the βi pointers in an array of d+1 Dart handle (because we describe
also the β0 pointer). It also stores the attributes associated to this dart in a tuple of CMap::Attribute handle<i>
::type, one for each non void i-attribute.

Methods are defined allowing to retrieve each βi and each associated i-attribute of d0, and allowing to test if d0
dart is i-free.

Note that the use of the Dart class is not hard wired in the combinatorial map class. Users can provide their own
model of the Dart concept, and pass it to the combinatorial map with the help of a custom item class.

27.3.4 Cell Attributes

The class Cell attribute<CMap,Info ,Tag,OnMerge,OnSplit>, a model of the CellAttribute concept, represents
an attribute associated with a cell of a combinatorial map. The template parameter CMap must be a model of
the CombinatorialMap concept. The attribute stores a handle to one dart of its associated cell when the template
parameter Tag is Tag true. Info is the type of information stored in the attribute. It may be void. OnMerge
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and OnSplit must be either Null functor, or models of the Binary Function concept having two references to
a model of CellAttribute as type of both parameters and void as return type. There are two default parameters
for OnMerge and OnSplit, which are Null functor, a default parameter for Tag which is Tag true, and a default
parameter for Info which is void.

If Info is different from void, the class Cell attribute contains two methods info() returning the information
contained in the attribute (const and non const version). The information is returned by reference, thus the non
const version allows the modification of the information.

Two attributes are merged when their corresponding cells are merged into one cell during some operation.
In this case, the functor OnMerge is called, unless it is equal to Null functor. This functor allows the user
to define its own custom behavior when two attributes are merged (for example if the information is a color,
we can compute the average color of the two initial attributes, and affect this value to the first attribute, see
example in Section 27.6.4). Similarly, the functor OnSplit is called when one attribute is split in two, because
its corresponding cell is split in two during some operation, unless it is equal to Null functor. In any high level
operation, OnMerge is called before to start the operation (i.e. before modifying the combinatorial map), and
OnSplit is called when the operation is finished (i.e. after all the modifications were made).

What we said for the dart also holds for the cell attribute. The combinatorial map can be used with any user
defined model of the CellAttribute concept.

27.3.5 Example of Combinatorial Map Definition

Here comes an example of two combinatorial map definitions. The first case Example cmap4 defines a 4D
combinatorial map which uses all the default values (Dart and Combinatorial map min items). The second
example Example custom cmap3 uses its own model of the CombinatorialMapItems concept. In this model,
the type of dart is Dart<3,CMap>, thus a dart is in 3D, and an attribute containing an integer is associated to
edges.� �
typedef CGAL::Combinatorial_map<4> Example_cmap4;

struct Example_items_3
{

template <class CMap>
struct Dart_wrapper
{

typedef CGAL::Dart<3, CMap> Dart;
typedef CGAL::Cell_attribute<CMap, int> Edge_attrib;
typedef CGAL::cpp0x::tuple<void,Edge_attrib> Attributes;

};
};
typedef CGAL::Combinatorial_map<3, Example_items_3> Example_custom_cmap3;� �
27.4 Iteration and Creation Operations

An important operation in combinatorial maps consists in iterating over specific subsets of darts or over at-
tributes. For that, several ranges are offered (see Section 27.4.1). A range is a model of the Range concept,
thus supporting the two methods begin() and end() allowing to iterate over all the elements in the range. Several
global functions allow to create specific configurations of darts into a combinatorial map (see Section 27.4.2).
Darts can be marked during operations, for example when performing a breadth-first search traversal, thanks to
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Boolean marks (see Sections 27.4.3). In the following, we denote by dh0, dh1, dh2 the dart handles for the darts
d0, d1, d2, respectively. That is d0 == *dh0.

27.4.1 Iterating over Orbits, Cells, and Attributes

The combinatorial map offers iterators to traverse the darts of a specific orbit, to traverse all darts of one cell, or
one dart per cell, and to traverse all i-attributes.

Instead of the begin()/end() member function pair as we know it from STL containers, and from most CGAL
data structures, the combinatorial map defines range classes which are all models of the Range concept.

There are three different categories of dart range classes:

• Dart range: range of all the darts of a combinatorial map;

• Dart of orbit range<Beta...>: range of all the darts of the orbit 〈Beta...〉(d0) for a given d0. Beta... is a
sequence of integers i1,. . .,ik, each i j∈{0,. . . ,d}. These integers must satisfy: i1<i2<.. .<ik, and (i1 6=0 or
i2 6=1) (for example Dart of orbit range<1,2> for the orbit 〈β1,β2〉(d0));

• Dart of cell range<i,dim>: range of all the darts of the i-cell containing a given dart. The i-cell is con-
sidered in dimension dim (with 0≤dim≤d, dim=d by default), with 0≤i≤dim+1. If i=dim+1, Dart of
cell range<i,dim> is the range of all the darts of the connected component containing a given dart.

There are also two different classes of ranges containing one dart per i-cell. Note that in these classes, the dart
of each i-cell can be any dart of the cell. Moreover, each i-cell (and j-cell in the second case) is considered in
dimension dim (with 0≤dim≤d, dim=d by default).

• One dart per cell range<i,dim>: range containing one dart of each i-cell of the combinatorial map,
0≤i≤dim+1 (for example One dart per cell range<2> for the range of one dart per 2-cell of the combi-
natorial map);

• One dart per incident cell range<i,j,dim>: range containing one dart of each i-cell incident to the j-cell
containing a given dart, with 0≤i≤dim+1 and 0≤j≤dim+1 (for example One dart per incident cell
range<0,3> for the range of one dart per vertex of the volume incident to the starting dart). If i=j, the
range contains only the given dart.

The iterators of the Dart range are bidirectional iterators, while the iterators of the other four ranges are forward
iterators. The value type of all these iterators is Dart thus all these iterators can be directly used as Dart handle.

Additionally, there is a range over non void i-attributes: Attribute range<i>::type, having a bidirectional iterator
with value type Attribute type<i>::type.

For each range, there is an associated const range, a model of the ConstRange concept. You can find some
examples of ranges in Section 27.6.1.

27.4.2 Construction Operations

Several global functions allow to create specific configurations of darts into a combinatorial map. Existing darts
in the combinatorial map are not modified. Note that the dimension of the combinatorial map must be large
enough: darts must contain all the β pointers used by the operation. All these functions take an instance of
CombinatorialMap as first parameter (called cm) and return a Dart handle to a new dart created during the
operation.
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• make edge<CMap>(cm): creates an isolated edge (two darts linked by β2); dimension must be greater or
equal than two;

• make combinatorial polygon<CMap>(cm,lg): creates an isolated combinatorial polygon of length lg (lg
darts linked by β1), for lg>0; dimension must be greater or equal than one;

• make combinatorial tetrahedron<CMap>(cm): creates an isolated combinatorial tetrahedron (four com-
binatorial triangles linked together by β2); dimension must be greater or equal than two;

• make combinatorial hexahedron<CMap>(cm): creates an isolated combinatorial hexahedron (six com-
binatorial quadrangles linked together by β2); dimension must be greater or equal than two.

advanced

27.4.3 Boolean Marks

It is often necessary to mark darts, for example to retrieve in O(1) if a given dart was already processed during
a specific algorithm, for example, iteration over a given range. Users can also mark specific parts of a combi-
natorial map (for example mark all the darts belonging to objects having specific semantics). To answer these
needs, a CombinatorialMap has a certain number of Boolean marks (fixed by the constant NB MARKS). When
one wants to use a Boolean mark, the following methods are available (with cm an instance of a combinatorial
map):

• get a new free mark: int m = cm.get new mark() (return -1 if no mark is available);

• set mark m for a given dart d0: cm.mark(dh0,m);

• unset mark m for a given dart d0: cm.unmark(dh0,m);

• test if a given dart d0 is marked for m: cm.is marked(dh0,m);

• unmark all the darts of cm for m: cm.unmark all(m);

• negate mark m of all the darts of cm: cm.negate mark(m). All the marked darts become unmarked and all
the unmarked darts become marked;

• free mark m: cm.free mark(m). This method unmarks all the darts of cm for m before freeing it.

It is important to free a mark when it is no longer needed, otherwise you may at some point run out of marks.

The following example illustrates how to use marks. Two combinatorial tetrahedra are created and 3-sewn (see
Section 27.5.1 for a detailed description of the sew operation). Then a mark is reserved and used to mark all the
darts belonging to the first combinatorial tetrahedron. Finally, these tetrahedron are merged. The marks allow
us to know which darts come from the first and second tetrahedron.� �
#include <CGAL/Combinatorial_map.h>
#include <CGAL/Combinatorial_map_constructors.h>
#include <CGAL/Combinatorial_map_operations.h>
#include <iostream>
#include <cstdlib>

typedef CGAL::Combinatorial_map<3> CMap_3;
typedef CMap_3::Dart_handle Dart_handle;

int main()
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{
CMap_3 cm;

// 1) Reserve a mark.
int mark = cm.get_new_mark();
if ( mark==-1 )

{
std::cerr<<"No more free mark, exit."<<std::endl;
exit(-1);

}

// 2) Create two tetrahedra.
Dart_handle dh1 = make_combinatorial_tetrahedron(cm);
Dart_handle dh2 = make_combinatorial_tetrahedron(cm);

// 3) 3-sew them.
cm.sew<3>(dh1, dh2);

// 4) Mark the darts belonging to the first tetrahedron.
for (CMap_3::Dart_of_cell_range<3>::iterator

it(cm.darts_of_cell<3>(dh1).begin()),
itend(cm.darts_of_cell<3>(dh1).end()); it!=itend; ++it)

cm.mark(it, mark);

// 4) Remove the common 2-cell between the two cubes:
// the two tetrahedra are merged.
CGAL::remove_cell<CMap_3, 2>(cm, dh1);

// 5) Thanks to the mark, we know which darts come from the first
tetrahedron.

unsigned int res=0;
for (CMap_3::Dart_range::iterator it(cm.darts().begin()),

itend(cm.darts().end()); it!=itend; ++it)
{

if ( cm.is_marked(it, mark) )
++res;

}

std::cout<<"Number of darts from the first tetrahedron:
"<<res<<std::endl;

cm.free_mark(mark);

return EXIT_SUCCESS;
}� �

File: examples/Combinatorial_map/map_3_marks.cpp

advanced
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Figure 27.10: Example of 3-sew operation. Left: A 3D combinatorial map containing two volumes that are
not connected, with 2-attributes. Each attribute contains a color in RGB format, and there are four 2-cells
associated with attributes. Associations between darts and attributes are drawn with red segments. Right: The
3D combinatorial map obtained as result of sew<3>(1,5) (or sew<3>(2,8), or sew<3>(3,7), or sew<3>(4,6)).
Darts (1,5), (2,8), (3,7) and (4,6) are linked together by β3. The two 2-cells c1={1,2,3,4} and c2={5,6,7,8}
are merged after the sew into the 2-cell {1,2,3,4,5,6,7,8}. We are in the case where the two attributes are non
NULL, thus the first one is kept, and all the darts of c2 are associated with the first attribute.

27.5 Modification Operations

Several operations allow to modify a given combinatorial map. There are two main categories of modification
operations:

• Sew, link, unsew and unlink which modify some existing β pointers, without creating or removing darts
(see Section 27.5.1);

• Removal and insertion of cells which modify both darts and β pointers (see Section 27.5.2).

27.5.1 Sewing Orbits and Linking Darts

The CombinatorialMap defines two groups of methods to modify the β pointers of existing darts.

• The sew and unsew methods iterate over two orbits in order to link or unlink specific darts two by two.
Intuitively, a sew<i> operation glues two i-cells by identifying two of their (i-1)-cells (see example in
Figure 27.10 where sew<3> is used to glue two 3-cells along one 2-cell). Reciprocally, a unsew<i>
operation un-glues two i-cells which were glued along one of their (i-1)-cells. These methods guarantee
that given a valid combinatorial map and a possible operation we obtain a valid combinatorial map as
result of the operation.

• advanced

The link beta and unlink beta methods only modify the pointer of two darts: the obtained combinatorial
maps may be not valid. These operations can be useful to use low level operations in a specific algo-
rithm, for example to modify locally a combinatorial map in a really fast way. In such a case, additional
operations may be needed to restore the validity conditions.

advanced
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Linking two darts d1 and d2 by βi, with 2≤i≤d and d1 6=d2, consists in modifying two βi pointers such that
βi(d1)=d2 and βi(d2)=d1. For i=1, the modification is β1(d1)=d2 (and thus β0(d2)=d1 by definition of β0); in
this case we can have d1=d2 (a dart linked with itself corresponds to an edge which is a loop).

Reciprocally, unlinking a given dart d0 by βi, with 2≤ i≤d, consists in modifying two βi pointers such that
βi(βi(d0))=∅ and βi(d0)=∅. For i=1, the modification is β1(d0)=∅ (and thus β0(β1(d0))=∅ by definition of
β0). Note that is it possible to unlink a given dart for βi only if it is not i-free.

The sew<i>(dh1,dh2) method consists mainly to link two by two several darts by βi. This operation is
possible only if there is a bijection f between all the darts of the orbit D1=〈β1,. . .,βi−2,βi+2,. . .,βd〉(d1)
and D2=〈β1,. . .,βi−2,βi+2,. . .,βd〉(d2) satisfying: f (d1)=d2, and for all e∈D1, for all j∈{1,. . .,i-2,i+2,. . .,d},
f (β j(e))=β

−1
j (f (e)). Intuitively, this condition ensures the validity of the combinatorial map by verifying that

condition discussed in Section 27.2.4 will be satisfied after the operation. This condition can be tested by using
the method is sewable<i>(dh1,dh2). For example, the function is sewable<i> would return false if we tried to
sew a triangular facet with a quad facet. Note that given two darts d1 and d2, if there is such a bijection, it is
uniquely defined. So giving the two darts as arguments of the sew<i> is enough to retrieve all the pairs of darts
to link. If such a bijection exists, the sew<i>(dh1,dh2) operation consists only in linking by βi each couple of
darts d3 and d4 such that d3=f (d4).

In addition, the sew operation updates the associations between darts and non void attributes in order to guar-
antee that all the darts belonging to a given cell are associated with the same attribute (which is a condition of
combinatorial map validity). For each couple of j-cells c1 and c2 that are merged into one j-cell during the sew,
we have to update the two associated attributes attr1 and attr2. If both are NULL, there is nothing to do. If
one is NULL and the other not, we only associate the non NULL attribute to all the darts of the resulting cell.
When the two attributes are non NULL, we first apply functor On merge on the two attributes attr1 and attr2
(see Section 27.3.4). Then, we associate the attribute attr1 to all darts of the resulting j-cell. Finally, attribute
attr2 is removed from the combinatorial map.

Note that when the two attributes are non NULL, the first one is kept. But user can customize this behavior
in order to update the information contained in the attributes according to its needs. For that, we can define a
specific functor, and use it as template argument for OnMerge parameter of the Cell attribute definition. This
functor can for example copy the information of the second attribute in the information of the first one to make
as if the second attribute is kept.

For example, in Figure 27.10, we want to 3-sew the two initial volumes. sew<3>(1,5) links by β3 the pairs
of darts (1,5), (2,8), (3,7) and (4,6), thus the combinatorial map obtained is valid. 2-attributes are updated so
that all the darts belonging to the 2-cell containing dart 1 become associated to the same 2-attribute after the
operation.

Similarly, unsew<i>(dh0) operation unlinks βi for all the darts in the orbit 〈β1,. . .,βi−2,βi+2,. . .,βd〉(d0), and thus
guarantees to obtain a valid combinatorial map. This operation is possible for any non i-free dart.

As for the sew operations, attributes are updated to guarantee that two darts belonging to two different j-cells
are associated to two different j-attributes. If the unsew operation splits a j-cell c in two j-cells c1 and c2, and if
c is associated to a j-attribute attr1, then this attribute is duplicated into attr2, and all the darts belonging to c2
are associated with this new attribute. Finally, we call the functor On split on the two attributes attr1 and attr2
(see Section 27.3.4).

Let us consider the combinatorial map given in Figure 27.10 (Right). If we call unsew<3>(2), we obtain the
combinatorial map in Figure 27.10 (Left) (except for the color of the attribute associated to the 2-cell {5,6,7,8}
which would be #00ff00). The unsew<3> operation has duplicated the 2-attribute associated to the 2-cell
{1,2,3,4,5,6,7,8} since this 2-cell is split in two after the unsew operation.
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advanced

If one wants to modify a combinatorial map manually, it is possible to switch off the updating between
darts and attributes by passing false as last argument of sew<i>(dh1,dh2,update attributes=true) and unsew<
i>(dh0,update attributes=true). In these cases, the combinatorial map obtained may be no longer valid due to
incorrect associations between darts and attributes.

In Figure 27.10 (Left), if we call sew<3>(1,5,false), the resulting combinatorial map is similar to the combi-
natorial map of Figure 27.10 (Right) (we have linked by β3 the pairs of darts (1,5), (2,8), (3,7) and (4,6)), but
associations between darts and attributes are not valid. Indeed, we have kept the four initial attributes and all
the associations between darts and attributes, thus two darts belonging to the same 2-cell (for example darts 1
and 5) are associated with two different attributes.

We can also use the link beta<i>(dh1,dh2,update attributes=true) which links d1 and d2 by βi without modify-
ing the other links. Association between darts and attributes are only modified for darts d1 and d2, and similarly
as for sew<i>, this updating can be avoided by passing false as last argument of link beta<i>(dh1,dh2,update
attributes). Lastly, we can use unlink beta<i>(dh0) to unlink d0 for βi. In this last case, there is no modification
of association between darts and attributes.

In Figure 27.10 (Left), if we call link beta<3>(1,5), in the resulting combinatorial map we have now β3(1)=5 and
β3(5)=1. This combinatorial map is no longer valid (for example dart 2 is 3-free and we should have β3(2)=8).

advanced

27.5.2 Removal and Insertion Operations

The following high level operations are defined as global functions taking an instance cm of CombinatorialMap
as first argument. All these methods ensure that given a valid combinatorial map and a possible operation, the
modified combinatorial map is also valid.

The first one is remove cell<CMap,i>(cm,dh0) which modifies the combinatorial map to remove the i-cell con-
taining dart d0, with 0≤i≤d. This operation is possible if i=d or if the given i-cell is incident to at most two
(i+1)-cells which can be tested thanks to is removable<CMap,i>(cm,dh0). If the removed i-cell was incident
to two different (i+1)-cells, these two cells are merged into one (i+1)-cell. In this case, the On merge functor
is called if two (i+1)-attributes are associated to the two (i+1)-cells. If the i-cell is associated with a non void
attribute, it is removed from the combinatorial map (see three examples on Figures 27.11, 27.13 and 27.14).

dh1

dh2

dh2=insert_cell_0_in_cell_1<CMap>(cm,dh1)

remove_cell<CMap,0>(cm,dh2)

Figure 27.11: Example of insert cell 0 in cell 1 and remove cell<0> operations. Left: Initial combinatorial
map. Right: After the insertion of a 0-cell in the 1-cell containing dart d1. Now if we remove the 0-cell
containing dart d2, we obtain the initial combinatorial map.
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The inverse operation of the removal is the insertion operation. Several versions exist, sharing a common
principle. They consist in adding a new i-cell ”inside” an existing j-cell, i<j, by splitting the j-cell into several
j-cells. Contrary to remove cell<CMap,i>, is it not possible to define a unique insert cell i in cell j<CMap,i,j>
function because parameters are different depending on i and j.

insert cell 0 in cell 1<CMap>(cm,dh0) adds a 0-cell in the 1-cell containing dart d0. The 1-cell is split in two.
This operation is possible if d0∈cm.darts() (see example on Figure 27.11).

insert cell 0 in cell 2<CMap>(cm,dh0) adds a 0-cell in the 2-cell containing dart d0. The 2-cell is split in
triangles, one for each initial edge of the facet. This operation is possible if d0∈cm.darts() (see example on
Figure 27.12).

Vector<Dart_handle>v1 = {Dart_of_cell_range<0,2>(dh3)}
Vector<Dart_handle>v2 = {Dart_of_cell_range<0,2>(dh4)}

a in v1 U v2: remove_cell<1>(cm,a)∀

dh4=insert_cell_0_in_cell_2<CMap>(cm,dh2)
dh3=insert_cell_0_in_cell_2<CMap>(cm,dh1)

dh1

dh2

dh3

dh4

Figure 27.12: Example of insert cell 0 in cell 2 operation.

insert cell 1 in cell 2<CMap>(cm,dh1,dh2) adds a 1-cell in the 2-cell containing darts d1 and d2, between the
two 0-cells containing darts d1 and d2. The 2-cell is split in two. This operation is possible if d1∈〈β1〉(d2)
which can be tested thanks to is insertable cell 1 in cell 2(cm,dh1,dh2). In the example on Figure 27.13, it is
possible to insert an edge between darts d2 and d3, but it is not possible to insert an edge between d1 and d3.

remove_cell<CMap,1>(cm,dh4)

remove_cell<CMap,1>(cm,dh5)

dh5=insert_cell_1_in_cell_2<CMap>(cm,dh2,dh3)

dh4=insert_dangling_cell_1_in_cell_2<CMap>(cm,dh1)

dh2 dh3

dh1

dh5

dh4

Figure 27.13: Example of insert cell 1 in cell 2 and remove cell<1> operations. Left: Initial combinatorial
map. Right: After the insertion of two 1-cells: a first one between the two 0-cells containing darts d2 and d3,
and a second one incident to the 0-cell containing dart d1. Now if we remove the two 1-cells containing darts
d4 and d5, we obtain the initial combinatorial map.
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insert dangling cell 1 in cell 2<CMap>(cm,dh0) adds a 1-cell in the 2-cell containing dart d0, the 1-cell being
attached by only one of its vertex to the 0-cell containing dart d0. This operation is possible if d0∈cm.darts().

insert cell 2 in cell 3<CMap>(cm,itbegin,itend) adds a 2-cell in the 3-cell containing all the darts between
itbegin and itend, along the path of 1-cells containing darts in [itbegin,itend). The 3-cell is split in two. This
operation is possible if all the darts in [itbegin,itend) form a closed path inside a same 3-cell which can be tested
thanks to is insertable cell 2 in cell 3(cm,itbegin,itend) (see example on Figure 27.14).

std::vector{dh1,dh2,dh3,dh4})

dh5=insert_cell_2_in_cell_3<CMap>(cm,

dh1

dh3
dh2

dh4

dh5

remove_cell<CMap,2>(cm,d5)

Figure 27.14: Example of insert cell 2 in cell 3 and remove cell<2> operations. Left: Initial combinatorial
map. Right: After the insertion of a 2-cell along the path of 1-cells containing respectively d1,d2,d3,d4. Now if
we remove the 2-cell containing dart d5, we obtain the initial combinatorial map.

Some examples of use of these operations are given in Section 27.6.2.

27.6 Examples

27.6.1 A 3D Combinatorial Map

In this example, a 3-dimensional combinatorial map is constructed. Two combinatorial tetrahedra are created,
then the numbers of cells of the combinatorial map are displayed, and the validity of the combinatorial map is
checked. Then, we illustrate the use of ranges to iterate over specific darts. The first loop enumerates all the
darts of the first tetrahedron by using the range Dart of orbit range<1,2>, and the second loop enumerates all
the darts of the facet containing dart dh2 by using the range Dart of orbit range<1>.� �
#include <CGAL/Combinatorial_map.h>
#include <CGAL/Combinatorial_map_constructors.h>
#include <iostream>
#include <cstdlib>

typedef CGAL::Combinatorial_map<3> CMap_3;
typedef CMap_3::Dart_const_handle Dart_const_handle;

int main()
{

CMap_3 cm;

// Create two tetrahedra.
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Dart_const_handle dh1 = CGAL::make_combinatorial_tetrahedron(cm);
Dart_const_handle dh2 = CGAL::make_combinatorial_tetrahedron(cm);

// Display the combinatorial map characteristics.
cm.display_characteristics(std::cout);
std::cout<<", valid="<<cm.is_valid()<<std::endl;

unsigned int res = 0;
// Iterate over all the darts of the first tetrahedron.
// Note that CMap_3::Dart_of_orbit_range<1,2> in 3D is equivalent to
// CMap_3::Dart_of_cell_range<3>.
for (CMap_3::Dart_of_orbit_range<1,2>::const_iterator

it(cm.darts_of_orbit<1,2>(dh1).begin()),
itend(cm.darts_of_orbit<1,2>(dh1).end()); it!=itend; ++it)

++res;

std::cout<<"Number of darts of the first tetrahedron: "
<<res<<std::endl;

res = 0;
// Iterate over all the darts of the facet containing dh2.
for (CMap_3::Dart_of_orbit_range<1>::const_iterator

it(cm.darts_of_orbit<1>(dh2).begin()),
itend(cm.darts_of_orbit<1>(dh2).end()); it!=itend; ++it)

++res;

std::cout<<"Number of darts of the facet containing dh2: "
<<res<<std::endl;

return EXIT_SUCCESS;
}� �
File: examples/Combinatorial_map/map_3_simple_example.cpp

The output is:

#Darts=24, #0-cells=8, #1-cells=12, #2-cells=8, #3-cells=2, #ccs=2, valid=1
Number of darts of the first tetrahedron: 12
Number of darts of the facet containing dh2: 3

which gives the number of darts of the combinatorial map, the numbers of different cells, the number of con-
nected components, and finally a Boolean showing the validity of the combinatorial map (a tetrahedron is made
up of 12 darts because there are 3 darts per facet and there are 4 facets).

Note the creation in the for loops of the two instances of Dart of orbit range::const iterator: it is the cur-
rent iterator, and itend an iterator to the end of the range. Having itend avoids calling cm.darts of orbit<1,2>
(dh1).end() again and again as in the following example (which is a bad solution):� �

for (CMap_3::Dart_of_orbit_range<1,2>::const_iterator
it(cm.darts_of_orbit<1,2>(dh1).begin());
it!=cm.darts_of_orbit<1,2>(dh1).end()); ++it)

{...}� �
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27.6.2 High Level Operations

This example shows some uses of high level operations. First we create a combinatorial hexahedron, the combi-
natorial map obtained is shown in Figure 27.15 (Left). Then we insert two 1-cells along two opposite 2-cells of
the hexahedron. The combinatorial map obtained is shown in Figure 27.15 (Middle). Finally, we insert a 2-cell
in the diagonal of the hexahedron in order to split it into two parts. We obtain the combinatorial map shown in
Figure 27.15 (Right). We display the characteristics of the combinatorial map and check its validity.

The second part of this example removes the inserted elements. First we remove the inserted 2-cell, then the
two inserted 1-cells. We get back the initial combinatorial hexahedron, which is verified by displaying once
again the characteristics of the combinatorial map.� �
#include <CGAL/Combinatorial_map.h>
#include <CGAL/Combinatorial_map_constructors.h>
#include <CGAL/Combinatorial_map_operations.h>
#include <iostream>
#include <cstdlib>

typedef CGAL::Combinatorial_map<3> CMap_3;
typedef CMap_3::Dart_handle Dart_handle;

int main()
{

CMap_3 cm;

// Create one combinatorial hexahedron.
Dart_handle dh1 = CGAL::make_combinatorial_hexahedron(cm);

// Add two edges along two opposite facets.
CGAL_assertion( CGAL::is_insertable_cell_1_in_cell_2

(cm,dh1->beta(1),dh1->beta(0)) );

CGAL::insert_cell_1_in_cell_2(cm,dh1->beta(1),dh1->beta(0));
CGAL_assertion( cm.is_valid() );

Dart_handle dh2=dh1->beta(2)->beta(1)->beta(1)->beta(2);

CGAL_assertion( CGAL::is_insertable_cell_1_in_cell_2
(cm,dh2,dh2->beta(1)->beta(1)) );

CGAL::insert_cell_1_in_cell_2(cm,dh2,dh2->beta(1)->beta(1));
CGAL_assertion( cm.is_valid() );

// Insert a facet along these two new edges plus two initial edges
// of the hexahedron.
std::vector<Dart_handle> path;
path.push_back(dh1->beta(1));
path.push_back(dh1->beta(0)->beta(2)->beta(1));
path.push_back(dh2->beta(0));
path.push_back(dh2->beta(2)->beta(1));

CGAL_assertion( (CGAL::is_insertable_cell_2_in_cell_3
(cm,path.begin(),path.end())) );
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Dart_handle
dh3=CGAL::insert_cell_2_in_cell_3(cm,path.begin(),path.end());

CGAL_assertion( cm.is_valid() );

// Display the combinatorial map characteristics.
cm.display_characteristics(std::cout) << ", valid=" <<

cm.is_valid() << std::endl;

// We use the removal operations to get back to the initial hexahedron.
CGAL_assertion( (CGAL::is_removable<CMap_3, 2>(cm,dh3)) );
CGAL::remove_cell<CMap_3,2>(cm,dh3);
CGAL_assertion( cm.is_valid() );

CGAL_assertion( (CGAL::is_removable<CMap_3, 1>(cm,dh1->beta(1))) );
CGAL::remove_cell<CMap_3,1>(cm,dh1->beta(1));
CGAL_assertion( cm.is_valid() );

CGAL_assertion( (CGAL::is_removable<CMap_3, 1>(cm,dh2->beta(0))) );
CGAL::remove_cell<CMap_3,1>(cm,dh2->beta(0));
CGAL_assertion( cm.is_valid() );

// Display the combinatorial map characteristics.
cm.display_characteristics(std::cout) << ", valid="

<< cm.is_valid() << std::endl;

return EXIT_SUCCESS;
}� �
File: examples/Combinatorial_map/map_3_operations.cpp

The output is:

#Darts=36, #0-cells=8, #1-cells=14, #2-cells=9, #3-cells=2, #ccs=1, valid=1
#Darts=24, #0-cells=8, #1-cells=12, #2-cells=6, #3-cells=1, #ccs=1, valid=1

The first line gives the characteristics of the combinatorial map after all the insertions (the combinatorial map
drawn in Figure 27.15 (Right)). There are two 3-cells (since the combinatorial hexahedron was split in two by
the 2-cell insertion), nine 2-cells (since two 2-cells of the original hexahedron were split in two by the two 1-cell
insertions, and a new 2-cell was created during the 2-cell insertion), fourteen 1-cells (since there are two new
1-cells created by the 1-cell insertion) while the number of 0-cells remains unchanged.

The second line is the result after the removal operations. We retrieve the original combinatorial hexahedron
since we have removed all the inserted elements.

27.6.3 A 4D Combinatorial Map

In this example, a 4-dimensional combinatorial map is used. Two tetrahedral cells are created and sewn by β4.
Then the numbers of cells of the combinatorial map are displayed, and its validity is checked.

By looking at these numbers of cells, we can see that the 4D combinatorial map contains only one 3-cell. Indeed,
the sew<4> operation has identified by pairs all the darts of the two 3-cells by definition of the sew operation
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d1

d2

d3

Figure 27.15: Example of high level operations. Left: Initial 3D combinatorial map after the creation of the
combinatorial hexahedron. Middle: Combinatorial map obtained after the two 1-cell insertions. The two 2-cells
were split in two. Right: Combinatorial map obtained after the 2-cell insertion. The 3-cell was split in two.

(see Section 27.5.1) which, in 4D, links by β3 all the darts in 〈β1,β2〉(d1) and in 〈β1,β2〉(d2). The situation is
similar (but in higher dimension) to the configuration where we have two triangles in a 3D combinatorial map,
and you use sew<3> between these two triangles. The two triangles are identified since all their darts are linked
by β3, thus we obtain a 3D combinatorial map containing only one 3-cell. Note that this 3-cell is unbounded
since the darts of the two triangles are all 2-free. In the 4D case, the 4-cell is unbounded since all its darts are
3-free.

In this example, we also illustrate how to use the basic methods to build ”by hand” some specific configu-
ration in a combinatorial map. In fact, these functions are already present in the package: function make
triangle(cm) is equivalent to CGAL::make combinatorial polygon(cm,3) and make tetrahedron(cm) is equiva-
lent to CGAL::make combinatorial tetrahedron(cm). If we want to create a 4D simplex, we must create five
3D simplexes, and sew them correctly two by two by β3 (and so on if you want to create higher dimensional
combinatorial map).� �
#include <CGAL/Combinatorial_map.h>
#include <CGAL/Combinatorial_map_constructors.h>
#include <iostream>
#include <cstdlib>

typedef CGAL::Combinatorial_map<4> CMap_4;
typedef CMap_4::Dart_handle Dart_handle;

Dart_handle make_triangle(CMap_4& amap)
{
Dart_handle d1 = amap.create_dart();
Dart_handle d2 = amap.create_dart();
Dart_handle d3 = amap.create_dart();
amap.link_beta<1>(d1,d2);
amap.link_beta<1>(d2,d3);
amap.link_beta<1>(d3,d1);
return d1;

}

Dart_handle make_tetrahedral(CMap_4& amap)
{

Dart_handle d1 = make_triangle(amap);
Dart_handle d2 = make_triangle(amap);
Dart_handle d3 = make_triangle(amap);
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Dart_handle d4 = make_triangle(amap);
amap.link_beta<2>(d1, d2);
amap.link_beta<2>(d3, d2->beta(0));
amap.link_beta<2>(d1->beta(1), d3->beta(0));
amap.link_beta<2>(d4, d2->beta(1));
amap.link_beta<2>(d4->beta(0), d3->beta(1));
amap.link_beta<2>(d4->beta(1), d1->beta(0));
return d1;

}

int main()
{

CMap_4 cm;
Dart_handle d1 = make_tetrahedral(cm);
Dart_handle d2 = make_tetrahedral(cm);

cm.sew<4>(d1,d2);

cm.display_characteristics(std::cout);
std::cout<<", valid="<<cm.is_valid()<<std::endl;

return EXIT_SUCCESS;
}� �
File: examples/Combinatorial_map/map_4_simple_example.cpp

The output is:

#Darts=24, #0-cells=4, #1-cells=6, #2-cells=4, #3-cells=1, #4-cells=2, #ccs=1, valid=1

27.6.4 Combinatorial Map With Attributes

In the following example, we illustrate how to specify the 2-attributes in a 3D combinatorial map. For
that, we define our own item class using CGAL::Dart<3,CMap> as type of dart, and CGAL::Cell attribute<
CMap,int,CGAL::Tag true,Sum functor,Divide by two functor> as attributes which contain an int and which
are associated to 2-cells of the combinatorial map.

Functors Sum functor and Divide by two functor define a custom behavior: when two attributes ca1 and ca2
are merged into ca1, the value of ca1 is the sum of the two initial values. When an attribute ca1 is split in the
two attributes ca1 and ca2, the value of each attribute is half of the first value.� �
#include <CGAL/Combinatorial_map.h>
#include <CGAL/Combinatorial_map_constructors.h>
#include <CGAL/Combinatorial_map_operations.h>
#include <CGAL/Cell_attribute.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>

struct Sum_functor
{
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template<class Cell_attribute>
void operator()(Cell_attribute& ca1,Cell_attribute& ca2)
{ ca1.info()=ca1.info()+ca2.info(); }

};
struct Divide_by_two_functor
{

template<class Cell_attribute>
void operator()(Cell_attribute& ca1,Cell_attribute& ca2)
{

ca1.info()=(ca1.info()/2);
ca2.info()=(ca1.info());

}
};

struct Myitem
{

template<class CMap>
struct Dart_wrapper
{

typedef CGAL::Dart<3, CMap> Dart;
typedef CGAL::Cell_attribute<CMap, int, CGAL::Tag_true,

Sum_functor, Divide_by_two_functor>
Facet_attribute;
typedef CGAL::cpp0x::tuple<void,void,Facet_attribute> Attributes;

};
};

typedef CGAL::Combinatorial_map<3,Myitem> CMap_3;
typedef CMap_3::Dart_handle Dart_handle;

int main()
{

CMap_3 cm;

// Create 2 hexahedra.
Dart_handle dh1 = make_combinatorial_hexahedron(cm);
Dart_handle dh2 = make_combinatorial_hexahedron(cm);

// 1) Create all 2-attributes and associated them to darts.
for (CMap_3::Dart_range::iterator

it=cm.darts().begin(), itend=cm.darts().end();
it!=itend; ++it)

{
if ( it->attribute<2>()==NULL )

cm.set_attribute<2>(it, cm.create_attribute<2>());
}

// 2) Set the color of all facets of the first hexahedron to 7.
for (CMap_3::One_dart_per_incident_cell_range<2, 3>::iterator

it=cm.one_dart_per_incident_cell<2,3>(dh1).begin(),
itend=cm.one_dart_per_incident_cell<2,3>(dh1).end(); it!=itend;

++it)
{ it->attribute<2>()->info()=7; }
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// 3) Set the color of all facets of the second hexahedron to 13.
for (CMap_3::One_dart_per_incident_cell_range<2, 3>::iterator it=

cm.one_dart_per_incident_cell<2,3>(dh2).begin(),
itend=cm.one_dart_per_incident_cell<2,3>(dh2).end(); it!=itend;

++it)
{ it->attribute<2>()->info()=13; }

// 4) 3-Sew the two hexahedra along one facet.
cm.sew<3>(dh1, dh2);

// 5) Display all the values of 2-attributes.
for (CMap_3::Attribute_range<2>::type::iterator

it=cm.attributes<2>().begin(), itend=cm.attributes<2>().end();
it!=itend; ++it)

{
std::cout<<it->info()<<"; ";

}
std::cout<<std::endl;

// 6) Insert a vertex in the facet between the two hexahedra.
CGAL::insert_cell_0_in_cell_2(cm, dh2);

// 7) Display all the values of 2-attributes.
for (CMap_3::Attribute_range<2>::type::iterator

it=cm.attributes<2>().begin(), itend=cm.attributes<2>().end();
it!=itend; ++it)

{
std::cout<<it->info()<<"; ";

}
std::cout<<std::endl;
cm.display_characteristics(std::cout);
std::cout<<", valid="<<cm.is_valid()<<std::endl;

return EXIT_SUCCESS;
}� �
File: examples/Combinatorial_map/map_3_with_colored_facets.cpp

The output is:

20; 7; 7; 7; 7; 7; 13; 13; 13; 13; 13;
2; 7; 7; 7; 7; 7; 2; 13; 13; 13; 13; 13; 5; 10;
#Darts=64, #0-cells=13, #1-cells=24, #2-cells=14, #3-cells=2, #ccs=1, valid=1

Before the cm.sew<3>, each 2-cell of the first cube is associated with an attribute having 7 as value, and each
2-cell of the second cube with an attribute having 13 as value. During the cm.sew<3>, two 2-cells are merged,
thus the functor Sum functor is called on the two associated 2-attributes, and the value of the new 2-cell is the
sum of the two previous one: 20.

Then we call CGAL::insert cell 0 in cell 2 on a dart which belong to this 2-cell. This method splits the existing
2-cell in k 2-cells, k being the number of 1-cells of the initial 2-cell (4 in this example). These splits are made
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consecutively, thus for the first split, we create a new attribute as copy of the initial one and call functor Divide
by two functor on these two attributes: the value of each attribute is thus 20/2=10. For the second split, the
value of each attribute is thus 10/2=5, and for the last split the value of each attribute is thus 5/2=2 (remember
that information contained in 2-attributes in an int). At the end, we obtain five 2-attributes with 7 as value, five
2-attributes with 13 as value, and four 2-attributes having respectively 2, 2, 5 and 10 as values.

27.7 Mathematical Definitions

The initial definition of combinatorial map in any dimension is given in [Lie91, Lie94]. But it allows only
to represent objects without boundaries. This definition was extended [PABL07, Dam10] in order to allow to
represent objects with boundaries, based on the notions of partial permutations and partial involutions.

Intuitively, a partial permutation on a finite set E is a mapping from E∪{∅} to E∪{∅} which is injective on
the subset of the domain that does not map to ∅. More precisely, a mapping p: E∪{∅} → E∪{∅} is a partial
permutation defined on E if:

1. p(∅)=∅;

2. ∀e1∈E, ∀e2∈E, p(e1)=p(e2)6=∅⇒ e1=e2.

The inverse p−1 of this partial permutation is also a partial permutation and is defined by:

1. p−1(∅)=∅;

2. ∀e∈E, if it exists a∈E such that p(a)=e, then p−1(e)=a, otherwise p−1(e)=∅.

Let E be a set, and p a partial permutation on E. An element e is called a fixed point for p if p(e)=e. p is a partial
involution if ∀e∈E: p(e)6=∅⇒ p(p(e))=e.

Now we can give the definition of a combinatorial map in any dimension. Let d≥0. A d-dimensional combina-
torial map (or d-map) is a (d+1)-tuple M=(D,β1,. . .,βd) where:

1. D is a finite set of darts;

2. β1 is a partial permutation on D;

3. ∀i, 2≤i≤d, βi is a partial involution on D without fixed point;

4. ∀i: 0≤i≤d-2, ∀j: 3≤j≤d, i+2≤j, βi◦β j is a partial involution.

A d-dimensional combinatorial map represents a subdivision of an orientable d-dimensional quasi-manifold. A
dart is an abstract element which is only required to define partial permutations. The last line of the definition
fixes constraints which guarantee the topological validity of the represented object, i.e., the fact that it is a quasi-
manifold. This definition allows us to verify the validity of a given combinatorial map by checking if each item
of the definition is satisfied.

Given a set of partial permutations S={ f1,. . ., fk}, we denote by 〈S〉 the permutation group generated by
{ f1,. . ., fk} and whose group operation is the composition of partial permutations. The orbit 〈 f1,. . ., fk〉(a) is
the set of darts which can be obtained from a by elements of 〈S〉: 〈 f1,. . ., fk〉(a)={φ(a)|φ∈〈S〉}\{∅}.

Let d0∈D be a dart. Given i, 1≤i≤d, the i-cell containing d0 is 〈β1,. . .,βi−1,βi+1,. . .,βd〉(d0). The 0-cell con-
taining d0 is 〈{βi◦β j|∀i,j: 1≤i<j≤d}〉(d0).
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27.8 Design and Implementation History

The code of this package is inspired by Moka, a 3D topological modeler mainly developed by Frédéric Vidil
and Guillaume Damiand (http://moka-modeller.sourceforge.net/). However, Moka was based on Generalized
maps (and not Combinatorial maps), and the design was not CGAL ”compatible”. Thus, Guillaume Damiand
started to develop a totally new package by mixing ideas taken from Moka with the design of the Halfedge
data structure package of CGAL. Andreas Fabri and Sébastien Loriot contributed to the design, the coding, and
to the documentation of the package, and Laurent Rineau helped for the design. Emma Michel contributed to
the manual. Monique Teillaud and Bernd Gärtner contributed to the manual by giving useful remarks, really
numerous and detailed for Monique.
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CombinatorialMap

Definition

The concept CombinatorialMap defines a d-dimensional combinatorial map.

Creation

CombinatorialMap cm; Default constructor.

Types

CombinatorialMap:: Dart Dart type, a model of the Dart concept.
CombinatorialMap:: Dart handle Dart handle type, equal to Dart::Dart handle.
CombinatorialMap:: Dart const handle Dart const handle type, equal to Dart::Dart const handle.
CombinatorialMap:: size type Size type (an unsigned integral type).

Constants

static unsigned int dimension; The dimension d of cm, equal to Dart::dimension.
static size type NB MARKS; The number of available Boolean marks of cm.
static Dart handle null dart handle; The null dart handle constant: a dart d0 is i-free

if d0.beta(i)==null dart handle. Note that *null dart
handle/∈cm.darts().

Types for attributes

CombinatorialMap:: Attributes The tuple of attributes, containing at most dimension+1 types
(one for each possible cell of the combinatorial map). Each
type of the tuple must be either a model of the CellAttribute
concept or void. The first type corresponds to 0-attributes,
the second to 1-attributes and so on. If the ith type in the
tuple is void, (i-1)-attributes are disabled. Otherwise, (i-1)-
attributes are enabled and have the given type. If the size
of the tuple is k, with k<dimension+1, ∀i: k≤i≤dimension,
i-attributes are disabled.

CombinatorialMap:: template<unsigned int i> Attribute type<i>::type

Type of i-attributes, a model of CellAttribute concept.
Attribute type<i>::type::Dart handle is equal to Dart
handle, and Attribute type<i>::type::Dart const handle is
equal to Dart const handle.
Precondition: 0≤i≤dimension and i-attributes are non void.

CombinatorialMap:: template<unsigned int i> Attribute handle<i>::type

Handle to i-attributes, equal to Dart::Attribute handle<i>
::type.
Precondition: 0≤i≤dimension and i-attributes are non void.
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CombinatorialMap:: template<unsigned int i> Attribute const handle<i>::type

Const handle to i-attributes, equal to Dart::Attribute const
handle<i>::type.
Precondition: 0≤i≤dimension and i-attributes are non void.

Range types

CombinatorialMap:: Dart range Range of all the darts of cm. This type is a model of Range
concept, its iterator type is bidirectional and its value type is
Dart.

CombinatorialMap:: Dart const range Const range of all the darts of cm. This type is a model of
ConstRange concept, its iterator type is bidirectional and its
value type is Dart.

CombinatorialMap:: template<unsigned int i> Attribute range<i>::type

Range of all the i-attributes (which must be non void), with
0≤i≤dimension. This type is a model of Range concept, its
iterator type is bidirectional and its value type is Attribute
type<i>::type.

CombinatorialMap:: template<unsigned int i> Attribute const range<i>::type

Const range of all the i-attributes (which must be non void),
with 0≤i≤dimension. This type is a model of ConstRange
concept, its iterator type is bidirectional and its value type is
Attribute type<i>::type.

CombinatorialMap:: template<unsigned int ... Beta> Dart of orbit range

Range of all the darts of the <Beta...> orbit. This type is a
model of Range concept, its iterator type is forward and its
value type is Dart.

CombinatorialMap:: template<unsigned int ... Beta> Dart of orbit const range

Const range of all the darts of the <Beta...> orbit. This type is
a model of ConstRange concept, its iterator type is forward
and its value type is Dart.

CombinatorialMap:: template<unsigned int i,unsigned int dim=dimension> Dart of cell range

Range of all the darts of an i-cell in dim dimension (with
0≤i≤dim+1 and 0≤dim≤dimension). If i==dim+1, range
of all the darts of a connected component. This type is a
model of Range concept, its iterator type is forward and its
value type is Dart.

CombinatorialMap:: template<unsigned int i,unsigned int dim=dimension> Dart of cell const range

Const range of all the darts of the i-cell in dim dimension
(with 0≤i≤dim+1 and 0≤dim≤dimension). If i==dim+1,
range of all the darts of a connected component. This type is
a model of ConstRange concept, its iterator type is forward
and its value type is Dart.
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CombinatorialMap:: template<unsigned int i,unsigned int j,unsigned int dim=dimension> One dart per
incident cell range

Range of one dart of each i-cell incident to one j-cell.
Cells are considered in dim dimension (with 0≤i≤dim+1,
0≤j≤dim+1 and 0≤dim≤dimension). If i==dim+1, con-
sider each connected component instead of each i-cell. If
j==dim+1, consider one connected component instead of one
j-cell. This type is a model of Range concept, its iterator type
is forward and its value type is Dart.

CombinatorialMap:: template<unsigned int i,unsigned int j,unsigned int dim=dimension> One dart per
incident cell const range

Const range of one dart of each i-cell incident to one j-cell.
Cells are considered in dim dimension (with 0≤i≤dim+1,
0≤j≤dim+1 and 0≤dim≤dimension). If i==dim+1, con-
sider each connected component instead of each i-cell. If
j==dim+1, consider one connected component instead of
one j-cell. This type is a model of ConstRange concept, its
iterator type is forward and its value type is Dart.

CombinatorialMap:: template<unsigned int i,unsigned int dim=dimension> One dart per cell range

Range of one dart of each i-cell of cm. Cells are considered in
dim dimension (with 0≤i≤dim+1 and 0≤dim≤dimension).
If i==dim+1, consider each connected component instead of
each i-cell. This type is a model of Range concept, its iterator
type is forward and its value type is Dart.

CombinatorialMap:: template<unsigned int i,unsigned int dim=dimension> One dart per cell const range

Const range of one dart of each i-cell of cm. Cells
are considered in dim dimension (with 0≤i≤dim+1 and
0≤dim≤dimension). If i==dim+1, consider each connected
component instead of each i-cell. This type is a model of
ConstRange concept, its iterator type is forward and its value
type is Dart.

Access Member Functions

bool cm.is empty() const Returns true iff cm is empty, i.e. it contains no dart.

bool cm.is valid() const Returns true iff cm is valid.

A combinatorial map cm is valid (see Sections 27.2.1 and 27.2.4) if for all dart handle dh such that
*dh∈cm.darts():

• dh->is free(0), or dh->beta(0)->beta(1)==dh;

• dh->is free(1), or dh->beta(1)->beta(0)==dh;
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• ∀i, 2≤i≤dimension: dh->is free(i), or dh->beta(i)->beta(i)==dh;

• ∀i,j, 0≤i<i+2≤j≤dimension such that j≥3: dh->beta(i)->beta(j)==null dart handle or dh->beta(i)->
beta(j)->beta(i)->beta(j)==dh;

• ∀i, 0≤i≤dimension such that i-attributes are non void: ∀dh2 such that *dh2 belong to the same i-cell than
*dh: dh2->attribute<i>()==dh->attribute<i>().

bool cm.is without boundary( unsigned int i) const

Returns true iff cm is wihout i-boundary (i.e. there is no i-
free dart).
Precondition: 1≤i≤dimension.

bool cm.is without boundary() const

Returns true iff cm is without boundary in all dimensions.

size type cm.number of darts() const

Returns the number of darts in cm.

template <unsigned int i>
size type cm.number of attributes() const

Returns the number of i-attributes in cm.
Precondition: 0≤i≤dimension, and i-attributes are non void.

Dart handle cm.dart handle( Dart& adart)

Returns the dart handle of adart.
Precondition: adart∈cm.darts().

Dart const handle cm.dart handle( Dart adart) const

Returns the dart const handle of adart.
Precondition: adart∈cm.darts().

Dart handle cm.beta( Dart handle dh, int i, int j) const

Returns β j(βi(dh)). Overloads of this member function
are defined that take from one to nine integer as argu-
ments. For each function, betas are applied in the same or-
der as their indices are given as parameters. For example
beta(dh,1)=β1(dh), and beta(dh,1,2,3,0)=β0(β3(β2(β1(dh)))).
Precondition: 0≤i≤dimension, 0≤j≤dimension and
*dh∈cm.darts().

Dart const handle cm.beta( Dart const handle dh, int i, int j) const

Returns β j(βi(dh)). Overloads of this member function are
defined that take from one to nine integer as arguments.
Precondition: 0≤i≤dimension, 0≤j≤dimension and
*dh∈cm.darts().
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template <unsigned int i>
bool cm.is sewable( Dart const handle dh1, Dart const handle dh2) const

Returns true iff dh1 can be i-sewn with dh2 by keeping
cm valid, i.e. if there is a bijection f between all the
darts of the orbit D1=〈β1,. . .,βi−2,βi+2,. . .,βd〉(dh1) and
D2=〈β1,. . .,βi−2,βi+2,. . .,βd〉(dh2) satisfying: f (dh1)=dh2,
and for all e∈D1, for all j∈{1,. . .,i-2,i+2,. . .,d},
f (β j(e))=β

−1
j (f (e)).

Precondition: 0≤i≤dimension, *dh1∈cm.darts(), and
*dh2∈cm.darts().

std::ostream& cm.display characteristics( std::ostream & os) const

Displays on os the characteristics of cm: its number of darts,
its number of i-cells, for each i, 0≤i≤CMap::dimension, and
its number of connected components.

Example of output for a 3D combinatorial map containing two disjoint combinatorial tetrahedra:
#Darts=24, #0-cells=8, #1-cells=12, #2-cells=8, #3-cells=2, #ccs=2

Range Access Member Functions

Dart range& cm.darts() Returns a range of all the darts in cm.
Dart const range& cm.darts() const Returns a const range of all the darts in cm.

template<unsigned int i>
Attribute range<i>::type&

cm.attributes() Returns a range of all the i-attributes in cm.
Precondition: 0≤i≤dimension, and i-attributes are non void.

template<unsigned int i>
Attribute const range<i>::type&

cm.attributes() const Returns a const range of all the i-attributes in cm.
Precondition: 0≤i≤dimension, and i-attributes are non void.

template<unsigned int ... Beta>
Dart of orbit range cm.darts of orbit( Dart handle dh)

Returns a range of all the darts of the orbit <Beta...>(dh).
Precondition: *dh∈cm.darts() and Beta... is a sequence of
integers i1,. . .,ik, such that 0≤i1<i2<.. .<ik≤dimension, and
(i1 6=0 or i2 6=1).

template<unsigned int ... Beta>
Dart of orbit const range

cm.darts of orbit( Dart const handle dh) const

Returns a const range of all the darts of the orbit <Beta...>
(dh).
Precondition: Same as for the non const version.
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template<unsigned int i,unsigned int dim=dimension>
Dart of cell range cm.darts of cell( Dart handle dh)

Returns a range of all the darts of the i-cell containing dh.
i-cells are considered in dim dimension. If i==dim+1, range
of all the darts of the connected component containing dh.
Precondition: *dh∈cm.darts(), 0≤i≤dim+1 and
0≤dim≤dimension.

template<unsigned int i,unsigned int dim=dimension>
Dart of cell const range

cm.darts of cell( Dart const handle dh) const

Returns a const range of all the darts of the i-cell containing
dh. i-cells are considered in dim dimension. If i==dim+1,
const range of all the darts of the connected component con-
taining dh.
Precondition: Same as for the non const version.

template<unsigned int i,unsigned int j,unsigned int dim=dimension>
One dart per incident cell range

cm.one dart per incident cell( Dart handle dh)

Returns a range of one dart of each i-cell incident to the j-
cell containing dh. Cells are considered in dim dimension.
If i==dim+1, consider each connected component instead of
each i-cell. If j==dim+1, consider the connected component
containing dh instead of the j-cell.
Precondition: *dh∈cm.darts(), 0≤i≤dim+1, 0≤j≤dim+1
and 0≤dim≤dimension.

template<unsigned int i,unsigned int j,unsigned int dim=dimension>
One dart per incident cell const range

cm.one dart per incident cell( Dart const handle dh) const

Returns a const range of one dart of each i-cell incident to the
j-cell containing dh. Cells are considered in dim dimension.
If i==dim+1, consider each connected component instead of
each i-cell. If j==dim+1, consider the connected component
containing dh instead of the j-cell.
Precondition: Same as for the non const version.

template<unsigned int i,unsigned int dim=dimension>
One dart per cell range

cm.one dart per cell()

Returns a range of one dart of each i-cell in cm. Cells are
considered in dim dimension. If i==dim+1, range of one
dart of each connected component in cm.
Precondition: 0≤i≤dim+1 and 0≤dim≤dimension.

template<unsigned int i,unsigned int dim=dimension>
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One dart per cell const range

cm.one dart per cell() const

Returns a const range of one dart of each i-cell in cm. Cells
are considered in dim dimension. If i==dim+1, const range
of one dart of each connected component in cm.
Precondition: Same as for the non const version.

Modifiers

template<typename T1>
Dart handle cm.create dart( T1 t1)

Creates a new dart in cm, and returns the corresponding han-
dle. Calls the constructor of dart having T1 as parameter. A
new dart is initialized to be i-free, ∀i: 0≤i≤dimension, and
to have no associated attribute for each non void attribute.
Overloads of this member function are defined that take from
zero to nine arguments. With zero argument, create dart()
creates a new dart by using the default constructor.

void cm.erase dart( Dart handle dh)

Removes *dh from cm.
Precondition: *dh∈cm.darts().

template<unsigned int i,typename T1>
Attribute handle<i>::type

cm.create attribute( T1 t1)

Creates a new i-attribute in cm, and returns the correspond-
ing handle. Calls the constructor of i-attribute having T1 as
parameter. Overloads of this member function are defined
that take from zero to nine arguments. With zero argument,
create attribute<i>() creates a new i-attribute by using the
default constructor.
Precondition: 0≤i≤dimension, and i-attributes are non void.

template <unsigned int i>
void cm.erase attribute( Attribute handle<i>::type ah)

Removes the i-attribute *ah from cm.
Precondition: 0≤i≤dimension, i-attributes are non void, and
*ah∈cm.attributes<i>().

template <unsigned int i>
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void cm.set attribute( Dart handle dh, Attribute handle<i>::type ah)

Associates the i-attribute of all the darts of the i-cell contain-
ing dh to ah.
Precondition: *dh∈cm.darts(), 0≤i≤dimension, i-attributes
are non void, and *ah∈cm.attributes<i>().

void cm.clear() Deletes all the darts and all the attributes of cm.

Operations

template <unsigned int i>
void cm.sew( Dart handle dh1, Dart handle dh2, bool update attributes=true)

Links by βi two by two all the darts of
the orbit D1=〈β1,. . .,βi−2,βi+2,. . .,βd〉(dh1) and
D2=〈β0,β2,. . .,βi−2,βi+2,. . .,βd〉 (dh2) such that d2=f (d1),
f being the bijection between D1 and D2 satisfying:
f (dh1)=dh2, and for all e∈D1, for all j∈{1,. . .,i-2,i+2,. . .,d},
f (β j(e))=β

−1
j (f (e)).

If update attributes is true, when necessary, non void at-
tributes are updated to ensure the validity of cm: for each
j-cells c1 and c2 which are merged into one j-cell during the
sew, the two associated attributes attr1 and attr2 are consid-
ered. If one attribute is NULL and the other not, the non
NULL attribute is associated to all the darts of the result-
ing cell. When the two attributes are non NULL, functor
Attribute type<i>::type::On merge is called on the two at-
tributes attr1 and attr2. Then, the attribute attr1 is associ-
ated to all darts of the resulting j-cell. Finally, attribute attr2
is removed from cm.
Precondition: cm.is sewable<i>(dh1,dh2).

advanced

If update attributes is false, non void attributes are not up-
dated; thus cm can be no more valid after this modification.

advanced
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void cm.unsew( Dart handle dh, bool update attributes=true)

Unlinks by βi all the darts in the orbit
〈β1,. . .,βi−2,βi+2,. . .,βd〉(dh). If update attributes is
true, when necessary, non void attributes are updated to
ensure the validity of cm: for each j-cell c split in two j-cells
c1 and c2 by the operation, if c is associated to a j-attribute
attr1, then this attribute is duplicated into attr2, and all the
darts belonging to c2 are associated with this new attribute.
Finally, the functor Attribute type<i>::type::On split is
called on the two attributes attr1 and attr2.
Precondition: 0≤i≤dimension, *dh∈cm.darts() and dh is not
i-free.

advanced

If update attributes is false, non void attributes are not up-
dated thus cm can be no more valid after this modification.

advanced

advanced

template <unsigned int i>
void cm.link beta( Dart handle dh1, Dart handle dh2, bool update attributes=true)

Links dh1 and dh2 by βi. cm can be no more valid after this
modification. If update attributes is true, non void attributes
of dh1 and dh2 are updated: if one dart has an attribute and
the second dart not, the non null attribute is associated to the
dart having a null attribute. If both darts have an attribute,
the attribute of dh1 is associated to dh2.
Precondition: 0≤i≤dimension, *dh1∈cm.darts(),
*dh2∈cm.darts() and (i<2 or dh1 6=dh2).

template <unsigned int i>
void cm.unlink beta( Dart handle dh)

Unlinks dh and βi(dh) by βi. cm can be no more valid after
this modification. Attributes of dh and βi(dh) are not modi-
fied.
Precondition: 0≤i≤dimension, *dh∈cm.darts(), and dh is
not i-free.

advanced

advanced

Boolean marks

int cm.get new mark() const

Reserves a new mark. Returns its index. Returns -1 if there
is no more available free mark.
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bool cm.is reserved( int amark) const

Returns true iff amark is a reserved mark of cm.
Precondition: 0≤amark<NB MARKS.

bool cm.is marked( Dart const handle dh, int amark) const

Returns true iff dh is marked for amark.
Precondition: is reserved(amark) and *dh∈cm.darts().

void cm.mark( Dart const handle dh, int amark) const

Marks dh for amark.
Precondition: is reserved(amark) and *dh∈cm.darts().

void cm.unmark( Dart const handle dh, int amark) const

Unmarks dh for the mark amark.
Precondition: is reserved(amark) and *dh∈cm.darts().

void cm.negate mark( int amark) const

Inverse the mark amark for all the darts of cm. All the
marked darts become unmarked and all the unmarked darts
become marked.
Precondition: is reserved(amark).

void cm.unmark all( int amark) const

Unmarks all the darts of cm for amark.
Precondition: is reserved(amark).

size type cm.number of marked darts( int amark) const

Returns the number of marked darts for amark.
Precondition: is reserved(amark).

size type cm.number of unmarked darts( int amark) const

Return the number of unmarked darts for amark.
Precondition: is reserved(amark).

void cm.free mark( int amark) const

Frees amark.
Precondition: is reserved(amark).

advanced
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Has Models

CGAL::Combinatorial map<d,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1936

1929



C
on

ce
pt

Dart

Definition

The concept Dart defines a d-dimensional dart. A dart mainly stores handles to the darts linked with itself by
βi, ∀i, 0≤i≤d. Moreover, it stores also handles to each non void attribute associated with itself.

Creation

A dart d0 is never constructed directly, but always created within a combinatorial map cm by using the method
cm.create dart(); A new dart is initialized to be i-free, ∀i: 0≤i≤dimension, and having all its attribute handles
initialized to NULL, for each non void attribute.

Constants

static unsigned int dimension; The dimension of d0.

Types

Dart:: Dart handle Dart handle type.
Dart:: Dart const handle Dart const handle type.

Dart:: template<unsigned int i> Attribute handle<i>::type

Handle to i-attributes, with 0≤i≤dimension.

Dart:: template<unsigned int i> Attribute const handle<i>::type

Const handle to i-attributes, with 0≤i≤dimension.

Access Member Functions

Dart handle d0.beta( unsigned int i) Returns βi(d0).
Precondition: 0≤i≤dimension.

Dart const handle d0.beta( unsigned int i) const

Returns βi(d0) when d0 is const.
Precondition: 0≤i≤dimension.

Dart handle d0.beta inv( unsigned int i)

Returns β
−1
i (d0).

Precondition: 0≤i≤dimension.
Dart const handle d0.beta inv( unsigned int i) const

Returns β
−1
i (d0) when d0 is const.

Precondition: 0≤i≤dimension.
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bool d0.is free( unsigned int i) const

Returns true iff d0 is i-free.
Precondition: 0≤i≤dimension.

int d0.highest nonfree dimension() const

Returns the highest dimension i such that d0 is not i-free. -1
if d0 is free for any dimension.

Dart handle d0.opposite() Returns a handle to a dart belonging to the same edge than
d0, and not to the same vertex. NULL if such a dart does
not exist.

Dart const handle d0.opposite() const Returns a handle to a dart belonging to the same edge than
d0, and not to the same vertex, when d0 is const. NULL if
such a dart does not exist.

Dart handle d0.other extremity() Returns a handle to a dart belonging to the other vertex of
the edge containing d0 (but contrary to opposite() not nec-
essarily to the same edge). NULL if such a dart does not
exist.

Dart const handle d0.other extremity() const

Returns a Dart const handle to a dart belonging to the other
vertex of the edge containing d0, when d0 is const (but con-
trary to opposite() not necessarily to the same edge). NULL
if such a dart does not exist.

template <unsigned int i>
Attribute handle<i>::type

d0.attribute() Returns the i-attribute associated to d0.
Precondition: 0≤i≤dimension, and i-attributes are non
void.template <unsigned int i>

Attribute const handle<i>::type

d0.attribute() const Returns the i-attribute associated to d0, when d0 is const.
Precondition: 0≤i≤dimension, and i-attributes are non
void.

Has Models

CGAL::Dart<d,CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1938
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CellAttribute

Definition

The concept CellAttribute represents a non void attribute associated with a cell of a combinatorial map. It can
keep a handle to one dart of its associated cell, and can contain any information.

Types

CellAttribute:: Dart handle Dart handle type.
CellAttribute:: Dart const handle Dart const handle type.

CellAttribute:: Info Type of the information contained in the attribute. If void,
the cell attribute does not have any information.

CellAttribute:: Supports cell dart Equals to Tag true to enable the storage of a Dart handle of
the associated cell, Tag false otherwise.

CellAttribute:: On merge Functor called before merging two attributes. Must be a
model of the Binary Function concept having two references
to a model of CellAttribute as type of both arguments and
void as return type.

CellAttribute:: On split Functor called after an attribute was split in two. Must be a
model of the Binary Function concept having two references
to a model of CellAttribute as type of both arguments and
void as return type.

Creation

CellAttribute ca;

CellAttribute ca( Info info); Constructor initializing the information of ca by the copy
contructor Info(info). Defined only if Info is different from
void.

Access Member Functions

Dart handle ca.dart() Returns one dart of the cell associated to attribute ca. NULL
if Supports cell dart is equal to Tag false.

Dart const handle ca.dart() const Returns one dart of the cell associated to attribute ca, when
ca is const. NULL if Supports cell dart is equal to Tag
false.

void ca.set dart( Dart handle ahandle)

Sets the dart of the cell associated to attribute ca to ahandle,
if Supports cell dart is equal to Tag true. Otherwise, this
method does nothing.
Precondition: ahandle belongs to the cell associated to ca.
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Info& ca.info() Returns the information of ca. Defined only if Info is differ-
ent from void.

Info ca.info() const Returns the information of ca, when ca is const. Defined
only if Info is different from void.

Has Models

CGAL::Cell attribute<CMap,Info ,Tag,OnMerge,OnSplit> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1939

See Also

CombinatorialMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1919
CombinatorialMapItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1934
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CombinatorialMapItems

Definition

The concept CombinatorialMapItems allows to customize a dD combinatorial map by choosing the type of
darts, and by enabling and disabling some attributes. For that, it defines an inner class template named Dart
wrapper, with one template parameter, CMap, a model of the CombinatorialMap concept. This inner class must
define two types: Dart and Attributes.

Types in CombinatorialMapItems::Dart wrapper<CMap>

CombinatorialMapItems::Dart wrapper<CMap>:: Dart

The type of dart, a model of the Dart concept.

CombinatorialMapItems::Dart wrapper<CMap>:: Attributes

The tuple of attributes, containing at most dimension+1 types
(one for each possible cell of the combinatorial map). Each
type of the tuple must be either a model of the CellAttribute
concept or void. The first type corresponds to 0-attributes,
the second to 1-attributes and so on. If the ith type in the
tuple is void, (i-1)-attributes are disabled. Otherwise, (i-1)-
attributes are enabled and have the given type. If the size
of the tuple is k, with k¡dimension+1, ∀i: k≤i≤dimension,
i-attributes are disabled.

Example

The following examples show two possible models of the CombinatorialMapItems concept: the first one for
a 4D combinatorial map without enabled attributes, the second one for a 3D combinatorial map with edge
attributes enabled, and associated with a Cell attribute containing an int.� �
struct Exemple_Item_4
{

template < class CMap >
struct Dart_wrapper
{

typedef CGAL::Dart<4, CMap> Dart;
typedef CGAL::cpp0x::tuple<> Attributes;

};
};� �� �
struct Exemple_Item_3
{

template < class CMap >
struct Dart_wrapper
{
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typedef CGAL::Dart<3, CMap> Dart;
typedef Cell_attribute<CMap, int> Edge_attrib;
typedef CGAL::cpp0x::tuple<void,Edge_attrib> Attributes;

};
};� �
Has Models

CGAL::Combinatorial map min items<d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1940

See Also

CombinatorialMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1919
Dart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1930
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CGAL::Combinatorial map<d,Items,Alloc>

#include <CGAL/Combinatorial map.h>

Definition

The class Combinatorial map<d,Items,Alloc> represents a dD combinatorial map.

Darts and non void attributes are stored in memory using CGAL::Compact container, using Alloc as allocator.

Is Model for the Concepts

CombinatorialMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1919

Parameters

d an integer for the dimension of the map.
Items must be a model of the CombinatorialMapItems concept.
Alloc has to match the standard allocator requirements. The rebind mechanism from Alloc will be used to create
appropriate allocators internally with value type Dart.

There are two default template arguments: Combinatorial map min items<d> for Items and CGAL
ALLOCATOR(int) from the <CGAL/memory.h> header file for Alloc.

Types

typedef Combinatorial map<d,Items,Alloc> Self;
typedef Items::Dart wrapper<Self>::Dart Dart;

Complexity

The complexity of sew and unsew is in O(|S|×|c|), S being the set of darts of the orbit 〈β1,. . .,βi−2,βi+2,. . .,βd〉
for the considered dart, and c the biggest j-cell merged or split during the sew such that j-attributes are non void.
The complexity of is sewable is in O(|S|).

The complexity of set attribute is in O(|c|), c being the i-cell containing the considered dart.

The complexity of is without boundary(unsigned int i) is in O(|D|), D being the set of darts of the combinatorial
map, and the complexity of is without boundary() is in O(|D|×d).

The complexity of unmark all and free mark is in O(1) if all the darts of the combinatorial map have the same
mark, and in O(|D|) otherwise.

The complexity of is valid is in O(|D|×d2).

The complexity of clear is in O(|D|×d).

Other methods have all a constant time complexity.
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See Also

CombinatorialMapItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1934
Dart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1930
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CGAL::Dart<d,CMap>

#include <CGAL/Dart.h>

Definition

The class Dart<d,CMap> represents a dD dart.

βi pointers are coded in a array of d+1 Dart handle (because we describe also the β0 link). Attributes are
associated to each dart by Attribute handle<i>, one for each non void i-attribute.

Is Model for the Concepts

Dart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1930

Parameters

d an integer for the dimension of the dart.
CMap must be a model of the CombinatorialMap concept.

Types

typedef CMap::Dart handle Dart handle;
typedef CMap::Dart const handle Dart const handle;

typedef CMap::Attribute handle<i>::type Attribute handle<i>::type;
typedef CMap::Attribute const handle<i>::type Attribute const handle<i>::type;

Complexity

Each βi link is initialized to CMap::null dart handle, and each attribute handle of non void i-attribute is initial-
ized to NULL at the creation of the dart, thus the complexity of the creation is in O(d+1).

The complexity of opposite and other extremity methods is in O(d+1).

Other methods have all a constant time complexity.

See Also

CombinatorialMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1919
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CGAL::Cell attribute<CMap,Info ,Tag,OnMerge,OnSplit>

#include <CGAL/Cell attribute.h>

Definition

The class Cell attribute<CMap,Info ,Tag,OnMerge,OnSplit> represents an attribute containing (or not) an in-
formation.

Is Model for the Concepts

CellAttribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1932

Parameters

CMap must be a model of the CombinatorialMap.
Info is the type of the information contained in the attribute.
Tag is Tag true to enable the storage of a Dart handle of the associated cell, Tag false otherwise.
OnMerge is the type of the functor called before two attributes are merged.
OnSplit is the type of the functor called after one attribute is split in two.

By default, OnMerge and OnSplit are equal to Null functor; Tag is equal to Tag true; and Info is equal to void.

Types

typedef Info Info;
typedef Tag Supports cell dart;
typedef OnMerge On merge;
typedef OnSplit On split;

typedef CMap::Dart handle Dart handle;
typedef CMap::Dart const handle Dart const handle;

See Also

CGAL::Combinatorial map<d,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1936
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CGAL::Combinatorial map min items<d>

#include <CGAL/Combinatorial map min items.h>

Definition

The class Combinatorial map min items<d> is a model of the CombinatorialMapItems concept. It defines
the type of darts which is a CGAL::Dart<d,CMap>. The Combinatorial map min items<d> has a template
argument for the dimension of the combinatorial map. In this class, no attribute is enabled.

Is Model for the Concepts

CombinatorialMapItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1934

Example

The following example shows the implementation of the CGAL::Combinatorial map min items class.� �
template <unsigned int d>
struct Combinatorial_map_min_items
{

template <class CMap>
struct Dart_wrapper
{

typedef CGAL::Dart<d, CMap> Dart;
typedef CGAL::cpp0x::tuple<> Attributes;

};
};� �
See Also

CGAL::Combinatorial map<d,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1936
CGAL::Dart<d,CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1938
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CGAL::make edge<CMap>

#include <CGAL/Combinatorial map constructors.h>

template < class CMap >
typename CMap::Dart handle

make edge( CMap& cm)

Creates an isolated edge (two darts linked by β2) and adds it
in cm. Returns a handle on one dart of this edge.
Precondition: CMap::dimension≥2.

See Also

CGAL::make combinatorial polygon<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1942
CGAL::make combinatorial tetrahedron<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1943
CGAL::make combinatorial hexahedron<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1944
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CGAL::make combinatorial polygon<CMap>

#include <CGAL/Combinatorial map constructors.h>

template < class CMap >
typename CMap::Dart handle

make combinatorial polygon( CMap& cm, unsigned int lg)

Creates a combinatorial polygon of length lg (lg darts linked
by β1), and adds it in cm. Returns a handle on one dart of
this combinatorial polygon.
Precondition: CMap::dimension≥1 and lg>0.

See Also

CGAL::make edge<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1941
CGAL::make combinatorial tetrahedron<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1943
CGAL::make combinatorial hexahedron<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1944
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CGAL::make combinatorial tetrahedron<CMap>

#include <CGAL/Combinatorial map constructors.h>

template < class CMap >
typename CMap::Dart handle

make combinatorial tetrahedron( CMap& cm)

Creates a combinatorial tetrahedron (four combinatorial tri-
angles linked together by β2), and adds it in cm. Returns a
handle on one dart of this combinatorial tetrahedron.
Precondition: CMap::dimension≥2.

See Also

CGAL::make edge<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1941
CGAL::make combinatorial polygon<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1942
CGAL::make combinatorial hexahedron<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1944
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CGAL::make combinatorial hexahedron<CMap>

#include <CGAL/Combinatorial map constructors.h>

template < class CMap >
typename CMap::Dart handle

make combinatorial hexahedron( CMap& cm)

Creates an combinatorial hexahedron (six combinatorial
quadrangles linked together by β2), and adds it in cm. Re-
turns a handle on one dart of this combinatorial hexahedron.
Precondition: CMap::dimension≥2.

See Also

CGAL::make edge<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1941
CGAL::make combinatorial polygon<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1942
CGAL::make combinatorial tetrahedron<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1943
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CGAL::is removable<CMap,i>

#include <CGAL/Combinatorial map operations.h>
template <class CMap, unsigned int i>

bool is removable( CMap cm, typename CMap::Dart const handle dh)

Returns true iff the i-cell containing dh can be removed, i.e.
if i==CMap::dimension or if i==CMap::dimension-1 or if
i<CMap::dimension-1 and the i-cell containing dh is inci-
dent to at most two (i+1)-cells.
Precondition: 0≤i≤CMap::dimension and *dh∈cm.darts().

See Also

CGAL::remove cell<CMap,i> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1946
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CGAL::remove cell<CMap,i>

#include <CGAL/Combinatorial map operations.h>

template <class CMap, unsigned int i>
unsigned int remove cell( CMap& cm, typename CMap::Dart handle dh)

Removes the i-cell containing dh. Returns the number of
darts removed from cm.
Precondition: is removable<CMap,i>(cm,dh).
See examples in Figures 27.11, 27.13 and 27.14.
If i<CMap::dimension, and i+1-attributes are non void, and
if there are two distinct (i+1)-cells around dart dh, Attribute
type<i+1>::type::On merge(a1,a2) is called, with a1 the
(i+1)-attribute associated to dh, and a2 the (i+1)-attribute as-
sociated to βi+1(dh).
If a j-cell is disconnected in two j-cells during the operation,
and if j-attributes are non void, Attribute type<j>::type::On
split(a,a’) is called with a the original j-attribute and a’ the
new j-attribute created due to the disconnection.

See Also

CGAL::is removable<CMap,i> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1945
CGAL::insert cell 0 in cell 1<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1949
CGAL::insert cell 0 in cell 2<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1950
CGAL::insert cell 1 in cell 2<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1951
CGAL::insert dangling cell 1 in cell 2<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1952
CGAL::insert cell 2 in cell 3<CMap,InputIterator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1953
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CGAL::is insertable cell 1 in cell 2<CMap>

#include <CGAL/Combinatorial map operations.h>

template < class CMap >
bool is insertable cell 1 in cell 2( CMap cm,

typename CMap::Dart const handle dh1,
typename CMap::Dart const handle dh2)

Returns true iff it is possible to insert a 1-cell in cm between
dh1 and dh2, i.e. if dh1 6=dh2 and dh1∈〈β1〉(dh2).
Precondition: CMap::dimension≥2, *dh1∈cm.darts(), and
*dh2∈cm.darts().

See Also

CGAL::insert cell 1 in cell 2<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1951
CGAL::is insertable cell 2 in cell 3<CMap,InputIterator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1948
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CGAL::is insertable cell 2 in cell 3<CMap,InputIterator>

#include <CGAL/Combinatorial map operations.h>

template <class CMap, class InputIterator>
bool is insertable cell 2 in cell 3( CMap cm, InputIterator afirst, InputIterator alast)

Returns true iff it is possible to insert a 2-cell in cm along the
path of darts given by the range [afirst,alast). The 2-cell can
be inserted iff each couple of consecutive darts of the path a1
and a2 belong to the same vertex and the same volume, and
if the path is closed.
Precondition: CMap::dimension≥3.

See Also

CGAL::insert cell 2 in cell 3<CMap,InputIterator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1953
CGAL::is insertable cell 1 in cell 2<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1947
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CGAL::insert cell 0 in cell 1<CMap>

#include <CGAL/Combinatorial map operations.h>

template < class CMap >
typename CMap::Dart handle

insert cell 0 in cell 1( CMap& cm, typename CMap::Dart handle dh)

Inserts a 0-cell in the 1-cell containing dh. Returns a handle
on one dart belonging to the new 0-cell.
Precondition: CMap::dimension≥1 and *dh∈cm.darts().
See example in Figure 27.11.
If 1-attributes are non void, Attribute type<1>::type::On
split(a,a’) is called, with a the original 1-attribute associated
with dh and a’ the new 1-attribute created during the opera-
tion.

See Also

CGAL::insert cell 0 in cell 2<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1950
CGAL::insert cell 1 in cell 2<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1951
CGAL::insert dangling cell 1 in cell 2<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1952
CGAL::insert cell 2 in cell 3<CMap,InputIterator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1953
CGAL::remove cell<CMap,i> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1946
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CGAL::insert cell 0 in cell 2<CMap>

#include <CGAL/Combinatorial map operations.h>

template <class CMap>
typename CMap::Dart handle

insert cell 0 in cell 2( CMap & cm, typename CMap::Dart handle dh)

Inserts a 0-cell in the 2-cell containing dh. The 2-cell is split
in triangles, one for each initial edge of the facet. Returns a
handle on one dart belonging to the new 0-cell.
Precondition: CMap::dimension≥2 and *dh∈cm.darts().
See example in Figure 27.12.
If 2-attributes are non void, Attribute type<2>::type::On
split(a,a’) is called, with a the original 2-attribute associated
with dh and a’ each new 2-attribute created during the oper-
ation.

See Also

CGAL::insert cell 0 in cell 2<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1950
CGAL::insert cell 1 in cell 2<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1951
CGAL::insert dangling cell 1 in cell 2<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1952
CGAL::insert cell 2 in cell 3<CMap,InputIterator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1953
CGAL::remove cell<CMap,i> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1946
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CGAL::insert cell 1 in cell 2<CMap>

#include <CGAL/Combinatorial map operations.h>

template < class CMap >
typename CMap::Dart handle

insert cell 1 in cell 2( CMap& cm,
typename CMap::Dart handle dh1,
typename CMap::Dart handle dh2)

Inserts a 1-cell in the 2-cell containing dh1 and dh2. Returns
β0(dh1), a handle on one dart belonging to the new 1-cell.
Precondition: is insertable cell 1 in cell 2<Map>
(cm,dh1,dh2).
See example in Figure 27.13.
If 2-attributes are non void, Attribute type<2>::type::On
split(a,a’) is called, with a the original 2-attribute associated
with dh and a’ the new 2-attribute created during the
operation.

See Also

CGAL::is insertable cell 1 in cell 2<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1947
CGAL::insert cell 0 in cell 1<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1949
CGAL::insert cell 0 in cell 2<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1950
CGAL::insert dangling cell 1 in cell 2<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1952
CGAL::insert cell 2 in cell 3<CMap,InputIterator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1953
CGAL::remove cell<CMap,i> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1946
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CGAL::insert dangling cell 1 in cell 2<CMap>

#include <CGAL/Combinatorial map operations.h>

template < class CMap >
typename CMap::Dart handle

insert dangling cell 1 in cell 2( CMap& cm, typename CMap::Dart handle dh)

Inserts a 1-cell in a the 2-cell containing dh, the 1-cell being
attached only by one of its extremity to the 0-cell containing
dh. Returns a handle on one dart belonging to the new 1-cell.
Precondition: CMap::dimension≥2 and *dh∈cm.darts().
See example in Figure 27.13.

See Also

CGAL::insert cell 0 in cell 1<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1949
CGAL::insert cell 0 in cell 2<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1950
CGAL::insert cell 1 in cell 2<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1951
CGAL::insert cell 2 in cell 3<CMap,InputIterator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1953
CGAL::remove cell<CMap,i> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1946
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CGAL::insert cell 2 in cell 3<CMap,InputIterator>

#include <CGAL/Combinatorial map operations.h>

template <class CMap, class InputIterator>
typename CMap::Dart handle

insert cell 2 in cell 3( CMap & cm, InputIterator afirst, InputIterator alast)

Inserts a 2-cell along the path of 1-cells containing darts
given by the range [afirst,alast). Returns a handle on one
dart belonging to the new 2-cell.
Precondition: is insertable cell 2 in cell 3<Map>
(cm,afirst,alast).
See example in Figure 27.14.
If 3-attributes are non void, Attribute type<3>::type::On
split(a,a’) is called, with a the original 3-attribute associated
with dh and a’ the new 3-attribute created during the
operation.

See Also

CGAL::is insertable cell 2 in cell 3<CMap,InputIterator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1948
CGAL::insert cell 0 in cell 1<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1949
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CGAL::insert dangling cell 1 in cell 2<CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1952
CGAL::remove cell<CMap,i> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1946
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28.1 Introduction

A dD linear cell complex allows to represent an orientable subdivided dD object having linear geometry: each
vertex of the subdivision is associated with a point. The geometry of each edge is a segment whose end points
are associated with the two vertices of the edge, the geometry of each 2-cell is obtained from all the segments
associated to the edges describing the boundary of the 2-cell and so on.
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The combinatorial part of a linear cell complex is described by a dD combinatorial map (it is strongly recom-
mended to first read the combinatorial maps chapter (Page 1887) for definitions). To add the linear geometrical
embedding, a point (a model of CGAL::Point 2 or CGAL::Point 3 or CGAL::Point d) is associated to each
vertex of the combinatorial map.

Figure 28.1: Examples of objects with linear geometry. Left: A 2D object composed of three 2-cells, nine
1-cells and seven points associated to the seven 0-cells . Right: A 3D object composed of three 3-cells, twelve
2-cells, sixteen 1-cells and eight points associated to the eight 0-cells.

If we reconsider the example introduced in the combinatorial map package, recalled in Figure 28.1 (Right), the
combinatorial part of the 3D object is described by a 3D combinatorial map. As illustrated in Figure 28.2, the
geometrical part of the object is described by associating a point to each vertex of the map.

Note that the dimension of the combinatorial map d is not necessarily equal to the dimension of the ambient
space d2. Indeed, we can use for example a 2D combinatorial map in a 2D ambient space to describe a planar
graph (d=d2=2), or a 2D combinatorial map in a 3D ambient space to describe a surface in 3D space (d=2,
d2=3) (case of the Polyhedron 3 package), or a 3D combinatorial map in a 3D ambient space (d=d2=3) and so
on.

28.2 Software Design

The diagram in Figure 28.3 shows the main classes of the package. CGAL::Linear cell complex is the main
class (see Section 28.2.1), which inherits from the CGAL::Combinatorial map class. Attributes can be asso-
ciated to some cells of the linear cell complex thanks to an items class (see Section 28.2.4), which defines the
dart type and the attributes types. These types may be different for different dimensions of cells, and they may
also be void. In the class CGAL::Linear cell complex, it is required that specific attributes are associated to
all vertices of the combinatorial map. These attributes must contain a point (a model of CGAL::Point 2 or
CGAL::Point 3 or CGAL::Point d), and can be represented by instances of class CGAL::Cell attribute with
point (see Section 28.2.2).
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Figure 28.2: Example of 3D linear cell complex describing the object given in Figure 28.1 (Right). Left: The
3D linear cell complex which contains 54 darts (18 for each 3-cell) where each vertex is associated with a
point, here a CGAL::Point 3. Blue segments represent β3 relations. Middle: Zoom around the central edge
which details the six darts belonging to the edge and the associations between darts and points. Right: Zoom
around the facet between light gray and white 3-cells, which details the eight darts belonging to the facet and
the associations between darts and points (given by red segments).

LinearCellComplexItems
+ Type Traits

+ Type Dart_wrapper<LCC>::Dart

+ Types Dart_wrapper<LCC>::Attributes

Combinatorial_map

+ typedef Items::Dart Dart

+ typedef Items::Attributes Attributes

Linear_cell_complex Cell_attribute_with_point
− LCC:Point mpoint;

− Info info

Cell_attribute
<<instances O

f>>
<<instance Of>>

d, Items, Alloc

d, d2, Traits_, Items_, Alloc_ LCC,Info_,Tag,OnMerge,OnSplit

CMap,Info_,Tag,OnMerge,OnSplit

Figure 28.3: UML diagram of the main classes of the package. Gray elements come from the combinatorial
map package (Page 1887).

28.2.1 Linear Cell Complex

The CGAL::Linear cell complex<d,d2,LCCTraits,Items,Alloc> class is a model of the CombinatorialMap con-
cept. It guarantees that each vertex of the combinatorial map is associated with an attribute containing a point.
This class can be used in geometric algorithms (it plays the same role as Polyhedron 3 for HalfedgeDS).

This class has five template parameters standing for the dimension of the combinatorial map, the dimension of
the ambient space, a traits class (a model of the LinearCellComplexTraits concept, see Section 28.2.3), an items
class (a model of the LinearCellComplexItems concept, see Section 28.2.4), and an allocator which must be a
model of the allocator concept of STL. Default classes are provided for the traits, items, and for the allocator
classes, and by default d2=d.

A linear cell complex is valid, if it is a valid combinatorial map where each dart is associated with an attribute
containing a point (i.e. an instance of a model of the CellAttributeWithPoint concept). Note that there are no
validity constraints on the geometry (test on self intersection, planarity of 2-cells...). We can see two examples
of CGAL::Linear cell complex in Figure 28.4.
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Figure 28.4: Examples of CGAL::Linear cell complex. Gray disks show the attributes associated to vertices.
Associations between darts and attributes are drawn by small lines between darts and disks. Left: Example of
CGAL::Linear cell complex<2,2>. Right: Example of CGAL::Linear cell complex<3,3>.

28.2.2 Cell Attributes

The CGAL::Cell attribute with point<LCC,Info ,Tag,OnMerge,OnSplit> class is a model of the CellAttribute-
WithPoint concept, which is a refinement of the CellAttribute concept. It represents an attribute associated with
a cell, which can contain an information (depending on whether Info ==void or not), but which always contains
a point, an instance of LCC::Point.

28.2.3 Linear Cell Complex Traits

The LinearCellComplexTraits geometric traits concept defines the required types and functors used in the
Linear cell complex class. For example it defines Point, the type of points used, and Vector, the correspond-
ing vector type. It also defines all the required functors used for constructions and operations, as for example
Construct translated point or Construct sum of vectors.

The class CGAL::Linear cell complex traits<d,K> is a model of LinearCellComplexTraits. It defines the dif-
ferent types which are obtained from K that, depending on d, is a model of the concept Kernel if d==2 or d==3,
and a model of the concept Kernel d otherwise.

28.2.4 Linear Cell Complex Items

The LinearCellComplexItems concept refines the CombinatorialMapItems concept by adding the requirement
that 0-attributes are enabled, and associated with a type of attribute being a model of the CellAttributeWithPoint
concept.

The class CGAL::Linear cell complex min items<d> is a model of LinearCellComplexItems. It uses
CGAL::Dart<d>, and instances of CGAL::Cell attribute with point (which contain no information) associated
to each vertex. All other attributes are void.

28.3 Operations

Several operations defined in the combinatorial maps package can be used on a linear cell complex. This is the
case for all the iteration operations that do not modify the model (see example in Section 28.4.1). This is also
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Figure 28.5: Example of 3-sew operation for linear cell complex. Left: A 3D linear cell complex containing
two 3-cells that are not connected. Vertex attributes are drawn with circles containing point coordinates. Asso-
ciations between darts and attributes are drawn with small lines between darts and disks. Right: The 3D linear
cell complex obtained as result of sew<3>(1,5) (or sew<3>(2,8), or sew<3>(3,7), or sew<3>(4,6)). The eight
0-attributes around the facet between the two 3-cells before the sew operation, are merged into four 0-attributes
after. The geometry of the pyramid is deformed since its base is fitted on the 2-cell of the cube.

the case for all the operations that do not create new 0-cells: sew, unsew, remove cell, insert cell 1 in cell 2,
insert cell 2 in cell 3. Indeed, all these operations update non void attributes, and thus update vertex attributes
of a linear cell complex. Note that some existing 0-attributes can be duplicated by the unsew method, but these
0-attributes are not new but copies of existing old 0-attributes.

However, operations that create a new 0-cell can not be directly used since the new 0-cell would not be associated
with a vertex attribute. Indeed, it is not possible for these operations to automatically decide which point to
create. These operations are: insert cell 0 in cell 1, insert cell 0 in cell 2 insert dangling cell 1 in cell 2,
plus all the creation operations. For these operations, new versions are proposed taking some points as additional
parameters. Lastly, some new operations are defined, which use the geometry (see sections 28.3.2 and 28.3.3).

All the operations given in this section guarantee that given a valid linear cell complex and a possible operation,
the result is a valid linear cell complex. As for a combinatorial map, it is also possible to use low level operations
but additional operations may be needed to restore the validity conditions.

28.3.1 Sewing and Unsewing

As explained in the combinatorial map user manual, Section 27.5.1, it is possible to glue two i-cells along
an (i-1)-cell by using the sew<i> method. Since this method updates non void attributes, and since points are
specific attributes, they are automatically updated during the sew<i> method. Thus the sewing of two i-cells
could deform the geometry of the concerned objects.

For example, in Figure 28.5, we want to 3-sew the two initial 3-cells. sew<3>(1,5) links by β3 the pairs of darts
(1,5), (2,8), (3,7) and (4,6). The eight vertex attributes around the facet between the two 3-cells before the sew
are merged by pair during the sew operation (and the On merge functor is called four times). Thus, after the
sew, there are only four 0-attributes around the facet. By default, the attributes associated with the first dart
of the sew operation are kept (but this can be modified by defining your own functor in the attribute class as
explained in the package combinatorial map, Section 27.5.1). Intuitively, the geometry of the second 2-cell is
deformed to fit to the first 2-cell.

This is similar for the unsew operation, which removes βi links of all the darts in 〈β1,. . .,βi−2,βi+2,. . .,βd〉(d0),
and updates non void attributes which are no more associated to a same cell due to the unlinks. If we take the
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linear cell complex given in Figure 28.5 (Right), and we call unsew<3>(2), we obtain the linear cell complex in
Figure 28.5 (Left) except for the coordinates of the new four vertices, which by default are copies of original
vertices (this behavior can be modified thanks to the functor On split in the attribute class). The unsew<3>
operation has removed the four β3 links, and has duplicated the 0-attributes since vertices are split in two after
the unsew operation.

28.3.2 Construction Operations

There are several member functions allowing to insert specific configurations of darts into a linear cell complex.
These functions return a Dart handle to the new object. Note that the dimension of the linear cell complex must
be large enough: darts must contain all the β used by the operation. All these methods add new darts in the
current linear cell complex, existing darts are not modified. These functions are make segment, make triangle,
make tetrahedron and make hexahedron.

There are two functions allowing to build a linear cell complex from two other CGAL data types:

• import from triangulation 3(lcc,atr): adds in lcc all the tetrahedra present in atr, a
CGAL::Triangulation 3;

• import from polyhedron 3(lcc,ap): adds in lcc all the cells present in ap, a CGAL::Polyhedron 3.

Lastly, the function import from plane graph(lcc,ais) adds in lcc all the cells reconstructed from the planar
graph read in ais, a std::istream (see the reference manual for the file format).

28.3.3 Modification Operations

Some methods are defined in Linear cell complex class to modify a linear cell complex and update the vertex
attributes. In the following, we denote by dh0, dh1, dh2 the dart handles for the darts d0, d1, d2, respectively.
That is d0 == *dh0.

dh1
dh2

CGAL::remove_cell<LCC,0>(lcc,dh2)

dh2=lcc.insert_barycenter_in_cell<1>(dh1)

Figure 28.6: Example of insert barycenter in cell<1> and remove cell<0> operations. Left: Initial linear cell
complex. Right: After the insertion of a point in the barycenter of the 1-cell containing dart d1. Now if we
remove the 0-cell containing dart d2, we obtain a linear cell complex isomorphic to the initial one.

lcc.insert barycenter in cell<unsigned int i>(dh0) adds the barycenter of the i-cell containing dart d0. This
operation is possible if d0∈lcc.darts() (see examples on Figure 28.6 and Figure 28.7).
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lcc.insert point in cell<unsigned int i>(dh0,p) is an operation similar to the previous operation, the only differ-
ence being that the coordinates of the new point are here given by p instead of being computed as the barycenter
of the i-cell. Currently, these two operations are only defined for i=1 to insert a point in an edge, or i=2 to insert
a point in a facet.

Vector<Dart_handle>v1 = {Dart_of_cell_range<0,2>(dh3)}

dh4

dh4=lcc.insert_barycenter_in_cell<2>(dh2)

dh3=lcc.insert_barycenter_in_cell<2>(dh1)

dh in v1 U v2: CGAL::remove_cell<LCC,1>(lcc,dh)∀

Vector<Dart_handle>v2 = {Dart_of_cell_range<0,2>(dh4)}

dh1

dh2

dh3

Figure 28.7: Examples of insert barycenter in cell<2> operation.

lcc.insert dangling cell 1 in cell 2(dh0,p) adds a 1-cell in the 2-cell containing dart d0, the 1-cell being at-
tached by only one of its vertex to the 0-cell containing dart d0. The second vertex of the new edge is associated
with a new 0-attribute containing a copy of p as point. This operation is possible if d0∈lcc.darts() (see example
on Figure 28.8).

dh4

dh5

remove_cell<LCC,1>(lcc,dh5)

dh1

dh3dh2

remove_cell<LCC,1>(lcc,dh4)

p

dh4=lcc.insert_dangling_cell_1_in_cell_2(dh1,p)

dh5=insert_cell_1_in_cell_2<LCC>(lcc,dh2,dh3)

Figure 28.8: Example of insert dangling cell 1 in cell 2, insert cell 1 in cell 2 and remove cell<1> opera-
tions. Left: Initial linear cell complex. Right: After the insertion of a dangling 1-cell in the 2-cell containing
dart d1, and of a 1-cell in the 2-cell containing dart d2. Now if we remove the 1-cells containing dart d4 and d5,
we obtain a linear cell complex isomorphic to the initial one.

Some examples of use of these operations are given in Section 28.4.2.
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28.4 Examples

28.4.1 A 3D Linear Cell Complex

This example uses a 3-dimensional linear cell complex. It creates two tetrahedra and displays all the points of
the linear cell complex thanks to a Vertex attribute const range. Then, the two tetrahedra are 3-sewn and we
translate all the points of the second tetrahedron along vector v(3,1,1). Since the two tetrahedra are 3-sewn,
this translation moves also the 2-cell of the first tetrahedron shared with the second one. This is illustrated by
displaying all the points of each 3-cell. For that we use a std::for each and the Display vol vertices functor.� �
#include <CGAL/Linear_cell_complex.h>
#include <CGAL/Linear_cell_complex_operations.h>
#include <iostream>
#include <algorithm>

typedef CGAL::Linear_cell_complex<3> LCC_3;
typedef LCC_3::Dart_handle Dart_handle;
typedef LCC_3::Point Point;
typedef LCC_3::FT FT;

// Functor used to display all the vertices of a given volume.
template<class LCC>
struct Display_vol_vertices : public std::unary_function<LCC, void>
{

Display_vol_vertices(const LCC& alcc) :
lcc(alcc),
nb_volume(0)

{}

void operator() (typename LCC::Dart& d)
{

std::cout<<"Volume "<<++nb_volume<<" : ";
for (typename LCC::template One_dart_per_incident_cell_range<0,3>::

const_iterator it=lcc.template one_dart_per_incident_cell<0,3>
(lcc.dart_handle(d)).begin(),
itend=lcc.template one_dart_per_incident_cell<0,3>
(lcc.dart_handle(d)).end();

it!=itend; ++it)
{

std::cout << LCC_3::point(it) << "; ";
}
std::cout<<std::endl;

}
private:

const LCC& lcc;
unsigned int nb_volume;

};

int main()
{

LCC_3 lcc;

// Create two tetrahedra.
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Dart_handle d1 = lcc.make_tetrahedron(Point(-1, 0, 0), Point(0, 2, 0),
Point(1, 0, 0), Point(1, 1, 2));

Dart_handle d2 = lcc.make_tetrahedron(Point(0, 2, -1),
Point(-1, 0, -1),
Point(1, 0, -1),
Point(1, 1, -3));

// Display all the vertices of the lcc by iterating on the
// Vertex_attribute container.
CGAL::set_ascii_mode(std::cout);
std::cout<<"Vertices: ";
for (LCC_3::Vertex_attribute_const_range::iterator

v=lcc.vertex_attributes().begin(),
vend=lcc.vertex_attributes().end();

v!=vend; ++v)
std::cout << v->point() << "; ";

std::cout<<std::endl;

// Display the vertices of each volume by iterating on darts.
std::for_each(lcc.one_dart_per_cell<3>().begin(),

lcc.one_dart_per_cell<3>().end(),
Display_vol_vertices<LCC_3>(lcc));

// 3-Sew the 2 tetrahedra along one facet
lcc.sew<3>(d1, d2);

// Display the vertices of each volume by iterating on darts.
std::for_each(lcc.one_dart_per_cell<3>().begin(),

lcc.one_dart_per_cell<3>().end(),
Display_vol_vertices<LCC_3>(lcc));

// Translate the second tetrahedra by a given vector
LCC_3::Vector v(3,1,1);
for (LCC_3::One_dart_per_incident_cell_range<0,3>::iterator

it=lcc.one_dart_per_incident_cell<0,3>(d2).begin(),
itend=lcc.one_dart_per_incident_cell<0,3>(d2).end();

it!=itend; ++it)
{

LCC_3::point(it)=LCC_3::Traits::Construct_translated_point_3()
(LCC_3::point(it),v);

}

// Display the vertices of each volume by iterating on darts.
std::for_each(lcc.one_dart_per_cell<3>().begin(),

lcc.one_dart_per_cell<3>().end(),
Display_vol_vertices<LCC_3>(lcc));

// We display the lcc characteristics.
std::cout<<"LCC characteristics: ";
lcc.display_characteristics(std::cout) << ", valid=" << lcc.is_valid()

<< std::endl;

return EXIT_SUCCESS;
}� �
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File: examples/Linear_cell_complex/linear_cell_complex_3.cpp

The output is:

Vertices: 1 1 2; 1 0 0; 0 2 0; -1 0 0; 1 1 -3; 1 0 -1; -1 0 -1; 0 2 -1;
Volume 1 : -1 0 0; 0 2 0; 1 0 0; 1 1 2;
Volume 2 : 0 2 -1; -1 0 -1; 1 0 -1; 1 1 -3;
Volume 1 : -1 0 0; 0 2 0; 1 0 0; 1 1 2;
Volume 2 : 0 2 0; -1 0 0; 1 0 0; 1 1 -3;
Volume 1 : 2 1 1; 3 3 1; 4 1 1; 1 1 2;
Volume 2 : 3 3 1; 2 1 1; 4 1 1; 4 2 -2;
LCC characteristics: #Darts=24, #0-cells=5, #1-cells=9, #2-cells=7, #3-cells=2, #ccs=1, valid=1

The first line gives the points of the linear cell complex before the sew<3>. There are eight points, four for each
tetrahedron. After the sew, six vertices are merged two by two, thus there are five vertices. We can see the points
of each 3-cell (lines Volume 1 and Volume 2) before the sew, after the sew and after the translation of the second
volume. We can see that this translation has also modified the three common points between the two 3-cells.
The last line shows the number of cells of the linear cell complex, the number of connected components, and
finally a Boolean to show the validity of the linear cell complex.

28.4.2 A 4D Linear Cell Complex

This example uses a 4-dimensional linear cell complex embedded in a 5-dimensional ambient space. It creates
two tetrahedra having 5D points and sews the two tetrahedra by β4. Then we use some high level operations,
display the number of cells of the linear cell complex, and check its validity. Last we use the reverse operations
to get back to the initial configuration.� �
#include <CGAL/Linear_cell_complex.h>
#include <CGAL/Linear_cell_complex_constructors.h>
#include <iostream>
#include <vector>

typedef CGAL::Linear_cell_complex<4,5> LCC_4;
typedef LCC_4::Dart_handle Dart_handle;
typedef LCC_4::Point Point;
typedef LCC_4::Vector Vector;
typedef LCC_4::FT FT;

int main()
{

LCC_4 lcc;

// Create two tetrahedra.
FT p1[5]={ 0, 0, 0, 0, 0}; std::vector<FT> v1(p1,p1+5);
FT p2[5]={ 0, 2, 0, 0, 0}; std::vector<FT> v2(p2,p2+5);
FT p3[5]={ 0, 1, 2, 0, 0}; std::vector<FT> v3(p3,p3+5);
FT p4[5]={ 2, 1, 0, 0, 0}; std::vector<FT> v4(p4,p4+5);
FT p5[5]={-1, 0, 0, 0, 0}; std::vector<FT> v5(p5,p5+5);
FT p6[5]={-1, 2, 0, 0, 0}; std::vector<FT> v6(p6,p6+5);
FT p7[5]={-1, 1, 2, 0, 0}; std::vector<FT> v7(p7,p7+5);
FT p8[5]={-3, 1, 2, 0, 0}; std::vector<FT> v8(p8,p8+5);
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Dart_handle d1 = lcc.make_tetrahedron(Point(5, v1.begin(), v1.end()),
Point(5, v2.begin(), v2.end()),
Point(5, v3.begin(), v3.end()),
Point(5, v4.begin(), v4.end()));

Dart_handle d2 = lcc.make_tetrahedron(Point(5, v5.begin(), v5.end()),
Point(5, v6.begin(), v6.end()),
Point(5, v7.begin(), v7.end()),
Point(5, v8.begin(), v8.end()));

lcc.display_characteristics(std::cout);
std::cout<<", valid="<<lcc.is_valid()<<std::endl;

lcc.sew<4>(d1,d2);

lcc.display_characteristics(std::cout);
std::cout<<", valid="<<lcc.is_valid()<<std::endl;

// Add one vertex on the middle of the edge containing dart d1.
Dart_handle d3 = lcc.insert_barycenter_in_cell<1>(d1);
CGAL_assertion( lcc.is_valid() );

lcc.display_characteristics(std::cout);
std::cout<<", valid="<<lcc.is_valid()<<std::endl;

// Add one edge to cut the face containing dart d3 in two.
Dart_handle d4 = CGAL::insert_cell_1_in_cell_2(lcc,d3,d1->beta(0));
CGAL_assertion( lcc.is_valid() );

lcc.display_characteristics(std::cout);
std::cout<<", valid="<<lcc.is_valid()<<std::endl;

// We use removal operations to get back to the initial configuration.
CGAL::remove_cell<LCC_4,1>(lcc,d4);
CGAL_assertion( lcc.is_valid() );

CGAL::remove_cell<LCC_4,0>(lcc,d3);
CGAL_assertion( lcc.is_valid() );

lcc.unsew<4>(d1);

lcc.display_characteristics(std::cout);
std::cout<<", valid="<<lcc.is_valid()<<std::endl;

return EXIT_SUCCESS;
}� �
File: examples/Linear_cell_complex/linear_cell_complex_4.cpp

The output is:

#Darts=24, #0-cells=8, #1-cells=12, #2-cells=8, #3-cells=2, #4-cells=2, #ccs=2, valid=1
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#Darts=24, #0-cells=4, #1-cells=6, #2-cells=4, #3-cells=1, #4-cells=2, #ccs=1, valid=1
#Darts=28, #0-cells=5, #1-cells=7, #2-cells=4, #3-cells=1, #4-cells=2, #ccs=1, valid=1
#Darts=32, #0-cells=5, #1-cells=8, #2-cells=5, #3-cells=1, #4-cells=2, #ccs=1, valid=1
#Darts=24, #0-cells=8, #1-cells=12, #2-cells=8, #3-cells=2, #4-cells=2, #ccs=2, valid=1

28.4.3 A 3D Linear Cell Complex with Colored Vertices

This example illustrates the way to use a 3D linear cell complex by adding another information to vertices. For
that, we need to define our own items class. The difference with the CGAL::Linear cell complex min items
class is about the definition of the vertex attribute where we use a CGAL::Cell attribute with point with a non
void info. In this example, the “vextex color” is just given by an int (the second template parameter of the
CGAL::Cell attribute with point). Lastly, we define the Average functor class in order to set the color of a
vertex resulting of the merging of two vertices to the average of the two initial values. This functor is associated
with the vertex attribute by passing it as template parameter. Using this items class instead of the default one is
done during the instantiation of template parameters of the CGAL::Linear cell complex class.

Now we can use LCC 3 in which each vertex is associated with an attribute containing both a point and an
information. In the following example, we create two cubes, and set the color of the vertices of the first cube to
1 and of the second cube to 19 (by iterating through two One dart per incident cell range<0, 3> ranges). Then
we 3-sew the two cubes along one facet. This operation merges some vertices (as in the example of Figure 28.5).
We insert a vertex in the common 2-cell between the two cubes, and set the information of the new 0-attribute
to 5. In the last loop, we display the point and the information of each vertex of the linear cell complex.� �
#include <CGAL/Linear_cell_complex.h>
#include <CGAL/Linear_cell_complex_operations.h>
#include <iostream>
#include <algorithm>

struct Average_functor
{

template<class CellAttribute>
void operator()(CellAttribute& ca1,const CellAttribute& ca2)
{ ca1.info()=(ca1.info()+ ca2.info())/2; }

};

struct Myitem
{

template<class Refs>
struct Dart_wrapper
{

typedef CGAL::Dart<3, Refs > Dart;

typedef CGAL::Cell_attribute_with_point< Refs, int, CGAL::Tag_true,
Average_functor >

Vertex_attribute;

typedef CGAL::cpp0x::tuple<Vertex_attribute> Attributes;
};

};

typedef CGAL::Linear_cell_complex_traits
<3, CGAL::Exact_predicates_inexact_constructions_kernel> Traits;
typedef CGAL::Linear_cell_complex<3,3,Traits,Myitem> LCC_3;
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typedef LCC_3::Dart_handle Dart_handle;
typedef LCC_3::Point Point;
typedef LCC_3::FT FT;

Dart_handle make_iso_cuboid(LCC_3& lcc, const Point& basepoint, FT lg)
{

return lcc.make_hexahedron(basepoint,
Traits::Construct_translated_point()
(basepoint,Traits::Vector(lg,0,0)),
Traits::Construct_translated_point()
(basepoint,Traits::Vector(lg,lg,0)),
Traits::Construct_translated_point()
(basepoint,Traits::Vector(0,lg,0)),
Traits::Construct_translated_point()
(basepoint,Traits::Vector(0,lg,lg)),
Traits::Construct_translated_point()
(basepoint,Traits::Vector(0,0,lg)),
Traits::Construct_translated_point()
(basepoint,Traits::Vector(lg,0,lg)),
Traits::Construct_translated_point()
(basepoint,Traits::Vector(lg,lg,lg)));

}

int main()
{

LCC_3 lcc;

// Create two iso_cuboids.
Dart_handle d1 = make_iso_cuboid(lcc, Point(-2, 0, 0), 1);
Dart_handle d2 = make_iso_cuboid(lcc, Point(0, 0, 0), 1);

// Set the "color" of all vertices of the first cube to 1.
for (LCC_3::One_dart_per_incident_cell_range<0, 3>::iterator

it=lcc.one_dart_per_incident_cell<0,3>(d1).begin(),
itend=lcc.one_dart_per_incident_cell<0,3>(d1).end(); it!=itend;

++it)
{ LCC_3::vertex_attribute(it)->info()=1; }

// Set the "color" of all vertices of the second cube to 19.
for (LCC_3::One_dart_per_incident_cell_range<0, 3>::iterator it=

lcc.one_dart_per_incident_cell<0,3>(d2).begin(),
itend=lcc.one_dart_per_incident_cell<0,3>(d2).end(); it!=itend;

++it)
{ LCC_3::vertex_attribute(it)->info()=19; }

// 3-Sew the two cubes along one facet.
lcc.sew<3>(d1->beta(1)->beta(1)->beta(2), d2->beta(2));

// Barycentric triangulation of the facet between the two cubes.
Dart_handle d3=lcc.insert_barycenter_in_cell<2>(d2->beta(2));

// Set the color of the new vertex to 5.
LCC_3::vertex_attribute(d3)->info()=5;
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// Display all the vertices of the map.
for (LCC_3::Vertex_attribute_range::iterator

it=lcc.vertex_attributes().begin(),
itend=lcc.vertex_attributes().end();

it!=itend; ++it)
{

std::cout<<"point: "<<it->point()<<", "<<"color: "<<it->info()
<<std::endl;

}

return EXIT_SUCCESS;
}� �
File: examples/Linear_cell_complex/linear_cell_complex_3_with_colored_vertices.cpp

The output is:

point: -1 1 1, color: 10
point: -1 0 1, color: 10
point: -2 0 1, color: 1
point: -2 1 1, color: 1
point: -2 1 0, color: 1
point: -1 1 0, color: 10
point: -1 0 0, color: 10
point: -2 0 0, color: 1
point: 1 1 1, color: 19
point: 1 0 1, color: 19
point: -1 0.5 0.5, color: 5
point: 1 1 0, color: 19
point: 1 0 0, color: 19

Before applying the sew operation, the eight vertices of the first cube are colored by 1, and the eight vertices of
the second cube by 19. After the sew operation, there are eight vertices which are merged two by two, and due
to the average functor, the color of the four resulting vertices is now 10. Then we insert a vertex in the center of
the common 2-cell between the two cubes. The coordinates of this vertex are initialized with the barycenter of
the 2-cell (-1,0.5,0.5), and its color is not initialized by the method, thus we set its color manually by using the
result of insert barycenter in cell<2> which is a dart incident to the new vertex.

28.5 Design and Implementation History

This package was developed by Guillaume Damiand, with the help of Andreas Fabri, Sébastien Loriot and
Laurent Rineau. Monique Teillaud and Bernd Gärtner contributed to the manual.
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import from polyhedron 3<LCC,Polyhedron> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1987
import from triangulation 3<LCC,Triangulation> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1986
LinearCellComplexItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1973
LinearCellComplexTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1971
Linear cell complex<d,d2,LCCTraits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1975
Linear cell complex min items<d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1982
Linear cell complex traits<d,K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1983
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LinearCellComplexTraits

Required types and functors for the LinearCellComplexTraits concept. This geometric traits concept is used in
the Linear cell complex class.

Constants

static unsigned int ambient dimension; The ambient dimension, must be >1.

Types

LinearCellComplexTraits:: FT a number type that is a model of FieldNumberType.
LinearCellComplexTraits:: Point point type.
LinearCellComplexTraits:: Vector vector type.

Constructions

LinearCellComplexTraits:: Construct translated point

Functor that provides Point operator() (const Point& p, const
Vector& v), which constructs the translation of point p by vec-
tor v, and Point operator() (const CGAL::Origin&, const Vec-
tor& v), which constructs the translation of a point at the ori-
gin by vector v (used in Linear cell complex::barycenter).

LinearCellComplexTraits:: Construct vector Functor that provides Vector operator() (const Point& p1,
const Point& p2) which constructs a vector as the dif-
ference of points p2-p1, and Vector operator() (const
CGAL::Origin&, const Point& p) which constructs a vector
as the difference of point p and a point at the origin (used in
Linear cell complex::barycenter and CGAL::import from
plane graph).

LinearCellComplexTraits:: Construct sum of vectors

Functor that provides Vector operator() (const Vec-
tor& v1, const Vector& v2) which constructs a vec-
tor as the sum of vectors v1+v2 (used in Linear
cell complex::barycenter, CGAL::compute normal of cell
0 and CGAL::compute normal of cell 2).

LinearCellComplexTraits:: Construct scaled vector

Functor that provides Vector operator() (const Vector& v, FT
scale) which constructs a vector equal to vector v scaled
by scale factor (used in Linear cell complex::barycenter
, CGAL::compute normal of cell 0 and CGAL::compute
normal of cell 2).

LinearCellComplexTraits:: Construct midpoint

Functor that provides Point operator() (const Point& p1,
const Point& p2) which constructs the midpoint of points p1
and p2 (used in Linear cell complex::barycenter).
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If ambient dimension==2
LinearCellComplexTraits:: Direction 2 a model of Direction 2.
LinearCellComplexTraits:: Construct direction 2

a model of ConstructDirection 2 (used in CGAL::import
from plane graph).

If ambient dimension==3
LinearCellComplexTraits:: Construct normal 3

a model of ConstructNormal 3 (used in CGAL::compute
normal of cell 2).

LinearCellComplexTraits:: Collinear 3 a model of Collinear 3 (used in CGAL::compute normal of
cell 2).

Has Models

CGAL::Linear cell complex traits<d,K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1983.

See Also

CGAL::Linear cell complex<d,d2,LCCTraits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1975
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LinearCellComplexItems

Definition

The concept LinearCellComplexItems refines the concept of CombinatorialMapItems by adding the require-
ment that 0-attributes are enabled, and associated with attributes that are models of the CellAttributeWithPoint
concept.

Refines

CombinatorialMapItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1934

Requirements

The first type in Attributes must be a model of the CellAttributeWithPoint concept.

Has Models

CGAL::Linear cell complex min items<d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1982

See Also

CGAL::Linear cell complex<d,d2,LCCTraits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1975
CellAttributeWithPoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1974
CGAL::Dart<d,CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1938
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CellAttributeWithPoint

Definition

The concept CellAttributeWithPoint is a refinement of the CellAttribute concept, to represent a cell attribute
containing a point.

Refines

CellAttribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1932

Types

CellAttributeWithPoint:: Point Type of the used point.

Creation

CellAttributeWithPoint cawp; Default constructor.

CellAttributeWithPoint cawp( Point apoint); Constructor initializing the point of cawp by the copy con-
tructor Point(apoint).

CellAttributeWithPoint cawp( Point apoint, Info info);

Constructor initializing the point of cawp by the copy con-
tructor Point(apoint) and initializing the information of cawp
by the copy contructor Info(info). Defined only if Info is dif-
ferent from void.

Access Member Functions

Point& cawp.point() Returns the point of cawp.

Point cawp.point() const Returns the point of cawp, when cawp is const.

Has Models

CGAL::Cell attribute with point<LCC,Info ,Tag,OnMerge,OnSplit> . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1984

See Also

LinearCellComplexItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1973
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CGAL::Linear cell complex<d,d2,LCCTraits,Items,Alloc>

#include <CGAL/Linear cell complex.h>

Definition

The class Linear cell complex<d,d2,LCCTraits,Items,Alloc> represents a linear cell complex in dimension d, in
an ambient space of dimension d2. This is a model of the concept of CombinatorialMap adding a requirement
to ensure that each vertex of the map is associated with a model of CellAttributeWithPoint.

Is Model for the Concepts

CombinatorialMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1919

Inherits From

CGAL::Combinatorial map<d,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1936

Parameters

d an integer for the dimension of the combinatorial map,
d2 an integer for the dimension of the ambient space,
LCCTraits must be a model of the LinearCellComplexTraits concept, satisfying LCCTraits::ambiant
dimension==d2,
Items must be a model of the LinearCellComplexItems concept,
Alloc has to match the standard allocator requirements.

There are four default template arguments: d2 is equal to d, LCCTraits is equal to CGAL::Linear cell complex
traits<d2>, Items is equal to CGAL::Linear cell complex min items<d> and Alloc is CGAL ALLOCATOR(int).

advanced

Note that there is an additional, and undocumented, template parameter CMap for Linear cell complex<
d,d2,LCCTraits,Items,Alloc,CMap> allowing to inherit from any model of the CombinatorialMap concept.

advanced

Creation

Linear cell complex<d,d2,LCCTraits,Items,Alloc> lcc;

Constants

static unsigned int ambient dimension = d2;

must be >1.
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Types

typedef Linear cell complex<d,d2,LCCTraits,Items,Alloc> Self;
typedef Items::Dart wrapper<Self>::Dart Dart;

The type of dart, must satisfy
Dart::dimension==d.

typedef LCCTraits Traits;
typedef Items Items;
typedef Alloc Alloc;

typedef Traits::FT FT;
typedef Traits::Point Point;
typedef Traits::Vector Vector;

Linear cell complex<d,d2,LCCTraits,Items,Alloc>:: Vertex attribute

Type of 0-attributes, a model of CellAttributeWithPoint con-
cept (a shortcut for Attribute type d<0>::type).

Linear cell complex<d,d2,LCCTraits,Items,Alloc>:: Vertex attribute handle

Handle through 0-attributes (a shortcut for Attribute handle
type d<0>::type).

Linear cell complex<d,d2,LCCTraits,Items,Alloc>:: Vertex attribute const handle

Const handle through 0-attributes (a shortcut for Attribute
const handle type d<0>::type).

Linear cell complex<d,d2,LCCTraits,Items,Alloc>:: Vertex attribute range

Range of all the 0-attributes, a model of the Range concept (a
shortcut for Attribute range d<0>::type). Iterator inner type
is bidirectional iterator and value type is Vertex attribute.

Linear cell complex<d,d2,LCCTraits,Items,Alloc>:: Vertex attribute const range

Const range of all the 0-attributes, a model of the ConstRange
concept a shortcut for Attribute const range d<0>::type). It-
erator inner type is bidirectional iterator and value type is
Vertex attribute.

Range Access Member Functions

Vertex attribute range& lcc.vertex attributes() Returns a range of all the 0-attributes in lcc (a
shortcut for attributes<0>()).

Vertex attribute const range& lcc.vertex attributes() const

Returns a const range of all the 0-attributes in lcc
(a shortcut for attributes<0>() const).
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Access Member Functions

bool lcc.is valid() const Returns true iff lcc is valid.

A linear cell complex lcc is valid if it is a valid combinatorial map, and if for each dart handle dh such that
*dh∈lcc.darts(): dh->attribute<0>()!=NULL.

size type lcc.number of vertex attributes() const

Returns the number of 0-attributes in lcc (a shortcut for number
of attributes<0>()).

Static Member Functions

static Vertex attribute handle vertex attribute( Dart handle dh)

Returns the 0-attribute associated with dh.

static Vertex attribute const handle vertex attribute( Dart const handle dh)

Returns the 0-attribute associated with dh, when
dh is const.

static Point& point( Dart handle dh)

Returns the point in the 0-attribute associated with
dh.

static Point point( Dart const handle dh)

Returns the point in the 0-attribute associated with
dh, when dh is const.

Modifiers

Dart handle lcc.create dart( Vertex attribute handle vh)

Creates a new dart in lcc, sets its associated 0-attribute
to vh and returns the corresponding handle.
Precondition: *vh∈lcc.vertex attributes().

Dart handle lcc.create dart( Point apoint)

Creates a new dart in lcc, creates a new 0-attribute ini-
tialized with apoint, sets the associated 0-attribute of
the new dart to this new 0-attribute, and returns the cor-
responding handle.
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template<typename T1>
Vertex attribute handle lcc.create vertex attribute( T1 t1)

Creates a new 0-attribute in lcc, and returns the cor-
responding handle (a shortcut for create attribute<0>
(t1)). Calls the constructor of Vertex attribute having
T1 as parameter. Overloads of this member function
are defined that take from zero to nine arguments. With
zero argument, create vertex attribute() creates a new
0-attribute by using the default constructor.

void lcc.erase vertex attribute( Vertex attribute handle vh)

Removes the 0-attribute pointed to by vh from lcc (a
shortcut for erase attribute<0>(vh)).
Precondition: *vh∈lcc.vertex attributes().

void lcc.set vertex attribute( Dart handle dh, Vertex attribute handle vh)

Associates the 0-attribute of all the darts of the 0-cell
containing dh to vh (a shortcut for set attribute<0>
(dh,vh)).
Precondition: *dh∈lcc.darts() and *vh∈lcc.vertex
attributes().

Operations

template<unsigned int i>
Point lcc.barycenter( Dart const handle dh) const

Returns the barycenter of the i-cell containing dh.
Precondition: 1≤i≤dimension and *dh∈lcc.darts().

template <unsigned int i>
Dart handle lcc.insert point in cell( Dart handle dh, Point p)

Inserts a point, copy of p, in the i-cell containing dh.
Returns a handle on one dart of this cell.
Precondition: 1≤dimension≤2 and *dh∈lcc.darts().
If i-attributes are non void, Attribute type<i>
::type::On split(a,a’) is called, with a the original
i-attribute associated with dh and a’ each new
i-attribute created during the operation.

template <unsigned int i>
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Dart handle lcc.insert barycenter in cell( Dart handle dh)

Inserts a point in the barycenter of the i-cell containing
dh. Returns a handle on one dart of this cell.
Precondition: 1≤dimension≤2 and *dh∈lcc.darts().
If i-attributes are non void, Attribute type<i>
::type::On split(a,a’) is called, with a the original
i-attribute associated with dh and a’ each new
i-attribute created during the operation.

Dart handle lcc.insert dangling cell 1 in cell 2( Dart handle dh, Point p)

Inserts a 1-cell in the 2-cell containing dh, the 1-cell
being attached only by one of its vertex to the 0-cell
containing dh. The second vertex is associated with a
new 0-attribute containing a copy of p as point. Returns
a handle on one dart belonging to the new 0-cell.
Precondition: dimension≥2 and *dh∈lcc.darts().

Constructions

Dart handle lcc.make segment( Point p0, Point p1)

Creates an isolated segment in lcc (two darts linked by β2) having p0, p1 as
points. Returns a handle on the dart associated with p0.
Precondition: dimension≥2.

r

p0

p1

Example of r=lcc.make segment(p0,p1).

Dart handle lcc.make triangle( Point p0, Point p1, Point p2)

Creates an isolated triangle in lcc having p0, p1, p2 as points. Returns a
handle on the dart associated with p0.
Precondition: dimension≥1.

r

p0

p2

p1
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Example of r=lcc.make triangle(p0,p1,p2).

Dart handle lcc.make quadrangle( Point p0, Point p1, Point p2, Point p3)

Creates an isolated quadrangle in lcc having p0, p1, p2, p3 as points. Returns
a handle on the dart associated with p0.
Precondition: dimension≥1.

r

p3

p0

p1

p2

Example of r=lcc.make quadrangle(p0,p1,p2,p3).

Dart handle lcc.make tetrahedron( Point p0, Point p1, Point p2, Point p3)

Creates an isolated tetrahedron in lcc having p0, p1,p2,p3 as points. Returns
a handle on the dart associated with p0 and belonging to the 2-cell having p0,
p1, p2 as points.
Precondition: dimension≥2.

r

p1

p2

p0

p3

Example of r=lcc.make tetrahedron(p0,p1,p2,p3).

Dart handle make hexahedron( Point p0,
Point p1,
Point p2,
Point p3,
Point p4,
Point p5,
Point p6,
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Point p7)

Creates an isolated hexahedron in lcc having p0, p1, p2, p3, p4, p5, p6, p7 as
points. Returns a handle on the dart associated with p0 and belonging to the
2-cell having p0, p5, p6, p1 as points.
Precondition: dimension≥2.

r

p0

p5

p6

p1

p7

p4

p3

p2

Example of r=lcc.make hexahedron(p0,p1,p2,p3,p4,p5,p6,p7).

See Also

CombinatorialMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1919
CGAL::Combinatorial map<d,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1936
Dart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1930
LinearCellComplexItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1973
CGAL::Linear cell complex min items<d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1982
LinearCellComplexTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1971
CGAL::Linear cell complex traits<d,K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1983
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CGAL::Linear cell complex min items<d>

#include <CGAL/Linear cell complex min items.h>

Definition

The class Linear cell complex min items<d> defines the type of darts, which is a Dart wrapper::Dart<d,LCC>
, and the traits class used. In this class, 0-attributes are enabled and associated with Cell attribute with point.

Is Model for the Concepts

LinearCellComplexItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1973

Parameters

d the dimension of the combinatorial map.

Example

The following example shows one implementation of the Linear cell complex min items<d> class.� �
template <unsigned int d>
struct Linear_cell_complex_min_items
{

template <class LCC>
struct Dart_wrapper
{

typedef CGAL::Dart<d, LCC> Dart;

typedef CGAL::Cell_attribute_with_point<LCC> Vertex_attrib;
typedef CGAL::cpp0x::tuple<Vertex_attrib> Attributes;

};
};� �

See Also

CGAL::Linear cell complex<d,d2,LCCTraits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1975
CGAL::Dart<d,CMap> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1938
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CGAL::Linear cell complex traits<d,K>

#include <CGAL/Linear cell complex traits.h>

Definition

This geometric traits concept is used in the Linear cell complex class. It can take as parameter any model of
the concept Kernel (for example any CGAL kernel), and defines inner types and functors corresponding to the
given dimension.

Is Model for the Concepts

LinearCellComplexTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1971

Inherits From

K.

Parameters

d the dimension of the kernel,
K a model of the concept Kernel if d==2 or d==3; a model of the concept Kernel d otherwise.

There is a default template arguments for K which is CGAL::Exact predicates inexact constructions kernel if
d is 2 or 3, and is CGAL::Cartesian d<double> otherwise.

Note that the default argument used for K when d>3 does not use exact predicates because operations that use
predicates are only defined in 2D and 3D.

Constants

static unsigned int ambient dimension = d;

See Also

CGAL::Linear cell complex<d,d2,LCCTraits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1975
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CGAL::Cell attribute with point<LCC,Info ,Tag,OnMerge,OnSplit>

#include <CGAL/Cell attribute with point.h>

Definition

The class Cell attribute with point<LCC,Info ,Tag,OnMerge,OnSplit> represents an attribute containing a
point and containing an information when Info is different from void. This class can typically be used to
associate a point to each 0-cell of a combinatorial map.

Is Model for the Concepts

CellAttributeWithPoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1974

Inherits From

CGAL::Cell attribute<CMap,Info ,Tag,OnMerge,OnSplit> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1939

Parameters

LCC must be an instantiation of Linear cell complex class,
Info is the type of the information contained in the attribute, void for no information,
Tag is Tag true to enable the storage of a Dart handle of the associated cell, Tag false otherwise,
OnMerge is a functor called when two attributes are merged,
OnSplit is a functor called when one attribute is split in two.

By default, OnMerge and OnSplit are equal to Null functor; Tag is equal to Tag true; and Info is equal to void.

Types

typedef LCC::Point Point;
typedef LCC::Dart handle Dart handle;
typedef LCC::Dart const handle Dart const handle;

See Also

CGAL::Linear cell complex<d,d2,LCCTraits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1975
CGAL::Linear cell complex min items<d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1982
CGAL::Cell attribute<CMap,Info ,Tag,OnMerge,OnSplit> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1939
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CGAL::import from plane graph<LCC>

#include <CGAL/Linear cell complex constructors.h>

template<class LCC>
typename LCC::Dart handle

import from plane graph( LCC& lcc, std::istream& ais)

Imports an embedded plane graph read from ais into lcc. Ob-
jects are added in lcc, existing darts are not modified. Returns
a dart created during the import.
Precondition: LCC::dimension≥2 and LCC::ambient
dimension==2.

File format

The file format must be the following. First the number of vertices and the number of edges of the planar
graph. Then, for each vertex of the planar graph, the coordinates of the ith vertex (two numbers for x and y
coordinates). The first vertex index is 0. Then for each edge of the planar graph, the two indices of the two
vertices (two numbers between 0 and the number of vertices minus 1).

Here a small example:

5 6
1.0 3.0 0.0 2.0 2.0 2.0 0.0 0.0 2.0 0.0
0 1 0 2 1 2 1 3 2 4 3 4

p4

p1 p2

p3

p0

p0

p1 p2

p4p3

Example of import graph reading the above file as istream.
Left: A planar graph embedded in the plane with P0=(1.0,3.0), P1=(0.0,2.0), P2=(2.0,2.0), P3=(0.0,0.0),

P4=(2.0,0.0). Right: the 2D linear cell complex reconstructed.

See Also

CGAL::import from triangulation 3<LCC,Triangulation> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1986
CGAL::import from polyhedron 3<LCC,Polyhedron> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1987
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CGAL::import from triangulation 3<LCC,Triangulation>

#include <CGAL/Linear cell complex constructors.h>

template <class LCC,class Triangulation >
typename LCC::Dart handle

import from triangulation 3( LCC& lcc, Triangulation atr)

Imports atr (a Triangulation 3) into lcc. Objects are added
in lcc, existing darts are not modified. Returns a dart created
during the import.
Precondition: LCC::dimension≥3 and LCC::ambient
dimension==3.

See Also

CGAL::import from plane graph<LCC> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1985
CGAL::import from polyhedron 3<LCC,Polyhedron> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1987

1986



F
un

ct
io

n

CGAL::import from polyhedron 3<LCC,Polyhedron>

#include <CGAL/Linear cell complex constructors.h>

template<class LCC,class Polyhedron>
typename LCC::Dart handle

import from polyhedron 3( LCC& lcc, Polyhedron &apoly)

Imports apoly (a Polyhedron 3) into lcc. Objects are added
in lcc, existing darts are not modified. Returns a dart created
during the import.
Precondition: LCC::dimension≥2 and LCC::ambient
dimension==3.

See Also

CGAL::import from plane graph<LCC> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1985
CGAL::import from triangulation 3<LCC,Triangulation> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1986

1987



F
un

ct
io

n

CGAL::compute normal of cell 0<LCC>

#include <CGAL/Linear cell complex operations.h>
template <class LCC>

typename LCC::Vector

compute normal of cell 0( LCC lcc, typename LCC::Dart const handle dh)

Returns the normal vector of the 0-cell containing dh; i.e. the
average of all the normal vectors of the 2-cells incident to the
0-cell containing dh.
Precondition: LCC::ambient dimension==3 and
*dh∈lcc.darts().

See Also

CGAL::compute normal of cell 2<LCC> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1989
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CGAL::compute normal of cell 2<LCC>

#include <CGAL/Linear cell complex operations.h>
template <class LCC>

typename LCC::Vector

compute normal of cell 2( LCC lcc, typename LCC::Dart const handle dh)

Returns the normal vector of the 2-cell containing dh.
Precondition: LCC::ambient dimension==3 and
*dh∈lcc.darts().

See Also

CGAL::compute normal of cell 0<LCC> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1988
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3D Boolean Operations on Nef Polyhedra
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29.1 Introduction
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In solid modeling, two major representation schemes are used: constructive solid geometry (CSG) and boundary
representations (B-rep). Both have inherent strengths and weaknesses, see [Hof89c] for a discussion.

In CSG a solid is represented as a set-theoretic boolean combination of primitive solid objects, such as blocks,
prisms, cylinders, or toruses. The boolean operations are not evaluated, instead, objects are represented im-
plicitly with a tree structure; leaves represent primitive objects and interior nodes represent boolean operations
or rigid motions, e.g., translation and rotation. Algorithms on such a CSG-tree first evaluate properties on the
primitive objects and propagate the results using the tree structure.

A B-rep describes the incidence structure and the geometric properties of all lower-dimensional features of the
boundary of a solid. Surfaces are oriented to decide between the interior and exterior of a solid.

The class of representable objects in a CSG is usually limited by the choice of the primitive solids. A B-rep is
usually limited by the choice for the geometry of the supporting curves for edges and the supporting surfaces for
surface patches, and, in addition, the connectivity structure that is allowed. In particular, a B-rep is not always
closed under boolean set operations. As an example, the class of orientable 2-manifold objects is a popular
and well understood class of surfaces commonly used for B-reps. They can be represented and manipulated
efficiently, the data structures are compact in storage size, and many algorithms are simple. On the other side,
this object class is not closed under boolean set operations, as many examples can illustrate, such as the Figure
shown above that can be generated using boolean set operations on cubes. The vertices bounding the tunnel, or
the edge connecting the “roof” with the cube are non-manifold situations.

In our implementation of Nef polyhedra in 3D, we offer a B-rep data structure that is closed under boolean
operations and with all their generality. Starting from halfspaces (and also directly from oriented 2-manifolds),
we can work with set union, set intersection, set difference, set complement, interior, exterior, boundary, closure,
and regularization operations (see Section 29.4 for an explaination of regularized set operations). In essence,
we can evaluate a CSG-tree with halfspaces as primitives and convert it into a B-rep representation.

In fact, we work with two data structures; one that represents the local neighborhoods of vertices, which is in
itself already a complete description, and a data structure that connects these neighborhoods up to a global data
structure with edges, facets, and volumes. We offer a rich interface to investigate these data structures, their
different elements and their connectivity. We provide affine (rigid) transformations and a point location query
operation. We have a custom file format for storing and reading Nef polyhedra from files. We offer a simple
OpenGL-based visualizer for debugging and illustrations.

29.2 Definition

The theory of Nef polyhedra has been developed for arbitrary dimensions. The class CGAL::Nef polyhedron 3
implements a boundary representation for the 3-dimensional case.

Definition: A Nef-polyhedron in dimension d is a point set P ⊆ Rd generated from a finite number of open
halfspaces by set complement and set intersection operations.

Set union, difference and symmetric difference can be reduced to intersection and complement. Set comple-
ment changes between open and closed halfspaces, thus the topological operations boundary, interior, exterior,
closure and regularization are also in the modeling space of Nef polyhedra.

A face of a Nef polyhedron is defined as an equivalence class of local pyramids that are a characterization of
the local space around a point.

Definition: A point set K ⊆ Rd is called a cone with apex 0, if K = R+K (i.e., ∀p ∈ K,∀λ > 0 : λp ∈ K) and
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it is called a cone with apex x, x ∈Rd , if K = x+R+(K−x). A cone K is called a pyramid if K is a polyhedron.

Now let P ∈ Rd be a polyhedron and x ∈ Rd . There is a neighborhood U0(x) of x such that the pyramid
Q := x+R+((P∩U(x))− x) is the same for all neighborhoods U(x)⊆U0(x). Q is called the local pyramid of
P in x and denoted PyrP(x).

Definition: Let P∈Rd be a polyhedron and x,y∈Rd be two points. We define an equivalence relation x∼ y iff
PyrP(x) = PyrP(y). The equivalence classes of ∼ are the faces of P. The dimension of a face s is the dimension
of its affine hull, dims := dimaffs.

In other words, a face s of P is a maximal non-empty subset of Rd such that all of its points have the same local
pyramid Q denoted PyrP(s). This definition of a face partitions Rd into faces of different dimension. A face s is
either a subset of P, or disjoint from P. We use this later in our data structure and store a selection mark in each
face indicating its set membership.

Faces do not have to be connected. There are only two full-dimensional faces possible, one whose local pyramid
is the space Rd itself and the other with the empty set as a local pyramid. All lower-dimensional faces form
the boundary of the polyhedron. As usual, we call zero-dimensional faces vertices and one-dimensional faces
edges. In the case of polyhedra in space we call two-dimensional faces facets and the full-dimensional faces
volumes. Faces are relative open sets, e.g., an edge does not contain its end-vertices.

We illustrate the definitions with an example in the plane. Given the closed halfspaces

h1 : y≥ 0, h2 : x− y≥ 0, h3 : x+ y≤ 3, h4 : x− y≥ 1, h5 : x+ y≤ 2,

we define our polyhedron P := (h1∩h2∩h3)− (h4∩h5).
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The left figure illustrates the polyhedron with its partially closed and partially open boundary, i.e., vertex
v4,v5,v6, and edges e4 and e5 are not part of P. The local pyramids for the faces are PyrP( f1) = /0 and
PyrP( f2) = R2. Examples for the local pyramids of edges are the closed halfspace h2 for the edge e1,
PyrP(e1) = h2, and the open halfspace that is the complement of h4 for the edge e5, PyrP(e5) = {(x,y)|x−y < 1}.
The edge e3 consists actually of two disconnected parts, both with the same local pyramid PyrP(e3) = h1. In
our data structure, we will represent the two connected components of the edge e3 separately. The figure on the
right lists all local pyramids for this example.

The local pyramids of each vertex are represented by conceptually intersecting the local neighborhood with
a small ε-sphere. This intersection forms a planar map on the sphere (see next two figures), which together
with the set-selection mark for each item (i.e. vertices, edges, loops and faces) forms a two-dimensional Nef
polyhedron embedded in the sphere. We add the set-selection mark for the vertex and call the resulting structure
the sphere map of the vertex. We use the prefix s to distinguish the elements of the sphere map from the
three-dimensional elements. See Chapter 21 for further details.
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Having sphere maps for all vertices of our polyhedron is a sufficient but not easily accessible representation of
the polyhedron. We enrich the data structure with more explicit representations of all the faces and incidences
between them.

edge use

opposite edge use

vertex

sphere map

svertex
se

dg
e

oriented edge

sphere map
vertex

edge use

svertex

svertex

svertex

sedge

oriented facet

We depart slightly from the definition of faces in a Nef polyhedron; we represent the connected components of
a face individually and do not implement additional bookkeeping to recover the original faces (e.g., all edges
on a common supporting line with the same local pyramid) as this is not needed in our algorithms. We discuss
features in the increasing order of dimension.

edges: We store two oppositely oriented edges for each edge and have a pointer from one oriented edge to its
opposite edge. Such an oriented edge can be identified with an svertex in a sphere map; it remains to link
one svertex with the corresponding opposite svertex in the other sphere map.

edge uses: An edge can have many incident facets (non-manifold situation). We introduce two oppositely
oriented edge-uses for each incident facet; one for each orientation of the facet. An edge-use points to
its corresponding oriented edge and to its oriented facet. We can identify an edge-use with an oriented
sedge in the sphere map, or, in the special case also with an sloop. Without mentioning it explicitly in the
remainder, all references to sedge can also refer to sloop.

facets: We store oriented facets as boundary cycles of oriented edge-uses. We have a distinguished outer bound-
ary cycle and several (or maybe none) inner boundary cycles representing holes in the facet. Boundary
cycles are linked in one direction. We can access the other traversal direction when we switch to the
oppositely oriented facet, i.e., by using the opposite edge-use.

shells: The volume boundary decomposes into different connected components, the shells. A shell consists
of a connected set of facets, edges, and vertices incident to this volume. Facets around an edge form
a radial order that is captured in the radial order of sedges around an svertex in the sphere map. Using
this information, we can trace a shell from one entry element with a graph search. We offer this graph
traversal (to the user) in a visitor design pattern.
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volumes: A volume is defined by a set of shells, one outer shell containing the volume and several (or maybe
none) inner shells separating voids which are excluded from the volume.

For each face we store a label, e.g., a set-selection mark, which indicates whether the face is part of the solid or
if it is excluded. We call the resulting data structure Selective Nef Complex, SNC for short [GHH+03]. However,
in CGAL we identify the names and call the SNC data structure CGAL::Nef polyhedron 3.

29.3 Infimaximal Box

We call a Nef polyhedron bounded if its boundary is bounded, i.e., finite, and unbounded otherwise. Note that
unbounded point sets can have a bounded boundary, for example, the complement of a cube has an unbounded
outer volume, but its boundary remains bounded.

Using a boundary representation, it is convenient (conceptually and in our implementation) to consider bounded
Nef polyhedra only. Bounded Nef polyhedra are also closed under boolean set operations. However, one
needs to start with bounded primitives; the conceptually nice halfspaces cannot be used. Instead, we offer a
construction from oriented 2-manifolds represented in a CGAL::Polyhedron 3, see Section 29.5.4 below.

In order to handle unbounded Nef polyhedra conceptually in the same way as we handle bounded Nef polyhedra,
we intersect them with a bounding cubical volume of size [−R,R]3, where R is a symbolical unspecified value,
which is finite but larger than all coordinate values that may occur in the bounded part of the polyhedron. As a
result, each Nef polyhedron becomes bounded. We call the boundary of the bounding volume the infimaximal
box [SM00].

We clip lines and rays at the infimaximal box. The intersection points with the infimaximal box are called non-
standard points, which are points whose coordinates are−R or R in at least one dimension, and linear functions
f (R) for the other dimensions. Such extended points (and developed from there also extended segments etc) are
provided in CGAL with extended kernels—CGAL::Extended cartesian and CGAL::Extended homogeneous.
They are regular CGAL kernels with a polynomial type as coordinate number type.

As long as an extended kernel is used, the full functionality provided by the CGAL::Nef polyhedron 3 class is
available. If a kernel that does not use polynomials to represent coordinates is used, it is not possible to create
or load unbounded Nef polyhedra, but all other operations work as expected. We provided both possibilities,
since the restriction to bounded Nef polyhedra improves considerably space requirements (plain number type
instead of polynomial), and runtime performance.

29.4 Regularized Set Operations

Since manifolds are not closed under boolean operations, Requicha proposes to use regularized set opera-
tions [KM76, Req80]. A set is regular, if it equals the closure of its interior. A regularized set operation is
defined as the standard set operation followed by a regularization of the result. Regularized sets are closed
under regularized set operations.

Regularized set operations are important since they simplify the class of solids to exclude lower dimensional
features and the boundary belongs to the point set. These properties are considered to reflect the nature of
physical solids more closely.

Regularized polyhedral sets are a subclass of Nef polyhedra. We provide the regularization operation as a
shortcut for the consecutive execution of the interior and the closure operations.
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29.5 Example Programs

The following example gives a first impression of how to instantiate and use Nef polyhedron 3. We use the
CGAL::Cartesian kernel. All Cartesian and homogeneous kernels of CGAL are suitable if the number type
parameter follows the usual requirements of being a model of the CGAL::FieldNumberType concept for the
Cartesian kernels, or the CGAL::RingNumberType concept for the homogeneous kernels, respectively. Note
however, that in the current state, the Nef polyhedron works only with CGAL kernels. The implementation
makes use of CGAL specific functions in kernel objects, and does not yet offer a designed interface to a clean
kernel concept that could be offered by an external kernel as well.

The example creates two Nef polyhedra—N0 is the empty set, while N1 represents the full space, i.e., the set
of all points in the 3-dimensional space. The assertion assures that the empty set is the complement of the full
space.� �
#include <CGAL/Gmpz.h>
#include <CGAL/Homogeneous.h>
#include <CGAL/Nef_polyhedron_3.h>

typedef CGAL::Homogeneous<CGAL::Gmpz> Kernel;
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron;

int main() {
Nef_polyhedron N0(Nef_polyhedron::EMPTY);
Nef_polyhedron N1(Nef_polyhedron::COMPLETE);

CGAL_assertion (N0 == N1.complement());
return 0;

}� �
File: examples/Nef_3/nef_3_simple.cpp

29.5.1 Construction and Comparison

This example shows the various constructors. We can create the empty set, which is also the default constructor,
and the full space, i.e. all points of R3 belong to the polyhedron. We can create a halfspace defined by a plane
bounding it. It is only available if an extended kernel is used. The halfspace constructor has a second parameter
that specifies whether the defining plane belongs to the point set (Nef polyhedron::INCLUDED) or not (Nef
polyhedron::EXCLUDED). The default value is Nef polyhedron::INCLUDED. Additionally, we can create a
Nef polyhedron 3 from a Polyhedron 3, see the Section 29.5.4 below.

We can compute the point sets of two Nef polyhedra for equality and proper subset relationships. We offer the
usual comparison operators ==, !=, <=, >=, < and >.

Nef polyhedra have the important feature that a representation that is called the reduced Würzburg structure is
unique, i.e., two point sets of Nef polyhedra are equal if and only if the representations are equal. The proof for
the reduced Würzburg structure carries over to our representation and the comparison operators are therefore
trivial to implement.� �
#include <CGAL/Gmpz.h>
#include <CGAL/Extended_homogeneous.h>
#include <CGAL/Nef_polyhedron_3.h>
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typedef CGAL::Extended_homogeneous<CGAL::Gmpz> Kernel;
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron;
typedef Nef_polyhedron::Plane_3 Plane_3;

int main() {
Nef_polyhedron N0;
Nef_polyhedron N1(Nef_polyhedron::EMPTY);
Nef_polyhedron N2(Nef_polyhedron::COMPLETE);
Nef_polyhedron N3(Plane_3( 1, 2, 5,-1));
Nef_polyhedron N4(Plane_3( 1, 2, 5,-1), Nef_polyhedron::INCLUDED);
Nef_polyhedron N5(Plane_3( 1, 2, 5,-1), Nef_polyhedron::EXCLUDED);

CGAL_assertion(N0 == N1);
CGAL_assertion(N3 == N4);
CGAL_assertion(N0 != N2);
CGAL_assertion(N3 != N5);

CGAL_assertion(N4 >= N5);
CGAL_assertion(N5 <= N4);
CGAL_assertion(N4 > N5);
CGAL_assertion(N5 < N4);

N5 = N5.closure();
CGAL_assertion(N4 >= N5);
CGAL_assertion(N4 <= N5);

return 0;
}� �
File: examples/Nef_3/nef_3_construction.cpp

29.5.2 Point Set Operations

As explained in the introduction, Nef polyhedra are closed under all boolean set operations. The class Nef
polyhedron 3 provides functions and operators for the most common ones: complement (operator!), union
(operator+), difference (operator-), intersection (operator*) and symmetric difference (operator ˆ). Addition-
ally, the operators *=, -=, *= and ˆ= are defined.

Nef polyhedron 3 also provides the topological operations interior(), closure() and boundary(). With interior()
one deselects all boundary items, with boundary() one deselects all volumes, and with closure() one selects all
boundary items.� �
#include <CGAL/Gmpz.h>
#include <CGAL/Extended_homogeneous.h>
#include <CGAL/Nef_polyhedron_3.h>

typedef CGAL::Extended_homogeneous<CGAL::Gmpz> Kernel;
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron;
typedef Kernel::Plane_3 Plane_3;

int main() {
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Nef_polyhedron N1(Plane_3( 1, 0, 0,-1));
Nef_polyhedron N2(Plane_3(-1, 0, 0,-1));
Nef_polyhedron N3(Plane_3( 0, 1, 0,-1));
Nef_polyhedron N4(Plane_3( 0,-1, 0,-1));
Nef_polyhedron N5(Plane_3( 0, 0, 1,-1));
Nef_polyhedron N6(Plane_3( 0, 0,-1,-1));

Nef_polyhedron I1(!N1 + !N2); // open slice in yz-plane
Nef_polyhedron I2(N3 - !N4); // closed slice in xz-plane
Nef_polyhedron I3(N5 ˆ N6); // open slice in yz-plane
Nef_polyhedron Cube1(I2 * !I1);
Cube1 *= !I3;
Nef_polyhedron Cube2 = N1 * N2 * N3 * N4 * N5 * N6;

CGAL_assertion(Cube1 == Cube2); // both are closed cube
CGAL_assertion(Cube1 == Cube1.closure());
CGAL_assertion(Cube1 == Cube1.regularization());
CGAL_assertion((N1 - N1.boundary()) == N1.interior());
CGAL_assertion(I1.closure() ==
I1.complement().interior().complement());

CGAL_assertion(I1.regularization() == I1.interior().closure());
return 0;

}� �
File: examples/Nef_3/point_set_operations.cpp

29.5.3 Transformation

Using the std::transform function, a Nef polyhedron can be translated, rotated and scaled. The usage is shown
in the following example:� �
#include <CGAL/Gmpz.h>
#include <CGAL/Extended_homogeneous.h>
#include <CGAL/Nef_polyhedron_3.h>
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>

//instead of
//typedef CGAL::Extended_homogeneous<CGAL::Gmpz> Kernel;
// workaround for VC++
struct Kernel : public CGAL::Extended_homogeneous<CGAL::Gmpz> {};

typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron;
typedef Nef_polyhedron::Plane_3 Plane_3;
typedef Nef_polyhedron::Vector_3 Vector_3;
typedef Nef_polyhedron::Aff_transformation_3 Aff_transformation_3;

int main() {

Nef_polyhedron N(Plane_3(0,1,0,0));
Aff_transformation_3 transl(CGAL::TRANSLATION, Vector_3(5, 7, 9));
Aff_transformation_3 rotx90(1,0,0,
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0,0,-1,
0,1,0,
1);

Aff_transformation_3 scale(3,0,0,
0,3,0,
0,0,3,
2);

N.transform(transl);
CGAL_assertion(N == Nef_polyhedron(Plane_3(0,1,0,-7)));
N.transform(rotx90);
CGAL_assertion(N == Nef_polyhedron(Plane_3(0,0,1,-7)));
N.transform(scale);
CGAL_assertion(N == Nef_polyhedron(Plane_3(0,0,2,-21)));

return 0;
}� �
File: examples/Nef_3/transformation.cpp

29.5.4 The Interface between Polyhedron 3 and Nef polyhedron 3

Nef polyhedron 3 provides an interface for the conversion between polyhedral surfaces represented with the
CGAL::Polyhedron 3 class and Nef polyhedron 3. Polyhedron 3 represents orientable 2-manifold objects with
boundaries. However, we exclude surfaces with boundaries from the conversion to Nef polyhedron 3 since they
have no properly defined volume.

Both conversion directions can only be performed if the boundary of the point set is an oriented closed 2-
manifold. Nef polyhedron 3 provides the function is simple() and Polyhedron 3 provides the function is
closed() to test for this property. The usage is illustrated by the example program below.

The conversion gives us the possibility to use several file formats. Polyhedron 3 can read the (.off) file format
and can write the (.off), OpenInventor (.iv), VRML 1.0 and 2.0 (.wrl) and Wavefront Advanced Visualizer
object format (.obj), see Section 25.4.� �
#include <CGAL/Gmpz.h>
#include <CGAL/Homogeneous.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>
#include <CGAL/Nef_polyhedron_3.h>
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>
#include <iostream>

typedef CGAL::Homogeneous<CGAL::Gmpz> Kernel;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron;
typedef Kernel::Vector_3 Vector_3;
typedef Kernel::Aff_transformation_3 Aff_transformation_3;

int main() {
Polyhedron P;
std::cin >> P;
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if(P.is_closed()) {
Nef_polyhedron N1(P);
Nef_polyhedron N2(N1);
Aff_transformation_3 aff(CGAL::TRANSLATION, Vector_3(2,2,0,1));
N2.transform(aff);
N1 += N2;

if(N1.is_simple()) {
N1.convert_to_polyhedron(P);
std::cout << P;

}
else

std::cerr << "N1 is not a 2-manifold." << std::endl;
}

}� �
File: examples/Nef_3/interface_polyhedron.cpp

29.5.5 Using an Extended Kernel

The provided extended kernels are used the same way as any other CGAL kernel. The essential difference is,
that coordinates are not represented by the number type that was used to parameterize the kernel type, but by a
Nef polynomial parametrized by that number type.

The example iterates all vertices of a given Nef polyhedron and decides whether it is an standard vertex or a
vertex on the infimaximal box. Furthermore, it tests whether any of the vertices is at (R,R,R). Recall that R was
the symbolical value, large but finite, for the size of the infimaximal box.� �
#include <CGAL/Gmpz.h>
#include <CGAL/Extended_homogeneous.h>
#include <CGAL/Nef_polyhedron_3.h>
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>

typedef CGAL::Gmpz NT;
//instead of
//typedef CGAL::Extended_homogeneous<NT> Kernel;
// workaround for VC++
struct Kernel : public CGAL::Extended_homogeneous<NT> {};

typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron;
typedef Nef_polyhedron::RT RT;
typedef Nef_polyhedron::Point_3 Point_3;
typedef Nef_polyhedron::Plane_3 Plane_3;
typedef Nef_polyhedron::Vertex_const_iterator Vertex_const_iterator;

int main() {

Nef_polyhedron N;
std::cin >> N;

Vertex_const_iterator v;
for(v = N.vertices_begin(); v != N.vertices_end(); ++v) {
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Point_3 p(v->point());
if(p.hx().degree() > 0 || p.hy().degree() > 0 || p.hz().degree() > 0)

std::cout << "extended vertex at " << p << std::endl;
else

std::cout << "standard vertex at " << p << std::endl;

if(p == Point_3(RT(0,1), RT(0,1), RT(0,1)))
std::cout << " found vertex (right,back,top) of the infimaximal

box"
<< std::endl;

}

return 0;
}� �
File: examples/Nef_3/extended_kernel.cpp

29.6 File I/O

Nef polyhedron 3 provides an input and an output operator for a proprietary file format. It includes the complete
incidence structure, the geometric data, and the marks of each item. The output depends on the output operators
of the geometric primitives provided by the traits class, and on the output operators of the used number type.
Therefore, it is necessary to use the same kernel and the same number type for input and output operations.

We recommend the use of the CGAL kernels Homogeneous, Exact predicates exact constructions kernel, or
Extended homogeneous. The Homogeneous kernel provides reliable fast performance. In combination with
leda integer it is the fastest kernel for Nef polyhedron 3. The Exact predicates exact constructions kernel
uses filtering. In non-degenerate scenarios it’s faster than the Homogeneous kernel. The most important advan-
tage of the filtered kernel is that it is a Cartesian kernel, which allows the proper handling of OFF files using
floating-point coordinates.

For effective filtering we had to change some concepts. The new concepts must be activated by using the
SNC indexed items, because they don’t apply for the extended kernels, yet. The new concepts also speed up
Nef polyhedron 3 also in combination with all other standard kernels. The following example illustrates their
usage.� �
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>
#include <CGAL/Nef_polyhedron_3.h>
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>

typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron;

int main() {

Polyhedron P;
std::cin >> P;
Nef_polyhedron N(P);
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std::cout << "Exact_predicates_exact_constructions_kernel +
SNC_indexed_items"

<< std::endl
<< " allows efficient handling of input "

"using floating point coordinates"
<< std::endl;

if(N.is_simple()) {
N.convert_to_polyhedron(P);
std::cout << P;

}
else {

std::cout << N;
}

}� �
File: examples/Nef_3/handling_double_coordinates.cpp

We provide compatibility between the input and output of various kernels. For most of the CGAL kernels it
is possible to write a file constructed with one kernel and reread it with another. Also, it is possible to write
a bounded Nef polyhedron using the Extended homogeneous kernel and to read it afterwards using a standard
kernel.� �
#include <CGAL/Gmpz.h>
#include <CGAL/Homogeneous.h>
#include <CGAL/Extended_homogeneous.h>
#include <CGAL/Nef_polyhedron_3.h>
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>
#include <fstream>

typedef CGAL::Gmpz NT;
typedef CGAL::Homogeneous<NT> SK;
typedef CGAL::Extended_homogeneous<NT> EK;
typedef CGAL::Nef_polyhedron_3<SK> Nef_polyhedron_S;
typedef CGAL::Nef_polyhedron_3<EK> Nef_polyhedron_E;

int main() {
Nef_polyhedron_E E;
Nef_polyhedron_S S;

std::cin >> E;

if(E.is_bounded()) {
std::ofstream out("temp.nef3");
out << E;
std::ifstream in("temp.nef3");
in >> S;

}
}� �
File: examples/Nef_3/nefIO.cpp
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29.7 Further Example Programs

29.7.1 Exploring a Sphere Map

A sphere map is explored by using the function get sphere map, which returns the sphere map of the specified
vertex as a Nef polyhedron S2. Nef polyhedron S2 provides the functionality necessary for the exploration.
Note, that one has to use the type Nef polyhedron S2 as specified in Nef polyhedron 3 as is shown in the
following example.� �
#include <CGAL/Gmpz.h>
#include <CGAL/Homogeneous.h>
#include <CGAL/Nef_polyhedron_3.h>
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>

typedef CGAL::Homogeneous<CGAL::Gmpz> Kernel;
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron_3;

int main() {

// We’ve put the typedefs here as VC7 gives us an ICE if they are
global typedefs

typedef Nef_polyhedron_3::Vertex_const_iterator Vertex_const_iterator;
typedef Nef_polyhedron_3::Nef_polyhedron_S2 Nef_polyhedron_S2;
typedef Nef_polyhedron_S2::SVertex_const_handle SVertex_const_handle;
typedef Nef_polyhedron_S2::SHalfedge_const_handle
SHalfedge_const_handle;

typedef Nef_polyhedron_S2::SHalfloop_const_handle
SHalfloop_const_handle;

typedef Nef_polyhedron_S2::SFace_const_iterator SFace_const_iterator;
typedef Nef_polyhedron_S2::SFace_cycle_const_iterator

SFace_cycle_const_iterator;

Nef_polyhedron_3 N;
std::cin >> N;

Vertex_const_iterator v = N.vertices_begin();
Nef_polyhedron_S2 S(N.get_sphere_map(v));

int i=0;
SFace_const_iterator sf;
for(sf = S.sfaces_begin(); sf != S.sfaces_end(); sf++) {

SFace_cycle_const_iterator it;
std::cout << "the sface cycles of sface " << i++ << " start with
an\n";
for(it = sf->sface_cycles_begin(); it != sf->sface_cycles_end();
it++) {

if (it.is_svertex())
std::cout << " svertex at position "

<< SVertex_const_handle(it)->point() << std::endl;
else if (it.is_shalfedge())

std::cout << " shalfedge from "
<< SHalfedge_const_handle(it)->source()->point() << "
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to "
<< SHalfedge_const_handle(it)->target()->point() <<

std::endl;
else if (it.is_shalfloop())

std::cout << " shalfloop lying in the plane "
<< SHalfloop_const_handle(it)->circle() << std::endl;

// other cases can not occur.
}

}

return 0;
}� �

File: examples/Nef_3/exploration_SM.cpp

29.7.2 Exploring Shells

A shell of a Nef polyhedron is the connected part of the surface incident to a certain volume. Each halffacet,
sface and shalfedge belongs to a single shell. The figure below illustrates the notion of a shell. It shows a Nef
polyhedron with two volumes and three shells.

The first volume is the outer volume and the second volume is the interior of the cube. The first shell is the
whole surface of the left object. The second shell is the outer surface of the right object, and the third shell is
the inner surface of the right object.

In detail, the first shell consists of two halffacets, eight halfedges and four vertices. The second shell consists
of the eight vertices of the cube plus the two endpoints of the antenna, all halffacets oriented outwards, and all
halfedges. The third shell consists of the same eight vertices of the cube, plus the endpoint of the antenna that
is in contact with the cube, all halffacets oriented inwards, and all halfedges (the same as for the second shell).
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shalfloop

shalfloop

svertex

We discuss how sfaces, shalfedges, and sloops belong to the shells with a closeup view of the situation at the
antenna foot. As you can see, there are three items on the sphere map - a shalfloop for each halffacet which
intersects the sphere, and an svertex where the antenna intersects the sphere. The upper shalfloop lies on the
halffacet which is oriented outwards and is therefore also oriented outwards. This shalfloop and the svertex
belong to the second shell. The other shalfloop lies on the inwards oriented halffacet and is oriented inwards,
too. This shalfloop belongs to the third shell.

Nef polyhedron 3 offers a visitor interface to explore a shell following the well-known visitor pat-
tern [GHJV95]. The interface is illustrated by the following example.� �
#include <CGAL/Gmpz.h>
#include <CGAL/Homogeneous.h>
#include <CGAL/Nef_polyhedron_3.h>
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>

typedef CGAL::Homogeneous<CGAL::Gmpz> Kernel;
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron;
typedef Nef_polyhedron::Vertex_const_handle Vertex_const_handle;
typedef Nef_polyhedron::Halfedge_const_handle Halfedge_const_handle;
typedef Nef_polyhedron::Halffacet_const_handle Halffacet_const_handle;
typedef Nef_polyhedron::SHalfedge_const_handle SHalfedge_const_handle;
typedef Nef_polyhedron::SHalfloop_const_handle SHalfloop_const_handle;
typedef Nef_polyhedron::SFace_const_handle SFace_const_handle;
typedef Nef_polyhedron::Volume_const_iterator Volume_const_iterator;
typedef Nef_polyhedron::Shell_entry_const_iterator

Shell_entry_const_iterator;
typedef Kernel::Point_3 Point_3;

class Shell_explorer {
bool first;
const Nef_polyhedron& N;
Vertex_const_handle v_min;

public:
Shell_explorer(const Nef_polyhedron& N_)

: first(true), N(N_) {}

void visit(Vertex_const_handle v) {
if(first ||
CGAL::lexicographically_xyz_smaller(v->point(),v_min->point())) {

v_min = v;
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first=false;
}

}

void visit(Halfedge_const_handle ) {}
void visit(Halffacet_const_handle ) {}
void visit(SHalfedge_const_handle ) {}
void visit(SHalfloop_const_handle ) {}
void visit(SFace_const_handle ) {}

Vertex_const_handle& minimal_vertex() { return v_min; }
void reset_minimal_vertex() { first = true; }

};

int main() {
Nef_polyhedron N;
std::cin >> N;

int ic = 0;
Volume_const_iterator c;
Shell_explorer SE(N);
CGAL_forall_volumes(c,N) {

std::cout << "Volume " << ic++ << std::endl;
int is = 0;
Shell_entry_const_iterator it;
CGAL_forall_shells_of(it,c) {

SE.reset_minimal_vertex();
N.visit_shell_objects(SFace_const_handle(it),SE);
Point_3 p(SE.minimal_vertex()->point());
std::cout << " minimal vertex of shell " << is++

<< " is at " << p << std::endl;
}

}
}� �
File: examples/Nef_3/shell_exploration.cpp

The function visit shell objects(SFace const handle sf, Visitor& V) explores a shell starting at the sf . The
second argument expects any class providing the (possibly empty) functions visit(Vertex const handle),
visit(Halfedge const handle) (remember that Halfedge is the same type as SVertex), visit(Halffacet const
handle), visit(SHalfedge const handle), visit(SHalfloop const handle) and visit(SFace const handle). The
visit shell objects function will call visit for each item belonging to the shell once. There are no further re-
quirements on that class.

In the example, the class Shell explorer is passed as second argument to visit shell objects. Its task is to find
the lexicographically smallest vertex of a shell. Its internal state consists of three variables. The first one is a
reference to the explored Nef polyhedron. This reference is often necessary to retrieve information from the
Nef polyhedron. The second variable v min stores the smallest vertex found so far, and the third variable first is
initialized to false to signal that no vertex has been visited so far. After the first vertex has been visited first is
changed to true.

Shell explorer provides further member functions. After the exploration of a shell the minimal vertex func-
tion retrieves the smallest vertex. The reset minimal vertex function allows one to use the same instance of
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Shell explorer on multiple shells. In this case, the reset minimal vertex function has to be called between the
exploration of two shells.

The example program uses the Shell explorer for each shell of the given Nef polyhedron once and reports the
smallest vertex of each shell to the standard output.

29.7.3 Point Location

The locate(Point 3 p) function locates the point p in the Nef polyhedron and returns the item the point belongs
to. The locate function returns an instance of Object handle, which is a polymorphic handle type representing
any handle type, no matter if it is mutable or const. For further usage of the result, the Object handle has to be
casted to the concrete handle type. The CGAL::assign function performs such a cast. It returns a boolean that
reports the success or the failure of of the cast. Looking at the possible return values of the locate function, the
Object handle can represent a Vertex const handle, a Halfedge const handle, a Halffacet handle, or a Volume
const handle. One of the four casts will succeed.� �
#include <CGAL/Gmpz.h>
#include <CGAL/Homogeneous.h>
#include <CGAL/Nef_polyhedron_3.h>
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>

typedef CGAL::Homogeneous<CGAL::Gmpz> Kernel;
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron_3;

typedef Kernel::Point_3 Point_3;

int main() {
//We’ve put the typedefs here as VC7 gives us an ICE if they are global

typedefs
typedef Nef_polyhedron_3::Vertex_const_handle Vertex_const_handle;
typedef Nef_polyhedron_3::Halfedge_const_handle Halfedge_const_handle;
typedef Nef_polyhedron_3::Halffacet_const_handle
Halffacet_const_handle;

typedef Nef_polyhedron_3::Volume_const_handle Volume_const_handle;
typedef Nef_polyhedron_3::Object_handle Object_handle;

Nef_polyhedron_3 N;
std::cin >> N;

Vertex_const_handle v;
Halfedge_const_handle e;
Halffacet_const_handle f;
Volume_const_handle c;
Object_handle o = N.locate(Point_3(0,0,0));
if(CGAL::assign(v,o))

std::cout << "Locating vertex" << std::endl;
else if(CGAL::assign(e,o))

std::cout << "Locating edge" << std::endl;
else if(CGAL::assign(f,o))

std::cout << "Locating facet" << std::endl;
else if(CGAL::assign(c,o))

std::cout << "Locating volume" << std::endl;
//other cases can not occur
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return 0;
}� �
File: examples/Nef_3/nef_3_point_location.cpp

29.8 Visualization

With the Qt widget OpenGL class an interface to OpenGL visualization via Qt is offered. The class knows
how to handle mouse movements and clicks and how to move and scale the 3D object displayed in the widget.
Qt widget OpenGL is a basis for writing Qt widgets displaying 3D objects. A user can derive a new class from
Qt widget OpenGL which implements the drawing method and configures the context menus.

29.8.1 Visualizing a 3D Nef polyhedron

Qt widget Nef 3 implements the drawing methods for displaying instances of Nef polyhedron 3. The following
example shows how to set up an QApplication with a main widget of type Qt widget Nef 3 and how to start the
viewer.

� �
#include <CGAL/basic.h>
#include <CGAL/Gmpz.h>
#include <CGAL/Homogeneous.h>
#include <CGAL/Nef_polyhedron_3.h>
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>
#include <CGAL/IO/Qt_widget_Nef_3.h>
#include <qapplication.h>

typedef CGAL::Homogeneous<CGAL::Gmpz> Kernel;
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron_3;

int main(int argc, char* argv[]) {
Nef_polyhedron_3 N;
std::cin >> N;
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QApplication a(argc, argv);
CGAL::Qt_widget_Nef_3<Nef_polyhedron_3>* w =

new CGAL::Qt_widget_Nef_3<Nef_polyhedron_3>(N);
a.setMainWidget(w);
w->show();
return a.exec();

}� �
File: demo/Nef_3/visualization_SNC.cpp

29.8.2 Visualizing a Sphere Map

Qt widget Nef S2 is a widget implemented on the basis of Qt widget OpenGL. It can be used to visualize
the sphere map of a vertex in a Nef polyhedron 3 using the interface between Nef polyhedron S2 and Nef
polyhedron 3.� �
#include <CGAL/basic.h>
#include <CGAL/Gmpz.h>
#include <CGAL/Homogeneous.h>
#include <CGAL/Nef_polyhedron_3.h>
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>
#include <CGAL/IO/Qt_widget_Nef_S2.h>
#include <qapplication.h>

typedef CGAL::Homogeneous<CGAL::Gmpz> Kernel;
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron_3;

int main(int argc, char* argv[]) {

// We’ve put the typedefs here as VC7 gives us an ICE if they are
global typedefs

typedef Nef_polyhedron_3::Vertex_const_iterator Vertex_const_iterator;
typedef Nef_polyhedron_3::Nef_polyhedron_S2 Nef_polyhedron_S2;

Nef_polyhedron_3 N;
std::cin >> N;
Vertex_const_iterator v = N.vertices_begin();
Nef_polyhedron_S2 S(N.get_sphere_map(v));

QApplication a(argc, argv);
CGAL::Qt_widget_Nef_S2<Nef_polyhedron_S2>* w =

new CGAL::Qt_widget_Nef_S2<Nef_polyhedron_S2>(S);
a.setMainWidget(w);
w->show();
return a.exec();

}� �
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File: demo/Nef_3/visualization_SM.cpp
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3D Boolean Operations on Nef Polyhedra
Reference Manual
Peter Hachenberger, Lutz Kettner, and Michael Seel

A Nef polyhedron is any point set generated from a finite number of open halfspaces by set complement and
set intersection operations. In our implementation of Nef polyhedra in 3-dimensional space, we offer a B-rep
data structures that is closed under boolean operations and with all their generality. Starting from halfspaces
(and also directly from oriented 2-manifolds), we can work with set union, set intersection, set difference, set
complement, interior, exterior, boundary, closure, and regularization operations. In essence, we can evaluate a
CSG-tree with halfspaces as primitives and convert it into a B-rep representation.

In fact, we work with two data structures; one that represents the local neighborhoods of vertices, which is in
itself already a complete description, and a data structure that connects these neighborhoods up to a global data
structure with edges, facets, and volumes. We offer a rich interface to investigate these data structures, their
different elements and their connectivity. We provide affine (rigid) tranformations and a point location query
operation. We have a custom file format for storing and reading Nef polyhedra from files. We offer a simple
OpenGL visualization for debugging and illustrations.
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Functions

template<class Nef polyhedron 3>
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std::size t

OFF to nef 3( std::istream& in, Nef polyhedron 3& N)
page 2035
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ostream& ostream& out << CGAL::Nef polyhedron 3<Traits> N

page 2037
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CGAL::Nef polyhedron 3<Traits>

Definition

A 3D Nef polyhedron is a subset of the 3-dimensional space that is the result of forming complements and
intersections starting from a finite set H of 3-dimensional halfspaces. Nef polyhedra are closed under all binary
set operations, i.e., intersection, union, difference, complement, and under the topological operations boundary,
closure, and interior.

A 3D Nef polyhedron can be represented by the local pyramids of the minimal elements of its incidence struc-
ture. Without going into to much detail, a local pyramid essentially reflects the topologic and geometric situation
at a certain location in a point set. For finite polyhedra the minimal elements of the incidence structure are ver-
tices only. This means, that it suffices to model the topological and geometric situation of the vertices. For 3D
Nef polyhedra, the local pyramid of a vertex is represented by a planar Nef polyhedra embedded on a sphere.

A Nef polyhedron 3 consists of vertices V, a sphere map for each vertex in V, edges E, facets F, volumes C,
a mark for every item, and an incidence relation on them. Each edge and each facet is represented by two
halfedges or two halffacets, respectively.

#include <CGAL/Nef polyhedron 3.h>

Parameters

template < class Nef polyhedronTraits 3,
class Nef polyhedronItems 3 = CGAL::Default items<Nef polyhedronTraits 3>,
class Nef polyhedronMarks = bool >

class Nef polyhedron 3;

The first parameter requires one of the following exact kernels: Homogeneous, Simple homogeneous, Extended
homogeneous parametrized with Gmpz, leda integer or any other number type modeling Z, or Cartesian,
Simple cartesian, Extended cartesian parametrized with Gmpq, leda rational, Quotient<Gmpz> or any other
number type modeling Q.

The second parameter and the third parameter are for future considerations. Neither Nef polyhedronItems 3
nor Nef polyhedronMarks is specifed, yet. Do not use any other than the default types for these two template
parameters.

Types

Nef polyhedron 3<Traits>:: Traits traits class selected for Nef polyhedronTraits 3.
Nef polyhedron 3<Traits>:: Mark All object (vertices, edges, etc.) are attributed by a

Mark. Mark equals bool.

Nef polyhedron 3<Traits>:: size type size type of Nef polyhedron 3.

Nef polyhedron 3<Traits>:: Vertex const handle non-mutable handle to a vertex.
Nef polyhedron 3<Traits>:: Halfedge const handle non-mutable handle to a halfedge.
Nef polyhedron 3<Traits>:: Halffacet const handle non-mutable handle to a halffacet.
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Nef polyhedron 3<Traits>:: Volume const handle non-mutable handle to a volume.
Nef polyhedron 3<Traits>:: SVertex const handle non-mutable handle to a svertex.
Nef polyhedron 3<Traits>:: SHalfedge const handle non-mutable handle to a shalfedge.
Nef polyhedron 3<Traits>:: SHalfloop const handle non-mutable handle to a shalfloop.
Nef polyhedron 3<Traits>:: SFace const handle non-mutable handle to a sface.

Nef polyhedron 3<Traits>:: Vertex const iterator non-mutable iterator over all vertices.
Nef polyhedron 3<Traits>:: Halfedge const iterator non-mutable iterator over all halfeges.
Nef polyhedron 3<Traits>:: Halffacet const iterator non-mutable iterator over all halffacets.
Nef polyhedron 3<Traits>:: Volume const iterator non-mutable iterator over all volumes.
Nef polyhedron 3<Traits>:: SVertex const iterator non-mutable iterator over all svertices.
Nef polyhedron 3<Traits>:: SHalfedge const iterator non-mutable iterator over all shalfedges.
Nef polyhedron 3<Traits>:: SHalfloop const iterator non-mutable iterator over all shalfloops.
Nef polyhedron 3<Traits>:: SFace const iterator non-mutable iterator over all sfaces.

Nef polyhedron 3<Traits>:: SHalfedge around svertex const circulator

non-mutable circulator of shalfedges around a svertex (cw).

Nef polyhedron 3<Traits>:: SHalfedge around sface const circulator

non-mutable circulator of shalfedges around a sface (ccw).

Nef polyhedron 3<Traits>:: SHalfedge around facet const circulator

non-mutable circulator of shalfedges around a halffacet (ccw).

Nef polyhedron 3<Traits>:: SFace cycle const iterator

non-mutable iterator over the cylces of a sface.

Nef polyhedron 3<Traits>:: Halffacet cycle const iterator

non-mutable iterator over the cylces of a halffacet.

Nef polyhedron 3<Traits>:: Shell entry const iterator

non-mutable iterator providing an entry to each shell.

Nef polyhedron 3<Traits>:: Object handle a generic handle to an object. The kind of object (ver-
tex, halfedge, halffacet, volume, svertex, shalfedge, shalfloop,
sface) can be determined and the object can be assigned to a
corresponding constant handle by one of the following func-
tions:
bool assign(Vertex const handle& h, Object handle)
bool assign(Halfedge const handle& h, Object handle)
bool assign(Halffacet const handle& h, Object handle)
bool assign(Volume const handle& h, Object handle)
bool assign(SVertex const handle& h, Object handle)
bool assign(SHalfedge const handle& h, Object handle)
bool assign(SHalfloop const handle& h, Object handle)
bool assign(SFace const handle& h, Object handle)
where each function returns true iff the assignment to h could
be accomplished.

Nef polyhedron 3<Traits>:: Point 3 location of vertices.
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Nef polyhedron 3<Traits>:: Segment 3 segment represented by a halfedge.
Nef polyhedron 3<Traits>:: Vector 3 direction of a halfedge.
Nef polyhedron 3<Traits>:: Plane 3 plane of a halffacet lies in.
Nef polyhedron 3<Traits>:: Aff transformation 3

affine transformation.

Nef polyhedron 3<Traits>:: Polylines tag tag for calling polyline constructor.

enum Boundary { EXCLUDED, INCLUDED};

construction selection.

enum Content { EMPTY, COMPLETE}; construction selection.
enum Intersection mode { CLOSED HALFSPACE, OPEN HALFSPACE, PLANE ONLY};

intersection selection.

Nef polyhedron 3<Traits>:: Nef polyhedron S2

a sphere map.

Nef polyhedron 3<Traits>:: Polyhedron a polyhedral surface.

Creation

Nef polyhedron 3<Traits> N( Content space = EMPTY);

creates a Nef polyhedron and initializes it to the empty set if plane ==
EMPTY and to the whole space if space == COMPLETE.

Nef polyhedron 3<Traits> N( Plane 3 p, Boundary b = INCLUDED);

creates a Nef polyhedron containing the halfspace on the negative side of p
including p if b==INCLUDED, excluding p if b==EXCLUDED.

Nef polyhedron 3<Traits> N( Polyhedron& P);

creates a Nef polyhedron, which represents the same point set as the poly-
hedral surface P does.

Nef polyhedron 3<Traits> N( Input iterator begin, Input iterator end);

creates a Nef polyhedron consisting of a single polygon spanned by the
list of points in the iterator range [begin,end). If the points do not on a
common supporting plane, the constructor tries to triangulate the polygon
into multiple facets.If the construction does not succeed, the empty set is
created.
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template <class Forward iterator>
Nef polyhedron 3<Traits> N( Forward iterator it, Forward iterator end, Polylines tag);

The iterator range [it, end) defines a set point ranges, each of which defines
a polyline.

Access Member Functions

bool N.is simple() const returns true, if N is a 2-manifold.
bool N.is valid() const checks the integrity of N .

Size type N.number of vertices() const

returns the number of vertices.

Size type N.number of halfedges() const

return the number of halfedges.

Size type N.number of edges() const

returns the number of halfedge pairs.

Size type N.number of halffacets() const

returns the number of halffacets.

Size type N.number of facets() const

returns the number of halffacet pairs.

Size type N.number of volumes() const

returns the number of volumes.

Vertex const iterator N.vertices begin() const iterator over all vertices.
Vertex const iterator N.vertices end() const past-the-end iterator.

Halfedge const iterator N.halfedges begin() const

iterator over all halfedges.

Halfedge const iterator N.halfedges end() const past-the-end iterator.

Halffacet const iterator N.halffacets begin() const

iterator over all halffacets.

Halffacet const iterator N.halffacets end() const past-the-end iterator.

Volume const iterator N.volumes begin() const iterator over all volumes.
Volume const iterator N.volumes end() const past-the-end iterator.

The following macros are provided: CGAL forall vertices(v,N), CGAL forall halfedges(e,N), CGAL forall
edges(e,N), CGAL forall halffacets(f,N), CGAL forall facets(f,N), CGAL forall volumes(c,N) where N is a
Nef polyhedron 3.
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Object handle N.locate( Point 3 p) const

returns a generic handle to the object (vertex, edge,
facet or volume) which contains the point p in its
relative interior.

Nef polyhedron S2 N.get sphere map( Vertex const iterator v) const

returns the neighborhood of a vertex modeled by a
Nef polyhedron S2.

Point Set Predicates

bool N.is empty() const returns true, if N is the empty point set.
bool N.is space() const returns true, if N is the complete 3D space.

bool N == N1 returns true, if N and N1 comprise the same point sets.
bool N != N1 returns true, if N and N1 comprise different point sets.
bool N < N1 returns true, if N is a proper subset of N1.
bool N > N1 returns true, if N is a proper superset of N1.
bool N <= N1 returns true, if N is a subset of N1.
bool N >= N1 returns true, if N is a superset of N1.

Unary Set Operations

Nef polyhedron 3<Traits> N.complement() const

returns the complement of N .

Nef polyhedron 3<Traits> N.interior() const returns the interior of N .
Nef polyhedron 3<Traits> N.boundary() const

returns the boundary of N .

Nef polyhedron 3<Traits> N.closure() const returns the closure of N .
Nef polyhedron 3<Traits> N.regularization() const

returns the regularization, i.e. the closure of the interior,
of N .

Nef polyhedron 3<Traits> !N returns the complement of N .

Binary Set Operations

Nef polyhedron 3<Traits> N.intersection( N1) const

return the intersection of N and N1.

Nef polyhedron 3<Traits> N.join( N1) const return the union of N and N1. (Note that ”union” is a C++
keyword and cannot be used for this operation.)
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Nef polyhedron 3<Traits> N.difference( N1) const

return the difference between N and N1.

Nef polyhedron 3<Traits> N.symmetric difference( N1) const

return the symmetric difference of N and N1.

Nef polyhedron 3<Traits> N.intersection( Plane 3 p, Intersection mode im) const

returns intersection of N with plane (im=PLANE ONLY),
open halfspace (im=OPEN HALFSPACE), or closed
halfspace (im=CLOSED HALFSPACE). In the latter two
cases, the halfspaces are on the negative side of the plane
p. The function is written for the use with standard ker-
nels, where halfspaces are not part of the domain. The
function does not work in combination with an extended
kernels or with an unbounded polyhedron.

Nef polyhedron 3<Traits> N ∗N1 return the intersection of N and N1.
Nef polyhedron 3<Traits> N +N1 return the union of N and N1.
Nef polyhedron 3<Traits> N−N1 return the difference between N and N1.
Nef polyhedron 3<Traits> N ˆN1 return the symmetric difference of N and N1.

void N ∗= N1 intersects N and N1.
void N += N1 unites N with N1.
void N−= N1 subtracts N1 from N .
void N ˆ= N1 performs a symmetric intersection of N and N1.

Operations

void N.clear( Content space = EMPTY)

make N the empty set if space == EMPTY and the complete 3D space if space == COMPLETE.

void N.transform( Aff transformation 3 aff)

applies an affine transformation to N .

void N.convert to polyhedron( Polyhedron& P) const

converts N into a Polyhedron.
Precondition: N is simple.

void N.visit shell objects( SFace const handle f, Visitor& V) const

calls the visit function of V for every item which belongs to the same shell as sf.
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See Also

CGAL::Nef polyhedron 3<Traits>::Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2020
CGAL::Nef polyhedron 3<Traits>::Halfedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 2021
CGAL::Nef polyhedron 3<Traits>::Halffacet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2023
CGAL::Nef polyhedron 3<Traits>::Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2025
CGAL::Nef polyhedron 3<Traits>::SHalfedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2026
CGAL::Nef polyhedron 3<Traits>::SHalfloop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2029
CGAL::Nef polyhedron 3<Traits>::SFace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2031
CGAL::Nef polyhedron S2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1603
CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795
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CGAL::Nef polyhedron 3<Traits>::Vertex

Definition

A vertex is a point in the 3-dimensional space. Its incidence structure can be accessed creating a sphere map of
the vertex. This is done by the member function get sphere map of the class Nef polyhedron 3.

#include <CGAL/Nef polyhedron 3.h>

Types

The following types are the same as in Nef polyhedron 3<Traits>.

Vertex:: Mark type of mark.

Vertex:: Point 3 point type stored in Vertex.

Creation

There is no need for a user to create a Vertex explicitly. The class Nef polyhedron 3<Traits> manages the
needed vertices internally.

Operations

Mark v.mark() const the mark of v .

Point 3 v.point() const the point of v .

CGAL::Nef polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2013
CGAL::Nef polyhedron S2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1603
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CGAL::Nef polyhedron 3<Traits>::Halfedge

Definition

A Halfedge has a double meaning. In the global incidence structure of a Nef polyhedron 3 it is an oriented
edge going from one vertex to another. A halfedge also coincides with an svertex of the sphere map of its
source vertex. Because of this, we offer the types Halfedge and SVertex which are the same. Furthermore, the
redundant functions center vertex() and source() are provided. The reason is, that we get the same vertex either
if we want to have the source vertex of a halfedge, or if we want to have the vertex in the center of the sphere
map a svertex lies on. Figures 29.9 and 29.9 illustrate the incidence of a svertex on a sphere map and of a
halfedge in the global structure.

As part of the global incidence structure, the member fuctions source and target return the source and target
vertex of an edge. The member function twin() returns the opposite halfedge.

Looking at the incidence structure on a sphere map, the member function out sedge returns the first outgoing
shalfedge, and incident sface returns the incident sface.

#include <CGAL/Nef polyhedron 3.h>

Types

The following types are the same as in Nef polyhedron 3<Traits>.

Halfedge:: Mark type of mark.

Halfedge:: Sphere point sphere point type stored in Halfedge.

Halfedge:: Vertex const handle const handle to vertex.
Halfedge:: Halfedge const handle const handle to halfedge.
Halfedge:: SHalfedge const handle const handle to SHalfedge.
Halfedge:: SFace const handle const handle to SFace.

Creation

There is no need for a user to create a Halfedge explicitly. The class Nef polyhedron 3<Traits> manages the
needed halfedges internally.

Operations

Mark e.mark() const the mark of e .

Sphere point e.point() const the sphere point of e .

bool e.is isolated() const

returns —true— if e has no adjacent sedges.
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Vertex const handle e.center vertex() const

the center vertex of the sphere map e belongs to.

Vertex const handle e.source() const the source vertex of e .

Vertex const handle e.target() const the target vertex e.

Halfedge const handle e.twin() const the twin of e .

SHalfedge const handle

e.out sedge() const the first out sedge of e .

SFace const handle e.incident sface() const

the incident sface of e .

See Also

CGAL::Nef polyhedron 3<Traits>::Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2020
CGAL::Nef polyhedron 3<Traits>::SHalfedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2026
CGAL::Nef polyhedron 3<Traits>::SFace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2031
CGAL::Nef polyhedron S2<Traits>::Sphere point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1608
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CGAL::Nef polyhedron 3<Traits>::Halffacet

Definition

A halffacet is an oriented, rectilinear bounded part of a plane. The following figure depicts the incidences to
halfedges, vertices and the notion of facet cycles.
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The member function twin returns the opposite halffacet, incident volume returns the incident volume. A
Halffacet cycle either consists of consecutive shalfedges along the border (or a hole) of the halffacet, or of
a single shalfloop on the sphere map of a vertex isolated on the halffacet. The iterator range (halffacet cycles
begin()/halffacet cycles end()) provides an entry element for each halffacet cycle of a halffacet.

#include <CGAL/Nef polyhedron 3.h>

Types

The following types are the same as in Nef polyhedron 3<Traits>.

Halffacet:: Mark type of mark.

Halffacet:: Plane 3 plane type stored in Halffacet.

Halffacet:: Object list list of Object handles.

Halffacet:: Halffacet const handle const handle to Halffacet.
Halffacet:: Volume const handle const handle to volume.
Halffacet:: Halffacet cycle const iterator const iterator over the entries to all halffacet cycles of a

halffacet.

Creation

There is no need for a user to create a Halffacet explicitly. The class Nef polyhedron 3<Traits> manages the
needed halffacets internally.
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Operations

Mark f .mark() const the mark of f .

Plane 3 f .plane() const the supporting plane of f .

Halffacet const handle f .twin() const the twin of f .

Volume const handle f .incident volume() const

the incident volume of f .

Halffacet cycle const iterator f .facet cycles begin() const

iterator over the entries to all halffacet cycles of f .

Halffacet cycle const iterator f .facet cycles end() const

past-the-end iterator.

See Also

CGAL::Nef polyhedron 3<Traits>::Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2025
CGAL::Nef polyhedron 3<Traits>::Halfedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 2021
CGAL::Nef polyhedron 3<Traits>::SHalfedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2026
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CGAL::Nef polyhedron 3<Traits>::Volume

Definition

A volume is a full-dimensional connected point set in R3. It is bounded by several shells, i.e. a connected part
of the boundary incident to a single volume. An entry element to each shell is provided by the iterator range
(shells begin()/shells end()). A Shell entry iterator is assignable to SFace handle.

#include <CGAL/Nef polyhedron 3.h>

Types

The following types are the same as in Nef polyhedron 3<Traits>.

Volume:: Mark type of mark.

Volume:: Object list list of Object handles.

Volume:: Volume const handle const handle to Volume.
Volume:: Shell entry const iterator const iterator over the entries to all shells adjacent to a

volume.

Creation

There is no need for a user to create a Volume explicitly. The class Nef polyhedron 3<Traits> manages the
needed volumes internally.

Operations

Mark c.mark() const the mark of c .

Shell entry const iterator c.shells begin() const

const iterator over the entries to all shells adjacent to c .

Shell entry const iterator c.shells end() const

past-the-end iterator.

See Also

CGAL::Nef polyhedron 3<Traits>::SFace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2031
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CGAL::Nef polyhedron 3<Traits>::SHalfedge

Definition

A shalfedge is a great arc on a sphere map. Figure 29.9 depicts the relationship between a shalfedge and its
incident shalfedges, svertices, and sfaces on a sphere map. A shalfedge is an oriented sedge between two
svertices. It is always paired with a shalfedge pointing in the opposite direction. The twin() member function
returns this shalfedge of opposite orientation.
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The snext() member function points to the successor shalfedge around this sface while the sprev() member
function points to the preceding shalfedge. An successive assignments of the form se = se->snext() cycles
counterclockwise around the sface (or hole).

Similarly, the successive assignments of the form se = se->snext()->twin() cycle clockwise around the svertex
and traverse all halfedges incident to this svertex. The assignment se = se->cyclic adj succ() can be used as a
shortcut.

The role of shalfedges in a facet is illustrated in Figure 29.9. The facet() member function returns the facet in
which the shalfedge is part of one of the facet cycles. The successive assignment of the form se = se->next()
cycles counterclockwise around the facet (or a hole of the facet).

A const circulators is provided for each of the three circular orders. The circulators are bidirectional and
assignable to SHalfedge const handle.

#include <CGAL/Nef polyhedron 3.h>

Types

The following types are the same as in Nef polyhedron 3<Traits>.

SHalfedge:: Mark type of mark.

SHalfedge:: Sphere circle sphere circle type stored in SHalfedge.

SHalfedge:: Halffacet const handle const handle to Halffacet.
SHalfedge:: SVertex const handle const handle to SVertex.
SHalfedge:: SHalfedge const handle const handle to SHalfedge.
SHalfedge:: SFace const handle const handle to SFace.
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Creation

There is no need for a user to create a SHalfedge explicitly. The class Nef polyhedron 3<Traits> manages the
needed shalfedges internally.

Operations

Mark se.mark() const the mark of se .

Sphere circle se.circle() const the sphere circle of se .

SHalfedge const handle se.twin() const the twin of se .

SVertex const handle se.source() const the source svertex of se .

SVertex const handle se.target() const equals twin()->source().

SHalfedge const handle se.prev() const the SHalfedge previous to se in a facet cycle.

SHalfedge const handle se.next() const the next SHalfedge of se in a facet cycle.

SHalfedge const handle se.sprev() const the SHalfedge previous to se in a sface cycle.

SHalfedge const handle se.snext() const the next SHalfedge of se in a sface cycle.

SHalfedge const handle se.cyclic adj pred() const

the edge before se in the cyclic ordered adjacency list of
source().

SHalfedge const handle se.cyclic adj succ() const

the edge after se in the cyclic ordered adjacency list of
source().

Halffacet const handle se.facet() const the facet that corresponds to se in the 3D incidence struc-
ture.

SFace const handle se.incident sface() const

the incident sface of se .

bool se.in outer sface cycle() const

determines whether se is in an outer sface cycle.
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bool se.in inner sface cycle() const

determines whether se is in an inner sface cycle.

bool se.in outer facet cycle() const

determines whether se is in an outer facet cycle.

bool se.in inner facet cycle() const

determines whether se is in an inner facet cycle.

See Also

CGAL::Nef polyhedron 3<Traits>::Halfedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 2021
CGAL::Nef polyhedron 3<Traits>::Halffacet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2023
CGAL::Nef polyhedron 3<Traits>::SFace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2031
CGAL::Nef polyhedron S2<Traits>::Sphere circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1611
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CGAL::Nef polyhedron 3<Traits>::SHalfloop

Definition

A shalfloop is a great circle on a sphere map. Figure 29.9 depicts the relationship between a shalfloop and its
incident shalfloops, and sfaces on a sphere map. A shalfloop is an oriented sloop. It is always paired with a
shalfloop whose supporting Sphere circle is pointing in the opposite direction. The twin() member function
returns this shalfloop of opposite orientation.

shalfloopopposite shalfloop

incident sface

A sphere map having a shalfloop models the neighborhood of a vertex which is isolated on a facet. That facet is
returned by the member function facet.

#include <CGAL/Nef polyhedron 3.h>

Types

The following types are the same as in Nef polyhedron 3<Traits>.

SHalfloop:: Mark type of mark.

SHalfloop:: Sphere circle sphere circle type stored in SHalfloop.

SHalfloop:: Halffacet const handle const handle to Halffacet.
SHalfloop:: SHalfloop const handle const handle to SHalfloop.
SHalfloop:: SFace const handle const handle to SFace.

Creation

There is no need for a user to create a SHalfloop explicitly. The class Nef polyhedron 3<Traits> manages the
needed shalfloops internally.

Operations

Mark se.mark() const the mark of se .

Sphere circle se.circle() const the sphere circle of se .
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SHalfloop const handle se.twin() const the twin of se .

Halffacet const handle se.facet() const the facet that corresponds to se in the 3D incidence struc-
ture.

SFace const handle se.incident sface() const

the incident sface of se .

See Also

CGAL::Nef polyhedron 3<Traits>::Halffacet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2023
CGAL::Nef polyhedron 3<Traits>::SFace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2031
CGAL::Nef polyhedron S2<Traits>::Sphere point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1608
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CGAL::Nef polyhedron 3<Traits>::SFace

Definition

Figures 29.9 and 29.9 illustrate the incidences of an sface. An sface is described by its boundaries. An entry
item to each boundary cycle can be accessed using the iterator range (sface cycles begin()/sface cycles end()).
Additionally, Nef polyhedron S2 provides the macro CGAL forall sface cylces of . The iterators are of type
SFace cycle const iterator and represent either a shalfedge, a shalfloop, or a svertex.

#include <CGAL/Nef polyhedron 3.h>

Types

The following types are the same as in Nef polyhedron 3<Traits>.

SFace:: Mark type of mark.

SFace:: Object list list of Object handles.

SFace:: Vertex const handle const handle to Vertex.
SFace:: Volume const handle const handle to Volume.
SFace:: SFace const handle const handle to SFace.
SFace:: SFace cycle const iterator const iterator over the entries to all sface cycles of a

sface.

Creation

There is no need for a user to create a SFace explicitly. The class Nef polyhedron 3<Traits> manages the
needed sfaces internally.

Operations

Mark sf .mark() const the mark of sf .

Vertex const handle sf .center vertex() const

the center vertex of the sphere map sf belongs to.

Volume const handle sf .volume() const the volume that corresponds to sf in the 3D incidence
structure.

SFace cycle const iterator sf .sface cycle begin() const

iterator over the entries to all sface cycles of sf .
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SFace cycle const iterator sf .sface cycle end() const

past-the-end iterator.

See Also

CGAL::Nef polyhedron 3<Traits>::Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2020
CGAL::Nef polyhedron 3<Traits>::Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2025
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CGAL::Nef polyhedron 3<Traits>::Halffacet cycle iterator

Definition

The type Halffacet cycle iterator iterates over a list of Object handles. Each item of that list can either be
assigned to SHalfedge handle or SHalfloop handle. To find out which of these assignment works out, the
member functions is shalfedge() and is shalfloop() are provided.

#include <CGAL/Nef polyhedron 3.h>

Types

Halffacet cycle iterator:: SHalfedge handle const handle to SHalfedge.
Halffacet cycle iterator:: SHalfloop handle const handle to SHalfloop.

Creation

Halffacet cycle iterator hfc; default constructor.

Operations

bool hfc.is shalfedge() const returns true if hfc represents a SHalfedge handle.
bool hfc.is shalfloop() const returns true if hfc represents a SHalfloop handle.

SHalfedge handle SHalfedge handle(hfc) casts hfc to SHalfedge handle.
SHalfloop handle SHalfloop handle(hfc) casts hfc to SHalfloop handle.

See Also

CGAL::Nef polyhedron 3<Traits>::SHalfedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2026
CGAL::Nef polyhedron 3<Traits>::SHalfloop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2029
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CGAL::Nef polyhedron 3<Traits>::SFace cycle iterator

Definition

The type SFace cycle iterator iterates over a list of Object handles. Each item of that list can either be assigned
to SVertex handle, SHalfedge handle or SHalfloop handle. To find out which of these assignment works out,
the member functions is svertex(), is shalfedge() and is shalfloop() are provided.

#include <CGAL/Nef polyhedron 3.h>

Types

SFace cycle iterator:: SVertex handle const handle to SVertex.
SFace cycle iterator:: SHalfedge handle const handle to SHalfedge.
SFace cycle iterator:: SHalfloop handle const handle to SHalfloop.

Creation

SFace cycle iterator sfc; default constructor.

Operations

bool sfc.is svertex() const returns true if sfc represents a SVertex handle.
bool sfc.is shalfedge() const returns true if sfc represents a SHalfedge handle.
bool sfc.is shalfloop() const returns true if sfc represents a SHalfloop handle.

SVertex handle SVertex handle(sfc) casts sfc to SVertex handle.
SHalfedge handle SHalfedge handle(sfc) casts sfc to SHalfedge handle.
SHalfloop handle SHalfloop handle(sfc) casts sfc to SHalfloop handle.

See Also

CGAL::Nef polyhedron 3<Traits>::Halfedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 2021
CGAL::Nef polyhedron 3<Traits>::SHalfedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2026
CGAL::Nef polyhedron 3<Traits>::SHalfloop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2029
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CGAL::OFF to nef 3

Definition

This constructor creates a 3D Nef polyhedron from OFF file. OFF file is read from input stream in. The purpose
of OFF to nef 3 is to create a Nef polyhedron from an OFF file that cannot be handled by the Nef polyhedron
3 constructors. It handles double coordinates while using a homogenous kernel, non-coplanar facets, surfaces
with boundaries, self-intersecting surfaces, and single facets. Every closed volume gets marked. The function
returns the number of facets it could not handle.

template<class Nef polyhedron 3>
std::size t OFF to nef 3( std::istream& in, Nef polyhedron 3& N)

See Also

CGAL::Nef polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2013
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CGAL::Nef nary union 3<Nef polyhedron 3>

Definition

This class helps to perform the union of a set of 3D Nef polyhedra efficiently. It succesively applies the binary
union operation of Nef polyhedron 3, but schedules these union operations in an opportune way. The class
is most efficient, if the polyhedra are added in sorted order. Any order that reflects proximity in the three-
dimensional space is helpful. To allow saving memory space, the sorting is left to the user. This way the user
can generate the polyhedra in a sorted way and add them one by one to Nef nary union 3.

#include <CGAL/Nef nary union 3.h>

Parameters

template < class Nef polyhedron 3,
class Nef nary union 3;

As a template parameter an instantiation of the template class Nef polyhedra is needed.

Creation

Nef nary union 3<Nef polyhedron 3> U; initialization only.

Member Functions

Nef polyhedron 3 U.get union() const

returns the union of the polyhedra previously added to the
class.

void U.add polyhedron( Nef polyhedron 3 N)

adds a polyhedron.

CGAL::Nef polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2013

2036



F
un

ct
io

n

CGAL::operator<<

Definition

This operator writes The Nef polyhedron N to the output stream out using a propriatary file format. It includes
the complete incidence structure, the geometric data, and the marks of each item.

Using CGAL stream modifiers the following output formats can be chosen: ASCII(set ascii mode), binary(set
binary mode) or pretty(set pretty mode). The mandatory format is the ASCII format. It is recommended to use
this format for file input and output.

As the output depends on the output operators of the geometric primitives provided by the traits class, it
might not be possible that the input operator and output operators of different traits classes are not compati-
ble. We recommend to use the CGAL kernels Homogeneous, Simple homogeneous, or Extended homogeneous
parametrized with any exact number type that models Z (e.g. Gmpz or leda integer).

A bounded Nef polyhedron 3<Extended homogeneous> is automatically written as though Nef polyhedron
3<CGAL::Homogeneous> or Nef polyhedron 3<CGAL::Simple homogeneous> is used. As a result, the input
operator of each of these types can read the output.

#include <CGAL/IO/Nef polyhedron iostream 3.h>

template <class Traits>
ostream& ostream& out << CGAL::Nef polyhedron 3<Traits> N

See Also

CGAL::Nef polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2013
operator>> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2038
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CGAL::operator>>

Definition

This operator reads a Nef polyhedron, which is given in the proprietary file format written by the input operator
in and assigns it to N. It includes the complete incidence structure, the geometric data, and the marks of each
item.

It is recommended to use the CGAL kernels Homogeneous, Simple homogeneous, or Extended homogeneous
parametrized with any exact number type that models Z (e.g.Gmpz or leda integer). The input and output
iterators of Nef polyhedra parametrized with either of these kernels are compatible as long as the Nef polyhedron
is bounded. An unbounded Nef polyhedron can only be read by a Nef polyhedron parametrized with an extended
kernel. It is also recommended to use the CGAL stream modifier set ascii mode.

#include <CGAL/IO/Nef polyhedron iostream 3.h>

template <class Traits>
istream& istream& in >> CGAL::Nef polyhedron 3<Traits>& N

See Also

CGAL::Nef polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2013
operator<< . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2037
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CGAL::Qt widget Nef 3<Nef polyhedron 3>

Definition

The class Qt widget Nef 3 uses the OpenGL interface of Qt to display a Nef polyhedron 3. Its purpose is to
provide an easy to use viewer for Nef polyhedron 3. There are no means provided to enhance the functionality
of the viewer.

In addition to the functions inherited from the Qt class OGLWidget via, Qt widget Nef 3 only has a single
public constructor. For the usage of Qt widget Nef 3 see the example below.

#include <CGAL/IO/Qt widget Nef 3.h>

Parameters

The template parameter expects an instantiation of Nef polyhedron 3<Traits>.

Creation

Qt widget Nef 3<Nef polyhedron 3> W( Nef polyhedron 3 N);

Creates a widget W for displaying the 3D Nef polyhedron N.

See Also

CGAL::Nef polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2013

Example

This example reads a 3D Nef polyhedron from standard input and displays it in a Qt widget.� �
#include <CGAL/basic.h>
#include <CGAL/Gmpz.h>
#include <CGAL/Homogeneous.h>
#include <CGAL/Nef_polyhedron_3.h>
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>
#include <CGAL/IO/Qt_widget_Nef_3.h>
#include <qapplication.h>

typedef CGAL::Homogeneous<CGAL::Gmpz> Kernel;
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron_3;

int main(int argc, char* argv[]) {
Nef_polyhedron_3 N;
std::cin >> N;

QApplication a(argc, argv);
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CGAL::Qt_widget_Nef_3<Nef_polyhedron_3>* w =
new CGAL::Qt_widget_Nef_3<Nef_polyhedron_3>(N);

a.setMainWidget(w);
w->show();
return a.exec();

}� �
File: demo/Nef_3/visualization_SNC.cpp
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Chapter 30

Convex Decomposition of Polyhedra
Peter Hachenberger

30.1 Introduction

For many applications on non-convex polyhedra, there are efficient solutions that first decompose the polyhe-
dron into convex pieces. As an example, the Minkowski sum of two polyhedra can be computed by decompos-
ing both polyhedra into convex pieces, compute pair-wise Minkowski sums of the convex pieces, and unite the
pair-wise sums.

While it is desirable to have a decomposition into a minimum number of pieces, this problem is known to be
NP-hard [Cha84]. Our implementation decomposes a Nef polyhedron N into O(r2) convex pieces, where r is
the number of edges that have two adjacent facets that span an angle of more than 180 degrees with respect to
the interior of the polyhedron. Those edges are also called reflex edges. The bound of O(r2) convex pieces is
worst-case optimal [Cha84].

Figure 30.1: Vertical decomposition based on the insertion of vertical facets (viewed from the top). Left: Non-
convex polyhedron. Middle: Non-vertical reflex edges have been resolved. Right: Vertical reflex edges have
been resolved. The sub-volumes are convex.

Our decomposition runs in two steps. In the first step, each non-vertical reflex edge e is resolved by insertion
of vertical facets through e. In the second step, we do the same with the vertical reflex edges. Figure 30.1
illustrates the two steps.

2041



At the moment our implementation is restricted to the decomposition of bounded polyhedra. An extension to
unbounded polyhedra is planned.

30.2 Interface and Usage

An instance of Nef polyhedron 3 represents a subdivision of the three-dimensional space into vertices, edges,
facets, and volumes. Some of these items form the polyhedron (selected), while others represent the outer
volume or holes within the polyhedron (unselected). As an example, the unit cube is the point set [0,1]3.
The smallest subdivision that represents the unit cube has 8 vertices, 12 edges, 6 facets, and 2 volumes. The
volumes enclosed by the vertices, edges, and facets is the interior of the cube and therefore selected. The
volume outside the cube does not belong to it and is therefore unselected. The vertices, edges, and facets—
also denoted as boundary items—are needed to separate the two volumes, but are also useful for representing
topological properties. In case of the (closed) unit cube the boundary items are part of the polyhedron and
therefore selected, but in case of the open unit cube [0,1)3 they are unselected. Each item has its own selection
mark, which allows the correct representation of Nef polyhedra, which are closed under Boolean and topological
operations. Details can be found in the chapter on 3D Boolean operations on Nef polyhedra 29.

Usually, an instance of Nef polyhedron 3 does not contain any redundant items. However, the function convex
decomposition 3 subdivides selected volumes of a given Nef polyhedron 3 by selected facets. These additional
facets are therefore redundant, i.e., their insertion alters the representation of the polyhedron, but not the poly-
hedron itself.

When convex decomposition 3 resolved all reflex edges, the selected sub-volumes have become convex. Each
of them is represented by a separate volume item and can therefore be traversed separately 29.7.2. Another
possibility of accessing the convex pieces is to convert them into separate Nef polyhedra, as illustrated by the
example code given below.

Note that due to the restriction to bounded polyhedra, the use of extended kernels is unnecessary and expensive.
We therefore do not support the use of extended kernels in the convex decomposition (see Chapter 29).� �
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/Nef_polyhedron_3.h>
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>
#include <CGAL/Nef_3/SNC_indexed_items.h>
#include <CGAL/convex_decomposition_3.h>
#include <list>

typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron_3;
typedef CGAL::Nef_polyhedron_3<Kernel, CGAL::SNC_indexed_items>

Nef_polyhedron_3;
typedef Nef_polyhedron_3::Volume_const_iterator Volume_const_iterator;

int main() {

Nef_polyhedron_3 N;
std::cin >> N;

CGAL::convex_decomposition_3(N);
std::list<Polyhedron_3> convex_parts;

// the first volume is the outer volume, which is
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// ignored in the decomposition
Volume_const_iterator ci = ++N.volumes_begin();
for( ; ci != N.volumes_end(); ++ci) {

if(ci->mark()) {
Polyhedron_3 P;
N.convert_inner_shell_to_polyhedron(ci->shells_begin(), P);
convex_parts.push_back(P);

}
}
std::cout << "decomposition into " << convex_parts.size() << " convex
parts " << std::endl;

}� �
File: examples/Convex_decomposition_3/list_of_convex_parts.cpp
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Convex Decomposition of Polyhedra
Reference Manual
Peter Hachenberger

The function convex decomposition 3 takes a Nef polyhedron 3 N as input parameter and inserts additional
facets, such that each bounded marked volume (the outer volume is unbounded) is subdivided into convex
pieces.

30.3 Classified Reference Pages

Functions

void convex decomposition 3( Nef polyhedron 3& N)

page 2046

30.4 Alphabetical List of Reference Pages

convex decomposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2046
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CGAL::convex decomposition 3

Definition

The function convex decomposition 3 inserts additional facets into the given Nef polyhedron 3 N, such that
each bounded marked volume (the outer volume is unbouned) is subdivided into convex pieces. The modified
polyhedron represents a decomposition into O(r2) convex pieces, where r is the number of edges that have two
adjacent facets that span an angle of more than 180 degrees with respect to the interior of the polyhedron.

The worst-case running time of our implementation is O(n2r4 3√nr2 log(nr)), where n is the complexity of the
polyhedron (the complexity of a Nef polyhedron 3 is the sum of its Vertices, Halfedges and SHalfedges) and r
is the number of reflex edges.

void convex decomposition 3( Nef polyhedron 3& N)

Precondition:

The polyhedron N is bounded. Otherwise, the outer volume is ignored.

Postcondition:

If the polyhedron N is non-convex, it is modified to represent the convex decomposition. If N is convex, it is
not modified.

See Also

CGAL::Nef polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2013
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Chapter 31

3D Minkowski Sum of Polyhedra
Peter Hachenberger

31.1 Introduction

Figure 31.1: The Minkowski sum of a spoon and a star.

The Minkowski sum of two point sets P and Q in Rd , denoted by P⊕Q, is defined as the set {p + q : p ∈
P,q ∈ Q}. Minkowski sums are used in a wide range of applications such as robot motion planning [Lat91]
and computer-aided design [EK99]. Figure 31.2 shows an example how Minkowski sums can be used to plan
the motion of a translational robot. We want to know which are legal positions of the robot, and where can the
robot go to from a specified starting position. If we model both the robot and the obstacles as a polyhedron
and compute the Minkowski sum of the inverted robot (robot reflected at the origin) and the obstacles, then this
Minkowski sum represents all illegal positions of the robot, i.e., all positions where it intersects the obstacle. Of
course, the complement of that polyhedron describes all legal positions of the robot, i.e., all positions where it
does not intersect an obstacle.

The Minkowski sum can be illustrated as follows. Pick an arbitrary reference point r of P (black dot in the lower
left corner of the robot in Figure 31.2). Then place the inverted set −P on Q, such that −r is on the boundary
of Q. Finally, move −P along the complete boundary of Q. The union of Q and the points swept by −P is the
Minkowski sum of P and Q.

Implementing the Minkowski sum, the reference point does not need to be chosen. It is implicitly given as the
origin of the coordinate system. Choosing a different reference point is equivalent to translating the coordinate
system. Such a translation does not change the shape of the Minkowski sum; it only translates the Minkowski
sum by the same vector.

This package provides a function minkowski sum 3 that computes the Minkowski sum of two Nef polyhedra.

2047



Figure 31.2: Can the robot enter the room? The Minkowski sum of the inverted robot and the obstacle describes
the illegal positions of the robot with respect to the obstacle. Since the boundary of the Minkowski sum describes
legal positions, there is a path for the robot between the outer area and the room.

Figure 31.3: The decomposition method decomposes both input polyhedra into convex parts, computes all
pairwise Minkowski sums of the convex parts, and merges the pairwise sums.

We do not support arbitrary Nef polyhedra, yet. The restrictions are discussed in detail in Section 31.3.

31.2 Decomposition Method

The decomposition method for computing the Minkowski sum of non-convex polyhedra makes use of the
fact that Minkowski sums of convex polyhedra are rather easy to compute. It decomposes both polyhedra
into convex pieces, computes all pairwise Minkowski sums of the convex pieces, and merges the pairwise
sums [dBvKOS97].

Minkowski sum are inherently complex to compute. Using the decomposition method, each polyhedron might
be divided into a quadratic number of pieces, which is worst-case optimal. Then up to n2m2 pairwise sums have
to be computed and merged, where n and m are the complexities of the two input polyhedra (the complexity of a
Nef polyhedron 3 is the sum of its Vertices, Halfedges and SHalfedges). In total the operation runs in O(n3m3)
time.

Since the computation of the Minkowski sum takes quite some time, we give the running times of some
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Minkowski sum computations. They were computed with CGAL 3.3 on a machine with a 2.4 GHz AMD
Opteron processor and 4 GB RAM. The code was compiled with g++ 3.2 and compiler options -O2. The Nef
polyhedron 3 class was instantiated with the geometric kernel Homogeneous<leda integer>. The Minkowski
sum of the spoon and the star is illustrated in Figure 31.1.

model 1 model 2 running
name facets conv. pcs. name facets conv. pcs. time

mushroom 448 255 cube 6 1 204s
mushroom 448 255 ball1 128 1 553s

spoon 336 186 star 24 5 882s
cup 1000 774 ball2 1000 1 9851s

Table 31.1: Performance of the function minkowski sum 3.

31.3 Features and Restrictions

This package was written to allow the computation of Minkowski sums of full-dimensional polyhedra even
in so-called tight-passage scenarios. Tight passage scenarios occur in robot motion planning, when a robot is
just as wide as a passage it needs to traverse. In these scenarios at least one polyhedron—the obstacles or the
robot—must be modeled as an open set. Then the Minkowski sum will also be an open set and tight passages
will occur as lower-dimensional exclusions, i.e., as facets, lines, or vertices that are, in contrast to the volume
around them, not part of the resulting point set. Figure 31.2 shows such a tight passage scenario.

Our implementation uses Nef polyhedron 3 to model the input polyhedra and the result polyhedron. An instance
of Nef polyhedron 3 represents a subdivision of the three-dimensional space into vertices, edges, facets, and
volumes. Some of these items form the polyhedron (selected), while others represent the outer volume or
holes within the polyhedron (unselected). As an example, the unit cube is the point set [0,1]3. The smallest
subdivision that represents the unit cube has 8 vertices, 12 edges, 6 facets, and 2 volumes. The volumes enclosed
by the vertices, edges, and facets is the interior of the cube and therefore selected. The volume outside the cube
does not belong to it and is therefore unselected. The vertices, edges, and facets—also denoted as boundary
items—are needed to separate the two volumes, but are also useful for representing topological properties. In
case of the (closed) unit cube the boundary items are part of the polyhedron and therefore selected, but in case
of the open unit cube [0,1)3 they are unselected. Each item has its own selection mark, which allows the correct
representation of Nef polyhedra, which are closed under Boolean and topological operations. Details can be
found in the chapter on 3D Boolean operations on Nef polyhedra 29.

The use of Nef polyhedron 3 allows many scenarios beyond the Minkowski sum of two solids. First, they
can model the input and the result of a tight passage scenario, i.e., they can model open and closed solids as
is needed for the input models, and they can model tight passages, which are lower-dimensional exclusions
represented as unselected facets, edges, and vertices. We strive for extending the package to work for arbitrary
3D Nef polyhedra. In addition to the Minkowski sums of two solids, we added several features. At the moment
we allow an input polyhedron to consist of:

1. singular vertices

2. singular edges

3. singular convex facets without holes

4. surfaces with convex facets that have no holes.

5. three-dimensional features, whose coplanar facets have common selection marks (this includes open and
closed solids)
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Taking a different viewpoint, the implementation is restricted as follows:

1. The input polyhedra must be bounded (selected outer volume is ignored).

2. All sets of coplanar facets of a full-dimensional feature must have the same selection mark (in case of
different selection marks, unselected is assumed).

3. All facets of lower-dimensional features need to be convex and must not have holes (non-convex facets
and holes are ignored).

The second restriction might seem a bit odd. It stems from the fact that the Minkowski sum on convex polyhedra
can only handle polyhedra, whose sides consist of a single facet. The decomposition process usually yields
complex adjacency relations between a convex part, its adjacent convex parts, and the outer volume. The side of
a convex piece is then decomposed into several facets, each of which represents one of these adjacency relations.
For the convex Minkowski sum, we ignore the decompositions of the sides, but need to find a common selection
mark. If there are two facets that are adjacent to the outer volume, but have different selections marks, we
cannot set a common selection mark without spoiling the correctness of the Minkowski sum.

31.4 Usage

The function minkowski sum 3 should be used with the Exact predicates exact constructions kernel, which
often is the most efficient choice and allows floating-point input. Consult Section for more details.

The following example code illustrates the usage of the function minkowski sum 3. Note that either input
polyhedra will be modified by the function if it is non-convex. So, if they are needed further on, they need to be
copied, first. The copying is not done by the function itself to keep the memory usage as small as possible.� �
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Nef_polyhedron_3.h>
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>
#include <CGAL/minkowski_sum_3.h>
#include <fstream>
#include <iostream>

typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron;

int main() {

Nef_polyhedron N0, N1;
std::ifstream in("cube.nef3");
in >> N0;
std::cin >> N1;
Nef_polyhedron result = CGAL::minkowski_sum_3(N0, N1);

}� �
File: examples/Minkowski_sum_3/cube_offset.cpp
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Figure 31.4: The region swept by a star that moves along a polygonal path.

31.5 Glide

With the function minkowski sum 3 it is also possible to realize other interesting geometric operations like the
glide operation, which computes the point set swept by a polyhedron that moves along a polygonal path. The
following example shows how to construct a polygonal path and then compute the glide operation by calling the
function minkowski sum 3.� �
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Nef_polyhedron_3.h>
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>
#include <CGAL/minkowski_sum_3.h>
#include <iostream>

typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron;
typedef Kernel::Point_3 Point_3;
typedef Point_3* point_iterator;
typedef std::pair<point_iterator,point_iterator>

point_range;
typedef std::list<point_range> polyline;

int main(int argc, char* argv[])
{

Nef_polyhedron N0;
std::cin >> N0;
Point_3 pl[6] =
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{Point_3(-100,0,0),
Point_3(40,-70,0),
Point_3(40,50,40),
Point_3(-90,-60,60),
Point_3(0, 0, -100),
Point_3(30,0,150)

};

polyline poly;
poly.push_back(point_range(pl,pl+6));
Nef_polyhedron N1(poly.begin(), poly.end(),
Nef_polyhedron::Polylines_tag());

Nef_polyhedron result = CGAL::minkowski_sum_3(N0, N1);
}� �
File: examples/Minkowski_sum_3/glide.cpp
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The function minkowski sum 3 computes the Minkowski sum of two given 3D Nef polyhedra.
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CGAL::minkowski sum 3

Definition

The function minkowski sum 3 computes the Minkowski sum of two given 3D Nef polyhedra N0 and N1. Note
that the function runs in O(n3m3) time in the worst case, where n and m are the complexities of the two input
polyhedra (the complexity of a Nef polyhedron 3 is the sum of its Vertices, Halfedges and SHalfedges).

Nef polyhedron 3 minkowski sum 3( Nef polyhedron 3 N0, Nef polyhedron 3 N1)

Precondition:

An input polyhedron may consist of:

1. singular vertices

2. singular edges

3. singular convex facets without holes

4. surfaces with convex facets that have no holes.

5. three-dimensional features, whose coplanar facets have common selection marks (this includes open and
closed solids)

Taking a different viewpoint, the implementation is restricted as follows:

1. The input polyhedra must be bounded (selected outer volume is ignored).

2. All sets of coplanar facets of a full-dimensional feature must have the same selection mark (in case of
different selection marks, unselected is assumed).

3. All facets of lower-dimensional features need to be convex and must not have holes (non-convex facets
and holes are ignored).

Postcondition:

If either of the input polyhedra is non-convex, it is modified during the computation, i.e., it is decomposed into
convex pieces.

See Also

CGAL::Nef polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2013
CGAL::convex decomposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2046
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32.1 Introduction

Given a set C of planar curves, the arrangement A(C ) is the subdivision of the plane into zero-dimensional,
one-dimensional and two-dimensional cells, called vertices, edges and faces, respectively induced by the curves
in C . Arrangements are ubiquitous in the computational-geometry literature and have many applications; see,
e.g., [AS00, Hal04].

The curves in C can intersect each other (a single curve may also be self-intersecting or may be comprised
of several disconnected branches) and are not necessarily x-monotone.1 We construct a collection C ′′ of x-
monotone subcurves that are pairwise disjoint in their interiors in two steps as follows. First, we decompose
each curve in C into maximal x-monotone subcurves (and possibly isolated points), obtaining the collection C ′.
Note that an x-monotone curve cannot be self-intersecting. Then, we decompose each curve in C ′ into maximal
connected subcurves not intersecting any other curve (or point) in C ′. The collection C ′′ may also contain
isolated points, if the curves of C contain such points. The arrangement induced by the collection C ′′ can be
conveniently embedded as a planar graph, whose vertices are associated with curve endpoints or with isolated
points, and whose edges are associated with subcurves. It is easy to see that A(C ) = A(C ′′). This graph can be
represented using a doubly-connected edge list data-structure (DCEL for short), which consists of containers of
vertices, edges and faces and maintains the incidence relations among these objects.

The main idea behind the DCEL data-structure is to represent each edge using a pair of directed halfedges,
one going from the xy-lexicographically smaller (left) endpoint of the curve toward its the xy-lexicographically
larger (right) endpoint, and the other, known as its twin halfedge, going in the opposite direction. As each
halfedge is directed, we say it has a source vertex and a target vertex. Halfedges are used to separate faces, and
to connect vertices (with the exception of isolated vertices, which are unconnected).

If a vertex v is the target of a halfedge e, we say that v and e are incident to each other. The halfedges incident
to a vertex v form a circular list oriented in a clockwise order around this vertex. (An isolated vertex has no
incident halfedges.)

1A continuous planar curve C is x-monotone if every vertical line intersects it at most once. For example, a non-vertical line segment
is always x-monotone and so is the graph of any continuous function y = f (x). For convenience, we treat vertical line segments as weakly
x-monotone, as there exists a single vertical line that overlaps them. A circle of radius r centered at (x0,y0) is not x-monotone, as the vertical
line x = x0 intersects it at (x0,y0− r) and at (x0,y0 + r).
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Figure 32.1: An arrangement of interior-disjoint line segments with some of the DCEL records that represent it.
The unbounded face f0 has a single connected component that forms a hole inside it, and this hole is comprised
if several faces. The half-edge e is directed from its source vertex v1 to its target vertex v2. This edge, together
with its twin e′, correspond to a line segment that connects the points associated with v1 and v2 and separates the
face f1 from f2. The predecessor eprev and successor enext of e are part of the chain that form the outer boundary
of the face f2. The face f1 has a more complicated structure as it contains two holes in its interior: One hole
consists of two adjacent faces f3 and f4, while the other hole is comprised of two edges. f1 also contains two
isolated vertices u1 and u2 in its interior.

Each halfedge e stores a pointer to its incident face, which is the face lying to its left. Moreover, every halfedge
is followed by another halfedge sharing the same incident face, such that the target vertex of the halfedge is the
same as the source vertex of the next halfedge. The halfedges are therefore connected in circular lists, and form
chains, such that all edges of a chain are incident to the same face and wind along its boundary. We call such a
chain a connected component of the boundary (or CCB for short).

The unique CCB of halfedges winding in a counterclockwise orientation along a face boundary is referred to
as the outer CCB of the face. For the time being let us consider only arrangements of bounded curves, such
that exactly one unbounded face exists in every arrangement. The unbounded face does not have an outer
boundary. Any other connected component of the boundary of the face is called a hole (or inner CCB), and can
be represented as a circular chain of halfedges winding in a clockwise orientation around it. Note that a hole
does not necessarily correspond to a single face, as it may have no area, or alternatively it may consist of several
connected faces. Every face can have several holes contained in its interior (or no holes at all). In addition,
every face may contain isolated vertices in its interior. See Figure 32.1 for an illustration of the various DCEL
features. For more details on the DCEL data structure see [dBvKOS00, Chapter 2].

The x-monotone curves of an arrangement are embedded in an rectangular two-dimensional area called the
parameter space.2 The parameter space is defined as X ×Y , where X and Y are open, half-open, or closed
intervals with endpoints in the compactified real line R∪{−∞,+∞}. Let bl , br, bb, and bt denote the endpoints
of X and Y , respectively. We typically refer to these values as the left, right, bottom, and top sides of the
boundary of the parameter space. If the parameter space is, for example, the entire compactified plane, which is
currently the only option supported by the package, bl = bb =−∞ and br = bt = +∞.

The rest of this chapter is organized as follows: In Section 32.2 we review in detail the interface of the

2The term parameter space stems from a major extension the arrangement package is going through to support arrangements embedded
on certain two-dimensional parametric surfaces in three-dimensions (or higher).
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Arrangement 2 class-template, which is the central component in the arrangement package. In Section 32.3
we show how queries on an arrangement can be issued. In Section 32.4 we review some important free (global)
functions that operate on arrangements, the most important ones being the free insertion-functions. Section 32.6
contains detailed descriptions of the various geometric traits classes included in the arrangement package. Us-
ing these traits classes it is possible to construct arrangements of different families of curves. In Section 32.7 we
review the notification mechanism that allows external classes to keep track of the changes that an arrangement
instance goes through. Section 32.8 explains how to extend the DCEL records, to store extra data with them,
and to efficiently update this data. In Section 32.9 we introduce the fundamental operation of overlaying two
arrangements. Section 32.10 describes the Arrangement with history 2 class-template that extends the arrange-
ment by storing additional history records with its curves. Finally, in Section 32.11 we review the arrangement
input/output functions.

32.2 The Main Arrangement Class

The class Arrangement 2<Traits,Dcel> is the main class in the arrangement package. It is used to represent
planar arrangements and provides the interface needed to construct them, traverse them, and maintain them.
An arrangement is defined by a geometric traits class that determines the family of planar curves that form the
arrangement, and a DCEL class, which represents the topological structure of the planar subdivision. It supplies
a minimal set of geometric operations (predicates and constructions) required to construct and maintain the
arrangement and to operate on it.

The design of the arrangement package is guided by the need to separate between the representation of the
arrangements and the various geometric algorithms that operate on them, and by the need to separate between
the topological and geometric aspects of the planar subdivision. The separation is exhibited by the two template
parameters of the Arrangement 2 template:

• The Traits template-parameter should be instantiated with a model of the ArrangementBasicTraits 2 con-
cept. The traits class defines the types of x-monotone curves and two-dimensional points, X monotone
curve 2 and Point 2 respectively, and supports basic geometric predicates on them.

In the first sections of this chapter we always use Arr segment traits 2 as our traits class, to construct ar-
rangements of line segments. However, the arrangement package contains several other traits classes that
can handle also polylines (continuous piecewise-linear curves), conic arcs, and arcs of rational functions.
We exemplify the usage of these traits classes in Section 32.6.

• The Dcel template-parameter should be instantiated with a class that is a model of the ArrangementDcel
concept. The value of this parameter is Arr default dcel<Traits> by default. However, in many applica-
tions it is necessary to extend the DCEL features; see Section 32.8 for further explanations and examples.

32.2.1 A Simple Program

The simple program listed below constructs a planar map of three line segments forming
a triangle. The constructed arrangement is instantiated with the Arr segment traits 2 traits
class to handle segments only. The resulting arrangement consists of two faces, a bounded
triangular face and the unbounded face. The program is not very useful as it is, since it ends
immediately after the arrangement is constructed. We give more enhanced examples in the
rest of this chapter. p1 p3

p2

#include <CGAL/Cartesian.h>
#include <CGAL/MP_Float.h>
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#include <CGAL/Quotient.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>

typedef CGAL::Quotient<CGAL::MP_Float> Number_type;
typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;

int main()
{
Arrangement_2 arr;
Segment_2 cv[3];
Point_2 p1 (0, 0), p2 (0, 4), p3 (4, 0);

cv[0] = Segment_2 (p1, p2);
cv[1] = Segment_2 (p2, p3);
cv[2] = Segment_2 (p3, p1);
CGAL::insert (arr, &cv[0], &cv[3]);

return (0);
}

32.2.2 Traversing the Arrangement

The simplest and most fundamental arrangement operations are the various traversal methods, which allow users
to systematically go over the relevant features of the arrangement at hand.

As mentioned above, the arrangement is represented as a DCEL, which stores three containers of vertices,
halfedges and faces. Thus, the Arrangement 2 class supplies iterators for these containers. For example, the
methods vertices begin() and vertices end() return Arrangement 2::Vertex iterator objects that define the valid
range of arrangement vertices. The value type of this iterator is Arrangement 2::Vertex. Moreover, the vertex-
iterator type is equivalent to Arrangement 2::Vertex handle, which serves as a pointer to a vertex. As we show
next, all functions related to arrangement features accept handle types as input parameters and return handle
types as their output.

In addition to the iterators for arrangement vertices, halfedges and faces, the arrangement class also provides
edges begin() and edges end() that return Arrangement 2::Edge iterator objects for traversing the arrange-
ment edges. Note that the value type of this iterator is Arrangement 2::Halfedge, representing one of the twin
halfedges that represent the edge.

All iterator, circulator3 and handle types also have non-mutable (const) counterparts. These non-mutable itera-
tors are useful to traverse an arrangement without changing it. For example, the arrangement has a non-constant
member function called vertices begin() that returns a Vertex iterator object and another const member func-
tion that returns a Vertex const iterator object. In fact, all methods listed in this section that return an iterator,
a circulator or a handle have non-mutable counterparts. It should be noted that, for example, Vertex handle can
be readily converted into a Vertex const handle, but not vice-verse.

Conversion of a non-mutable handle to a corresponding mutable handle are nevertheless possible, and can be
performed using the static function Arrangement 2::non const handle() (see, e.g., Section 32.3.1). There are

3A circulator is used to traverse a circular list, such as the list of halfedges incident to a vertex — see below.
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three variant of this function, one for each type of handle.

Traversal Methods for an Arrangement Vertex

A vertex is always associated with a geometric entity, namely with a Point 2 object, which can be obtained by
the point() method of the Vertex class nested within Arrangement 2.

The is isolated() method determines whether a vertex is isolated or not. Recall that the halfedges incident to
a non-isolated vertex, namely the halfedges that share a common target vertex, form a circular list around this
vertex. The incident halfedges() method returns a circulator of type Arrangement 2::Halfedge around vertex
circulator that enables the traversal of this circular list in a clockwise direction. The value type of this circulator
is Halfedge.

The following function prints all the neighbors of a given arrangement vertex (assuming that the Point 2 type
can be inserted into the standard output using the << operator). The arrangement type is the same as in the
simple example above.

void print_neighboring_vertices (Arrangement_2::Vertex_const_handle v)
{
if (v->is_isolated()) {
std::cout << "The vertex (" << v->point() << ") is isolated" << std::endl;
return;

}

Arrangement_2::Halfedge_around_vertex_const_circulator first, curr;
first = curr = v->incident_halfedges();

std::cout << "The neighbors of the vertex (" << v->point() << ") are:";
do {
// Note that the current halfedge is directed from u to v:
Arrangement_2::Vertex_const_handle u = curr->source();
std::cout << " (" << u->point() << ")";

} while (++curr != first);
std::cout << std::endl;

}

In case of an isolated vertex, it is possible to obtain the face that contains this vertex using the face() method.

Traversal Methods for an Arrangement Halfedge

Each arrangement edge, realized as a pair of twin halfedges, is associated with an X monotone curve 2 object,
which can be obtained by the curve() method of the Halfedge class nested in the Arrangement 2 class.

The source() and target() methods return handles to the halfedge source and target vertices respectively. We can
obtain a handle to the twin halfedge using the twin() method. From the definition of halfedges, it follows that if
he is a halfedge handle, then:

• he->curve() is equivalent to he->twin()->curve(),

• he->source() is equivalent to he->twin()->target(), and

2062



• he->target() is equivalent to he->twin()->source().

Every halfedge has an incident face that lies to its left, which can be obtained by the face() method. Recall that
a halfedge is always one link in a connected chain of halfedges that share the same incident face, known as a
CCB. The prev() and next() methods return handles to the previous and next halfedges in the CCB respectively.

As the CCB is a circular list of halfedges, it is only natural to traverse it using a circulator. The ccb() method
returns a Arrangement 2::Ccb halfedge circulator object for the halfedges along the CCB.

The function print ccb() listed below prints all x-monotone curves along a given CCB (assuming that the Point
2 and the X monotone curve 2 types can be inserted into the standard output using the << operator).

void print_ccb (Arrangement_2::Ccb_halfedge_const_circulator circ)
{
Ccb_halfedge_const_circulator curr = circ;
std::cout << "(" << curr->source()->point() << ")";
do {
Arrangement_2::Halfedge_const_handle he = curr->handle();
std::cout << " [" << he->curve() << "] "

<< "(" << he->target()->point() << ")";
} while (++curr != circ);
std::cout << std::endl;

}

Traversal Methods for an Arrangement Face

An arrangement of bounded curves always has a single unbounded face. The function unbounded face() returns
a handle to this face. (Note that an empty arrangement contains nothing but the unbounded face.)

Given a Face object, we can use the is unbounded() method to determine whether it is unbounded. Bounded
faces have an outer CCB, and the outer ccb() method returns a circulator for the halfedges along this CCB. Note
that the halfedges along this CCB wind in a counterclockwise orientation around the outer boundary of the face.

A face can also contain disconnected components in its interior, namely holes and isolated vertices:

• The holes begin() and holes end() methods return Arrangement 2::Hole iterator iterators that define the
range of holes inside the face. The value type of this iterator is Ccb halfedge circulator, defining the
CCB that winds in a clockwise orientation around a hole.

• The isolated vertices begin() and isolated vertices end() methods return Arrangement 2::Isolated
vertex iterator iterators that define the range of isolated vertices inside the face. The value type of this
iterator is Vertex.

The function print face() listed below prints the outer and inner boundaries of a given face, using the function
print ccb(), which was introduced in the previous subsection.

void print_face (Arrangement_2::Face_const_handle f)
{
// Print the outer boundary.
if (f->is_unbounded())
std::cout << "Unbounded face. " << std::endl;
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else {
std::cout << "Outer boundary: ";
print_ccb (f->outer_ccb());

}

// Print the boundary of each of the holes.
Arrangement_2::Hole_const_iterator hi;
int index = 1;
for (hi = f->holes_begin(); hi != f->holes_end(); ++hi, ++index) {
std::cout << " Hole #" << index << ": ";
print_ccb (*hi);

}

// Print the isolated vertices.
Arrangement_2::Isolated_vertex_const_iterator iv;
for (iv = f->isolated_vertices_begin(), index = 1;

iv != f->isolated_vertices_end(); ++iv, ++index)
{
std::cout << " Isolated vertex #" << index << ": "

<< "(" << iv->point() << ")" << std::endl;
}

}

Additional Example

The function listed below prints the current setting of a given arrangement. This concludes the preview of the
various traversal methods.4

void print_arrangement (const Arrangement_2& arr)
{
// Print the arrangement vertices.
Vertex_const_iterator vit;
std::cout << arr.number_of_vertices() << " vertices:" << std::endl;
for (vit = arr.vertices_begin(); vit != arr.vertices_end(); ++vit) {
std::cout << "(" << vit->point() << ")";
if (vit->is_isolated())
std::cout << " - Isolated." << std::endl;

else
std::cout << " - degree " << vit->degree() << std::endl;

}

// Print the arrangement edges.
Edge_const_iterator eit;
std::cout << arr.number_of_edges() << " edges:" << std::endl;
for (eit = arr.edges_begin(); eit != arr.edges_end(); ++eit)
std::cout << "[" << eit->curve() << "]" << std::endl;

// Print the arrangement faces.
Face_const_iterator fit;

4The file arr print.h, which can be found under the examples folder, includes this function and the rest of the functions listed in this
section. Over there they are written in a more generic fashion, where the arrangement type serves as a template parameter for these functions,
so different instantiations of the Arrangement 2<Traits,Dcel> template can be provided to the same function templates.
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Figure 32.2: The various specialized insertion procedures. The inserted x-monotone curve is drawn with a
light dashed line, surrounded by two solid arrows that represent the pair of twin half-edges added to the DCEL.
Existing vertices are shown as black dots while new vertices are shown as light dots. Existing half-edges that
are affected by the insertion operations are drawn as dashed arrows. (a) Inserting a curve as a new hole inside
the face f . (b) Inserting a curve from an existing vertex u that corresponds to one of its endpoints. (c) Inserting
an x-monotone curve whose endpoints are the already existing vertices u1 and u2. In our case, the new pair of
half-edges close a new face f ′, where the hole h1, which used to belong to f , now becomes an enclave in this
new face.

std::cout << arr.number_of_faces() << " faces:" << std::endl;
for (fit = arr.faces_begin(); fit != arr.faces_end(); ++fit)
print_face (fit);

}

32.2.3 Modifying the Arrangement

In this section we review the various member functions of the Arrangement 2 class that allow users to modify
the topological structure of the arrangement by introducing new edges or vertices, modifying them, or removing
them.

The arrangement member-functions that insert new curves into the arrangement, thus enabling the construction
of a planar subdivision, are rather specialized, as they require a-priori knowledge on the location of the inserted
curve. Indeed, for most purposes it is more convenient to construct an arrangement using the free (global)
insertion-functions.

Inserting Non-Intersecting x-Monotone Curves

The most important functions that allow users to modify the arrangement, and perhaps the most frequently used
ones, are the specialized insertion functions of x-monotone curves whose interior is disjoint from any other
curve in the existing arrangement and do not contain any vertex of the arrangement. In addition, these function
require that the location of the curve in the arrangement is known.

The motivation behind these rather harsh restrictions on the nature of the inserted curves is the decoupling of
the topological arrangement representation from the various algorithms that operate on it. While the insertion
of an x-monotone curve whose interior is disjoint from all existing arrangement features is quite straightforward
(as we show next), inserting curves that intersect with the curves already inserted into the arrangement is much
more complicated and requires the application of non-trivial geometric algorithms. These insertion operations
are therefore implemented as free functions that operate on the arrangement and the inserted curve(s); see
Section 32.4 for more details and examples.5

5You may skip to Section 32.4, and return to this subsection at a later point in time.
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When an x-monotone curve is inserted into an existing arrangement, such that the interior of this curve is disjoint
from any arrangement feature, only the following three scenarios are possible, depending on the status of the
endpoints of the inserted subcurve:

1. In case both curve endpoints do not correspond to any existing arrangement vertex we have to create two
new vertices corresponding to the curve endpoints and connect them using a pair of twin halfedges. This
halfedge pair initiates a new hole inside the face that contains the curve in its interior.

2. If exactly one endpoint corresponds to an existing arrangement vertex (we distinguish between a vertex
that corresponds to the left endpoint of the inserted curve and a vertex corresponding to its right endpoint),
we have to create a new vertex that corresponds to the other endpoint of the curve and to connect the
two vertices by a pair of twin halfedges that form an “antenna” emanating from the boundary of an
existing connected component (note that if the existing vertex used to be isolated, this operation is actually
equivalent to forming a new hole inside the face that contains this vertex).

3. If both endpoints correspond to existing arrangement vertices, we connect
these vertices using a pair of twin halfedges. (If one or both vertices are
isolated this case reduces to one of the two previous cases respectively.)
The two following subcases may occur:

• Two disconnected components are merged into a single connected
component (as is the case with the segment s1 in the figure to the
left).

• A new face is created, a face that splits from an existing arrangement
face. In this case we also have to examine the holes and isolated
vertices in the existing face and move the relevant ones inside the
new face (as is the case with the segment s2 in the figure to the left).

s2

s1

The Arrangement 2 class offers insertion functions named insert in face interior(), insert from left vertex(),
insert from right vertex() and insert at vertices() that perform the special insertion procedures listed above.
The first function accepts an x-monotone curve c and an arrangement face f that contains this curve in its
interior. The other functions accept an x-monotone curve c and handles to the existing vertices that correspond
to the curve endpoint(s). Each of the four functions returns a handle to one of the twin halfedges that have been
created, where:

• insert in face interior(c, f) returns a halfedge directed from the vertex corresponding to the left endpoint
of c toward the vertex corresponding to its right endpoint.

• insert from left vertex(c, v) and insert from right vertex(c, v) returns a halfedge whose source is the
vertex v that and whose target is the new vertex that has just been created.

• insert at vertices(c, v1, v2) returns a halfedge directed from v1 to v2.

The following program demonstrates the usage of the four insertion functions. It creates an arrangement of five
line segments, as depicted in Figure 32.3.6 As the arrangement is very simple, we use the simple Cartesian
kernel of CGAL with integer coordinates for the segment endpoints. We also use the Arr segment traits 2 class
that enables the efficient maintenance of arrangements of line segments; see more details on this traits class
in Section 32.6. This example, as many others in this chapter, uses some print-utility functions from the file
print arr.h; these functions are also listed in Section 32.2.2.� �
#include <CGAL/Simple_cartesian.h>

6Notice that in all figures in the rest of this chapter the coordinate axes are drawn only for illustrative purposes and are not part of the
arrangement.
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Figure 32.3: The arrangement of the line segments s1, . . . ,s5 constructed in edge insertion.cpp. The arrows
mark the direction of the halfedges returned from the various insertion functions.

#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>

#include "arr_print.h"

typedef int Number_type;
typedef CGAL::Simple_cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;
typedef Arrangement_2::Vertex_handle Vertex_handle;
typedef Arrangement_2::Halfedge_handle Halfedge_handle;

int main()
{

Arrangement_2 arr;

Segment_2 s1(Point_2(1, 3), Point_2(3, 5));
Segment_2 s2(Point_2(3, 5), Point_2(5, 3));
Segment_2 s3(Point_2(5, 3), Point_2(3, 1));
Segment_2 s4(Point_2(3, 1), Point_2(1, 3));
Segment_2 s5(Point_2(1, 3), Point_2(5, 3));

Halfedge_handle e1 = arr.insert_in_face_interior(s1,
arr.unbounded_face());

Vertex_handle v1 = e1->source();
Vertex_handle v2 = e1->target();
Halfedge_handle e2 = arr.insert_from_left_vertex(s2, v2);
Vertex_handle v3 = e2->target();
Halfedge_handle e3 = arr.insert_from_right_vertex(s3, v3);
Vertex_handle v4 = e3->target();
arr.insert_at_vertices(s4, v4, v1);
arr.insert_at_vertices(s5, v1, v3);
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Figure 32.4: An arrangement of line segments containing three isolated vertices, as constructed in isolated
vertices.cpp. The vertices u2 and u3 are eventually removed from the arrangement.

print_arrangement(arr);
return 0;

}� �
File: examples/Arrangement_on_surface_2/edge_insertion.cpp

Observe that the first line segment is inserted in the interior of the unbounded face. The other line segments are
inserted using the vertices created by the insertion of previous segments. The resulting arrangement consists of
three faces, where the two bounded faces form together a hole in the unbounded face.

Manipulating Isolated Vertices

Isolated points are in general simpler geometric entities than curves and indeed the member functions that
manipulate them are easier to understand.

The function insert in face interior(p, f) inserts an isolated point p, located in the interior of a given face f , into
the arrangement and returns a handle to the arrangement vertex it has created and associated with p. Naturally,
this function has a precondition that p is really an isolated point, namely it does not coincide with any existing
arrangement vertex and does not lie on any edge. As mentioned in Section 32.2.2, it is possible to obtain the
face containing an isolated vertex handle v by calling v->face().

The function remove isolated vertex(v) receives a handle to an isolated vertex and removes it from the arrange-
ment.

The following program demonstrates the usage of the arrangement member-functions for manipulating isolated
vertices. It first inserts three isolated vertices located inside the unbounded face, then it inserts four line segments
that form a rectangular hole inside the unbounded face (see Figure 32.4 for an illustration). Finally, it traverses
the vertices and removes those isolated vertices that are still contained in the unbounded face (u2 and u3 in this
case):
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#include "arr_inexact_construction_segments.h"
#include "arr_print.h"

int main()
{

// Insert isolated points.
Arrangement arr;
Face_handle uf = arr.unbounded_face();
arr.insert_in_face_interior(Point(3, 3), uf);
arr.insert_in_face_interior(Point(1, 5), uf);
arr.insert_in_face_interior(Point(5, 5), uf);

// Insert four segments that form a square-shaped face.
Point p1(1, 3), p2(3, 5), p3(5, 3), p4(3, 1);
Segment s1(p1, p2), s2(p2, p3), s3(p3, p4), s4(p4, p1);

Halfedge_handle e1 = arr.insert_in_face_interior(s1, uf);
Vertex_handle v1 = e1->source();
Vertex_handle v2 = e1->target();
Halfedge_handle e2 = arr.insert_from_left_vertex(s2, v2);
Vertex_handle v3 = e2->target();
Halfedge_handle e3 = arr.insert_from_right_vertex(s3, v3);
Vertex_handle v4 = e3->target();
arr.insert_at_vertices(s4, v4, v1);

// Remove the isolated vertices located in the unbounded face.
Arrangement::Vertex_iterator curr, next = arr.vertices_begin();
for (curr = next++; curr != arr.vertices_end(); curr = next++) {

// Keep an iterator to the next vertex, as curr might be deleted.
if (curr->is_isolated() && curr->face() == uf)

arr.remove_isolated_vertex(curr);
}

print_arrangement(arr);
return 0;

}� �
File: examples/Arrangement_on_surface_2/isolated_vertices.cpp

Manipulating Halfedges

In the previous subsection we showed how to introduce new isolated vertices in the arrangement. But how does
one create a vertex that lies on an existing arrangement edge (more precisely, on an x-monotone curve that is
associated with an arrangement edge)?

It should be noted that such an operation involves the splitting of a curve at a given point in its interior, while
the traits class used by Arrangement 2 does not necessarily have the ability to perform such a split operation.
However, if users have the ability to split an x-monotone curve into two at a given point p (this is usually the
case when employing a more sophisticated traits class; see Section 32.6 for more details) they can use the split
edge(e, c1, c2) function, were c1 and c2 are the two subcurves resulting from splitting the x-monotone curve
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Figure 32.5: An arrangement of line segments as constructed in edge manipulation.cpp. Note that the edges e7
and e8 and the vertices w1 and w2, introduced in step (b) are eventually removed in step (c).

associated with the halfedge e at some point (call it p) in its interior. The function splits the halfedge pair into
two pairs, both incident to a new vertex v associated with p, and returns a handle to a halfedge whose source
equals e’s source vertex and whose target is the new vertex v.

The reverse operation is also possible. Suppose that we have a vertex v of degree 2, whose two incident
halfedges, e1 and e2, are associated with the curves c1 and c2. Suppose further that it is possible to merge
these two curves into a single continuous x-monotone curve c. Calling merge edge(e1, e2, c) will merge the
two edges into a single edge associated with the curve c, essentially removing the vertex v from the arrangement.

Finally, the function remove edge(e) removes the edge e from the arrangement. Note that this operation is the
reverse of an insertion operation, so it may cause a connected component to split into two, or two faces to merge
into one, or a hole to disappear. By default, if the removal of e causes one of its end-vertices to become isolated,
we remove this vertex as well. However, users can control this behavior and choose to keep the isolated vertices
by supplying additional Boolean flags to remove edge() indicating whether the source and the target vertices
are to be removed should they become isolated.

In the following example program we show how the edge-manipulation functions can be used. The program
works in three steps, as demonstrated in Figure 32.5. Note that here we still stick to integer coordinates, but
as we work on a larger scale we use an unbounded integer number-type (in this case, the Gmpz type taken
from the GMP library) instead of the built-in int type.7 In case the GMP library is not installed (as indicated
by the CGAL USE GMP flag defined in CGAL/basic.h), we use MP Float, a number-type included in CGAL’s
support library that is capable of storing floating-point numbers with unbounded mantissa. We also use the
standard Cartesian kernel of CGAL as our kernel. This is recommended when the kernel is instantiated with a
more complex number type, as we demonstrate in other examples in this chapter.� �
#include <CGAL/basic.h>

#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>

7As a rule of thumb, one can use a bounded integer type for representing line segments whose coordinates are bounded by b 3√Mc, where
M is the maximal representable integer value. This guarantees that no overflows occur in the computations carried out by the traits class,
hence all traits-class predicates always return correct results.
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#include "arr_print.h"

typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arrangement_2<Traits_2>

Arrangement_2;
typedef Arrangement_2::Vertex_handle

Vertex_handle;
typedef Arrangement_2::Halfedge_handle

Halfedge_handle;

int main()
{

// Step(a) - construct a triangular face.
Arrangement_2 arr;

Segment_2 s1(Point_2(667, 1000), Point_2(4000, 5000));
Segment_2 s2(Point_2(4000, 0), Point_2(4000, 5000));
Segment_2 s3(Point_2(667, 1000), Point_2(4000, 0));

Halfedge_handle e1 = arr.insert_in_face_interior(s1,
arr.unbounded_face());

Vertex_handle v1 = e1->source();
Vertex_handle v2 = e1->target();
Halfedge_handle e2 = arr.insert_from_right_vertex(s2, v2);
Vertex_handle v3 = e2->target();
arr.insert_at_vertices(s3, v3, v1);

// Step (b) - create additional two faces inside the triangle.
Point_2 p1(4000, 3666), p2(4000, 1000);
Segment_2 s4(Point_2(4000, 5000), p1);
Segment_2 s5(p1, p2);
Segment_2 s6(Point_2(4000, 0), p2);

Halfedge_handle e4 = arr.split_edge(e2, s4, Segment_2(Point_2(4000, 0),
p1));

Vertex_handle w1 = e4->target();
Halfedge_handle e5 = arr.split_edge(e4->next(), s5, s6);
Vertex_handle w2 = e5->target();
Halfedge_handle e6 = e5->next();

Segment_2 s7(p1, Point_2(3000, 2666));
Segment_2 s8(p2, Point_2(3000, 1333));
Segment_2 s9(Point_2(3000, 2666), Point_2(2000, 1666));
Segment_2 s10(Point_2(3000, 1333), Point_2(2000, 1666));
Segment_2 s11(Point_2(3000, 1333), Point_2(3000, 2666));

Halfedge_handle e7 = arr.insert_from_right_vertex(s7, w1);
Vertex_handle v4 = e7->target();
Halfedge_handle e8 = arr.insert_from_right_vertex(s8, w2);
Vertex_handle v5 = e8->target();
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Vertex_handle v6 =
arr.insert_in_face_interior(Point_2(2000, 1666), e8->face());

arr.insert_at_vertices(s9, v4, v6);
arr.insert_at_vertices(s10, v5, v6);
arr.insert_at_vertices(s11, v4, v5);

// Step(c) - remove and merge faces to form a single hole in the
traingle.

arr.remove_edge(e7);
arr.remove_edge(e8);

e5 = arr.merge_edge(e5, e6, Segment_2(e5->source()->point(),
e6->target()->point()));

e2 = arr.merge_edge(e4, e5, s2);

print_arrangement(arr);
return 0;

}� �
File: examples/Arrangement_on_surface_2/edge_manipulation.cpp

Note how we use the halfedge handles returned from split edge() and merge edge(). Also note the insertion of
the isolated vertex v6 located inside the triangular face (the incident face of e7). This vertex seizes from being
isolated, as it is gets connected to other vertices.

In this context, we should mention the two member functions modify vertex(v, p), which sets p to be the point
associated with the vertex v, and modify edge(e, c), which sets c to be the x-monotone curve associated with
the halfedge e. These functions have preconditions that p is geometrically equivalent to v->point() and c is
equivalent to e->curve() (i.e., the two curves have the same graph), respectively, to avoid the invalidation of
the geometric structure of the arrangement. At a first glance it may seen as these two functions are of little
use. However, we should keep in mind that there may be extraneous data (probably non-geometric) associated
with the point objects or with the curve objects, as defined by the traits class. With these two functions we can
modify this data; see more details in Section 32.6.

In addition, we can use these functions to replace a geometric object (a point or a curve) with an equivalent
object that has a more compact representation. For example, we can replace the point ( 20

40 , 99
33 ) associated with

some vertex v, by ( 1
2 ,3).
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Figure 32.6: An arrangement of line segments, as constructed in special edge insertion.cpp. Note that p0 is
initially inserted as an isolated point and later on connected to the other four vertices.

advanced

Advanced Insertion Functions

Assume that the specialized insertion function insert from left vertex(c,v) is invoked
for a curve c, whose left endpoint is already associated with a non-isolated vertex v.
Namely, v has already several incident halfedges. It is necessary in this case to locate
the exact place for the new halfedge mapped to the inserted new curve c in the circular
list of halfedges incident to v. More precisely, it is sufficient to locate one of the
halfedges pred directed toward v such that c is located between pred and pred->next()
in clockwise order around v, in order to complete the insertion (see Figure 32.2 for an
illustration). This may take O(d) time where d is the degree of the vertex. However,
if the halfedge pred is known in advance, the insertion can be carried out in constant
time.

epred

cv

The Arrangement 2 class provides the advanced versions of the specialized insertion functions for a curve c
— namely we have insert from left vertex(c,pred) and insert from right vertex(c,pred) that accept a halfedge
pred as specified above, instead of a vertex v. These functions are more efficient, as they take constant time and
do not perform any geometric operations. Thus, they should be used when the halfedge pred is known. In case
that the vertex v is isolated or that the predecessor halfedge for the new inserted curve is not known, the simpler
versions of these insertion functions should be used.

Similarly, there exist two overrides of the insert at vertices() function: One that accept the two predecessor
halfedges around the two vertices v1 and v2 that correspond to the curve endpoints, and one that accepts a
handle for one vertex and a predecessor halfedge around the other vertex.

The following program shows how to construct the arrangement depicted in Figure 32.6 using the specialized
insertion functions that accept predecessor halfedges:� �
#include "arr_inexact_construction_segments.h"
#include "arr_print.h"

int main()
{
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Point p0(3, 3), p1(1, 3), p2(3, 5), p3(5, 3), p4(3, 1);
Segment s1(p1, p2), s2(p2, p3), s3(p3, p4), s4(p4, p1);
Segment s5(p1, p0), s6(p0, p3), s7(p4, p0), s8(p0, p2);

Arrangement arr;
Vertex_handle v0 = arr.insert_in_face_interior(p0,
arr.unbounded_face());

Halfedge_handle e1 = arr.insert_in_face_interior(s1,
arr.unbounded_face());

Halfedge_handle e2 = arr.insert_from_left_vertex(s2, e1);
Halfedge_handle e3 = arr.insert_from_right_vertex(s3, e2);
Halfedge_handle e4 = arr.insert_at_vertices(s4, e3, e1->twin());
Halfedge_handle e5 = arr.insert_at_vertices(s5, e1->twin(), v0);
Halfedge_handle e6 = arr.insert_at_vertices(s6, e5, e3->twin());
arr.insert_at_vertices(s7, e4->twin(), e6->twin());
arr.insert_at_vertices(s8, e5, e2->twin());

print_arrangement(arr);
return 0;

}� �
File: examples/Arrangement_on_surface_2/special_edge_insertion.cpp

It is possible to perform even more refined operations on an Arrangement 2 instance given specific topological
information. As most of these operations are very fragile and perform no precondition testing on their input
in order to gain efficiency, they are not included in the public interface of the arrangement class. Instead, the
Arr accessor<Arrangement> class allows access to these internal arrangement operations — see more details
in the Reference Manual.

advanced

32.3 Issuing Queries on an Arrangement

One of the most important query types defined on arrangements is the point-location query: Given a point, find
the arrangement cell that contains it. Typically, the result of a point-location query is one of the arrangement
faces, but in degenerate situations the query point can be located on an edge or coincide with a vertex.

Point-location queries are not only common in many applications, they also play an important role in the free
insertion-functions (see Section 32.4). Therefore, it is crucial to have the ability to answer such queries effec-
tively for any arrangement instance.

32.3.1 Point-Location Queries

The arrangement package includes several classes (more precisely, class templates parameterized by an arrange-
ment class) that model the ArrangementPointLocation 2 concept. Namely, they all have a member function
called locate(q) that accepts a query point q and result with a CGAL Object that wraps a handle to the arrange-
ment cell containing the query point. This object can be assigned to either a Face const handle, Halfedge
const handle or a Vertex const handle, depending on whether the query point is located inside a face, on an
edge or on a vertex.
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Note that the handles returned by the locate() functions are const (non-mutable) handles. If necessary, such
handles may be casted to mutable handles using the static functions Arrangement on surface 2::non const
handle() provided by the arrangement class.

An instance of any point-location class must be attached to an Arrangement on surface 2 instance so we can
use it to issue point-location queries. This attachment can be performed when the point-location instance is
constructed, or at a later time, using the init(arr) method, where arr is the attached Arrangement on surface 2
instance. In this chapter we always use the first option.

The following function template, which can be found in the example file point location utils.h, accepts a point-
location object (whose type can be any of the models to the ArrangementPointLocation 2 concept) and a query
point, and prints out the result of the point-location query for the given point. Observe how we use the function
CGAL::assign() is order to cast the resulting CGAL::Object into a handle to an arrangement feature. The point-
location object pl is assumed to be already associated with an arrangement:

template <class PointLocation>
void point_location_query

(const PointLocation& pl,
const typename PointLocation::Arrangement_on_surface_2::Point_2& q)

{
// Perform the point-location query.
CGAL::Object obj = pl.locate (q);

// Print the result.
typedef typename PointLocation::Arrangement_on_surface_2 Arrangement_on_surface_2;

typename Arrangement_on_surface_2::Vertex_const_handle v;
typename Arrangement_on_surface_2::Halfedge_const_handle e;
typename Arrangement_on_surface_2::Face_const_handle f;

std::cout << "The point " << q << " is located ";
if (CGAL::assign (f, obj)) {
// q is located inside a face:
if (f->is_unbounded())
std::cout << "inside the unbounded face." << std::endl;

else
std::cout << "inside a bounded face." << std::endl;

}
else if (CGAL::assign (e, obj)) {
// q is located on an edge:
std::cout << "on an edge: " << e->curve() << std::endl;

}
else if (CGAL::assign (v, obj)) {
// q is located on a vertex:
if (v->is_isolated())
std::cout << "on an isolated vertex: " << v->point() << std::endl;

else
std::cout << "on a vertex: " << v->point() << std::endl;

}
else {
CGAL_assertion_msg (false, "Invalid object.");

}
}
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Choosing a Point-Location Strategy

Each of the various point-location classes employs a different algorithm or strategy8 for answering queries:

• Arr naive point location<Arrangement> locates the query point naively, by exhaustively scanning all
arrangement cells.

• Arr walk along a line point location<Arrangement> simulates a traversal, in reverse order, along an
imaginary vertical ray emanating from the query point: It starts from the unbounded face of the arrange-
ment and moves downward toward the query point until locating the arrangement cell containing it.

• Arr landmarks point location<Arrangement,Generator> uses a set of “landmark” points whose location
in the arrangement is known. Given a query point, it uses a KD-tree to find the nearest landmark and then
traverses the straight line segment connecting this landmark to the query point.

There are various ways to select the landmark set in the arrangement, determined by the Generator tem-
plate parameter. By default, the generator class Arr landmarks vertices generator is used and the ar-
rangement vertices are the selected landmarks, but other landmark generators, such as sampling random
points or choosing points on a grid, are also available; see the Reference Manual for more details.

• Arr trapezoid ric point location<Arrangement> implements a point location algorithm presented by Sei-
del [Sei91], which uses the randomized incremental construction described by Mulmuley [Mul90] (see
also [dBvKOS00, Chapter 6]). The arrangement faces are decomposed into simpler cells of constant
complexity known as pseudo-trapezoids and a search-structure (a directed acyclic graph) is constructed
on top of these cells, allowing to locate the pseudo-trapezoid (hence the arrangement cell) containing a
query point in logarithmic time.

The main advantage of the first two strategies is that they do not require any extra data, so the respective classes
just store a pointer to an arrangement object and operate directly on it. Attaching such point-location objects to
an existing arrangement has virtually no running-time cost at all, but the query time is linear in the size of the
arrangement (the performance of the “walk” strategy is much better in practice, but its worst-case performance
is linear). Using these strategies is therefore recommended only when a relatively small number of point-
location queries are issued by the application, or when the arrangement is constantly changing (i.e., changes in
the arrangement structure are more frequent than point-location queries).

On the other hand, the landmarks and the trapezoid RIC strategies require auxiliary data structures on top of the
arrangement, which they need to construct once they are attached to an arrangement object and need to keep
up-to-date as this arrangement changes. The data structure needed by the landmarks strategy can be constructed
in O(N logN) time (where N is the overall number of edges in the arrangement), whereas the construction of
the data structure needed by the trapezoid RIC strategy takes expected O(N logN), but may require several
rebuilds. As shown in [HKH12], one can expect only a small number of rebuilds. In practice, the construction
needed by the landmark algorithm is significantly faster. In addition, although both resulting data structures are
asymptotically linear in size, the KD-tree that the landmark algorithm stores needs significantly less memory.

We note that the trapezoid RIC algorithm guarantees a logarithmic query time for any scenario making it ad-
vantageous comparing to other strategies. The query time of the landmarks strategy, on the other hand, is
only logarithmic on average — and we may have scenarios where the query time can be linear. In practice, in
many scenarios the query times of both strategies are competitive. For a detailed experimental comparison, see
[HH08].

Another advantageous feature of the trapezoid RIC strategy when compared with other methods is the un-
bounded curves support. Currently, this is the most efficient strategy suitable for general unbounded subdivi-
sions.

8We use the term strategy following the design pattern taxonomy [GHJV95].
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Figure 32.7: The arrangement of line segments, as constructed in point location.cpp, vertical ray shooting.cpp,
and batched point location.cpp. The arrangement vertices are drawn as small discs, while the query points
q1, . . . ,q6 are marked with crosses.

The main drawback in the current implementation of the landmark strategy, compared to the trapezoidal RIC
strategy, is that while the updating the auxiliary data structures related to the trapezoidal decomposition is
done very efficiently, the KD-tree maintained by the landmark algorithm needs to be frequently rebuilt as the
arrangement changes. In addition, using the landmark point-location class adds some extra requirement from
the traits class (that is, the traits class should be a model of a refined concept ArrangementLandmarkTraits 2;
see Section 32.6 for the details). However, most built-in traits classes that come with the CGAL public release
support these extra operations.

It is therefore recommended to use the Arr landmarks point location class when the application frequently
issues point-location queries on a bounded arrangement that only seldom changes. If the arrangement consists
of unbounded curves or is more dynamic and is frequently going through changes, the Arr trapezoid ric point
location class should be the selected point-location strategy.

An Example

The following program constructs a simple arrangement of five line segments that form a pentagonal face, with
a single isolated vertex in its interior, as depicted in Figure 32.7 (the arrangement construction is performed by
the function construct segment arr() whose listing is omitted here and can be found in point location utils.h).
It then employs the naive and the landmark strategies to issue several point-location queries on this arrangement:� �
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Arr_naive_point_location.h>
#include <CGAL/Arr_landmarks_point_location.h>

#include "point_location_utils.h"

typedef int
Number_type;

typedef CGAL::Simple_cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
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typedef Traits_2::Point_2 Point_2;
typedef CGAL::Arrangement_2<Traits_2>

Arrangement_2;
typedef CGAL::Arr_naive_point_location<Arrangement_2> Naive_pl;
typedef CGAL::Arr_landmarks_point_location<Arrangement_2>

Landmarks_pl;

int main ()
{

// Construct the arrangement.
Arrangement_2 arr;
Naive_pl naive_pl (arr);
Landmarks_pl landmarks_pl;

construct_segments_arr (arr);

// Perform some point-location queries using the naive strategy.
Point_2 q1 (1, 4);
Point_2 q2 (4, 3);
Point_2 q3 (6, 3);

point_location_query (naive_pl, q1);
point_location_query (naive_pl, q2);
point_location_query (naive_pl, q3);

// Attach the landmarks object to the arrangement and perform queries.
Point_2 q4 (3, 2);
Point_2 q5 (5, 2);
Point_2 q6 (1, 0);

landmarks_pl.attach (arr);

point_location_query (landmarks_pl, q4);
point_location_query (landmarks_pl, q5);
point_location_query (landmarks_pl, q6);

return 0;
}� �
File: examples/Arrangement_on_surface_2/point_location.cpp

Note that the program uses the auxiliary point location query() function template to nicely print the result of
each query. This function can be found in the header file point location utils.h.

32.3.2 Vertical Ray Shooting

Another important query issued on arrangements is the vertical ray-shooting query: Given a query point, which
arrangement feature do we encounter if we shoot a vertical ray emanating upward (or downward) from this
point? In the general case the ray hits an edge, but it is possible that it hits a vertex, or that the arrangement does
not have any feature lying directly above (or below) the query point.
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All point-location classes listed in the previous section are also models of the ArrangementVerticalRayShoot 2
concept. That is, they all have member functions called ray shoot up(q) and ray shoot down(q) that accept
a query point q and output a CGAL Object. This can be assigned to either a Halfedge const handle or to a
Vertex const handle. Alternatively, the returned value is a Face const handle for the unbounded face of the
arrangement, in case there is no edge or vertex lying directly above (or below) q.

The following function template, vertical ray shooting query(), which also located in the header file point
location utils.h, accepts a vertical ray-shooting object, whose type can be any of the models to the
ArrangementVerticalRayShoot 2 concept and prints out the result of the upward vertical ray-shooting oper-
ations from a given query point. The ray-shooting object vrs is assumed to be already associated with an
arrangement:

template <class VerticalRayShoot>
void vertical_ray_shooting_query

(const VerticalRayShoot& vrs,
const typename VerticalRayShoot::Arrangement_on_surface_2::Point_2& q)

{
// Perform the point-location query.
CGAL::Object obj = vrs.ray_shoot_up (q);

// Print the result.
typedef typename VerticalRayShoot::Arrangement_on_surface_2 Arrangement_on_surface_2;

typename Arrangement_on_surface_2::Vertex_const_handle v;
typename Arrangement_on_surface_2::Halfedge_const_handle e;
typename Arrangement_on_surface_2::Face_const_handle f;

std::cout << "Shooting up from " << q << " : ";
if (CGAL::assign (e, obj)) {
// We hit an edge:
std::cout << "hit an edge: " << e->curve() << std::endl;

}
else if (CGAL::assign (v, obj)) {
// We hit a vertex:
if (v->is_isolated())
std::cout << "hit an isolated vertex: " << v->point() << std::endl;

else
std::cout << "hit a vertex: " << v->point() << std::endl;

}
else if (CGAL::assign (f, obj)) {
// We did not hit anything:
CGAL_assertion (f->is_unbounded());

std::cout << "hit nothing." << std::endl;
}
else {
CGAL_assertion_msg (false, "Invalid object.");

}
}

The following program uses the auxiliary function listed above to perform vertical ray-shooting queries on
an arrangement. The arrangement and the query points are exactly the same as in point location.cpp (see
Figure 32.7):
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� �
#include <CGAL/Cartesian.h>
#include <CGAL/MP_Float.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Arr_walk_along_line_point_location.h>
#include <CGAL/Arr_trapezoid_ric_point_location.h>

#include "point_location_utils.h"

typedef CGAL::MP_Float
Number_type;

typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef CGAL::Arrangement_2<Traits_2>

Arrangement_2;
typedef CGAL::Arr_walk_along_line_point_location<Arrangement_2> Walk_pl;
typedef CGAL::Arr_trapezoid_ric_point_location<Arrangement_2> Trap_pl;

int main ()
{

// Construct the arrangement.
Arrangement_2 arr;
Walk_pl walk_pl (arr);
Trap_pl trap_pl;

construct_segments_arr (arr);

// Perform some vertical ray-shooting queries using the walk strategy.
Point_2 q1 (1, 4);
Point_2 q2 (4, 3);
Point_2 q3 (6, 3);

vertical_ray_shooting_query (walk_pl, q1);
vertical_ray_shooting_query (walk_pl, q2);
vertical_ray_shooting_query (walk_pl, q3);

// Attach the trapezoid-RIC object to the arrangement and perform
queries.

Point_2 q4 (3, 2);
Point_2 q5 (5, 2);
Point_2 q6 (1, 0);

trap_pl.attach (arr);
vertical_ray_shooting_query (trap_pl, q4);
vertical_ray_shooting_query (trap_pl, q5);
vertical_ray_shooting_query (trap_pl, q6);

return 0;
}� �
File: examples/Arrangement_on_surface_2/vertical_ray_shooting.cpp
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The number type we use in this example is CGAL’s built-in MP Float type which is a floating-point number
with an unbounded mantissa and a 32-bit exponent. It supports construction from an integer or from a machine
float or double and performs additions, subtractions and multiplications in an exact number.

32.3.3 Batched Point-Location

Suppose that at a given moment our application has to issue a relatively large number m of point-location queries
on a specific arrangement instance. It is possible of course to define a point-location object and to issue separate
queries on the arrangement. However, as explained in Section 32.3.1, choosing a simple point-location strategy
(either the naive or the walk strategy) means inefficient queries, while the more sophisticated strategies need to
construct auxiliary structures that incur considerable overhead in running time.

On the other hand, the arrangement package includes a free locate() function that accepts an arrangement a
range of query points as its input and sweeps through the arrangement to locate all query points in one pass.
The function outputs the query results as pairs, where each pair is comprised of a query point and a CGAL Object
that represents the cell containing the point (see Section 32.3.1). The output pairs are sorted in increasing xy-
lexicographical order of the query point.

The batched point-location operation can be performed in O((m+N) log(m+N)) time, where N is the number
of edges in the arrangement. This means that when the number m of point-location queries is of the same order
of magnitude as N, this operation is more efficient than issuing separate queries. This suggestion is also backed
up by experimental results. Moreover, the batched point-location operation is also advantageous as it does not
have to construct and maintain additional data structures.

The following program issues a batched point-location query, which is essentially equivalent to the six separate
queries performed in point location.cpp (see Section 32.3.1):� �
#include <CGAL/Cartesian.h>
#include <CGAL/MP_Float.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Arr_batched_point_location.h>
#include <list>

#include "point_location_utils.h"

typedef CGAL::MP_Float Number_type;
typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;
typedef std::pair<Point_2, CGAL::Object> Query_result;

int main ()
{

// Construct the arrangement.
Arrangement_2 arr;

construct_segments_arr (arr);

// Perform a batched point-location query.
std::list<Point_2> query_points;
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std::list<Query_result> results;

query_points.push_back (Point_2 (1, 4));
query_points.push_back (Point_2 (4, 3));
query_points.push_back (Point_2 (6, 3));
query_points.push_back (Point_2 (3, 2));
query_points.push_back (Point_2 (5, 2));
query_points.push_back (Point_2 (1, 0));

locate (arr, query_points.begin(), query_points.end(),
std::back_inserter (results));

// Print the results.
std::list<Query_result>::const_iterator res_iter;
Arrangement_2::Vertex_const_handle v;
Arrangement_2::Halfedge_const_handle e;
Arrangement_2::Face_const_handle f;

for (res_iter = results.begin(); res_iter != results.end();
++res_iter) {
std::cout << "The point (" << res_iter->first << ") is located ";
if (CGAL::assign (f, res_iter->second)) {

// The current qeury point is located inside a face:
if (f->is_unbounded())

std::cout << "inside the unbounded face." << std::endl;
else

std::cout << "inside a bounded face." << std::endl;
}
else if (CGAL::assign (e, res_iter->second)) {

// The current qeury point is located on an edge:
std::cout << "on an edge: " << e->curve() << std::endl;

}
else if (CGAL::assign (v, res_iter->second)) {

// The current qeury point is located on a vertex:
if (v->is_isolated())

std::cout << "on an isolated vertex: " << v->point() <<
std::endl;

else
std::cout << "on a vertex: " << v->point() << std::endl;

}
}

return 0;
}� �
File: examples/Arrangement_on_surface_2/batched_point_location.cpp

32.4 Free Functions in the Arrangement Package

In Section 32.2 we reviewed in details the Arrangement 2 class, which represents two-dimensional subdivisions
induced by planar curves, and mentioned that its interface is minimal in the sense that the member functions
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hardly perform any geometric algorithms and are mainly used for maintaining the topological structure of the
subdivision. In this section we explain how to utilize the free (global) functions that operate on arrangements.
The implementation of these operations typically require non-trivial geometric algorithms or load some extra
requirements on the traits class.

32.4.1 Incremental Insertion Functions

Inserting Non-Intersecting Curves

In Section 32.2 we explained how to construct arrangements of x-monotone curves that are pairwise disjoint
in their interior, when the location of the segment endpoints in the arrangement is known. Here we relax this
constraint, and allow the location of the inserted x-monotone curve endpoints to be arbitrary, as it may be
unknown at the time of insertion. We retain, for the moment, the requirement that the interior of the inserted
curve is disjoint from all existing arrangement edges and vertices.

The free function insert non intersecting curve(arr, c, pl) inserts the x-monotone curve c into the arrangement
arr, with the precondition that the interior of c is disjoint from all arr’s existing edges and vertices. The third
argument pl is a point-location object attached to the arrangement, which is used for performing the insertion.
It locates both curve endpoints in the arrangement, where each endpoint is expected to either coincide with
an existing vertex or lie inside a face. It is possible to invoke one of the specialized insertion functions (see
Section 32.2), based on the query results, and insert c at its proper position.9 The insertion operation thus hardly
requires any geometric operations on top on the ones needed to answer the point-location queries. Moreover, it is
sufficient that the arrangement class is instantiated with a traits class that models the ArrangementBasicTraits 2
concept (or the ArrangementLandmarkTraits 2 concept, if the landmark point-location strategy is used), which
does not have to support the computation of intersection points between curves.

The variant insert non intersecting curve(arr, c) is also available. Instead of accepting a user-defined point-
location object, it defines a local instance of the walk point-location class and uses it to insert the curve.

Inserting x-Monotone Curves

The insert non intersecting curve() function is very efficient, but its preconditions on the input curves are still
rather restricting. Let us assume that the arrangement is instantiated with a traits class that models the refined
ArrangementXMonotoneTraits 2 concept and supports intersection computations (see Section 32.6 for the exact
details). Given an x-monotone curve, it is sufficient to locate its left endpoint in the arrangement and to trace its
zone, namely the set of arrangement features crossing the curve, until the right endpoint is reached. Each time
the new curve c crosses an existing vertex or an edge, the curve is split into subcurves (in the latter case, we
have to split the curve associated with the existing halfedge as well) and associate new edges with the resulting
subcurves. Recall that an edge is represented by a pair of twin halfedges, so we split it into two halfedge pairs.

The free function insert(arr, c, pl) performs this insertion operation. It accepts an x-monotone curve c, which
may intersect some of the curves already in the arrangement arr, and inserts it into the arrangement by com-
puting its zone. Users may supply a point-location object pl, or use the default walk point-location strategy
(namely, the variant insert(arr, c) is also available). The running-time of this insertion function is proportional
to the complexity of the zone of the curve c.

advanced

In some cases users may have a prior knowledge of the location of the left endpoint of the x-monotone curve
c they wish to insert, so they can perform the insertion without issuing any point-location queries. This can

9The insert non intersecting curve() function, as all other functions reviewed in this section, is a function template, parameterized by
an arrangement class and a point-location class (a model of the ArrangementPointLocation 2 concept).
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be done by calling insert(arr, c, obj), where obj is an object represents the location of c’s left endpoint in the
arrangement — namely it wraps a Vertex const handle, a Halfedge const handle or a Face const handle (see
also Section 32.3.1).

advanced

Inserting General Curves

So far all our examples were of arrangements of line segments, where the Arrangement 2 template was instan-
tiated with the Arr segment traits 2 class. In this case, the fact that insert() accepts an x-monotone curve does
not seem to be a restriction, as all line segments are x-monotone (note that we consider vertical line segments to
be weakly x-monotone).

Suppose that we construct an arrangement of circles. A circle is obviously not x-monotone, so we cannot insert
it in the same way we inserted x-monotone curves. 10 However, it is possible to subdivide each circle into two
x-monotone circular arcs (its upper half and its lower half) and to insert each x-monotone arc separately.

The free function insert() also supports general curve and not necessarily x-monotone curves. In this case it
requires that the traits class used by the arrangement arr to be a model of the concept ArrangementTraits 2,
which refines the ArrangementXMonotoneTraits 2 concept. It has to define an additional Curve 2 type (which
may differ from the X monotone curve 2 type), and support the subdivision of curves of this new type into
x-monotone curves (see the exact details in Section 32.6). The insert(arr, c, pl) function performs the insertion
of the curve c, which does not need to be x-monotone, into the arrangement by subdividing it (if needed) into
x-monotone subcurves and inserting each one separately. Users may supply a point-location object pl, or use
the default walk point-location strategy by calling insert(arr, c).

Inserting Points

The arrangement class enables us to insert a point as an isolated vertex in a given face. The free function insert
point(arr, p, pl) inserts a vertex into arr that corresponds to the point p at an arbitrary location. It uses the
point-location object pl to locate the point in the arrangement (by default, the walk point-location strategy is
used), and acts according to the result as follows:

• If p is located inside a face, it is inserted as an isolated vertex inside this face.

• If p lies on an edge, the edge is split to create a vertex associated with p.

• Otherwise, p coincides with an existing vertex and we are done.

In all cases, the function returns a handle to the vertex associated with p.

The arrangement arr should be instantiated with a traits class that models the ArrangementXMonotoneTraits 2
concept, as the insertion operation may involve splitting curves.

An Example

The program below constructs an arrangement of intersecting line-segments. We know that s1 and s2 do not
intersect, so we use insert non intersecting curve() to insert them into the empty arrangement. The rest of the

10Note that a key operation performed by insert() is to locate the left endpoint of the curve in the arrangement. A circle, however, does
not have any endpoints!
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Figure 32.8: An arrangement of five intersecting line segments, as constructed in incremental insertion.cpp and
aggregated insertion.cpp. The segment endpoints are marked by black disks and the arrangement vertices that
correspond to intersection points are marked by circles. The query point q is marked with a cross and the face
that contains it is shaded.

segments are inserted using insert(). The resulting arrangement consists of 13 vertices, 16 edges, and 5 faces,
as can be seen in Figure 32.8.

In the earlier examples, all arrangement vertices corresponded to segment endpoints. In this example we have
additional vertices that correspond to intersection points between two segments. The coordinates of these inter-
section points are rational numbers, if the input coordinates are rational (or integer). Therefore, the Quotient<
int> number type is used to represent the coordinates:� �
#include <CGAL/Cartesian.h>
#include <CGAL/Quotient.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Arr_walk_along_line_point_location.h>

#include "arr_print.h"

typedef CGAL::Quotient<int>
Number_type;

typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2

Segment_2;
typedef CGAL::Arrangement_2<Traits_2>

Arrangement_2;
typedef CGAL::Arr_walk_along_line_point_location<Arrangement_2> Walk_pl;

int main ()
{

// Construct the arrangement of five intersecting segments.
Arrangement_2 arr;
Walk_pl pl(arr);
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Segment_2 s1 (Point_2(1, 0), Point_2(2, 4));
Segment_2 s2 (Point_2(5, 0), Point_2(5, 5));
Segment_2 s3 (Point_2(1, 0), Point_2(5, 3));
Segment_2 s4 (Point_2(0, 2), Point_2(6, 0));
Segment_2 s5 (Point_2(3, 0), Point_2(5, 5));

insert_non_intersecting_curve (arr, s1, pl);
insert_non_intersecting_curve (arr, s2, pl);
insert (arr, s3, pl);
insert (arr, s4, pl);
insert (arr, s5, pl);

// Print the size of the arrangement.
std::cout << "The arrangement size:" << std::endl

<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;

// Perform a point-location query on the resulting arrangement and
print

// the boundary of the face that contains it.
Point_2 q (4, 1);
CGAL::Object obj = pl.locate (q);

Arrangement_2::Face_const_handle f;
CGAL_assertion_code (bool success =) CGAL::assign (f, obj);

CGAL_assertion (success);
std::cout << "The query point (" << q << ") is located in: ";
print_face<Arrangement_2> (f);

return 0;
}� �
File: examples/Arrangement_on_surface_2/incremental_insertion.cpp

Other Zone Related Functions

In this section we have described so far free functions that insert curves and points to a given arrangement. Now
we will describe functions that don’t insert curves or points to an arrangement nor do they change the arrange-
ment, but they are closely related to the incremental insertion functions as they also use the zone algorithm.

The free function do intersect() checks if a given curve or x-monotone curve intersects an existing arrangement’s
edges or vertices. If the give curve is not an x-monotone curve then the function subdivides the given curve into
x-monotone subcurves and isolated vertices . Each subcurve is in turn checked for intersection. The function
uses the zone algorithm to check if the curve intersects the arrangement. First, the curve’s left endpoint is
located. Then, its zone is computed starting from its left endpoint location. The zone computation terminates
when an intersection with an arrangement’s edge/vertex is found or when the right endpoint is reached. A
given point-location object is used for locating the left endpoint of the given curve in the existing arrangement.
By default, the function uses the “walk along line” point-location strategy — namely an instance of the class
Arr walk along line point location. If the given curve is x-monotone then the traits class must model the
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ArrangementXMonotoneTraits 2 concept. If the curve is not x-monotone curve then the traits class must model
the ArrangementTraits 2 concept.

The zone() function computes the zone of a given x-monotone curve in a given arrangement. Meaning, it
outputs all the arrangement’s elements (vertices, edges and faces) that the x-monotone curve intersects in the
order that they are discovered when traversing the x-monotone curve from left to right. The function uses a
given point-location object to locate the left endpoint of the given x-monotone curve. By default, the function
uses the “walk along line” point-location strategy. The function requires that the traits class will model the
ArrangementXMonotoneTraits 2 concept.

32.4.2 Aggregated Insertion Functions

Let us assume that we have to insert a set of m input curves into an arrangement. It is possible to do this
incrementally, inserting the curves one by one, as shown in the previous section. However, the arrangement
package provides three free functions that aggregately insert a range of curves into an arrangement:

• insert non intersecting curves(arr, begin, end) inserts a range of x-monotone curves given by the input
iterators [begin, end) into an arrangement arr. The x-monotone curves should be pairwise disjoint in their
interior and also interior-disjoint from all existing edges and vertices of arr.

• insert(arr, begin, end) inserts a range of general (not necessarily x-monotone) curves of type Curve 2 or
X monotone curve 2 that may intersect one another, given by the input iterators [begin, end), into the
arrangement arr.

We distinguish between two cases: (i) The given arrangement arr is empty (has only an unbounded face), so we
have to construct it from scratch. (ii) We have to insert m input curves to a non-empty arrangement arr.

In the first case, we sweep over the input curves, compute their intersection points and construct the DCEL that
represents their planar arrangement. This process is performed in O((m+ k) logm) time, where k is the total
number of intersection points. The running time is asymptotically better than the time needed for incremental
insertion, if the arrangement is relatively sparse (when k is bounded by m2

logm ), but in practice it is recommended
to use this aggregated construction process even for dense arrangements, since the sweep-line algorithm needs
less geometric operations compared to the incremental insertion algorithms and hence typically runs much faster
in practice.

Another important advantage the aggregated insertion functions have is that they do not issue point-location
queries. Thus, no point-location object needs to be attached to the arrangement. As explained in Section 32.3.1,
there is a trade-off between construction time and query time in each of the point-location strategies, which
affects the running times of the incremental insertion process. Naturally, this trade-off is irrelevant in case of
aggregated insertion as above.

The example below shows how to construct the arrangement of line segments depicted in Figure 32.8 and built
incrementally in incremental insertion.cpp, as shown in the previous section. We use the aggregated insertion
function insert() as we deal with line segments. Note that no point-location object needs to be defined and
attached to the arrangement:� �
#include <CGAL/Cartesian.h>
#include <CGAL/Quotient.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <list>
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typedef CGAL::Quotient<int> Number_type;
typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;

int main ()
{

// Construct the arrangement of five intersecting segments.
Arrangement_2 arr;
std::list<Segment_2> segments;

segments.push_back (Segment_2 (Point_2(1, 0), Point_2(2, 4)));
segments.push_back (Segment_2 (Point_2(5, 0), Point_2(5, 5)));
segments.push_back (Segment_2 (Point_2(1, 0), Point_2(5, 3)));
segments.push_back (Segment_2 (Point_2(0, 2), Point_2(6, 0)));
segments.push_back (Segment_2 (Point_2(3, 0), Point_2(5, 5)));

insert (arr, segments.begin(), segments.end());

// Print the size of the arrangement.
std::cout << "The arrangement size:" << std::endl

<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;

return 0;
}� �
File: examples/Arrangement_on_surface_2/aggregated_insertion.cpp

In case we have to insert a set of m curves into an existing arrangement, where we denote the number of edges
in the arrangement by N. As a rule of thumb, if m = o(

√
N), we insert the curves one by one. For larger input

sets, we use the aggregated insertion procedures.

In the example below we aggregately construct an arrangement of a set S1 containing five line segments. Then
we insert a single segment using the incremental insertion function. Finally, we add a set S2 with five more
line segments in an aggregated fashion. Notice that the line segments of S1 are pairwise interior-disjoint, so we
use insert non intersecting curves(). S2 also contain pairwise interior-disjoint segments, but as they intersect
the existing arrangement, we have to use insert() to insert them. Also note that the single segment s we insert
incrementally overlaps an existing arrangement edge:� �
#include <CGAL/Cartesian.h>
#include <CGAL/Quotient.h>
#include <CGAL/MP_Float.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Arr_naive_point_location.h>

#include "arr_print.h"
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S2

s

S1

Figure 32.9: An arrangement of intersecting line segments, as constructed in global insertion.cpp. The seg-
ments of S1 are drawn in solid lines and the segments of S2 are drawn in dark dashed lines. Note that the
segment s (light dashed line) overlaps one of the segments in S1.

typedef CGAL::Quotient<CGAL::MP_Float> Number_type;
typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;
typedef CGAL::Arr_naive_point_location<Arrangement_2> Naive_pl;

int main ()
{

// Construct the arrangement of five intersecting segments.
Arrangement_2 arr;
Segment_2 S1 [5];

S1[0] = Segment_2 (Point_2 (1, 2.5), Point_2 (4, 5));
S1[1] = Segment_2 (Point_2 (1, 2.5), Point_2 (6, 2.5));
S1[2] = Segment_2 (Point_2 (1, 2.5), Point_2 (4, 0));
S1[3] = Segment_2 (Point_2 (4, 5), Point_2 (6, 2.5));
S1[4] = Segment_2 (Point_2 (4, 0), Point_2 (6, 2.5));

insert_non_intersecting_curves (arr, S1, S1 + 5);

// Perform an incremental insertion of a single overlapping segment.
Naive_pl pl (arr);

insert (arr, Segment_2 (Point_2 (0, 2.5), Point_2 (4, 2.5)), pl);

// Aggregately insert an additional set of five segments.
Segment_2 S2 [5];

S2[0] = Segment_2 (Point_2 (0, 4), Point_2 (6, 5));
S2[1] = Segment_2 (Point_2 (0, 3), Point_2 (6, 4));
S2[2] = Segment_2 (Point_2 (0, 2), Point_2 (6, 1));
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S2[3] = Segment_2 (Point_2 (0, 1), Point_2 (6, 0));
S2[4] = Segment_2 (Point_2 (6, 1), Point_2 (6, 4));

insert (arr, S2, S2 + 5);

// Print the size of the arrangement.
std::cout << "The arrangement size:" << std::endl

<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;

return 0;
}� �
File: examples/Arrangement_on_surface_2/global_insertion.cpp

The number type used in the example above, Quotient<MP Float>, is comprised of a numerator and a de-
nominator of type MP Float, namely floating-point numbers with unbounded mantissa. This number type is
therefore capable of exactly computing the intersection points as long as the segment endpoints are given as
floating-point numbers.

32.4.3 Removing Vertices and Edges

The free functions remove vertex() and remove edge() handle the removal of vertices and edges from an ar-
rangement. The difference between these functions and the member functions of the Arrangement 2 template
having the same name is that they allow the merger of two curves associated with adjacent edges to form a
single edge. Thus, they require that the traits class that instantiates the arrangement instance is a model of the
refined ArrangementXMonotoneTraits 2 concept (see Section 32.6).

The function remove vertex(arr, v) removes the vertex v from the given arrangement arr, where v is either an
isolated vertex or is a redundant vertex — namely, it has exactly two incident edges that are associated with two
curves that can be merged to form a single x-monotone curve. If neither of the two cases apply, the function
returns an indication that it has failed to remove the vertex.

The function remove edge(arr, e) removes the edge e from the arrangement by simply calling arr.remove
edge(e) (see Section 32.2.3). In addition, if either of the end vertices of e becomes isolated or redundant after
the removal of the edge, it is removed as well.

The following example demonstrates the usage of the free removal functions. In creates an
arrangement of four line segment forming an H-shape with a double horizontal line. Then
it removes the two horizontal edges and clears all redundant vertices, such that the final
arrangement consists of just two edges associated with the vertical line segments:

s3 s4s1

s2� �
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Arr_naive_point_location.h>

#include "arr_print.h"
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typedef int Number_type;
typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;
typedef Arrangement_2::Vertex_handle Vertex_handle;
typedef Arrangement_2::Halfedge_handle Halfedge_handle;
typedef CGAL::Arr_naive_point_location<Arrangement_2> Naive_pl;

int main ()
{

// Create an arrangement of four line segments forming an H-shape:
Arrangement_2 arr;
Naive_pl pl (arr);

Segment_2 s1 (Point_2 (1, 3), Point_2 (4, 3));
Halfedge_handle e1 = arr.insert_in_face_interior (s1,
arr.unbounded_face());

Segment_2 s2 (Point_2 (1, 4), Point_2 (4, 4));
Halfedge_handle e2 = arr.insert_in_face_interior (s2,
arr.unbounded_face());

Segment_2 s3 (Point_2 (1, 1), Point_2 (1, 6));
Segment_2 s4 (Point_2 (4, 1), Point_2 (4, 6));

insert (arr, s3, pl);
insert (arr, s4, pl);

std::cout << "The initial arrangement:" << std::endl;
print_arrangement (arr);

// Remove the horizontal edge from the arrangement, and its end
vertices:

Vertex_handle v1 = e1->source(), v2 = e1->target();
arr.remove_edge (e1);
remove_vertex (arr, v1);
remove_vertex (arr, v2);

// Remove the second horizontal edge e2 from the arrangement:
remove_edge (arr, e2);

std::cout << "The final arrangement:" << std::endl;
print_arrangement (arr);
return 0;

}� �

File: examples/Arrangement_on_surface_2/global_removal.cpp
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Figure 32.10: An arrangement of unbounded linear objects, as constructed in unbounded non intersecting.cpp.

32.5 Arrangements of Unbounded Curves

Previous sections dealt only with arrangements of line segments, namely of bounded curves. Such arrangements
always have one unbounded face that contains all other arrangement features. This section explains how to
construct arrangements of unbounded curves, such as lines and rays.

32.5.1 Basic Manipulation and Traversal Methods

Consider the arrangement induced by the two lines y = x and y = −x. These two lines intersect at the origin,
such that the arrangement contains a single vertex v = (0,0), with four infinite rays emanating from it. Each ray
corresponds to an arrangement edge, and these edges subdivide the plane into four unbounded faces. Consider
a halfedge pair that represents one of the edges. The source vertex of one of these halfedges is v and its target is
at infinity, while the other has its source at infinity and v is its target.

If e is an object of the nested type Arrangement 2::Halfedge, then the predicates e.source at infinity() and
e.target at infinity() indicate whether the halfedge represents a curve with an infinite end. In general there is
no need to access the source (or the target) of a halfedge if it lies at infinity, since this vertex is not associated
with any valid point. Similarly, calling arr.number of vertices() for an arrangement object arr counts only the
vertices associated with finite points, and ignores vertices at infinity (and the range [vertices begin(), vertices
end()) contains only finite vertices). The method arr.number of vertices at infinity() counts the number of
vertices at infinity.

As mentioned above, arrangements of unbounded curves usually have more than one unbounded face. The func-
tion arr.number of unbounded faces() returns the number of unbounded arrangement faces (Thus, arr.number
of faces() - arr.number of unbounded faces() is the number of bounded faces). The functions arr.unbounded
faces begin() and arr.unbounded faces end() return iterators of type Arrangement 2::Unbounded face iterator
that specify the range of unbounded faces. Naturally, the value-type of this iterator is Arrangement 2::Face.

The specialized insertion functions listed in Section 32.2.3 can also be used for inserting x-monotone unbounded
curves, provided that they are interior-disjoint from any subcurve that already exists in the arrangement. For
example, if you wish to insert a ray r emanating from (0,0) in the direction of (1,0), to the arrangement of y =
−x and y = x, you can use the function arr.insert from left vertex(), as the left endpoint of r is already associated
with an arrangement vertex. Other edge-manipulation functions can also be applied on edges associated with
unbounded curves.

The following example demonstrates the use of the insertion function for pairwise interior-disjoint unbounded
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curves. In this example we use the traits class Arr linear traits 2<Kernel> to instantiate the Arrangement 2
template. This traits class is capable of representing line segments as well as unbounded linear curves (namely
lines and rays). Observe that objects of the type X monotone curve 2 defined by this traits class are constructible
from Line 2, Ray 2, and Segment 2 objects, as defined in the instantiated kernel.

The first three curves are inserted using the special insertion functions for x-monotone curves whose location
in the arrangement is known. Notice that inserting an unbounded curve in the interior of an unbounded face, or
from an existing vertex that represents the bounded end of the curve, may cause an unbounded face to split (this
is never the case when inserting a bounded curve — compare with Section 32.2.3). Then, three additional rays
are inserted incrementally, using the insertion function for x-monotone curves whose interior is disjoint from
all arrangement features. Finally, the program prints the size of the arrangement (compare to the illustration in
Figure 32.10) and the outer boundaries of its six unbounded faces:� �
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Arr_linear_traits_2.h>
#include <CGAL/Arrangement_2.h>

typedef int Number_type;
typedef CGAL::Simple_cartesian<Number_type> Kernel;
typedef CGAL::Arr_linear_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::Segment_2 Segment_2;
typedef Traits_2::Ray_2 Ray_2;
typedef Traits_2::Line_2 Line_2;
typedef Traits_2::X_monotone_curve_2 X_monotone_curve_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;
typedef Arrangement_2::Vertex_handle Vertex_handle;
typedef Arrangement_2::Halfedge_handle Halfedge_handle;

int main ()
{

Arrangement_2 arr;

// Insert a line in the (currently single) unbounded face of the
arrangement,

// then split it into two at (0,0). Assign v to be the split point.
X_monotone_curve_2 c1 = Line_2 (Point_2 (-1, 0), Point_2 (1, 0));
Halfedge_handle e1 = arr.insert_in_face_interior (c1,

arr.unbounded_face());

X_monotone_curve_2 c1_left = Ray_2 (Point_2 (0, 0), Point_2 (-1, 0));
X_monotone_curve_2 c1_right = Ray_2 (Point_2 (0, 0), Point_2 (1, 0));

e1 = arr.split_edge (e1, c1_left, c1_right);
Vertex_handle v = e1->target();

CGAL_assertion (! v->is_at_open_boundary());

// Add two more rays using the specialized insertion functions.
X_monotone_curve_2 c2 = Ray_2 (Point_2 (0, 0), Point_2 (-1, 1));
X_monotone_curve_2 c3 = Ray_2 (Point_2 (0, 0), Point_2 (1, 1));

arr.insert_from_right_vertex (c2, v);
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arr.insert_from_left_vertex (c3, v);

// Insert three more interior-disjoint rays.
X_monotone_curve_2 c4 = Ray_2 (Point_2 (0, -1), Point_2 (-2, -2));
X_monotone_curve_2 c5 = Ray_2 (Point_2 (0, -1), Point_2 (2, -2));
X_monotone_curve_2 c6 = Ray_2 (Point_2 (0, 0), Point_2 (0, 1));

insert_non_intersecting_curve (arr, c4);
insert_non_intersecting_curve (arr, c5);
insert_non_intersecting_curve (arr, c6);

// Print out the size of the resulting arrangement.
std::cout << "The arrangement size:" << std::endl

<< " V = " << arr.number_of_vertices()
<< " (plus " << arr.number_of_vertices_at_infinity()
<< " at infinity)"
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces()
<< " (" << arr.number_of_unbounded_faces() << " unbounded)"
<< std::endl << std::endl;

// Print the outer CCBs of the unbounded faces.
Arrangement_2::Face_const_iterator fit;
Arrangement_2::Ccb_halfedge_const_circulator first, curr;
Arrangement_2::Halfedge_const_handle he;
int k = 1;

for (fit = arr.faces_begin(); fit != arr.faces_end(); ++fit, k++) {
if (! fit->is_unbounded())

continue;

std::cout << "Face no. " << k << ": ";
curr = first = fit->outer_ccb();
if (! curr->source()->is_at_open_boundary())

std::cout << "(" << curr->source()->point() << ")";
do {

he = curr;
if (! he->is_fictitious())

std::cout << " [" << he->curve() << "] ";
else

std::cout << " [ ... ] ";

if (! he->target()->is_at_open_boundary())
std::cout << "(" << he->target()->point() << ")";

++curr;
} while (curr != first);
std::cout << std::endl;

}

return 0;
}� �
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File: examples/Arrangement_on_surface_2/unbounded_non_intersecting.cpp

32.5.2 Free Functions

In principle, all queries and operations that relate to arrangements of bounded curves can also be applied to
arrangements of unbounded curves. For example, it is possible to issue point-location and vertical ray-shooting
queries (see also Section 32.3) on arrangements of lines, where the only restriction is that the query point has
finite coordinates.11

In the following example we show how an arrangement of unbounded lines is utilized to solve the following
problem: Given a set of points, does the set contain at least three collinear points? In this example a set of input
points is read from a file. The file points.dat is used by default. It contains definitions of 100 points randomly
selected on the grid [−10000,10000]× [−10000,10000]. We construct an arrangement of the dual lines, where
the line p∗ dual to the point p = (px, py) is given by the equation y = px ∗ x− py, and check whether three (or
more) of the dual lines intersect at a common point, by searching for a (dual) vertex, whose degree is greater
than 4. If such a vertex exists, then there are at least three dual lines that intersect at a common point, which
implies that there are at least three collinear points.� �
#include "arr_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_linear_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <cstdlib>

typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_linear_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::Line_2 Line_2;
typedef Traits_2::X_monotone_curve_2 X_monotone_curve_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;

int main (int argc, char *argv[])
{

// Get the name of the input file from the command line, or use the
default

// points.dat file if no command-line parameters are given.
const char * filename = (argc > 1) ? argv[1] : "points.dat";

// Open the input file.
std::ifstream in_file (filename);

if (! in_file.is_open()) {
std::cerr << "Failed to open " << filename << "!" << std::endl;
return 1;

}

// Read the points from the file, and consturct their dual lines.
// The input file format should be (all coordinate values are
integers):

// <n> // number of point.

11Currently, all point-location strategies except the trapezoidal RIC point-location strategy are capable of handling arrangements of
unbounded curves.
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// <x_1> <y_1> // point #1.
// <x_2> <y_2> // point #2.
// : : : :
// <x_n> <y_n> // point #n.
std::vector<Point_2> points;
std::list<X_monotone_curve_2> dual_lines;

unsigned int n;
in_file >> n;
points.resize(n);
unsigned int k;
for (k = 0; k < n; ++k) {

int px, py;
in_file >> px >> py;
points[k] = Point_2 (px, py);

// The line dual to the point (p_x, p_y) is y = p_x*x - p_y,
// or: p_x*x - y - p_y = 0:
dual_lines.push_back (Line_2 (Number_type(px),

Number_type(-1),
Number_type(-py)));

}
in_file.close();

// Construct the dual arrangement by aggragately inserting the lines.
Arrangement_2 arr;

insert (arr, dual_lines.begin(), dual_lines.end());

std::cout << "The dual arrangement size:" << std::endl
<< "V = " << arr.number_of_vertices()
<< " (+ " << arr.number_of_vertices_at_infinity()
<< " at infinity)"
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces()
<< " (" << arr.number_of_unbounded_faces()
<< " unbounded)" << std::endl;

// Look for a vertex whose degree is greater than 4.
Arrangement_2::Vertex_const_iterator vit;
bool found_collinear = false;

for (vit = arr.vertices_begin(); vit != arr.vertices_end(); ++vit) {
if (vit->degree() > 4) {

found_collinear = true;
break;

}
}
if (found_collinear)

std::cout << "Found at least three collinear points in the input
set."

<< std::endl;
else

std::cout << "No three collinear points are found in the input set."
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<< std::endl;

// Pick two points from the input set, compute their midpoint and
insert

// its dual line into the arrangement.
Kernel ker;
const int k1 = std::rand() % n, k2 = (k1 + 1) % n;
Point_2 p_mid = ker.construct_midpoint_2_object()
(points[k1],

points[k2]);
X_monotone_curve_2 dual_p_mid = Line_2 (Number_type(p_mid.x()),

Number_type(-1),
Number_type(-p_mid.y()));

insert (arr, dual_p_mid);

// Make sure that we now have three collinear points.
found_collinear = false;
for (vit = arr.vertices_begin(); vit != arr.vertices_end(); ++vit) {

if (vit->degree() > 4) {
found_collinear = true;
break;

}
}
CGAL_assertion (found_collinear);
return (0);

}� �
File: examples/Arrangement_on_surface_2/dual_lines.cpp

Note that there are no three collinear points among the points defined in the input file points.dat. In the second
part of the example the existence of collinearity is forced and verified as follows. A line dual to the midpoint
of two randomly selected points is introduced, and inserted into the arrangement. This operation is followed by
a test that verifies that a vertex of degree greater than 4 exists. This implied that collinearity indeed exists as
explained above.

advanced

32.5.3 Representation of Unbounded Arrangements

Given a set C of unbounded curves, a simple approach for representing the arrangement induced by C would
be to clip the unbounded curves using an axis-parallel rectangle that contains all finite curve endpoints and
intersection points between curves in C . This process would result in a set C of bounded curves (line segments
if C contains lines and rays), and it would be straightforward to compute the arrangement induced by this
set. However, we would like to operate directly on the unbounded curves without having to preprocess them.
Therefore, we use an implicit bounding rectangle embedded in the DCEL structure. Figure 32.11 shows the
arrangement of four lines that subdivide the plane into eight unbounded faces and two bounded ones. Notice
that in this case the unbounded faces have outer boundaries, and the halfedges along these outer CCBs are drawn
as arrows. The bounding rectangle is drawn with a dashed line. The vertices v1,v2, . . . ,v8, which represent the
unbounded ends of the four lines, and lie on the bounding rectangle, actually exist at infinity, and the halfedges

2097



v1

v2

v3

v5

v6

v7

v8

f1

f2

f3

f4
f5

f6

f7

f8

v4vbl vbr

vtrvtl

f0

Figure 32.11: A DCEL representing an arrangement of four lines. Halfedges are drawn as thin arrows. The
vertices v1, . . . ,v8 lie at infinity, and are not associated with valid points. The halfedges that connect them are
fictitious, and are not associated with concrete curves. The face denoted f0 (lightly shaded) is the fictitious
“unbounded face” which lies outside the bounding rectangle (dashed) that bounds the actual arrangement. The
four fictitious vertices vbl,vtl,vbr and vtr represent the four corners of the bounding rectangle.

connecting them are fictitious, and represent portions of the bounding rectangle. Note that the outer CCBs of
the unbounded faces contain fictitious halfedges. The twins of these halfedges form together one connected
component that corresponds to the entire bounding rectangle, which forms a single hole in a face f0. We say
that f0 is fictitious, as it does not correspond to a real two-dimensional cell of the arrangement.

Observe that there are four extra vertices at infinity that do not lie on any curve; they are denoted as vbl,vtl,vbr,
and vtr, and represent the bottom-left, top-left, bottom-right, and top-right corners of the bounding rectangle,
respectively. Similarly, there are fictitious halfedges that lie on the top, the bottom, the left, or the right edge
of the bounding rectangle. When the arrangement is empty, there are exactly four pairs of fictitious halfedges,
that divide the plane into two faces, namely a fictitious face lying outside of the bounding rectangle and a single
unbounded face bounded by the bounding rectangle.

Summarizing the above, there are four types of arrangement vertices, which differ from one another by their
location with respect to the bounding bounding rectangle:

1. A vertex, associated with a point in IR2 whose coordinates are bounded. Such a vertex always lies inside
the bounding rectangle.

2. A vertex that represents an unbounded end of an x-monotone curve that is defined at x =−∞ or at x = ∞.
In case of a horizontal line or a curve with a horizontal asymptote, the y-coordinate of the curve end may
be finite (see for example the vertices v2 and v7 in Figure 32.11), but in general the curve end also goes
to y = ±∞ (see for instance the vertices v1, v3, v6 and v8 in Figure 32.11). For our convenience, we will
always take a “tall” enough bounding rectangle and treat such vertices as lying on either the left or right
rectangle edges (that is, if a curve is defined at x = −∞, its left end will be represented by a vertex on
the left edge of the bounding rectangle, and if it is defined at x = ∞, its right end will be represented by a
vertex of the right edge).

3. A vertex that represent the unbounded end of a vertical line or of a curve with a vertical asymptote (finite
x-coordinate and an unbounded y-coordinate). Such a vertex always lies on one of the horizontal edges
of the bounding rectangle (either the bottom one if y =−∞, or the top one if y = ∞). The vertices v4 and
v5 in Figure 32.11 are of this type.
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4. The fictitious vertices that represent the four corners of the bounding bounding rectangle.

A vertex (at infinity) of Type 2 or Type 3 above always has three incident edges: one concrete edge that is
associated with an unbounded portion of an x-monotone curve, and two fictitious edges connecting the vertex
to its neighboring vertices at infinity. Fictitious vertices (of type 4 above) have exactly two incident edges. See
Section 32.6 on how the traits-class interface helps imposing the fact that we never have more than one curve
incident to any true vertex at infinity.

The nested types defined in the Arrangement 2 class support the following methods, in addition to the ones
listed in Section 32.2.2:

• The Vertex class provides three-valued predicates parameter space in x() and parameter space in y(),
which return the location of the geometric embedding of the vertex in the parameter space. In particular,
the former returns ARR LEFT BOUNDARY , ARR INTERIOR, or ARR RIGHT BOUNDARY , and the lat-
ter returns ARR BOTTOM BOUNDARY , ARR INTERIOR, or ARR TOP BOUNDARY . As the package
currently supports only the case where the parameter space is the compactified plane, the former returns
ARR INTERIOR if the x-coordinate associated with the vertex is finite, ARR LEFT BOUNDARY if it is
−∞, and ARR RIGHT BOUNDARY if it is ∞. The latter returns ARR INTERIOR if the y-coordinate asso-
ciated with the vertex is finite, ARR BOTTOM BOUNDARY if it is−∞, and ARR TOP BOUNDARY if it
is ∞. The Boolean predicate is at open boundary() is also provided. You can access the point associated
with a vertex only if it is not a vertex at an open boundary (recall that a vertex at an open boundary is not
associated with a Point 2 object).

• The nested Halfedge class provides the Boolean predicate is fictitious(). The x-monotone curve associ-
ated with a halfedge can be accessed by the curve() method only if the halfedge is not fictitious.

• The nested Face class provides the Boolean predicate f.is fictitious(). The method outer ccb() has the
precondition that the face is not fictitious. Note that non-fictitious unbounded faces always have valid
CCBs (although this CCB may comprise only fictitious halfedge in case the arrangement contains only
bounded curves).

The method arr.number of edges() does not count the number of fictitious edges, (which is always arr.number
of vertices at infinity() + 4), and the iterators returned by arr.edges begin() and arr.edges end() specify a range
of non-fictitious edges. Similarly, arr.number of faces() does not count the fictitious face. However, the Ccb
halfedge circulator of the outer boundary of an unbounded face or the Halfegde around vertex circulator of a
vertex at infinity do traverse fictitious halfedges. For example, it is possible to traverse the outer boundaries of
the unbounded arrangement edges using the following procedure:

Arrangement_2::Unbounded_face_const_iterator fit;
Arrangement_2::Ccb_halfedge_const_circulator first, curr;
Arrangement_2::Halfedge_const_handle he;
int k = 1;

for (fit = arr.unbounded_faces_begin();
fit != arr.unbounded_faces_end(); ++fit, k++)

{
std::cout << "Unbounded face no. " << k << ": ";
curr = first = fit->outer_ccb();
if (! curr->source()->is_at_infinity())
std::cout << "(" << curr->source()->point() << ")";

do
{
he = curr;
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if (! he->is_fictitious())
std::cout << " [" << he->curve() << "] ";

else
std::cout << " [ ... ] ";

if (! he->target()->is_at_infinity())
std::cout << "(" << he->target()->point() << ")";

++curr;
} while (curr != first);
std::cout << std::endl;

}

advanced

32.6 Traits Classes

As mentioned in the introduction of this chapter, the traits class encapsulates the definitions of the geometric
entities and implements the geometric predicates and constructions needed by the Arrangement 2 class and by
its peripheral algorithms. We also mention throughout the chapter that there are different levels of requirements
from the traits class, namely the traits class can model different concept refinement-levels.

32.6.1 The Hierarchy of Traits-Class Concepts

The Basic Concept

A model of the basic concept, ArrangementBasicTraits 2, needs to define the types Point 2 and X monotone
curve 2, where objects of the first type are the geometric mapping of arrangement vertices, and objects of the
latter type are the geometric mapping of edges. Such a model has to support in addition the following set of
operations:

Compare x 2: Compares the x-coordinates of two points.

Compare xy 2: Compares two points lexicographically, by their x-coordinates and then (in case of equality) by
their y-coordinates.

Construct min vertex 2,Construct max vertex 2: Returns the left endpoint (similarly, the right endpoint) of an
x-monotone curve.

Compare y at x 2: Given an x-monotone curve c and a point p that lies in its x-range, this predicate determines
whether p lies below, above or on c.

Compare y at x right 2: Given two x-monotone curves c1 and c2 that share a common left endpoint p, this
predicate determines whether c1 lies above or under c2 immediately to the right of p, or whether the two
curves coincide there.

Equal 2: Checks two points and two curves for equality (two curves are equal if their graph is the same).

Is vertical 2: Determines whether an x-monotone curve is vertical.

Each model of the concept ArrangementBasicTraits 2 needs to define a tag named Has left category. It deter-
mines whether the traits class supports the following predicate:
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Compare y at x left 2: Given two x-monotone curves c1 and c2 that share a common right endpoint p, this
predicate determines whether c1 lies above or under c2 immediately to the left of p, or whether the two
curves coincide there.

This predicate is optional, as it can be answered using the other traits-class primitives, and we wish to alleviate
the need to implement an extra method that is not absolutely necessary. However, as implementing the predicate
directly may prove to be more efficient, the traits-class implementer may choose to provide it.

The basic set of predicates is sufficient for constructing arrangements of x-monotone curves that do not reach
or approach the boundary of the parameter space. The nature of the input curves, i.e., whether some of
them are expected to reach or approach the left, right, bottom, or top side of the boundary of the parame-
ter space, must be conveyed by the traits class. This is done through the definition of four additional nested
types, namely Left side category, Right side category, Bottom side category, and Top side category. Each of
those types must be convertible to the type Arr oblivious side tag for the class to be a model of the concept
ArrangementBasicTraits 2.

The Landmarks Concept

The landmark point-location strategy (see Section 32.3.1) needs its associated arrangement to be instantiated
with a model of the refined ArrangementLandmarkTraits 2 traits concept. A model of this concept must define
a fixed precision number type (typically double) and support the additional operations:

Approximate 2: Given a point p, approximate the x and y-coordinates of p using the fixed precision number
type. We use this operation for approximate computations—there are certain operations in the search for
the location of the point that need not be exact and we can perform them faster than other operations.

Construct x monotone curve 2: Given two points p1 and p2, this predicate constructs an x-monotone curve
connecting p1 and p2.

Supporting Intersecting x-Monotone Curves

A traits class that models the ArrangementXMonotoneTraits 2 concept, which refines the
ArrangementBasicTraits 2 concept, has to support the following functions:

Intersection 2: Computes all intersection points and overlapping sections of two given x-monotone curves. If
possible, computes also the multiplicity of each intersection point.12 Knowing the multiplicity of an
intersection point is not required, but it can speed up the arrangement construction.

Split 2: Splits an x-monotone curve c into two subcurves at a point p lying in the interior of c.

Are mergeable 2: Given two x-monotone curve c1 and c2 that share a common endpoint, this predicate deter-
mines whether c1 and c2 are mergeable, that is, whether they can be merged to form a single continuous
x-monotone curve of the type supported by the traits class.

Merge 2: Merges two mergeable x-monotone curves.

Using a model of the ArrangementXMonotoneTraits 2, it is possible to construct arrangements of sets of x-
monotone curves (and points) that may intersect one another.

12If the two curves intersect at a point p but have different tangents, p is of multiplicity 1. If the tangents are also equal but the their
curvatures are not the same, p is of multiplicity 2, etc.
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Supporting Arbitrary Curves

The concept ArrangementTraits 2 refines the ArrangementXMonotoneTraits 2 concept by adding the notion of
a general, not necessarily x-monotone (and not necessarily continuous) curve. A model of this concept must
define the Curve 2 type and support the subdivision of a curve into a set of continuous x-monotone curves and
isolated points using the predicate Make x monotone 2. For example, the curve C : (x2 + y2)(x2 + y2−1) = 0
is the unit circle (the loci of all points for which x2 + y2 = 1) with the origin (0,0) as a singular point in its
interior. C should therefore be divided into two circular arcs (the upper part and the lower part of the unit circle)
and a single isolated point.

Note that the refined model ArrangementTraits 2 is required only when using the free insert() functions (see
Section 32.4), which accept a Curve 2 object in the incremental version, or a range of Curve 2 objects in the
aggregated version. In all other cases it is sufficient to use a model of the ArrangementXMonotoneTraits 2
concept.

Supporting Unbounded Curves

An arrangement that supports unbounded x-monotone curves maintains an implicit bounding rectangle in the
DCEL structure; see Section 32.5.3. The unbounded ends of vertical rays, vertical lines, and curves with vertical
asymptotes are represented by vertices that lie on the bottom or top sides of this bounding rectangle. These
vertices are not associated with points, but are associated with (finite) x-coordinates. The unbounded ends of
all other curves are represented by vertices that lie on the left or right sides of this bounding rectangle. These
vertices are not associated with points either. Edges connect these vertices and the four vertices that represents
the corners of this bounding rectangle to form the rectangle.

Several predicates are required to handle x-monotone curves that approach infinity and thus approach the bound-
ary of the parameter space. These predicates are sufficient to handle not only curves embedded in an unbounded
parameter space, but also curves embedded in a bounded parameter space with open boundaries. Let bl and
br denote the x-coordinates of the left and right boundaries of the parameter space, respectively. Let bb and
bt denote the y-coordinates of the bottom and top boundaries of the parameter space, respectively. Recall that
currently the general code of the arrangement only supports the case where the parameter space is the entire
compactified plane, thus bl = bb =−∞ and br = bt = +∞. Nonetheless, when the parameter space is bounded,
it is the exact geometric embedding of the implicit bounding rectangle. In the following we assume that an x
monotone curve C can be considered as a parametric curve C(t) = (X(t),Y (t)) defined over a closed, open, or
half open interval with endpoints 0 and 1.

Models of the concept ArrangementOpenBoundaryTraits 2 handle curves that approach the boundary of the
parameter space. This concept refines the concept ArrangementBasicTraits 2. The arrangement template in-
stantiated with a traits class that models this concept can handle curves that are unbounded in any direction. If
some curves inserted into an arrangement object are expected to be unbounded, namely, there exists d ∈ {0,1}
such that limt→d X(t) = ±∞ or limt→d y(t) = ±∞ holds for at least one input curve C(t) = (X(t),Y (t)), the
arrangement template must be instantiated with a model of the ArrangementOpenBoundaryTraits concept.13

All the four types Left side category, Right side category, Bottom side category, and Top side category
nested in a model of the concept ArrangementOpenBoundaryTraits must be convertible to Arr open side tag.14

For example, the Arr rational function traits 2 traits-model supports unbounded curves; see Section 32.6.6.
Thus, all four nested types are defined as Arr open side tag. Adversely, all four types nested in the Arr
segment traits 2 traits-model (see Section 32.6.2) are defined as Arr oblivious side tag, as segments are always

13We intend to enhance the arrangement template to handle curves confined to a bounded yet open parameter space. A curve that reaches
the boundary of the parameter space in this case is bounded and open.

14The tags Arr oblivious side tag and Arr open side tag are only two out of a larger number of options for the side categories included
in major extension the code is going through.
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A model of the concept ArrangementOpenBoundaryTraits 2 must provide the additional predicates listed below.
x-coordinates and y-coordinates are differently handled. This asymmetry is brought on by the various algorithms
applied to arrangements, the input and output arguments of which are x-monotone curves. Indeed, all curves
maintained by any arrangement are continuous weakly x-monotone curves. A non x-monotone curve is divided
into x-monotone sub curves (and perhaps points) before it is inserted into an arrangement. This asymmetry is
also reflected in the additional predicates listed below.

Parameter space in x 2: Given a parametric x-monotone curve C(t) = (X(t),Y (t)) and an enumerator that
specifies either the minimum end or the maximum end of the curve, and thus maps to a parameter value
d ∈ {0,1}, this predicate determines the location of the curve end along the x-dimension. Formally, the
predicate determines whether limt→d X(t) evaluates to bl , br, or a value in between.

Compare y near boundary 2: Given two x-monotone curves C1 and C2 and an enumerator i that specifies ei-
ther the minimum ends or the maximum ends of the two curves, this predicate compares the y-coordinates
of the curves near their respective ends. That is, the predicate compares the y-coordinates of the vertical
projection of a point p onto C1 and onto C2. If the enumerator i specifies the minimum ends, the curves
must approach the left boundary-side. In this case p is located far to the left, such that the result is invari-
ant under a translation of p farther to the left. If i specifies the maximum ends, the curves must approach
the right boundary-side. In that case p is located far to the right in a similar manner.

Parameter space in y 2: Given a parametric x-monotone curve C(t) = (X(t),Y (t)) and an enumerator that
specifies either the minimum end or the maximum end of the curve, and thus maps to a parameter value
d ∈ {0,1}, this predicate determines the location of the curve end along the y-dimension. Formally, the
predicate determines whether limt→d Y (t) evaluates to bb, bt , or a value in between.

Compare x at limit 2: Two versions of this predicate are provided: (i) Given a point p, a parametric x-
monotone curve C(t) = (X(t),Y (t)), and an enumerator that specifies either the minimum end or the
maximum end of the curve, and thus maps to a parameter value d ∈ {0,1}, this predicate compares the
x-coordinate of p and limt→d X(t). If the parameter space is unbounded, a precondition assures that C has
a vertical asymptote at its d-end; that is limt→d X(t) is finite. (ii) Given two parametric x-monotone curves
C1(t) = (X1(t),Y1(t)) and C2(t) = (X2(t),Y2(t)) and two enumerators that specify either the minimum end
or the maximum end of each curve, and thus map to parameter values d1 ∈ {0,1} and d2 ∈ {0,1} for C1
and for C2, respectively, this predicate compares limt→d1 X1(t) and limt→d2 X2(t). If the parameter space
is unbounded, a precondition assures that C1 and C2 have vertical asymptote at their respective ends; that
is limt→d1 X1(t) and limt→d2 X2(t) are finite.

Compare x near limit 2: Given two x-monotone curves C1 and C2 and an enumerator i that specifies either
the minimum ends or the maximum ends of the two curves, this predicate compares the x-coordinates of
the curves near their respective ends. That is, the predicate compares the x-coordinates of the horizontal
projection of a point p onto C1 and onto C2. If the parameter space is unbounded, a precondition assures
that C1 and C2 have vertical asymptote at their respective ends. Furthermore, both curves approach the
same boundary-side, either the bottom or the top, at their respective ends. If both curves approach the
bottom boundary-side, p is located far to the bottom, such that the result is invariant under a translation
of p farther to the bottom. If both curves approach the top boundary-side, p is located far to the top in
a similar manner. Another precondition assures that the x-coordinates of the limits of the curves at their
respective ends are equal. That is, the predicate Compare x at limit 2 applied to C1, C2, and i evaluates
to EQUAL.

In the rest of this section we review the traits classes included in the public distribution of CGAL, that handle line
segments, polylines, conic arcs, rational functions, and arcs of Bézier and algebraic curves. The last subsection
overviews decorators for geometric traits classes distributed with CGAL, which extend other geometric traits-
class by attaching auxiliary data with the geometric objects.

15We intend to introduce more concepts that require only a subset of the categories to be convertible to Arr open side tag.
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32.6.2 Traits Classes for Line Segments and Linear Objects

The Arr segment traits 2<Kernel> class used so far in most example programs in this chap-
ter is a model of the concepts ArrangementTraits 2, ArrangementLandmarkTraits 2, and
ArrangementDirectionalXMonotoneTraits 2; the later enables Boolean set operations. It is parameter-
ized by a geometric kernel and uses the Kernel::Point 2 type as it point type. However, neither the Curve 2
nor the X monotone curve 2 types are identical to the Kernel::Segment 2 type. A kernel segment is typically
represented by its two endpoints, and these may have a large bit-size representation, if the segment is intersected
and split several times (in comparison with the representation of its original endpoints). The large representation
may significantly slow down the various traits-class operations involving such a segment. In contrast, the
Arr segment traits 2 represents a segment using its supporting line and the two endpoints, such that most
computations are performed on the supporting line, which never changes as the segment is split. It also caches
some additional information with the segment to speed up various predicates. An X monotone curve 2 object
can still be constructed from two endpoints or from a kernel segment. Moreover, an X monotone curve 2
instance can also be casted or assigned to a Kernel::Segment 2 object. The two types are thus fully convertible
to one another.

The Arr segment traits 2<Kernel> class is very efficient for maintaining arrangements of a large number of in-
tersecting line segments, especially if it is instantiated with the appropriate geometric kernel. Using Cartesian<
Gmpq> as the kernel type is generally a good choice; the coordinates of the segment endpoints are represented
as exact rational numbers, and this ensures the robustness and correctness of any computation. However, if the
GMP library is not installed, it is possible to use the Quotient<MP Float> number-type, provided by the support
library of CGAL, which is somewhat less efficient.16

Exact computations are of course less efficient, compared to machine-precision floating-point arithmetic, so
constructing an arrangement using the Cartesian<Gmpq> kernel (or, similarly, Cartesian<Quotient<MP Float>
>) is several times slower in comparison to a Simple cartesian<double> kernel. However, in the latter case the
correctness of the computation results is not guaranteed. In many cases it is possible to use filtered computations
and benefit from both approaches, namely achieve fast running times with guaranteed results. In case we handle
a set of line segments that have no degeneracies, namely no two segments share a common endpoint, and no
three segments intersect at a common point — or alternatively, degeneracies exist but their number is relatively
small — then filtered computation incur only a minor overhead compared to the floating-point arithmetic, while
ensuring the correctness of the computation results.

In the following example we use the predefined Exact predicates exact constructions kernel for instantiating
our segment-traits class. This kernel use interval arithmetic to filter the exact computations. The program reads
a set of line segments with integer coordinates from a file and computes their arrangement. By default it opens
the fan grids.dat input-file, located in the examples folder, which contains 104 line segments that form four
“fan-like” grids and induce a dense arrangement, as illustrated in Figure 32.12(a):� �
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Timer.h>
#include <list>
#include <fstream>

typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
typedef Kernel::FT Number_type;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;

16Many of the example programs in the rest of the chapter include a header file named arr rational nt.h, which defines a type named
Number type as either Gmpq or Quotient<MP Float>, depending on whether GMP is installed or not.
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(a) (b)

Figure 32.12: (a) An arrangement of 104 line segments from the input file fan grids.dat. (b) An arrangement of
more than 3000 interior disjoint line segments, defined in the input file Europe.dat.

typedef Traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;

int main (int argc, char *argv[])
{

// Get the name of the input file from the command line, or use the
default

// fan_grids.dat file if no command-line parameters are given.
const char * filename = (argc > 1) ? argv[1] : "fan_grids.dat";

// Open the input file.
std::ifstream in_file (filename);

if (! in_file.is_open()) {
std::cerr << "Failed to open " << filename << " ..." << std::endl;
return (1);

}

// Read the segments from the file.
// The input file format should be (all coordinate values are
integers):

// <n> // number of segments.
// <sx_1> <sy_1> <tx_1> <ty_1> // source and target of segment
#1.

// <sx_2> <sy_2> <tx_2> <ty_2> // source and target of segment
#2.

// : : : :
// <sx_n> <sy_n> <tx_n> <ty_n> // source and target of segment
#n.

std::list<Segment_2> segments;
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unsigned int n;
in_file >> n;
unsigned int i;
for (i = 0; i < n; ++i) {

int sx, sy, tx, ty;
in_file >> sx >> sy >> tx >> ty;
segments.push_back (Segment_2 (Point_2 (Number_type(sx),
Number_type(sy)),

Point_2 (Number_type(tx),
Number_type(ty))));

}
in_file.close();

// Construct the arrangement by aggregately inserting all segments.
Arrangement_2 arr;
CGAL::Timer timer;

std::cout << "Performing aggregated insertion of "
<< n << " segments." << std::endl;

timer.start();
insert (arr, segments.begin(), segments.end());
timer.stop();

// Print the arrangement dimensions.
std::cout << "V = " << arr.number_of_vertices()

<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;

std::cout << "Construction took " << timer.time()
<< " seconds." << std::endl;

return 0;
}� �
File: examples/Arrangement_on_surface_2/predefined_kernel.cpp

The arrangement package also offers a simpler alternative segment-traits class. The traits class
Arr non caching segment basic traits 2<Kernel> models the ArrangementBasicTraits 2 concept. It uses
Kernel::Point 2 as its point type and Kernel::Segment 2 as its x-monotone curve type. As this traits class does
not support intersecting and splitting segments, the kernel representation is sufficient. It is still less efficient
than Arr segment traits 2 for constructing arrangements of pairwise disjoint line segments in many cases, as it
performs no caching at all, but using this traits class may be preferable as it reduces the memory consumption a
bit, since no extra data is stored with the line segments.

The class Arr non caching segment traits 2<Kernel> inherits from Arr non caching segment basic traits 2<
Kernel> and extends it to be a model of the concepts ArrangementTraits 2, ArrangementLandmarkTraits 2,and
ArrangementDirectionalXMonotoneTraits 2. It may thus be used to construct arrangement of intersecting line
segments, but as explained above, for efficiency reasons it is recommended to use it only when the arrangement
is very sparse and contains hardly any intersection points.

In the following example we read an input file containing a set of line segments that are pairwise disjoint
in their interior. As the segments do not intersect, no new points are constructed and we can instantiate
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the Arr non caching segment traits basic 2<Kernel> class-template with the predefined Exact predicates
inexact constructions kernel. Note that we use the insert non intersecting curves() function to construct the
arrangement. By default, the example opens the Europe.dat input-file, located in the examples folder, which
contains more than 3000 line segments with floating-point coordinates that form the map of Europe, as depicted
in Figure 32.12(b):� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Arr_non_caching_segment_basic_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Timer.h>
#include <list>
#include <fstream>

typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::FT

Number_type;
typedef CGAL::Arr_non_caching_segment_basic_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arrangement_2<Traits_2>

Arrangement_2;

int main (int argc, char *argv[])
{

// Get the name of the input file from the command line, or use the
default

// Europe.dat file if no command-line parameters are given.
const char * filename = (argc > 1) ? argv[1] : "Europe.dat";

// Open the input file.
std::ifstream in_file (filename);

if (! in_file.is_open()) {
std::cerr << "Failed to open " << filename << " ..." << std::endl;
return (1);

}

// Read the segments from the file.
// The input file format should be (all coordinate values are double
// precision floating-point numbers):
// <n> // number of segments.
// <sx_1> <sy_1> <tx_1> <ty_1> // source and target of segment
#1.

// <sx_2> <sy_2> <tx_2> <ty_2> // source and target of segment
#2.

// : : : :
// <sx_n> <sy_n> <tx_n> <ty_n> // source and target of segment
#n.

std::list<Segment_2> segments;

unsigned int n;
in_file >> n;
unsigned int i;
for (i = 0; i < n; ++i) {
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double sx, sy, tx, ty;
in_file >> sx >> sy >> tx >> ty;
segments.push_back (Segment_2 (Point_2 (Number_type(sx),
Number_type(sy)),

Point_2 (Number_type(tx),
Number_type(ty))));

}
in_file.close();

// Construct the arrangement by aggregately inserting all segments.
Arrangement_2 arr;
CGAL::Timer timer;

std::cout << "Performing aggregated insertion of "
<< n << " segments." << std::endl;

timer.start();
insert_non_intersecting_curves (arr, segments.begin(), segments.end());
timer.stop();

// Print the arrangement dimensions.
std::cout << "V = " << arr.number_of_vertices()

<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;

std::cout << "Construction took " << timer.time()
<< " seconds." << std::endl;

return 0;
}� �
File: examples/Arrangement_on_surface_2/predefined_kernel_non_intersecting.cpp

The Arr linear traits 2<Kernel> class used for demonstrating the construction of arrangements of unbounded
curves is capable of handling bounded and unbounded linear objects, namely lines, rays and line segments. It
is parameterized by a geometric kernel and such that its nested Point 2 type is the same as the kernel point.
The Curve 2 (and X monotone curve 2) type it defines is constructible from a Kernel::Line 2, a Kernel::Ray 2
or from a Kernel::Segment 2 object. Just like the default segment-traits class, the linear-traits class also use
caching techniques to speed up its predicates and constructions.

32.6.3 The Polyline-Traits Class

The Arr polyline traits 2<SegmentTraits> class can be used to maintain arrangements of polylines (a.k.a. poly-
segments), which are continuous piecewise linear curves. A polyline can be created from a range of points,
where the i-th and (i+1)-st points in the range represent the endpoints of the i-th segment of the polyline. The
polyline traits class is parameterized with a segment-traits class that supports the basic operations on segments.

Polylines are the simplest form of a curves that are not necessarily x-monotone. They can be used to approximate
more complicated curves in a convenient manner, as the algebra needed to handle them is elementary — rational
arithmetic is sufficient to construct an arrangement of polylines is an exact and robust manner. Note, however,
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π1

π3

π2

Figure 32.13: An arrangement of three polylines, as constructed in polylines.cpp. Disks mark vertices associated
with polyline endpoints, while circles mark vertices that correspond to intersection points. Note that π2 is split
into three x-monotone polylines, and that π1 and π3 have two overlapping sections.

that a single polyline can be split into many x-monotone polylines, and that the number of intersection points
(or overlapping sections) between two polylines can also be large.

The polyline-traits class is a model of the ArrangementTraits 2 concept and of the
ArrangementLandmarkTraits 2 concept. It inherits its point type from the segment-traits class, and de-
fines the polyline type, which serves as its Curve 2. Polyline curve objects can be constructed from a range of
points. They also enable the traversal over the range of defining points, whose first and past-the-end iterators
can be obtained through the methods begin() and end(). The nested X monotone curve 2 type inherits from
Curve 2. The points in an x-monotone curve are always stored in lexicographically increasing order of their
coordinates.

The following example program constructs an arrangement of three polylines, as depicted in Figure 32.13. Note
that most points defining the polylines are not associated with arrangement vertices. The arrangement vertices
are either the extreme points of each x-monotone polyline or the intersection points between two polylines:� �
#include <CGAL/Cartesian.h>
#include <CGAL/Quotient.h>
#include <CGAL/MP_Float.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arr_polyline_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <vector>
#include <list>

#include "arr_print.h"

typedef CGAL::Quotient<CGAL::MP_Float> Number_type;
typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Segment_traits_2;
typedef CGAL::Arr_polyline_traits_2<Segment_traits_2> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::Curve_2 Polyline_2;
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typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;

int main ()
{

Arrangement_2 arr;

Point_2 points1[5];
points1[0] = Point_2 (0, 0);
points1[1] = Point_2 (2, 4);
points1[2] = Point_2 (3, 0);
points1[3] = Point_2 (4, 4);
points1[4] = Point_2 (6, 0);
Polyline_2 pi1 (&points1[0], &points1[5]);

std::list<Point_2> points2;
points2.push_back (Point_2 (1, 3));
points2.push_back (Point_2 (0, 2));
points2.push_back (Point_2 (1, 0));
points2.push_back (Point_2 (2, 1));
points2.push_back (Point_2 (3, 0));
points2.push_back (Point_2 (4, 1));
points2.push_back (Point_2 (5, 0));
points2.push_back (Point_2 (6, 2));
points2.push_back (Point_2 (5, 3));
points2.push_back (Point_2 (4, 2));
Polyline_2 pi2 (points2.begin(), points2.end());

std::vector<Point_2> points3 (4);
points3[0] = Point_2 (0, 2);
points3[1] = Point_2 (1, 2);
points3[2] = Point_2 (3, 6);
points3[3] = Point_2 (5, 2);
Polyline_2 pi3 (points3.begin(), points3.end());

insert (arr, pi1);
insert (arr, pi2);
insert (arr, pi3);

print_arrangement (arr);
return 0;

}� �
File: examples/Arrangement_on_surface_2/polylines.cpp

32.6.4 A Traits Class for Circular Arcs and Line Segments

Circles and circular arcs are the simplest form of non-linear curves. We handle circles whose centers have
rational coordinates and whose squared radii is also rational. If we denote the circle center by (x0,y0) and its
radius by r, then the equation of the circle — that is, (x− x0)2 +(y− y0)2 = r2 — has rational coefficients. The
intersection points of two such circles are therefore solutions of a quadratic equation with rational coefficients,
or algebraic numbers of degree 2. The same applies for intersection points between such a rational circle and a
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Figure 32.14: An arrangement of three circles constructed in circles.cpp. Each circle is split into two x-
monotone circular arcs, whose endpoints are drawn as disks. Circles mark vertices that correspond to inter-
section points. The vertex vmax is a common intersection point of all three circles.

line, or a line segment, with rational coefficients (a line whose equation is ax+by+ c = 0, where a, b and c are
rational). Such numbers can be expressed as α+β

√
γ, where α, β and γ are all rational numbers.

Arrangement of circular arcs and of line segment are very useful, as they occur in many applications. For
example, when dilating a polygon by some radius we obtain a shape whose boundary is comprised of line
segments, which correspond to dilated polygon edges, and circular arcs, which result from dilated polygon
vertices. Using the arrangement of the boundary curves it is possible, for example, to compute the union of a
set of dilated polygons.

The Arr circle segment traits 2<Kernel> class-template is designed for efficient handling of arrange-
ments of circular arcs and line segments. It is a model of the concepts ArrangementTraits 2 and
ArrangementDirectionalXMonotoneTraits 2; the later enables Boolean set operations. Note that it is not a
model of ArrangementLandmarkTraits 2 concept, so it is impossible to use the landmark point-location strat-
egy. The traits class template is parameterized by a geometric kernel, and can handle arrangements of segments
of Kernel::Circle 2 objects (full circles are also supported) or of Kernel::Line 2 objects—namely circular arcs
and line segments. It is important to observe that the nested Point 2 type defined by the traits class, whose
coordinates are typically algebraic numbers of degree 2, is not the same as the Kernel::Point 2 type, which is
capable of representing a point with rational coordinates. The coordinates of a point are represented using the
nested CoordNT number-type.

In the following example an arrangement of three full circles is constructed, as shown in Figure 32.14. Then,
the vertex of maximal degree is searched for. The geometric mapping of this vertex is the point (4,3), as all
three circles intersect at this point and the associated vertex has six incident edges:� �
#include "arr_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_circle_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>

typedef CGAL::Cartesian<Number_type> Kernel;
typedef Kernel::Circle_2 Circle_2;
typedef CGAL::Arr_circle_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::CoordNT CoordNT;
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typedef Traits_2::Point_2 Point_2;
typedef Traits_2::Curve_2 Curve_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;

int main ()
{

// Create a circle centered at the origin with radius 5.
Kernel::Point_2 c1 = Kernel::Point_2 (0, 0);
Number_type sqr_r1 = Number_type (25); // = 5ˆ2
Circle_2 circ1 = Circle_2 (c1, sqr_r1, CGAL::CLOCKWISE);
Curve_2 cv1 = Curve_2 (circ1);

// Create a circle centered at (7,7) with radius 5.
Kernel::Point_2 c2 = Kernel::Point_2 (7, 7);
Number_type sqr_r2 = Number_type (25); // = 5ˆ2
Circle_2 circ2 = Circle_2 (c2, sqr_r2, CGAL::CLOCKWISE);
Curve_2 cv2 = Curve_2 (circ2);

// Create a circle centered at (4,-0.5) with radius 3.5 (= 7/2).
Kernel::Point_2 c3 = Kernel::Point_2 (4, Number_type (-1,2));
Number_type sqr_r3 = Number_type (49, 4); // = 3.5ˆ2
Circle_2 circ3 = Circle_2 (c3, sqr_r3, CGAL::CLOCKWISE);
Curve_2 cv3 = Curve_2 (circ3);

// Construct the arrangement of the three circles.
Arrangement_2 arr;

insert (arr, cv1);
insert (arr, cv2);
insert (arr, cv3);

// Locate the vertex with maximal degree.
Arrangement_2::Vertex_const_iterator vit;
Arrangement_2::Vertex_const_handle v_max;
unsigned int max_degree = 0;

for (vit = arr.vertices_begin(); vit != arr.vertices_end(); ++vit) {
if (vit->degree() > max_degree) {

v_max = vit;
max_degree = vit->degree();

}
}

std::cout << "The vertex with maximal degree in the arrangement is: "
<< "v_max = (" << v_max->point() << ") "
<< "with degree " << max_degree << "." << std::endl;

return 0;
}� �
File: examples/Arrangement_on_surface_2/circles.cpp

The Curve 2 type nested in Arr circle segment traits 2 can be used to represent circles, circular arcs,
or line segments. Curve objects can therefore be constructed from a Kernel::Circle 2 object or from a
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Kernel::Segment 2 object. A circular arc is typically defined by a supporting circle and two endpoints, where
the endpoints are instances of the Point 2 type, with rational or irrational coordinates. The orientation of the
arc is determined by the orientation of the supporting circle. Similarly, we also support the construction of lines
segments given their supporting line (of type Kernel::Line 2) and two endpoints, which may have irrational
coordinates (unlike the Kernel::Segment 2 type).

Note that the Kernel::Circle 2 type represents a circle whose squared radius is rational, where the radius itself
may be irrational. However, if the radius is known to be rational, it is advisable to use it, for efficiency reasons.
It is therefore also possible to construct a circle, or a circular arc specifying the circle center (a Kernel::Point 2),
its rational radius, and its orientation. Finally, we also support the construction of a circular arcs that is defined
by two endpoints and an arbitrary midpoint that lies on the arc in between its endpoint. In this case, all three
points are required to have rational coordinates (to be kernel points).

The following example demonstrates the usage of the various construction methods for circular arcs and line
segments. Note the usage of the constructor of CoordNT (alpha, beta, gamma), which creates a degree-2
algebraic number whose value is α+β

√
γ.� �

#include "arr_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_circle_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>

typedef CGAL::Cartesian<Number_type> Kernel;
typedef Kernel::Circle_2 Circle_2;
typedef Kernel::Segment_2 Segment_2;
typedef CGAL::Arr_circle_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::CoordNT CoordNT;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::Curve_2 Curve_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;

int main ()
{

std::list<Curve_2> curves;

// Create a circle centered at the origin with squared radius 2.
Kernel::Point_2 c1 = Kernel::Point_2 (0, 0);
Circle_2 circ1 = Circle_2 (c1, Number_type (2));

curves.push_back (Curve_2 (circ1));

// Create a circle centered at (2,3) with radius 3/2 - note that
// as the radius is rational we use a different curve constructor.
Kernel::Point_2 c2 = Kernel::Point_2 (2, 3);

curves.push_back (Curve_2 (c2, Number_type(3, 2)));

// Create a segment of the line (y = x) with rational endpoints.
Kernel::Point_2 s3 = Kernel::Point_2 (-2, -2);
Kernel::Point_2 t3 = Kernel::Point_2 (2, 2);
Segment_2 seg3 = Segment_2 (s3, t3);

curves.push_back (Curve_2 (seg3));
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// Create a line segment with the same supporting line (y = x), but
// having one endpoint with irrational coefficients.
CoordNT sqrt_15 = CoordNT (0, 1, 15); // = sqrt(15)
Point_2 s4 = Point_2 (3, 3);
Point_2 t4 = Point_2 (sqrt_15, sqrt_15);

curves.push_back (Curve_2 (seg3.supporting_line(), s4, t4));

// Create a circular arc that correspond to the upper half of the
// circle centered at (1,1) with squared radius 3. We create the
// circle with clockwise orientation, so the arc is directed from
// (1 - sqrt(3), 1) to (1 + sqrt(3), 1).
Kernel::Point_2 c5 = Kernel::Point_2 (1, 1);
Circle_2 circ5 = Circle_2 (c5, 3, CGAL::CLOCKWISE);
CoordNT one_minus_sqrt_3 = CoordNT (1, -1, 3);
CoordNT one_plus_sqrt_3 = CoordNT (1, 1, 3);
Point_2 s5 = Point_2 (one_minus_sqrt_3, CoordNT (1));
Point_2 t5 = Point_2 (one_plus_sqrt_3, CoordNT (1));

curves.push_back (Curve_2 (circ5, s5, t5));

// Create a circular arc of the unit circle, directed clockwise from
// (-1/2, sqrt(3)/2) to (1/2, sqrt(3)/2). Note that we orient the
// supporting circle accordingly.
Kernel::Point_2 c6 = Kernel::Point_2 (0, 0);
CoordNT sqrt_3_div_2 = CoordNT (Number_type(0),
Number_type(1,2), Number_type(3));

Point_2 s6 = Point_2 (Number_type (-1, 2), sqrt_3_div_2);
Point_2 t6 = Point_2 (Number_type (1, 2), sqrt_3_div_2);

curves.push_back (Curve_2 (c6, 1, CGAL::CLOCKWISE, s6, t6));

// Create a circular arc defined by two endpoints and a midpoint,
// all having rational coordinates. This arc is the upper-right
// quarter of a circle centered at the origin with radius 5.
Kernel::Point_2 s7 = Kernel::Point_2 (0, 5);
Kernel::Point_2 mid7 = Kernel::Point_2 (3, 4);
Kernel::Point_2 t7 = Kernel::Point_2 (5, 0);

curves.push_back (Curve_2 (s7, mid7, t7));

// Construct the arrangement of the curves.
Arrangement_2 arr;

insert (arr, curves.begin(), curves.end());

// Print the size of the arrangement.
std::cout << "The arrangement size:" << std::endl

<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;

return 0;
}� �
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File: examples/Arrangement_on_surface_2/circular_arcs.cpp

It is also possible to construct x-monotone curve objects, which represent x-monotone circular arcs or line seg-
ments, using similar constructors. Construction from a full circle is obviously not supported. See the Reference
Manual for more details.

The traits class-template Arr circular line arc traits 2<CircularKernel> offered by the arrangement package
also handles circular arcs and line segments. It is an alternative to the Arr circle segment traits 2<Kernel>
class-template. These two class templates, while serve similar purposes, are based on different concepts, and
posses different characteristics. You are encouraged to experiment with both, compare their performance, and
use the most suitable for your case.

32.6.5 A Traits Class for Conic Arcs

A conic curve is an algebraic curve of degree 2. Namely, it is the locus of all points (x,y) satisfying the equation
C : rx2 +sy2 + txy+ux+vy+w = 0, where the six coefficients 〈r,s, t,u,v,w〉 completely characterize the curve.
The sign of the expression ∆C = 4rs− t2 determines the type of curve:

• If ∆C > 0 the curve is an ellipse. A circle is a special case of an ellipse, where r = s and t = 0.

• If ∆C = 0 the curve is a parabola — an unbounded conic curve with a single connected branch. When
r = s = t = 0 we have a line, which can be considered as a degenerate parabola.

• If ∆C < 0 the curve is a hyperbola. That is, it is comprised of two disconnected unbounded branches.

As the arrangement package is suitable for bounded curves, we consider bounded segments of conic curves,
referred to as conic arcs. A conic arc a may be either (i) a full ellipse, or (ii) defined by the tuple 〈C, ps, pt ,o〉,
where C is a conic curve and ps and pt are two points on C (namely C(ps) = C(pt) = 0) that define the source
and target of the arc, respectively. The arc is formed by traversing C from the source to the target going in
the orientation specified by o, which is typically clockwise or counterclockwise orientation (but may also be
collinear in case of degenerate conic curves).

We always assume that the conic coefficients 〈r,s, t,u,v,w〉 are rational. When dealing with linear curves (line
segments and polylines), similar assumptions guarantee that all intersection points also have rational coordi-
nates, such that the arrangement of such curves can be constructed and maintained using only rational arith-
metic. Unfortunately, this does not hold for conic curves, as the coordinates of intersection points of two conic
curves with rational coefficients are in general algebraic numbers of degree 4.17 In addition, conic arcs may not
necessarily be x-monotone, and must be split at points where the tangent to the arc is vertical. In the general
case, such points typically have coordinates that are algebraic numbers of degree 2. It is therefore clear that we
have to use different number types to represent the conic coefficients and the point coordinates. Note that as
arrangement vertices induced by intersection points and points with vertical tangents are likely to have algebraic
coordinates, we also allow the original endpoints of the input arcs ps and pt to have algebraic coordinates.

The Arr conic traits 2<RatKernel, AlgKernel, NtTraits> class template is designed for efficient handling of
arrangements of bounded conic arcs. The template has three parameters, defined as follows:

• The RatKernel class is a geometric kernel, whose field type is an exact rational type. It is used to define
basic geometric entities (e.g., a line segment or a circle) with rational coefficients. Typically we use one
of the standard CGAL kernels, instantiated with the number type NtTraits::Rational (see below).

17Namely, they are roots of polynomials with integer coefficients of degree 4. However, in some special cases, for example when
handling only circles and circular arcs, the coordinates of the intersection points are only of degree 2, namely they are solutions of quadratic
equations.
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Figure 32.15: An arrangement of mixed conic arcs, as constructed in conics.cpp.

• The AlgKernel class is a geometric kernel whose field type is an exact algebraic type. It is used to define
points with algebraic coordinates. Typically we use one of the standard CGAL kernels, instantiated with
the number type NtTraits::Algebraic (see below).

• The NtTraits class (the number-type traits class) encapsulates all the numeric operations needed for per-
forming the geometric computation carried out by the geometric traits class. It defines the Integer, Ra-
tional and Algebraic number-types, and supports several operations on these types, such as conversion
between number types, solving quadratic equations and extracting the real roots of a polynomial with
integer coefficients. It is highly recommended to use the CORE algebraic number traits class, which
is included in the arrangement package. It relies on the exact number types implemented in the CORE
library and performs exact computations on the number types it defines.

The Arr conic traits 2 models the ArrangementTraits 2 and ArrangementLandmarkTraits 2 concepts. (It sup-
ports the landmark point-location strategy). Its Point 2 type is derived from AlgKernel::Point 2, while the
Curve 2 type represents a bounded, not necessarily x-monotone, conic arc. The X monotone curve 2 type is
derived from Curve 2, but its constructors are to be used only by the traits class. You should therefore construct
only Curve 2 objects and insert them into the arrangement using the insert() or insert() functions.

Conic arcs can be constructed from full ellipses or by specifying a supporting curve, two endpoints and an
orientation. However, several constructors of Curve 2 are available to allow for some special cases, such as
circular arcs or line segments. The Curve 2 (and the derived X monotone curve 2) classes also support basic
access functions such as source(), target() and orientation().

Examples for Arrangements of Conics

The following example demonstrates the usage of the various constructors for conic arcs. The resulting ar-
rangement is depicted in Figure 32.15. Especially noteworthy are the constructor of a circular arc that accepts
three points and the constructor that allows specifying approximate endpoints, where the exact endpoints are
given explicitly as intersections of the supporting conic with two other conic curves. Also note that as the
preconditions required by some of these constructors are rather complicated (see the Reference Manual for the
details), a precondition violation does not cause the program to terminate — instead, an invalid arc is created.
We can verify the validity of an arc by using the is valid() method. Needless to say, inserting invalid arcs into
an arrangement is not allowed.� �
#include <CGAL/basic.h>
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#ifndef CGAL_USE_CORE
#include <iostream>
int main ()
{

std::cout << "Sorry, this example needs CORE ..." << std::endl;
return 0;

}
#else

#include <CGAL/Cartesian.h>
#include <CGAL/CORE_algebraic_number_traits.h>
#include <CGAL/Arr_conic_traits_2.h>
#include <CGAL/Arrangement_2.h>

typedef CGAL::CORE_algebraic_number_traits Nt_traits;
typedef Nt_traits::Rational Rational;
typedef Nt_traits::Algebraic Algebraic;
typedef CGAL::Cartesian<Rational> Rat_kernel;
typedef Rat_kernel::Point_2 Rat_point_2;
typedef Rat_kernel::Segment_2 Rat_segment_2;
typedef Rat_kernel::Circle_2 Rat_circle_2;
typedef CGAL::Cartesian<Algebraic> Alg_kernel;
typedef CGAL::Arr_conic_traits_2<Rat_kernel, Alg_kernel, Nt_traits>

Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::Curve_2 Conic_arc_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;

int main ()
{

Arrangement_2 arr;

// Insert a hyperbolic arc, supported by the hyperbola y = 1/x
// (or: xy - 1 = 0) with the endpoints (1/5, 4) and (2, 1/2).
// Note that the arc is counterclockwise oriented.
Point_2 ps1 (Rational(1,4), 4);
Point_2 pt1 (2, Rational(1,2));
Conic_arc_2 c1 (0, 0, 1, 0, 0, -1, CGAL::COUNTERCLOCKWISE, ps1, pt1);

insert (arr, c1);

// Insert a full ellipse, which is (x/4)ˆ2 + (y/2)ˆ2 = 0 rotated by
// phi=36.87 degree (such that sin(phi) = 0.6, cos(phi) = 0.8),
// yielding: 58xˆ2 + 72yˆ2 - 48xy - 360 = 0.
Conic_arc_2 c2 (58, 72, -48, 0, 0, -360);

insert (arr, c2);

// Insert the segment (1, 1) -- (0, -3).
Rat_point_2 ps3 (1, 1);
Rat_point_2 pt3 (0, -3);
Conic_arc_2 c3 (Rat_segment_2 (ps3, pt3));
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insert (arr, c3);

// Insert a circular arc supported by the circle xˆ2 + yˆ2 = 5ˆ2,
// with (-3, 4) and (4, 3) as its endpoints. We want the arc to be
// clockwise oriented, so it passes through (0, 5) as well.
Rat_point_2 ps4 (-3, 4);
Rat_point_2 pm4 (0, 5);
Rat_point_2 pt4 (4, 3);
Conic_arc_2 c4 (ps4, pm4, pt4);

CGAL_assertion (c4.is_valid());
insert (arr, c4);

// Insert a full unit circle that is centered at (0, 4).
Rat_circle_2 circ5 (Rat_point_2(0,4), 1);
Conic_arc_2 c5 (circ5);

insert (arr, c5);

// Insert a parabolic arc that is supported by a parabola y = -xˆ2
// (or: xˆ2 + y = 0) and whose endpoints are (-sqrt(3), -3) ˜ (-1.73,
-3)

// and (sqrt(2), -2) ˜ (1.41, -2). Notice that since the x-coordinates
// of the endpoints cannot be acccurately represented, we specify them
// as the intersections of the parabola with the lines y = -3 and y =
-2.

// Note that the arc is clockwise oriented.
Conic_arc_2 c6 =

Conic_arc_2 (1, 0, 0, 0, 1, 0, // The parabola.
CGAL::CLOCKWISE,
Point_2 (-1.73, -3), // Approximation of the source.
0, 0, 0, 0, 1, 3, // The line: y = -3.
Point_2 (1.41, -2), // Approximation of the target.
0, 0, 0, 0, 1, 2); // The line: y = -2.

CGAL_assertion (c6.is_valid());
insert (arr, c6);

// Insert the right half of the circle centered at (4, 2.5) whose
radius

// is 1/2 (therefore its squared radius is 1/4).
Rat_circle_2 circ7 (Rat_point_2(4, Rational(5,2)), Rational(1,4));
Point_2 ps7 (4, 3);
Point_2 pt7 (4, 2);
Conic_arc_2 c7 (circ7, CGAL::CLOCKWISE, ps7, pt7);

insert (arr, c7);

// Print out the size of the resulting arrangement.
std::cout << "The arrangement size:" << std::endl

<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;
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return 0;
}

#endif� �
File: examples/Arrangement_on_surface_2/conics.cpp

The last example in this section demonstrates how the conic-traits class can handle intersection points with
multiplicity. The supporting curves of the two arcs, a circle centered at (0, 1

2 ) with radius 1
2 , and the hyperbola

y = x2

1−x ,18 intersect at the origin such that the intersection point has multiplicity 3 (note that they both have the
same horizontal tangent at (0,0) and the same curvature 1). In addition, they have another intersection point at
( 1

2 , 1
2 ) of multiplicity 1:� �

#include <CGAL/basic.h>

#ifndef CGAL_USE_CORE
#include <iostream>
int main ()
{

std::cout << "Sorry, this example needs CORE ..." << std::endl;
return 0;

}
#else

#include <CGAL/Cartesian.h>
#include <CGAL/CORE_algebraic_number_traits.h>
#include <CGAL/Arr_conic_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Arr_naive_point_location.h>

#include "arr_print.h"

typedef CGAL::CORE_algebraic_number_traits Nt_traits;
typedef Nt_traits::Rational Rational;
typedef Nt_traits::Algebraic Algebraic;
typedef CGAL::Cartesian<Rational> Rat_kernel;
typedef Rat_kernel::Point_2 Rat_point_2;
typedef Rat_kernel::Segment_2 Rat_segment_2;
typedef Rat_kernel::Circle_2 Rat_circle_2;
typedef CGAL::Cartesian<Algebraic> Alg_kernel;
typedef CGAL::Arr_conic_traits_2<Rat_kernel,

Alg_kernel,
Nt_traits> Traits_2;

typedef Traits_2::Point_2 Point_2;
typedef Traits_2::Curve_2 Conic_arc_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;
typedef CGAL::Arr_naive_point_location<Arrangement_2> Naive_pl;

int main ()
{

18This curve can also be written as C : x2 + xy− y = 0. It is a hyperbola since ∆C =−1.
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Arrangement_2 arr;
Naive_pl pl (arr);

// Insert a hyperbolic arc, supported by the hyperbola y = xˆ2/(1-x)
// (or: xˆ2 + xy - y = 0) with the endpoints (-1, 1/2) and (1/2, 1/2).
// Note that the arc is counterclockwise oriented.
Point_2 ps1 (-1, Rational(1,2));
Point_2 pt1 (Rational(1,2), Rational(1,2));
Conic_arc_2 cv1 (1, 0, 1, 0, -1, 0, CGAL::COUNTERCLOCKWISE, ps1,
pt1);

insert (arr, cv1, pl);

// Insert the bottom half of the circle centered at (0, 1/2) whose
radius

// is 1/2 (therefore its squared radius is 1/4).
Rat_circle_2 circ2 (Rat_point_2(0, Rational(1,2)), Rational(1,4));
Point_2 ps2 (-Rational(1,2), Rational(1,2));
Point_2 pt2 (Rational(1,2), Rational(1,2));
Conic_arc_2 cv2 (circ2, CGAL::COUNTERCLOCKWISE, ps2, pt2);

insert (arr, cv2, pl);

// Print the resulting arrangement.
print_arrangement (arr);

return 0;
}

#endif� �
File: examples/Arrangement_on_surface_2/conic_multiplicities.cpp

32.6.6 A Traits Class for Arcs of Rational Functions

The traits class Arr rational function traits 2<AlgebraicKernel d 1> handles bounded and unbounded arcs of
rational functions, referred to as rational arcs (in particular, such an arc may correspond to the entire graph
of a rational function), and enables the construction and maintenance of arrangements of such arcs. Rational
functions, and polynomial functions in particular, are not only interesting in their own right, they are also very
useful for approximating or interpolating more complicated curves; see, e.g., [PTVF02, Chapter 3].

Arr rational function traits 2<AlgebraicKernel d 1> is a model of the concepts ArrangementTraits 2,
ArrangementOpenBoundaryTraits 2, and ArrangementDirectionalXMonotoneTraits 2; the later enables
Boolean set operations. Note that it is not a model of ArrangementLandmarkTraits 2 concept, so it is im-
possible to use the landmark point-location strategy with this traits class.

A rational function y = P(x)
Q(x) is defined by two polynomials P and Q of arbitrary degrees. If Q(x) = 1 then the

function is a simple polynomial function. Usually the domain is R but the function may also be restricted to
a bounded interval [xmin,xmax] or defined over a ray (−∞,xmax] or [xmin,∞). Rational functions are represented
by the nested type Curve 2. A rational arc is always x-monotone in the mathematical sense. However, it
is not necessarily continuous, as it may have singularities. An arc that has singularities must be split into
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continuous portions before being inserted into the arrangement. Arbitrary rational functions are represented
by the nested type Curve 2 and continuous portions of rational functions are represented by the nested type
X monotone curve 2. Constructors for both types are provided by the traits. A Curve 2 may be split up into
several X monotone curve 2 using Make x monotone 2.

Using the Arr rational function traits 2<AlgebraicKernel d 1> class template it is possible to construct and
maintain arrangement of rational arcs. The template parameter of the traits must be a model of the concept
AlgebraicKernel d 1. A rational function is represented as the quotient of two polynomials P and Q of type
AlgebraicKernel d 1::Polynomial 1 and an x-interval over which the polynomials are defined. The type of the
polynomial coefficients, namely AlgebraicKernel d 1::Coefficient, cannot be algebraic. Moreover, it is recom-
mended that this type is not made rational either, since using rational, as opposed to integral, coefficients does
not extend the range of the rational arcs and is typically less efficient. The type of the interval bounds, namely
AlgebraicKernel d 1::Bound, however, can be algebraic. A point is represented by a rational function and its
x-coordinate, which is of type AlgebraicKernel d 1::Algebraic real 1. Note that an explicit representation of
the y-coordinate is only computed upon request, as it can be a rather costly operation.

The constructed rational functions are cached by the traits class. The cache is local to each traits class object. It
is therefore necessary to construct curves using only the constructor objects provided by member functions of
the traits class. Moreover, a curve must only be used by the traits class object that was used to construct it. The
cache is automatically cleaned up from time to time. The amortized clean up costs are constant. In addition,
there is also a separate member function that cleans up the cache on demand.

The curve constructors have an additional advantage. They conveniently enable the provision of two polyno-
mials that define a rational arc using rational coefficients. For example, let P and Q denote two polynomials
with integral coefficients that define a rational arc at interest, and let P′ and Q′ denote two polynomials with
rational coefficients that define the same rational arc; that is, the quotients P/Q and P′/Q′ are identical. You can
construct the rational arc providing the coefficients of P′ and Q′ to the constructor. In this case the constructor
normalizes the coefficients and stores the desired polynomials P and Q.

a1

a3a4

a2

Figure 32.16: An arrangement of four arcs of rational functions, as constructed in rational functions.cpp.

The following example demonstrates the construction of an arrangement of rational arcs depicted in Fig-
ure 32.16. Note the usage of the two constructors, for polynomial arcs and for rational arcs:� �
#include <CGAL/basic.h>

#ifndef CGAL_USE_CORE
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#include <iostream>
int main ()
{

std::cout << "Sorry, this example needs CORE ..." << std::endl;
return 0;

}

#else

#include <CGAL/CORE_BigInt.h> // NT
#include <CGAL/Algebraic_kernel_d_1.h> // Algebraic Kernel
#include <CGAL/Arr_rational_function_traits_2.h> // Traits
#include <CGAL/Arrangement_2.h> // Arrangement

typedef CORE::BigInt Number_type;
typedef CGAL::Algebraic_kernel_d_1<Number_type> AK1;
typedef CGAL::Arr_rational_function_traits_2<AK1> Traits_2;

typedef Traits_2::Polynomial_1 Polynomial_1;
typedef Traits_2::Algebraic_real_1 Alg_real_1;

typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;

int main ()
{

CGAL::set_pretty_mode(std::cout); // for nice printouts.

// create a polynomial representing x .-)
Polynomial_1 x = CGAL::shift(Polynomial_1(1),1);

// Traits class object
Traits_2 traits;
Traits_2::Construct_x_monotone_curve_2 construct_arc

= traits.construct_x_monotone_curve_2_object();

// container storing all arcs
std::vector<Traits_2::X_monotone_curve_2> arcs;

// Create an arc supported by the polynomial y = xˆ4 - 6xˆ2 + 8,
// defined over the interval [-2.1, 2.1]:
Polynomial_1 P1 = x*x*x*x - 6*x*x + 8;
Alg_real_1 l(Traits_2::Algebraic_kernel_d_1::Bound(-2.1));
Alg_real_1 r(Traits_2::Algebraic_kernel_d_1::Bound(2.1));
arcs.push_back(construct_arc(P1, l, r));

// Create an arc supported by the function y = x / (1 + xˆ2),
// defined over the interval [-3, 3]:
Polynomial_1 P2 = x;
Polynomial_1 Q2 = 1+x*x;

arcs.push_back(construct_arc(P2, Q2, Alg_real_1(-3), Alg_real_1(3)));

// Create an arc supported by the parbola y = 8 - xˆ2,
// defined over the interval [-2, 3]:
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Polynomial_1 P3 = 8 - x*x;
arcs.push_back(construct_arc(P3, Alg_real_1(-2), Alg_real_1(3)));

// Create an arc supported by the line y = -2x,
// defined over the interval [-3, 0]:
Polynomial_1 P4 = -2*x;
arcs.push_back(construct_arc(P4, Alg_real_1(-3), Alg_real_1(0)));

// Construct the arrangement of the four arcs.

// Print the arcs.
for (unsigned int i(0); i < arcs.size(); ++i)

std::cout << arcs[i]<<std::endl;

Arrangement_2 arr(&traits);
insert(arr, arcs.begin(), arcs.end());

// Print the arrangement size.
std::cout << "The arrangement size:" << std::endl

<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;

return 0;
}

#endif� �
File: examples/Arrangement_on_surface_2/rational_functions.cpp

The following example demonstrates the construction of an arrangement of six rational arcs—four unbounded
arcs and two bounded ones—as depicted in Figure 32.17. Note the usage of the constructors of an entire rational
function and of an infinite “ray” of such a function. Also observe that the hyperbolas y =± 1

x and y =± 1
2x never

intersect, although they have common vertical and horizontal asymptotes, so very “thin” unbounded faces are
created between them:� �
#include <CGAL/basic.h>

#ifndef CGAL_USE_CORE
#include <iostream>
int main ()
{

std::cout << "Sorry, this example needs CORE ..." << std::endl;
return 0;

}

#else

#include <CGAL/CORE_BigInt.h> // NT
#include <CGAL/Algebraic_kernel_d_1.h> // Algebraic Kernel
#include <CGAL/Arr_rational_function_traits_2.h> // Traits
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Figure 32.17: An arrangement of six arcs of rational functions, as constructed in unbounded rational
functions.cpp.

#include <CGAL/Arrangement_2.h> // Arrangement

typedef CORE::BigInt Number_type;
typedef CGAL::Algebraic_kernel_d_1<Number_type> AK1;
typedef CGAL::Arr_rational_function_traits_2<AK1> Traits_2;

typedef Traits_2::Polynomial_1 Polynomial_1;
typedef Traits_2::Algebraic_real_1 Alg_real_1;

typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;

int main ()
{

CGAL::set_pretty_mode(std::cout); // for nice printouts.

// Traits class object
AK1 ak1;
Traits_2 traits(&ak1);
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// constructor for rational functions
Traits_2::Construct_curve_2 construct =
traits.construct_curve_2_object();

// a polynomial representing x .-)
Polynomial_1 x = CGAL::shift(Polynomial_1(1),1);

// container storing all arcs
std::vector<Traits_2::Curve_2> arcs;

// Create the rational functions (y = 1 / x), and (y = -1 / x).
Polynomial_1 P1(1);
Polynomial_1 minusP1(-P1);
Polynomial_1 Q1 = x;
arcs.push_back(construct(P1, Q1));
arcs.push_back(construct(minusP1, Q1));

// Create a bounded segments of the parabolas (y = -4*xˆ2 + 3) and
// (y = 4*xˆ2 - 3), defined over [-sqrt(3)/2, sqrt(3)/2].
Polynomial_1 P2 = -4*x*x+3;
Polynomial_1 minusP2 = -P2;
std::vector<std::pair<Alg_real_1,int> > roots;

// [-sqrt(3)/2, sqrt(3)/2]
traits.algebraic_kernel_d_1()->solve_1_object()(P2,
std::back_inserter(roots));

arcs.push_back(construct(P2, roots[0].first, roots[1].first));
arcs.push_back(construct(minusP2, roots[0].first, roots[1].first));

// Create the rational function (y = 1 / 2*x) for x > 0, and the
// rational function (y = -1 / 2*x) for x < 0.
Polynomial_1 P3(1);
Polynomial_1 minusP3(-P3);
Polynomial_1 Q3 = 2*x;
arcs.push_back(construct(P3, Q3, Alg_real_1(0), true));
arcs.push_back(construct(minusP3, Q3, Alg_real_1(0), false));

// Construct the arrangement of the six arcs.
//Arrangement_2 arr(&traits);
Arrangement_2 arr;
insert(arr, arcs.begin(), arcs.end());

// Print the arrangement size.
std::cout << "The arrangement size:" << std::endl

<< " V = " << arr.number_of_vertices()
<< " (plus " << arr.number_of_vertices_at_infinity()
<< " at infinity)"
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces()
<< " (" << arr.number_of_unbounded_faces() << " unbounded)"
<< std::endl << std::endl;
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return 0;
}

#endif� �
File: examples/Arrangement_on_surface_2/unbounded_rational_functions.cpp

32.6.7 A Traits Class for Planar Bézier Curves

A planar Bézier curve B is a parametric curve defined by a sequence of control points p0, . . . , pn as follows:

B(t) = (X(t),Y (t)) =
n

∑
k=0

pk ·
n!

k!(n− k)!
· tk(1− t)n−k .

where t ∈ [0,1]. The degree of the curve is therefore n — namely, X(t) and Y (t) are polynomials of degree
n. Bézier curves have numerous applications in computer graphics and solid modelling. They are used, for
example, in free-form sketches and for defining the true-type fonts.

Using the Arr Bezier curve traits 2<RatKernel, AlgKernel, NtTraits> class template it is possible to construct
and maintain arrangements of Bézier curves that are given by rational control points (a sequence of objects of
the RatKernel::Point 2 type). We can handle curves of arbitrary degree (in general, a sequence of n+1 control
points define a Bézier curve of degree n). The template parameters are the same ones used by the Arr conic
traits 2 class template, and here it is also recommended to use the CORE algebraic number traits class, with
Cartesian kernels instantiated with the Rational and Algebraic number-types defined by this class.

As mentioned above, we assume that the coordinates of all control points that define a Bézier curve are rational
numbers, so both X(t) and Y (t) are polynomials with rational coefficients. The intersection points between
curves are however algebraic numbers, and their exact computation is time-consuming. The traits class there-
fore contains a layer of geometric filtering that performs all computation in an approximate manner whenever
possible. Thus, it resorts to exact computations only when the approximate computation fails to produce an
unambiguous result. Note that most arrangement vertices are therefore associated with approximated points.
You cannot access the coordinates of such points and obtain them as algebraic numbers, and only access to the
approximate coordinates in possible. See the Reference Manual for the exact interface of the Point 2, Curve 2
and X monotone curve 2 defined by the traits class.

The Arr Bezier curve traits 2 is a model of the ArrangementTraits 2 concept (but not of the
ArrangementLandmarkTraits 2 concept, so it is impossible to use the landmark point-location strategy for ar-
rangements of rational arcs).

The following example reads a set of Bézier curves from an input file, where each file is specified by an integer
stating its number of control points, followed by the sequence of control points, given in integer or rational
coordinates. By default, the program uses the Bezier.dat file, which contains ten curves of degree 5 each; their
resulting arrangement is depicted in Figure 32.18.� �
#include <CGAL/basic.h>

#ifndef CGAL_USE_CORE
#include <iostream>
int main ()
{

std::cout << "Sorry, this example needs CORE ..." << std::endl;
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Figure 32.18: An arrangement of ten Bézier curves of degree 5, as constructed in Bezier curves.cpp.

return 0;
}
#else

#include <CGAL/Cartesian.h>
#include <CGAL/CORE_algebraic_number_traits.h>
#include <CGAL/Arr_Bezier_curve_traits_2.h>
#include <CGAL/Arrangement_2.h>

typedef CGAL::CORE_algebraic_number_traits Nt_traits;
typedef Nt_traits::Rational NT;
typedef Nt_traits::Rational Rational;
typedef Nt_traits::Algebraic Algebraic;
typedef CGAL::Cartesian<Rational> Rat_kernel;
typedef CGAL::Cartesian<Algebraic> Alg_kernel;
typedef Rat_kernel::Point_2 Rat_point_2;
typedef CGAL::Arr_Bezier_curve_traits_2<Rat_kernel, Alg_kernel,

Nt_traits>
Traits_2;

typedef Traits_2::Curve_2 Bezier_curve_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;

int main (int argc, char *argv[])
{

// Get the name of the input file from the command line, or use the
default

// Bezier.dat file if no command-line parameters are given.
const char *filename = (argc > 1) ? argv[1] : "Bezier.dat";

// Open the input file.
std::ifstream in_file (filename);
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if (! in_file.is_open()) {
std::cerr << "Failed to open " << filename << std::endl;
return 1;

}

// Read the curves from the input file.
unsigned int n_curves;
std::list<Bezier_curve_2> curves;
Bezier_curve_2 B;
unsigned int k;

in_file >> n_curves;
for (k = 0; k < n_curves; k++) {

// Read the current curve (specified by its control points).
in_file >> B;
curves.push_back (B);

std::cout << "B = {" << B << "}" << std::endl;
}

// Construct the arrangement.
Arrangement_2 arr;
insert (arr, curves.begin(), curves.end());

// Print the arrangement size.
std::cout << "The arrangement size:" << std::endl

<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;

return 0;
}

#endif� �
File: examples/Arrangement_on_surface_2/Bezier_curves.cpp

32.6.8 A Traits Class for Planar Algebraic Curves of Arbitrary Degree

An algebraic curve C in the plane is defined as the (real) zero locus of a polynomial f (x,y) in two variables.
The curve is uniquely defined by f (although several polynomials might define the same curve). We call f a
defining polynomial of C.

We consider arrangements induced by algebraic curves or by (weakly) x-monotone segments for algebraic
curves (Such a segment is not necessarily the maximal possible (weakly) x-monotone segment; see below.)
When talking about algebraic curves, we use the term “segment” for a continuous, possibly non-linear subset of
an algebraic curve – see the definition below. There are no restrictions on the algebraic curve, that means, we
support unbounded curves, vertical curves or segments, and isolated points.

The Arr algebraic segment traits 2<Coefficient> class template is a model of the ArrangementTraits 2 concept
(but not of the ArrangementLandmarkTraits 2 concept, so it is impossible to use the landmark point-location
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Figure 32.19: An arrangement of algebraic curves of degrees 1, 2, 3, and 6, as constructed in algebraic
curves.cpp.

strategy for arrangements of algebraic curves). The template argument Coefficient determines the type of the
scalar coefficients of the polynomial. Currently supported types are leda integer, CORE::BigInt, and any in-
stance of CGAL::Sqrt extension<A,B> instantiated with one of the integral types above.

The traits class defines a type Curve 2 for algebraic curves. Such a type can be constructed by the Construct
curve 2 functor, which accepts an instance of Polynomial 2 as an argument. This polynomial type is also avail-
able by the traits class and constitutes a valid model of the concept Polynomial d with two variables (see ??).

The following examples computes the arrangement induced by the four curves in Figure 32.19� �
#include <CGAL/basic.h>
#include <iostream>

#if (!CGAL_USE_CORE) && (!CGAL_USE_LEDA) && (!(CGAL_USE_GMP &&
CGAL_USE_MPFI))

int main ()
{

std::cout << "Sorry, this example needs CORE, LEDA, or GMP+MPFI ..."
<< std::endl;

return 0;
}
#else

#include <CGAL/Arrangement_2.h>
#include <CGAL/Arr_algebraic_segment_traits_2.h>

#if CGAL_USE_GMP && CGAL_USE_MPFI
#include <CGAL/Gmpz.h>
typedef CGAL::Gmpz Integer;
#elif CGAL_USE_CORE
#include <CGAL/CORE_BigInt.h>
typedef CORE::BigInt Integer;
#else
#include <CGAL/leda_integer.h>
typedef LEDA::integer Integer;
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#endif

typedef CGAL::Arr_algebraic_segment_traits_2<Integer> Arr_traits_2;
typedef CGAL::Arrangement_2<Arr_traits_2> Arrangement_2;
typedef Arr_traits_2::Curve_2 Curve_2;
typedef Arr_traits_2::Polynomial_2 Polynomial_2;

int main() {

// For nice printouts
CGAL::set_pretty_mode(std::cout);

Arr_traits_2 arr_traits;

// Functor to create a curve from a Polynomial_2
Arr_traits_2::Construct_curve_2 construct_curve

= arr_traits.construct_curve_2_object();

Polynomial_2 x = CGAL::shift(Polynomial_2(1),1,0);
Polynomial_2 y = CGAL::shift(Polynomial_2(1),1,1);

Arrangement_2 arr(&arr_traits);

// Construct an (unbounded line) with equation 3x-5y+2=0
Polynomial_2 f1 = 3*x-5*y+2;
Curve_2 cv1 = construct_curve(f1);
std::cout << "Adding curve " << f1 << " to the arrangement" <<
std::endl;
CGAL::insert(arr,cv1);

// Construct the ellipse xˆ2+3*yˆ2-10=0
Polynomial_2 f2 = CGAL::ipower(x,2)+3*CGAL::ipower(y,2)-10;
Curve_2 cv2 = construct_curve(f2);
std::cout << "Adding curve " << f2 << " to the arrangement" <<
std::endl;
CGAL::insert(arr,cv2);

// Construct a cubic curve with isoated point, and vertical asymptote
// xˆ2+yˆ2+xyˆ2
Polynomial_2 f3 =
CGAL::ipower(x,2)+CGAL::ipower(y,2)+x*CGAL::ipower(y,2);
Curve_2 cv3 = construct_curve(f3);
std::cout << "Adding curve " << f3 << " to the arrangement" <<
std::endl;
CGAL::insert(arr,cv3);

// Construct a curve of degree 6 with equation xˆ6+yˆ6-xˆ3yˆ3-12
Polynomial_2 f4 = CGAL::ipower(x,6)+CGAL::ipower(y,6)-

CGAL::ipower(x,3)*CGAL::ipower(y,3)-12;
Curve_2 cv4 = construct_curve(f4);
std::cout << "Adding curve " << f4 << " to the arrangement" <<
std::endl;
CGAL::insert(arr,cv4);
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// Print the arrangement size.
std::cout << "The arrangement size:" << std::endl

<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;

return 0;
}

#endif� �
File: examples/Arrangement_on_surface_2/algebraic_curves.cpp

We first give a precise definition of segments of algebraic curves. A point p on a curve C f ⊂ R2 (with f its
defining equation) is called semi-regular, if locally around p, C f can be written as a function graph of some
continuous function in x or in y (we also say that p is parameterizable in x or y, respectively). The only two
cases of non-semi-regular points are isolated points, and self-intersections. A segment of a curve is a closed and
continuous point set such that each interior point is semi-regular. It follows that a weakly x-monotone segment
is either a completely vertical segment, or a segment whose interior points are all parameterizable in x.

The traits class allows to construct weakly x-monotone segments of a curve using the Construct x monotone
segment 2 functor. The X monotone curve 2 type of the traits class represents weakly x-monotone segments
of a curve; however, segments may need to be further subdivided into several (sub-)segments, for technical
reasons. Therefore, Construct x monotone segment 2 constructs a sequence of X monotone curve 2 objects,
whose union represents the weakly x-monotone segment that was queried. We call a segment terminal if it can
be represented by the type X monotone curve 2.

advanced

The subdivision of segments is due to the internal representation of x-monotone segments, which is based on a
vertical decomposition. We assume the defining polynomial f of the curve C to be square-free, that means, it
contains no divisor g2 of total degree greater than zero. We define a (complex) critical point p ∈ C2 by

f (p) = 0 =
∂ f
∂y

(p).

An x-coordinate α ∈ R is critical if either some critical point has x-coordinate α, or if the leading coefficient
of f , considered as a polynomial in y, vanishes. In particular, vertical lines of and isolated point of C can only
take place at critical x-coordinates. Between two consecutive critical x-coordinates, the curve decomposes into
a finite number of x-monotone segments (the same is true on the left of the leftmost, and on the right of the
rightmost critical x-coordinate). The type X monotone curve 2 is only able to represent such segments (and
sub-segments of them). See Figure 32.20 for an example of a decomposition into terminal segments. Formally,
a terminal segment is a weakly x-monotone segment that is either vertical, or its x-range contains no critical
point in its interior.

advanced

Coordinates of points are represented by the type Algebraic real 1, which is defined in the traits class. This type
is taken from a model of the AlgebraicKernel 1 concept, which is also available by the type Algebraic kernel 1.
One can use this model to create algebraic numbers as roots of univariate polynomials, and process them, for
instance, compare them, or approximate them to any precision. See the documentation of AlgebraicKernel 1
for more information. One can construct an object of type Point 2 by a triple (x0,cv,i), which means that the
i-th point (counted from below) in the fiber of cv at the x-coordinate x0 is constructed. This is also how points
are presented internally. In the example displayed in Figure 32.20, if x1 denotes the x-coordinate of p, and cv
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Figure 32.20: The critical x-coordinates of an algebraic curve (dashed lines), and its decomposition into terminal
segments (in different colors). The segment from p to q consists of the union of three terminal segments.

represents the algebraic curve, then p could be represented by (x1,cv,3). If x2 is the x-coordinate of q, then
(x2,cv,1) is a valid representation of q. Although the y-coordinate of an object of type Point 2 can be queried,
we recommend to be careful with that option, since computing an explicit representation of the y-coordinate as
an Algebraic real 1 object can become rather expensive.

The following code exemplifies various methods to construct algebraic segments. The computed arrangement
is displayed in Figure 32.21.� �
#include <CGAL/basic.h>
#include <iostream>

#if (!CGAL_USE_CORE) && (!CGAL_USE_LEDA) && (!(CGAL_USE_GMP &&
CGAL_USE_MPFI))

int main ()
{

std::cout << "Sorry, this example needs CORE, LEDA, or GMP+MPFI ..."
<< std::endl;

return 0;
}
#else

#include <CGAL/Arrangement_2.h>
#include <CGAL/Arr_algebraic_segment_traits_2.h>

#if CGAL_USE_GMP && CGAL_USE_MPFI
#include <CGAL/Gmpz.h>
typedef CGAL::Gmpz Integer;
#elif CGAL_USE_CORE
#include <CGAL/CORE_BigInt.h>
typedef CORE::BigInt Integer;
#else
#include <CGAL/leda_integer.h>
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Figure 32.21: An arrangement of algebraic segments (solid lines), as constructed in algebraic segments.cpp.
The supporting curves are drawn in dashed lines.

typedef LEDA::integer Integer;
#endif

typedef CGAL::Arr_algebraic_segment_traits_2<Integer> Arr_traits_2;
typedef CGAL::Arrangement_2<Arr_traits_2> Arrangement_2;
typedef Arr_traits_2::Curve_2 Curve_2;
typedef Arr_traits_2::Polynomial_2 Polynomial_2;
typedef Arr_traits_2::Algebraic_real_1 Algebraic_real_1;
typedef Arr_traits_2::X_monotone_curve_2 X_monotone_curve_2;
typedef Arr_traits_2::Point_2 Point_2;

int main() {

Arr_traits_2 arr_traits;

Arr_traits_2::Construct_curve_2 construct_curve
= arr_traits.construct_curve_2_object();

Arr_traits_2::Construct_x_monotone_segment_2
construct_x_monotone_segment

= arr_traits.construct_x_monotone_segment_2_object();
Arr_traits_2::Construct_point_2 construct_point

= arr_traits.construct_point_2_object();
Arr_traits_2::Make_x_monotone_2 make_x_monotone

= arr_traits.make_x_monotone_2_object();

Arrangement_2 arr(&arr_traits);

std::vector<X_monotone_curve_2> segs;

Polynomial_2 x = CGAL::shift(Polynomial_2(1),1,0);
Polynomial_2 y = CGAL::shift(Polynomial_2(1),1,1);

// Construct xˆ4+yˆ3-1
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Curve_2 cv0 = construct_curve(CGAL::ipower(x,4)+CGAL::ipower(y,3)-1);
// Construct all x-monotone segments using the Make_x_mononotone
functor
std::vector<CGAL::Object> pre_segs;
make_x_monotone(cv0,std::back_inserter(pre_segs));
// Cast all CGAL::Objects into X_monotone_segment_2
// (the vector might also contain Point_2 objects for isolated
points,
// but not for this instance
for(size_t i = 0; i < pre_segs.size(); i++ ) {

X_monotone_curve_2 curr;
bool check = CGAL::assign(curr,pre_segs[i]);
assert(check);
segs.push_back(curr);

}
// Construct an ellipse with equation 2*xˆ2+5*yˆ2-7=0
Curve_2 cv1 =
construct_curve(2*CGAL::ipower(x,2)+5*CGAL::ipower(y,2)-7);

// Construct point on the upper arc (counting of arc numbers starts
with 0!
Point_2 p11 = construct_point(Algebraic_real_1(0),cv1,1);

construct_x_monotone_segment(cv1,p11,Arr_traits_2::POINT_IN_INTERIOR,
std::back_inserter(segs));

// Construct a vertical cusp xˆ2-yˆ3=0
Curve_2 cv2 = construct_curve(CGAL::ipower(x,2)-CGAL::ipower(y,3));

// Construct a segment containing the cusp point.
// This adds to X_monotone_curve_2 objects to the vector,
// because the cusp is a critical point
Point_2 p21 = construct_point(Algebraic_real_1(-2),cv2,0);
Point_2 p22 = construct_point(Algebraic_real_1(2),cv2,0);
construct_x_monotone_segment(cv2,p21,p22,std::back_inserter(segs));

// Construct an unbounded curve, starting at x=3
Point_2 p23 = construct_point(Algebraic_real_1(3),cv2,0);
construct_x_monotone_segment(cv2,p23,Arr_traits_2::MIN_ENDPOINT,

std::back_inserter(segs));

// Construct another conic: yˆ2-xˆ2+1
Curve_2 cv3 = construct_curve(CGAL::ipower(y,2)-CGAL::ipower(x,2)+1);

Point_2 p31 = construct_point(Algebraic_real_1(2),cv3,1);
construct_x_monotone_segment(cv3,p31,Arr_traits_2::MAX_ENDPOINT,

std::back_inserter(segs));

// Construct a vertical segment
Point_2 v1 = construct_point(0,0);
Point_2 v2 = construct_point(Algebraic_real_1(0),cv1,1);
construct_x_monotone_segment(v1,v2,std::back_inserter(segs));

CGAL::insert(arr,segs.begin(),segs.end());
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// Add some isolated points (must be wrapped into CGAL::Object)
std::vector<CGAL::Object> isolated_points;
isolated_points.push_back

(CGAL::make_object(construct_point(Algebraic_real_1(2),cv3,0)));
isolated_points.push_back

(CGAL::make_object(construct_point(Integer(1),Integer(5))));
isolated_points.push_back

(CGAL::make_object(construct_point(Algebraic_real_1(-1),
Algebraic_real_1(5))));

CGAL::insert(arr,isolated_points.begin(), isolated_points.end());

// Print the arrangement size.
std::cout << "The arrangement size:" << std::endl

<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;

return 0;
}

#endif� �
File: examples/Arrangement_on_surface_2/algebraic_segments.cpp

32.6.9 Traits-Class Decorators

Geometric traits-class decorators allow you to attach auxiliary data to curves and to points. The data is automat-
ically manipulated by the decorators and distributed to the constructed geometric entities. Note that additional
information can alternatively be maintained by extending the vertex, halfedge, or face types provided by the
DCEL class used by the arrangement; see the details in Section 32.8.

The arrangement package includes a generic traits-class decorator template named Arr curve data traits 2<
BaseTraits, XMonotoneCurveData, Merge, CurveData, Convert>. This decorator is used to attach a data field
to curves and to x-monotone curves. It is parameterized by a base-traits class, which is one of the geometric
traits classes described in the previous subsections, or a user-defined traits class. The curve-data decorator
derives itself from the base-traits class, and in particular inherits its Point 2 type. In addition:

• Curve 2 is derived from the basic BaseTraits::Curve 2 class, extending it by an extra field of type Curve-
Data.

• X monotone curve 2 is derived from the basic BaseTraits::X monotone curve 2 class, extending it by an
extra field of type XMonotoneCurveData.

Note that the Curve 2 and X monotone curve 2 are not the same, even if the BaseTraits::Curve 2 and
BaseTraits::X monotone curve 2 are (as in the case of the segment-traits class for example). The extended
curve types support the additional methods data() and set data() for accessing and modifying the data field.

You can create an extended curve (or an extended x-monotone curve) from a basic curve and a curve-data
object. When curves are inserted into an arrangement, they may be split, and the decorator handles their data
fields automatically:
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Figure 32.22: An arrangement of six red and blue segments, as constructed in consolidated curve data.cpp.
Disks correspond to red–blue intersection points, while circles mark the endpoints of red–blue overlaps.

• When a curve is subdivided into x-monotone subcurves, its data field of type CurveData is converted to
an XMonotoneCurveData object d using the Convert functor. The object d is automatically associated
with each of the resulting x-monotone subcurves.

Note that by default, the CurveData type is identical to the XMonotoneCurveData type (and the conver-
sion functor Convert is trivially defined). Thus, the data field associated with the original curve is just
duplicated and stored with the x-monotone subcurves.

• When an x-monotone curve is split into two, the decorator class automatically copies its data field to both
resulting subcurves.

• When intersecting two x-monotone curves c1 and c2, the result may include overlapping sections, repre-
sented as x-monotone curves. In this case the data fields of c1 and c2 are merged into a single XMono-
toneCurveData object, using the Merge functor, which is supplied as a parameter to the traits class-
template. The resulting object is assigned to the data field of the overlapping subcurves.

• Merging two x-monotone curves is allowed only when (i) the two curves are geometrically mergeable —
that is, the base-traits class allows to merge them — and (ii) the two curves store the same data field.

The Arr consolidated curve data traits 2<BaseTraits, Data> decorator specializes the generic curve-data dec-
orator. It extends the basic BaseTraits::Curve 2 by a single Data field, and the basic BaseTraits::X monotone
curve 2 with a set of (distinct) data objects. The Data type is required to support the equality operator, used to
ensure that each set contains only distinct data objects with no duplicates. When a curve with a data field d is
subdivided into x-monotone subcurves, each subcurve is associated with a set S = {d}. In case of an overlap
between two x-monotone curves c1 and c2 with associated data sets S1 and S2, respectively, the overlapping
subcurve is associated with the consolidated set S1∪S2.

Examples

In the following example, we use Arr segment traits 2 as our base-traits class, attaching an additional color
field to the segments using the consolidated curve-data traits class. A color may be either blue or red. Having
constructed the arrangement of colored segments, as depicted in Figure 32.22, we detect the vertices that have
incident edges mapped to both blue and red segments. Thus, they correspond to red–blue intersection points.
We also locate the edge that corresponds to overlaps between red and blue line segments:
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� �
#include "arr_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arr_consolidated_curve_data_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Arr_landmarks_point_location.h>

enum Segment_color {
RED,
BLUE

};

typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel>

Segment_traits_2;
typedef Segment_traits_2::Curve_2 Segment_2;
typedef CGAL::Arr_consolidated_curve_data_traits_2

<Segment_traits_2, Segment_color> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::Curve_2

Colored_segment_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;
typedef CGAL::Arr_landmarks_point_location<Arrangement_2> Landmarks_pl;

int main ()
{

// Construct an arrangement containing three RED line segments.
Arrangement_2 arr;
Landmarks_pl pl (arr);

Segment_2 s1 (Point_2(-1, -1), Point_2(1, 3));
Segment_2 s2 (Point_2(2, 0), Point_2(3, 3));
Segment_2 s3 (Point_2(0, 3), Point_2(2, 5));

insert (arr, Colored_segment_2 (s1, RED), pl);
insert (arr, Colored_segment_2 (s2, RED), pl);
insert (arr, Colored_segment_2 (s3, RED), pl);

// Insert three BLUE line segments.
Segment_2 s4 (Point_2(-1, 3), Point_2(4, 1));
Segment_2 s5 (Point_2(-1, 0), Point_2(4, 1));
Segment_2 s6 (Point_2(-2, 1), Point_2(1, 4));

insert (arr, Colored_segment_2 (s4, BLUE), pl);
insert (arr, Colored_segment_2 (s5, BLUE), pl);
insert (arr, Colored_segment_2 (s6, BLUE), pl);

// Go over all vertices and print just the ones corresponding to
intersection

// points between RED segments and BLUE segments. Note that we skip
endpoints

// of overlapping sections.
Arrangement_2::Vertex_const_iterator vit;
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Segment_color color;

for (vit = arr.vertices_begin(); vit != arr.vertices_end(); ++vit) {
// Go over the incident halfedges of the current vertex and examine
their
// colors.
bool has_red = false;
bool has_blue = false;

Arrangement_2::Halfedge_around_vertex_const_circulator eit, first;

eit = first = vit->incident_halfedges();
do {

// Get the color of the current half-edge.
if (eit->curve().data().size() == 1) {

color = eit->curve().data().front();

if (color == RED)
has_red = true;

else if (color == BLUE)
has_blue = true;

}

++eit;
} while (eit != first);

// Print the vertex only if incident RED and BLUE edges were found.
if (has_red && has_blue)
{

std::cout << "Red-blue intersection at (" << vit->point() << ")"
<< std::endl;

}
}

// Locate the edges that correspond to a red-blue overlap.
Arrangement_2::Edge_iterator eit;

for (eit = arr.edges_begin(); eit != arr.edges_end(); ++eit)
{

// Go over the incident edges of the current vertex and examine their
// colors.
bool has_red = false;
bool has_blue = false;

Traits_2::Data_container::const_iterator dit;

for (dit = eit->curve().data().begin(); dit !=
eit->curve().data().end();

++dit)
{

if (*dit == RED)
has_red = true;

else if (*dit == BLUE)
has_blue = true;
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Figure 32.23: An arrangement of four polylines, named A–D, as constructed in generic curve data.cpp.

}

// Print the edge only if it corresponds to a red-blue overlap.
if (has_red && has_blue)

std::cout << "Red-blue overlap at [" << eit->curve() << "]" <<
std::endl;

}
return 0;

}� �
File: examples/Arrangement_on_surface_2/consolidated_curve_data.cpp

In the following example, we use Arr polyline traits 2 as our base-traits class, attaching an additional name
field to each polyline using the generic curve-data traits class. In case of overlaps, we simply concatenate
the names of the overlapping polylines. Also notice how we replace the curve associated with the edges that
correspond to overlapping polylines with geometrically equivalent curves, but with a different data fields:� �
#include "arr_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arr_polyline_traits_2.h>
#include <CGAL/Arr_curve_data_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <string>

// Define a functor for concatenating name fields.
typedef std::string Name;

struct Merge_names
{

Name operator() (const Name& s1, const Name& s2) const
{
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return (s1 + " " + s2);
}

};

typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Segment_traits_2;
typedef CGAL::Arr_polyline_traits_2<Segment_traits_2>

Polyline_traits_2;
typedef Polyline_traits_2::Curve_2 Polyline_2;
typedef CGAL::Arr_curve_data_traits_2<Polyline_traits_2, Name,

Merge_names>
Traits_2;

typedef Traits_2::Point_2 Point_2;
typedef Traits_2::Curve_2 Curve_2;
typedef Traits_2::X_monotone_curve_2

X_monotone_curve_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;

int main ()
{

// Construct an arrangement of four polylines named A--D.
Arrangement_2 arr;

Point_2 points1[5] = {Point_2(0,0), Point_2(2,4),
Point_2(3,3),

Point_2(4,4), Point_2(6,0)};
insert (arr, Curve_2 (Polyline_2 (points1, points1 + 5), "A"));

Point_2 points2[3] = {Point_2(1,5), Point_2(3,3),
Point_2(5,5)};

insert (arr, Curve_2 (Polyline_2 (points2, points2 + 3), "B"));

Point_2 points3[4] = {Point_2(1,0), Point_2(2,2),
Point_2(4,2), Point_2(5,0)};

insert (arr, Curve_2 (Polyline_2 (points3, points3 + 4), "C"));

Point_2 points4[2] = {Point_2(0,2), Point_2(6,2)};
insert (arr, Curve_2 (Polyline_2 (points4, points4 + 2), "D"));

// Print all edges that correspond to an overlapping polyline.
Arrangement_2::Edge_iterator eit;

for (eit = arr.edges_begin(); eit != arr.edges_end(); ++eit) {
if (eit->curve().data().length() > 1) {

std::cout << "[" << eit->curve() << "] "
<< "named: " << eit->curve().data() << std::endl;

// Rename the curve associated with the edge.
arr.modify_edge (eit, X_monotone_curve_2 (eit->curve(),

"overlap"));
}

}
return 0;

}� �
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File: examples/Arrangement_on_surface_2/generic_curve_data.cpp

The third example we give in this section is based on dual lines.cpp given in Section 32.5.2. It constructs the
arrangement of the dual lines for a set of point given in an input file (by default we use coll points.dat, which
contains 50 points randomly selected on the grid [−100,100]× [−100,100]; the file contains two distinct triplets
of collinear points). Here we use the generic curve-data decorator to attach the index of the primal point to each
of the lines. Doing so, we can go over the incident edges of each vertex whose degree is greater than 4 and
report the subsets collinear points (if we have a vertex of degree d, we actually need to go over d

2 edges, as
each incident line contributes exactly 2 edges). Note that in this case the dual line cannot overlap, so we use a
dummy merge functor to instantiate the curve-data traits:� �
#include "arr_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_linear_traits_2.h>
#include <CGAL/Arr_curve_data_traits_2.h>
#include <CGAL/Arrangement_2.h>

typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_linear_traits_2<Kernel> Linear_traits_2;
typedef Linear_traits_2::Point_2 Point_2;
typedef Linear_traits_2::Line_2 Line_2;
typedef CGAL::Arr_curve_data_traits_2<Linear_traits_2,

unsigned int> Traits_2;
typedef Traits_2::X_monotone_curve_2

X_monotone_curve_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;

int main (int argc, char *argv[])
{

// Get the name of the input file from the command line, or use the
default

// points.dat file if no command-line parameters are given.
const char * filename = (argc > 1) ? argv[1] : "coll_points.dat";

// Open the input file.
std::ifstream in_file (filename);

if (! in_file.is_open()) {
std::cerr << "Failed to open " << filename << " ..." << std::endl;
return (1);

}

// Read the points from the file, and consturct their dual lines.
std::vector<Point_2> points;
std::list<X_monotone_curve_2> dual_lines;

unsigned int n;
in_file >> n;
points.resize (n);
unsigned int k;
for (k = 0; k < n; ++k) {

int px, py;
in_file >> px >> py;
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points[k] = Point_2 (px, py);

// The line dual to the point (p_x, p_y) is y = p_x*x - p_y,
// or: p_x*x - y - p_y = 0:
Line_2 dual_line = Line_2(Number_type(px),

Number_type(-1),
Number_type(-py));

// Generate the x-monotone curve based on the line and the point
index.
dual_lines.push_back (X_monotone_curve_2 (dual_line, k));

}
in_file.close();

// Construct the dual arrangement by aggragately inserting the lines.
Arrangement_2 arr;

insert (arr, dual_lines.begin(), dual_lines.end());

// Look for vertices whose degree is greater than 4.
Arrangement_2::Vertex_const_iterator vit;
Arrangement_2::Halfedge_around_vertex_const_circulator circ;
unsigned int d;

for (vit = arr.vertices_begin(); vit != arr.vertices_end(); ++vit) {
if (vit->degree() > 4) {

// There should be vit->degree()/2 lines intersecting at the
current

// vertex. We print their primal points and their indices.
circ = vit->incident_halfedges();
for (d = 0; d < vit->degree() / 2; d++) {

k = circ->curve().data(); // The index of the primal point.
std::cout << "Point no. " << k+1 << ": (" << points[k] << "), ";
++circ;

}
std::cout << "are collinear." << std::endl;

}
}
return 0;

}� �
File: examples/Arrangement_on_surface_2/dual_with_data.cpp

32.7 The Notification Mechanism

For some applications it is essential to know exactly what happens inside a specific arrangement-instance. For
example, when a new curve is inserted into an arrangement, it might be desired to keep track of the faces
that are split due to this insertion operation. Other important examples are the point-location strategies that
require auxiliary data-structures (see Section 32.3.1), which must be notified on various local changes in the
arrangement, in order to keep their data structures up-to-date. The arrangement package offers a mechanism
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that uses observers (see [GHJV95]) that can be attached to an arrangement instance and receive notifications
about the changes this arrangement goes through.

The Arr observer<Arrangement> class-template is parameterized with an arrangement class. It stores a pointer
to an arrangement object, and is capable of receiving notifications just before a structural change occurs in the
arrangement and immediately after such a change takes place. Arr observer serves as a base class for other
observer classes and defines a set of virtual notification functions, with default empty implementations.

The set of functions can be divided into three categories, as follows:

1. Notifiers of changes that affect the entire topological structure of the arrangement. This category consists
of two pairs that notify the observer of the following changes:

• The arrangement is cleared.

• The arrangement is assigned with the contents of another arrangement.

2. Pairs of notifiers of a local change that occurs in the topological structure. Most notifier functions belong
to this category. The relevant local changes include:

• A new vertex is constructed and associated with a point.

• An edge19 is constructed and associated with an x-monotone curve.

• An edge is split into two edges.

• An existing face is split into two faces, as a consequence of the insertion of a new edge.

• A hole is created in the interior of a face.

• Two holes are merged to form a single hole, as a consequence of the insertion of a new edge.

• A hole is moved from one face to another, as a consequence of a face split.

• Two edges are merged into one edge.

• Two faces are merged into one face, as a consequence of the removal of an edge that used to separate
them.

• One hole is split into two, as a consequence of the deletion of an edge that used to connect the two
components.

• A vertex is removed.

• An edge is removed.

• A hole is deleted from the interior of a face.

3. Notifiers about a change applied by a free (global) function. This category consists of a single pair
of notifiers, namely before global change() and after global change(). Neither of these functions is
invoked by methods of the Arrangement 2 class. Instead, they are called by the free functions themselves.
It is implied that no point-location queries (or any other queries for that matter) are issued between the
calls to the notification functions above.

See the Reference Manual for a detailed specification of the Arr observer class along with the exact prototypes
of all notification functions.

Each arrangement object stores a (possibly empty) list of pointers to Arr observer objects, and whenever one
of the structural changes listed in the first two categories above is about to take place, the arrangement ob-
ject performs a forward traversal on this list and invokes the appropriate function of each observer. After the
change takes place the observer list is traversed in a backward manner (from tail to head), and the appropriate
notification function is invoked for each observer. This allows the nesting of observer objects.

19The term “edge” refers here to a pair of twin half-edges.
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Figure 32.24: An arrangement of five line segments, as constructed in observer.cpp. The halfedge ev (dashed)
is eventually removed, so that the final arrangement consists of four faces (one unbounded and three bounded
ones).

Concrete arrangement-observer classes should inherit from Arr observer. When an observer is constructed,
it is attached to a valid arrangement supplied to the observed constructor, or alternatively the observer can be
attached to the arrangement at a later time. When this happens, the observer instance inserts itself into the
observer list of the associated arrangement and starts receiving notifications whenever this arrangement changes
thereafter. Naturally, the observer object unregisters itself by removing itself from this list just before it is
destroyed.

The trapezoidal RIC and the landmark point-location strategies both use observers to keep their auxiliary data
structures up-to-date. Besides them, users can define their own observer classes, by inheriting from the base
observer class and overriding the relevant notification functions, as required by their applications.

The following example shows how to define and use an observer class. The observer in the example keeps track
of the arrangement faces, and prints a message whenever a face is split into two due to the insertion of an edge,
and whenever two faces merge into one due to the removal of an edge. The layout of the arrangement is depicted
in Figure 32.24:� �
#include <CGAL/Cartesian.h>
#include <CGAL/Quotient.h>
#include <CGAL/MP_Float.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Arr_observer.h>

typedef CGAL::Quotient<CGAL::MP_Float> Number_type;
typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;

// An arrangement observer, used to receive notifications of face splits
and

// face mergers.
class My_observer : public CGAL::Arr_observer<Arrangement_2>
{
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public:

My_observer (Arrangement_2& arr) :
CGAL::Arr_observer<Arrangement_2> (arr)

{}

virtual void before_split_face (Face_handle,
Halfedge_handle e)

{
std::cout << "-> The insertion of : [ " << e->curve()

<< " ] causes a face to split." << std::endl;
}

virtual void before_merge_face (Face_handle,
Face_handle,
Halfedge_handle e)

{
std::cout << "-> The removal of : [ " << e->curve()

<< " ] causes two faces to merge." << std::endl;
}

};

int main ()
{

// Construct the arrangement containing one diamond-shaped face.
Arrangement_2 arr;
My_observer obs (arr);

Segment_2 s1 (Point_2(-1, 0), Point_2(0, 1));
Segment_2 s2 (Point_2(0, 1), Point_2(1, 0));
Segment_2 s3 (Point_2(1, 0), Point_2(0, -1));
Segment_2 s4 (Point_2(0, -1), Point_2(-1, 0));

insert_non_intersecting_curve (arr, s1);
insert_non_intersecting_curve (arr, s2);
insert_non_intersecting_curve (arr, s3);
insert_non_intersecting_curve (arr, s4);

// Insert a vertical segment dividing the diamond into two, and a
// a horizontal segment further dividing the diamond into four:
Segment_2 s_vert (Point_2(0, -1), Point_2(0, 1));
Arrangement_2::Halfedge_handle

e_vert = insert_non_intersecting_curve (arr, s_vert);

Segment_2 s_horiz (Point_2(-1, 0), Point_2(1, 0));

insert (arr, s_horiz);

std::cout << "The initial arrangement size:" << std::endl
<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;
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// Now remove a portion of the vertical segment.
remove_edge (arr, e_vert);

std::cout << "The final arrangement size:" << std::endl
<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;

return 0;
}� �
File: examples/Arrangement_on_surface_2/observer.cpp

Observers are especially useful when the DCEL records are extended and store additional data, as they help
updating this data on-line. See Section 32.8 for more details and examples.

32.8 Extending the DCEL

For many applications of the arrangement package it is necessary to store additional information (perhaps of
non-geometric nature) with the arrangement cells. As vertices are associated with Point 2 objects and edges
(halfedge pairs) are associated with X monotone curve 2 objects, both defined by the traits class, it is possible
to extend the traits-class type by using a traits-class decorator, as explained in Section 32.6.9, which may be
a sufficient solution for some applications. However, the DCEL faces are not associated with any geometric
object, so it is impossible to extend them using a traits-class decorator. Extending the DCEL face records comes
handy is such cases. As a matter of fact, it is possible to conveniently extend all DCEL records (namely vertices,
halfedges and faces), which can also be advantageous for some applications.

All examples presented so far use the default Arr default dcel<Traits>. This is done implicitly, as this class
serves as a default parameter for the Arrangement 2 template. The default DCEL class just associates points
with vertices and x-monotone curves with halfedge, but nothing more. In this section we show how to use
alternative DCEL types to extend the desired DCEL records.

32.8.1 Extending the DCEL Faces

The Arr face extended dcel<Traits, FaceData> class-template is used to associate auxiliary data field of type
FaceData to each face record in the DCEL.

When an Arrangement 2 object is parameterized by this DCEL class, its nested Face type is extended with
the access function data() and with the modifier set data(). Using these extra functions it is straightforward to
access and maintain the auxiliary face-data field.

Note that the extra data fields must be maintained by the application programmers. They may choose to construct
their arrangement, and only then go over the faces and attach the appropriate data fields to the arrangement faces.
However, in some cases the face data can only be computed when the face is created (split from another face,
or merged with another face). In such cases one can use an arrangement observer tailored for this task, which
receives updates whenever a face is modified and sets its data field accordingly.

The next example constructs an arrangement that contains seven bounded faces induced by six line segments
(see Figure 32.25). An observer gets notified each time a new face f is created and it associates f with a
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Figure 32.25: An arrangement of six line segments, as constructed in face extension.cpp and dcel extension.cpp
(in dcel extension.cpp we treat the segments as directed, so they are drawn as arrows directed from the source
to the target). The indices associated with the halfedges in face extension.cpp are shown in brackets.

running index, (where the index of the unbounded face is 0). As a result, the faces are numbered according to
their creation order, as one can easily verify by examining the insertion order of the segments:20� �
#include "arr_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Arr_extended_dcel.h>
#include <CGAL/Arr_observer.h>

typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arr_face_extended_dcel<Traits_2, int> Dcel;
typedef CGAL::Arrangement_2<Traits_2, Dcel> Arrangement_2;

// An arrangement observer, used to receive notifications of face splits
and

// to update the indices of the newly created faces.
class Face_index_observer : public CGAL::Arr_observer<Arrangement_2>
{
private:

int n_faces; // The current number of faces.

public:

Face_index_observer (Arrangement_2& arr) :
CGAL::Arr_observer<Arrangement_2> (arr),

20For simplicity, the particular observer used must be attached to an empty arrangement. It is not difficult however to modify the program
to handle the general case of attaching a similar observer to a non-empty arrangement.
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n_faces (0)
{

CGAL_precondition (arr.is_empty());

arr.unbounded_face()->set_data (0);
n_faces++;

}

virtual void after_split_face (Face_handle /* old_face */,
Face_handle new_face, bool )

{
// Assign index to the new face.
new_face->set_data (n_faces);
n_faces++;

}
};

int main ()
{

// Construct the arrangement containing two intersecting triangles.
Arrangement_2 arr;
Face_index_observer obs (arr);

Segment_2 s1 (Point_2(4, 1), Point_2(7, 6));
Segment_2 s2 (Point_2(1, 6), Point_2(7, 6));
Segment_2 s3 (Point_2(4, 1), Point_2(1, 6));
Segment_2 s4 (Point_2(1, 3), Point_2(7, 3));
Segment_2 s5 (Point_2(1, 3), Point_2(4, 8));
Segment_2 s6 (Point_2(4, 8), Point_2(7, 3));

insert_non_intersecting_curve (arr, s1);
insert_non_intersecting_curve (arr, s2);
insert_non_intersecting_curve (arr, s3);
insert (arr, s4);
insert (arr, s5);
insert (arr, s6);

// Go over all arrangement faces and print the index of each face and
it

// outer boundary. The face index is stored in its data field in our
case.

Arrangement_2::Face_const_iterator fit;
Arrangement_2::Ccb_halfedge_const_circulator curr;

std::cout << arr.number_of_faces() << " faces:" << std::endl;
for (fit = arr.faces_begin(); fit != arr.faces_end(); ++fit) {

std::cout << "Face no. " << fit->data() << ": ";
if (fit->is_unbounded())

std::cout << "Unbounded." << std::endl;
else {

curr = fit->outer_ccb();
std::cout << curr->source()->point();
do {

std::cout << " --> " << curr->target()->point();
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++curr;
} while (curr != fit->outer_ccb());
std::cout << std::endl;

}
}

return 0;
}� �
File: examples/Arrangement_on_surface_2/face_extension.cpp

32.8.2 Extending All DCEL Records

The Arr extended dcel<Traits, VertexData, HalfedgeData, FaceData> class-template is used to associate aux-
iliary data fields of types VertexData HalfedgeData, and FaceData to each DCEL vertex, halfedge, and face
record types, respectively.

When an Arrangement 2 object is injected with this DCEL class, each one of its nested Vertex, Halfedge and
Face classes is extended by the access function data() and by the modifier set data().

The next example shows how to use a DCEL with extended vertex, halfedge, and face records. In this example
each vertex is associated with a color, which may be blue, red, or white, depending on whether the vertex is
isolated, represents a segment endpoint, or whether it represents an intersection point. Each halfedge is associ-
ated with Boolean flag indicating whether its direction is the same as the direction of its associated segment (in
this example segments are treated as directed objects). Each face is also extended to store the size of its outer
boundary.

The constructed arrangement, depicted in Figure 32.25, is similar to the arrangement constructed in the previous
example. Note that all auxiliary data fields are set during the construction phase. Also note that the data fields
are properly maintained when the arrangement is copied to another arrangement instance:� �
#include "arr_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Arr_extended_dcel.h>

enum Color {BLUE, RED, WHITE};

typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2

Segment_2;
typedef CGAL::Arr_extended_dcel<Traits_2,Color, bool, int> Dcel;
typedef CGAL::Arrangement_2<Traits_2, Dcel>

Arrangement_2;

int main ()
{

// Construct the arrangement containing two intersecting triangles.
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Arrangement_2 arr;

Segment_2 s1 (Point_2(4, 1), Point_2(7, 6));
Segment_2 s2 (Point_2(1, 6), Point_2(7, 6));
Segment_2 s3 (Point_2(4, 1), Point_2(1, 6));
Segment_2 s4 (Point_2(1, 3), Point_2(7, 3));
Segment_2 s5 (Point_2(1, 3), Point_2(4, 8));
Segment_2 s6 (Point_2(4, 8), Point_2(7, 3));

insert_non_intersecting_curve (arr, s1);
insert_non_intersecting_curve (arr, s2);
insert_non_intersecting_curve (arr, s3);
insert (arr, s4);
insert (arr, s5);
insert (arr, s6);

// Go over all arrangement vertices and set their colors according to
our

// coloring convention.
Arrangement_2::Vertex_iterator vit;
unsigned int degree;

for (vit = arr.vertices_begin(); vit != arr.vertices_end(); ++vit)
{

degree = vit->degree();
if (degree == 0)

vit->set_data (BLUE); // Isolated vertex.
else if (degree <= 2)

vit->set_data (RED); // Vertex represents an endpoint.
else

vit->set_data (WHITE); // Vertex represents an intersection
point.

}

// Go over all arrangement edges and set their flags.
Arrangement_2::Edge_iterator eit;
bool flag;

for (eit = arr.edges_begin(); eit != arr.edges_end(); ++eit) {
// Check if the halfegde has the same diretion as its associated
// segment. Note that its twin always has an opposite direction.
flag = (eit->source()->point() == eit->curve().source());
eit->set_data (flag);
eit->twin()->set_data (!flag);

}

// For each arrangement face, print the outer boundary and its size.
Arrangement_2::Face_iterator fit;
Arrangement_2::Ccb_halfedge_circulator curr;
int boundary_size;

for (fit = arr.faces_begin(); fit != arr.faces_end(); ++fit) {
boundary_size = 0;
if (! fit->is_unbounded()) {
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curr = fit->outer_ccb();
do {

++boundary_size;
++curr;

} while (curr != fit->outer_ccb());
}
fit->set_data (boundary_size);

}

// Copy the arrangement and print the vertices.
Arrangement_2 arr2 = arr;

std::cout << "The arrangement vertices:" << std::endl;
for (vit = arr2.vertices_begin(); vit != arr2.vertices_end(); ++vit) {

std::cout << ’(’ << vit->point() << ") - ";
switch (vit->data()) {
case BLUE : std::cout << "BLUE." << std::endl; break;
case RED : std::cout << "RED." << std::endl; break;
case WHITE : std::cout << "WHITE." << std::endl; break;

}
}

return 0;
}� �
File: examples/Arrangement_on_surface_2/dcel_extension.cpp

advanced

The various DCEL classes presented in this section are perfectly sufficient for most applications based on the
arrangement package. However, users may also use their own implementation of a DCEL class to instantiate the
Arrangement 2 class-template, in case they need special functionality from their DCEL. Such a class must be a
model of the concept ArrangementDcel, whose exact specification is listed in the Reference Manual.

advanced

32.9 Overlaying Arrangements

Assume that we are given two geographic maps represented as arrangements with some data objects attached
to their faces, representing some geographic information — for example, a map of the annual precipitation in
some country and a map of the vegetation in the same country. It is interesting to overlay the two maps to
locate, for example, the regions where there is a pine forest and the annual precipitation is between 1000 mm
and 1500 mm.

Computing the overlay of two planar arrangement is also useful for supporting Boolean set operations on poly-
gons (or generalized polygons, see, e.g., [BEH+02]).

The function overlay (arr a, arr b, ovl arr, ovl traits) accepts two input arrangement instances arr a and arr
b, and constructs their overlay instance ovl arr. All three arrangements must use the same geometric primitives.
More precisely, let arr a be of type Arrangement 2<Traits A,Dcel A>, arr b be of type Arrangement 2<Traits
B,Dcel B> and the resulting ovl arr be of type Arrangement 2<Traits R,Dcel R>. All types nested in geometry
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traits Traits A, e.g., Point 2 and X monotone curve 2, must be convertible to the corresponding types nested
in geometry traits Traits R. The same holds for all types nested in geometry traits Traits B. The ovl traits
parameter is an instance of an overlay traits-class, which enables the creation of Dcel R records in the overlaid
arrangement from the DCEL features of arr a and arr b that they correspond to.

In principle, we distinguish between three levels of overlay:

Simple overlay: An overlay of two arrangements that store no additional data with their DCEL records. That
is, they are defined using the default DCEL class Arr default dcel. Typically, the overlaid arrangement
in this case stores no extra data with its DCEL records as well (or if it does, the additional data fields
cannot be computed by the overlay operation), so by overlaying the two arrangement we just compute the
arrangement of all curves that induce arr a and arr b. Note that the same result can be obtained using the
standard insertion operations, but users may choose to use overlay computation in order to achieve better
running times.

The Arr default overlay traits class should be used as an overlay traits-class for such simple overlay
operations.

Face overlay: An overlay of two arrangements that store additional data fields with their faces (e.g., the
geographic-map example given in the beginning of this section). The resulting overlaid arrangement typ-
ically also stores extraneous data fields with its faces, where the data field that is attached to an overlaid
face can be computed from the data fields of the two faces (in arr a and arr b) that induce the overlaid
face.

The Arr face overlay traits class should be used as an overlay traits-class for face-overlay operations.
It operates on arrangement, whose DCEL representation is based on the Arr face extended dcel class-
template (see Section 32.8.1). The face-overlay traits-class is parameterized by a functor that is capable
of combining two face-data fields of types Dcel A::Face data and Dcel B::Face data, and computing
the output Dcel R::Face data object. The overlay traits-class uses this functor to properly construct the
overlaid faces.

Full overlay: An overlay of two arrangements that store additional data fields with all their DCEL records.
That is, their DCEL classes are instantiations of the Arr extended dcel class-template (see Section 32.8.2),
where the resulting arrangement also extends it DCEL records with data fields computed on the basis of
the overlapping DCEL features of the two input arrangements.

In the following subsections we give some examples for the simple and the face-overlay operations and demon-
strate how to use the auxiliary overlay traits-classes. For the full overlay operations users need to implement
their specialized overlay traits-class, which models the OverlayTraits concept. The details of this concept are
given in the Reference Manual.

32.9.1 Example for a Simple Overlay

The next program constructs two simple arrangements, as depicted in Figure 32.26 and computes their overlay:� �
#include "arr_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Arr_overlay_2.h>
#include <CGAL/Arr_default_overlay_traits.h>

typedef CGAL::Cartesian<Number_type> Kernel;
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Figure 32.26: Overlaying two simple arrangements of line segments, as done in overlay.cpp and ex face
extension overlay.cpp. In face extension overlay.cpp the two bounded faces are considered as marked, and
the octagonal face which is the intersection of the two marked faces is denoted by f0.

typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;
typedef CGAL::Arr_default_overlay_traits<Arrangement_2> Overlay_traits;

int main ()
{

// Construct the first arrangement, containing a square-shaped face.
Arrangement_2 arr1;

Segment_2 s1 (Point_2(2, 2), Point_2(6, 2));
Segment_2 s2 (Point_2(6, 2), Point_2(6, 6));
Segment_2 s3 (Point_2(6, 6), Point_2(2, 6));
Segment_2 s4 (Point_2(2, 6), Point_2(2, 2));

insert_non_intersecting_curve (arr1, s1);
insert_non_intersecting_curve (arr1, s2);
insert_non_intersecting_curve (arr1, s3);
insert_non_intersecting_curve (arr1, s4);

// Construct the second arrangement, containing a rhombus-shaped face.
Arrangement_2 arr2;

Segment_2 t1 (Point_2(4, 1), Point_2(7, 4));
Segment_2 t2 (Point_2(7, 4), Point_2(4, 7));
Segment_2 t3 (Point_2(4, 7), Point_2(1, 4));
Segment_2 t4 (Point_2(1, 4), Point_2(4, 1));

insert_non_intersecting_curve (arr2, t1);
insert_non_intersecting_curve (arr2, t2);
insert_non_intersecting_curve (arr2, t3);
insert_non_intersecting_curve (arr2, t4);

// Compute the overlay of the two arrangements.
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Arrangement_2 overlay_arr;
Overlay_traits overlay_traits;

overlay (arr1, arr2, overlay_arr, overlay_traits);

// Print the size of the overlaid arrangement.
std::cout << "The overlaid arrangement size:" << std::endl

<< " V = " << overlay_arr.number_of_vertices()
<< ", E = " << overlay_arr.number_of_edges()
<< ", F = " << overlay_arr.number_of_faces() << std::endl;

return 0;
}� �
File: examples/Arrangement_on_surface_2/overlay.cpp

32.9.2 Examples for a Face Overlay

The following example shows how to compute the intersection of two polygons using the overlay() function. It
uses a face-extended DCEL class to define our arrangement class. The DCEL extends each face with a Boolean
flag. A polygon is represented as a marked arrangement face, (whose flag is set). The example uses a face-
overlay traits class, instantiated with a functor that simply performs a logical and operations on Boolean flags.
As a result, a face in the overlaid arrangement is marked only when it corresponds to an overlapping region of
two marked cells in the input arrangements. Namely, it is part of the intersection of the two polygons.

The example computes the intersection between a square and a rhombus, (which is actually also a square). The
resulting polygon is an octagon, denoted by f0 in Figure 32.26:� �
#include "arr_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Arr_extended_dcel.h>
#include <CGAL/Arr_overlay_2.h>
#include <CGAL/Arr_default_overlay_traits.h>

typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2

Segment_2;
typedef CGAL::Arr_face_extended_dcel<Traits_2, bool> Dcel;
typedef CGAL::Arrangement_2<Traits_2, Dcel>

Arrangement_2;
typedef CGAL::Arr_face_overlay_traits<Arrangement_2,

Arrangement_2,
Arrangement_2,
std::logical_and<bool> >

Overlay_traits;

int main ()
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{
// Construct the first arrangement, containing a square-shaped face.
Arrangement_2 arr1;

Segment_2 s1 (Point_2(2, 2), Point_2(6, 2));
Segment_2 s2 (Point_2(6, 2), Point_2(6, 6));
Segment_2 s3 (Point_2(6, 6), Point_2(2, 6));
Segment_2 s4 (Point_2(2, 6), Point_2(2, 2));

insert_non_intersecting_curve (arr1, s1);
insert_non_intersecting_curve (arr1, s2);
insert_non_intersecting_curve (arr1, s3);
insert_non_intersecting_curve (arr1, s4);

// Mark just the bounded face.
Arrangement_2::Face_iterator fit;

CGAL_assertion (arr1.number_of_faces() == 2);
for (fit = arr1.faces_begin(); fit != arr1.faces_end(); ++fit)

fit->set_data (fit != arr1.unbounded_face());

// Construct the second arrangement, containing a rhombus-shaped face.
Arrangement_2 arr2;

Segment_2 t1 (Point_2(4, 1), Point_2(7, 4));
Segment_2 t2 (Point_2(7, 4), Point_2(4, 7));
Segment_2 t3 (Point_2(4, 7), Point_2(1, 4));
Segment_2 t4 (Point_2(1, 4), Point_2(4, 1));

insert_non_intersecting_curve (arr2, t1);
insert_non_intersecting_curve (arr2, t2);
insert_non_intersecting_curve (arr2, t3);
insert_non_intersecting_curve (arr2, t4);

// Mark just the bounded face.
CGAL_assertion (arr2.number_of_faces() == 2);
for (fit = arr2.faces_begin(); fit != arr2.faces_end(); ++fit)

fit->set_data (fit != arr2.unbounded_face());

// Compute the overlay of the two arrangements, marking only the faces
that

// are intersections of two marked faces in arr1 and arr2,
respectively.

Arrangement_2 overlay_arr;
Overlay_traits overlay_traits;

overlay (arr1, arr2, overlay_arr, overlay_traits);

// Go over the faces of the overlaid arrangement and print just the
marked

// ones.
Arrangement_2::Ccb_halfedge_circulator curr;

std::cout << "The union is: ";
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for (fit = overlay_arr.faces_begin(); fit != overlay_arr.faces_end();
++fit) {
if (! fit->data())

continue;

curr = fit->outer_ccb();
std::cout << curr->source()->point();
do {

std::cout << " --> " << curr->target()->point();
++curr;

} while (curr != fit->outer_ccb());
std::cout << std::endl;

}

return 0;
}� �
File: examples/Arrangement_on_surface_2/face_extension_overlay.cpp

The next example demonstrates the face overlay of two arrangements that have unbounded faces as well. The
first arrangement is formed by the two lines y = x and y = −x, that subdivide the plane into four unbounded
faces, denoted A, B, C and D. The second arrangement comprises four line segments that form a square-shaped
face. When we overlay the two arrangements, each of the four faces A, B, C and D is split into an unbounded
face (indexed 1) and a bounded face (indexed 2):� �
#include <string>
#include <boost/lexical_cast.hpp>

#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Arr_linear_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Arr_extended_dcel.h>
#include <CGAL/Arr_overlay_2.h>
#include <CGAL/Arr_default_overlay_traits.h>

// Define a functor for creating a label from a characer and an integer.
struct Overlay_label
{

std::string operator() (char c, int i) const
{

return boost::lexical_cast<std::string>(c) +
boost::lexical_cast<std::string>(i);

}
};

typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
typedef CGAL::Arr_linear_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::Segment_2 Segment_2;
typedef Traits_2::Ray_2 Ray_2;
typedef Traits_2::Line_2 Line_2;
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typedef Traits_2::X_monotone_curve_2
X_monotone_curves_2;

typedef CGAL::Arr_face_extended_dcel<Traits_2, char> DcelA;
typedef CGAL::Arrangement_2<Traits_2, DcelA>

ArrangementA_2;
typedef CGAL::Arr_face_extended_dcel<Traits_2, int> DcelB;
typedef CGAL::Arrangement_2<Traits_2, DcelB>

ArrangementB_2;
typedef CGAL::Arr_face_extended_dcel<Traits_2, std::string> DcelRes;
typedef CGAL::Arrangement_2<Traits_2, DcelRes>

ArrangementRes_2;
typedef CGAL::Arr_face_overlay_traits<ArrangementA_2,

ArrangementB_2,
ArrangementRes_2,
Overlay_label>

Overlay_traits;

int main ()
{

// Construct the first arrangement, induced by two line y = x and y =
-x.

ArrangementA_2 arr1;

insert (arr1, Line_2 (Point_2(0, 0), Point_2(1, 1)));
insert (arr1, Line_2 (Point_2(0, 0), Point_2(1, -1)));

// Label the four (unbounded) face of the arrangement as ’A’ to ’D’.
// We do so by traversing the incident faces to the halfedges aroung
the

// single arrangement vertex (0, 0).
CGAL_assertion (arr1.number_of_vertices() == 1);

ArrangementA_2::Halfedge_around_vertex_circulator first, curr;
char clabel = ’A’;

curr = first = arr1.vertices_begin()->incident_halfedges();
do {

curr->face()->set_data (clabel);
++clabel;
++curr;

} while (curr != first);
std::cout << "Done with arr1." << std::endl;

// Construct the second arrangement, containing a single square-shaped
face.

ArrangementB_2 arr2;

insert (arr2, Segment_2 (Point_2(-4, -4), Point_2(4, -4)));
insert (arr2, Segment_2 (Point_2(4, -4), Point_2(4, 4)));
insert (arr2, Segment_2 (Point_2(4, 4), Point_2(-4, 4)));
insert (arr2, Segment_2 (Point_2(-4, 4), Point_2(-4, -4)));

// Give the unbounded face the index 1, and the bounded face the index
2.
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CGAL_assertion (arr2.number_of_faces() == 2);

ArrangementB_2::Face_iterator fit;

for (fit = arr2.faces_begin(); fit != arr2.faces_end(); ++fit)
fit->set_data ((fit == arr2.unbounded_face()) ? 1 : 2);

std::cout << "Done with arr2." << std::endl;

// Compute the overlay of the two arrangements.
ArrangementRes_2 overlay_arr;
Overlay_traits overlay_traits;

overlay (arr1, arr2, overlay_arr, overlay_traits);

// Go over the faces of the overlaid arrangement and their labels.
ArrangementRes_2::Face_iterator res_fit;

std::cout << "The overlay faces are: ";
for (res_fit = overlay_arr.faces_begin();

res_fit != overlay_arr.faces_end(); ++res_fit)
{

std::cout << res_fit->data() << " ("
<< (res_fit->is_unbounded() ? "unbounded" : "bounded")
<< ")." << std::endl;

}

return 0;
}� �

File: examples/Arrangement_on_surface_2/overlay_unbounded.cpp

32.10 Storing the Curve History

As stated at the beginning of this chapter (Section 32.1), when one constructs an arrangement induced by a set
C of arbitrary planar curves, she or he constructs a collection C ′′ of x-monotone subcurves of C that are pairwise
disjoint in their interior, and these subcurves are associated with the arrangement edges (more precisely, with
the DCEL halfedges). Doing so, the connection between the originating input curves and the arrangement edges
is lost. This loss might be acceptable for some applications. However, in many practical cases it is important to
determine the input curves that give rise to the final subcurves.

The Arrangement with history 2<Traits,Dcel> class-template extends the Arrangement 2 class by keeping an
additional container of input curves representing C , and by maintaining a cross-mapping between these curves
and the arrangement edges they induce. The traits class that is used for instantiating the template should be a
model of the ArrangementTraits 2 concept (see Section 32.4.1). That is, it should define the Curve 2 type (and
not just the X monotone curve 2 type). The Dcel parameter should model the ArrangementDcel concept. Users
can use the default DCEL class or an extended DCEL class according to their needs.
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32.10.1 Traversing an Arrangement with History

The Arrangement with history 2 class extends the Arrangement 2 class, thus all the iterator and circulator
types that are defined by the arrangement class are also available in Arrangement with history 2. The reader is
referred to Section 32.2.2 for a comprehensive review of these functions.

As mentioned above, the Arrangement with history 2 class maintains a container of input curves, which can be
accessed using curve handles. The member function number of curves() returns the number of input curves
stored in the container, while curves begin() and curves end() return Arrangement with history 2::Curve
iterator objects that define the valid range of curves that induce the arrangement. The value type of this iterator is
Curve 2. Moreover, the curve-iterator type is equivalent to Arrangement with history 2::Curve handle, which
is used for accessing the stored curves. Conveniently, the corresponding constant-iterator and constant-handle
types are also defined.

As mentioned in the previous paragraph, a Curve handle object ch serves as a pointer to a curve stored in
an arrangement-with-history instance arr. Using this handle, it is possible to obtain the number of arrange-
ment edges this curve induces by calling arr.number of induced edges(ch). The functions arr.induced edges
begin(ch) and arr.induced edges end(ch) return iterators of type Arrangement with history 2::Induced edges
iterator that define the valid range of edges induced by ch. The value type of these iterators is Halfedge handle.
It is thus possible to traverse all arrangement edges induced by an input curve.

It is also important to be able to perform the inverse mapping. Given an arrangement edge, we would
like to be able to determine which input curve induces it. In case the edge represents an overlap of sev-
eral curves, we should be able to trace all input curves that overlap over this edge. The Arrangement
with history 2 class is extended by several member functions that enable such an inverse mapping. Given a
halfedge handle e in an arrangement with history arr, then arr.number of originating curves(e) returns the
number of curves that induce the edge (which should be 1 in non-degenerate cases, and 2 or more in case of
overlaps), while arr.originating curves begin(e) and arr.originating curves end(e) return Arrangement with
history 2::Originating curve iterator objects that define the range of curves that induce e. The value type of
these iterator is Curve 2.

It is possible to overlay two Arrangement with history 2 instances instantiated by the same traits class. In this
case, the resulting arrangement will store a consolidated container of input curves, and automatically preserve
the cross-mapping between the arrangement edges and the consolidated curve set. Users can employ an overlay-
traits class to maintain any type of auxiliary data stored with the DCEL features (see Section 32.9).

32.10.2 Modifying an Arrangement with History

As the Arrangement with history 2 class extends the Arrangement 2 class, it inherits the fundamental modi-
fication operations, such as assign() and clear(), from it. The vertex-manipulation functions are also inherited
and supported (see Sections 32.2.3 and 32.4.1 for the details). However, there are some fundamental differences
between the interfaces of the two classes, which we highlight in this subsection.

The most significant difference between the arrangement-with-history class and the basic arrangement class is
the way they handle their input curves. Arrangement with history 2 always stores the Curve 2 objects that
induce it, thus it is impossible to insert x-monotone curves into an arrangement with history. The free insert
non intersecting curve() and insert() that receives x-monotone curve (as well as their aggregated versions) are
therefore not available for arrangement-with-history instances and only the free insert() and insert() functions
that receive Curve 2 (the incremental insertion function and the aggregated insertion function) are supported
— see also Section 32.4.1. Notice however that while the incremental insertion function insert(arr,c) for an
Arrangement 2 object arr does not have a return value, the corresponding arrangement-with-history function
returns a Curve handle to the inserted curve.
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Figure 32.27: An arrangement with history as constructed in curve history.cpp. Note that s1 and s3 overlap over
two edges. The point-location query points are drawn as lightly shaded dots.

As we are able to keep track of all edges induced by an input curve, we also provide a free function that removes
a curve from an arrangement. By calling remove(arr,ch), where ch is a valid curve handle, the given curve is
deleted from the curve container, and all edges induced solely by this curve (i.e., excluding overlapping edges)
are removed from the arrangement. The function returns the number of edges that have been removed.

In some cases, users may need to operate directly on the arrangement edges. We first mention that the specialized
insertion functions (see Section 32.2.3) are not supported, as they accept x-monotone curves. Insertion can only
be performed via the free insertion-functions. The other edge-manipulation functions (see Section 32.2.3) are
however available, but have a different interface that does not use x-monotone curves:

• Invoking split edge(e,p) splits the edge e at a given point p that lies in its interior.

• Invoking merge edge(e1,e2) merges the two given edges. There is a precondition that e1 and e2 shared
a common end-vertex of degree 2, and that the x-monotone subcurves associated with these edges are
mergeable.

• It is possible to remove an edge by simply invoking remove edge(e).

In all cases, the maintenance of cross-pointers for the appropriate input curves will be done automatically.

It should be noted that it is possible to attach observers to an arrangement-with-history instance in order to get
detailed notifications of the changes the arrangements undergoes (see Section 32.7 for the details).

32.10.3 Examples

In the following example we construct a simple arrangement of six line segments, as depicted in Figure 32.27,
while maintaining the curve history. The example demonstrates the usage of the special traversal functions.
It also shows how to issue point-location queries on the resulting arrangement, using the auxiliary function
point location query() defined in the header file point location utils.h (see also Section 32.3.1).� �
#include "arr_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_segment_traits_2.h>
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#include <CGAL/Arrangement_on_surface_with_history_2.h>
#include <CGAL/Arrangement_with_history_2.h>
#include <CGAL/Arr_simple_point_location.h>

#include "point_location_utils.h"

typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::Curve_2 Segment_2;
typedef CGAL::Arrangement_with_history_2<Traits_2>

Arr_with_hist_2;
typedef Arr_with_hist_2::Curve_handle Curve_handle;
typedef CGAL::Arr_simple_point_location<Arr_with_hist_2> Point_location;

int main()
{

Arr_with_hist_2 arr;

// Insert s1, s2 and s3 incrementally:
Segment_2 s1(Point_2(0, 3), Point_2(4, 3));
insert(arr, s1);
Segment_2 s2(Point_2(3, 2), Point_2(3, 5));
insert(arr, s2);
Segment_2 s3(Point_2(2, 3), Point_2(5, 3));
insert(arr, s3);

// Insert three additional segments aggregately:
Segment_2 segs[3];
segs[0] = Segment_2(Point_2(2, 6), Point_2(7, 1));
segs[1] = Segment_2(Point_2(0, 0), Point_2(2, 6));
segs[2] = Segment_2(Point_2(3, 4), Point_2(6, 4));
insert(arr, segs, segs + 3);

// Print out the curves and the number of edges each one induces.
Arr_with_hist_2::Curve_iterator cit;

std::cout << "The arrangement contains "
<< arr.number_of_curves() << " curves:" << std::endl;

for (cit = arr.curves_begin(); cit != arr.curves_end(); ++cit)
std::cout << "Curve [" << *cit << "] induces "

<< arr.number_of_induced_edges(cit) << " edges." <<
std::endl;

// Print the arrangement edges, along with the list of curves that
// induce each edge.
Arr_with_hist_2::Edge_iterator eit;
Arr_with_hist_2::Originating_curve_iterator ocit;

std::cout << "The arrangement is comprised of "
<< arr.number_of_edges() << " edges:" << std::endl;

for (eit = arr.edges_begin(); eit != arr.edges_end(); ++eit) {
std::cout << "[" << eit->curve() << "]. Originating curves: ";
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Figure 32.28: An arrangement with history of nine circle as constructed in edge manipulation curve
history.cpp. Note the vertical tangency points of C0, marked as dark dots, which subdivide this circle into
an upper half and a lower half, each consists of 9 edges. The large circle C0 is eventually removed from the
arrangement, with all 18 edges it induces.

for (ocit = arr.originating_curves_begin (eit);
ocit != arr.originating_curves_end (eit); ++ocit)

{
std::cout << " [" << *ocit << "]" << std::flush;

}
std::cout << std::endl;

}

// Perform some point-location queries:
Point_location pl(arr);

Point_2 p1(4, 6);
point_location_query(pl, p1);
Point_2 p2(6, 2);
point_location_query(pl, p2);
Point_2 p3(2, 4);
point_location_query(pl, p3);

return 0;
}� �
File: examples/Arrangement_on_surface_2/curve_history.cpp

The following example demonstrates the usage of the free remove() function. We construct an arrangement of
nine circles, while keeping a handle to each inserted circle. We then remove the large circle C0, which induces
18 edges, as depicted in Figure 32.28. The example also shows how to use the split edge() and merge edge()
functions when operating on an arrangement-with-history instance:� �
#include "arr_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_circle_segment_traits_2.h>
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#include <CGAL/Arrangement_with_history_2.h>

typedef CGAL::Cartesian<Number_type> Kernel;
typedef Kernel::Point_2 Rat_point_2;
typedef Kernel::Circle_2 Circle_2;
typedef CGAL::Arr_circle_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::Curve_2 Curve_2;
typedef CGAL::Arrangement_with_history_2<Traits_2> Arr_with_hist_2;
typedef Arr_with_hist_2::Curve_handle Curve_handle;
typedef CGAL::Arr_walk_along_line_point_location<Arr_with_hist_2>

Point_location;

int main ()
{

// Construct an arrangement containing nine circles: C[0] of radius 2
and

// C[1], ..., C[8] of radius 1.
const Number_type _7_halves = Number_type (7, 2);
Arr_with_hist_2 arr;
Curve_2 C[9];
Curve_handle handles[9];
int k;

C[0] = Circle_2 (Rat_point_2 (_7_halves, _7_halves), 4,
CGAL::CLOCKWISE);

C[1] = Circle_2 (Rat_point_2 (_7_halves, 6), 1, CGAL::CLOCKWISE);
C[2] = Circle_2 (Rat_point_2 (5, 6), 1, CGAL::CLOCKWISE);
C[3] = Circle_2 (Rat_point_2 (6, _7_halves), 1, CGAL::CLOCKWISE);
C[4] = Circle_2 (Rat_point_2 (5, 2), 1, CGAL::CLOCKWISE);
C[5] = Circle_2 (Rat_point_2 (_7_halves, 1), 1, CGAL::CLOCKWISE);
C[6] = Circle_2 (Rat_point_2 (2, 2), 1, CGAL::CLOCKWISE);
C[7] = Circle_2 (Rat_point_2 (1, _7_halves), 1, CGAL::CLOCKWISE);
C[8] = Circle_2 (Rat_point_2 (2, 5), 1, CGAL::CLOCKWISE);

for (k = 0; k < 9; k++)
handles[k] = insert (arr, C[k]);

std::cout << "The initial arrangement size:" << std::endl
<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;

// Remove the large circle C[0].
std::cout << "Removing C[0] : ";
std::cout << remove_curve (arr, handles[0])

<< " edges have been removed." << std::endl;

std::cout << "The arrangement size:" << std::endl
<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;

// Locate the point q, which should be on an edge e.
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Point_location pl (arr);
const Point_2 q = Point_2 (_7_halves, 7);
CGAL::Object obj = pl.locate (q);
Arr_with_hist_2::Halfedge_const_handle e;

CGAL_assertion_code(bool success = ) CGAL::assign (e, obj);
CGAL_assertion (success);

// Split the edge e to two edges e1 and e2;
Arr_with_hist_2::Halfedge_handle e1, e2;

e1 = arr.split_edge (arr.non_const_handle (e), q);
e2 = e1->next();

std::cout << "After edge split: "
<< "V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;

// Merge back the two split edges.
arr.merge_edge (e1, e2);

std::cout << "After edge merge: "
<< "V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;

return 0;
}� �
File: examples/Arrangement_on_surface_2/edge_manipulation_curve_history.cpp

32.11 Input/Output Streams

In some cases, one would like to save an arrangement object constructed by some application, so that later on it
can be restored. In other cases one would like to create nice drawings that represent arrangements constructed
by some application. These drawings can be hard printed or displayed on a computer screen.

32.11.1 Input/Output Stream

Consider an arrangement that represents a very complicated geographical map, and assume that there are various
applications that need to answer point-location queries on this map. Naturally, you can store the set of curves
that induces the arrangement, but this implies that you would need to construct the arrangement from scratch
each time you need to reuse it. A more efficient solution is to write the arrangement to a file in a format that
other applications can read.

This package provides an inserter (the << operator) and an extractor (the >> operator) for the Arrangement
2<Traits,Dcel> class that inserts and an arrangement object into an output stream and extracts an arrangement
object from an input stream respectively. The arrangement is written using a simple predefined ASCII format
that encodes the arrangement topology, as well as all geometric entities associated with vertices and edges.
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The ability to use the input/output operators, requires that the Point 2 type and the X monotone curve 2
type defined by the traits class both support the << and >> operators. The Arr conic traits 2 class (see Sec-
tion 32.6.5), the Arr rational function traits 2 class (see Section 32.6.6), and the Arr linear traits 2 class (see
Section 32.6.2) currently do not provide these operators for the geometric types they define. Thus, only arrange-
ments of line segments or of polylines can be written or read.

The following example constructs the arrangement depicted in Figure 32.7 and writes it to an output file. It also
demonstrates how to re-read the arrangement from a file:� �
#include "arr_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/IO/Arr_iostream.h>
#include <fstream>

#include "point_location_utils.h"

typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;

int main ()
{

// Construct the arrangement.
Arrangement_2 arr;

construct_segments_arr (arr);

std::cout << "Writing an arrangement of size:" << std::endl
<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;

// Write the arrangement to a file.
std::ofstream out_file ("arr_ex_io.dat");

out_file << arr;
out_file.close();

// Read the arrangement from the file.
Arrangement_2 arr2;
std::ifstream in_file ("arr_ex_io.dat");

in_file >> arr2;
in_file.close();

std::cout << "Read an arrangement of size:" << std::endl
<< " V = " << arr2.number_of_vertices()
<< ", E = " << arr2.number_of_edges()
<< ", F = " << arr2.number_of_faces() << std::endl;

return (0);
}� �
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File: examples/Arrangement_on_surface_2/io.cpp

advanced

32.11.2 Arrangements with Auxiliary Data

The inserter and extractor both ignore any auxiliary data stored with the arrangement features. Thus, they are
ideal for arrangements instantiated using the Arr default dcel class. However, as explained in Section 32.8,
one can easily extend the arrangement faces by using the Arr face extended dcel template, or extend all DCEL
records by using the Arr extended dcel template. In such cases, it might be crucial that the auxiliary data fields
are written to the file and read from there.

The arrangement package includes the free functions write(arr, os, formatter), which writes the arrangement
arr to an output stream os, and read(arr, os, formatter), which reads the arrangement arr from an input stream
is. Both operations are performed using a formatter object, which defines the I/O format. The package contains
three formatter classes:

• Arr text formatter<Arrangement> defines a simple textual I/O format for the arrangement topology and
geometry, disregarding any auxiliary data that may be associated with the arrangement features. This is
the default formatter used by the arrangement inserter and the arrangement extractor, as defined above.

• Arr face extended text formatter<Arrangement> operates on arrangements whose DCEL representation
is based on the Arr face extended dcel<Traits,FaceData> class (see Section 32.8.1). It supports reading
and writing the auxiliary data objects stored with the arrangement faces provided that the FaceData class
supports an inserter and an extractor.

• Arr extended dcel text formatter<Arrangement> operates on arrangements whose DCEL representa-
tion is based on the Arr extended dcel<Traits,VertexData,HalfedgeData,FaceData> class (see Sec-
tion 32.8.2). It supports reading and writing the auxiliary data objects stored with the arrangement
vertices, edges and faces, provided that the VertexData, HalfedgeData and FaceData classed all have
inserters and extractors.

The following example constructs the same arrangement as the example dcel extension does (see Sec-
tion 32.8.2), depicted in Figure 32.25, and writes it to an output file. It also demonstrates how to re-read
the arrangement from a file:� �
#include "arr_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arr_extended_dcel.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/IO/Arr_text_formatter.h>
#include <CGAL/IO/Arr_iostream.h>
#include <fstream>

enum Color {BLUE, RED, WHITE};

std::ostream& operator<< (std::ostream& os, const Color& color)
{

switch (color)
{
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case BLUE: os << "BLUE"; break;
case RED: os << "RED"; break;
case WHITE: os << "WHITE"; break;
default: os << "ERROR!";
}
return (os);

}

std::istream& operator>> (std::istream& is, Color& color)
{

std::string str;
is >> str;

if (str == "BLUE")
color = BLUE;

else if (str == "RED")
color = RED;

else if (str == "WHITE")
color = WHITE;

return (is);
}

typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arr_extended_dcel<Traits_2,

Color, bool, int> Dcel;
typedef CGAL::Arrangement_2<Traits_2, Dcel> Arrangement_2;
typedef CGAL::Arr_extended_dcel_text_formatter<Arrangement_2> Formatter;

int main ()
{

// Construct the arrangement containing two intersecting triangles.
Arrangement_2 arr;

Segment_2 s1 (Point_2(4, 1), Point_2(7, 6));
Segment_2 s2 (Point_2(1, 6), Point_2(7, 6));
Segment_2 s3 (Point_2(4, 1), Point_2(1, 6));
Segment_2 s4 (Point_2(1, 3), Point_2(7, 3));
Segment_2 s5 (Point_2(1, 3), Point_2(4, 8));
Segment_2 s6 (Point_2(4, 8), Point_2(7, 3));

insert_non_intersecting_curve (arr, s1);
insert_non_intersecting_curve (arr, s2);
insert_non_intersecting_curve (arr, s3);
insert (arr, s4);
insert (arr, s5);
insert (arr, s6);

// Go over all arrangement vertices and set their colors.
Arrangement_2::Vertex_iterator vit;
unsigned int degree;
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for (vit = arr.vertices_begin(); vit != arr.vertices_end(); ++vit)
{

degree = vit->degree();
if (degree == 0)

vit->set_data (BLUE); // Isolated vertex.
else if (degree <= 2)

vit->set_data (RED); // Vertex represents an endpoint.
else

vit->set_data (WHITE); // Vertex represents an intersection
point.

}

// Go over all arrangement edges and set their flags.
Arrangement_2::Edge_iterator eit;
bool flag;

for (eit = arr.edges_begin(); eit != arr.edges_end(); ++eit)
{

// Check if the halfegde has the same diretion as its associated
// segment. Note that its twin always has an opposite direction.
flag = (eit->source()->point() == eit->curve().source());
eit->set_data (flag);
eit->twin()->set_data (!flag);

}

// Go over all arrangement faces and print their outer boundary and
indices.

Arrangement_2::Face_iterator fit;
Arrangement_2::Ccb_halfedge_circulator curr;
int boundary_size;

for (fit = arr.faces_begin(); fit != arr.faces_end(); ++fit)
{

boundary_size = 0;
if (! fit->is_unbounded())
{

curr = fit->outer_ccb();
do
{

++boundary_size;
++curr;

} while (curr != fit->outer_ccb());
}
fit->set_data (boundary_size);

}

// Write the arrangement to a file.
std::ofstream out_file ("arr_ex_dcel_io.dat");
Formatter formatter;

write (arr, out_file, formatter);
out_file.close();
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// Read the arrangement from the file.
Arrangement_2 arr2;
std::ifstream in_file ("arr_ex_dcel_io.dat");

read (arr2, in_file, formatter);
in_file.close();

std::cout << "The arrangement vertices: " << std::endl;
for (vit = arr2.vertices_begin(); vit != arr2.vertices_end(); ++vit)

std::cout << ’(’ << vit->point() << ") - " << vit->data() <<
std::endl;

return (0);
}� �
File: examples/Arrangement_on_surface_2/dcel_extension_io.cpp

You may develop your own own formatter classes — models of the ArrangementInputFormatter and Arrange-
mentOutputFormatter concepts, as defined in the Reference Manual. Doing so, you can define other I/O formats,
such as an XML-based format or a binary format.

advanced

32.11.3 Arrangements with Curve History

Section 32.10 introduces the Arrangement with history 2<Traits,Dcel> class, which saves the set of curves
inducing an arrangement and maintains the relations between these curves and the edges they induce. Naturally,
when reading or writing an arrangement-with-history instance we would like this information to be saved to the
output stream or restored from the input stream alongside with the basic arrangement structure.

The arrangement package supplies an inserter and an extractor for the Arrangement with history 2<
Traits,Dcel> class. The arrangement is represented using a simple predefined ASCII format. An object of
the Arrangement with history 2<Traits,Dcel> type can be saved and restored, as long as the Curve 2 type de-
fined by the traits class — as well as the Point 2 type and the X monotone curve 2 types — support the <<
and>> operators.

The following example constructs the same arrangement as example curve history does (see Section 32.10.3),
depicted in Figure 32.27, and writes it to an output file. It also demonstrates how to re-read the arrangement-
with-history from a file:� �
#include "arr_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_with_history_2.h>
#include <CGAL/IO/Arr_with_history_iostream.h>
#include <fstream>

typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::Curve_2 Segment_2;
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typedef CGAL::Arrangement_with_history_2<Traits_2> Arr_with_hist_2;

int main ()
{

Arr_with_hist_2 arr;

// Insert six additional segments aggregately:
Segment_2 segs[6];
segs[0] = Segment_2 (Point_2 (2, 6), Point_2 (7, 1));
segs[1] = Segment_2 (Point_2 (3, 2), Point_2 (3, 5));
segs[2] = Segment_2 (Point_2 (2, 3), Point_2 (5, 3));
segs[3] = Segment_2 (Point_2 (2, 6), Point_2 (7, 1));
segs[4] = Segment_2 (Point_2 (0, 0), Point_2 (2, 6));
segs[5] = Segment_2 (Point_2 (3, 4), Point_2 (6, 4));
insert (arr, segs, segs + 6);

std::cout << "Writing an arrangement of "
<< arr.number_of_curves() << " input segments:" << std::endl
<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;

// Write the arrangement to a file.
std::ofstream out_file ("arr_ex_io_hist.dat");

out_file << arr;
out_file.close();

// Read the arrangement from the file.
Arr_with_hist_2 arr2;
std::ifstream in_file ("arr_ex_io_hist.dat");

in_file >> arr2;
in_file.close();

std::cout << "Read an arrangement of "
<< arr2.number_of_curves() << " input segments:" << std::endl
<< " V = " << arr2.number_of_vertices()
<< ", E = " << arr2.number_of_edges()
<< ", F = " << arr2.number_of_faces() << std::endl;

return (0);
}� �
File: examples/Arrangement_on_surface_2/io_curve_history.cpp

advanced

The arrangement package also includes the free functions write(arr, os, formatter) and read(arr, os, formatter)
that operate on a given arrangement-with-history instance arr. Both functions are parameterized by a formatter
object, which define the I/O format. The package contains a template called, Arr with hist text formatter<
ArranagmentFormatter>, which extends an arrangement formatter class (see Section 32.11.2) and defines a
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simple textual input/output format.

advanced

32.11.4 Output QT-widget Stream

You can display the drawings of arrangements in a graphical window powered by QT interactively. All you
need to do is follow the guidelines for handling Qt widget objects, and apply the inserter, which inserts an
arrangement into a Qt widget stream to complete the drawing.

The ability to use this output operator, requires that the Point 2 and X monotone curve 2 types defined by the
traits class both support the << operator that inserts the respective geometric object into a Qt widget stream. The
Arr rational function traits 2 class (see Section 32.6.6) and the Arr linear traits 2 class (see Section 32.6.2)
currently do not provide this operator for the geometric types they define. Thus, only arrangements of line
segments, polylines, or conic ards can be written. The << operator for polylines and conic arcs defined in
CGAL/IO/Qt widget Polyline 2.h and CGAL/IO/Qt widget Conic arc 2.h must be explicitly included, to in-
sert polylines and conic arcs respectively into Qt widget streams.

32.12 Adapting to BOOST Graphs

BOOST21 is a collection of portable C++ libraries that extend the Standard Template Library (STL). The BOOST
Graph Library (BGL), which one of the libraries in the collection, offers an extensive set of generic graph
algorithms parameterized through templates. As our arrangements are embedded as planar graphs, it is only
natural to extend the underlying data structure with the interface that the BGL expects, and gain the ability to
perform the operations that the BGL supports, such as shortest-path computation. This section describes how
apply the graph algorithms implemented in the BGL to Arrangement 2 instances.

An instance of Arrangement 2 is adapted to a BOOST graph through the provision of a set of free functions that
operate on the arrangement features and conform with the relevant BGL concepts. Besides the straightforward
adaptation, which associates a vertex with each DCEL vertex and an edge with each DCEL halfedge, the package
also offer a dual adaptor, which associates a graph vertex with each DCEL face, such that two vertices are
connected, iff there is a DCEL halfedge that connects the two corresponding faces.

32.12.1 The Primal Arrangement Representation

Arrangement instances are adapted to BOOST graphs by specializing the boost:graph traits template for
Arrangement 2 instances. The graph-traits states the graph concepts that the arrangement class models (see
below) and defines the types required by these concepts.

In this specialization the Arrangement 2 vertices correspond to the graph vertices, where two vertices are ad-
jacent if there is at least one halfedge connecting them. More precisely, Arrangement 2::Vertex handle is the
graph-vertex type, while Arrangement 2::Halfedge handle is the graph-edge type. As halfedges are directed,
we consider the graph to be directed as well. Moreover, as several interior-disjoint x-monotone curves (say
circular arcs) may share two common endpoints, inducing an arrangement with two vertices that are connected
with several edges, we allow parallel edges in our BOOST graph.

Given an Arrangement 2 instance, we can efficiently traverse its vertices and halfedges. Thus, the arrangement
graph is a model of the concepts VertexListGraph and EdgeListGraph introduced by the BGL. At the same

21See also BOOST’s homepage at: www.boost.org.
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Figure 32.29: An arrangement of 7 line segments, as constructed by bgl primal adapter.cpp and bgl dual
adapter.cpp. The breadth-first visit times for the arrangement faces, starting from the unbounded face f0, are
shown is brackets.

time, we use an iterator adapter of the circulator over the halfedges incident to a vertex (Halfedge around
vertex circulator — see Section 32.2.2), so it is possible to go over the ingoing and outgoing edges of a vertex
in linear time. Thus, our arrangement graph is a model of the concept BidirectionalGraph (this concept refines
IncidenceGraph, which requires only the traversal of outgoing edges).

It is important to notice that the vertex descriptors we use are Vertex handle objects and not vertex indices.
However, in order to gain more efficiency in most BGL algorithm, it is better to have them indexed 0,1, . . . ,(n−
1), where n is the number of vertices. We therefore introduce the Arr vertex index map<Arrangement> class-
template, which maintains a mapping of vertex handles to indices, as required by the BGL. An instance of this
class must be attached to a valid arrangement vertex when it is created. It uses the notification mechanism (see
Section 32.7) to automatically maintain the mapping of vertices to indices, even when new vertices are inserted
into the arrangement or existing vertices are removed.

In most algorithm provided by the BGL, the output is given by property maps, such that each map entry cor-
responds to a vertex. For example, when we compute the shortest paths from a given source vertex s to all
other vertices we can obtain a map of distances and a map of predecessors — namely for each v vertex we
have its distance from s and a descriptor of the vertex that precedes v in the shortest path from s. If the vertex
descriptors are simply indices, one can use vectors to efficiently represent the property maps. As this is not the
case with the arrangement graph, we offer the Arr vertex property map<Arrangement,Type> template allows
for an efficient mapping of Vertex handle objects to properties of type Type. Note however that unlike the
Arr vertex index map class, the vertex property-map class is not kept synchronized with the number of vertices
in the arrangement, so it should not be reused in calls to BGL functions in case the arrangement is modified in
between these calls.

In the following example we construct an arrangement of 7 line segments, as shown in Figure 74.1, then use
Dijkstra’s shortest-paths algorithm from the BGL to compute the graph distance of all vertices from the leftmost
vertex in the arrangement v0. Note the usage of the Arr vertex index map and the Arr vertex property map
classes. The latter one, instantiated by the type double is used to map vertices to their distances from v0.� �
#include "arr_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/graph_traits_Arrangement_2.h>
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#include <CGAL/Arr_vertex_index_map.h>

#include <climits>
#include <boost/graph/dijkstra_shortest_paths.hpp>

typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;

// A functor used to compute the length of an edge.
class Edge_length_func
{
public:

// Boost property type definitions:
typedef boost::readable_property_map_tag category;
typedef double value_type;
typedef value_type reference;
typedef Arrangement_2::Halfedge_handle key_type;

double operator()(Arrangement_2::Halfedge_handle e) const
{

const double x1 = CGAL::to_double (e->source()->point().x());
const double y1 = CGAL::to_double (e->source()->point().y());
const double x2 = CGAL::to_double (e->target()->point().x());
const double y2 = CGAL::to_double (e->target()->point().y());
const double diff_x = x2 - x1;
const double diff_y = y2 - y1;

return std::sqrt(diff_x*diff_x + diff_y*diff_y);
}

};

double get(Edge_length_func edge_length, Arrangement_2::Halfedge_handle
e)

{
return edge_length(e);

}

/* The folowing is a workaround for a bug in the BGL upto and including
version

* 103400.
*
* Unfortunately some of the calls to the get() function below from the

BGL
* code are qualified with the boost namespace, while others are not. For

The
* qualified calls the compiler naturally looks for the definition of the
* function in boost namespace. For the other calls it searches the CGAL
* namespace according to ADL (Koenig Lookup), as the type of the 1st
* parameter is in CGAL namespace.
*
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* One way to get around it is to provide 2 similar functions that do the
* same thing. One in CGAL namespace provided in CGAL/Arr_vertex_map.h,

and
* the other in boost namespace below. The signature of the latter is

slightly
* changed to avoid redefinition. The type of its 1st parameter is

defined in
* boost namespace, and is a simple derivation of the 1st parameter of

the
* CGAL::get() function.
*/

namespace boost {

template <typename Arrangement_2>
class Arr_vertex_index_map_boost :

public CGAL::Arr_vertex_index_map<Arrangement_2>
{
public:
typedef CGAL::Arr_vertex_index_map<Arrangement_2> Base;
/*! Default constructor. */
Arr_vertex_index_map_boost() : Base() {}

/*! Constructor from CGAL index map. */
Arr_vertex_index_map_boost(Base & other) :

CGAL::Arr_vertex_index_map<Arrangement_2>(other)
{}

};

/*!
* Get the index property-map function. Provided so that boost is able to
* access the Arr_vertex_index_map above.
* \param index_map The index map.
* \param v A vertex handle.
* \return The vertex index.
*/

template<class Arrangement>
unsigned int
get(const boost::Arr_vertex_index_map_boost<Arrangement> & index_map,

typename Arrangement::Vertex_handle v)
{

const CGAL::Arr_vertex_index_map<Arrangement> & index_map_tmp =
static_cast<const CGAL::Arr_vertex_index_map<Arrangement>
&>(index_map);

return CGAL::get<Arrangement>(index_map_tmp, v);
}

}

int main()
{

Arrangement_2 arr;

// Construct an arrangement of seven intersecting line segments.
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// We keep a handle for the vertex v_0 that corresponds to the point
(1,1).

Arrangement_2::Halfedge_handle e =
insert_non_intersecting_curve (arr, Segment_2 (Point_2 (1, 1),

Point_2 (7, 1)));
Arrangement_2::Vertex_handle v0 = e->source();
insert (arr, Segment_2 (Point_2 (1, 1), Point_2 (3, 7)));
insert (arr, Segment_2 (Point_2 (1, 4), Point_2 (7, 1)));
insert (arr, Segment_2 (Point_2 (2, 2), Point_2 (9, 3)));
insert (arr, Segment_2 (Point_2 (2, 2), Point_2 (4, 4)));
insert (arr, Segment_2 (Point_2 (7, 1), Point_2 (9, 3)));
insert (arr, Segment_2 (Point_2 (3, 7), Point_2 (9, 3)));

// Create a mapping of the arrangement vertices to indices.
CGAL::Arr_vertex_index_map<Arrangement_2> index_map_tmp(arr);
boost::Arr_vertex_index_map_boost<Arrangement_2>
index_map(index_map_tmp);

// Perform Dijkstra’s algorithm from the vertex v0.
Edge_length_func edge_length;
CGAL::Arr_vertex_property_map<Arrangement_2, double>
dist_map(index_map);

boost::dijkstra_shortest_paths(arr, v0,
boost::vertex_index_map(index_map).
weight_map(edge_length).
distance_map(dist_map));

// Print the results:
Arrangement_2::Vertex_iterator vit;

std::cout << "The distances of the arrangement vertices from ("
<< v0->point() << ") :" << std::endl;

for (vit = arr.vertices_begin(); vit != arr.vertices_end(); ++vit)
std::cout << "(" << vit->point() << ") at distance "

<< dist_map[vit] << std::endl;

return 0;
}� �
File: examples/Arrangement_on_surface_2/bgl_primal_adapter.cpp

32.12.2 The Dual Arrangement Representation

It is possible to give a dual graph representation for an arrangement instance, such that each arrangement face
corresponds to a graph vertex and two vertices are adjacent iff the corresponding faces share a common edge
on their boundaries. This is done by specializing the boost:graph traits template for Dual<Arrangement 2>
instances, where Dual<Arrangement 2> is a template specialization that gives a dual interpretation to an ar-
rangement instance.

In dual representation, Arrangement 2::Face handle is the graph-vertex type, while Arrangement 2::Halfedge
handle is the graph-edge type. We treat the graph edges as directed, such that a halfedge e is directed from f1,
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which is its incident face, to f2, which is the incident face of its twin halfedge. As two arrangement faces may
share more than a single edge on their boundary, we allow parallel edges in our BOOST graph. As is the case in
the primal graph, the dual arrangement graph is also a model of the concepts VertexListGraph, EdgeListGraph
and BidirectionalGraph (thus also of IncidenceGraph).

Since we use Face handle objects as the vertex descriptors, we define the Arr face index map<Arrangement>
class-template, which maintains an efficient mapping of face handles to indices. We also provide the template
Arr face property map<Arrangement,Type> for associating arbitrary data with the arrangement faces.

In the following example we construct the same arrangement as in example bgl primal adapter.cpp (see Fig-
ure 74.1), and perform breadth-first search on the graph faces, starting from the unbounded face. We extend
the DCEL faces with an unsigned integer, marking the discover time of the face and use a breadth-first-search
visitor to obtain these times and update the faces accordingly:� �
#include "arr_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arr_extended_dcel.h>
#include <CGAL/Arrangement_2.h>

#include <climits>
#include <boost/graph/dijkstra_shortest_paths.hpp>

#include <CGAL/graph_traits_Dual_Arrangement_2.h>
#include <CGAL/Arr_face_index_map.h>

#include "arr_print.h"

typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arr_face_extended_dcel<Traits_2,

unsigned int> Dcel;
typedef CGAL::Arrangement_2<Traits_2, Dcel> Arrangement_2;
typedef CGAL::Dual<Arrangement_2>

Dual_arrangement_2;

// A BFS visitor class that associates each vertex with its discover
time.

// In our case graph vertices represent arrangement faces.
template <class IndexMap>
class Discover_time_bfs_visitor : public boost::default_bfs_visitor
{
private:

const IndexMap *index_map; // Mapping vertices to indices.
unsigned int time; // The current time stamp.

public:

// Constructor.
Discover_time_bfs_visitor (const IndexMap& imap) :

index_map (&imap),
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time (0)
{}

// Write the discover time for a given vertex.
template <typename Vertex, typename Graph>
void discover_vertex(Vertex u, const Graph& /* g */)
{

u->set_data (time);
time++;

}
};

int main ()
{

Arrangement_2 arr;

// Construct an arrangement of seven intersecting line segments.
insert (arr, Segment_2 (Point_2 (1, 1), Point_2 (7, 1)));
insert (arr, Segment_2 (Point_2 (1, 1), Point_2 (3, 7)));
insert (arr, Segment_2 (Point_2 (1, 4), Point_2 (7, 1)));
insert (arr, Segment_2 (Point_2 (2, 2), Point_2 (9, 3)));
insert (arr, Segment_2 (Point_2 (2, 2), Point_2 (4, 4)));
insert (arr, Segment_2 (Point_2 (7, 1), Point_2 (9, 3)));
insert (arr, Segment_2 (Point_2 (3, 7), Point_2 (9, 3)));

// Create a mapping of the arrangement faces to indices.
CGAL::Arr_face_index_map<Arrangement_2> index_map (arr);

// Perform breadth-first search from the unbounded face, and use the
BFS

// visitor to associate each arrangement face with its discover time.
Discover_time_bfs_visitor<CGAL::Arr_face_index_map<Arrangement_2> >

bfs_visitor (index_map);
Arrangement_2::Face_handle uf = arr.unbounded_face();

boost::breadth_first_search (Dual_arrangement_2 (arr), uf,
boost::vertex_index_map (index_map).
visitor (bfs_visitor));

// Print the results:
Arrangement_2::Face_iterator fit;

for (fit = arr.faces_begin(); fit != arr.faces_end(); ++fit) {
std::cout << "Discover time " << fit->data() << " for ";
if (fit != uf) {

std::cout << "face ";
print_ccb<Arrangement_2> (fit->outer_ccb());

}
else

std::cout << "the unbounded face." << std::endl;
}

return 0;
}� �
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File: examples/Arrangement_on_surface_2/bgl_dual_adapter.cpp

32.13 How To Speed Up Your Computation

Before the specific tips, we remind you that compiling programs with debug flags disabled and with optimization
flags enabled significantly reduces the running time.

1. When the curves to be inserted into an arrangement are x-monotone and pairwise disjoint in their interior
to start with, then it is more efficient (in running time) and less demanding (in traits-class functionality)
to use the non-intersection insertion-functions instead of the general ones; e.g., insert().

2. When the curves to be inserted into an arrangement are segments that are pairwise disjoint in their interior,
it is more efficient to use the traits class Arr non caching segment traits 2 rather then the default one
(Arr segment traits 2).

If the segments may intersect each other, the default traits class Arr segment traits 2 can be safely used
with the somehow limited number type Quotient<MP float>.

On rare occasions the traits class Arr non caching segment traits 2 exhibits slightly better performance
than the default one (Arr segment traits 2 even when the segments intersect each other, due to the small
overhead of the latter (optimized) traits class. (For example, when the so called LEDA rational kernel is
used).

3. Prior knowledge of the combinatorial structure of the arrangement can be used to accelerate operations
that insert x-monotone curves, whose interior is disjoint from existing edges and vertices of the arrange-
ment. The specialized insertion functions, i.e., insert in face interior(), insert from left vertex(), insert
from right vertex(), and insert at vertices() can be used according to the available information. These
functions hardly involve any geometric operations, if at all. They accept topologically related parame-
ters, and use them to operate directly on the DCEL records, thus saving algebraic operations, which are
especially expensive when high-degree curves are involved.

A polygon, represented by a list of segments along its boundary, can be inserted into an empty arrange-
ment as follows. First, one segment is inserted using insert in face interior() into the unbounded face.
Then, a segment with a common end point is inserted using either insert from left vertex() or insert
from right vertex(), and so on with the rest of the segments except for the last, which is inserted using
insert at vertices(), as both endpoints of which are the mapping of known vertices.

4. The main trade-off among point-location strategies, is between time and storage. Using the naive or
walk strategies, for example, takes more query time but does not require preprocessing or maintenance of
auxiliary structures and saves storage space.

5. If point-location queries are not performed frequently, but other modifying functions, such as removing,
splitting, or merging edges are, then using a point-location strategy that does not require the maintenance
of auxiliary structures, such as the naive or walk strategies, is preferable.

6. There is a trade-off between two modes of the trapezoidal RIC strategy that enables the user to choose
whether preprocessing should be performed or not. If preprocessing is not used, the creation of the
structure is faster. However, for some input sequences the structure might be unbalanced and therefore
queries and updates might take longer, especially, if many removal and split operations are performed.

7. When the curves to be inserted into an arrangement are available in advance (as opposed to supplied
on-line), it is advised to use the more efficient aggregate (sweep-based) insertion over the incremental
insertion; e.g., insert().

8. The various traits classes should be instantiated with an exact number type to ensure robustness, when
the input of the operations to be carried out might be degenerate, although inexact number types could be
used at the user’s own risk.
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9. Maintaining short bit-lengths of coordinate representations may drastically decrease the time consumption
of arithmetic operations on the coordinates. This can be achieved by caching certain information or
normalization (of rational numbers). However, both solutions should be used cautiously, as the former
may lead to an undue space consumption, and indiscriminate normalization may considerably slow down
the overall process.

10. Geometric functions (e.g., traits methods) dominate the time consumption of most operations. Thus, calls
to such function should be avoided or at least their number should be decreased, perhaps at the expense
of increased combinatorial-function calls or increased space consumption. For example, repetition of
geometric-function calls could be avoided by storing the results obtained by the first call, and reusing
them when needed.

Design and Implementation History

The code of this package is the result of a long development process. Initially (and until version 3.1), the
code was spread among several components, namely, Topological map, Planar map 2, Planar map with
intersections 2 and Arrangement 2, that were developed by Ester Ezra, Eyal Flato, Efi Fogel, Dan Halperin,
Iddo Hanniel, Idit Haran, Shai Hirsch, Eugene Lipovetsky, Oren Nechushtan, Sigal Raab, Ron Wein, Baruch
Zukerman, and Tali Zvi.

In version 3.2, as part of the ACS project, the packages have gone through a major re-design, resulting in an
improved and unified 2D Arrangements package. The code of the new package was restructured and developed
by Efi Fogel, Idit Haran, Ron Wein, and Baruch Zukerman. This version included for the first time a new
geometry-traits class that handles circular and linear curves, and is based on the circular kernel. The circular
kernel was developed by Monique Teillaud, Sylvain Pion, and Julien Hazebrouck.

Version 3.3 features arrangements of unbounded curves for the first time. The design and development of this
feature required yet another restructuring of the entire package. All this was done by Eric Berberich, Efi Fogel,
Dan Halperin, Ophir Setter, and Ron Wein. Michael Hemmer helped tuning up parts of the geometry-traits
concept related to unbounded curves.

Version 3.7 introduced a geometry-traits class that handles planar algebraic curves of arbitrary degree. It was
developed by Eric Berberich and Michael Kerber.

Version 3.9 introduced a new geometry-traits class that handles rational arcs. It was developed by Oren Salzman
and Michael Hemmer. It replaced an old traits, which handled the same family of curves, developed by Ron
Wein.

Version 4.1 introduces a revised implementation of the point location class via a randomized incremental con-
struction of the trapezoidal map. The old class was implemented by Oren Nechushtan, while the revamp was
done by Michal Kleinbort and Michael Hemmer. The new class adds support for unbounded curves and can
now guarantee logarithmic query time in all cases.
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Given a set C of planar curves, the arrangement A(C ) is the subdivision of the plane induced by the curves
in C into maximally connected cells. The cells can be 0-dimensional (vertices), 1-dimensional (edges) or 2-
dimensional (faces).

The class Arrangement 2<Traits,Dcel> encapsulates a data structure that maintains arrangements of arbitrary
bounded planar curves. It comes with a variety of algorithms that operate on planar arrangement, such as point-
location queries and overlay computations, which are implemented as peripheral classes or as free (global)
functions.
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CGAL::Arrangement 2<Traits,Dcel>

Definition

An object arr of the class Arrangement 2<Traits,Dcel> represents the planar subdivision induced by a set of
x-monotone curves and isolated points into maximally connected cells. The arrangement is represented as a
doubly-connected edge-list (DCEL) such that each DCEL vertex is associated with a point of the plane and each
edge is associated with an x-monotone curve whose interior is disjoint from all other edges and vertices. Recall
that an arrangement edge is always comprised of a pair of twin DCEL halfedges.

The Arrangement 2<Traits,Dcel> template has two parameters:

• The Traits template-parameter should be instantiated with a model of the ArrangementBasicTraits 2
concept. The traits class defines the types of x-monotone curves and two-dimensional points, namely
X monotone curve 2 and Point 2, respectively, and supports basic geometric predicates on them.

• The Dcel template-parameter should be instantiated with a class that is a model of the ArrangementDcel
concept. The value of this parameter is by default Arr default dcel<Traits>.

The available traits classes and DCEL classes are described below.

#include <CGAL/Arrangement 2.h>

Types

typedef Arrangement 2<Traits 2,Dcel> Self; a private type used as an abbreviation of
the Arrangement 2<Traits,Dcel> type
hereafter.

Arrangement 2<Traits,Dcel>:: Traits 2 the traits class in use.
Arrangement 2<Traits,Dcel>:: Dcel the DCEL representation of the ar-

rangement.

typedef typename Traits 2::Point 2 Point 2; the point type, as defined by the traits
class.

typedef typename Traits 2::X monotone curve 2 X monotone curve 2;

the x-monotone curve type, as defined
by the traits class.

typedef typename Dcel::Size Size; the size type (equivalent to size t).

Arrangement 2<Traits,Dcel>:: Vertex represents a 0-dimensional cell in the subdivision. A
vertex is always associated with a point.

Arrangement 2<Traits,Dcel>:: Halfedge represents (together with its twin — see below) a 1-
dimensional cell in the subdivision. A halfedge is al-
ways associated with an x-monotone curve.

Arrangement 2<Traits,Dcel>:: Face represents a 2-dimensional cell in the subdivision.
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The following handles, iterators, and circulators all have respective constant counterparts (for example, in addi-
tion to Vertex iterator the type Vertex const iterator is also defined). See [MS96] for a discussion of constant
versus mutable iterator types. The mutable types are assignable to their constant counterparts.

Vertex iterator, Halfedge iterator, and Face iterator are equivalent to the respective handle types (namely,
Vertex handle, Halfedge handle, and Face handle). Thus, wherever the handles appear in function parameter
lists, the respective iterators can be passed as well.

Arrangement 2<Traits,Dcel>:: Vertex handle a handle for an arrangement vertex.
Arrangement 2<Traits,Dcel>:: Halfedge handle a handle for a halfedge. The halfedge and its twin form

together an arrangement edge.

Arrangement 2<Traits,Dcel>:: Face handle a handle for an arrangement face.

Arrangement 2<Traits,Dcel>:: Vertex iterator a bidirectional iterator over the vertices of the arrange-
ment. Its value-type is Vertex.

Arrangement 2<Traits,Dcel>:: Halfedge iterator a bidirectional iterator over the halfedges of the ar-
rangement. Its value-type is Halfedge.

Arrangement 2<Traits,Dcel>:: Edge iterator a bidirectional iterator over the edges of the arrange-
ment. (That is, it skips every other halfedge.) Its value-
type is Halfedge.

Arrangement 2<Traits,Dcel>:: Face iterator a bidirectional iterator over the faces of arrangement.
Its value-type is Face.

Arrangement 2<Traits,Dcel>:: Unbounded face iterator

a bidirectional iterator over the unbounded faces of ar-
rangement. Its value-type is Face.

Arrangement 2<Traits,Dcel>:: Halfedge around vertex circulator

a bidirectional circulator over the halfedges that have a
given vertex as their target. Its value-type is Halfedge.

Arrangement 2<Traits,Dcel>:: Ccb halfedge circulator

a bidirectional circulator over the halfedges of a CCB
(connected component of the boundary). Its value-type
is Halfedge. Each bounded face has a single CCB rep-
resenting it outer boundary, and may have several inner
CCBs representing its holes.

Arrangement 2<Traits,Dcel>:: Hole iterator a bidirectional iterator over the holes (i.e., inner CCBs)
contained inside a given face. Its value type is Ccb
halfedge circulator.

Arrangement 2<Traits,Dcel>:: Isolated vertex iterator

a bidirectional iterator over the isolated vertices con-
tained inside a given face. Its value type is Vertex.

Creation

Arrangement 2<Traits,Dcel> arr; constructs an empty arrangement containing one un-
bounded face, which corresponds to the entire plane.
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Arrangement 2<Traits,Dcel> arr( Self other); copy constructor.

Arrangement 2<Traits,Dcel> arr( const Traits 2 *traits);

constructs an empty arrangement that uses the given
traits instance for performing the geometric predicates.

Assignment Methods

Self& arr = other assignment operator.

void arr.assign( Self other) assigns the contents of another arrangement.

void arr.clear() clears the arrangement.

Access Functions

Traits 2* arr.get traits() returns the traits object used by the arrangement instance.
A const version is also available.

bool arr.is empty() const determines whether the arrangement is empty (contains
only the unbounded face, with no vertices or edges).

All begin() and end() methods listed below also have const counterparts, returning constant iterators instead
of mutable ones:

• Accessing the Arrangement Vertices:

Size arr.number of vertices() const

returns the number of vertices in the arrangement.

Size arr.number of isolated vertices() const

returns the total number of isolated vertices in the arrange-
ment.

Vertex iterator arr.vertices begin() returns the begin-iterator of the vertices in the arrange-
ment.

Vertex iterator arr.vertices end() returns the past-the-end iterator of the vertices in the ar-
rangement.

Size arr.number of vertices at infinity() const

returns the number of arrangement vertices that lie at infin-
ity and are not associated with valid points. Such vertices
are not considered to be regular arrangement vertices and
arr.number of vertices() does not count them.
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• Accessing the Arrangement Edges:

Size arr.number of halfedges() const

returns the number of halfedges in the arrangement.

Halfedge iterator arr.halfedges begin() returns the begin-iterator of the halfedges in the arrange-
ment.

Halfedge iterator arr.halfedges end() returns the past-the-end iterator of the halfedges in the ar-
rangement.

Size arr.number of edges() const

returns the number of edges in the arrangement (equivalent
to arr.number of halfedges() / 2).

Edge iterator arr.edges begin() returns the begin-iterator of the edges in the arrangement.

Edge iterator arr.edges end() returns the past-the-end iterator of the edges in the arrange-
ment.

• Accessing the Arrangement Faces:

Face handle arr.unbounded face() returns a handle for an unbounded face of the arrangement.
In case the arrangement comprises only bounded curves,
there is a single unbounded face and the function returns a
handle to it. Otherwise, a handle to an arbitrary unbounded
face is returned.

Size arr.number of faces() const

returns the number of faces in the arrangement.

Face iterator arr.faces begin() returns the begin-iterator of the faces in the arrangement.

Face iterator arr.faces end() returns the past-the-end iterator of the faces in the arrange-
ment.

Size arr.number of unbounded faces() const

returns the number of unbounded faces in the arrange-
ment. Note arr.number of faces() also counts the un-
bounded faces of the arrangement.

Unbounded face iterator

arr.unbounded faces begin()

returns the begin-iterator of the unbounded faces in the ar-
rangement.
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Unbounded face iterator

arr.unbounded faces end() returns the past-the-end iterator of the unbounded faces in
the arrangement.

Face handle arr.fictitious face() returns a handle to the fictitious face of the arrangement.
If the arrangement is not unbounded, there is no fictitious
face. In this case the result is not deterministic. A const
version is also available.

advanced

Casting away Constness

It is sometime necessary to convert a constant (non-mutable) handle to a mutable handle. For example, the result
of a point-location query is a non-mutable handle for the arrangement cell containing the query point. Assume
that the query point lies on a edge, so we obtain a Halfedge const handle; if we wish to use this handle and
remove the edge, we first need to cast away its “constness”.

Vertex handle arr.non const handle( Vertex const handle v)

casts the given constant vertex handle to an equivalent mu-
table handle.

Halfedge handle arr.non const handle( Halfedge const handle e)

casts the given constant halfedge handle to an equivalent
mutable handle.

Face handle arr.non const handle( Face const handle f)

casts the given constant face handle to an equivalent muta-
ble handle.

advanced

Modifiers

• Specialized Insertion Methods:

Vertex handle arr.insert in face interior( Point 2 p, Face handle f)

inserts the point p into the arrangement as an isolated ver-
tex in the interior of the face f and returns a handle for the
newly created vertex.
Precondition: p lies in the interior of the face f .
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Halfedge handle arr.insert in face interior( X monotone curve 2 c, Face handle f)

inserts the curve c that is entirely contained in the interior
of a given face f . If c is a bounded curve two new vertices
that correspond to c’s endpoints are created and connected
with a newly created halfedge pair, which forms a new hole
(inner component) in the face f . If c is unbounded, at least
one of the two vertices that represents its end lies at infin-
ity, and its creation modifies the outer boundary of f . The
function returns a handle for one of the new halfedges cor-
responding to the inserted curve, directed in lexicographic
increasing order (from left to right).
Precondition: c lies entirely in the interior of the face f and
is disjoint from all existing arrangement vertices and edges
(in particular, both its endpoints are not already associated
with existing arrangement vertices).
Precondition: In case c is an unbounded curve, f must be
an unbounded face.

Halfedge handle arr.insert from left vertex( X monotone curve 2 c, Vertex handle v)

inserts the curve c into the arrangement, such that its left
endpoint corresponds to a given arrangement vertex. As a
result, a new vertex that correspond to c’s right endpoint is
created and connected to v with a newly created halfedge
pair. If c has an unbounded right end, the new vertex lies at
infinity and the unbounded face that contains the interior of
the curve is split. The function returns a handle for one of
the new halfedges corresponding to the inserted curve, di-
rected towards the newly created vertex — that is, directed
in lexicographic increasing order (from left to right).
Precondition: The interior of c is disjoint from all existing
arrangement vertices and edges.
Precondition: v is associated with the left endpoint of c.
Precondition: The right endpoint of c is not already asso-
ciated with an existing arrangement vertex.

Halfedge handle arr.insert from right vertex( X monotone curve 2 c, Vertex handle v)

inserts the curve c into the arrangement, such that its right
endpoint corresponds to a given arrangement vertex. As a
result, a new vertex that correspond to c’s left endpoint is
created and connected to v with a newly created halfedge
pair. If c has an unbounded left end, the new vertex lies at
infinity and the unbounded face that contains the interior
of the curve is split. The function returns a handle for one
of the new halfedges corresponding to the inserted curve,
directed to the newly created vertex — that is, directed in
lexicographic decreasing order (from right to left).
Precondition: The interior of c is disjoint from all existing
arrangement vertices and edges.
Precondition: v is associated with the right endpoint of c.
Precondition: The left endpoint of c is not already associ-
ated with an existing arrangement vertex.
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Halfedge handle arr.insert at vertices( X monotone curve 2 c, Vertex handle v1, Vertex handle v2)

inserts the curve c into the arrangement, such that both
c’s endpoints correspond to existing arrangement vertices,
given by v1 and v2. The function creates a new halfedge
pair that connects the two vertices, and returns a handle for
the halfedge directed from v1 to v2.
Precondition: The interior of c is disjoint from all existing
arrangement vertices and edges.
Precondition: c must not be an unbounded curve.
Precondition: v1 and v2 are associated with c’s endpoints.
Precondition: If v1 and v2 are already connected by an
edge, this edge represents an x-monotone curve that is
interior-disjoint from c).

advanced

Halfedge handle arr.insert in face interior( X monotone curve 2 c,
Halfedge handle fict pred1,
Halfedge handle fict pred2 = Halfedge handle())

inserts an unbounded curve c into the arrangement, such
that c is entirely contained within a single unbounded
face of the arrangement. fict pred1 specifies the fictitious
halfedge that should contain the vertex at infinity that cor-
responds to the unbounded end of c. If both ends of c are
unbounded, fict pred1 indicated the place for its left end
and fict pred2 indicated a place for its right end. The func-
tion returns a handle for one of the new halfedges directed
(lexicographically) from left to right.
Precondition: c is an unbounded curve disjoint from all
existing arrangement vertices and edges.
Precondition: fict pred1 (and fict pred2) are fictitious
halfedges that contains the unbounded end(s) of c. If both
halfedges are given they must be both incident to the same
unbounded face.

Halfedge handle arr.insert from left vertex( X monotone curve 2 c, Halfedge handle pred)

inserts the curve c into the arrangement, such that its left
endpoint corresponds to a given arrangement vertex. This
vertex is the target vertex of the halfedge pred, such that
c is inserted to the circular list of halfedges around pred->
target() right between pred and its successor. The function
returns a handle for one of the new halfedges directed (lex-
icographically) from left to right.
Precondition: The interior of c is disjoint from all existing
arrangement vertices and edges.
Precondition: pred->target() is associated with the left
endpoint of c, and c should be inserted after pred in a
clockwise order around this vertex.
Precondition: The right endpoint of c is not already asso-
ciated with an existing arrangement vertex.
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Halfedge handle arr.insert from left vertex( X monotone curve 2 c,
Halfedge handle pred,
Halfedge handle fict pred)

inserts an unbounded curve c into the arrangement, such
that its left endpoint is bounded and corresponds to a given
arrangement vertex. This vertex is the target vertex of the
halfedge pred, such that c is inserted to the circular list
of halfedges around pred->target() right between pred and
its successor. Similarly, fict pred specifies the fictitious
halfedge that should contain the vertex at infinity that cor-
responds to the unbounded right end of c. The function
returns a handle for one of the new halfedges directed (lex-
icographically) from left to right.
Precondition: The interior of c is disjoint from all existing
arrangement vertices and edges. c must have a bounded
left endpoint and an unbounded right end.
Precondition: pred->target() is associated with the left
endpoint of c, and c should be inserted after pred in a
clockwise order around this vertex.
Precondition: fict pred is a fictitious halfedge that con-
tains the unbounded right end of c.

Halfedge handle arr.insert from right vertex( X monotone curve 2 c, Halfedge handle pred)

inserts the curve c into the arrangement, such that its right
endpoint corresponds to a given arrangement vertex. This
vertex is the target vertex of the halfedge pred, such that
c is inserted to the circular list of halfedges around pred->
target() right between pred and its successor. The function
returns a handle for one of the new halfedges directed (lex-
icographically) from right to left.
Precondition: The interior of c is disjoint from all existing
arrangement vertices and edges.
Precondition: pred->target() is associated with the right
endpoint of c, and c should be inserted after pred in a
clockwise order around this vertex.
Precondition: The left endpoint of c is not already associ-
ated with an existing arrangement vertex.

Halfedge handle arr.insert from right vertex( X monotone curve 2 c,
Halfedge handle pred,
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Halfedge handle fict pred)

inserts an unbounded curve c into the arrangement, such
that its right endpoint is bounded and corresponds to a
given arrangement vertex. This vertex is the target vertex
of the halfedge pred, such that c is inserted to the circu-
lar list of halfedges around pred->target() right between
pred and its successor. Similarly, fict pred specifies the
fictitious halfedge that should contain the vertex at infinity
that corresponds to the unbounded left end of c. The func-
tion returns a handle for one of the new halfedges directed
(lexicographically) from right to left.
Precondition: The interior of c is disjoint from all existing
arrangement vertices and edges. c must have a bounded
right endpoint and an unbounded left end.
Precondition: pred->target() is associated with the right
endpoint of c, and c should be inserted after pred in a
clockwise order around this vertex.
Precondition: fict pred is a fictitious halfedge that con-
tains the unbounded left end of c.

Halfedge handle arr.insert at vertices( X monotone curve 2 c,
Halfedge handle pred1,
Vertex handle v2)

inserts the curve c into the arrangement, such that both
c’s endpoints correspond to existing arrangement vertices,
given by pred1->target() and v2. The function creates a
new halfedge pair that connects the two vertices (where
the corresponding halfedge is inserted right between pred1
and its successor around pred1’s target vertex) and returns
a handle for the halfedge directed from pred1->target() to
v2.
Precondition: The interior of c is disjoint from all existing
arrangement vertices and edges.
Precondition: pred1->target() and v2 are associated with
c’s endpoints.
Precondition: If pred1->target and v2 are already con-
nected by an edge, this edge represents an x-monotone
curve that is interior-disjoint from c).

Halfedge handle arr.insert at vertices( X monotone curve 2 c,
Halfedge handle pred1,
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Halfedge handle pred2)

inserts the curve c into the arrangement, such that both
c’s endpoints correspond to existing arrangement vertices,
given by pred1->target() and pred2->target(). The func-
tion creates a new halfedge pair that connects the two ver-
tices (with pred1 and pred2 indicate the exact place for
these halfedges around the two target vertices) and returns
a handle for the halfedge directed from pred1->target() to
pred2->target().
Precondition: The interior of c is disjoint from all existing
arrangement vertices and edges.
Precondition: pred1->target() and pred2->target() are as-
sociated with c’s endpoints.
Precondition: If pred1->target and pred2->target() are al-
ready connected by an edge, this edge represents an x-
monotone curve that is interior-disjoint from c).

advanced

•Modifying Vertices and Edges:

Vertex handle arr.modify vertex( Vertex handle v, Point 2 p)

sets p to be the point associated with the vertex v. The
function returns a handle for the modified vertex (same as
v).
Precondition: v is not a vertex at infinity and p is geomet-
rically equivalent to the point currently associated with v.

Face handle arr.remove isolated vertex( Vertex handle v)

removes the isolated vertex v from the arrangement. The
function returns the face f that used to contain the isolated
vertex.
Precondition: v is an isolated vertex (has no incident
edges).

Halfedge handle arr.modify edge( Halfedge handle e, X monotone curve 2 c)

sets c to be the x-monotone curve associated with the edge
e. The function returns a handle for the modified edge
(same as e).
Precondition: c is geometrically equivalent to the curve
currently associated with e.
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Halfedge handle arr.split edge( Halfedge handle e, X monotone curve 2 c1, X monotone curve 2 c2)

splits the edge e into two edges (more precisely, into two
halfedge pairs), associated with the given subcurves c1
and c2, and creates a vertex that corresponds to the split
point. The function returns a handle for the halfedge,
whose source is the same as e->source() and whose target
vertex is the split point.
Precondition: Either c1’s left endpoint and c2’s right end-
point correspond to e’s end-vertices such that c1’s right
endpoint and c2’s left endpoint are equal and define the
split point — or vice-versa (with change of roles between
c1 and c2).

Halfedge handle arr.merge edge( Halfedge handle e1, Halfedge handle e2, X monotone curve 2 c)

merges the edges represented by e1 and e2 into a single
edge, associated with the given merged curve c. Denote
e1’s end-vertices as u1 and v, while e2’s end-vertices are
denoted u2 and v. The function removes the common ver-
tex v returns a handle for one of the merged halfedges, di-
rected from u1 to u2.
Precondition: e1 and e2 share a common end-vertex, such
that the two other end-vertices of the two edges are associ-
ated with c’s endpoints.

Face handle arr.remove edge( Halfedge handle e,
bool remove source = true,
bool remove target = true)

removes the edge e from the arrangement. Since the e
may be the only edge incident to its source vertex (or its
target vertex), this vertex can be removed as well. The
flags remove source and remove target indicate whether
the endpoints of e should be removed, or whether they
should be left as isolated vertices in the arrangement. If
the operation causes two faces to merge, the merged face
is returned. Otherwise, the face to which the edge was in-
cident is returned.

Miscellaneous

bool arr.is valid() const returns true if arr represents a valid instance of
Arrangement 2<Traits,Dcel>. In particular, the functions
checks the topological structure of the arrangement and as-
sures that it is valid. In addition, the function performs sev-
eral simple geometric tests to ensure the validity of some
of the geometric properties of the arrangement. Namely,
it checks that all arrangement vertices are associated with
distinct points, and that the halfedges around every vertex
are ordered clockwise.
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See Also

ArrangementDcel(page 2232)
Arr default dcel<Traits> (page 2247)
ArrangementBasicTraits 2(page 2255)
CGAL::is valid(page 2211)
Insertion functions (page 2212, page 2214, page 2215, page 2216)
Removal functions (page 2219, page 2220)
CGAL::overlay(page 2221)
Input/output functions (page 2228,page 2230)
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CGAL::Arr accessor<Arrangement>

Definition

Arr accessor<Arrangement> provides an access to some of the private Arrangement functions. Users may use
these functions to achieve more efficient programs when they have the exact topological information required
by the specialized functions.

It is however highly recommended to be very careful when using the accessor functions that modify the ar-
rangement. As we have just mentioned, these functions have very specific requirement on their input on one
hand, and perform no preconditions on the other hand, so providing incorrect topological input may invalidate
the arrangement.

#include <CGAL/Arr accessor.h>

Types

Arr accessor<Arrangement>:: Arrangement 2 the type of the associated arrangement.

typedef typename Arrangement 2::Point 2

Point 2; the point type.
typedef typename Arrangement 2::X monotone curve 2

X monotone curve 2;

the x-monotone curve type.

typedef typename Arrangement 2::Vertex handle

Vertex handle;
typedef typename Arrangement 2::Halfedge handle

Halfedge handle;
typedef typename Arrangement 2::Face handle

Face handle;
typedef typename Arrangement 2::Ccb halfedge circulator

Ccb halfedge circulator;

represents the boundary of a connected component (CCB).

Creation

Arr accessor<Arrangement> acc( Arrangement 2& arr);

constructs an accessor attached to the given arrangement arr.
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Accessing the notification functions

void acc.notify before global change()

notifies the arrangement observer that a global change is go-
ing to take place (for the usage of the global functions that
operate on arrangements).

void acc.notify after global change()

notifies the arrangement observer that a global change has
taken place (for the usage of the global functions that operate
on arrangements).

advanced

Arrangement Predicates

Halfedge handle acc.locate around vertex( Vertex handle v, X monotone curve 2 c) const

locates a place for the curve c around the vertex v and re-
turns a halfedge whose target is v, where c should be inserted
between this halfedge and the next halfedge around v in a
clockwise order.

int acc.halfedge distance( Halfedge const handle e1, Halfedge const handle e2) const

counts the number of edges along the path from e1 to e2. In
case the two halfedges do not belong to the same connected
component, the function returns (-1).

bool acc.is inside new face( Halfedge handle pred1,
Halfedge handle pred2,
X monotone curve 2 c) const

determines whether a new halfedge we are about to create,
which is to be associated with the curve c and directed from
pred1->target() to pred2->target(), lies on the inner CCB of
the new face that will be created, introducing this new edge.
Precondition: pred1->target() and pred2->target() are asso-
ciated with c’s endpoints.
Precondition: pred1 and pred2 belong to the same connected
component, such that a new face is created by connecting
pred1->target() and pred2->target().

bool acc.point is in( Point 2 p, Halfedge const handle he) const

determines whether a given point lies within the region
bounded by a boundary of the connected component that he
belongs to. Note that if the function returns true, then p is
contained within he->face() (but not on its boundary), or in-
side one of the holes inside this face, or it may coincide with
an isolated vertex in this face.
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bool acc.is on outer boundary( Halfedge const handle he) const

determines whether he lies on the outer boundary of its inci-
dent face.

bool acc.is on inner boundary( Halfedge const handle he) const

determines whether he lies on the inner boundary of its inci-
dent face (that is, whether it lies on the boundary of one of
the holes in this face).

Arrangement Modifiers

Vertex handle acc.create vertex( Point 2 p)

creates a new vertex an associates it with the point p. It is the
user’s responsibility that there is no existing vertex already
associated with p.

Halfedge handle acc.insert in face interior ex( X monotone curve 2 c,
Face handle f,
Vertex handle v1,
Vertex handle v2,
Comparison result res)

inserts the curve c as a new hole (inner component) of the
face f , connecting the two isolated vertices v1 and v2. res is
the comparison result between these two end-vertices. The
function returns a handle for one of the new halfedges corre-
sponding to the inserted curve, directed from v1 to v2.
Precondition: It is the user’s responsibility that v1 and v2 are
associated with c’s endpoints, that they lie of f ’s interior and
that and that they have no incident edges.

Halfedge handle acc.insert from vertex ex( X monotone curve 2 c,
Halfedge handle pred,
Vertex handle v,
Comparison result res)

inserts the curve c into the arrangement, such that one of its
endpoints corresponds to an arrangement, which is the tar-
get vertex of the halfedge pred, such that c is inserted to the
circular list of halfedges around pred->target() right between
pred and its successor. The other end-vertex is given by an
isolated vertex v, where res is the comparison result between
pred->target() and v. The function returns a handle for one
of the new halfedges directed from pred->target() to v.
Precondition: It is the user’s responsibility that pred->
target() and v are associated with c’s endpoints and that and
that v has no incident edges.
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Halfedge handle acc.insert at vertices ex( X monotone curve 2 c,
Halfedge handle pred1,
Halfedge handle pred2,
Comparison result res,
bool& new face)

inserts the curve c into the arrangement, such that both c’s
endpoints correspond to existing arrangement vertices, given
by pred1->target() and pred2->target(). res is the compari-
son result between these two end-vertices. The function cre-
ates a new halfedge pair that connects the two vertices (with
pred1 and pred2 indicate the exact place for these halfedges
around the two target vertices) and returns a handle for the
halfedge directed from pred1->target() to pred2->target().
The output flag new face indicates whether a new face has
been created following the insertion of the new curve.
Precondition: It is the user’s responsibility that pred1->
target() and pred2->target() are associated with c’s endpoints
and that if a new face is created, then is inside new face
(pred1, pred2, c) is true.

void acc.insert isolated vertex( Face handle f, Vertex handle v)

inserts v as an isolated vertex inside f .
Precondition: It is the user’s responsibility that v->point() is
contained in the interior of the given face.

void acc.move hole( Face handle f1, Face handle f2, Ccb halfedge circulator hole)

moves the given hole from the interior of the face f1 inside
the face f2.
Precondition: It is the user’s responsibility that hole is cur-
rently contained in f1 and should be moved to f2.

bool acc.move isolated vertex( Face handle f1, Face handle f2, Vertex handle v)

moves the given isolated vertex from the interior of the face
f1 inside the face f2.
Precondition: It is the user’s responsibility that v is indeed an
isolated vertex currently contained in f1 and should be moved
to f2.

void acc.relocate in new face( Halfedge handle he)

relocates all holes and isolated vertices to their proper po-
sition immediately after a face has split due to the insertion
of a new halfedge, namely after insert at vertices ex() was
invoked and indicated that a new face has been created. he
is the halfegde returned by insert at vertices ex(), such that
he->twin()->face is the face that has just been split and he->
face() is the newly created face.
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void acc.relocate holes in new face( Halfedge handle he)

relocates all holes in a new face, as detailed above.

void acc.relocate isolated vertices in new face( Halfedge handle he)

relocates all isolated vertices in a new face, as detailed above.

Vertex handle acc.modify vertex ex( Vertex handle v, Point 2 p)

modifies the point associated with the vertex v (the point may
be geometrically different than the one currently associated
with v). The function returns a handle to the modified vertex
(same as v).
Precondition: It is the user’s responsibility that no other ar-
rangement vertex is already associated with p.

Halfedge handle acc.modify edge ex( Halfedge handle e, X monotone curve 2 c)

modifies the x-monotone curve associated with the edge e
(the curve c may be geometrically different than the one cur-
rently associated with e). The function returns a handle to
the modified edge (same as e).
Precondition: It is the user’s responsibility that the interior of
c is disjoint from all existing arrangement vertices and edges.

Halfedge handle acc.split edge ex( Halfedge handle he,
Point 2 p,
X monotone curve 2 c1,
X monotone curve 2 c2)

splits a given edge into two at the split point p, and associate
the x-monotone curves c1 and c2 with the resulting edges,
such that c1 connects he->source() with p and c2 connects p
with he->target(). The function return a handle to the split
halfedge directed from he->source() to the split point p.
Precondition: It is the user’s responsibility that the endpoints
of c1 and c2 correspond to p and to he’s end-vertices, as in-
dicated above.

Halfedge handle acc.split edge ex( Halfedge handle he,
Vertex handle v,
X monotone curve 2 c1,
X monotone curve 2 c2)

splits a given edge into two at by the vertex v, and associate
the x-monotone curves c1 and c2 with the resulting edges,
such that c1 connects he->source() with v and c2 connects v
with he->target(). The function return a handle to the split
halfedge directed from he->source() to v.
Precondition: It is the user’s responsibility that the endpoints
of c1 and c2 correspond to v and to he’s end-vertices, as indi-
cated above. It is also assumed that v has no incident edges.

2203



Face handle acc.remove edge ex( Halfedge handle he,
bool remove source = true,
bool remove target = true)

removes the edge he from the arrangement, such that if the
edge removal causes the creation of a new hole, he->target()
lies on the boundary of this hole. The flags remove source
and remove target indicate whether the end-vertices of he
should be removed as well, in case they have no other inci-
dent edges. If the operation causes two faces to merge, the
merged face is returned. Otherwise, the face to which the
edge was incident is returned.

advanced
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CGAL::Arrangement 2<Traits,Dcel>::Vertex

Definition

An object v of the class Vertex represents an arrangement vertex, that is — a 0-dimensional cell, associated with
a point on the plane.

Inherits From

typename Dcel::Vertex

Creation

Vertex v; default constructor.

Access Functions

All non-const methods listed below also have const counterparts that return constant handles, iterators or circu-
lators:

bool v.is at open boundary() const

checks whether the vertex lies at infinity and not associated with
a point with bounded coordinates.

bool v.is isolated() const

checks whether the vertex is isolated (i.e., has no incident
edges).

typename Dcel::Size v.degree() const

returns the number of edges incident to v.

Halfedge around vertex circulator v.incident halfedges()

returns a circulator circulator that allows going over the
halfedges incident to v (that have v as their target). The edges
are traversed in a clockwise direction around v.
Precondition: v is not an isolated vertex.

Face handle v.face() returns a handle to the face that contains v in its interior.
Precondition: v is an isolated vertex.

typename Traits::Point 2 v.point() const returns the point associated with the vertex.
Precondition: v is not a vertex at infinity.
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Arr parameter space v.parameter space in x() const

returns the placement of the x-coordinate in the parameter
space, that is, either the left boundary-side, the interior, or the
right boundary-side.

Arr parameter space v.parameter space in y() const

returns the placement of the y-coordinate in the parameter
space, that is, either the bottom boundary-side, the interior, or
the top boundary-side.
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CGAL::Arrangement 2<Traits,Dcel>::Halfedge

Definition

An object e of the class Halfedge represents a halfedge in the arrangement. A halfedge is directed from its
source vertex to its target vertex, and has an incident face lying to its right. Each halfedge has a twin halfedge
directed in the opposite direction, where the pair of twin halfedges form together an arrangement edge, that is
— a 1-dimensional cell, associated with planar x-monotone curve.

Halfedges are stored in doubly-connected lists and form chains. These chains define the inner and outer bound-
aries of connected components.

Inherits From

typename Dcel::Halfedge

Creation

Halfedge e; default constructor.

Access Functions

All non-const methods listed below also have const counterparts that return constant handles, iterators or circu-
lators:

bool e.is fictitious() const

returns whether the halfedge is fictitious (i.e., connects two ver-
tices at infinity and is not associated with a valid curve).

Vertex handle e.source() returns a handle for the source vertex of e.
Vertex handle e.target() returns a handle for the target vertex of e.

Arr halfedge direction e.direction() const

returns the direction of the halfedge: ARR LEFT TO RIGHT if
e’s source vertex is lexicographically smaller than it target (so
the halfedge is directed from left to right), and ARR RIGHT
TO LEFT if it is lexicographically larger than the target (so the
halfedge is directed from right to left).

Face handle e.face() returns the face that e is incident to (The face lies to the left of e).

Halfedge handle e.twin() returns the twin halfedge.

Halfedge handle e.prev() returns e’s predecessor in the connected component it belongs to.
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Halfedge handle e.next() returns e’s successor in the connected component it belongs to.

Ccb halfedge circulator e.ccb() returns a circulator that allows traversing the halfedges of the con-
nected component boundary (CCB) that contains e. The circulator
is initialized to point to e.

typename Traits::X monotone curve 2

e.curve() const

returns the x-monotone curve associated with e.
Precondition: e is not a fictitious halfedge.
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CGAL::Arrangement 2<Traits,Dcel>::Face

Definition

An object of the class Face represents an arrangement face, namely, a 2-dimensional arrangement cell. An
arrangement that supports only bounded curves contains exactly one unbounded face, and a number of bounded
faces. An arrangement that supports also unbounded curves has one or more unbounded faces. Such an ar-
rangement has also exactly one fictitious face, which does not correspond to a real two-dimensional cell of the
arrangement (and thus it is ignored in counting the number of faces of the arrangement.) Each bounded face
has an outer boundary comprising a halfedge chain winding in counterclockwise orientation around it. Each
unbounded face of an arrangement that has a fictitious face also has a boundary comprising a counterclockwise
halfedge-chain. The edges on the boundary of a face incident to the fictitious face are fictitious, as they do not
correspond to real curves. A face may also contain holes, which are defined by clockwise-oriented halfedge
chains, and isolated vertices.

Inherits From

typename Dcel::Face

Creation

Face f ; default constructor.

Access Functions

All non-const methods listed below also have const counterparts that return constant handles, iterators or circu-
lators:

bool f .is fictitious() const returns a Boolean indicating whether this is the fictitious
face, which contain the entire arrangement (and does not
have an outer CCB). An arrangement that supports only
bounded curves does not have a fictitious face at all.

bool f .is unbounded() const

returns a Boolean indicating whether the face is unbounded.

bool f .has outer ccb() const

returns a Boolean indicating whether the face has an outer
CCB. (The fictitious face and the unbounded face of an ar-
rangement that does not have a fictitious face do not have
outer CCBs.)
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Ccb halfedge circulator

f .outer ccb() returns a circulator that enables traversing the outer bound-
ary of f . The edges along the CCB are traversed in a coun-
terclockwise direction.
Precondition: The face f has an outer CCB.

Hole iterator f .holes begin() returns an iterator for traversing all the holes (inner CCBs) of
f .

Hole iterator f .holes end() returns a past-the-end iterator for the holes of f .

Isolated vertex iterator

f .isolated vertices begin()

returns an iterator for traversing all the isolated vertices con-
tained in the interior of f .

Isolated vertex iterator

f .isolated vertices end()

returns a past-the-end iterator for the isolated vertices con-
tained inside f .
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CGAL::is valid

Definition

The function is valid checks the validity of a given arrangement.

#include <CGAL/Arrangement 2.h>

template<typename Traits, typename Dcel>
bool is valid( Arrangement 2<Traits, Dcel> arr)

Invokes the member function arr.is valid() to verify the topological correctness of the arrangement. Then it
performs additional validity tests. It checks that all x-monotone curves associated with arrangement edges are
pairwise disjoint in their interior. Then it makes sure that all holes and all isolated vertices are located within
the proper arrangement faces. Note that the test carried out by this function may take a considerable amount of
time; it is recommended to be used only for debugging purposes.

Requirements

The instantiated traits class must model the concept ArranagmentXMonotoneTraits 2.
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CGAL::insert

Definition

The function insert inserts one or more curves or x-monotone curves into a given arrangement, where no re-
strictions are imposed on the inserted curves. If an inserted curve is not x-monotone curve, it is subdivided into
x-monotone subcurves (and perhaps isolated points), which are inserted into the arrangement.

#include <CGAL/Arrangement 2.h>

template<class Traits, class Dcel, class Curve, class PointLocation>
void insert( Arrangement 2<Traits,Dcel>& arr, Curve c, PointLocation pl = walk pl)

Inserts the given curve c into the arrangement arr. c is subdivided into x-monotone subcurves (and perhaps iso-
lated points). Each subcurve is in turn inserted into the arrangement by locating its left endpoint and computing
its zone until reaching the right endpoint.

The given point-location object pl is used to locate the left endpoints of the x-monotone curves. By default, the
function uses the “walk along line” point-location strategy — namely an instance of the class Arr walk along
line point location<Arrangement 2<Traits,Dcel> >.

Precondition: If provided, pl must be attached to the given arrangement arr.

template<typename Traits, typename Dcel>
void insert( Arrangement 2<Traits,Dcel>& arr,

typename Traits::X monotone curve 2 xc,
Object obj)

Inserts thex-monotone (only) curve xc into the arrangement arr. The object obj, which either wraps a Vertex
const handle, a Halfedge const handle, or a Face const handle, represents the location of xc’s left endpoint in
the arrangement. The zone of xc is computed starting from the feature represented by obj. As in the case above,
the zone computation terminates, when the right endpoint is reached. Thus, point-location is not required.

template<class Traits, class Dcel, class InputIterator>
void insert( Arrangement 2<Traits,Dcel>& arr, InputIterator first, InputIterator last)

Aggregately inserts the curves or x-monotone curves in the range [first,last) into the arrangement arr using the
sweep-line framework.

#include <CGAL/Arrangement with history 2.h>

template<typename Traits, typename Dcel, typename PointLocation>
typename Arrangement with history 2<Traits,Dcel>::Curve handle

insert( Arrangement with history 2<Traits,Dcel>& arr,
typename Traits::Curve 2 c,
PointLocation pl = walk pl)

Inserts the given curve c into the arrangement with history arr, and returns a handle to the inserted curve. c is
subdivided into x-monotone subcurves (and perhaps isolated points). Each subcurve is in turn inserted into the
arrangement by locating its left endpoint and computing its zone until reaching the right endpoint.
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The given point-location object pl is used to locate the left endpoints of the x-monotone curves. By default, the
function uses the “walk along line” point-location strategy — namely an instance of the class Arr walk along
line point location<Arrangement 2<Traits,Dcel> >.

Precondition: If provided, pl is attached to the given arrangement arr.

template<class Traits, class Dcel, InputIterator>
void insert( Arrangement with history 2<Traits,Dcel>& arr, InputIterator first, InputIterator last)

Aggregately inserts the curves in the range [first,last) into the arrangement with history arr using the sweep-line
framework.

Requirements

• If the curve is x-monotone curve then The instantiated Traits class must model the
ArrangementXMonotoneTraits 2 concept. In case that the curve is not x-monotone then the in-
stantiated Traits class must model the ArrangementTraits 2 concept. That is, it should define the
Curve 2 type, and support its subdivision into x-monotone subcurves (and perhaps isolated points).

• The point-location object pl, must model the ArrangementPointLocation 2 concept.
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CGAL::insert non intersecting curve

Definition

The function insert non intersecting curve inserts a given x-monotone curve into a given arrangement, where
the interior of the given curve is disjoint from all existing arrangement vertices and edges. Under this assump-
tion, it is possible to locate the endpoints of the given curve in the arrangement, and use one of the specialized
insertion member-functions of the arrangement according to the results. The insertion operations creates a sin-
gle new edge, that is, two twin halfedges, and the function returns a handle for the one directed lexicographically
in increasing order (from left to right).

A given point-location object is used for answering the two point-location queries on the given curve endpoints.
By default, the function uses the “walk along line” point-location strategy — namely, an instance of the class
Arr walk along line point location<Arrangement 2<Traits,Dcel> >.

#include <CGAL/Arrangement 2.h>

template<typename Traits, typename Dcel, typename PointLocation>
typename Arrangement 2<Traits,Dcel>::Halfedge handle

insert non intersecting curve( Arrangement 2<Traits,Dcel>& arr,
typename Traits::X monotone curve 2 xc,
PointLocation pl = walk pl)

Precondition: If provided, pl must be attached to the given arrangement arr.

Requirements

• The instantiated Traits class must model the restricted ArrangementBasicTraits 2 concept, as no inter-
sections are computed.

• The point-location object pl must model the ArrangementPointLocation 2 concept.
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CGAL::insert non intersecting curves

Definition

The function insert non intersecting curves inserts a set of x-monotone curves in a given range into a given
arrangement. The insertion is performed in an aggregated manner, using the sweep-line algorithm. The input
curves should be pairwise disjoint in their interior and pairwise interior-disjoint from all existing arrangement
vertices and edges.

#include <CGAL/Arrangement 2.h>

template<typename Traits, typename Dcel, InputIterator>
void insert non intersecting curves( Arrangement 2<Traits,Dcel>& arr,

InputIterator first,
InputIterator last)

Requirements

• The instantiated Traits class must model the ArrangementBasicTraits 2 concept, as no intersections are
computed.

• InputIterator::value type must be Traits::X monotone curve 2
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CGAL::insert point

Definition

The function insert point inserts a given point into a given arrangement. It uses a given point-location object to
locate the given point in the given arrangement. If the point conincides with an existing vertex, there is nothing
left to do; if it lies on an edge, the edge is split at the point. Otherwise, the point is contained inside a face, and is
inserted as an isolated vertex inside this face. By default, the function uses the “walk along line” point-location
strategy — namely, an instance of the class Arr walk along line point location<Arrangement 2<Traits,Dcel>
>. In either case, the function returns a handle for the vertex associated with the point.

#include <CGAL/Arrangement 2.h>

template<typename Traits, typename Dcel, typename PointLocation>
typename Arrangement 2<Traits,Dcel>::Vertex handle

insert point( Arrangement 2<Traits,Dcel>& arr,
typename Traits::Point 2 p,
PointLocation pl = walk pl)

Precondition: If provided, pl must be attached to the given arrangement arr.

Requirements

• The instantiated Traits class must model the ArrangementXMonotoneTraits 2 concept. Not all expres-
sions listed by this concept are required. In fact the traits class must model the ArrangementBasicTraits 2
concept, and support the splitting functionality.

• The point-location object pl, must model the ArrangementPointLocation 2 concept.
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CGAL::zone

Definition

The function zone compute the zone of the given x-monotone curve in the existing arrangement. Meaning, it
output the arrangement’s vertices, edges and faces that the x-monotone curve intersects. The order of the objects
is the order that they are discovered when traversing the x-monotone curve from left to right.

A given point-location object is used for answering point-location queries during the insertion process. By
default, the function uses the “walk along line” point-location strategy — namely an instance of the class Arr
walk along line point location<Arrangement 2<Traits,Dcel> >.

#include <CGAL/Arrangement 2.h>

template <class GeomTraits, class TopTraits, class OutputIterator, class PointLocation>
OutputIterator zone( Arrangement on surface 2<GeomTraits, TopTraits>& arr,

typename GeomTraits::X monotone curve 2 c,
OutputIterator oi,
PointLocation pl)

Compute the zone of the given x-monotone curve c in the arrangement arr.

Precondition: If provided, pl must be attached to the given arrangement arr.

Requirements

• The instantiated GeomTraits class must model the ArrangementXMonotoneTraits 2 concept.

• The point-location object pl, must model the ArrangementPointLocation 2 concept.

2217



F
un

ct
io

n

CGAL::do intersect

Definition

The function do intersect checks if a given curve or x-monotone curve intersects an existing arrangement’s
edges or vertices.

If the give curve is not an x-monotone curve then the function subdivides the given curve into x-monotone
subcurves and isolated vertices . Each subcurve is in turn checked for intersection. The function uses the zone
algorithm to check if the curve intersects the arrangement. First, the curve’s left endpoint is located. Then, its
zone is computed starting from its left endpoint location. The zone computation terminates when an intersection
with an arrangement’s edge/vertex is found or when the right endpoint is reached.

A given point-location object is used for locating the left endpoint of the given curve in the existing arrangement.
By default, the function uses the “walk along line” point-location strategy — namely an instance of the class
Arr walk along line point location<Arrangement 2<Traits,Dcel> >.

#include <CGAL/Arrangement 2.h>

template <class GeomTraits, class TopTraits, class Curve, class PointLocation>
bool do intersect( Arrangement on surface 2<GeomTraits, TopTraits>& arr,

Curve c,
PointLocation pl)

Checks if the given curve or x-monotone curve c intersects edges or vertices of the existing arrangement arr.

Precondition: If provided, pl must be attached to the given arrangement arr.

Requirements

• If c is x-monotone then the instantiated GeomTraits class must model the ArrangementXMonotoneTraits
2 concept. If c is a curve then the instantiated GeomTraits class must model the ArrangementTraits 2
concept. That is, it should define the Curve 2 type, and support its subdivision into x-monotone subcurves
(and perhaps isolated points).

• The point-location object pl, must model the ArrangementPointLocation 2 concept.
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CGAL::remove edge

Definition

The function remove edge removes an edge given by one of the twin halfedges that forms it, from a given
arrangement. Once the edge is removed, if the vertices associated with its endpoints become isolated, they are
removed as well. The call remove edge(arr, e) is equivalent to the call arr.remove edge (e, true, true). However,
this free function requires that Traits be a model of the refined concept ArrangementXMonotoneTraits 2, which
requires merge operations on x-monotone curves. If one of the end-vertices of the given edge becomes redundant
after the edge is removed (see remove vertex() for the definition of a redundant vertex), it is removed, and its
incident edges are merged. If the edge-removal operation causes two faces to merge, the merged face is returned.
Otherwise, the face to which the edge was incident before the removal is returned.

#include <CGAL/Arrangement 2.h>

template<typename Traits, typename Dcel>
typename Arrangement 2<Traits,Dcel>::Face handle

remove edge( Arrangement 2<Traits,Dcel>& arr,
typename Arrangement 2<Traits,Dcel>::Halfedge handle e)

Requirements

• The instantiated traits class must model the concept ArrangementXMonotoneTraits 2.
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CGAL::remove vertex

Definition

The function remove vertex attempts to removed a given vertex from a given arrangement. The vertex can be
removed if it is either an isolated vertex, (and has no incident edge,) or if it is a redundant vertex. That is, it
has exactly two incident edges, whose associated curves can be merged to form a single x-monotone curve. The
function returns a boolean value that indicates whether it succeeded removing the vertex from the arrangement.

#include <CGAL/Arrangement 2.h>

template <typename Traits, typename Dcel>
bool remove vertex( Arrangement 2<Traits,Dcel>& arr,

typename Arrangement 2<Traits,Dcel>::Vertex handle v)

Requirements

• The instantiated Traits class must model the ArrangementXMonotoneTraits 2 concept. Not all expres-
sions listed by this concept are required. In fact the traits class must model the ArrangementBasicTraits 2
concept and support the merging functionality.
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CGAL::overlay

Definition

The function overlay computes the overlay of two input arrangement objects, and returns the overlaid arrange-
ment. All three arrangements can be instantiated with different geometric traits classes and different DCEL
(encapsulated in the various topology-traits classes) classes. The geometry traits of the resulting arrangement is
used to construct the resulting arrangement. This means that all the types (e.g., Traits::Point 2, Traits::Curve 2,
and Traits::Point 2) of both input arrangements have to be convertible to the types in the resulting arrangement.
A given overlay-traits object is used to properly construct the overlaid DCEL that represents the resulting ar-
rangement.

#include <CGAL/Arr overlay 2.h>

template <class GeomTraitsA, class GeomTraitsB, class GeomTraitsRes, class TopTraitsA, class TopTraitsB,
class TopTraitsRes, class OverlayTraits>
void overlay( Arrangement 2<GeomTraitsA, TopTraitsA> arr1,

Arrangement 2<GeomTraitsB, TopTraitsB> arr2,
Arrangement 2<GeomTraitsRes, TopTraitsRes>& arr res,
OverlayTraits& ovl tr)

Computes the overlay of two arrangements arr1 and arr2, and sets the output arrangement res to represent the
overlaid arrangement.

Precondition: res does not refer to either arr1 or arr2 (that is, “self overlay” is not supported).

template <class GeomTraitsA, class GeomTraitsB, class GeomTraitsRes, class TopTraitsA, class TopTraitsB,
class TopTraitsRes>
void overlay( Arrangement 2<GeomTraitsA, TopTraitsA> arr1,

Arrangement 2<GeomTraitsB, TopTraitsB> arr2,
Arrangement 2<GeomTraitsRes, TopTraitsRes>& arr res)

Computes the (simple) overlay of two arrangements arr1 and arr2, and sets the output arrangement res to
represent the overlaid arrangement. It employs the default overlay-traits, which practically does nothing.

Precondition: res does not refer to either arr1 or arr2 (that is, “self overlay” is not supported).

#include <CGAL/Arrangement with history 2.h>

template<typename Traits, typename Dcel1, typename Dcel2, typename ResDcel, typename OverlayTraits>
void overlay( Arrangement with history 2<Traits,Dcel1> arr1,

Arrangement with history 2<Traits,Dcel2> arr2,
Arrangement with history 2<Traits,ResDcel>& res,
OverlayTraits& ovl tr)

Computes the overlay of two arrangements with history arr1 and arr2, and sets the output arrangement with
history res to represent the overlaid arrangement. The function also constructs a consolidated set of curves that
induce res.
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Precondition: res does not refer to either arr1 or arr2 (that is, “self overlay” is not supported).

template<typename Traits, typename Dcel1, typename Dcel2, typename ResDcel>
void overlay( Arrangement with history 2<Traits,Dcel1> arr1,

Arrangement with history 2<Traits,Dcel2> arr2,
Arrangement with history 2<Traits,ResDcel>& res)

Computes the (simple) overlay of two arrangements with history arr1 and arr2, and sets the output arrangement
with history res to represent the overlaid arrangement. The function also constructs a consolidated set of curves
that induce res. It employs the default overlay-traits, which practically does nothing.

Precondition: res does not refer to either arr1 or arr2 (that is, “self overlay” is not supported).

Requirements

• The overlay-traits object ovl tr must model the OverlayTraits concept, which is able to construct records
of the ResDcel class on the basis of the Dcel1 and Dcel2 records that induce them.

See Also

OverlayTraits(page 2223)
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OverlayTraits

A model for the OverlayTraits should be able to operate on records (namely, vertices, halfedges and faces) of
two input DCEL classes, named Dcel A and Dcel B, and construct the records of an output DCEL class, referred
to as Dcel R.

Models for the concept are used by the global overlay() function to maintain the auxiliary data stored with the
DCEL records of the resulting overlaid arrangement, based on the contents of the input records.

Types

OverlayTraits:: Vertex handle A a constant handle a vertex in Dcel A.
OverlayTraits:: Halfedge handle A a constant handle to a halfedge in Dcel A.
OverlayTraits:: Face handle A a constant handle to a face Dcel A.

OverlayTraits:: Vertex handle B a constant handle to a vertex in Dcel B.
OverlayTraits:: Halfedge handle B a constant handle to a halfedge in Dcel B.
OverlayTraits:: Face handle B a constant handle to a face in Dcel B.

OverlayTraits:: Vertex handle R a handle to a vertex in Dcel R.
OverlayTraits:: Halfedge handle R a handle to a halfedge in Dcel R.
OverlayTraits:: Face handle R a handle to a faces in Dcel R.

Functions

Whenever a vertex in the overlaid arrangement is created, one of the following functions is called in order to
attach the appropriate auxiliary data to this vertex:

void ovl tr.create vertex( Vertex handle A v1,
Vertex handle B v2,
Vertex handle R v) const

constructs the vertex v induced by the coinciding vertices v1
and v2.

void ovl tr.create vertex( Vertex handle A v1,
Halfedge handle B e2,
Vertex handle R v) const

constructs the vertex v induced by the vertex v1 that lies on
the halfedge e2.

void ovl tr.create vertex( Vertex handle A v1,
Face handle B f2,
Vertex handle R v) const

constructs the vertex v induced by the vertex v1 that lies in-
side the face f2.
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void ovl tr.create vertex( Halfedge handle A e1,
Vertex handle B v2,
Vertex handle R v) const

constructs the vertex v induced by the vertex v2 that lies on
the halfedge e1.

void ovl tr.create vertex( Face handle A f1,
Vertex handle B v2,
Vertex handle R v) const

constructs the vertex v induced by the vertex v2 that lies in-
side the face f1.

void ovl tr.create vertex( Halfedge handle A e1,
Halfedge handle B e2,
Vertex handle R v) const

constructs the vertex v induced by the intersection of the
halfedges e1 and e2.

Whenever an edge in the overlaid arrangement is created, one of the following functions is called in order to
attach the appropriate auxiliary data to this vertex. Note that an edge is created after both its end-vertices are
created, (and the corresponding create vertex() methods were invoked). In all cases, the edge is represented by
a halfedge e directed in lexicographic decreasing order (from right to left). The create edge() method should
attach auxiliary data to the twin halfedge (namely to e->twin()) as well:

void ovl tr.create edge( Halfedge handle A e1,
Halfedge handle B e2,
Halfedge handle R e) const

constructs the halfedge e induced by an overlap between the
halfedges e1 and e2.

void ovl tr.create edge( Halfedge handle A e1,
Face handle B f2,
Halfedge handle R e) const

constructs the halfedge e induced by the halfedge e1 that lies
inside the face f2.

void ovl tr.create edge( Face handle A f1,
Halfedge handle B e2,
Halfedge handle R e) const

constructs the halfedge e induced by the halfedge e2 that lies
inside the face f1.

The following function is invoked whenever a new face is created. It is guaranteed that all halfedges along the
face boundary have already been created an have their auxiliary data fields attached to them:
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void ovl tr.create face( Face handle A f1, Face handle B f2, Face handle R f) const

constructs the face f induced by the an overlap between the
faces f1 and f2.

Has Models

Arr default overlay traits<Arrangement> (page 2226)
Arr face overlay traits<Arr1,Arr2,ResArr,OvlFaceData> (page 2227)

See Also

overlay (page 2221)
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CGAL::Arr default overlay traits<Arrangement>

Definition

An instance of Arr default overlay traits<Arrangement> should be used for overlaying two arrangements of
type Arrangement that store no auxiliary data with their DCEL records, where the resulting overlaid arrange-
ment stores no auxiliary DCEL data as well. This class simply gives empty implementation for all traits-class
functions.

#include <CGAL/Arr default overlay traits.h>

Is Model for the Concepts

OverlayTraits

See Also

overlay (page 2221)

2226



C
la

ss

CGAL::Arr face overlay traits<Arr A,Arr B,Arr R,OvlFaceData>

Definition

An instance of Arr face overlay traits<Arr A,Arr B,Arr R,OvlFaceData> should be used for overlaying two
arrangements of types Arr A and Arr B, which are instantiated using the same geometric traits-class and with
the DCEL classes Dcel A and Dcel B respectively, in order to store their overlay in an arrangement of type Arr
R, which is instantiated using a third DCEL class Dcel R. All three DCEL classes are assumed to be instantiations
of the Arr face extended dcel template with types FaceData A, FaceData B and FaceData R, respectively.

This class gives empty implementation for all overlay traits-class functions, except the function that computes
the overlay of two faces. In this case, it uses the functor OvlFaceData, which accepts a FaceData A object and
a FaceData B object and computes a corresponding FaceData R object, in order to set the auxiliary data of the
overlay face.

#include <CGAL/Arr default overlay traits.h>

Is Model for the Concepts

OverlayTraits

See Also

overlay (page 2221)
CGAL::Arr face extended dcel<Traits,FData,V,H,F> (page 2248)
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CGAL::read

Definition

The function read reads a given arrangement from a given input stream using a specific input format.

#include <CGAL/IO/Arr iostream.h>

template<typename Traits, typename Dcel, typename Formatter>
std::istream& read( Arrangement 2<Traits,Dcel>& arr, std::istream& is, Formatter& formatter)

Reads the arrangement object arr from the given input stream is using a specific input format defined by for-
matter.

#include <CGAL/IO/Arr with history iostream.h>

template<typename Traits, typename Dcel, typename WithHistoryFormatter>
std::istream& read( Arrangement with history 2<Traits,Dcel>& arr,

std::istream& is,
WithHistoryFormatter& formatter)

Reads the arrangement-with-history object arr from the given input stream is using a specific input format
defined by formatter.

Requirements

• The instantiated Formatter class must model the ArrangementInputFormatter concept.

• The instantiated WithHistoryFormatter class must model the ArrangementWithHistoryInputFormatter
concept.

See Also

write(page 2230)
operator<< page 2231
operator>> page 2229
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CGAL::operator>>

Definition

Extracts an arrangement from a given input stream using the input format defined by the Arr text formatter
class — that is, only the basic geometric and topological features of the arrangement are read and no auxiliary
data is attached to the DCEL features.

#include <CGAL/IO/Arr iostream.h>

template<class Traits, class Dcel>
std::istream& std::istream& is >> Arrangement 2<Traits,Dcel>& arr

Extracts an arrangement-with-history from a given input stream using the default input format.

#include <CGAL/IO/Arr with history iostream.h>

template<class Traits, class Dcel>
std::istream& std::istream& is >> Arrangement with history 2<Traits,Dcel>& arr

See Also

read(page 2228)
write(page 2230)
operator>> page 2231
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CGAL::write

Definition

The function write writes a given arrangement into a given output stream using a specific output format.

#include <CGAL/IO/Arr iostream.h>

template<typename Traits, typename Dcel, typename Formatter>
std::ostream& write( Arrangement 2<Traits,Dcel> arr, std::ostream& os, Formatter& formatter)

Writes the arrangement object arr into the given output stream os using a specific output format defined by
formatter.

#include <CGAL/IO/Arr with history iostream.h>

template<typename Traits, typename Dcel, typename WithHistoryFormatter>
std::ostream& write( Arrangement with history 2<Traits,Dcel> arr,

std::ostream& os,
WithHistoryFormatter& formatter)

Writes the arrangement-with-history object arr into the given output stream os using a specific output format
defined by formatter.

Requirements

• The instantiated Formatter class must model the ArrangementOutputFormatter concept.

• The instantiated WithHistoryFormatter class must model the ArrangementWithHistoryOutputFormatter
concept.

See Also

read(page 2228)
operator<< page 2231
operator>> page 2229
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CGAL::operator<<

Definition

The function operator<< inserts an object into a given output stream.

#include <CGAL/IO/Arr iostream.h>

template<typename Traits, typename Dcel>
std::ostream& std::ostream& os << Arrangement 2<Traits,Dcel> arr

Inserts the arrangement object arr into the output stream os using the output format defined by the Arr text
formatter class. Only the basic geometric and topological features of the arrangement are inserted. Auxiliary
data that may be attached to the DCEL features is ignored.

#include <CGAL/IO/Arr with history iostream.h>

template<typename Traits, typename Dcel>
std::ostream& std::ostream& os << Arrangement with history 2<Traits,Dcel> arr

Inserts the arrangement-with-history object arr into the output stream os using the output format defined by the
Arr with history text formatter class. Only the basic geometric and topological features of the arrangement are
inserted. Auxiliary data that may be attached to the DCEL features is ignored.

Inserts a polyline into a given Qt widget stream. Only the basic geometric and topological features of the
polylines are written. Auxiliary data that might be attached is lost.

#include <CGAL/IO/Qt widget Polyline 2.h>

template<typename SegmentTraits>
Qt widget& std::ostream& os << Polyline 2<SegmentTraits> polyline

Inserts a conic arc into a given Qt widget stream. Only the basic geometric and topological features of the conic
arcs are written. Auxiliary data that might be attached is lost.

#include <CGAL/IO/Qt widget Conic arc 2.h>

template<typename ConicArc>
Qt widget& std::ostream& os << Conic x monotone arc 2<ConicArc> cv

See Also

read(page 2228)
write(page 2230)
operator>> page 2229
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ArrangementDcel

Definition

A doubly-connected edge-list (DCEL for short) data-structure. It consists of three containers of records: vertices
V , halfedges E, and faces F . It maintains the incidence relation among them. The halfedges are ordered in pairs
sometimes referred to as twins, such that each halfedge pair represent an edge.

A model of the ArrangementDcel concept must provide the following types and operations. (In addition
to the requirements here, the local types Vertex,Halfedge, Face Hole and Isolated vertex must be models
of the concepts ArrangementDcelVertex(page 2236), ArrangementDcelHalfedge(page 2238), ArrangementD-
celFace(page 2241), ArrangementDcelHole(page 2243), and ArrangementDcelIsolatedVertex (page 2244) re-
spectively.)

Types

ArrangementDcel:: Vertex the vertex type.
ArrangementDcel:: Halfedge the halfedge type.
ArrangementDcel:: Face the face type.
ArrangementDcel:: Hole the hole type.
ArrangementDcel:: Isolated vertex the isolated vertex type.

ArrangementDcel:: Size used to represent size values (e.g., size t).

ArrangementDcel:: Vertex iterator a bidirectional iterator over the vertices. Its value-type is Ver-
tex.

ArrangementDcel:: Halfedge iterator a bidirectional iterator over the halfedges. Its value-type is
Halfedge.

ArrangementDcel:: Face iterator a bidirectional iterator over the faces. Its value-type is Face.

The non-mutable iterators Vertex const iterator, Halfedge const iterator and Face const iterator are also de-
fined.

Creation

ArrangementDcel dcel; constructs an empty DCEL with one unbounded face.

Face* dcel.assign( Self other, const Face *uf)

assigns the contents of the other DCEL whose unbounded
face is given by uf , to dcel. The function returns a pointer to
the unbounded face of dcel after the assignment.

Access Functions

Size dcel.size of vertices() const

returns the number of vertices.
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Size dcel.size of halfedges() const

returns the number of halfedges (always even).

Size dcel.size of faces() const

returns the number of faces.

Size dcel.size of holes() const

returns the number of holes (the number of connected com-
ponents).

Size dcel.size of isolated vertices() const

returns the number of isolated vertices.

The following operations have an equivalent const operations that return the corresponding non-mutable itera-
tors:

Vertex iterator dcel.vertices begin() returns a begin-iterator of the vertices in dcel.
Vertex iterator dcel.vertices end() returns a past-the-end iterator of the vertices in dcel.

Halfedge iterator dcel.halfedges begin()

returns a begin-iterator of the halfedges in dcel.

Halfedge iterator dcel.halfedges end() returns a past-the-end iterator of the halfedges in dcel.

Face iterator dcel.faces begin() returns a begin-iterator of the faces in dcel.
Face iterator dcel.faces end() returns a past-the-end iterator of the faces in dcel.

Modifiers

The following operations allocate a new element of the respective type. Halfedges are always allocated in pairs
of opposite halfedges. The halfedges and their opposite pointers are automatically set.

Vertex* dcel.new vertex() creates a new vertex.
Halfedge* dcel.new edge() creates a new pair of twin halfedges.
Face* dcel.new face() creates a new face.
Hole* dcel.new hole() creates a new hole record.
Isolated vertex* dcel.new isolated vertex()

creates a new isolated vertex record.

void dcel.delete vertex( Vertex* v)

deletes the vertex v.

void dcel.delete edge( Halfedge* e)

deletes the halfedge e as well as its twin.

void dcel.delete face( Face* f)

deletes the face f .
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void dcel.delete hole( Hole* ho)

deletes the hole ho.

void dcel.delete isolated vertex( Isolated vertex* iv)

deletes the isolated vertex iv.

Has Models

Arr dcel base<V,H,F>(page 2245)
Arr default dcel<Traits> (page 2247)
Arr face extended dcel<Traits,FData,V,H,F> (page 2248)
Arr extended dcel<Traits,VData,HData,FData,V,H,F> (page 2249)

See Also

ArrangementDcelVertex(page 2236)
ArrangementDcelHalfedge(page 2238)
ArrangementDcelFace(page 2241)
ArrangementDcelHole(page 2243)
ArrangementDcelIsolatedVertex (page 2244)
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ArrangementDcelWithRebind

Definition

The concept ArrangementDcelWithRebind refines the ArrangementDcel concept by adding a policy clone idiom
in form of a rebind struct-template.

Instantiate a dcel class with many different possible types without ad-hoc limitations on type of the dcel classes.

Refines

ArrangementDcel

Types

ArrangementDcelWithRebind:: template <class T> rebind

allows the instantiation of a model of the base concept
ArrangementDcel with a different possible geometry-traits
class without ad-hoc limitations on it.
Following the standard clone policy, the rebind struct-
template must have a nested type named other that defines
the type of the model replica.

Creation

ArrangementDcelWithRebind dcel; constructs an empty DCEL with one unbouned face.

Has Models

Arr default dcel<Traits> (page 2247)
Arr face extended dcel<Traits,FData,V,H,F> (page 2248)
Arr extended dcel<Traits,VData,HData,FData,V,H,F> (page 2249)
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ArrangementDcelVertex

Definition

A vertex record in a DCEL data structure. A vertex is always associated with a point. However, the vertex record
only stores a pointer to the associated point, and the actual Point object is stored elsewhere.

A vertex usually has several halfedges incident to it, such that it is possible to access one of these halfedges
directly and to traverse all incident halfedges around the vertex. However, the DCEL may also contain isolated
vertices that have no incident halfedges. In this case, the vertex stores an isolated vertex-information record,
indicating the face that contains this vertex in its interior.

Types

ArrangementDcelVertex:: Halfedge the corresponding DCEL halfedge type.
ArrangementDcelVertex:: Isolated vertex the corresponding DCEL isolated vertex-information type.

ArrangementDcelVertex:: Point the point type associated with the vertex.

Creation

ArrangementDcelVertex v; default constructor.

void v.assign( Self other) assigns v with the contents of the other vertex.

Access Functions

All functions below also have const counterparts, returning non-mutable pointers or references:

bool v.is isolated() const returns whether the vertex is isolated (has no incident
halfedges).

Halfedge* v.halfedge() returns an incident halfedge that has v as its target.
Precondition: v is not an isolated vertex.

Isolated vertex* v.isolated vertex() returns the isolated vertex-information record.
Precondition: v is an isolated vertex.

bool v.has null point() const

returns whether the vertex is not associated with a valid point
(i.e. it lies at infinity).

Point& v.point() returns the associated point.
Precondition: v() is associated with a valid point.
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Arr parameter space

v.parameter space in x() const

returns the placement of the x-coordinate in the parameter
space, that is, either the left boundary-side, the interior, or
the right boundary-side.

Arr parameter space

v.parameter space in y() const

returns the placement of the y-coordinate in the parameter
space, that is, either the bottom boundary-side, the interior,
or the top boundary-side.

Modifiers

void v.set halfedge( Halfedge* e)

sets the incident halfedge, marking v as a regular vertex.

void v.set isolated vertex( Isolated vertex* iv)

sets the isolated vertex-information record, marking v as an
isolated vertex.

void v.set point( Point* p) sets the associated point.

void v.set boundary( Arr parameter space inf x, Arr parameter space inf y)

sets v as a vertex on a boundary side.
Precondition: Either inf x or inf y is not ARR INTERIOR.

See Also

ArrangementDcel (page 2232)
ArrangementDcelHalfedge (page 2238)
ArrangementDcelIsolatedVertex (page 2244)

2237



C
on

ce
pt

ArrangementDcelHalfedge

Definition

A halfedge record in a DCEL data structure. Two halfedges with opposite directions always form an edge (a
halfedge pair). The halfedges form together chains, defining the boundaries of connected components, such that
all halfedges along a chain have the same incident face. Note that the chain the halfedge belongs to may form
the outer boundary of a bounded face (an outer CCB) or the boundary of a hole inside a face (an inner CCB).

An edge is always associated with a curve, but the halfedge records only store a pointer to the associated curve,
and the actual curve objects are stored elsewhere. Two opposite halfedges are always associated with the same
curve.

Types

ArrangementDcelHalfedge:: Vertex the corresponding DCEL vertex type.
ArrangementDcelHalfedge:: Face the corresponding DCEL face type.
ArrangementDcelHalfedge:: Hole the corresponding DCEL hole type.

ArrangementDcelHalfedge:: X monotone curve

the curve type associated with the edge.

Creation

ArrangementDcelHalfedge e; default constructor.

void e.assign( Self other) assigns e with the contents of the other halfedge.

Access Functions

Arr halfedge direction

e.direction() const returns ARR LEFT TO RIGHT if e’s source vertex is lexi-
cographically smaller than it target, and ARR RIGHT TO
LEFT if it is lexicographically larger than the target.

bool e.is on hole() const determines whether the e lies on an outer CCB of a bounded
face, or on an inner CCB (a hole inside a face). The function
returns true if e lies on a hole.

All functions below also have const counterparts, returning non-mutable pointers or references:

Halfedge* e.opposite() returns the twin halfedge.

Halfedge* e.prev() returns the previous halfedge along the chain.
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Halfedge* e.next() returns the next halfedge along the chain.

Vertex* e.vertex() returns the target vertex.

Face* e.face() returns the incident face.
Precondition: e lies on the outer boundary of this face.

Hole* e.hole() returns the hole (inner CCB) e belongs to.
Precondition: e lies on a hole inside its incident face.

bool e.has null curve() const

returns whether the vertex is not associated with a valid
curve.

X monotone curve& e.curve() returns the associated curve.
Precondition: e is associated with a valid curve.

Modifiers

void e.set opposite( Halfedge* opp)

sets the opposite halfedge.

void e.set direction( Arr halfedge direction dir)

sets the lexicographical order between e’s source and target
vertices to be dir. The direction of the opposite halfedge is
also set to the opposite direction.

void e.set prev( Halfedge* prev)

sets the previous halfedge of e along the chain, and updates
the cross-pointer prev->next().

void e.set next( Halfedge* next)

sets the next halfedge of e along the chain, and updates the
cross-pointer next->prev().

void e.set vertex( Vertex* v)

sets the target vertex.

void e.set face( Face* f) sets the incident face, marking that e lies on the outer CCB
of the face f .
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void e.set hole( Hole* ho) sets the incident hole, marking that e lies on an inner CCB.

void e.set curve( X monotone curve* c)

sets the associated curve of e and its opposite halfedge.

See Also

ArrangementDcel (page 2232)
ArrangementDcelVertex (page 2236)
ArrangementDcelFace (page 2241)
ArrangementDcelHole (page 2243)
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ArrangementDcelFace

Definition

A face record in a DCEL data structure. A face may either be unbounded, otherwise it has an incident halfedge
along the chain defining its outer boundary. A face may also contain holes and isolated vertices in its interior.

Types

ArrangementDcelFace:: Vertex the corresponding DCEL vertex type.
ArrangementDcelFace:: Halfedge the corresponding DCEL halfedge type.

ArrangementDcelFace:: Hole iterator a bidirectional iterator over the holes in inside the face. Its
value-type is Halfedge*.

ArrangementDcelFace:: Isolated vertex iterator

a bidirectional iterator over the isolated vertices in inside the
face. Its value-type is Vertex*.

The non-mutable iterators Hole const iterator, and Isolated vertex const iterator are also defined.

Creation

ArrangementDcelFace f ; default constructor.

void f .assign( Self other) assigns f with the contents of the other face.

Access Functions

All functions below also have const counterparts, returning non-mutable pointers or iterators:

bool f .is unbounded() const

returns whether the face is unbounded.

Halfedge* f .halfedge() returns an incident halfedge along the outer boundary of the
face. If f has no outer boundary, the function returns NULL.

size t f .number of holes() const

returns the number of holes inside f .

Hole iterator f .holes begin() returns a begin-iterator for the holes inside f .
Hole iterator f .holes end() returns a past-the-end iterator for the holes inside f .

2241



size t f .number of isolated vertices() const

returns the number of isolated vertices inside f .

Isolated vertex iterator

f .isolated vertices begin()

returns a begin-iterator for the isolated vertices inside f .

Isolated vertex iterator

f .isolated vertices end()

returns a past-the-end iterator for the isolated vertices inside
f .

Modifiers

void f .set unbounded( bool flag)

sets the face as unbounded (if flag is true), or as a bounded
face (if it is false).

void f .set halfedge( Halfedge* e)

sets the incident halfedge.

void f .add hole( Halfedge* e)

adds e as a hole inside f .

void f .erase hole( Hole iterator it)

removes the hole that it points to from inside f .

void f .add isolated vertex( Vertex* v)

adds v as an isolated vertex inside f .

void f .erase isolated vertex( Isolated vertex iterator it)

removes the isolated vertex that it points to from inside f .

See Also

ArrangementDcel (page 2232)
ArrangementDcelVertex (page 2236)
ArrangementDcelHalfedge (page 2238)
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ArrangementDcelHole

Definition

A hole record in a DCEL data structure, which stores the face that contains the hole in its interior, along with an
iterator for the hole in the holes’ container of this face.

Types

ArrangementDcelHole:: Face the corresponding DCEL face type.

typedef Face::Hole iterator

Hole iterator;

Creation

ArrangementDcelHole ho; default constructor.

Access Functions

All functions below also have const counterparts, returning non-mutable pointers or iterators:

Face* ho.face() returns the incident face, which contains ho in its interior.

Hole iterator ho.iterator() returns an iterator for the hole.

Modifiers

void ho.set face( Face* f) sets the incident face.

void ho.set iterator( Hole iterator it)

sets the hole iterator.

See Also

ArrangementDcel (page 2232)
ArrangementDcelFace (page 2241)
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ArrangementDcelIsolatedVertex

Definition

An isolated vertex-information record in a DCEL data structure, which stores the face that contains the isolated
vertex in its interior, along with an iterator for the isolated vertex in the isolated vertices’ container of this face.

Types

ArrangementDcelIsolatedVertex:: Face the corresponding DCEL face type.

typedef Face::Isolated vertex iterator

Isolated vertex iterator;

Creation

ArrangementDcelIsolatedVertex iv; default constructor.

Access Functions

All functions below also have const counterparts, returning non-mutable pointers or iterators:

Face* iv.face() returns the incident face, which contains iv in its interior.

Isolated vertex iterator

iv.iterator() returns an iterator for the isolated vertex.

Modifiers

void iv.set face( Face* f) sets the incident face.

void iv.set iterator( Isolated vertex iterator it)

sets the isolated vertex iterator.

See Also

ArrangementDcel (page 2232)
ArrangementDcelFace (page 2241)
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CGAL::Arr dcel base<V,H,F>

Definition

The Arr dcel base<V,H,F> class is an important ingredient in the definition of DCEL data structures. It serves
as a basis class for any instance of the Dcel template parameter of the Arrangement 2 template. In particular
it is the basis class of the default Dcel template parameter, and the basis class of any extended DCEL. The
template parameters V , H, and F must be instantiated with models of the concepts ArrangementDcelVertex,
ArrangementDcelHalfedge, and ArrangementDcelFace respectively.

#include <CGAL/Arr dcel base.h>

Is Model for the Concepts

ArrangementDcel

Class Arr vertex base<Point>

Definition

The basic DCEL vertex type. Serves as a basis class for an extended vertex record with auxiliary data fields.
The Point parameter is the type of points associated with the vertices.

Is Model for the Concepts

ArrangementDcelVertex

Class Arr halfedge base<Curve>

Definition

The basic DCEL halfedge type. Serves as a basis class for an extended halfedge record with auxiliary data fields.
The Curve parameter is the type of x-monotone curves associated with the vertices.

Is Model for the Concepts

ArrangementDcelHalfedge

Class Arr face base
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Definition

The basic DCEL face type. Serves as a basis class for an extended face record with auxiliary data fields.

Is Model for the Concepts

ArrangementDcelFace
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CGAL::Arr default dcel<Traits>

Definition

The default DCEL class used by the Arrangement 2 class-template is parameterized by a traits class, which is
a model of the ArrangementBasicTraits 2 concept. It simply uses the nested Traits::Point 2 and Traits::X
monotone curve 2 to instantiate the base vertex and halfedge types, respectively. Thus, the default DCEL
records store no other information, except for the topological incidence relations and the geometric data at-
tached to vertices and edges.

#include <CGAL/Arr default dcel.h>

Is Model for the Concepts

ArrangementDcelWithRebind

Inherits From

Arr dcel base<Arr vertex base<typename Traits ::Point 2>,
Arr halfedge base<typename Traits ::X monotone curve 2>,
Arr face base>

See Also

Arr dcel base<V,H,F> (page 2245)
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CGAL::Arr face extended dcel<Traits,FData,V,H,F>

Definition

The Arr face extended dcel<Traits,FData,V,H,F> class-template extends the DCEL face-records, making it
possible to store extra (non-geometric) data with the arrangement faces. The class should be instantiated by an
FData type which represents the extra data stored with each face.

Note that all types of DCEL features (namely vertex, halfedge and face) are provided as template parameters.
However, by default they are defined as follows:

V = Arr vertex base<typename Traits::Point 2>
H = Arr halfedge base<typename Traits::X monotone curve 2>
F = Arr face base

#include <CGAL/Arr extended dcel.h>

Is Model for the Concepts

ArrangementDcelWithRebind

Inherits From

Arr dcel base<V, H, Arr extended face<F, FData> >

See Also

Arr dcel base<V,H,F> (page 2245)
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CGAL::Arr extended dcel<Traits,VData,HData,FData,V,H,F>

Definition

The Arr extended dcel<Traits,VData,HData,FData,V,H,F> class-template extends the topological-features of
the DCEL namely the vertex, halfedge, and face types. While it is possible to maintain extra (non-geometric)
data with the curves or points of the arrangement by extending their types respectively, it is also possi-
ble to extend the vertex, halfedge, or face types of the DCEL through inheritance. As the technique to
extend these types is somewhat cumbersome and difficult for inexperienced users, the Arr extended dcel<
Traits,VData,HData,FData,V,H,F> class-template provides a convenient way to do that. Each one of the three
features is extended with a corresponding data type provided as parameters. This class template is also parame-
terized with a traits class used to extract default values for the vertex, halfedge, and face base classes, which are
the remaining three template parameters respectively. The default values follow:

V = Arr vertex base<typename Traits::Point 2>
H = Arr halfedge base<typename Traits::X monotone curve 2>
F = Arr face base

#include <CGAL/Arr extended dcel.h>

Is Model for the Concepts

ArrangementDcelWithRebind

Inherits From

Arr dcel base<Arr extended vertex<V, VData>,
Arr extended halfedge<H, HData>,
Arr extended face<F, FData> >

See Also

Arr dcel base<V,H,F> (page 2245)
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CGAL::Arr extended vertex<VertexBase,VData>

Definition

The Arr extended vertex<VertexBase,VData> class-template extends the vertex topological-features of the
DCEL. It is parameterized by a vertex base-type VertexBase and a data type VData used to extend the ver-
tex base-type.

#include <CGAL/Arr extended dcel.h>

Is Model for the Concepts

ArrangementDcelVertex

Inherits From

VertexBase

Creation

void v.assign( Self other) assigns v with the contents of the other vertex.

Access Functions

VData v.data() const obtains the auxiliary data (a non-const version, returning a ref-
erence to a mutable data object is also available).

Modifiers

void v.set data( VData data) sets the auxiliary data.

See Also

Arr dcel base<V,H,F> (page 2245)
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CGAL::Arr extended halfedge<HalfedgeBase,HData>

Definition

The Arr extended halfedge<HalfedgeBase,HData> class-template extends the halfedge topological-features of
the DCEL. It is parameterized by a halfedge base-type HalfedgeBase and a data type HData used to extend the
halfedge base-type.

#include <CGAL/Arr extended dcel.h>

Is Model for the Concepts

ArrangementDcelHalfedge

Inherits From

HalfedgeBase

Creation

void he.assign( Self other) assigns he with the contents of the other vertex.

Access Functions

HData he.data() const obtains the auxiliary data (a non-const version, returning a ref-
erence to a mutable data object is also available).

Modifiers

void he.set data( HData data) sets the auxiliary data.

See Also

Arr dcel base<V,H,F> (page 2245)
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CGAL::Arr extended face<FaceBase,FData>

Definition

The Arr extended face<FaceBase,FData> class-template extends the face topological-features of the DCEL. It
is parameterized by a face base-type FaceBase and a data type FData used to extend the face base-type.

#include <CGAL/Arr extended dcel.h>

Is Model for the Concepts

ArrangementDcelFace

Inherits From

FaceBase

Creation

void f .assign( Self other) assigns f with the contents of the other vertex.

Access Functions

FData f .data() const obtains the auxiliary data (a non-const version, returning a ref-
erence to a mutable data object is also available).

Modifiers

void f .set data( FData data) sets the auxiliary data.

See Also

Arr dcel base<V,H,F> (page 2245)
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CGAL::Arr curve end

Definition

The enumeration Arr curve end is used to indicate one of the two ends of an x-monotone curve. It is used by
models of the ArrangementOpenBoundaryTraits 2 concept.

#include <CGAL/Arr enums.h>

enum Arr curve end { ARR MIN END, ARR MAX END};

See Also

ArrangementOpenBoundaryTraits 2
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CGAL::Arr halfedge direction

Definition

The enumeration Arr halfedge direction is defined by CGAL::Arrangement 2<Traits,Dcel>::Halfedge to spec-
ify the direction of the halfedge.

#include <CGAL/Arr enums.h>

enum Arr halfedge direction { ARR LEFT TO RIGHT, ARR RIGHT TO LEFT};

See Also

CGAL::Arrangement 2<Traits,Dcel>::Halfedge
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ArrangementBasicTraits 2

Definition

The concept ArrangementBasicTraits 2 defines the minimal set of geometric predicates needed for the con-
struction and maintenance of objects of the class Arrangement 2, as well as performing simple queries (such as
point-location queries) on such arrangements.

A model of this concept must define nested Point 2 and X monotone curve 2 types, which represent planar
points and continuous x-monotone curves (a vertical segment is also considered to be weakly x-monotone),
respectively. The x-monotone curves are assumed to be pairwise disjoint in their interiors, so they do not
intersect except at their endpoints.

The X monotone curve 2 curves of an arrangement are confined to an iso-rectangular area called the parameter
space. The iso-rectangule can be unbounded, open, or closed. The set of predicates provided by a model
the concept ArrangementBasicTraits 2 is sufficient for constructing arrangements of x-monotone curves that
do not reach or approach the boundary of the parameter space. The nature of the input curves, whether they
are expected to reach or approach the left, right, bottom, or top side of the boundary of the parameter space,
are conveyed through the definition of four additional nested types, namely Left side category, Right side
category, Bottom side category, and Top side category. Each such type must be convertible to the type Arr
oblivious side tag.

Refines

DefaultConstructible, CopyConstructible, Assignable

Types

ArrangementBasicTraits 2:: Point 2 models the concept ArrTraits::Point 2.
ArrangementBasicTraits 2:: X monotone curve 2

models the concept ArrTraits::XMonotoneCurve 2.

Categories

ArrangementBasicTraits 2:: Has left category

indicates whether the nested functor Compare at x left 2 is
provided.

ArrangementBasicTraits 2:: Left side category

Must be convertible to Arr oblivious side tag.

ArrangementBasicTraits 2:: Bottom side category

Must be convertible to Arr oblivious side tag.
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ArrangementBasicTraits 2:: Top side category

Must be convertible to Arr oblivious side tag.

ArrangementBasicTraits 2:: Right side category

Must be convertible to Arr oblivious side tag.

Functor Types

ArrangementBasicTraits 2:: Compare x 2

models the concept ArrTraits::CompareX 2.

ArrangementBasicTraits 2:: Compare xy 2

models the concept ArrTraits::CompareXy 2.

ArrangementBasicTraits 2:: Construct min vertex 2

models the concept ArrTraits::ConstructMinVertex 2.

ArrangementBasicTraits 2:: Construct max vertex 2

models the concept ArrTraits::ConstructMaxVertex 2.

ArrangementBasicTraits 2:: Is vertical 2

models the concept ArrTraits::IsVertical 2.

ArrangementBasicTraits 2:: Compare y at x 2

models the concept ArrTraits::CompareYAtX 2.

ArrangementBasicTraits 2:: Compare y at x left 2

models the concept ArrTraits::CompareYAtXLeft 2. Required only if the Has left category cate-
gory is convertible to Tag true.

ArrangementBasicTraits 2:: Compare y at x right 2

models the concept ArrTraits::CompareYAtXRight 2.

ArrangementBasicTraits 2:: Equal 2

models the concept ArrTraits::Equal 2.

Accessing Functor Objects

Compare x 2 traits.compare x 2 object() const
Compare xy 2 traits.compare xy 2 object() const
Construct min vertex 2 traits.construct min vertex 2 object() const
Construct max vertex 2 traits.construct max vertex 2 object() const
Is vertical 2 traits.is vertical 2 object() const
Compare y at x 2 traits.compare y at x 2 object() const
Compare y at x left 2 traits.compare y at x left 2 object() const
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Compare y at x right 2 traits.compare y at x right 2 object() const
Equal 2 traits.equal 2 object() const

Has Models

CGAL::Arr segment traits 2<Kernel>
CGAL::Arr non caching segment basic traits 2<Kernel>
CGAL::Arr non caching segment traits 2<Kernel>
CGAL::Arr linear traits 2<Kernel>
CGAL::Arr polyline traits 2<SegmentTraits>
CGAL::Arr circle segment traits 2<Kernel>
CGAL::Arr line arc traits 2<CircularKernel>
CGAL::Arr circular arc traits 2<CircularKernel>
CGAL::Arr circular line arc traits 2<CircularKernel>
CGAL::Arr conic traits 2<RatKernel,AlgKernel,NtTraits>
CGAL::Arr rational function traits 2<AlgebraicKernel d 1>
CGAL::Arr Bezier curve traits 2<RatKernel,AlgKernel,NtTraits>
CGAL::Arr algebraic segment traits 2<Coefficient>
CGAL::Arr curve data traits 2<Tr,XData,Mrg,CData,Cnv>
CGAL::Arr consolidated curve data traits 2<Traits,Data>
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ArrTraits::Point 2

Definition

Represents a point in the plane.

Refines

DefaultConstructible, CopyConstructible, Assignable

Has Models

ArrangementBasicTraits 2::Point 2
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ArrTraits::XMonotoneCurve 2

Definition

Represents a planar (weakly) x-monotone curve.

Refines

DefaultConstructible, CopyConstructible, Assignable

Has Models

ArrangementBasicTraits 2::X monotone curve 2
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ArrTraits::CompareX 2

Refines

AdaptableBinaryFunction

Has Models

ArrangementBasicTraits 2::Compare x 2

Comparison result fo( ArrTraits::Point 2 p1, ArrTraits::Point 2 p2)

returns SMALLER, EQUAL, or LARGER according to the x-
ordering of points p1 and p2.
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ArrTraits::CompareXy 2

Refines

AdaptableBinaryFunction

Has Models

ArrangementBasicTraits 2::Compare xy 2

Comparison result fo( ArrTraits::Point 2 p1, ArrTraits::Point 2 p2)

returns SMALLER, EQUAL, or LARGER according to the
lexicographic xy-order of the points p1 and p2.
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ArrTraits::ConstructMinVertex 2

Refines

AdaptableUnaryFunction

Has Models

ArrangementBasicTraits 2::Construct min vertex 2

ArrTraits::Point 2 fo( ArrTraits::X monotone curve 2 xc)

returns the lexicographically smaller (left) endpoint of xc.
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ArrTraits::ConstructMaxVertex 2

Refines

AdaptableUnaryFunction

Has Models

ArrangementBasicTraits 2::Construct max vertex 2

ArrTraits::Point 2 fo( ArrTraits::X monotone curve 2 xc)

returns the lexicographically larger (right) endpoint of xc.
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ArrTraits::IsVertical 2

Refines

AdaptableUnaryFunction

Has Models

ArrangementBasicTraits 2::Is vertical 2

bool fo( ArrTraits::X monotone curve 2 xc)

determines whether xc is a vertical segment.

2264



C
on

ce
pt

ArrTraits::CompareYAtX 2

Refines

AdaptableBinaryFunction

Has Models

ArrangementBasicTraits 2::Compare y at x 2

Comparison result fo( ArrTraits::Point 2 p, ArrTraits::X monotone curve 2 xc)

compares the y-coordinates of p and the vertical projection
of p on xc, and returns SMALLER, EQUAL, or LARGER ac-
cording to the result.
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ArrTraits::CompareYAtXLeft 2

Refines

AdaptableTernaryFunction

Has Models

ArrangementBasicTraits 2::Compare y at x left 2

Comparison result fo.operator()( ArrTraits::X monotone curve 2 xc1,
ArrTraits::X monotone curve 2 xc2,
ArrTraits::Point 2 p)

accepts two x-monotone curves xc1 and xc2 that have a com-
mon right endpoint p, and returns SMALLER, EQUAL or
LARGER according to the relative position of the two curves
immediately to the left of p. Note that in case one of the x-
monotone curves is a vertical segment (emanating downward
from p), it is always considered to be below the other curve.
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ArrTraits::CompareYAtXRight 2

Refines

AdaptableTernaryFunction

Has Models

ArrangementBasicTraits 2::Compare y at x right 2

Comparison result fo.operator()( ArrTraits::X monotone curve 2 xc1,
ArrTraits::X monotone curve 2 xc2,
ArrTraits::Point 2 p)

accepts two x-monotone curves xc1 and xc2 that have a
common left endpoint p, and returns SMALLER, EQUAL or
LARGER according to the relative position of the two curves
immediately to the right of p. Note that in case one of the
x-monotone curves is a vertical segment emanating upward
from p, it is always considered to be above the other curve.
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ArrTraits::Equal 2

Refines

AdaptableBinaryFunction

Has Models

ArrangementBasicTraits 2::Equal 2

bool fo( ArrTraits::Point 2 p1, ArrTraits::Point 2 p2)

determines whether p1 and p2 are geometrically equivalent.

bool fo( ArrTraits::X monotone curve 2 xc1, ArrTraits::X monotone curve 2 xc2)

determines whether xc1 and xc2 are geometrically equivalent
(have the same graph).
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ArrangementLandmarkTraits 2

Definition

The concept ArrangementLandmarkTraits 2 refines the general traits concept by adding operations needed for
the landmarks point-location strategy, namely — approximating points and connecting points with a simple
x-monotone curve.

A model of this concept must define the Approximate number type, which is used to approximate the coordi-
nates of Point 2 instances. It is recommended to define the approximated number type as the built-in double
type.

Refines

ArrangementTraits 2

Types

ArrangementLandmarkTraits 2:: Approximate number type

the number type used to approximate point coordinates.

Functor Types

ArrangementLandmarkTraits 2:: Approximate 2

models the concept ArrTraits::Approximate 2.

ArrangementLandmarkTraits 2:: Construct x monotone curve 2

models the concept ArrTraits::ConstructXMonotoneCurve 2.

Accessing Functor Objects

Approximate 2 traits.approximate 2 object() const
Construct x monotone curve 2 traits.construct x monotone curve 2 object() const

Has Models

CGAL::Arr non caching segment traits 2<Kernel>
CGAL::Arr segment traits 2<Kernel>
CGAL::Arr linear traits 2<Kernel>
CGAL::Arr polyline traits 2<SegmentTraits>
CGAL::Arr conic traits 2<RatKernel,AlgKernel,NtTraits>
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See Also

ArrangementTraits 2(page 2279)

2270



C
on

ce
pt

ArrTraits::Approximate 2

Refines

Functor

Has Models

ArrangementLandmarkTraits 2::Approximate 2

Approximate number type

fo( ArrTraits::Point 2 p, int i)

returns an approximation of p’s x-coordinate (if i == 0), or
of p’s y-coordinate (if i == 1).
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ArrTraits::ConstructXMonotoneCurve 2

Refines

Functor

Has Models

ArrangementLandmarkTraits 2::Construct x monotone curve 2

ArrTraits::X monotone curve 2

fo( ArrTraits::Point 2 p1, ArrTraits::Point 2 p2)

returns an x-monotone curve connecting p1 and p2 (i.e., the
two input points are its endpoints).
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ArrangementXMonotoneTraits 2

Definition

The concept ArrangementXMonotoneTraits 2 refines the basic arrangement-traits concept. A model of this
concept is able to handle x-monotone curves that intersect in their interior (and points that coincide with curve
interiors). This is necessary for constructing arrangements of sets of intersecting x-monotone curves.

As the resulting structure, represented by the Arrangement 2 class, stores pairwise interior-disjoint curves, the
input curves are split at the intersection points before being inserted into the arrangement. A model of this
refined concept therefore needs to compute the intersections (and possibly overlaps) between two x-monotone
curves and to support curve splitting.

Refines

ArrangementBasicTraits 2

Types

ArrangementXMonotoneTraits 2:: Multiplicity the multiplicity type.

Tags

ArrangementXMonotoneTraits 2:: Has merge category indicates whether the nested functors Are
mergeable 2 and Merge 2 are provided.

Functor Types

ArrangementXMonotoneTraits 2:: Intersect 2

models the concept ArrTraits::Intersect 2.

ArrangementXMonotoneTraits 2:: Split 2

models the concept ArrTraits::Split 2.

The two following function-object types are optional. If they are supported, the Has merge category tag should
be defined as Tag true (and Tag false otherwise.

ArrangementXMonotoneTraits 2:: Are mergeable 2

models the concept ArrTraits::AreMergeable 2.

ArrangementXMonotoneTraits 2:: Merge 2

models the concept ArrTraits::Merge 2.
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Accessing Functor Objects

Intersect 2 traits.intersect 2 object() const
Split 2 traits.split 2 object() const

The two following methods are optional. If they are supported, the Has merge category tag should be defined
as Tag true (and Tag false otherwise.

Are mergeable 2 traits.are mergeable 2 object() const
Merge 2 traits.merge 2 object() const

Has Models

CGAL::Arr segment traits 2<Kernel>
CGAL::Arr non caching segment traits 2<Kernel>
CGAL::Arr linear traits 2<Kernel>
CGAL::Arr polyline traits 2<SegmentTraits>
CGAL::Arr circle segment traits 2<Kernel>
CGAL::Arr line arc traits 2<CircularKernel>
CGAL::Arr circular arc traits 2<CircularKernel>
CGAL::Arr circular line arc traits 2<CircularKernel>
CGAL::Arr conic traits 2<RatKernel,AlgKernel,NtTraits>
CGAL::Arr rational function traits 2<AlgebraicKernel d 1>
CGAL::Arr Bezier curve traits 2<RatKernel,AlgKernel,NtTraits>
CGAL::Arr algebraic segment traits 2<Coefficient>
CGAL::Arr curve data traits 2<Tr,XData,Mrg,CData,Cnv>
CGAL::Arr consolidated curve data traits 2<Traits,Data>

See Also

ArrangementBasicTraits 2(page 2255)
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ArrTraits::Intersect 2

Refines

Functor

Has Models

ArrangementXMonotoneTraits 2::Intersect 2

Output iterator fo.operator()( ArrTraits::X monotone curve 2 xc1,
ArrTraits::X monotone curve 2 xc2,
Output iterator& oi)

computes the intersections of xc1 and xc2 and inserts them
in an ascending lexicographic xy-order into the output itera-
tor oi. The value-type of Output iterator is CGAL::Object,
where each Object wraps either a pair<ArrTraits::Point
2,ArrTraits::Multiplicity> object, which represents an inter-
section point with its multiplicity (in case the multiplic-
ity is undefined or unknown, it should be set to 0) or
an ArrTraits::X monotone curve 2 object, representing an
overlapping subcurve of xc1 and xc2. The operator returns
a past-the-end iterator for the output sequence.
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ArrTraits::Split 2

Refines

Functor

Has Models

ArrangementXMonotoneTraits 2::Split 2

void fo.operator()( ArrTraits::X monotone curve 2 xc,
ArrTraits::Point 2 p,
ArrTraits::X monotone curve 2& xc1,
ArrTraits::X monotone curve 2& xc2)

accepts an input curve xc and a split point p in its interior.
It splits xc at the split point into two subcurves xc1 and xc2,
such that p is xc1’s right endpoint and xc2’s left endpoint.
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ArrTraits::AreMergeable 2

Refines

Functor

Has Models

ArrangementXMonotoneTraits 2::Are mergeable 2

bool fo( ArrTraits::X monotone curve 2 xc1, ArrTraits::X monotone curve 2 xc2)

accepts two x-monotone curves xc1 and xc2 and determines
whether they can be merged to form a single x-monotone
curve. xc1 and xc2 are mergeable if their underlying curves
are identical, they share a common endpoint, and they do not
bend to form a non-x-monotone curve.
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ArrTraits::Merge 2

Refines

Functor

Has Models

ArrangementXMonotoneTraits 2::Merge 2

void fo.merge( ArrTraits::X monotone curve 2 xc1,
ArrTraits::X monotone curve 2 xc2,
ArrTraits::X monotone curve 2& xc)

accepts two mergeable x-monotone curves xc1 and xc2 and
asigns xc with the merged curve.
Precondition: are mergeable 2(xc1, xc2) is true.
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ArrangementTraits 2

Definition

The concept ArrangementTraits 2 allows the construction of arrangement of general planar curves. Models of
this concept are used by the free insert() functions of the arrangement package and by the Arrangement with
history 2 class.

A model of this concept must define the nested Curve 2 type, which represents a general planar curve that is
not necessarily x-monotone and is not necessarily connected. Such curves are eventually subdivided into x-
monotone subcurves and isolated points (represented by the Point 2 and X monotone curve 2 types, defined in
the basic traits concept).

A model of the concept ArrangementTraits 2 that handles arbitrary curves, which are always x-monotone, such
as a traits class that handles linear curves may define the nested types Curve 2 and X monotone curve 2 to be
of equivalent types. Moreover, defining them as of equivalent types is advantageous, as it enables a generic
simple implementation of the nested Functor Make x monotone 2.

On the other hand, a model of the ArrangementTraits 2 concept that handles arbitrary curves, which may be
not x-monotone must define the Curve 2 and X monotone curve 2 nested types to be of different types to allow
proper dispatching of the free functions that accept such curves, such as intsert().

Refines

ArrangementXMonotoneTraits 2

Types

ArrangementTraits 2:: Curve 2 models the concept ArrTraits::Curve 2.

Functor Types

ArrangementTraits 2:: Make x monotone 2

models the concept ArrTraits::MakeXMonotone 2.

Accessing Functor Objects

Make x monotone 2 traits.make x monotone 2 object() const

Has Models

CGAL::Arr segment traits 2<Kernel>
CGAL::Arr non caching segment traits 2<Kernel>
CGAL::Arr linear traits 2<Kernel>
CGAL::Arr polyline traits 2<SegmentTraits>
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CGAL::Arr circle segment traits 2<Kernel>
CGAL::Arr line arc traits 2<CircularKernel>
CGAL::Arr circular arc traits 2<CircularKernel>
CGAL::Arr circular line arc traits 2<CircularKernel>
CGAL::Arr conic traits 2<RatKernel,AlgKernel,NtTraits>
CGAL::Arr rational function traits 2<AlgebraicKernel d 1>
CGAL::Arr Bezier curve traits 2<RatKernel,AlgKernel,NtTraits>
CGAL::Arr algebraic segment traits 2<Coefficient>
CGAL::Arr curve data traits 2<Tr,XData,Mrg,CData,Cnv>
CGAL::Arr consolidated curve data traits 2<Traits,Data>

See Also

ArrangementBasicTraits 2 (page 2255)
ArrangementXMonotoneTraits 2 (page 2273)
ArrangementLandmarkTraits 2 (page 2269)
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ArrTraits::Curve 2

Definition

represents a general planar curve.

Refines

DefaultConstructible, CopyConstructible, Assignable

Has Models

ArrangementTraits 2::Curve 2
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ArrTraits::MakeXMonotone 2

Refines

Functor

Has Models

ArrangementTraits 2::Make x monotone 2

template <typename OutputIterator>
OutputIterator fo( ArrTraits::Curve 2 c, OutputIterator oi)

subdivides the input curve c into x-monotone subcurves
and isolated points, and inserts the results into a con-
tainer through the given output iterator. The value type
of OutputIterator is CGAL::Object, where each Object
wraps either an ArrTraits::X monotone curve 2 object or a
ArrTraits::Point 2 object. The operator returns a past-the-
end iterator for the output sequence.
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CGAL::Arr segment traits 2<Kernel>

Definition

The traits class Arr segment traits 2<Kernel> is a model of the ArrangementTraits 2 concept, which allows the
construction and maintenance of arrangements of line segments. It should be parameterized with a CGAL-kernel
model that is templated in turn with a number type. To avoid numerical errors and robustness problems, the
number type should support exact rational arithmetic — that is, the number type should support the arithmetic
operations +, −, × and ÷ carried out without loss of precision.

For example, instantiating the traits template with kernels, such as Cartesian<Quotient<MP Float> >, or Homo-
geneous<Gmpz>, ensures the exact and robust operation of the application. In particular, the Cartesian<Gmpq>
achieves the fastest running times in most cases. Using other inexact number types (for example, instantiating
the template with Simple cartesian<double>) is at the user’s own risk: Selecting an inexact number type usually
leads to faster running time at the expense of possible robustness problems.

For optimal performance, we recommend instantiating the traits class with the default Exact predicates exact
constructions kernel provided by CGAL. Using this kernel guarantees exactness and robustness, while it incurs
only a minor overhead (in comparison to working with a fast, inexact number type) for most inputs.

Arr segment traits 2<Kernel> defines Kernel::Point 2 as its point type. However, it does not define
Kernel::Segment 2 as its curve type, as one may expect. The reason is that the kernel segment is represented by
its two endpoints only, while the traits class needs to store extra data with its segments, in order to efficiently
operate on them. Nevertheless, the nested X monotone curve 2 and Curve 2 types (in this case both types
refer to the same class, as every line segment is (weakly) x-monotone) can however be converted to the type
Kernel::Segment 2.

Arr segment traits 2<Kernel> achieves faster running times than the Arr non caching segment traits 2<
Kernel> traits-class, when arrangements with relatively many intersection points are constructed. It also allows
for working with less accurate, yet computationally efficient number types, such as Quotient<MP Float>, which
represents floating-point numbers with an unbounded mantissa, but with a bounded exponent. Using this traits
class is therefore highly recommended for almost all applications that rely on arrangements of line segments.
On the other hand, Arr segment traits 2<Kernel> uses more space and stores extra data with each segment, so
constructing arrangements of huge sets of non-intersecting segments (or segments that intersect very sparsely)
could be more efficient with the Arr non caching segment traits 2 traits-class.

While Arr segment traits 2<Kernel> models the concept ArrangementDirectionalXMonotoneTraits 2, the im-
plementation of the Arr mergeable 2 operation does not enforce the input curves to have the same direction as
a precondition. Moreover, Arr segment traits 2<Kernel> supports the merging of curves of opposite directions.

#include <CGAL/Arr segment traits 2.h>

Is Model for the Concepts

ArrangementTraits 2
ArrangementLandmarkTraits 2
ArrangementDirectionalXMonotoneTraits 2
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CGAL::Arr non caching segment basic traits 2<Kernel>

Definition

The traits class Arr non caching segment basic traits 2<Kernel> is a model of the ArrangementTraits 2 con-
cept that allow the construction and maintenance of arrangements of sets of pairwise interior-disjoint line seg-
ments. It is templated with a CGAL-Kernel model, and it is derived from it. This traits class is a thin layer above
the parameterized kernel. It inherits the Point 2 from the kernel and its X monotone curve 2 type is defined
as Kernel::Segment 2. Most traits-class functor are inherited from the kernel functor, and the traits class only
supplies the necessary functors that are not provided by the kernel. The kernel is parameterized with a number
type, which should support the arithmetic operations +,− and× in an exact manner in order to avoid robustness
problems. Using Cartesian<MP Float> or Cartesian<Gmpz> are possible instantiations for the kernel. Using
other (inexact) number types (for example, instantiating the template with Simple cartesian<double>) is also
possible, at the user’s own risk.

#include <CGAL/Arr non caching segment basic traits 2.h>

Is Model for the Concepts

ArrangementLandmarkTraits 2
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CGAL::Arr non caching segment traits 2<Kernel>

Definition

The traits class Arr non caching segment traits 2<Kernel> is a model of the ArrangementTraits 2 concept
that allows the construction and maintenance of arrangements of line segments. It is parameterized with a
CGAL-Kernel type, and it is derived from it. This traits class is a thin layer above the parameterized kernel.
It inherits the Point 2 from the kernel and its X monotone curve 2 and Curve 2 types are both defined as
Kernel::Segment 2. Most traits-class functor are inherited from the kernel functor, and the traits class only
supplies the necessary functors that are not provided by the kernel. The kernel is parameterized with a number
type, which should support exact rational arithmetic in order to avoid robustness problems, although other
number types could be used at the user’s own risk.

The traits-class implementation is very simple, yet may lead to a cascaded representation of intersection points
with exponentially long bit-lengths, especially if the kernel is parameterized with a number type that does not
perform normalization (e.g. Quotient<MP Float>). The Arr segment traits 2 traits class avoids this cascading
problem, and should be the default choice for implementing arrangements of line segments. It is recommended
to use Arr non caching segment traits 2<Kernel> only for very sparse arrangements of huge sets of input
segments.

While Arr non caching segment traits 2<Kernel>models the concept ArrangementDirectionalXMonotoneTraits
2, the implementation of the Arr mergeable 2 operation does not enforce the input curves to have the same
direction as a precondition. Moreover, Arr non caching segment traits 2<Kernel> supports the merging of
curves of opposite directions.

#include <CGAL/Arr non caching segment traits 2.h>

Is Model for the Concepts

ArrangementTraits 2
ArrangementLandmarkTraits 2
ArrangementDirectionalXMonotoneTraits 2

Inherits From

Arr non caching segment basic traits 2<Kernel>

See Also

Arr segment traits 2<Kernel>
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CGAL::Arr linear traits 2<Kernel>

Definition

The traits class Arr linear traits 2<Kernel> is a model of the ArrangementTraits 2 concept that allows for
the construction and maintenance of arrangements of linear objects which may be bounded (line segments) or
unbounded (rays and lines). The traits class is parameterized with a CGAL-kernel model; see the reference
page of Arr segment traits 2<Kernel> (page 2283) for further explanations and recommendations on choosing
a kernel.

Arr linear traits 2<Kernel> defines Kernel::Point 2 as its point type. The nested X monotone curve 2 and
Curve 2 types defined by the traits class (as is the case with the various segment-traits classes, both types refer
to the same class, as every linear object is (weakly) x-monotone), are constructible from a point, a line segment,
a ray and from a line (objects of types Kernel::Point 2, Kernel::Segment 2, Kernel::Ray 2 and Kernel::Line 2,
respectively). On the other hand, when we are given a curve we can find out its actual type and convert it to the
respective kernel object (say, to a Kernel::Ray 2).

#include <CGAL/Arr linear traits 2.h>

Is Model for the Concepts

ArrangementTraits 2
ArrangementLandmarkTraits 2

Class Arr linear traits 2<Kernel>::Curve 2

The Curve 2 (and the X monotone curve 2) class nested within the linear-traits can represent all types of linear
objects. The class supports the copy and default constructor and the assignment operator. In addition, the
operator<< and operator>> for linear objects are defined for standard output and input streams.

Types

typedef typename Kernel::Point 2

Point 2;
typedef typename Kernel::Segment 2

Segment 2;
typedef typename Kernel::Ray 2

Ray 2;
typedef typename Kernel::Line 2

Line 2;
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Creation

Arr linear traits 2<Kernel>::Curve 2 c( Point 2 p);

constructs an degenerate curve equivalent to the point p.

Arr linear traits 2<Kernel>::Curve 2 c( Segment 2 seg);

constructs an line segment.

Arr linear traits 2<Kernel>::Curve 2 c( Ray 2 ray);

constructs a ray.

Arr linear traits 2<Kernel>::Curve 2 c( Line 2 ln);

constructs a line.

Access Functions

bool c.is point() const returns whether c is a point (a degenerate curve).
Point 2 c.point() const returns a point object equivalent to c.

Precondition: c is a point.

bool c.is segment() const returns whether c is a segment (has two bounded endpoints).

Segment 2 c.segment() const returns a segment object equivalent to c.
Precondition: c is a segment.

bool c.is ray() const returns whether c is a ray (has a bounded source point and its
other end is unbounded).

Ray 2 c.ray() const returns a ray object equivalent to c.
Precondition: c is a ray.

bool c.is line() const returns whether c is a line (has only unbounded ends).
Line 2 c.line() const returns a line object equivalent to c.

Precondition: c is a line.

Line 2 c.supporting line() const

returns the supporting line of c.
Precondition: c is not a point (a degenerate curve).

Point 2 c.source() const returns c’s source point.
Precondition: c is a point, a segment or a ray.

Point 2 c.target() const returns c’s target point.
Precondition: c is a point or a segment.
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CGAL::Arr polyline traits 2<SegmentTraits>

Definition

The traits class Arr polyline traits 2<SegmentTraits> is a model of the ArrangementTraits 2 concept. It han-
dles piecewise linear curves, commonly referred to as polylines. Each polyline is a chain of segments, where
each two neighboring segments in the chain share a common endpoint. The traits class exploits the functionality
of the SegmentTraits template-parameter to handle the segments that comprise the polyline curves.

The class instantiated for the template parameter SegmentTraits must be a model of the ArrangementTraits 2
concept that handles line segments (e.g., Arr segment traits 2<Kernel> or Arr non caching segment traits 2<
Kernel>, where the first alternative is recommended).

The number type used by the injected segment traits should support exact rational arithmetic (that is, the number
type should support the arithmetic operations +,−,× and÷ that should be carried out without loss of precision),
in order to avoid robustness problems, although other inexact number types could be used at the user’s own risk.

#include <CGAL/Arr polyline traits 2.h>

Is Model for the Concepts

ArrangementTraits 2
ArrangementLandmarkTraits 2

Class Arr polyline traits 2<SegmentTraits>::Curve 2

The Curve 2 class nested within the polyline traits is used to represent general continuous piecewise-linear
curves (a polyline can be self-intersecting) and support their construction from any range of points.

The copy and default constructor as well as the assignment operator are provided for polyline curves. In addition,
an operator<< for the curves is defined for standard output streams, and an operator>> for the curves is defined
for standard input streams.

Types

Arr polyline traits 2<SegmentTraits>::Curve 2:: const iterator

A bidirectional iterator that allows traversing the points that
comprise a polyline curve.

Arr polyline traits 2<SegmentTraits>::Curve 2:: const reverse iterator

A bidirectional iterator that allows traversing the points that
comprise a polyline curve.
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Creation

Arr polyline traits 2<SegmentTraits>::Curve 2 pi;

default constructor that constructs an empty polyline.

template <class InputIterator>
Arr polyline traits 2<SegmentTraits>::Curve 2 pi( Iterator first, Iterator last);

constructs a polyline defined by the given range of
points [first, last) (the value-type of InputIterator must be
SegmentTraits::Point 2. If the range contains (n+1) points
labeled (p0, p1, . . . , pn), the generated polyline consists of n
segments, where the kth segment is defined by the endpoints
[pk−1, pk]. The first point in the range is considered as the
source point of the polyline while the last point is considered
as its target.
Precondition: There are at least two points in the range.

Access Functions

size t pi.points() const returns the number of points that comprise the polyline. Note
that if there are n points in the polyline, it is comprised of
(n−1) segments.

const iterator pi.begin() const returns an iterator pointing at the source point of the polyline.

const iterator pi.end() const returns an iterator pointing after the end of the polyline.

const iterator pi.rbegin() const returns an iterator pointing at the target point of the polyline.

const iterator pi.rend() const returns an iterator pointing before the beginning of the poly-
line.

size t pi.size() const returns the number of line segments comprising the polyline
(equivalent to pi.points() - 1).

typename SegmentTraits::X monotone curve 2

pi[ size t k] returns the kth segment of the polyline.
Precondition: k is not greater or equal to pi.size() - 1.

Bbox 2 pi.bbox() const return a bounding box of the polyline pi.

Operations

void pi.push back( Point 2 p)

adds a new point to the polyline, which becomes the new
target point of pi.
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void pi.clear() resets the polyline.

Class Arr polyline traits 2<SegmentTraits>::X monotone curve 2

The X monotone curve 2 class nested within the polyline traits is used to represent x-monotone piecewise linear
curves. It inherits from the Curve 2 type. It has a default constructor and a constructor from a range of points,
just like the Curve 2 class. However, there is precondition that the point range define an x-monotone polyline.

The points that define the x-monotone polyline are always stored in an ascending lexicographical xy-order, so
their order may be reversed with respect to the input sequence. Also note that the x-monotonicity ensures that
an x-monotone polyline is never self-intersecting (thus, a self-intersecting polyline will be subdivided to several
interior-disjoint x-monotone subcurves).

See Also

Arr segment traits 2<Kernel>
Arr non caching segment traits 2<Kernel>
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CGAL::Arr circle segment traits 2<Kernel>

Definition

The class Arr circle segment traits 2<Kernel> is a model of the ArrangementTraits 2 concept and can be used
to construct and maintain arrangements of circular arcs and line segments.

The traits class must be instantiated with a geometric kernel, such that the supporting circles of the circular arcs
are of type Kernel::Circle 2 and the supporting lines of the line segments are of type Kernel::Line 2. Thus, the
coordinates of the center of supporting circles, and its squared radius are of type Kernel::FT , which should be
an exact rational number-type; similarly, the coefficients of each supporting line ax+by+c = 0 are also of type
Kernel::FT . Note however that the intersection point between two such arcs do not have rational coordinates
in general. For this reason, we do not require the endpoints of the input arcs and segments to have rational
coordinates.

The nested Point 2 type defined by the traits class is therefore different than the Kernel::Point 2 type. Its
coordinates are of type CoordNT , which an instantiation of CGAL::Sqrt extension<NT,ROOT> where NT =
ROOT = Kernel::FT . Moreover, the third and fourth (hidden) template parameters of CGAL::Sqrt extension<
NT,ROOT> are set to CGAL::Tag true, which enables efficient comparison among different extensions.

For more details see the documentation of CGAL::Sqrt extension<NT,ROOT> . . . . . . . . . . . . . . . . . . . . . page 220

While Arr circle segment traits 2<Kernel> models the concept ArrangementDirectionalXMonotoneTraits 2,
the implementation of the Arr mergeable 2 operation does not enforce the input curves to have the same di-
rection as a precondition. Moreover, Arr circle segment traits 2<Kernel> supports the merging of curves of
opposite directions.

#include <CGAL/Arr circle segment traits 2.h>

Is Model for the Concepts

ArrangementTraits 2
ArrangementDirectionalXMonotoneTraits 2

Class Arr circle segment traits 2<Kernel>::Point 2

The Point 2 number-type nested within the traits class represents a Cartesian point whose coordinates are alge-
braic numbers of type CoordNT .

Types

Arr circle segment traits 2<Kernel>::Point 2:: Rational

the Kernel::FT type.

Arr circle segment traits 2<Kernel>::Point 2:: CoordNT

the algebraic number-type.
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Creation

Arr circle segment traits 2<Kernel>::Point 2 p;

default constructor.

Arr circle segment traits 2<Kernel>::Point 2 p( Rational x, Rational y);

creates the point (x,y).

Arr circle segment traits 2<Kernel>::Point 2 p( CoordNT x, CoordNT y);

creates the point (x,y).

Access Functions

CoordNT p.x() const returns the x-coordinate.
CoordNT p.y() const returns the y-coordinate.

Class Arr circle segment traits 2<Kernel>::Curve 2

The Curve 2 class nested within the traits class can represent arbitrary circular arcs, full circles and line seg-
ments and support their construction in various ways. The copy and default constructor as well as the assignment
operator are provided. In addition, an operator<< for the curves is defined for standard output streams.

Creation

Arr circle segment traits 2<Kernel>::Curve 2 cv( typename Kernel::Segment 2 seg);

constructs an curve corresponding to the line segment seg.

Arr circle segment traits 2<Kernel>::Curve 2 cv( typename Kernel::Point 2 source,
typename Kernel::Point 2 target)

constructs an curve corresponding to the line segment di-
rected from source to target, both having rational coordi-
nates.

Arr circle segment traits 2<Kernel>::Curve 2 cv( typename Kernel::Line 2 line,
Point 2 source,
Point 2 target)

constructs an curve corresponding to the line segment sup-
ported by the given line, directed from source to target. Note
that the two endpoints may have one-root coordinates.
Precondition: Both endpoints must lie on the given support-
ing line.
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Arr circle segment traits 2<Kernel>::Curve 2 cv( typename Kernel::Circle 2 circ);

constructs an curve corresponding to the given circle. circ
has a center point with rational coordinates and its squared
radius is rational.

Arr circle segment traits 2<Kernel>::Curve 2 cv( typename Kernel::Point 2 c,
typename Kernel::FT r,
Orientation orient = COUNTERCLOCKWISE)

constructs an curve corresponding to a circle centered at the
rational point c whose radius r is rational.

Arr circle segment traits 2<Kernel>::Curve 2 cv( typename Kernel::Circle 2 circ,
Point 2 source,
Point 2 target)

constructs a circular arc supported by circ, which has a center
point with rational coordinates and whose squared radius is
rational, with the given endpoints. The orientation of the arc
is the same as the orientation of circ.
Precondition: Both endpoints must lie on the given support-
ing circle.

Arr circle segment traits 2<Kernel>::Curve 2 cv( typename Kernel::Point 2 c,
typename Kernel::FT r,
Orientation orient,
Point 2 source,
Point 2 target)

constructs a circular arc supported by a circle centered at
the rational point c whose radius r is rational, directed from
source to target with the given orientation.
Precondition: Both endpoints must lie on the supporting cir-
cle.

Arr circle segment traits 2<Kernel>::Curve 2 cv( typename Kernel::Point 2 source,
typename Kernel::Point 2 mid,
typename Kernel::Point 2 target)

constructs an circular arc whose endpoints are source and
target that passes through mid. All three points have rational
coordinates.
Precondition: The three points must not be collinear.

Access Functions

bool cv.is full() const indicates whether the curve represents a full circle.

Point 2 cv.source() const returns the source point.
Precondition: cv is not a full circle.
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Point 2 cv.target() const returns the target point.
Precondition: cv is not a full circle.

Orientation cv.orientation() const returns the orientation of the curve (COLLINEAR in case of
line segments).

bool cv.is linear() const determines whether cv is a line segment.
bool cv.is circular() const determines whether cv is a circular arc.

typename Kernel::Line 2

cv.supporting line() const

returns the supporting line of cv.
Precondition: cv is a line segment.

typename Kernel::Circle 2

cv.supporting circle() const

returns the supporting circle of cv.
Precondition: cv is a circular arc.

Class Arr circle segment traits 2<Kernel>::X monotone curve 2

The X monotone curve 2 class nested within the traits class can represent x-monotone and line segments (which
are always weakly x-monotone). The copy and default constructor as well as the assignment operator are
provided. In addition, an operator<< for the curves is defined for standard output streams.

Creation

Arr circle segment traits 2<Kernel>::X monotone curve 2 xcv( typename Kernel::Point 2 source,
typename Kernel::Point 2 target)

constructs an curve corresponding to the line segment di-
rected from source to target, both having rational coordi-
nates.

Arr circle segment traits 2<Kernel>::X monotone curve 2 xcv( typename Kernel::Line 2 line,
Point 2 source,
Point 2 target)

constructs an curve corresponding to the line segment sup-
ported by the given line, directed from source to target. Note
that the two endpoints may have one-root coordinates.
Precondition: Both endpoints must lie on the given support-
ing line.

Arr circle segment traits 2<Kernel>::X monotone curve 2 xcv( typename Kernel::Circle 2 circ,
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Point 2 source,
Point 2 target,
Orientation orient)

constructs a circular arc supported by circ, which has a center
point with rational coordinates and whose squared radius is
rational, with the given endpoints. The orientation of the arc
is determined by orient.
Precondition: Both endpoints must lie on the given support-
ing circle.
Precondition: The circular arc is x-monotone.

Access Functions

Point 2 xcv.source() const returns the source point of xcv.
Point 2 xcv.target() const returns the target point of xcv.

bool xcv.is directed right() const

returns true if xcv is directed right, false otherwise.

Point 2 xcv.left() const returns the left (lexicographically smaller) endpoint of xcv.
Point 2 xcv.right() const returns the right (lexicographically larger) endpoint of xcv.

Orientation xcv.orientation() const

returns the orientation of the curve (COLLINEAR in case of
line segments).

bool xcv.is linear() const determines whether xcv is a line segment.
bool xcv.is circular() const

determines whether xcv is a circular arc.

typename Kernel::Line 2

xcv.supporting line() const

returns the supporting line of xcv.
Precondition: xcv is a line segment.

typename Kernel::Circle 2

xcv.supporting circle() const

returns the supporting circle of xcv.
Precondition: xcv is a circular arc.

Bbox 2 xcv.bbox() const returns a bounding box of the arc xcv.
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CGAL::Arr circular arc traits 2<CircularKernel>

#include <CGAL/Arr circular arc traits 2.h>

Definition

This class is a traits class for CGAL arrangements, built on top of a model of concept CircularKernel. It provides
curves of type CGAL::Circular arc 2<CircularKernel>.

Is Model for the Concepts

ArrangementTraits 2
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CGAL::Arr line arc traits 2<CircularKernel>

#include <CGAL/Arr line arc traits 2.h>

Definition

This class is a traits class for CGAL arrangements, built on top of a model of concept CircularKernel. It provides
curves of type CGAL::Line arc 2<CircularKernel>.

Is Model for the Concepts

ArrangementTraits 2
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CGAL::Arr circular line arc traits 2<CircularKernel>

#include <CGAL/Arr circular line arc traits 2.h>

Definition

This class is a traits class for CGAL arrangements, built on top of a model of concept CircularKernel. It
provides curves that can be of both types CGAL::Line arc 2<CircularKernel> or CGAL::Circular arc 2<
CircularKernel>.

It uses the boost::variant.

Is Model for the Concepts

ArrangementTraits 2
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CGAL::Arr conic traits 2<RatKernel,AlgKernel,NtTraits>

Definition

The class Arr conic traits 2<RatKernel,AlgKernel,NtTraits> is a model of the ArrangementTraits 2 concept
and can be used to construct and maintain arrangements of bounded segments of algebraic curves of degree 2 at
most, also known as conic curves.

A general conic curve C is the locus of all points (x,y) satisfying the equation: rx2 +sy2 + txy+ux+vy+w = 0,
where:

• If 4rs− t2 > 0, C is an ellipse. A special case occurs when r = s and t = 0, when C becomes a circle.

• If 4rs− t2 < 0, C is a hyperbola.

• If 4rs− t2 = 0, C is a parabola. A degenerate case occurs when r = s = t = 0, when C is a line.

A bounded conic arc is defined as either of the following:

• A full ellipse (or a circle) C.

• The tuple 〈C, ps, pt ,o〉, where C is the supporting conic curve, with the arc endpoints being ps and pt (the
source and target points, respectively). The orientation o indicates whether we proceed from ps to pt in a
clockwise or in a counterclockwise direction. Note that C may also correspond to a line or to pair of lines
— in this case o may specify a COLLINEAR orientation.

A very useful subset of the set of conic arcs are line segments and circular arcs, as arrangements of circular arcs
and line segments have some interesting applications (e.g. offsetting polygons, motion planning for a disc robot,
etc.). Circular arcs and line segment are simpler objects and can be dealt with more efficiently than arbitrary arcs.
For these reasons, it is possible to construct conic arcs from segments and from circles. Using these constructors
is highly recommended: It is more straightforward and also speeds up the arrangement construction. However,
in case the set of input curves contain only circular arcs and line segments, it is recommended to use the Arr
circle segment 2 class to achieve faster running times.

In our representation, all conic coefficients (namely r,s, t,u,v,w) must be rational numbers. This guarantees
that the coordinates of all arrangement vertices (in particular, those representing intersection points) are alge-
braic numbers of degree 4 (a real number α is an algebraic number of degree d if there exist a polynomial
p with integer coefficient of degree d such that p(α) = 0). We therefore require separate representations of
the curve coefficients and the point coordinates. The NtTraits should be instantiated with a class that defines
nested Integer, Rational and Algebraic number types and supports various operations on them, yielding certified
computation results (for example, it can convert rational numbers to algebraic numbers and can compute roots
of polynomials with integer coefficients). The other template parameters, RatKernel and AlgKernel should be
geometric kernels templated with the NtTraits::Rational and NtTraits::Algebraic number types, respectively. It
is recommended to instantiate the CORE algebraic number traits class as the NtTraits parameter, with Carte-
sian<NtTraits::Rational> and Cartesian<NtTraits::Algebraic> instantiating the two kernel types, respectively.
The number types in this case are provided by the CORE library, with its ability to exactly represent simple
algebraic numbers.

The traits class inherits its point type from AlgKernel::Point 2, and defines a curve and x-monotone curve types,
as detailed below.
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While the Arr conic traits 2<RatKernel,AlgKernel,NtTraits> models the concept
ArrangementDirectionalXMonotoneTraits 2, the implementation of the Arr mergeable 2 operation does
not enforce the input curves to have the same direction as a precondition. Moreover, Arr conic traits 2<
RatKernel,AlgKernel,NtTraits> supports the merging of curves of opposite directions.

#include <CGAL/Arr conic traits 2.h>

Is Model for the Concepts

ArrangementTraits 2
ArrangementLandmarkTraits 2
ArrangementDirectionalXMonotoneTraits 2

Types

Arr conic traits 2<RatKernel,AlgKernel,NtTraits>:: Rational

the NtTraits::Rational type (and also the RatKernel::FT
type).

Arr conic traits 2<RatKernel,AlgKernel,NtTraits>:: Algebraic

the NtTraits::Algebraic type (and also the AlgKernel::FT
type).

Class Arr conic traits 2<RatKernel,AlgKernel,NtTraits>::Curve 2

The Curve 2 class nested within the conic-arc traits can represent arbitrary conic arcs and support their con-
struction in various ways. The copy and default constructor as well as the assignment operator are provided for
conic arcs. In addition, an operator<< for the curves is defined for standard output streams.

Creation

Arr conic traits 2<RatKernel,AlgKernel,NtTraits>::Curve 2 a( typename RatKernel::Segment 2 seg);

constructs an arc corresponding to the line segment seg.

Arr conic traits 2<RatKernel,AlgKernel,NtTraits>::Curve 2 a( typename RatKernel::Circle 2 circ);

constructs an arc corresponding to the full circle circ (note
that this circle has a center point with rational coordinates
and rational squared radius).

Arr conic traits 2<RatKernel,AlgKernel,NtTraits>::Curve 2 a( typename RatKernel::Circle 2 circ,
Orientation o,
Point 2 ps,
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Point 2 pt)

constructs a circular arc supported by the circle circ, going in
the given orientation o from the source point ps to its target
point pt.
Precondition: ps and pt both lie on the circle circ.
Precondition: o is not COLLINEAR.

Arr conic traits 2<RatKernel,AlgKernel,NtTraits>::Curve 2 a( typename RatKernel::Point 2 p1,
typename RatKernel::Point 2 p2,
typename RatKernel::Point 2 p3)

constructs a circular arc going from p1 (its source point)
through p2 to p3 (its target point). Note that all three points
have rational coordinates. The orientation of the arc is deter-
mined automatically.
Precondition: The three points are not collinear.

Arr conic traits 2<RatKernel,AlgKernel,NtTraits>::Curve 2 a( Rational r,
Rational s,
Rational t,
Rational u,
Rational v,
Rational w)

constructs a conic arc that corresponds to the full conic curve
rx2 + sy2 + txy+ux+ vy+w = 0.
Precondition: As a conic arc must be bounded, the given
curve must be an ellipse, that is 4rs− t2 > 0.

Arr conic traits 2<RatKernel,AlgKernel,NtTraits>::Curve 2 a( Rational r,
Rational s,
Rational t,
Rational u,
Rational v,
Rational w,
Orientation o,
Point 2 ps,
Point 2 pt)

constructs a conic arc supported by the conic curve rx2 +
sy2 + txy + ux + vy + w = 0, going in the given orientation o
from the source point ps to its target point pt.
Precondition: ps and pt both satisfy the equation of the sup-
porting conic curve and define a bounded segment of this
curve (e.g. in case of a hyperbolic arc, both point should be
located on the same branch of the hyperbola).
Precondition: o is not COLLINEAR if the supporting conic
is curves, and must be COLLINEAR if it is not curved (a line
or a line-pair).

Arr conic traits 2<RatKernel,AlgKernel,NtTraits>::Curve 2 a( typename RatKernel::Point 2 p1,
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typename RatKernel::Point 2 p2,
typename RatKernel::Point 2 p3,
typename RatKernel::Point 2 p4,
typename RatKernel::Point 2 p5)

constructs a conic arc going from p1 (its source point)
through p2, p3 and p4 (in this order) to p5 (its target point).
Note that all five points have rational coordinates. The orien-
tation of the arc is determined automatically.
Precondition: No three points of the five are not collinear.
Precondition: The five points define a valid arc, in their given
order.

Arr conic traits 2<RatKernel,AlgKernel,NtTraits>::Curve 2 a( Rational r,
Rational s,
Rational t,
Rational u,
Rational v,
Rational w,
Orientation o,
Point 2 app ps,
Rational r1,
Rational s1,
Rational t1,
Rational u1,
Rational v1,
Rational w1,
Point 2 app pt,
Rational r2,
Rational s2,
Rational t2,
Rational u2,
Rational v2,
Rational w2)

constructs a conic arc supported by the conic curve rx2 +
sy2 + txy + ux + vy + w = 0, going in the given orientation
o from its source point to its target point. In this case only
some approximations of the endpoints (app ps and app pt,
respectively) is available, and their exact locations are given
implicitly, specified by the intersections of the supporting
conic curve with r1x2 + s1y2 + t1xy+u1x+v1y+w1 = 0 and
r2x2 + s2y2 + t2xy+u2x+ v2y+w2 = 0, respectively.
Precondition: The two auxiliary curves specifying the end-
points really intersect with the supporting conic curve, such
that the arc endpoints define a bounded segment of the sup-
porting curve (e.g. in case of a hyperbolic arc, both point
should be located on the same branch of the hyperbola).
Precondition: o is not COLLINEAR if the supporting conic
is curves, and must be COLLINEAR if it is not curved (a line
or a line-pair).
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Access Functions

bool a.is valid() const indicates whether a is a valid conic arc. As the precondition
to some of the constructor listed above are quite complicated,
their violation does not cause the program to abort. Instead,
the constructed arc is invalid (a defaultly constructed arc is
also invalid). It is however recommended to check that a
constructed arc is valid before inserting it to an arrangement,
as this operation will cause the program to abort.

bool a.is x monotone() const determines whether the arc is x-monotone, namely each ver-
tical line intersects it at most once. A vertical line segment is
also considered (weakly) x-monotone.

bool a.is y monotone() const determines whether the arc is y-monotone, namely each hor-
izontal line intersects it at most once. A horizontal line seg-
ment is also considered (weakly) x-monotone.

bool a.is full conic() const indicates whether the arc represents a full conic curve (en
ellipse or a circle).

The six following methods return the coefficients of the supported conic, after their conversion to integer number
(represented by the Integer type of the NtTraits class):

typename NtTraits::Integer a.r() const returns the coefficient of x2.
typename NtTraits::Integer a.s() const returns the coefficient of t2.
typename NtTraits::Integer a.t() const returns the coefficient of xy.
typename NtTraits::Integer a.u() const returns the coefficient of x.
typename NtTraits::Integer a.v() const returns the coefficient of y.
typename NtTraits::Integer a.w() const returns the free coefficient.

Point 2 a.source() const returns the source point of the arc.
Precondition: a is not a full conic curve.

Point 2 a.target() const returns the target point of the arc.
Precondition: a is not a full conic curve.

Orientation a.orientation() const returns the orientation of the arc.

Bbox 2 a.bbox() const return a bounding box of the arc a.

Operations

void a.set source( Point 2 ps) sets a new source point for the conic arc.
Precondition: ps lies on the supporting conic of a.

void a.set target( Point 2 pt) sets a new target point for the conic arc.
Precondition: pt lies on the supporting conic of a.
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Class Arr conic traits 2<RatKernel,AlgKernel,NtTraits>::X monotone curve 2

The X monotone curve 2 class nested within the conic-arc traits is used to represent x-monotone conic arcs. It
inherits from the Curve 2 type, therefore supports the access methods and the operations listed above.

For efficiency reasons, we recommend users not to construct x-monotone conic arc directly, but rather use the
Make x monotone 2 functor supplied by the conic-arc traits class to convert conic curves to x-monotone curves.

Creation

Arr conic traits 2<RatKernel,AlgKernel,NtTraits>:: X monotone curve 2 xa( Curve 2 arc);

converts the given arc to an x-monotone arc.
Precondition: arc is x-monotone.

Access Functions

Point 2 xa.left() const returns the left (lexicographically smaller) endpoint of xa.
Point 2 xa.right() const returns the right (lexicographically larger) endpoint of xa.

2304



C
la

ss

CGAL::Arr rational function traits 2<AlgebraicKernel d 1>

Definition

The traits class Arr rational function traits 2<AlgebraicKernel d 1> is a model of the ArrangementTraits 2
concept. It handles bounded and unbounded arcs of rational functions, referred to as rational arcs (in partic-
ular, such an arc may correspond to the entire graph of a rational function), and enables the construction and
maintenance of arrangements of such arcs.

A rational function y = P(x)
Q(x) is defined by two polynomials P and Q of arbitrary degrees. If Q(x) = 1 then

the function is a simple polynomial function. Usually the domain is R but the function may also be restricted
to a bounded interval [xmin,xmax] or defined over a ray (−∞,xmax] or over [xmin,∞). Rational functions are
represented by the nested type Curve 2. Note that a rational function may be not continuous since roots of Q
induce vertical asymptotes, which would contradict the notion of an x-monotone curve as it is introduced by
the ArrangementTraits 2 concept. Thus, continuous portions of rational functions are represented by the nested
type X monotone curve 2, which is different from Curve 2. Constructors for both classes are provided by the
traits. A Curve 2 may be split up into several X monotone curve 2 using Make x monotone 2.

The template parameter of the traits must be a model of the concept AlgebraicKernel d 1. A rational function
is then represented by two polynomials P and Q of type AlgebraicKernel d 1::Polynomial 1. A point is rep-
resented by a rational function and its x-coordinate, which is of type AlgebraicKernel d 1::Algebraic real 1.
Note that an explicit representation of the y-coordinate is only computed upon request, which can be a rather
costly operation.

The constructed rational functions are cached by the traits class. The cache is local to each traits class object.
It is therefore necessary to construct the curves using the constructor objects provided by member functions of
the traits class. Moreover, a curve must only be used with its own traits. The cache is automatically cleaned
up from time to time. The amortized clean up costs are constant. However, there is also a separate member
function that cleans up the cache on demand.

While Arr rational function traits 2<AlgebraicKernel d 1> models the concept
ArrangementDirectionalXMonotoneTraits 2, the implementation of the Arr mergeable 2 operation does
not enforce the input curves to have the same direction as a precondition. Moreover, Arr rational function
traits 2<AlgebraicKernel d 1> supports the merging of curves of opposite directions.

#include <CGAL/Arr rational function traits 2.h>

Is Model for the Concepts

ArrangementTraits 2
ArrangementDirectionalXMonotoneTraits 2
ArrangementOpenBoundaryTraits 2

Types

typedef AlgebraicKernel d 1 Algebraic kernel d 1;
typedef AlgebraicKernel d 1::Coefficient Coefficient;
typedef AlgebraicKernel d 1::Polynomial 1 Polynomial 1;
typedef AlgebraicKernel d 1::Algebraic real 1 Algebraic real 1;
typedef AlgebraicKernel d 1::Bound Bound;
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Creation

Arr rational function traits 2<AlgebraicKernel d 1> traits( const Algebraic kernel d 1* kernel);

constructs an empty traits that uses the kernel pointed by ker-
nel for performing algebraic operations.

Operations

Construct curve 2 traits.construct curve 2 object() const

Returns an instance of Construct curve 2.

Construct x monotone curve 2 traits.construct x monotone curve 2 object() const

Returns an instance of Construct x monotone curve 2.

void traits.cleanup cache() const

Deletes all curves from the cache that exist only there.

const Algebraic kernel d 1* traits.algebraic kernel d 1() const

Returns a pointer to the used algerbaic kernel object.

Class Arr rational function traits 2<AlgebraicKernel d 1>::Curve 2

The Curve 2 class nested within the traits is used to represent rational functions which may be restricted to a
certain x-range.

Is Model for the Concepts

ArrTraits::Curve 2

Types

typedef AlgebraicKernel d 1::Polynomial 1 Polynomial 1;
typedef AlgebraicKernel d 1::Algebraic real 1 Algebraic real 1;

Operations

Polynomial 1 curve.numerator() const returns the numerator of the supporting rational
function.

Polynomial 1 curve.denominator() const returns the denominator of the supporting ratio-
nal function.
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bool curve.is continuous() const returns whether curve is continuous, namely
whether it does not contains any vertical
asymptotes in its interior.

Arr parameter space curve.left parameter space in x() const

returns whether the x-coordinate of curve’s left
end is finite or whether it is ±∞.

Arr parameter space curve.right parameter space in x() const

returns whether the x-coordinate of curve’s
right end is finite or whether it is ±∞.

Algebraic real 1 curve.left x() const returns the x-coordinate of the left end.
Precondition: left boundary in x()==ARR INTERIOR

Algebraic real 1 curve.right x() const returns the x-coordinate of the right end.
Precondition: right boundary in x()==ARR INTERIOR

Class Arr rational function traits 2<AlgebraicKernel d 1>::X monotone curve 2

The X monotone curve 2 class nested within the traits is used to represent x-monotone parts of rational func-
tions. In particular, such an x-monotone curve may not contain a vertical asymptote in its interior x-range.

Is Model for the Concepts

ArrTraits::XMonotoneCurve 2

Types

typedef AlgebraicKernel d 1::Polynomial 1 Polynomial 1;
typedef AlgebraicKernel d 1::Algebraic real 1 Algebraic real 1;
typedef Arr rational function traits 2<AlgebraicKernel d 1>::Point 2 Point 2;

Operations

Polynomial 1 xcurve.numerator() const returns the numerator of the supporting ra-
tional function.

Polynomial 1 xcurve.denominator() const returns the denominator of the supporting
rational function.

Arr parameter space xcurve.source parameter space in x() const

returns whether the x-coordinate of the
source is finite or whether it is ±∞.

Arr parameter space xcurve.source parameter space in y() const

returns whether the y-coordinate of the
source is finite or whether it is ±∞.
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Point 2 xcurve.source() const returns the source point of the arc.
Precondition: Both the x- and y-coordinates
of the source point is finite.

Algebraic real 1 xcurve.source x() const returns the x-coordinate of the source point.
Precondition: The x-coordinate of the
source point is finite.

Arr parameter space xcurve.target parameter space in x() const

returns whether the x-coordinate of the tar-
get is finite or whether it is ±∞.

Arr parameter space xcurve.target parameter space in y() const

returns whether the y-coordinate of the tar-
get is finite or whether it is ±∞.

Point 2 xcurve.target() const returns the target point of the arc.
Precondition: Both the x- and y-coordinates
of the target point is finite.

Algebraic real 1 xcurve.target x() const returns the x-coordinate of the target point.
Precondition: The x-coordinate of the target
point is finite.

Arr parameter space xcurve.left parameter space in x() const

returns whether the x-coordinate of the left
curve end is finite or whether it is ±∞.

Arr parameter space xcurve.left parameter space in y() const

returns whether the y-coordinate of the left
curve end is finite or whether it is ±∞.

Point 2 xcurve.left() const returns the left point of the arc.
Precondition: Both the x- and y-coordinates
of the left point is finite.

Algebraic real 1 xcurve.left x() const returns the x-coordinate of the left point.
Precondition: The x-coordinate of the left
point is finite.

Arr parameter space xcurve.right parameter space in x() const

returns whether the x-coordinate of the right
curve end is finite or whether it is ±∞.

Arr parameter space xcurve.right parameter space in y() const

returns whether the y-coordinate of the right
curve end is finite or whether it is ±∞.

Point 2 xcurve.right() const returns the right point of the arc.
Precondition: Both the x- and y-coordinates
of The right point is finite.

Algebraic real 1 xcurve.right x() const returns the x-coordinate of the right point.
Precondition: The x-coordinate of the right
point is finite.

bool xcurve.is left to right() const returns whether the curve is oriented from
left to right.
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Class Arr rational function traits 2<AlgebraicKernel d 1>::Point 2

Is Model for the Concepts

ArrTraits::Point 2

Types

typedef AlgebraicKernel d 1::Polynomial 1 Polynomial 1;
typedef AlgebraicKernel d 1::Algebraic real 1 Algebraic real 1;
typedef AlgebraicKernel d 1::Bound Bound;

Operations

Polynomial 1 point.numerator() const returns the numerator of the supporting
rational function.

Polynomial 1 point.denominator() const returns the denominator of the supporting
rational function.

std::pair<double,double> point.to double() const returns double-approximations of the x-
and y-coordinates.

Algebraic real 1 point.x() const returns the x-coordinate of the point.

Algebraic real 1 point.y() const

obtains the y-coordinates of the point. Attention: As described above,
points are not stored by their y-coordinate in Algebraic real 1 represen-
tation. In fact, this representation must be computed on demand, and
might become quite costly for points defined by high-degree polynomi-
als. Therefore, it is recommended to avoid calls to this function as much
as possible.

std::pair<Bound,Bound> point.approximate absolute x( int a) const

Computes a pair p approximating the x-coordinate with respect to the
given absolute precision a.
Postcondition: p. f irst ≤ x≤ p.second
Postcondition: p.second− p. f irst ≤ 2−a

std::pair<Bound,Bound> point.approximate absolute y( int a) const

Computes a pair p approximating the y-coordinate with respect to the
given absolute precision a.
Postcondition: p. f irst ≤ y≤ p.second
Postcondition: p.second− p. f irst ≤ 2−a
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std::pair<Bound,Bound> point.approximate relative x( int r) const

Computes a pair p approximating the x-coordinate with respect to the
given relative precision r.
Postcondition: p. f irst ≤ x≤ p.second
Postcondition: p.second− p. f irst ≤ 2−r|x|

std::pair<Bound,Bound> point.approximate relative y( int r) const

Computes a pair p approximating the y-coordinate with respect to the
given relative precision r.
Postcondition: p. f irst ≤ y≤ p.second
Postcondition: p.second− p. f irst ≤ 2−r|y|

Class Arr rational function traits 2<AlgebraicKernel d 1>::Construct curve 2

Functor to construct a Curve 2. To enable caching the class is not default constructible and must be obtained
via the function construct curve 2 object(), which is a member of the traits.

Is Model for the Concepts

Assignable
CopyConstructible
AdaptableBinaryFunction
AdaptableUnaryFunction

Types

typedef AlgebraicKernel d 1::Polynomial 1 Polynomial 1;
typedef AlgebraicKernel d 1::Algebraic real 1 Algebraic real 1;
typedef Arr rational function traits 2<AlgebraicKernel d 1>::Curve 2 result type;

typedef Polynomial 1 argument type;
typedef Polynomial 1 first argument type;
typedef Polynomial 1 second argument type;

Operations

Curve 2 construct( Polynomial 1 P)

Constructs a curve representing the polynomial function y = P(x).

Curve 2 construct( Polynomial 1 P, Algebraic real 1 x, bool right)

Constructs a curve representing the polynomial function y = P(x). The function is
defined over the interval [x,+∞) if right is true and (−∞,x] otherwise.

Curve 2 construct( Polynomial 1 P, Algebraic real 1 lower, Algebraic real 1 upper)

Constructs a curve representing the polynomial function y = P(x). The function is
defined over the interval [lower,upper].
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Curve 2 construct( Polynomial 1 P, Polynomial 1 Q)

Constructs a curve representing the rational function y = P(x)/Q(x).

Curve 2 construct( Polynomial 1 P, Polynomial 1 Q, Algebraic real 1 x, bool right)

Constructs a curve representing the rational function y = P(x)/Q(x). The function is
defined over the interval I = [x,+∞) if right is true and I = (−∞,x] otherwise.

Curve 2 construct( Polynomial 1 P, Polynomial 1 Q, Algebraic real 1 lower, Algebraic real 1 upper)

Constructs a curve representing the rational function y = P(x)/Q(x). The function is
defined over the interval I = [lower,upper].

template <typename InputIterator>
Curve 2 construct( InputIterator begin, InputIterator end)

Constructs a curve representing the polynomial function y = P(x), where the coeffi-
cients of P are given in the range [begin,end).

template <typename InputIterator>
Curve 2 construct( InputIterator begin, InputIterator end, Algebraic real 1 x, bool right)

Constructs a curve representing the polynomial function y = P(x), where the coeffi-
cients of P are given in the range [begin,end). The function is defined over the interval
[x,+∞) if right is true and (−∞,x] otherwise.

template <typename InputIterator>
Curve 2 construct.operator()( InputIterator begin,

InputIterator end,
Algebraic real 1 lower,
Algebraic real 1 upper) const

Constructs a curve representing the polynomial function y = P(x), where the coeffi-
cients of P are given in the range [begin,end). The function is defined over the interval
[lower,upper].

template <typename InputIterator>
Curve 2 construct.operator()( InputIterator begin numer,

InputIterator end numer,
InputIterator begin denom,
InputIterator end denom) const

Constructs a curve representing the rational function y = P(x)/Q(x), where the co-
efficients of P and Q are given in the ranges [begin numer,end numer) and [begin
denom,end denom), respectively.

template <typename InputIterator>
Curve 2 construct.operator()( InputIterator begin numer,

InputIterator end numer,
InputIterator begin denom,
InputIterator end denom,
Algebraic real 1 x,
bool right) const

Constructs a curve representing the rational function y = P(x)/Q(x), where the co-
efficients of P and Q are given in the ranges [begin numer,end numer) and [begin
denom,end denom), respectively. The function is defined over the interval I = [x,+∞)
if right is true and I = (−∞,x] otherwise.
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template <typename InputIterator>
Curve 2 construct.operator()( InputIterator begin numer,

InputIterator end numer,
InputIterator begin denom,
InputIterator end denom,
Algebraic real 1 lower,
Algebraic real 1 upper) const

Constructs a curve representing the rational function y = P(x)/Q(x), where the co-
efficients of P and Q are given in the ranges [begin numer,end numer) and [begin
denom,end denom), respectively. The function is defined over the interval I =
[lower,upper].

Class Arr rational function traits 2<AlgebraicKernel d 1>::Construct x monotone curve 2

Functor to construct a X monotone curve 2. To enable caching the class is not default constructible and must
be obtained via the function construct x monotone curve 2 object(), which is a member of the traits.

Is Model for the Concepts

Assignable
CopyConstructible
AdaptableBinaryFunction
AdaptableUnaryFunction

Types

typedef AlgebraicKernel d 1::Polynomial 1 Polynomial 1;
typedef AlgebraicKernel d 1::Algebraic real 1 Algebraic real 1;
typedef Arr rational function traits 2<AlgebraicKernel d 1>::X monotone curve 2

result type;
typedef Polynomial 1 argument type;
typedef Polynomial 1 first argument type;
typedef Polynomial 1 second argument type;

Operations

X monotone curve 2 construct( Polynomial 1 P)

Constructs an x-monotone curve supported by the polynomial function y = P(x).

X monotone curve 2 construct( Polynomial 1 P, Algebraic real 1 x, bool right)

Constructs an x-monotone curve supported by the polynomial function y = P(x).
The function is defined over the interval [x,+∞) if right is true and (−∞,x]
otherwise.

X monotone curve 2 construct( Polynomial 1 P, Algebraic real 1 lower, Algebraic real 1 upper)

Constructs an x-monotone curve supported by the polynomial function y = P(x).
The function is defined over the interval [lower,upper].
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X monotone curve 2 construct( Polynomial 1 P, Polynomial 1 Q)

Constructs an x-monotone curve supported by the rational function y =
P(x)/Q(x).
Precondition: Q has no real roots.

X monotone curve 2 construct( Polynomial 1 P, Polynomial 1 Q, Algebraic real 1 x, bool right)

Constructs an x-monotone curve supported by the rational function y =
P(x)/Q(x). The function is defined over the interval I = [x,+∞) if right is
true and I = (−∞,x] otherwise.
Precondition: Q has no real roots in the interior of I.

X monotone curve 2 construct.operator()( Polynomial 1 P,
Polynomial 1 Q,
Algebraic real 1 lower,
Algebraic real 1 upper)

Constructs an x-monotone curve supported by the rational function y =
P(x)/Q(x). The function is defined over the interval I = [lower,upper].
Precondition: Q has no real roots in the interior of I.

template <typename InputIterator>
X monotone curve 2 construct( InputIterator begin, InputIterator end)

Constructs an x-monotone curve supported by the polynomial function y = P(x),
where the coefficients of P are given in the range [begin,end).

template <typename InputIterator>
X monotone curve 2 construct( InputIterator begin, InputIterator end, Algebraic real 1 x, bool right)

Constructs an x-monotone curve supported by the polynomial function y = P(x),
where the coefficients of P are given in the range [begin,end). The function is
defined over the interval [x,+∞) if right is true and (−∞,x] otherwise.

template <typename InputIterator>
X monotone curve 2 construct.operator()( InputIterator begin,

InputIterator end Algebraic real 1 lower,
Algebraic real 1 upper)

Constructs an x-monotone curve supported by the polynomial function y = P(x),
where the coefficients of P are given in the range [begin,end). The function is
defined over the interval [lower,upper].

template <typename InputIterator>
X monotone curve 2 construct.operator()( InputIterator begin numer,

InputIterator end numer,
InputIterator begin denom,
InputIterator end denom)

Constructs an x-monotone curve supported by the rational function y =
P(x)/Q(x), where the coefficients of P and Q are given in the ranges [begin
numer,end numer) and [begin denom,end denom), respectively.
Precondition: Q has no real roots.

template <typename InputIterator>
X monotone curve 2 construct.operator()( InputIterator begin numer,
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InputIterator end numer,
InputIterator begin denom,
InputIterator end denom,
Algebraic real 1 x,
bool right)

Constructs an x-monotone curve supported by the rational function y =
P(x)/Q(x), where the coefficients of P and Q are given in the ranges [begin
numer,end numer) and [begin denom,end denom), respectively. The function
is defined over the interval I = [x,+∞) if right is true and I = (−∞,x] otherwise.
Precondition: Q has no real roots in the interior of I.

template <typename InputIterator>
X monotone curve 2 construct.operator()( InputIterator begin numer,

InputIterator end numer,
InputIterator begin denom,
InputIterator end denom,
Algebraic real 1 lower,
Algebraic real 1 upper)

Constructs an x-monotone curve supported by the rational function y =
P(x)/Q(x), where the coefficients of P and Q are given in the ranges [begin
numer,end numer) and [begin denom,end denom), respectively. The function
is defined over the interval I = [lower,upper].
Precondition: Q has no real roots in the interior of I.
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CGAL::Arr Bezier curve traits 2<RatKernel,AlgKernel,NtTraits>

Definition

The traits class Arr Bezier curve traits 2<RatKernel,AlgKernel,NtTraits> is a model of the
ArrangementTraits 2 concept that handles planar Bézier curves. A planar Bézier curve B is a paramet-
ric curve defined by a sequence of control points p0, . . . , pn as follows:

B(t) = (X(t),Y (t)) =
n

∑
k=0

pk ·
n!

k!(n− k)!
· tk(1− t)n−k .

where t ∈ [0,1]. The degree of the curve is therefore n — namely, X(t) and Y (t) are polynomials of degree
n. Bézier curves have numerous applications in computer graphics and solid modelling. They are used, for
example, in free-form sketches and for defining the true-type fonts.

In our representation, we assume that the coordinates of all control points are rational numbers (namely they
are given as objects of the RatKernel::Point 2 type), so both X(t) and Y (t) are polynomials with rational coef-
ficients. The intersection points between curves are however algebraic numbers, and their exact computation is
time-consuming. The traits class therefore contains a layer of geometric filtering that performs all computation
in an approximate manner whenever possible, and it resorts to exact computations only when the approximate
computation fails to produce an unambiguous result.

We therefore require separate representations of the control points and the intersection points. The NtTraits
should be instantiated with a class that defines nested Integer, Rational and Algebraic number types and supports
various operations on them, yielding certified computation results (for example, in can convert rational numbers
to algebraic numbers and can compute roots of polynomials with integer coefficients). The other template
parameters, RatKernel and AlgKernel should be geometric kernels templated with the NtTraits::Rational and
NtTraits::Algebraic number types, respectively. It is recommended to instantiate the CORE algebraic number
traits class as the NtTraits parameter, with Cartesian<NtTraits::Rational> and Cartesian<NtTraits::Algebraic>
instantiating the two kernel types, respectively. The number types in this case are provided by the CORE library,
with its ability to exactly represent simple algebraic numbers.

While Arr Bezier curve traits 2<RatKernel,AlgKernel,NtTraits> models the concept
ArrangementDirectionalXMonotoneTraits 2, the implementation of the Arr mergeable 2 operation does
not enforce the input curves to have the same direction as a precondition. Moreover, Arr Bezier curve traits
2<RatKernel,AlgKernel,NtTraits> supports the merging of curves of opposite directions.

#include <CGAL/Arr Bezier curve traits 2.h>

Is Model for the Concepts

ArrangementTraits 2
ArrangementDirectionalXMonotoneTraits 2

Types

Arr Bezier curve traits 2<RatKernel,AlgKernel,NtTraits>:: Rational

the NtTraits::Rational type (and also the RatKernel::FT
type).
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Arr Bezier curve traits 2<RatKernel,AlgKernel,NtTraits>:: Algebraic

the NtTraits::Algebraic type (and also the AlgKernel::FT
type).

Class Arr Bezier curve traits 2<RatKernel,AlgKernel,NtTraits>::Curve 2

The Curve 2 class nested within the Bézier traits class is used to represent a Bézier curve of arbitrary degree,
which is defined by a sequence of rational control points. In addition to the methods listed below, the I/O
operators operator<< and operator>> for standard output-streams are also supported. The copy constructor and
assignment operator are supported as well.

Creation

Arr Bezier curve traits 2<AlgKernel,NtTraits>::Curve 2 B;

default constructor.

template <class InputIterator>
Arr Bezier curve traits 2<AlgKernel,NtTraits>::Curve 2 B( InputIterator pts begin, InputIterator pts end);

constructs a Bézier curve as defined by the given range
of control points. The value-type of InputIterator is
RatKernel::Point 2.
Precondition: The input range must contain at least two con-
trol points.

Access Functions

size t B.number of control point() const

returns the number of control points that define B.

typename RatKernel::Point 2

B.control point( size t k) const

returns the kth control point. Note that the first control point
equals the curve source, while the last control point equals its
target. The rest of the control points do not lie on the curve.
Precondition: k is smaller than the number of control points.

typename RatKernel::Point 2

B( Rational t) returns the point B(t) on the curve that corresponds to the
given rational parameter value.
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typename AlgKernel::Point 2

B( Algebraic t) returns the point B(t) on the curve that corresponds to the
given algebraic parameter value.

Class Arr Bezier curve traits 2<RatKernel,AlgKernel,NtTraits>::Point 2

The Point 2 class nested within the Bézier traits class is used to represent: (i) an endpoint of a Bézier curve,
(ii) a vertical tangency point of a curve, used to subdivide it into x-monotone subcurve, and (iii) an intersection
point between two curves. While, points of type (i) have rational coordinates and are given as part of the input,
points of the two latter types have algebraic coordinates. However, to speed up the arrangement construction,
such point are not computed in an exact manner, and instead are given in an approximate representation. Note
that the exact coordinates of a point may only be accessed if it is exactly computed.

In addition to the methods listed below, the copy constructor and assignment operator for Point 2 objects are
also supported.

Creation

Arr Bezier curve traits 2<AlgKernel,NtTraits>::Point 2 p;

default constructor.

Arr Bezier curve traits 2<AlgKernel,NtTraits>::Point 2 p( Curve 2 B, Algebraic t 0);

constructs the point B(t0) on the given curve. As t0 is an
algebraic number, the point has algebraic coordinates.

Arr Bezier curve traits 2<AlgKernel,NtTraits>::Point 2 p( Curve 2 B, Rational t 0);

constructs the point B(t0) on the given curve. As t0 is a ratio-
nal number, the point has rational coordinates.

Access Functions

std::pair<double, double>

p.approximate() const

returns the approximated coordinates of p.

bool p.is exact() const returns whether the coordinates of p are computed in an exact
manner.

Algebraic p.x() const returns the x-coordinate of p.
Precondition: p is exactly computed.

Algebraic p.y() const returns the y-coordinate of p.
Precondition: p is exactly computed.
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bool p.is rational() const returns whether the coordinates of p are rational numbers.

typename RatKernel::Point 2

typename RatKernel::Point 2 (p)

casts p to a point with rational coordinates.
Precondition: p has rational coordinates.

Class Arr Bezier curve traits 2<RatKernel,AlgKernel,NtTraits>::X monotone curve 2

The X monotone curve 2 class nested within the Bézier traits is used to represent x-monotone subcurves of
Bézier curves. The subcurve is defined by a supporting Bézier curve B(t) and a range of definition in the
parameter space [t1, t2]⊆ [0,1], where B(t1) is the subcurve source and B(t2) is its target. Note that as the point
endpoints may only be approximated, the parameter range defining the subcurve may only be approximately
known.

It is not possible to construct x-monotone subcurves directly. Instead, use the Make x monotone 2 functor
supplied by the traits class to subdivide a Curve 2 object into x-monotone subcurves.

Access Functions

Curve 2 b.supporting curve() const

returns the supporting Bézier curve of b.

Point 2 b.source() const returns the source point of b.
Point 2 b.target() const returns the target point of b.

Point 2 b.left() const returns the left (xy-lexicographically smaller) endpoint of b.
Point 2 b.right() const returns the right (xy-lexicographically smaller) endpoint of b.

std::pair<double, double>

b.parameter range() const

return the approximate parameter range defining the sub-
curve b.
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CGAL::Arr algebraic segment traits 2<Coefficient>

Definition

The traits class Arr algebraic segment traits 2<Coefficient> is a model of the ArrangementTraits 2 concept
that handles planar algebraic curves of arbitrary degree, and x-monotone of such curves. A planar (real) alge-
braic curve is the vanishing set of a polynomial in two variables, that is, the curve is defined by the defining
equation

f (x) := ∑
i+ j≤n

ai jxiy j = 0,

where n is the degree of the curve.

The traits class allows the construction of algebraic curves, by specifying their implicit equation. x-monotone
and vertical segments of a curve can also be defined; unbounded curves and segments are supported. The
template parameter Coefficient defines the innermost coefficient type of the polynomials. Currently, the types
leda::integer and CORE::BigInt are supported as well as any instance of CGAL::Sqrt extension that is instan-
tiated with one of the integral types above.

#include <CGAL/Arr algebraic segment traits 2.h>

Is Model for the Concepts

ArrangementTraits 2

Types

Arr algebraic segment traits 2<Coefficient>:: enum Site of point POINT IN INTERIOR = 0, MIN
ENDPOINT = -1, MAX ENDPOINT = 1 ;

Value to specify whether a point should be in the interior
of a segment, or its minimal point, or its maximal point in
lexicographic order.

Arr algebraic segment traits 2<Coefficient>:: Polynomial 2

the type for bivariate polynomials, with innermost coeffi-
cient type Coefficient. Constitutes a model of the concept
Polynomial d with two variables. (see page page 261)

Arr algebraic segment traits 2<Coefficient>:: Algebraic kernel 1

model for the concept AlgebraicKernel 1

Arr algebraic segment traits 2<Coefficient>:: Algebraic real 1

represents coordinates of points. Typedef from Algebraic
kernel 1::Algebraic real 1
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Arr algebraic segment traits 2<Coefficient>:: Bound

Typedef from Algebraic kernel 1::Bound

Class Arr algebraic segment traits 2<Coefficient>::Curve 2

Models the ArrangementTraits 2::Curve 2 concept. Represents algebraic curves. Internally, the type stores
topological-geometric information about the particular curve. In order to use internal caching, instances should
only be created using the Construct curve 2 functor of the traits class.

Polynomial 2 C.polynomial() const returns the defining polynomial of the curve.

Class Arr algebraic segment traits 2<Coefficient>::Point 2

Models the ArrangementBasicTraits 2::Point 2 concept. Represents points in R2. Intersection points of alge-
braic curves are in general non-rational, so we need a data structure that is capable of representing arbitrary
points with algebraic coordinates.

The traits class represents algebraic coordinates by the type Algebraic real 1, which is a model of the
AlgebraicReal 1 concept. A point p is stored by a triple (x,cv,arcno), where x is the x-coordinate of a point, cv
is an instance of Curve 2 that contains the point, (and has no vertical line at x), and arcno is an int, denoting
that p is met as the arcno-th point when shooting a vertical ray at x, starting from −∞ (where counting starts
with 0).

In addition to the methods listed below, the copy constructor and assignment operator for Point 2 objects are
also supported.

The functor Construct point 2 constructs Point 2 instances.

Algebraic real 1 p.x() const returns the x-coordinate of p.

Algebraic real 1 p.y() const returns the y-coordinates of p.
Attention: As described above, points are not stored by their
y-coordinate in Algebraic real 1 representation. In fact, this
representation must be computed on demand, and might be-
come quite costly for points defined by high-degree poly-
nomials. Therefore, it is recommended to avoid to call this
function as much as possible.

Curve 2 p.curve() const returns a Curve 2 instance that pis part of.

int p.arcno() const returns the arc number of p.

std::pair<double,double>

p.to double() const returns double-approximations of the x- and y-coordinates.

2320



Class Arr algebraic segment traits 2<Coefficient>::X monotone curve 2

Models the ArrangementBasicTraits 2::X monotone curve 2 concept. Represents terminal segments of an al-
gebraic curves, that means vertical segments or x-monotone segments with no critical x-coordinate in the interior
of their x-range. Terminal segments might either be bounded or unbounded. By definition, each interior point
of a non-vertical segment has the same arc number (see the documentation of type Point 2 above, which is
called the arc number of the segment (note the arc number at the endpoints might differ). Such segments are
represented internally by a 4-tuple (p,q,cv,arcno), where p and q are the endpoints, cv is the supporting curve
that the segment belongs to, and arcno is the arc number of the segment.

Arbitrary (weakly) x-monotone segments are presented by a range of X monotone curve 2 instances, whose
union equals the segment. The functor Construct x monotone segment 2 allows their construction. To con-
struct all (maximal) terminal segments of a curve, use the Make x monotone 2 functor supplied by the traits
class.

Curve 2 s.curve() const returns the supporting algebraic curve of s.

bool s.is vertical() const returns whether s is a vertical segment.

bool s.is finite( CGAL::Arr curve end ce) const

returns whether s has a finite endpoint on the left
(if ce==CGAL::ARR MIN END) or on the right (if
ce==CGAL::ARR MAX END).

Point 2 s.curve end( CGAL::Arr curve end ce) const

returns the left or right endpoint of sfor ce==CGAL::ARR
MIN END and ce==CGAL::ARR MAX END.
Precondition: (The corresponding curve end is finite)

int s.arcno() const returns the arc number of the segment.
Precondition: (The segment is non-vertical)

Algebraic real 1 s.x() const returns the x-coordinate of a vertical segment.
Precondition: (The segment is vertical)

Object Creation Functors

Curves, points, and x-monotone segments are created by special functors. The functors are not default con-
structible; the only possibility to obtain them is by the corresponding accessing functions.

Class Arr algebraic segment traits 2<Coefficient>::Construct curve 2

Curve 2 fo( Polynomial 2 p) Returns a Curve 2 object that represents the curve defined by
the polynomial p
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Curve 2 fo( std::string s) Returns a Curve 2 object specified by s. The passed string
represents the defining polynomial of the curve and must be
given in a MAPLE-readable format using ”x” as first and ”y”
as second variable, e.g., ”(xˆ3*y-2*x)*(-6*x-yˆ3*xˆ6)” for
integer coefficients, and ”3/2*x*yˆ4-5/7*xˆ2+3/1” for ratio-
nal coefficients.

Class Arr algebraic segment traits 2<Coefficient>::Construct point 2

Point 2 fo( Algebraic real 1 x, Curve 2 cv, int arcno)

Returns a Point 2 object that represents the arcno-th point
in the fiber of cv at x-coordinate x, counted from the bottom,
starting with zero.
Precondition: (cv must not have a vertical line at x, and 0 ≤
arcno < c, where c is the number of points in the fiber of cv
at x.)

Point 2 fo( Algebraic real 1 x, X monotone curve 2 xcv)

Returns a Point 2 object that represents the point on xcv at
x-coordinate x
Precondition: (x is in the x-range of xcv.)

Point 2 fo( Algebraic real 1 x, Algebraic real 1 y)

Returns a Point 2 object that represents (x,y)

Point 2 fo( Coefficient x, Coefficient y)

Returns a Point 2 object that represents (x,y)

Point 2 fo( Bound x, Bound y) Returns a Point 2 object that represents (x,y)

Point 2 fo( int x, int y) Returns a Point 2 object that represents (x,y)

Class Arr algebraic segment traits 2<Coefficient>::Construct x monotone segment 2

template<class OutputIterator>
OutputIterator fo( Curve 2 cv, Point 2 end min, Point 2 end max, OutputIterator out)

Writes a sequence of X monotone curve 2 objects (terminal
segments) into out. These terminal segments compose an x-
monotone (or vertical) segment of the curve cv that starts in
end min, and ends in end max.
Precondition: (end min must have a unique x-monotone seg-
ment to its right, or end max must have a unique x-monotone
segment to its left. Furthermore, end min and end max must
be connected by an x-monotone segment of cv)
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template<class OutputIterator>
OutputIterator fo( Curve 2 cv, Point 2 p, Site of point site of p, OutputIterator out)

Writes a sequence of X monotone curve 2 objects into out.
These segments form an x-monotone (or vertical) segment of
the curve cv.
If site of p==POINT IN INTERIOR, the maximal segment
is returned that contains p in its interior.
If site of p==MIN ENDPOINT , the maximal segment is re-
turned that contains p as its left endpoint.
If site of p==MAX ENDPOINT , the maximal segment is re-
turned that contains p as its left endpoint.
Precondition: (If site of p==POINT IN INTERIOR, p must
be an interior point of an x-monotone or a vertical segment.
If site of p==MIN ENDPOINT , p must either have a unique
x-monotone segment to the right, or a vertical segment from
p upwards. If site of p==MAX ENDPOINT , p must either
have a unique x-monotone segment to the left, or a vertical
segment from p downwards.)

template<class OutputIterator>
OutputIterator fo( Point 2 p, Point 2 q, OutputIterator out)

Writes a sequence of X monotone curve 2 objects into out.
These segments form a straight-line segment connecting the
points p and q. If p and q share the same x-coordinate,
the constructed vertical segment consists of only one X
monotone curve 2 object and can be computed efficiently.
In the non-vertical case, the construction is only possible if p
and q have both rational x- and y-coordinates.
Precondition: (p must not be equal to q.)

Accessing functor objects

Construct curve 2 traits.construct curve 2 object() const
Construct point 2 traits.construct point 2 object() const
Construct x monotone segment 2

traits.construct x monotone segment 2 object() const
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CGAL::Arr curve data traits 2<Tr,XData,Mrg,CData,Cnv>

Definition

The class Arr curve data traits 2<Tr,XData,Mrg,CData,Cnv> is a model of the ArrangementTraits 2 concept
and serves as a decorator class that allows the extension of the curves defined by the base traits-class (the
Tr parameter), which serves as a geometric traits-class (a model of the ArrangementTraits 2 concept), with
extraneous (non-geometric) data fields.

The traits class inherits its point type from Traits::Point 2, and defines an extended Curve 2 and X monotone
curve 2 types, as detailed below.

Each Curve 2 object is associated with a single data field of type CData, and each X monotone curve 2 object
is associated with a single data field of type XData. When a curve is subdivided into x-monotone subcurves, its
data field is converted using the conversion functor, which is specified by the Cnv template-parameter, and the
resulting objects is copied to all X monotone curve 2 objects induced by this curve. The conversion functor
should provide an operator with the following prototype:
XData operator() (const CData& d) const;

By default, the two data types are the same, so the conversion operator is trivial:

CData = XData
Cnv = Default convert functor<CData,XData>

In case two (or more) x-monotone curves overlap, their data fields are merged to a single field, using the merge
functor functor, which is specified by the Mrg template-parameter. This functor should provide an operator with
the following prototype:
XData operator() (const XData& d1, const XData& d2) const;
which returns a single data object that represents the merged data field of d1 and d2. The x-monotone curve that
represents the overlap is associated with the output of this functor.

#include <CGAL/Arr curve data traits 2.h>

Is Model for the Concepts

ArrangementTraits 2

Types

typedef Tr Base traits 2; the base traits-class.
typedef typename Base traits 2::Curve 2

Base curve 2; the base curve.
typedef typename Base traits 2::X monotone curve 2

Base x monotone curve 2;

the base x-monotone curve curve.
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typedef Mrg Merge; the merge functor.
typedef Cnv Convert; the conversion functor.

typedef CData Curve data; the type of data associated with curves.
typedef XData X monotone curve data;

the type of data associated with x-monotone curves.

Inherits From

Base traits 2

Class Arr curve data traits 2<Tr,XData,Mrg,CData,Cnv>::Curve 2

The Curve 2 class nested within the curve-data traits extends the Base traits 2::Curve 2 type with an extra data
field of type Data.

Inherits From

Base curve 2

Creation

Arr curve data traits 2<Tr,XData,Mrg,CData,Cnv>::Curve 2 cv;

default constructor.

Arr curve data traits 2<Tr,XData,Mrg,CData,Cnv>::Curve 2 cv( Base curve 2 base);

constructs curve from the given base curve with uninitialized
data field.

Arr curve data traits 2<Tr,XData,Mrg,CData,Cnv>::Curve 2 cv( Base curve 2 base, Data data);

constructs curve from the given base curve with an attached
data field.

Access Functions

Curve data cv.data() const returns the data field (a non-const version, which returns a
reference to the data object, is also available).

void cv.set data( Curve data data)

sets the data field.
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Class Arr curve data traits 2<Tr,XData,Mrg,CData,Cnv>::X monotone curve 2

The X monotone curve 2 class nested within the curve-data traits extends the Base traits 2::X monotone
curve 2 type with an extra data field.

Inherits From

Base x monotone curve 2

Creation

Arr curve data traits 2<Tr,XData,Mrg,CData,Cnv>::X monotone curve 2 xcv;

default constructor.

Arr curve data traits 2<Tr,XData,Mrg,CData,Cnv>::X monotone curve 2 xcv( Base x monotone curve 2
base)

constructs an x-monotone curve from the given base curve
with uninitialized data field.

Arr curve data traits 2<Tr,XData,Mrg,CData,Cnv>::X monotone curve 2 xcv( Base x monotone curve 2
base,

X monotone curve data
data)

constructs an x-monotone curve from the given base x-
monotone curve with an attached data field.

Access Functions

X monotone curve data

xcv.data() const returns the field (a non-const version, which returns a refer-
ence to the data object, is also available).

void xcv.set data( X monotone curve data data)

sets the data field.
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CGAL::Arr consolidated curve data traits 2<Traits,Data>

Definition

The class Arr consolidated curve data traits 2<Traits,Data> is a model of the concept ArrangementTraits 2,
and serves as a decorator class that enables the extension of the curve type defined by the Traits parameter. The
traits class inherits its point type from Traits::Point 2, and defines the types Curve 2 and X monotone curve 2
extended with extraneous data fields of type Data.

Each Curve 2 object is associated with a single data field of type Data, and each X monotone curve 2 object is
associated with a set of unique data objects. When a curve is subdivided into x-monotone subcurves, all resulting
subcurves are associated with a list containing a single data object, copied from the inducing curve. When an
x-monotone curve is split, its data set is duplicated, and inserted into the sets of both resulting subcurves. In
case two (or more) x-monotone curves overlap, their data sets are consolidated, and are inserted into the set of
the x-monotone curve that represents the overlap.

#include <CGAL/Arr consolidated curve data traits 2.h>

Is Model for the Concepts

ArrangementTraits 2

Inherits From

Arr curve data traits 2<Traits,
Unique list<Data>,
Consolidate unique lists<Data>,

Data>

Types

typedef Traits Base traits 2; the base traits-class.
typedef typename Base traits 2::Curve 2

Base curve 2; the base curve.
typedef typename Base traits 2::X monotone curve 2

Base x monotone curve 2;

the base x-monotone curve curve.

Arr consolidated curve data traits 2<Traits,Data>:: typedef Data container

a set of data objects that is associated with an x-monotone
curve.

Arr consolidated curve data traits 2<Traits,Data>:: typedef Data iterator

a non-mutable iterator for the data objects in the data con-
tainer.
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Class Arr consolidated curve data traits 2<Traits,Data>::Data container

The Data container class nested within the consolidated curve-data traits and associated with the Traits::X
monotone curve 2 type is maintained as a list with unique data objects. This representation is simple and effi-
cient in terms of memory consumption. It also requires that the Data class supports only the equality operator.
Note however that most set operations require linear time.

Creation

Arr consolidated curve data traits 2<Traits,Data>:: Data container dset;

default constructor.

Arr consolidated curve data traits 2<Traits,Data>:: Data container dset( Data data);

constructs set containing a single data object.

Access Functions

std::size t dset.size() const returns the number of data objects in the set.

Data iterator dset.begin() const returns an iterator pointing to the first data object.

Data iterator dset.end() const returns a past-the-end iterator for the data objects.

Data dset.front() const returns the first data object inserted into the set.
Precondition: The number of data objects is not 0.

Data dset.back() const returns the last data object inserted into the set.
Precondition: The number of data objects is not 0.

Predicates

bool dset == Data container other

check if the two sets contain the same data objects (regardless
of order).

Data iterator dset.find( Data data) find the given data object in the set and returns an iterator for
this object, or end() if it is not found.

Modifiers

bool dset.insert( Data data)

inserts the given data object into the set. Returns true on
success, or false if the set already contains the object.
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bool dset.erase( Data data)

erases the given data object from the set. Returns true on
success, or false if the set does not contain the object.

void dset.clear() clears the set.
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ArrangementInputFormatter

A model for the ArrangementInputFormatter concept supports a set of functions that enable reading an arrange-
ment from an input stream using a specific format.

Types

ArrangementInputFormatter:: Arrangement 2 the type of arrangement to input.

typedef typename Arrangement 2::Point 2

Point 2; the point type.
typedef typename Arrangement 2::X monotone curve 2

X monotone curve 2;

the x-monotone curve type.

typedef typename Arrangement 2::Size

Size;
typedef typename Arrangement 2::Vertex handle

Vertex handle;
typedef typename Arrangement 2::Halfedge handle

Halfedge handle;
typedef typename Arrangement 2::Face handle

Face handle;

Creation

ArrangementInputFormatter inf ; default constructor.

ArrangementInputFormatter inf ( std::istream& is);

constructs a formatter that reads from is.

void inf .set in( std::istream& is)

directs inf to read from is.

Access Functions

std::istream& inf .in() returns the stream that inf reads from.
Precondition: inf is directed to a valid output stream.
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Formatted Input Functions

void inf .read arrangement begin()

reads a message indicating the beginning of the arrangement.

void inf .read arrangement end()

reads a message indicating the end of the arrangement.

Size inf .read size( const char *label = NULL)

reads a size value, which is supposed to be preceded by the
given label.

void inf .read vertices begin()

reads a message indicating the beginning of the vertex
records.

void inf .read vertices end()

reads a message indicating the end of the vertex records.

void inf .read edges begin()

reads a message indicating the beginning of the edge records.

void inf .read edges end() reads a message indicating the end of the edge records.

void inf .read faces begin()

reads a message indicating the beginning of the face records.

void inf .read faces end() reads a message indicating the end of the face records.

void inf .read vertex begin()

reads a message indicating the beginning of a single vertex
record.

void inf .read vertex end() reads a message indicating the end of a single vertex record.

std::size t inf .read vertex index()

reads and returns a vertex index.

void inf .read point( Point 2& p)

reads a point.
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void inf .read vertex data( Vertex handle v)

reads an auxiliary vertex-data object and associates it with
the vertex v.

void inf .read edge begin()

reads a message indicating the beginning of a single edge
record.

void inf .read edge end() reads a message indicating the end of a single edge record.

std::size t inf .read halfedge index()

reads and returns halfedge index.

void inf .read x monotone curve( X monotone curve 2& c)

reads an x-monotone curve.

void inf .read halfegde data( Halfedge handle he)

reads an auxiliary halfedge-data object and associates it with
the halfedge he.

void inf .read face begin() reads a message indicating the beginning of a single face
record.

void inf .read face end() reads a message indicating the end of a single face record.

void inf .read outer ccb begin()

reads a message indicating the beginning of the outer CCB
of the current face.

void inf .read outer ccb end()

reads a message indicating the end of the outer CCB of the
current face.

void inf .read holes begin()

reads a message indicating the beginning of the container of
holes inside the current face.

void inf .read holes end() reads a message indicating the end of the container of holes
inside the current face.

void inf .read inner ccb begin()

reads a message indicating the beginning of an inner CCB of
the current face.
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void inf .read inner ccb end()

reads a message indicating the end of an inner CCB of the
current face.

void inf .read ccb halfedges begin()

reads a message indicating the beginning a connected com-
ponent boundary.

void inf .read ccb halfedges end()

reads a message indicating the end of a connected component
boundary.

void inf .read isolated vertices begin()

reads a message indicating the beginning of the container of
isolated vertices inside the current face.

void inf .read isolated vertices end()

reads a message indicating the end of the container of iso-
lated vertices inside the current face.

void inf .read face data( Face handle f)

reads an auxiliary face-data object and associates it with the
face f .

Has Models

Arr text formatter<Arrangement> (page 2338)
Arr face extended text formatter<Arrangement> (page 2339)
Arr extended dcel text formatter<Arrangement> (page 2340)
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ArrangementOutputFormatter

A model for the ArrangementOutputFormatter concept supports a set of functions that enable writing an ar-
rangement to an output stream using a specific format.

Types

ArrangementOutputFormatter:: Arrangement 2

the type of arrangement to output.

typedef typename Arrangement 2::Point 2

Point 2; the point type.
typedef typename Arrangement 2::X monotone curve 2

X monotone curve 2;

the x-monotone curve type.

typedef typename Arrangement 2::Size

Size;
typedef typename Arrangement 2::Vertex const handle

Vertex const handle;
typedef typename Arrangement 2::Halfedge const handle

Halfedge const handle;
typedef typename Arrangement 2::Face const handle

Face const handle;

Creation

ArrangementOutputFormatter outf ; default constructor.

ArrangementOutputFormatter outf ( std::ostream& os);

constructs a formatter that writes to os.

void outf .set out( std::ostream& os)

directs outf to write to os.
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Access Functions

std::ostream& outf .out() returns the stream that outf writes to.
Precondition: outf is directed to a valid output stream.

Formatted Output Functions

void outf .write arrangement begin()

writes a message indicating the beginning of the arrange-
ment.

void outf .write arrangement end()

writes a message indicating the end of the arrangement.

void outf .write size( const char *label, Size size)

writes a size value, preceded by a given label.

void outf .write vertices begin()

writes a message indicating the beginning of the vertex
records.

void outf .write vertices end()

writes a message indicating the end of the vertex records.

void outf .write edges begin()

writes a message indicating the beginning of the edge
records.

void outf .write edges end()

writes a message indicating the end of the edge records.

void outf .write faces begin()

writes a message indicating the beginning of the face records.

void outf .write faces end()

writes a message indicating the end of the face records.

void outf .write vertex begin()

writes a message indicating the beginning of a single vertex
record.

void outf .write vertex end()

writes a message indicating the end of a single vertex record.
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void outf .write vertex index( std::size t idx)

writes a vertex index.

void outf .write point( Point 2 p)

writes a point.

void outf .write vertex data( Vertex const handle v)

writes the auxiliary data associated with the vertex.

void outf .write edge begin()

writes a message indicating the beginning of a single edge
record.

void outf .write edge end()

writes a message indicating the end of a single edge record.

void outf .write halfedge index( std::size t idx)

writes a halfedge index.

void outf .write x monotone curve( X monotone curve 2 c)

writes an x-monotone curve.

void outf .write halfegde data( Halfedge const handle he)

writes the auxiliary data associated with the halfedge.

void outf .write face begin()

writes a message indicating the beginning of a single face
record.

void outf .write face end() writes a message indicating the end of a single face record.

void outf .write outer ccb begin()

writes a message indicating the beginning of the outer CCB
of the current face.

void outf .write outer ccb end()

writes a message indicating the end of the outer CCB of the
current face.
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void outf .write holes begin()

writes a message indicating the beginning of the container of
holes inside the current face.

void outf .write holes end()

writes a message indicating the end of the container of holes
inside the current face.

void outf .write ccb halfedges begin()

writes a message indicating the beginning a connected com-
ponent’s boundary.

void outf .write ccb halfedges end()

writes a message indicating the end of a connected compo-
nent’s boundary.

void outf .write isolated vertices begin()

writes a message indicating the beginning of the container of
isolated vertices inside the current face.

void outf .write isolated vertices end()

writes a message indicating the end of the container of iso-
lated vertices inside the current face.

void outf .write face data( Face const handle f)

writes the auxiliary data associated with the face.

Has Models

Arr text formatter<Arrangement> (page 2338)
Arr face extended text formatter<Arrangement> (page 2339)
Arr extended dcel text formatter<Arrangement> (page 2340)
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CGAL::Arr text formatter<Arrangement>

Definition

Arr text formatter<Arrangement> defines the format of an arrangement in an input or output stream (typically
a file stream), thus enabling reading and writing an Arrangement instance using a simple text format. The
arrangement is assumed to store no auxiliary data with its DCEL records (and if there are such records they will
not be written or read by the formatter).

The Arr text formatter<Arrangement> class assumes that the nested Point 2 and the Curve 2 types defined by
the Arrangement template-parameter can both be written to an input stream using the << operator and read from
an input stream using the >> operator.

#include <CGAL/IO/Arr text formatter.h>

Is Model for the Concepts

ArrangementInputFormatter
ArrangementOutputFormatter

See Also

read (page 2228)
write (page 2230)
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CGAL::Arr face extended text formatter<Arrangement>

Definition

Arr face extended text formatter<Arrangement> defines the format of an arrangement in an input or output
stream (typically a file stream), thus enabling reading and writing an Arrangement instance using a simple text
format. The Arrangement class should be instantiated with a DCEL class which in turn instantiates the Arr
face extended dcel template with a FaceData type. The formatter supports reading and writing the data objects
attached to the arrangement faces as well.

The Arr face extended text formatter<Arrangement> class assumes that the nested Point 2 and the Curve 2
types defined by the Arrangement template-parameter and that the FaceData type can all be written to an input
stream using the << operator and read from an input stream using the >> operator.

#include <CGAL/IO/Arr text formatter.h>

Is Model for the Concepts

ArrangementInputFormatter
ArrangementOutputFormatter

See Also

read (page 2228)
write (page 2230)
Arr face extended dcel<Traits,FData,V,H,F> (page 2248)
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CGAL::Arr extended dcel text formatter<Arrangement>

Definition

Arr extended dcel text formatter<Arrangement> defines the format of an arrangement in an input or output
stream (typically a file stream), thus enabling reading and writing an Arrangement instance using a simple
text format. The Arrangement class should be instantiated with a DCEL class which in turn instantiates the
Arr extended dcel template with the VertexData, HalfedgeData and FaceData types. The formatter supports
reading and writing the data objects attached to the arrangement vertices, halfedges and faces.

The Arr extended dcel text formatter<Arrangement> class assumes that the nested Point 2 and the Curve 2
types defined by the Arrangement template-parameter, as well as the VertexData, HalfedgeData and FaceData
types, can all be written to an input stream using the << operator and read from an input stream using the >>
operator.

#include <CGAL/IO/Arr text formatter.h>

Is Model for the Concepts

ArrangementInputFormatter
ArrangementOutputFormatter

See Also

read (page 2228)
write (page 2230)
Arr extended dcel<Traits,VData,HData,FData,V,H,F> (page 2249)
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ArrangementPointLocation 2

Definition

A model of the ArrangementPointLocation 2 concept can be attached to an Arrangement 2 instance and answer
point-location queries on this arrangement. Namely, given a Arrangement 2::Point 2 object, representing a
point in the plane, it returns the arrangement cell containing it. In the general case, the query point is contained
inside an arrangement face, but in degenerate situations it may lie on an edge or coincide with an arrangement
vertex.

Types

ArrangementPointLocation 2:: Arrangement 2

the associated arrangement type.

ArrangementPointLocation 2:: Point 2 equivalent to Arrangement 2::Point 2.

Creation

ArrangementPointLocation 2 pl; default constructor.

ArrangementPointLocation 2 pl( Arrangement 2 arr);

constructs a point-location object pl attached to the given ar-
rangement arr.

Query Functions

Object pl.locate( Point 2 q) const

locates the arrangement cell that contains the query point q and returns a handle for this cell.
The function returns an Object instance that wraps either of the following types:

• Arrangement 2::Face const handle, in case q is contained inside an arrangement
face;

• Arrangement 2::Halfedge const handle, in case q lies on an arrangement edge;

• Arrangement 2::Vertex const handle, in case q coincides with an arrangement ver-
tex.

Precondition: pl is attached to a valid arrangement instance.
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Operations

void pl.attach( Arrangement 2 arr)

attaches pl to the given arrangement arr.

void pl.detach()

detaches pl from the arrangement it is currently attached to.

Has Models

Arr naive point location<Arrangement>
Arr walk along a line point location<Arrangement>
Arr trapezoid ric point location<Arrangement>
Arr landmarks point location<Arrangement,Generator>
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ArrangementVerticalRayShoot 2

Definition

A model of the ArrangementVerticalRayShoot 2 concept can be attached to an Arrangement 2 instance and
answer vertical ray-shooting queries on this arrangement. Namely, given a Arrangement 2::Point 2 object,
representing a point in the plane, it returns the arrangement feature (edge or vertex) that lies strictly above it
(or below it). By “strictly” we mean that if the query point lies on an arrangement edge (or on an arrangement
vertex) this edge will not be the query result, but the feature lying above or below it. (An exception to this rule
is the degenerate situation where the query point lies in the interior of a vertical edge.) Note that it may happen
that the query point lies above the upper envelope (or below the lower envelope) of the arrangement, so that the
vertical ray emanating from it may go to infinity without hitting any arrangement feature on its way. In this case
the unbounded face is returned.

Types

ArrangementVerticalRayShoot 2:: Arrangement 2

the associated arrangement type.

ArrangementVerticalRayShoot 2:: Point 2 equivalent to Arrangement 2::Point 2.

Creation

ArrangementVerticalRayShoot 2 rs; default constructor.

ArrangementVerticalRayShoot 2 rs( Arrangement 2 arr);

constructs a ray-shooting object rs attached to the given ar-
rangement arr.

Query Functions

Object rs.ray shoot up( Point 2 q) const

locates the arrangement feature that is first hit by an upward-
directed vertical ray emanating from the query point q, and
returns a handle for this feature. The function returns an Ob-
ject instance that is a wrapper for one of the following types:

• Arrangement 2::Halfedge const handle, in case the
vertical ray hits an arrangement edge;

• Arrangement 2::Vertex const handle, in case the ver-
tical ray hits an arrangement vertex.

• Arrangement 2::Face const handle for the un-
bounded arrangement face, in case q lies above the
upper envelope of the arrangement.

Precondition: rs is attached to a valid arrangement instance.
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Object rs.ray shoot down( Point 2 q) const

locates the arrangement feature that is first hit by a
downward-directed vertical ray emanating from the query
point q, and returns a handle for this feature. The function
returns an Object instance that is a wrapper for one of the
following types:

• Arrangement 2::Halfedge const handle, in case the
vertical ray hits an arrangement edge;

• Arrangement 2::Vertex const handle, in case the ver-
tical ray hits an arrangement vertex.

• Arrangement 2::Face const handle for the un-
bounded arrangement face, in case q lies below the
lower envelope of the arrangement.

Precondition: rs is attached to a valid arrangement instance.

Operations

void rs.attach( Arrangement 2 arr)

attaches rs to the given arrangement arr.

void rs.detach() detaches rs from the arrangement it is currently attached to.

Has Models

Arr naive point location<Arrangement>
Arr walk along a line point location<Arrangement>
Arr trapezoid ric point location<Arrangement>
Arr landmarks point location<Arrangement,Generator>
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CGAL::Arr naive point location<Arrangement>

Definition

The Arr naive point location<Arrangement> class implements a naive algorithm that traverses all the vertices
and halfedges in the arrangement in search for an answer to a point-location query. The query time is therefore
linear in the complexity of the arrangement. Naturally, this point-location strategy could turn into a heavy
time-consuming process when applied to dense arrangements.

#include <CGAL/Arr naive point location.h>

Is Model for the Concepts

ArrangementPointLocation 2
ArrangementVerticalRayShoot 2
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CGAL::Arr walk along line point location<Arrangement>

Definition

The Arr walk along line point location<Arrangement> class implements a very simple point-location (and
vertical ray-shooting) strategy that improves the naive one. The algorithm considers an imaginary vertical ray
emanating from the query point, and simulates a walk along the zone of this ray, starting from the unbounded
face until reaching the query point. In dense arrangements this walk can considerably reduce the number of
traversed arrangement edges, with respect to the naı̈ve algorithm.

The walk-along-a-line point-location object (just like the naı̈ve one) does not use any auxiliary data structures.
Thus, attaching it to an existing arrangement takes constant time, and any ongoing updates to this arrangement
do not affect the point-location object. It is therefore recommended to use the “walk” point-location strategy for
arrangements that are constantly changing, especially if the number of issued queries is not large.

#include <CGAL/Arr walk along line point location.h>

Is Model for the Concepts

ArrangementPointLocation 2
ArrangementVerticalRayShoot 2
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CGAL::Arr trapezoid ric point location<Arrangement>

Definition

The Arr trapezoid ric point location<Arrangement> class implements the incremental randomized algorithm
introduced by Mulmuley [Mul90] as presented by Seidel [Sei91] (see also [dBvKOS00, Chapter 6]). It sub-
divides each arrangement face to pseudo-trapezoidal cells, each of constant complexity, and constructs and
maintains a linear-size search structure on top of these cells, such that each query can be answered in O(logn)
time, where n is the complexity of the arrangement.

Constructing the search structures takes O(n logn) expected time and may require a small number of re-
builds [HKH12]. Therefore attaching a trapezoidal point-location object to an existing arrangement may incur
some overhead in running times. In addition, the point-location object needs to keep its auxiliary data structures
up-to-date as the arrangement goes through structural changes. It is therefore recommended to use this point-
location strategy for static arrangements (or arrangement that do not alter frequently), and when the number of
issued queries is relatively large.

This strategy supports arbitrary subdivisions, including unbounded ones.

#include <CGAL/Arr trapezoid ric point location.h>

Is Model for the Concepts

ArrangementPointLocation 2
ArrangementVerticalRayShoot 2

Creation

Arr trapezoid ric point location<Arrangement> pl( bool with guarantees = true);

If with guarantees is set to true, the cunstruction performs
rebuilds in order to guarantee a resulting structure with linear
size and logarithmic query time. Otherwise the structure has
expected linear size and expected logarithmic query time.

Arr trapezoid ric point location<Arrangement> pl( Arrangement arr, bool with guarantees = true);

Constructs a point location search structure for the given ar-
rangement. If with guarantees is set to true, the cunstruction
performs rebuilds in order to guarantee a resulting structure
with linear size and logarithmic query time. Otherwise the
structure has expected linear size and expected logarithmic
query time.

Modifiers
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void pl.with guarantees( bool with guarantees)

If with guarantees is set to true, the structure will guarantee
linear size and logarithmic query time, that is, this function
may cause a reconstruction of the data structure.
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CGAL::Arr landmarks point location<Arrangement,Generator>

The Arr landmarks point location<Arrangement,Generator> class implements a Jump & Walk algorithm,
where special points, referred to as “landmarks”, are chosen in a preprocessing stage, their place in the ar-
rangement is found, and they are inserted into a data-structure that enables efficient nearest-neighbor search
(a KD-tree). Given a query point, the nearest landmark is located and a “walk” strategy is applied from the
landmark to the query point.

There are various strategies to select the landmark set in the arrangement, where the strategy is determined by
the Generator template parameter. The following landmark-generator classes are available:

Arr landmarks vertices generator — The arrangement vertices are used as the landmarks set.

Arr random landmarks generator — n random points in the bounding box of the arrangement are chosen as
the landmarks set.

Arr halton landmarks generator — n Halton points in the bounding box of the arrangement are chosen as the
landmarks set.

Arr middle edges landmarks generator — The midpoint of each arrangement edge is computed, and the re-
sulting set of points is used as the landmarks set. This generator can be applied only for arrangements of
line segments.

Arr grid landmarks generator — A set of n landmarks are chosen on a d
√

ne × d
√

ne grid that covers the
bounding box of the arrangement.

The Arr landmarks vertices generator class is the default generator and used if no Generator parameter is
specified.

It is recommended to use the landmarks point-location strategy when the application frequently issues point-
location queries on a rather static arrangement that the changes applied to it are mainly insertions of curves and
not deletions of them.

#include <CGAL/Arr landmarks point location.h>

Is Model for the Concepts

ArrangementPointLocation 2
ArrangementVerticalRayShoot 2
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CGAL::locate

Definition

The function locate performs a batched point-location operation on a given arrangement. It accepts a range
of query points, and locates each point in the arrangement. The query results are returned through the output
iterator. Each result is given as a pair of the query point and an object representing the arrangement feature that
contains it, namely an Object that may be either Face const handle, Halfedge const handle, or Vertex const
hanlde. The resulting pairs in the output sequence are sorted in increasing xy-lexicographical order of the query
points. The function returns a past-the-end iterator of the output sequence.

#include <CGAL/Arr batched point location.h>

template<typename Traits, typename Dcel, typename PointsIterator, typename OutputIterator>
OutputIterator locate( Arrangement 2<Traits,Dcel> arr,

PointsIterator points begin,
PointsIterator points end,
OutputIterator oi)

Requirements

• InputIterator::value type must be Traits::Point 2.

• OutputIterator::value type must be std::pair<Traits::Point 2,Object>.
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CGAL::decompose

Definition

The function decompose produces the symbolic vertical decomposition of a given arrangement, performing a
batched vertical ray-shooting query from all arrangement vertices, such that every vertex is associated with
a pair of objects, one corresponds to the arrangement feature that lies below it, and the other corresponds to
the feature that lies above it. The output of this function can be readily used for inserting vertical walls and
physically decomposing the arrangement into pseudo-trapezoids. To do this, it is convenient to process the
vertices in an ascending xy-lexicographic order. The visible objects are therefore returned through an output
iterator, which pairs each finite arrangement vertex with the two features it “sees”, such that the vertices are
given in ascending xy-lexicographic order.

#include <CGAL/Arr vertical decomposition 2.h>

template<typename Traits, typename Dcel, typename OutputIterator>
OutputIterator decompose( Arrangement 2<Traits,Dcel> arr, OutputIterator oi)

Produces the symbolic vertical decomposition of the arr arrangement. More precisely, it performs a batched
vertical ray-shooting query from all arrangement vertices, such that every vertex is associated with a pair of
objects, one corresponding to the arrangement feature that lies below it, while the other corresponds to the
feature that lies above it. The query results are returned through the output iterator, which pairs each finite
arrangement vertex with a pair of Objects, the first represents the feature below the vertex, and the second
represents the feature that lies above it. Each Object may be one of the following:

• Halfedge const handle, if the vertex is located above (or below) an edge. The given halfedge is always
directed from right to left. In case there is no concrete edge below (or above) the vertex, and the arrange-
ment is unbounded, then the object returned is a fictitious halfedge.

• Face const handle, in case there is no edge below (or above) the vertex, and the arrangement is bounded.

• Vertex const handle, in case the vertex is located vertically above (or below) another arrangement vertex.

• An empty object, in case the vertex is the top end-vertex of a vertical edge, we define there is no feature
below it. Similarly, if it is the bottom end-vertex of a vertical edge, we define that there is no feature
above it.

The function returns a past-the-end iterator for its output sequence.

Requirements

OutputIterator::value type must be pair<Arrangement 2::Vertex const handle, pair<Object, Object> >.
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CGAL::Arr observer<Arrangement>

Definition

Arr observer<Arrangement> serves as an abstract base class for all observer classes that are attached to an
arrangement instance of type Arrangement and receive notifications from the arrangement. This base class
handles the attachment of the observer to a given arrangement instance or to the detachment of the observer
from this arrangement instance. It also gives a default empty implementation to all notification functions that
are invoked by the arrangement to notify the observer on local or global changes it undergoes. The notification
functions are all virtual functions, so they can be overridden by the concrete observer classes that inherit from
Arr observer<Arrangement>.

In order to implement a concrete arrangement observer-class, one simply needs to derive from Arr observer<
Arrangement> and override the relevant notification functions. For example, if only face-split events are of
interest, it is sufficient to override just before split face() (or just after split face()).

#include <CGAL/Arr observer.h>

Types

Arr observer<Arrangement>:: Arrangement 2 the type of the associated arrangement.

typedef typename Arrangement 2::Point 2

Point 2; the point type.
typedef typename Arrangement 2::X monotone curve 2

X monotone curve 2;

the x-monotone curve type.

typedef typename Arrangement 2::Vertex handle

Vertex handle;
typedef typename Arrangement 2::Halfedge handle

Halfedge handle;
typedef typename Arrangement 2::Face handle

Face handle;
typedef typename Arrangement 2::Ccb halfedge circulator

Ccb halfedge circulator;

represents the boundary of a connected component (CCB).
In particular, holes are represented by a circulator for their
outer CCB.

2352



Creation

Arr observer<Arrangement> obs; constructs an observer that is unattached to any arrangement
instance.

Arr observer<Arrangement> obs( Arrangement 2& arr);

constructs an observer and attaches it to the given arrange-
ment arr.

Modifiers

void obs.attach( Arrangement 2& arr)

attaches the observer to the given arrangement arr.

void obs.detach() detaches the observer from its arrangement.

Notifications on Global Arrangement Operations

virtual void obs.before assign( Arrangement 2 arr)

issued just before the attached arrangement is assigned with
the contents of another arrangement arr.

virtual void obs.after assign() issued immediately after the attached arrangement has been
assigned with the contents of another arrangement.

virtual void obs.before clear() issued just before the attached arrangement is cleared.
virtual void obs.after clear( Face handle uf)

issued immediately after the attached arrangement has been
cleared, so it now consists only of a the unbounded face uf .

virtual void obs.before global change()

issued just before a global function starts to modify the at-
tached arrangement. It is guaranteed that no queries (espe-
cially no point-location queries) are issued until the termi-
nation of the global function is indicated by after global
change().

virtual void obs.after global change()

issued immediately after a global function has stopped mod-
ifying the attached arrangement.
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Notifications on Attachment or Detachment

virtual void obs.before attach( Arrangement 2 arr)

issued just before the observer is attached to the arrangement
instance arr.

virtual void obs.after attach() issued immediately after the observer has been attached to an
arrangement instance.

virtual void obs.before detach() issued just before the observer is detached from its arrange-
ment instance.

virtual void obs.after attach() issued immediately after the observer has been detached
from its arrangement instance.

Notifications on Local Changes in the Arrangement

virtual void obs.before create vertex( Point 2 p)

issued just before a new vertex that corresponds to the point
p is created.

virtual void obs.after create vertex( Vertex handle v)

issued immediately after a new vertex v has been created.
Note that the vertex still has no incident edges and is not
connected to any other vertex.

virtual void obs.before create boundary vertex( X monotone curve 2 cv,
Arr curve end ind,
Arr parameter space ps x,
Arr parameter space ps y)

issued just before a new vertex at infinity is created, cv is
the curve incident to the surface boundary, ind is the relevant
curve-end, ps x is the boundary condition of the vertex in x
and ps y is the boundary condition of the vertex in y.

virtual void obs.after create boundary vertex( Vertex handle v)

issued immediately after a new vertex v has been created.
Note that the vertex still has no incident edges and is not
connected to any other vertex.

virtual void obs.before create edge( X monotone curve 2 c, Vertex handle v1, Vertex handle v2)

issued just before a new edge that corresponds to the x-
monotone curve c and connects the vertices v1 and v2 is cre-
ated.

virtual void obs.after create edge( Halfedge handle e)

issued immediately after a new edge e has been created. The
halfedge that is sent to this function is always directed from
v1 to v2 (see above).
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virtual void obs.before modify vertex( Vertex handle v, Point 2 p)

issued just before a vertex v is modified to be associated with
the point p.

virtual void obs.after modify vertex( Vertex handle v)

issued immediately after an existing vertex v has been modi-
fied.

virtual void obs.before modify edge( Halfedge handle e, X monotone curve 2 c)

issued just before an edge e is modified to be associated with
the x-monotone curve c.

virtual void obs.after modify edge( Halfedge handle e)

issued immediately after an existing edge e has been modi-
fied.

virtual void obs.before split edge( Halfedge handle e,
Vertex handle v,
X monotone curve 2 c1,
X monotone curve 2 c2)

issued just before an edge e is split into two edges that should
be associated with the x-monotone curves c1 and c2. The
vertex v corresponds to the split point, and will be used to
separate the two resulting edges.

virtual void obs.after split edge( Halfedge handle e1, Halfedge handle e2)

issued immediately after an existing edge has been split into
the two given edges e1 and e2.

virtual void obs.before split fictitious edge( Halfedge handle e, Vertex handle v)

issued just before a fictitious edge e is split into two. The
vertex at infinity v corresponds to the split point, and will be
used to separate the two resulting edges.

virtual void obs.after split fictitious edge( Halfedge handle e1, Halfedge handle e2)

issued immediately after an existing fictitious edge has been
split into the two given fictitious edges e1 and e2.

virtual void obs.before split face( Face handle f, Halfedge handle e)

issued just before a face f is split into two, as a result of the
insertion of the edge e into the arrangement.

virtual void obs.after split face( Face handle f1, Face handle f2, bool is hole)

issued immediately after the existing face f1 has been split,
such that a portion of it now forms a new face f2. The flag
is hole designates whether f2 forms a hole inside f1.

2355



virtual void obs.before split outer ccb( Face handle f,
Ccb halfedge circulator h,
Halfedge handle e)

issued just before outer ccb h inside a face f is split into two,
as a result of the removal of the edge e from the arrangement.

virtual void obs.after split outer ccb( Face handle f,
Ccb halfedge circulator h1,
Ccb halfedge circulator h2)

issued immediately after outer ccb the face f has been split,
resulting in the two holes h1 and h2.

virtual void obs.before split inner ccb( Face handle f,
Ccb halfedge circulator h,
Halfedge handle e)

issued just before inner ccb h inside a face f is split into two,
as a result of the removal of the edge e from the arrangement.

virtual void obs.after split inner ccb( Face handle f,
Ccb halfedge circulator h1,
Ccb halfedge circulator h2)

issued immediately after inner ccb the face f has been split,
resulting in the two holes h1 and h2.

virtual void obs.before add outer ccb( Face handle f, Halfedge handle e)

issued just before the edge e is inserted as a new outer ccb
inside the face f .

virtual void obs.after add outer ccb( Ccb halfedge circulator h)

issued immediately after a new outer ccb h has been cre-
ated. The outer ccb always consists of a single pair of twin
halfedges.

virtual void obs.before add inner ccb( Face handle f, Halfedge handle e)

issued just before the edge e is inserted as a new inner ccb
inside the face f .

virtual void obs.after add inner ccb( Ccb halfedge circulator h)

issued immediately after a new inner ccb h has been cre-
ated. The inner ccb always consists of a single pair of twin
halfedges.

virtual void obs.before add isolated vertex( Face handle f, Vertex handle v)

issued just before the vertex v is inserted as an isolated vertex
inside the face f .
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virtual void obs.after add isolated vertex( Vertex handle v)

issued immediately after the vertex v has been set as an iso-
lated vertex.

virtual void obs.before merge edge( Halfedge handle e1,
Halfedge handle e2,
X monotone curve 2 c)

issued just before the two edges e1 and e2 are merged to form
a single edge that will be associated with the x-monotone
curve c.

virtual void obs.after merge edge( Halfedge handle e)

issued immediately after two edges have been merged to
form the edge e.

virtual void obs.before merge fictitious edge( Halfedge handle e1, Halfedge handle e2)

issued just before the two fictitious edges e1 and e2 are
merged to form a single fictitious edge.

virtual void obs.after merge fictitious edge( Halfedge handle e)

issued immediately after two fictitious edges have been
merged to form the fictitious edge e.

virtual void obs.before merge face( Face handle f1, Face handle f2, Halfedge handle e)

issued just before the two edges f1 and f2 are merged to form
a single face, following the removal of the edge e from the
arrangement.

virtual void obs.after merge face( Face handle f)

issued immediately after two faces have been merged to form
the face f .

virtual void obs.before merge outer ccb( Face handle f,
Ccb halfedge circulator h1,
Ccb halfedge circulator h2,
Halfedge handle e)

issued just before two outer ccbs h1 and h2 inside the face f
are merged to form a single connected component, following
the insertion of the edge e into the arrangement.

virtual void obs.after merge outer ccb( Face handle f, Ccb halfedge circulator h)

issued immediately after two outer ccbs have been merged to
form a single outer ccb h inside the face f .
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virtual void obs.before merge inner ccb( Face handle f,
Ccb halfedge circulator h1,
Ccb halfedge circulator h2,
Halfedge handle e)

issued just before two inner ccbs h1 and h2 inside the face f
are merged to form a single connected component, following
the insertion of the edge e into the arrangement.

virtual void obs.after merge inner ccb( Face handle f, Ccb halfedge circulator h)

issued immediately after two inner ccbs have been merged to
form a single inner ccb h inside the face f .

virtual void obs.before move outer ccb( Face handle from f,
Face handle to f,
Ccb halfedge circulator h)

issued just before the outer ccb h is moved from one face to
another. This can happen if the face to f containing the outer
ccb has just been split from from f .

virtual void obs.after move outer ccb( Ccb halfedge circulator h)

issued immediately after the outer ccb h has been moved to a
new face.

virtual void obs.before move inner ccb( Face handle from f,
Face handle to f,
Ccb halfedge circulator h)

issued just before the inner ccb h is moved from one face to
another. This can happen if the face to f containing the inner
ccb has just been split from from f .

virtual void obs.after move inner ccb( Ccb halfedge circulator h)

issued immediately after the inner ccb h has been moved to a
new face.

virtual void obs.before move isolated vertex( Face handle from f,
Face handle to f,
Vertex handle v)

issued just before the isolated vertex v is moved from one
face to another. This can happen if the face to f containing
the isolated vertex has just been split from from f .

virtual void obs.after move isolated vertex( Vertex handle v)

issued immediately after the isolated vertex v has been
moved to a new face.

virtual void obs.before remove vertex( Vertex handle v)

issued just before the vertex v is removed from the arrange-
ment.
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virtual void obs.after remove vertex()

issued immediately after a vertex has been removed (and
deleted) from the arrangement.

virtual void obs.before remove edge( Halfedge handle e)

issued just before the edge e is removed from the arrange-
ment.

virtual void obs.after remove edge()

issued immediately after an edge has been removed (and
deleted) from the arrangement.

virtual void obs.before remove outer ccb( Face handle f, Ccb halfedge circulator h)

issued just before the outer ccb f is removed from inside the
face f .

virtual void obs.after remove outer ccb( Face handle f)

issued immediately after a outer ccb has been removed (and
deleted) from inside the face f .

virtual void obs.before remove inner ccb( Face handle f, Ccb halfedge circulator h)

issued just before the inner ccb f is removed from inside the
face f .

virtual void obs.after remove inner ccb( Face handle f)

issued immediately after a inner ccb has been removed (and
deleted) from inside the face f .
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ArrangementOpenBoundaryTraits 2

Definition

Several predicates are required to handle x-monotone curves that approach infinity and thus approach the bound-
ary of the parameter space. These predicates are sufficient to handle not only curves embedded in an unbounded
parameter space, but also curves embedded in a bounded parameter space with open boundaries. Models of the
concept ArrangementOpenBoundaryTraits 2 handle curves that approach the boundary of a parameter space.
This concept refines the concept ArrangementBasicTraits 2. The arrangement template instantiated with a traits
class that models this concept can handle x-monotone curves that are unbounded in any direction. The concept
ArrangementOpenBoundaryTraits 2, nontheless, also supports planar x-monotone curves that reach the bound-
ary of an open yet bounded parameter space.

An x-monotone curve may be closed, in which case its endpoints are representable as Point 2 objects, or
open at the boundary of the parameter space. It can have one open end and one closed end (e.g., a ray).
The nature of the x-monotone curves, whether they are expected to be closed or not at any one of the four
boundary-sides, is conveyed through the definition of the four nested types Left side category, Right side
category, Bottom side category, and Top side category. If some curves handled by a model of the concept
ArrangementOpenBoundaryTraits 2 are expected to be open on the left, the nested type Left side category
must be convertible to Arr open side tag. Similarly, if some curves handled by the concept are expected to
be open on the right, open at the bottom, or open at the top, the corresponding nested type must be convert-
ible to Arr open side tag. A model of the concept ArrangementOpenBoundaryTraits 2 must have all the four
categories convertible to Arr open side tag.22 In this case the DCEL of the arrangement instantiated with the
model is initialized with an implicit bounding rectangle. When the parameter space is bounded, it is the exact
geometric embedding of the implicit bounding rectangle.

Refines

ArrangementBasicTraits 2

Categories

ArrangementOpenBoundaryTraits 2:: Left side category

Must be convertible to either Arr oblivious side tag or Arr
open side tag.

ArrangementOpenBoundaryTraits 2:: Bottom side category

Must be convertible to either Arr oblivious side tag or Arr
open side tag.

ArrangementOpenBoundaryTraits 2:: Top side category

Must be convertible to either Arr oblivious side tag or Arr
open side tag.

22We intend to introduce more concepts that require only a subset of the categories to be convertible to Arr open side tag.

2360



ArrangementOpenBoundaryTraits 2:: Right side category

Must be convertible to either Arr oblivious side tag or Arr
open side tag.

Functor Types

ArrangementOpenBoundaryTraits 2:: Parameter space in x 2

models the concept ArrTraits::ParameterSpaceInX 2. Required only if the traits class supports
unbounded curves that approach the left or the right sides (the Left side category or the Right side
category categories are convertible to Arr open side tag).

ArrangementOpenBoundaryTraits 2:: Compare y near boundary 2

models the concept ArrTraits::CompareYNearBoundary 2. Required only if the traits class supports
unbounded curves that approach the left or the right sides (the Left side category or the Right side
category categories are convertible to Arr open side tag).

ArrangementOpenBoundaryTraits 2:: Parameter space in y 2

models the concept ArrTraits::ParameterSpaceInY 2. Required only if the traits class supports
unbounded curves that approach the bottom or the top sides (the Bottom side category or the Top
side category categories are convertible to Arr open side tag).

ArrangementOpenBoundaryTraits 2:: Compare x at limit 2

models the concept ArrTraits::CompareXAtLimit 2. Required only if the traits class supports un-
bounded curves that approach the bottom or the top sides (the Bottom side category or the Top
side category categories are convertible to Arr open side tag).

ArrangementOpenBoundaryTraits 2:: Compare x near limit 2

models the concept ArrTraits::CompareXNearLimit 2. Required only if the traits class supports
unbounded curves that approach the bottom or the top sides (the Bottom side category or the Top
side category categories are convertible to Arr open side tag).

Accessing Functor Objects

Parameter space in x 2 traits.parameter space in x 2 object() const

Compare y near boundary 2

traits.compare y near boundary 2 object() const

Parameter space in y 2 traits.parameter space in y 2 object() const
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Compare x at limit 2 traits.compare x at limit 2 object() const

Compare x near limit 2 traits.compare x near limit 2 object() const

Has Models

CGAL::Arr linear traits 2<Kernel>
CGAL::Arr rational function traits 2<AlgebraicKernel d 1>
CGAL::Arr algebraic segment traits 2<Coefficient>
CGAL::Arr curve data traits 2<Tr,XData,Mrg,CData,Cnv>
CGAL::Arr consolidated curve data traits 2<Traits,Data>

See Also

ArrangementBasicTraits 2 (page 2255)
ArrangementXMonotoneTraits 2 (page 2273)
ArrangementLandmarkTraits 2 (page 2269)
ArrangementTraits 2 (page 2279)
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ArrTraits::ParameterSpaceInX 2

Refines

AdaptableBinaryFunction

Has Models

ArrangementOpenBoundaryTraits 2::Parameter space in x 2

Arr parameter space

fo( ArrTraits::X monotone curve 2 xcv, Arr curve end ce)

Given an x-monotone curve xcv and an enumeration ce that
specifies either the minimum or the maximum end of the
curve, determines the location of the curve end along the x-
dimension. The variable xcv identifies the parametric curve
C(t) = (X(t),Y (t)) defined over an open or half-open in-
terval with endpoints 0 and 1. The enumeration ce iden-
tifies an open end d ∈ {0,1} of C. Formally, determines
whether limt→d X(t) evaluates to bl , br, or a value in be-
tween, where bl and br are the x-coordinates of the left and
right boundaries of the parameter space, respectively. Re-
turns ARR LEFT BOUNDARY , ARR RIGHT BOUNDARY ,
or ARR INTERIOR, accordingly.
Precondition: If ArrTraits::Left side category is not con-
vertible to Arr open side tag then ce 6= ARR MIN END.
Precondition: If ArrTraits::Right side category is not con-
vertible to Arr open side tag then ce 6= ARR MAX END.
Postcondition: If ce = ARR MIN END then the result is ei-
ther ARR LEFT BOUNDARY or ARR INTERIOR.
Postcondition: If ce = ARR MAX END then the result is ei-
ther ARR RIGHT BOUNDARY or ARR INTERIOR.
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ArrTraits::CompareYNearBoundary 2

Refines

AdaptableTernaryFunction

Has Models

ArrangementOpenBoundaryTraits 2::Compare y near boundary 2

Comparison result fo.operator()( ArrTraits::X monotone curve 2 xcv1,
ArrTraits::X monotone curve 2 xcv2,
Arr curve end ce)

Given two x-monotone curves xcv1 and xcv2 and an enumer-
ation ce that specifies either the minimum or the maximum
ends of the curves, compares the y-coordinate of the curves
near their respective ends. Returns SMALLER, EQUAL,
or LARGER accordingly. More precisely, compares the y-
coordinates of the vertical projection of a point p onto xcv1
and xcv2. If ce is ARR MIN END, the predicate Parameter
space in x 2 evaluates to ARR LEFT BOUNDARY when
applied to xcv1 and ce and when applied to xcv2 and ce.
In this case p is located far to the left, such that the re-
sult is invariant under a translation of p farther to the left.
If ce is ARR MAX END, the predicate Parameter space in
x 2 evaluates to ARR RIGHT BOUNDARY when applied to
xcv1 and ce and when applied to xcv2 and ce. In that case p
is located far to the right in a similar manner.
Precondition: If ArrTraits::Left side category is not con-
vertible to Arr open side tag then ce 6= ARR MIN END.
Precondition: If ArrTraits::Right side category is not con-
vertible to Arr open side tag then ce 6= ARR MAX END.
Precondition: parameter space in x 2(xcv2, ce) =
parameter space in x 2(xcv1, ce).
Precondition: parameter space in x 2(xcv1, ce) 6= ARR
INTERIOR.
Precondition: If parameter space in x 2(xcv1, ce) = ARR
LEFT BOUNDARY then ce = ARR MIN END.
Precondition: If parameter space in x 2(xcv1, ce) = ARR
RIGHT BOUNDARY then ce = ARR MAX END.
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ArrTraits::ParameterSpaceInY 2

Refines

AdaptableBinaryFunction

Has Models

ArrangementOpenBoundaryTraits 2::Parameter space in y 2

Arr parameter space

fo( ArrTraits::X monotone curve 2 xcv, Arr curve end ce)

Given an x-monotone curve xcv and an enumeration ce that
specifies either the minimum or the maximum end of the
curve, determines the location of the curve end along the y-
dimension. The variable xcv identifies the parametric curve
C(t) = (X(t),Y (t)) defined over an open or half-open inter-
val with endpoints 0 and 1. The enumeration ce identifies
an open end d ∈ {0,1} of C. Formally, determines whether
limt→d Y (t) evaluates to bb, bt , or a value in between, where
bb and bt are the y-coordinates of the bottom and top bound-
aries of the parameter space, respectively. Returns ARR
BOTTOM BOUNDARY , ARR TOP BOUNDARY , or ARR
INTERIOR, accordingly.
Postcondition: If ArrTraits::Bottom side category is not
convertible to Arr open side tag then the result is not ARR
BOTTOM BOUNDARY .
Postcondition: If ArrTraits::Top side category is not con-
vertible to Arr open side tag then the result is not ARR
TOP BOUNDARY .
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ArrTraits::CompareXAtLimit 2

Refines

AdaptableFunctor

Has Models

ArrangementOpenBoundaryTraits 2::Compare x at limit 2

Comparison result fo( ArrTraits::Point 2 p, ArrTraits::X monotone curve 2 xcv, Arr curve end ce)

Given a point p, an x-monotone curve xcv, and an enumer-
ation ce that specifies either the minimum or the maximum
end of the curve where the curve has a vertical asymptote,
compares the x-coordinate of p and the x-coordinate of the
limit of the curve at its specificed end. The variable xcv iden-
tifies the parametric curve C(t) = (X(t),Y (t)) defined over
an open or half-open interval with endpoints 0 and 1. The
enumeration ce identifies an open end d ∈ {0,1} of C. For-
mally, compares the x-coordinate of p and limt→d X(t). Re-
turns SMALLER, EQUAL, or LARGER accordingly.
Precondition: parameter space in y 2(xcv, ce) 6= ARR
INTERIOR.
Precondition: If the parameter space is unbounded, C has a
vertical asymptote at its d-end; that is, parameter space in
x 2(xcv, ce) = ARR INTERIOR.

Comparison result fo.operator()( ArrTraits::X monotone curve 2 xcv1,
Arr curve end ce1,
ArrTraits::X monotone curve 2 xcv2,
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Arr curve end ce2)

Given two x-monotone curves xcv1 and xcv2 and two indices
ce1 and ce2 that specify either the minimum or the maximum
ends of xcv1 and xcv2, respectively, where the curves have
vertical asymptotes, compares the x-coordinates of the limits
of the curves at their specificed ends. The variables xcv1
and xcv2 identify the parametric curves C1(t) = (X1(t),Y1(t))
and C2(t) = (X2(t),Y2(t)), respectively, defined over open or
half-open intervals with endpoints 0 and 1. The indices ce1
and ce2 identify open ends d1 ∈ {0,1} and d2 ∈ {0,1} of
C1 and C2, respectively. Formally, compares limt→d1 X1(t)
and limt→d2 X2(t). Returns SMALLER, EQUAL, or LARGER
accordingly.
Precondition: parameter space in y 2(xcv1, ce1) 6= ARR
INTERIOR.
Precondition: parameter space in y 2(xcv2, ce2) 6= ARR
INTERIOR.
Precondition: If the parameter space is unbounded, C1 has a
vertical asymptote at its respective end; that is,
parameter space in x 2(xcv1, ce1) = ARR INTERIOR.
Precondition: If the parameter space is unbounded, C2 has a
vertical asymptote at its respective end; that is,
parameter space in x 2(xcv2, ce2) = ARR INTERIOR.
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ArrTraits::CompareXNearLimit 2

Refines

AdaptableTernaryFunction

Has Models

ArrangementOpenBoundaryTraits 2::Compare x near limit 2

Comparison result fo.operator()( ArrTraits::X monotone curve 2 xcv1,
ArrTraits::X monotone curve 2 xcv2,
Arr curve end ce)

Given two x-monotone curves xcv1 and xcv2 and an enumer-
ation ce that specifies either the minimum ends or the max-
imum ends of the curves where the curves have a vertical
asymptote, compares the x-coordinate of the curves near their
respective ends. Returns SMALLER, EQUAL, or LARGER
accordingly. More precisely, compares the x-coordinates of
the horizontal projection of a point p onto xcv1 and xcv2. If
xcv1 and xcv2 approach the bottom boundary-side, p is lo-
cated far to the bottom, such that the result is invariant under
a translation of p farther to the bottom. If xcv1 and xcv2 ap-
proach the top boundary-side, p is located far to the top in a
similar manner.
Precondition: The x-coordinates of the limits of the curves at
their respective ends are equal. That is,
compare x at limit 2(xcv1, xcv2, ce) = EQUAL.
Precondition: parameter space in y 2(xcv1, ce) =
parameter space in y 2(xcv2, ce).
Precondition: parameter space in y 2(xcv1, ce) 6= ARR
INTERIOR.
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CGAL::Arrangement with history 2<Traits,Dcel>

Definition

An object arr of the class Arrangement with history 2<Traits,Dcel> represents the planar subdivision induced
by a set of input curves C . The arrangement is represented as a doubly-connected edge-list (DCEL). As is
the case for the Arrangement 2<Traits,Dcel>, each DCEL vertex is associated with a point and each edge is
associated with an x-monotone curve whose interior is disjoint from all other edges and vertices. Each such
x-monotone curve is a subcurve of some C ∈ C — or may represent an overlap among several curves in C .

The Arrangement with history 2<Traits,Dcel> class-template extends the Arrangement 2 class-template by
keeping an additional container of input curves representing C , and by maintaining a cross-mapping between
these curves and the arrangement edges they induce. This way it is possible to determine the inducing curve(s)
of each arrangement edge. This mapping also allows the traversal of input curves, and the traversal of edges
induced by each curve.

The Arrangement with history 2<Traits,Dcel> template has two parameters:

• The Traits template-parameter should be instantiated with a model of the ArrangementTraits 2 concept.
The traits class defines the Curve 2 type, which represents an input curve. It also defines the types of
x-monotone curves and two-dimensional points, namely X monotone curve 2 and Point 2, respectively,
and supports basic geometric predicates on them.

• The Dcel template-parameter should be instantiated with a class that is a model of the ArranagementD-
celWithRebind concept. The value of this parameter is by default Arr default dcel<Traits>.

Inherits From

Arrangement 2<Traits,Dcel>

#include <CGAL/Arrangement with history 2.h>

Types

typedef Arrangement with history 2<Traits 2,Dcel>

Self; a private type used as an abbreviation of the Arrangement
with history 2<Traits,Dcel> type hereafter.

Arrangement with history 2<Traits,Dcel>:: Traits 2

the traits class in use.

Arrangement with history 2<Traits,Dcel>:: Dcel

the DCEL representation of the arrangement.

typedef typename Traits 2::Point 2

Point 2; the point type, as defined by the traits class.
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typedef typename Traits 2::X monotone curve 2

X monotone curve 2;

the x-monotone curve type, as defined by the traits class.

typedef typename Traits 2::Curve 2

Curve 2; the curve type, as defined by the traits class.

In addition, the nested types Vertex, Halfedge and Face are defined, as well as all handle, iterator and circulator
types, as defined by the Arrangement 2 class-template (page 2187).

Arrangement with history 2<Traits,Dcel>:: Curve handle

a handle for an input curve.

Arrangement with history 2<Traits,Dcel>:: Curve iterator

a bidirectional iterator over the curves that induce the ar-
rangement. Its value-type is Curve 2.

Arrangement with history 2<Traits,Dcel>:: Induced edge iterator

an iterator over the edges induced by an input curve. Its value
type is Halfedge handle.

Arrangement with history 2<Traits,Dcel>:: Originating curve iterator

an iterator for the curves that originate a given arrangement
edge. Its value type is Curve handle.

Creation

Arrangement with history 2<Traits,Dcel> arr;

constructs an empty arrangement containing one unbounded
face, which corresponds to the whole plane.

Arrangement with history 2<Traits,Dcel> arr( Self other);

copy constructor.

Arrangement with history 2<Traits,Dcel> arr( Traits 2 *traits);

constructs an empty arrangement that uses the given traits
instance for performing the geometric predicates.
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Assignment Methods

Self& arr = other assignment operator.

void arr.assign( Self other)

assigns the contents of another arrangement.

void arr.clear() clears the arrangement.

Access Functions

See the Arrangement 2 reference pages (page 2187) for the full list.

• Accessing the Input Curves:

Size arr.number of curves() const

returns the number of input curves that induce the arrange-
ment.

Curve iterator arr.curves begin() returns the begin-iterator of the curves inducing the arrange-
ment.

Curve iterator arr.curves end() returns the past-the-end iterator of the curves inducing the
arrangement.

Size arr.number of induced edges( Curve handle ch) const

returns the number of arrangement edges induced by the
curve ch.

Induced edge iterator

arr.induced edges begin( Curve handle ch) const

returns the begin-iterator of the edges induced by the curve
ch.

Induced edge iterator

arr.induced edges end( Curve handle ch) const

returns the past-the-end iterator of the edges induced by the
curve ch.

Size arr.number of originating curves( Halfedge handle e) const

returns the number of input curves that originate the edge e.
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Originating curve iterator

arr.originating curves begin( Halfedge handle e) const

returns the begin-iterator of the curves originating the edge
e.

Originating curve iterator

arr.originating curves end( Halfedge handle e) const

returns the past-the-end iterator of the curves originating the
edge e.

Modifiers

See the Arrangement 2 reference pages (page 2187) for the full list of functions for modifying arrangement
vertices.

•Modifying Arrangement Edges:

The following functions override their counterparts in the Arrangement 2 class, as they also maintain the cross-
relationships between the input curves and the edges they induce.

Halfedge handle arr.split edge( Halfedge handle e, Point 2 p)

splits the edge e into two edges (more precisely, into two
halfedge pairs), at a given split point p. The function returns
a handle for the halfedge whose source is the same as e->
source() and whose target vertex is the split point.
Precondition: p lies in the interior of the curve associated
with e.

Halfedge handle arr.merge edge( Halfedge handle e1, Halfedge handle e2)

merges the edges represented by e1 and e2 into a single
edge. The function returns a handle for one of the merged
halfedges.
Precondition: e1 and e2 share a common end-vertex, of de-
gree 2, and the x-monotone curves associated with e1 and e2
are mergeable into a single x-monotone curves.

Face handle arr.remove edge( Halfedge handle e,
bool remove source = true,
bool remove target = true)

removes the edge e from the arrangement. Since the e may be
the only edge incident to its source vertex (or its target ver-
tex), this vertex can be removed as well. The flags remove
source and remove target indicate whether the endpoints of
e should be removed, or whether they should be left as iso-
lated vertices in the arrangement. If the operation causes two
faces to merge, the merged face is returned. Otherwise, the
face to which the edge was incident is returned.
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See Also

ArrangementDcel (page 2232)
Arr default dcel<Traits> (page 2247)
ArrangementTraits 2 (page 2279)
Arrangement 2<Traits,Dcel> (page 2187)
insertion functions (page 2212)
removal functions (page 2375)
overlaying arrangements (page 2221)
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CGAL::Arr parameter space

#include <CGAL/Arr enums.h>

enum Arr parameter space { ARR LEFT BOUNDARY,
ARR RIGHT BOUNDARY,
ARR BOTTOM BOUNDARY,
ARR TOP BOUNDARY,
ARR INTERIOR}
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CGAL::remove curve

Definition

The function remove curve removes a given curve from a given arrangement.

#include <CGAL/Arrangement with history 2.h>

template <class Traits, class Dcel>
Size remove curve( Arrangement with history 2<Traits,Dcel>& arr,

typename Arrangement with history 2<Traits,Dcel>::Curve handle ch)

remove curve removes a curve, specified by its handle ch, from the arrangement arr, by deleting all the edges
it induces. The function returns the number of deleted edges.
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ArrangementWithHistoryInputFormatter

A model for the ArrangementWithHistoryInputFormatter concept supports a set of functions that enable reading
an arrangement-with-history instance from an input stream using a specific format.

Refines

ArrangementInputFormatter

Types

ArrangementWithHistoryInputFormatter:: Arr with history 2

the type of arrangement to input.

typedef typename Arrangement 2::Curve 2

Curve 2; the inducing curve type.

Formatted Input Functions

void inf .read curves begin()

reads a message indicating the beginning of the inducing
curves.

void inf .read curves end()

reads a message indicating the end of the inducing curves.

void inf .read curve begin()

reads a message indicating the beginning of a single curve
record.

void inf .read curve end() reads a message indicating the end of a single curve record.

void inf .read curve( Curve 2& c)

reads a curve.

void inf .read induced edges begin()

reads a message indicating the beginning of the set of edges
induced by the current curve.

void inf .read induced edges end()

reads a message indicating the end of the induced edges set.
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Has Models

Arr with history text formatter<ArrFormatter> (page 2380)
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ArrangementWithHistoryOutputFormatter

A model for the ArrangementWithHistoryOutputFormatter concept supports a set of functions that enable writ-
ing an arrangement-with-history instance to an output stream using a specific format.

Refines

ArrangementOutputFormatter

Types

ArrangementWithHistoryOutputFormatter:: Arr with history 2

the type of arrangement to output.

typedef typename Arrangement 2::Curve 2

Curve 2; the inducing curve type.

Formatted Output Functions

void outf .write curves begin()

writes a message indicating the beginning of the inducing
curves.

void outf .write curves end()

writes a message indicating the end of the inducing curves.

void outf .write curve begin()

writes a message indicating the beginning of a single curve
record.

void outf .write curve end()

writes a message indicating the end of a single curve record.

void outf .write curve( Curve 2 c)

writes a curve.

void outf .write induced edges begin()

writes a message indicating the beginning of the set of edges
induced by the current curve.
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void outf .write induced edges end()

writes a message indicating the end of the induced edges set.

Has Models

Arr with history text formatter<ArrFormatter> (page 2380)
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CGAL::Arr with history text formatter<ArrFormatter>

Definition

Arr with history text formatter<ArrFormatter> defines the format of an arrangement in an input or output
stream (typically a file stream), thus enabling reading and writing an arrangement-with-history instance using a
simple text format.

The ArrFormatter parameter servers as a base class for Arr with history text formatter<ArrFormatter> and
must be a model of the ArrangementInputFormatter and the ArrangementOutputFormatter concepts. It is used
to read or write the base arrangement, while the derived class is responsible for reading and writing the set of
curves inducing the arrangement and maintaining the relations between these curves and the edges they induce.

#include <CGAL/IO/Arr with history text formatter.h>

Is Model for the Concepts

ArrangementWithHistoryInputFormatter
ArrangementWithHistoryOutputFormatter

See Also

read (page 2228)
write (page 2230)
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CGAL::Arr oblivious side tag

Definition

The categories Left side category, Right side category, Bottom side category, and Top side category, nested
in any model of the ArrangementBasicTraits 2, must be convertible to Arr oblivious side tag. Arr oblivious
side tag is an empty construct used for dispatching functions based on type of curves that induce the arrange-
ment.

#include <CGAL/Arr tags.h>

See Also

Arr open side tag(page 2382)
ArrangementBasicTraits 2(page 2255)
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CGAL::Arr open side tag

Definition

All the four types Left side category, Right side category, Bottom side category, and Top side category
nested in any model of the concept ArrangementOpenBoundaryTraits must be convertible to Arr open side
tag, which derives from Arr oblivious side tag. It implies that some curves are expected to approach the left,
right, bottom, or top sides of the open boundary of the parameter space. Arr open side tag is an empty construct
used for dispatching functions based on type of curves that induce the arrangement.

#include <CGAL/Arr tags.h>

See Also

Arr oblivious side tag(page 2381)
ArrangementOpenBoundaryTraits 2(page 2360)
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Chapter 33

2D Intersection of Curves
Baruch Zukerman, Ron Wein, and Efi Fogel
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33.1 Introduction

Let C = {C1,C2, . . . ,Cn} be a set of curves. We wish to compute all intersection points between two curves in
the set in an output-sensitive manner, without having to go over all O(n2) curve pairs. To this end, we sweep an
imaginary line l from x =−∞ to x = ∞ over the plane. While sweeping the plane, we keep track of the order of
curves intersecting it. This order changes at a finite number of event points, such that we only have to calculate
the intersection points between two curves when they become contiguous. For more details on the sweep-line
algorithm see, for example, [dBvKOS00, Chapter 2].

This chapter describes three functions implemented using the sweep-line algorithm: given a collection of input
curves, compute all intersection points, compute the set of subcurves that are pairwise interior-disjoint induced
by them, and checking whether there is at least one pair of curves among them that intersect in their interior.

The implementation is robust. It supports general curves and handles all degenerate cases, including overlapping
curves, vertical segments, and tangency between curves. The robustness of the algorithm is guaranteed if the
functions are instantiated with a traits class that employs certified computations. This traits class must be a
model of the ArrangementTraits 2 concept — see the Chapter 32 for more details.

The complexity of the sweep-line algorithm is O((n+ k) logn) where n is the number of the input curves and k
is the number of intersection points induced by these curves.
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33.2 Example

The simple program listed below computes intersection points induced by a set of four input segments illustrated
in figure 33.1.� �
#include <CGAL/Cartesian.h>
#include <CGAL/MP_Float.h>
#include <CGAL/Quotient.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Sweep_line_2_algorithms.h>
#include <list>

typedef CGAL::Quotient<CGAL::MP_Float> NT;
typedef CGAL::Cartesian<NT> Kernel;
typedef Kernel::Point_2 Point_2;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Curve_2 Segment_2;

int main()
{

// Construct the input segments.
Segment_2 segments[] = {Segment_2 (Point_2 (1, 5), Point_2 (8, 5)),

Segment_2 (Point_2 (1, 1), Point_2 (8, 8)),
Segment_2 (Point_2 (3, 1), Point_2 (3, 8)),
Segment_2 (Point_2 (8, 5), Point_2 (8, 8))};

// Compute all intersection points.
std::list<Point_2> pts;

CGAL::compute_intersection_points (segments, segments + 4,
std::back_inserter (pts));

// Print the result.
std::cout << "Found " << pts.size() << " intersection points: " <<
std::endl;

std::copy (pts.begin(), pts.end(),
std::ostream_iterator<Point_2>(std::cout, "\n"));

// Compute the non-intersecting sub-segments induced by the input
segments.

std::list<Segment_2> sub_segs;

CGAL::compute_subcurves(segments, segments + 4,
std::back_inserter(sub_segs));

std::cout << "Found " << sub_segs.size()
<< " interior-disjoint sub-segments." << std::endl;

CGAL_assertion (CGAL::do_curves_intersect (segments, segments + 4));

return 0;
}� �
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Figure 33.1: Four input segments
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File: examples/Arrangement_on_surface_2/sweep_line.cpp

33.3 Design and Implementation History

The current version of the sweep-line algorithm was written by Baruch Zukerman, based on previous imple-
mentations by Ester Ezra and Tali Zvi.
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2D Intersection of Curves
Reference Manual
Baruch Zukerman and Ron Wein

This chapter describes three functions implemented using the sweep-line algorithm: given a collection C of
planar curves, compute all intersection points among them, obtain the set of maximal pairwise interior-disjoint
subcurves of the curves in C , or check whether there is at least one pair of curves in C that intersect in their
interior.

The first two operations are performed in an output-sensitive manner.

Functions

CGAL::compute intersection points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2388
CGAL::compute subcurves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2389
CGAL::do curves intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2390

33.4 Alphabetical List of Reference Pages

compute intersection points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2388
compute subcurves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2389
do curves intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2390
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CGAL::compute intersection points

#include <CGAL/Sweep line 2 algorithms.h>

template <class InputIterator, class OutputIterator, class Traits>
OutputIterator compute intersection points( InputIterator curves begin,

InputIterator curves end,
OutputIterator points,
bool report endpoints = false,
Traits traits = Default traits())

given a range of curves, compute all intersection points be-
tween two (or more) input curves. When the flag report
endpoints is true, this function reports all the curve endpoints
as well. If a curve endpoint is also an intersection point,
it is reported once (regardless of the value of the report
endpoints flag). The Traits type must be a model of the
ArrangementTraits 2 concept, such that the value-type of
InputIterator is Traits::Curve 2, and the value-type of Out-
putIterator is Traits::Point 2. The output points are reported
in an increasing xy-lexicographical order.

2388



F
un

ct
io

n

CGAL::compute subcurves

#include <CGAL/Sweep line 2 algorithms.h>

template <class InputIterator, class OutputIterator, class Traits>
OutputIterator compute subcurves( InputIterator curves begin,

InputIterator curves end,
OutputIterator subcurves,
bool multiple overlaps = false,
Traits traits = Default traits())

given a range of curves, compute all x-monotone sub-
curves that are pairwise disjoint in their interior, as in-
duced by the input curves. If the flag multiple overlaps is
true, then a subcurve that represents an overlap of k input
curves is reported k times; otherwise, each subcurve is re-
ported only once. The Traits type must be a model of the
ArrangementTraits 2 concept, such that the value-type of
InputIterator is Traits::Curve 2, and the value-type of Out-
putIterator is Traits::X monotone curve 2.
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CGAL::do curves intersect

#include <CGAL/Sweep line 2 algorithms.h>

template <class InputIterator, class Traits>
bool do curves intersect( InputIterator curves begin,

InputIterator curves end,
Traits traits = Default traits())

given a range of curves, check whether there is at least one
pair of curves that intersect in their interior. The function
returns true if such a pair is found, and false if all curves
are pairwise disjoint in their interior.The Traits type must be
a model of the ArrangementTraits 2 concept, such that the
value-type of InputIterator is Traits::Curve 2.
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2D Snap Rounding
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34.1 Introduction

Snap Rounding (SR, for short) is a well known method for converting arbitrary-precision arrangements of
segments into a fixed-precision representation [GGHT97, GM98, Hob99]. In the study of robust geometric
computing, it can be classified as a finite precision approximation technique. Iterated Snap Rounding (ISR, for
short) is a modification of SR in which each vertex is at least half-the-width-of-a-pixel away from any non-
incident edge [HP02]. This package supports both methods. Algorithmic details and experimental results are
given in [HP02].

(a) (b)

Figure 34.1: An arrangement of segments before (a) and after (b) SR (hot pixels are shaded)
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34.2 What is Snap Rounding/Iterated Snap Rounding

Given a finite collection S of segments in the plane, the arrangement of S denoted A(S) is the subdivision of
the plane into vertices, edges, and faces induced by S . A vertex of the arrangement is either a segment endpoint
or the intersection of two segments. Given an arrangement of segments whose vertices are represented with
arbitrary-precision coordinates, the SR procedure snap rounding 2<Traits,InputIterator,OutputContainer>
proceeds as follows. We tile the plane with a grid of unit squares, pixels, each centered at a point with in-
teger coordinates. A pixel is hot if it contains a vertex of the arrangement. Each vertex of the arrangement is
replaced by the center of the hot pixel containing it and each edge e is replaced by the polygonal chain through
the centers of the hot pixels met by e, in the same order as they are met by e. Figure 34.1 demonstrates the
results of SR.

In a snap-rounded arrangement, the distance between a vertex and a non-incident edge can be extremely small
compared with the width of a pixel in the grid used for rounding. ISR is a modification of SR which makes a
vertex and a non-incident edge well separated (the distance between each is at least half-the-width-of-a-pixel).
However, the guaranteed quality of the approximation in ISR degrades. Figure 34.2 depicts the results of SR
and ISR on the same input. Conceptually, the ISR procedure is equivalent to repeated application of SR, namely
we apply SR to the original set of segments, then we use the output of SR as input to another round of SR and
so on until all the vertices are well separated from non-incident edges. Algorithmically we operate differently,
as this repeated application of SR would have resulted in an efficient overall process. The algorithmic details
are given in [HP02].

34.3 Terms and Software Design

Our package supports both schemes, implementing the algorithm described in [HP02]. Although the paper only
describes an algorithm for ISR, it is easy to derive an algorithm for SR, by performing only the first rounding
level for each segment.

The input to the program is a set S of n segments, S = {s1, . . . ,sn} and the output is a set G of n polylines, with
a polyline gi for each input segments si. An input segment is given by the coordinates of its endpoints. An
output polyline is given by the ordered set of vertices v0, . . . ,vk along the polyline. The polyline consists of the
segments (v0v1), . . . ,(vk−1vk).

There are three template parameters: Traits is the underlying geometry, i.e., the number type used and the coor-
dinate representation. InputIterator is the type of the iterators that point to the first and after-the-last elements
of the input. Finally, OutputContainer is the type of the output container.

Since the algorithm requires kernel functionalities such as the rounding to the center of a pixel, a spe-
cial traits class must be provided. The precise description of the requirements is given by the concept
SnapRoundingTraits 2. The class Snap rounding traits 2 is a model of this concept.

34.4 Four Line Segment Example

The following example generates an ISR representation of an arrangement of four line segments. In particular
it produces a list of points that are the vertices of the resulting polylines in a plane tiled with one-unit square
pixels.� �
#include <CGAL/Cartesian.h>
#include <CGAL/Quotient.h>
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(b) (c)(a)

Figure 34.2: An arrangement of segments before (a), after SR (b) and ISR (c) (hot pixels are shaded).

#include <CGAL/MP_Float.h>
#include <CGAL/Snap_rounding_traits_2.h>
#include <CGAL/Snap_rounding_2.h>

typedef CGAL::Quotient<CGAL::MP_Float> Number_type;
typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Snap_rounding_traits_2<Kernel> Traits;
typedef Kernel::Segment_2 Segment_2;
typedef Kernel::Point_2 Point_2;
typedef std::list<Segment_2> Segment_list_2;
typedef std::list<Point_2> Polyline_2;
typedef std::list<Polyline_2> Polyline_list_2;

int main()
{

Segment_list_2 seg_list;
Polyline_list_2 output_list;

seg_list.push_back(Segment_2(Point_2(0, 0), Point_2(10, 10)));
seg_list.push_back(Segment_2(Point_2(0, 10), Point_2(10, 0)));
seg_list.push_back(Segment_2(Point_2(3, 0), Point_2(3, 10)));
seg_list.push_back(Segment_2(Point_2(7, 0), Point_2(7, 10)));

// Generate an iterated snap-rounding representation, where the centers
of

// the hot pixels bear their original coordinates, using 5 kd trees:

CGAL::snap_rounding_2<Traits,Segment_list_2::const_iterator,Polyline_list_2>
(seg_list.begin(), seg_list.end(), output_list, 1.0, true, false, 5);

int counter = 0;
Polyline_list_2::const_iterator iter1;
for (iter1 = output_list.begin(); iter1 != output_list.end(); ++iter1)
{
std::cout << "Polyline number " << ++counter << ":\n";
Polyline_2::const_iterator iter2;
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for (iter2 = iter1->begin(); iter2 != iter1->end(); ++iter2)
std::cout << " (" << iter2->x() << ":" << iter2->y() << ")\n";

}

return(0);
}� �
File: examples/Snap_rounding_2/snap_rounding.cpp

This program generates four polylines, one for each input segment. The exact output follows:

Polyline number 1:
(0/4:0/4)
(12/4:12/4)
(20/4:20/4)
(28/4:28/4)
(40/4:40/4)

Polyline number 2:
(0/4:40/4)
(12/4:28/4)
(20/4:20/4)
(28/4:12/4)
(40/4:0/4)

Polyline number 3:
(12/4:0/4)
(12/4:12/4)
(12/4:28/4)
(12/4:40/4)

Polyline number 4:
(28/4:0/4)
(28/4:12/4)
(28/4:28/4)
(28/4:40/4)

The package is supplied with a graphical demo program that opens a window, allows the user to edit segments
dynamically, applies a selected snap-rounding procedures, and displays the result onto the same window (see
<CGAL ROOT>/demo/Snap rounding 2/demo.cpp).
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Snap Rounding is a method for converting arbitrary-precision arrangements of segments into a fixed-precision
representation.

34.5 Alphabetical List of Reference Pages

SnapRoundingTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2398
snap rounding 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2396
Snap rounding traits 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2401
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CGAL::snap rounding 2

Definition

Snap Rounding (SR, for short) is a well known method for converting arbitrary-precision arrangements of
segments into a fixed-precision representation [GGHT97, GM98, Hob99]. In the study of robust geometric
computing, it can be classified as a finite precision approximation technique. Iterated Snap Rounding (ISR, for
short) is a modification of SR in which each vertex is at least half-the-width-of-a-pixel away from any non-
incident edge [HP02]. This package supports both methods. Algorithmic details and experimental results are
given in [HP02].

Given a finite collection S of segments in the plane, the arrangement of S denoted A(S) is the subdivision of
the plane into vertices, edges, and faces induced by S . A vertex of the arrangement is either a segment endpoint
or the intersection of two segments. Given an arrangement of segments whose vertices are represented with
arbitrary-precision coordinates, SR proceeds as follows. We tile the plane with a grid of unit squares, pixels,
each centered at a point with integer coordinates. A pixel is hot if it contains a vertex of the arrangement. Each
vertex of the arrangement is replaced by the center of the hot pixel containing it and each edge e is replaced by
the polygonal chain through the centers of the hot pixels met by e, in the same order as they are met by e.

In a snap-rounded arrangement, the distance between a vertex and a non-incident edge can be extremely small
compared with the width of a pixel in the grid used for rounding. ISR is a modification of SR which makes a
vertex and a non-incident edge well separated (the distance between each is at least half-the-width-of-a-pixel).
However, the guaranteed quality of the approximation in ISR degrades. For more details on ISR see [HP02].

The traits used here must support (arbitrary-precision) rational number type as this is a basic requirement of SR.

#include <CGAL/Snap rounding 2.h>

template < class Traits, class InputIterator, class OutputContainer >
void snap rounding 2( InputIterator begin,

InputIterator end,
OutputContainer& output container,
typename Traits::FT pixel size,
bool do isr = true,
bool int output = true,
unsigned int number of kd trees = 1)

The first two parameters denote the first and after-the-last iterators of the input segments. The third parameter
is a reference to a container of the output polylines. Since a polyline is composed of a sequence of points, a
polyline is a container itself. The fifth parameter determines whether to apply ISR or SR.

The fourth parameter denotes the pixel size w. The plane will be tiled with square pixels of width w such
that the origin is the center of a pixel. The sixth parameter denotes the output representation. If the value of
the sixth parameter is true then the centers of pixels constitute the integer grid, and hence the vertices of the
output polylines will be integers. For example, the coordinates of the center of the pixel to the right of the pixel
containing the origin will be (1,0) regardless of the pixel width. If the value of the sixth parameter is false,
then the centers of hot pixels (and hence the vertices of the output polylines) will bear their original coordinates,
which may not necessarily be integers. In the latter case, the coordinates of the center of the pixel to the right
of the pixel containing the origin, for example, will be (w,0).

The seventh (and last) parameter is briefly described next; for a detailed description see [HP02].
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advanced

A basic query used in the algorithm is to report the hot pixels of size w that a certain segment s intersects. An
alternative way to do the same is to query the hot pixels’ centers contained in a Minkowski sum of s with a pixel
of width w centered at the origin; we denote this Minkowski sum by M(s). Since efficiently implementing this
kind of query is difficult, we use an orthogonal range-search structure instead. We query with the bounding box
B(M(s)) of M(s) in a two-dimensional kd-tree which stores the centers of hot pixels. Since B(M(s)) in general
is larger than M(s), we still need to filter out the hot pixels which do not intersect s.

While this approach is easy to implement with CGAL, it may incur considerable overhead since the area of
B(M(s)) may be much larger than the area of M(s), possibly resulting in many redundant hot pixels to filter out.
Our heuristic solution, which we describe next, is to use a cluster of kd-trees rather than just one. The cluster
includes several kd-trees, each has the plane, and hence the centers of hot pixels, rotated by a different angle
in the first quadrant of the plane; for our purpose, a rotation by angles outside this quadrant is symmetric to a
rotation by an angle in the first quadrant.

Given a parameter c, the angles of rotation are (i−1) π

2c , i = 1, . . . ,c, and we construct a kd-tree corresponding
to each of these angles. Then for a query segment s, we choose the kd-tree for which the area of B(M(s)) is
the smallest, in order to (potentially) get less hot pixels to filter out. Since constructing many kd-trees may be
costly, our algorithm avoids building a kd-tree which it expects to be queried a relatively small number of times
(we estimate this number in advance). How many kd-trees should be used? It is difficult to provide a simple
answer for that. There are inputs for which the time to build more than one kd-tree is far greater than the time
saved by having to filter out less hot pixels (sparse arrangements demonstrate this behavior), and there are inputs
which benefit from using several kd-trees. Thus, the user can control the number of kd-trees with the parameter
number of kd trees. Typically, but not always, one kd-tree (the default) is sufficient.

advanced

Precondition: pixel size must have a positive value and number of kd trees must be a positive integer.
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SnapRoundingTraits 2

Definition

The concept SnapRoundingTraits 2 lists the set of requirements that must be fulfilled by an instance of the Traits
template-parameter of the function snap rounding 2<Traits,InputIterator,OutputContainer>(). This concept
provides the types of the geometric primitives used in this class and some function object types for the required
predicates on those primitives.

Refines

This concept refines the standard concepts DefaultConstructible, Assignable and CopyConstructible. It also
refines the concept SweepLineTraits 2 (page ??). An instance of this concept is used as the traits class for the
Sweep line 2.get intersection points() operation. The requirements listed below are induced by compnents of
the snap rounding 2() function other than the call to Sweep line 2.get intersection points(). Naturally, some
of them may already be listed in SweepLineTraits 2.

Types

SnapRoundingTraits 2:: FT The number type. This type must fulfill the requirements on
FieldNumberType

SnapRoundingTraits 2:: Point 2 The point type.
SnapRoundingTraits 2:: Segment 2 The segment type.
SnapRoundingTraits 2:: Iso rectangle 2 The iso-rectangle type.

SnapRoundingTraits 2:: Construct vertex 2 Function object. Must provide the operator Point 2
operator()(Segment 2 seg, int i), which returns the source
or target of seg. If i modulo 2 is 0, the source is returned,
otherwise the target is returned.

SnapRoundingTraits 2:: Construct segment 2 Function object. Must provide the operator Segment 2
operator()(Point 2 p, Point 2 q), which introduces a seg-
ment with source p and target q. The segment is directed
from the source towards the target.

SnapRoundingTraits 2:: Construct iso rectangle 2

Function object. Must provide the operator Iso rectangle
2 operator()(Point 2 left, Point 2 right, Point 2 bottom,
Point 2 top), which introduces an iso-oriented rectangle fo
whose minimal x coordinate is the one of left, the maximal x
coordinate is the one of right, the minimal y coordinate is the
one of bottom, the maximal y coordinate is the one of top.

SnapRoundingTraits 2:: To double Function object. Must provide the operator double opera-
tor()(FT), which computes an approximation of a given num-
ber of type FT . The precision of this operation is of not high
significance, as it is only used in the implementation of the
heuristic technique to exploit a cluster of kd-trees rather than
just one.
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SnapRoundingTraits 2:: Compare x 2 Function object. Must provide the operator Comparison
result operator()(Point 2 p, Point 2 q) which returns
SMALLER, EQUAL or LARGER according to the x-ordering
of points p and q.

SnapRoundingTraits 2:: Compare y 2 Function object. Must provide the operator Comparison
result operator()(Point 2 p, Point 2 q) which returns
SMALLER, EQUAL or LARGER according to the y-ordering
of points p and q.

SnapRoundingTraits 2:: Snap 2 Rounds a point to a center of a pixel (unit square) in the grid
used by the Snap Rounding algorithm. Note that no conver-
sion to an integer grid is done yet. Must have the syntax void
operator()(Point 2 p,FT pixel size,FT &x,FT &y) where p is
the input point, pixel size is the size of the pixel of the grid,
and x and y are the x and y-coordinates of the rounded point
respectively.

SnapRoundingTraits 2:: Integer grid point 2 Convert coordinates into an integer representation where one
unit is equal to pixel size. For instance, if a point has the
coordinates (3.7,5.3) and the pixel size is 0.5, then the new
point will have the coordinates of (7,10). Note, however, that
the number type remains the same here, although integers are
represented. Must have the syntax Point 2 operator()(Point
2 p,NT pixel size) where p is the converted point and pixel
size is the size of the pixel of the grid.

SnapRoundingTraits 2:: Minkowski sum with pixel 2

Returns the vertices of a polygon, which is the Minkowski
sum of a segment and a square centered at the origin with
edge size pixel edge. Must have the syntax void opera-
tor()(std::list<Point 2>& vertices list, Segment 2 s, NT unit
square) where vertices list is the list of the vertices of the
Minkowski sum polygon, s is the input segment and unit
square is the edge size of the pixel.

Creation

This concept refines the standard concepts DefaultConstructible, Assignable and CopyConstructible.

Operations

The following functions construct the required function objects occasionally referred as functors listed above.

Construct vertex 2 traits.construct vertex 2 object()
Construct segment 2 traits.construct segment 2 object()
Construct iso rectangle 2 traits.construct iso rectangle 2 object()

Compare x 2 traits.compare x 2 object()
Compare y 2 traits.compare y 2 object()
Snap 2 traits.snap 2 object()
Integer grid point 2 traits.integer grid point 2 object()
Minkowski sum with pixel 2 traits.minkowski sum with pixel 2 object()
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Has Models

CGAL::Snap rounding traits<Kernel>

See Also

CGAL::Snap rounding 2<Traits>
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CGAL::Snap rounding traits 2<Kernel>

The class Snap rounding traits 2<Kernel> is a model of the SnapRoundingTraits 2 concept, and is the only
traits class supplied with the package. This class should be instantiated with an exact geometric kernel that
conforms to the CGAL kernel-concept, such as the Cartesian<gmpq> kernel.

This geometric kernel must provide an (arbitrary-precision) rational number type (FT), Point 2, Segment 2 and
Iso rectangle 2. It should be possible to cast numbers of the number type FT to double-precision representation.
That is, the function CGAL::to double(FT) must be supported.

The CGAL::to double() function is used to implement the operation that rounds the coordinates of a point to
a center of a pixel. This operation is one of the traits-concept requirement. The coordinates are converted to
double, rounded down to the nearest grid point, and finally adjusted to lie on a center of a pixel. Notice that
if CGAL::to double() returns the closet value, then when it rounds up a given coordinate, the resulting ISR,
may be imprecise, and the distance between some vertex and a non-incident edge can be slightly less than the
guaranteed half-the width-of-a-pixel.

#include <CGAL/Snap rounding traits 2.h>

Is Model for the Concepts

SnapRoundingTraits 2
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Envelopes of Curves in 2D
Ron Wein
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Figure 35.1: The lower envelope of a set of line segments and hyperbolic arc.

35.1 Introduction

A continuous curve C in R2 is called x-monotone, if every vertical line intersects it at a single point at most. For
example, the circle x2 +y2 = 1 is not xy-monotone as the vertical line x = 0 intersects it at (0,−1) and at (0,1);
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however, it is possible to split the circle into an upper part and a lower part, such that both of these parts are
x-monotone. We consider vertical segments as weakly x-monotone, to properly handle inputs that contain such
vertical curves.

An x-monotone curve can be represented as a univariate function y = C(x), defined over some continuous range
RC ⊆R. Given a set C = {C1,C2, . . . ,Cn} of x-monotone curves, their lower envelope is defined as the point-wise
minimum of all curves. Namely, the lower envelope of the set C can be defined as the following function:

LC (x) = min
1≤k≤n

Ck(x) ,

where we define Ck(x) = Ck(x) for x ∈ RCk , and Ck(x) = ∞ otherwise.

Similarly, the upper envelope of C is the point-wise maximum of the x-monotone curves in the set:

UC (x) = max
1≤k≤n

Ck(x) ,

where in this case Ck(x) =−∞ for x 6∈ RCk .

Given a set of x-monotone curves C , the minimization diagram of C is a subdivision of the x-axis into cells,
such that the identity of the curves that induce the lower envelope over a specific cell of the subdivision (an
edge or a vertex) is the same. In non-degenerate situations, an edge — which represents a continuous interval
on the x-axis — is induced by a single curve (or by no curves at all, if there are no x-monotone curves defined
over the interval), and a vertex is induced by a single curve and corresponds to one of its endpoints, or by
two curves and corresponds to their intersection point. The maximization diagram is symmetrically defined for
upper envelopes. In the rest of this chapter, we refer to both these diagrams as envelope diagrams.

Lower and upper envelopes can be efficiently computed using a divide-and-conquer approach. First, note that
the envelope diagram for a single x-monotone curve Ck is trivial to compute: we project the boundary of its
range of definition RCk onto the x-axis and label the features it induces accordingly. Given a set D of (non
necessarily x-monotone) curves in R2, we subdivide each curve into a finite number of weakly x-monotone
curves, and obtain the set C . Then, we split the set into two disjoint subsets C1 and C2, and we compute their
envelope diagrams recursively. Finally, we merge the diagrams in linear time by traversing both diagrams in
parallel.

35.2 The Envelope Diagram

The package basically contains two sets of free functions: lower envelope x monotone 2 (begin, end, diag)
(similarly upper envelope x monotone 2()) construct the envelope diagram for a given range of x-monotone
curves, while lower envelope 2 (begin, end, diag) (similarly upper envelope 2()) construct the envelope di-
agram for a range of arbitrary (not necessarily x-monotone) curves. In this section we explain more on the
structure of the envelope diagram these functions output.

A minimization diagram or a maximization diagram is represented by a model of the concept EnvelopeDiagram
1. This concept defines the structure of the subdivision of the x-axis into 0-dimensional cells called vertices, and
1-dimensional cells called edges. The important property of this subdivision is that the identity of the curves
that induce the lower envelope (or the upper envelope) over each cell is fixed.

Figure 35.2 shows the lower envelope of a set of eight line segments, and sketches the structure of their mini-
mization diagram. Each diagram vertex v is associated with a point pv on the envelope, which corresponds to
either a curve endpoint or to an intersection point of two (or more) curves. The vertex is therefore associated
with a set of x-monotone curves that induce the envelope over pv. Each vertex is incident to two edges, one
lying to its left and the other to its right.
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Figure 35.2: The lower envelope of eight line segments, labeled A, . . . ,H , as constructed in envelope
segments.cpp. The minimization diagram is shown at the bottom, where each diagram vertex points to the
point associated with it, and the labels of the segment that induce a diagram edge are displayed below this edge.
Note that there exists one edge that represents an overlap (i.e., there are two segments that induce it), and there
are also a few edges that represent empty intervals.

An edge in the envelope diagram represents a continuous portion of the x-axis, and is associated with a set of
x-monotone curves that induce the envelope over this interval. Note that this set may be empty if no x-monotone
curves are defined over this interval. In degenerate situations where curves overlap, there may be more than
a single curve that induces the envelope over the interval the edge represents. An envelop diagram of a set of
curves either consists of a single unbounded edge (in case the curve set is empty or if the envelope contains a
single unbounded curve that is below or above all other curves), or at least one vertex and two unbounded edges,
while each additional vertex comes along with an additional edge. It is possible to directly access the leftmost
edge, representing the unbounded interval that starts at−∞, and the rightmost edge, representing the unbounded
interval that ends at ∞. (In the example depicted in Figure 35.2 we have only bounded curves, so the leftmost
and rightmost edges represent empty intervals. This is not the case when we deal, for example, with envelopes
of sets of lines.)

Any model of the concept must define a geometric traits class, which in turn defines the Point 2 and X
monotone curve 2 types defined with the diagram features. The geometric traits class must be a model of
the ArrangementXMonotoneTraits 2 concept in case we construct envelopes of x-monotone curves. If we are
interested in handling arbitrary (not necessarily x-monotone) curves, the traits class must be a model of the
ArrangementTraits 2 concept. This concepts refined the ArrangementXMonotoneTraits 2 concept; a traits class
that models this concepts must also defines a Curve 2 type, representing an arbitrary planar curve, and provide
a functor for subdividing such curves into x-monotone subcurves.
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35.3 Examples

35.3.1 Example for Envelope of Line Segments

The following example demonstrates how to compute and traverse the minimization diagram of line segments,
as illustrated in Figure 35.2. We use the curve-data traits instantiated by the Arr segment traits 2 class, in order
to attach a label (a char in this case) to each input segment. We use these labels when we print the minimization
diagram:� �
#include <CGAL/Gmpq.h>
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arr_curve_data_traits_2.h>
#include <CGAL/Envelope_diagram_1.h>
#include <CGAL/envelope_2.h>

#include <list>
#include <iostream>

typedef CGAL::Gmpq Number_type;
typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Segment_traits_2;
typedef Segment_traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arr_curve_data_traits_2<Segment_traits_2,

char> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2

Labeled_segment_2;
typedef CGAL::Envelope_diagram_1<Traits_2> Diagram_1;

int main ()
{

// Consrtuct the input segments and label them ’A’ ... ’H’.
std::list<Labeled_segment_2> segments;

segments.push_back (Labeled_segment_2 (Segment_2 (Point_2 (0, 1),
Point_2 (2, 3)),

’A’));
segments.push_back (Labeled_segment_2 (Segment_2 (Point_2 (1, 2),

Point_2 (4, 5)),
’B’));

segments.push_back (Labeled_segment_2 (Segment_2 (Point_2 (1, 5),
Point_2 (7, 2)),

’C’));
segments.push_back (Labeled_segment_2 (Segment_2 (Point_2 (4, 2),

Point_2 (6, 4)),
’D’));

segments.push_back (Labeled_segment_2 (Segment_2 (Point_2 (8, 3),
Point_2 (8, 6)),

’E’));
segments.push_back (Labeled_segment_2 (Segment_2 (Point_2 (9, 2),

Point_2 (12, 4)),
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’F’));
segments.push_back (Labeled_segment_2 (Segment_2 (Point_2 (10, 2),

Point_2 (12, 1)),
’G’));

segments.push_back (Labeled_segment_2 (Segment_2 (Point_2 (11, 0),
Point_2 (11, 5)),

’H’));

// Compute the minimization diagram that represents their lower
envelope.

Diagram_1 min_diag;

lower_envelope_x_monotone_2 (segments.begin(), segments.end(),
min_diag);

// Print the minimization diagram.
Diagram_1::Edge_const_handle e = min_diag.leftmost();
Diagram_1::Vertex_const_handle v;
Diagram_1::Curve_const_iterator cit;

while (e != min_diag.rightmost())
{

std::cout << "Edge:";
if (! e->is_empty())
{

for (cit = e->curves_begin(); cit != e->curves_end(); ++cit)
std::cout << ’ ’ << cit->data();

}
else

std::cout << " [empty]";
std::cout << std::endl;

v = e->right();
std::cout << "Vertex (" << v->point() << "):";
for (cit = v->curves_begin(); cit != v->curves_end(); ++cit)

std::cout << ’ ’ << cit->data();
std::cout << std::endl;

e = v->right();
}
CGAL_assertion (e->is_empty());
std::cout << "Edge: [empty]" << std::endl;

return (0);
}� �
File: examples/Envelope_2/envelope_segments.cpp

35.3.2 Example for Computing the Convex Hull with Envelopes

The next example computes the convex hull of a set of input points by constructing envelopes of unbounded
curves, in our case lines that are dual to the input points. Here use the Arr linear traits 2 class to compute the
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lower envelope of the set of dual lines. We read a set of points P = p1, . . . , pn from an input file, and construct the
corresponding dual lines P ∗ = p∗1, . . . , p∗n, where the line p∗ dual to a point p = (px, py) is given by y = pxx− py.
We then compute the convex hull of the point-set P , using the fact that the lines that form the lower envelope
of P ∗ are dual to the points along the upper part of P ’s convex hull, and the lines that form the upper envelope
of P ∗ are dual to the points along the lower part of the convex hull; see, e.g., [dBvKOS00, Section 11.4] for
more details. Note that the leftmost edge of the minimization diagram is associated with the same line as the
rightmost edge of the maximization diagram, and vice-verse. We can therefore skip the rightmost edges of both
diagrams:� �
#include <CGAL/Gmpq.h>
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_linear_traits_2.h>
#include <CGAL/Arr_curve_data_traits_2.h>
#include <CGAL/Envelope_diagram_1.h>
#include <CGAL/envelope_2.h>
#include <vector>

typedef CGAL::Gmpq Number_type;
typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_linear_traits_2<Kernel> Linear_traits_2;
typedef Linear_traits_2::Point_2 Point_2;
typedef Linear_traits_2::Line_2 Line_2;
typedef CGAL::Arr_curve_data_traits_2<Linear_traits_2,

unsigned int> Traits_2;
typedef Traits_2::X_monotone_curve_2 Dual_line_2;
typedef CGAL::Envelope_diagram_1<Traits_2> Diagram_1;

int main (int argc, char* argv[])
{

// Read the points from the input file.
const char* filename = (argc > 1) ? argv[1] : "ch_points.dat";
std::ifstream in_file(filename);
if (!in_file.is_open()) {

std::cerr << "Failed to open " << filename << " ..." << std::endl;
return -1;

}

// Read the points from the file, and construct their dual lines.
std::list<Dual_line_2> dual_lines;

unsigned int n;
in_file >> n;
std::vector<Point_2> points;
points.resize(n);

for (unsigned int k = 0; k < n; ++k) {
int px, py;
in_file >> px >> py;
points[k] = Point_2 (px, py);

// The line dual to the point (p_x, p_y) is y = p_x*x - p_y,
// or: p_x*x - y - p_y = 0:
Line_2 line = Line_2 (Number_type(px), Number_type(-1),
Number_type(-py));
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// Generate the x-monotone curve based on the line and the point
index.
dual_lines.push_back (Dual_line_2 (line, k));

}
in_file.close();

// Compute the lower envelope of dual lines, which corresponds to the
upper

// part of the convex hull, and their upper envelope, which corresponds
to

// the lower part of the convex hull.
Diagram_1 min_diag;
Diagram_1 max_diag;
lower_envelope_x_monotone_2(dual_lines.begin(), dual_lines.end(),
min_diag);

upper_envelope_x_monotone_2(dual_lines.begin(), dual_lines.end(),
max_diag);

// Output the points along the boundary convex hull in counterclockwise
// order. We start by traversing the minimization diagram from left to
// right, then the maximization diagram from right to left.
std::cout << "The convex hull of " << points.size() << " input
points:";

Diagram_1::Edge_const_handle e = min_diag.leftmost();
while (e != min_diag.rightmost()) {

std::cout << " (" << points[e->curve().data()] << ’)’;
e = e->right()->right();

}

// Handle the degenerate case of a vertical convex hull edge:
if (e->curve().data() != max_diag.leftmost()->curve().data())

std::cout << " (" << points[e->curve().data()] << ’)’;

e = max_diag.leftmost();
while (e != max_diag.rightmost()) {

std::cout << " (" << points[e->curve().data()] << ’)’;
e = e->right()->right();

}
std::cout << std::endl;

return 0;
}� �
File: examples/Envelope_2/convex_hull.cpp

35.3.3 Example for Envelope of Non-Linear Curves

We conclude by an example of envelopes of non-linear curves. We use the Arr circle segment traits 2 class to
construct the lower and the upper envelopes of a set of four circles, as depicted in Figure 35.3. Note that unlike
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Figure 35.3: A set of four circles, as constructed in ex envelope circles.cpp. The lower envelope and the upper
envelope are shown using thick dashed lines of different colors respectively.

the two previous examples, here our curves are not x-monotone, so we use the functions that compute envelopes
of arbitrary curves:� �
#include <CGAL/Gmpq.h>
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_circle_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Envelope_diagram_1.h>
#include <CGAL/envelope_2.h>

typedef CGAL::Gmpq Number_type;
typedef CGAL::Cartesian<Number_type> Kernel;
typedef Kernel::Point_2 Kernel_point_2;
typedef Kernel::Circle_2 Circle_2;
typedef CGAL::Arr_circle_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Curve_2 Curve_2;
typedef CGAL::Envelope_diagram_1<Traits_2> Diagram_1;

/*! Print the given envelope diagram. */
void print_diagram (const Diagram_1& diag)
{

Diagram_1::Edge_const_handle e = diag.leftmost();
Diagram_1::Vertex_const_handle v;

while (e != diag.rightmost())
{

std::cout << "Edge: ";
if (! e->is_empty())
{

Circle_2 circ = e->curve().supporting_circle();
std::cout << " (x - " << CGAL::to_double(circ.center().x()) << ")ˆ2

+"
<< " (y - " << CGAL::to_double(circ.center().y()) << ")ˆ2
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= "
<< CGAL::to_double(circ.squared_radius()) << std::endl;

}
else

std::cout << " [empty]" << std::endl;

v = e->right();
std::cout << "Vertex (" << CGAL::to_double(v->point().x()) << ’ ’

<< CGAL::to_double(v->point().y()) << ’)’ << std::endl;

e = v->right();
}
CGAL_assertion (e->is_empty());
std::cout << "Edge: [empty]" << std::endl;

return;
}

/*! The main program. */
int main ()
{

// Create four input circles.
Curve_2 circles[4];

circles[0] = Circle_2 (Kernel_point_2 (1, 3), CGAL::square(2));
circles[1] = Circle_2 (Kernel_point_2 (4, 5), CGAL::square(4));
circles[2] = Circle_2 (Kernel_point_2 (5, 1), CGAL::square(1));
circles[3] = Circle_2 (Kernel_point_2 (6, 7), CGAL::square(2));

// Compute the minimization diagram that represents their lower
envelope.

Diagram_1 min_diag;

lower_envelope_2 (&(circles[0]), &(circles[4]), min_diag);
print_diagram (min_diag);

// Compute the maximization diagram that represents the upper envelope.
Diagram_1 max_diag;

upper_envelope_2 (&(circles[0]), &(circles[4]), max_diag);
print_diagram (max_diag);

return (0);
}� �
File: examples/Envelope_2/envelope_circles.cpp
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Envelopes of Curves in 2D
Reference Manual
Ron Wein

Introduction

This package consists of functions that compute the lower (or upper) envelope of a set of arbitrary curves in 2D.
The output is represented as an envelope diagram, namely a subdivision of the x-axis into intervals, such that
the identity of the curves that induce the envelope over each interval is unique.

Functions
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CGAL::lower envelope 2

#include <CGAL/envelope 2.h>

template<class InputIterator, class EnvelopeDiagram>
void lower envelope 2( InputIterator begin, InputIterator end, EnvelopeDiagram& diag)

Computes the lower envelope of a set of curves in R2, as
given by the range [begin, end). The lower envelope is rep-
resented using the output minimization diagram diag, which
must be a model of the EnvelopeDiagram 1 concept.
Precondition: The value-type of InputIterator is
EnvelopeDiagram::Traits 2::Curve 2.
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CGAL::upper envelope 2

#include <CGAL/envelope 2.h>

template<class InputIterator, class EnvelopeDiagram>
void upper envelope 2( InputIterator begin, InputIterator end, EnvelopeDiagram& diag)

Computes the upper envelope of a set of curves in R2, as
given by the range [begin, end). The upper envelope is rep-
resented using the output maximization diagram diag, which
must be a model of the EnvelopeDiagram 1 concept.
Precondition: The value-type of InputIterator is
EnvelopeDiagram::Traits 2::Curve 2.
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CGAL::lower envelope x monotone 2

#include <CGAL/envelope 2.h>

template<class InputIterator, class EnvelopeDiagram>
void lower envelope x monotone 2( InputIterator begin,

InputIterator end,
EnvelopeDiagram& diag)

Computes the lower envelope of a set of x-monotone curves
in R2, as given by the range [begin, end). The lower envelope
is represented using the output minimization diagram diag,
which must be a model of the EnvelopeDiagram 1 concept.
Precondition: The value-type of InputIterator is
EnvelopeDiagram::X monotone curve 2.
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CGAL::upper envelope x monotone 2

#include <CGAL/envelope 2.h>

template<class InputIterator, class EnvelopeDiagram>
void upper envelope x monotone 2( InputIterator begin,

InputIterator end,
EnvelopeDiagram& diag)

Computes the upper envelope of a set of x-monotone curves
in R2, as given by the range [begin, end). The upper envelope
is represented using the output maximization diagram diag,
which must be a model of the EnvelopeDiagram 1 concept.
Precondition: The value-type of InputIterator is
EnvelopeDiagram::X monotone curve 2.
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EnvelopeDiagram 1

Definition

This concept defines the representation of an envelope diagram of a set of planar curve. The envelope diagram
is a subdivision of the x-axis into 0-dimensional cells (vertices) and 1-dimensional cells (edges), such that the
identity of the curves that induce the lower envelope (or the upper envelope) over each cell is fixed.

A vertex in an envelope diagram is therefore associated with a point on the envelope, and corresponds to either
a curve endpoint or to an intersection point of two (or more) curves. Therefore each vertex is associated with
a set of x-monotone curves that induce the envelope over this point. Each vertex is incident to two edges, one
lying to its left and the other to its right.

An edge in the envelope diagram represents a continuous portion of the x-axis, and is associated with a (possibly
empty) set of curves that induce the envelope over this portion of the x-axis. An edge may be bounded by two
vertices, one to its left and the other to its right. However, the diagram contains two unbounded edges, its
leftmost edge, representing the interval (−∞,xl), and its rightmost edge, representing the interval (xr,∞), where
xl and xr are the x-coodinates of the leftmost and the rightmost vertices in the diagram, respectively. Note that
a diagram may contain no vertices at all, in which case it comprises a single edge.

Note that any model of the EnvelopeDiagram 1 concept must define a geometric traits class, which in turn
defines the Point 2 and X monotone curve 2 types defined with the diagram features.

Types

EnvelopeDiagram 1:: Traits 2 the geometric traits class.

typedef Traits 2::Point 2

Point 2; the point type.
typedef Traits 2::X monotone curve 2

X monotone curve 2;

the x-monotone curve type.

EnvelopeDiagram 1:: Size the size type (convertible to size t).

EnvelopeDiagram 1:: Curve const iterator an iterator for the x-monotone curves that induce a diagram
feature. Its value-type is X monotone curve 2.

EnvelopeDiagram 1:: Vertex the vertex type, a model of the concept EnvelopeDi-
agramVertex.

EnvelopeDiagram 1:: Edge the edge type, a model of the concept EnvelopeDi-
agramEdge.

EnvelopeDiagram 1:: Vertex handle a handle to a diagram vertex.
EnvelopeDiagram 1:: Vertex const handle a non-mutable handle to a diagram vertex.
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EnvelopeDiagram 1:: Edge handle a handle to a diagram edge.
EnvelopeDiagram 1:: Edge const handle a non-mutable handle to a diagram edge.

Creation

EnvelopeDiagram 1 diag; constructs an empty diagram containing one unbounded
edge, which corresponds to the entire plane and has no x-
monotone curves that are associated with it.

EnvelopeDiagram 1 diag( Self other); copy constructor.

Access Functions

Edge const handle diag.leftmost() const returns the leftmost edge of the diagram (a non-const version
is also available).

Edge const handle diag.rightmost() const

returns the rightmost edge of the diagram (a non-const ver-
sion is also available).

Modifiers

void diag.set leftmost( Edge const handle e)

sets the leftmost edge of the diagram to be e.

void diag.set rightmost( Edge const handle e)

sets the rightmost edge of the diagram to be e.

Vertex handle diag.new vertex( Point 2 p)

creates a new diagram vertex, associated with the point p.

Edge handle diag.new edge() creates a new diagram edge.

void diag.delete vertex( Vertex handle v)

deletes the given vertex v.

void diag.delete edge( Edge handle e)

deletes the given edge e.

See Also

EnvelopeDiagramVertex (page 2421)
EnvelopeDiagramEdge (page 2423)
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EnvelopeDiagramVertex

Definition

A vertex record in an envelope diagram. It is always associated with a point on the lower (upper) envelope of a
non-empty set of curves. A vertex is also associated with a set of x-monotone curves that induce the envelope
over this point. It is incident to two edges, one lying to its left and the other to its right.

Types

EnvelopeDiagramVertex:: Size the size type (convertible to size t).

EnvelopeDiagramVertex:: Edge the corresponding diagram-edge type.

EnvelopeDiagramVertex:: Point 2 the point type associated with the vertex.
EnvelopeDiagramVertex:: X monotone curve 2

the x-monotone curve type.

Creation

EnvelopeDiagramVertex v; default constructor.

EnvelopeDiagramVertex v( other); copy constructor.

EnvelopeDiagramVertex v( Point 2 p); constructs a vertex associated with the given point p.

Access Functions

Point 2 v.point() const returns the point associated with v.

Size v.number of curves() const

returns the number of x-monotone curves associated with v.

Curve const iterator v.curves begin() const

return an iterator for the first x-monotone curve associated
with v.

Curve const iterator v.curves end() const return a past-the-end iterator for the x-monotone curves as-
sociated with v.

Edge const handle v.left() const returns the edge lying to v’s left.
Edge const handle v.right() const returns the edge lying to v’s right.
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Modifiers

void v.set point( Point 2 p)

associates the point p with v.

void v.clear curves() clears the set of curves associated with v.
void v.add curve( X monotone curve 2 cv)

adds the x-monotone curve cv to the set of curves associated
with v.

void v.add curves( Curve const iterator begin, Curve const iterator end)

adds the given range of x-monotone curves to the set of
curves associated with v.

void v.set left( Edge const handle e)

sets the edge lying to the left of v to be e.

void v.set right( Edge const handle e)

sets the edge lying to the right of v to be e.

See Also

EnvelopeDiagram 1 (page 2419)
EnvelopeDiagramEdge (page 2423)
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EnvelopeDiagramEdge

Definition

An edge record in an envelope diagram, which represents a continuous portion of the x-axis. It is associated
with a (possibly empty) set of curves that induce the envelope over this portion of the x-axis. Note that all curves
in this set overlap over the interval represented by the edge.

Types

EnvelopeDiagramEdge:: Size the size type (convertible to size t).

EnvelopeDiagramEdge:: Vertex the corresponding diagram-vertex type.

EnvelopeDiagramEdge:: X monotone curve 2

the x-monotone curve type.

Creation

EnvelopeDiagramEdge e; default constructor.

EnvelopeDiagramEdge e( other); copy constructor.

Access Functions

Size e.number of curves() const

returns the number of x-monotone curves associated with e.

bool e.is empty() const returns whether e represents an empty interval — namely,
whether the set of x-monotone curves associated with it is
empty.

X monotone curve 2 e.curve() const returns a representative x-monotone curve associated with e.
Precondition: e does not represent an empty interval.

Curve const iterator e.curves begin() const

return an iterator for the first x-monotone curve associated
with e.

Curve const iterator e.curves end() const return a past-the-end iterator for the x-monotone curves as-
sociated with e.

Vertex const handle e.left() const returns the vertex lying to e’s left.
Precondition: e is not the leftmost edge in the diagram.
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Vertex const handle e.right() const returns the vertex lying to e’s right.
Precondition: e is not the rightmost edge in the diagram.

Modifiers

void e.clear curves() clears the set of curves associated with e.
void e.add curve( X monotone curve 2 cv)

adds the x-monotone curve cv to the set of curves associated
with e.

void e.add curves( Curve const iterator begin, Curve const iterator end)

adds the given range of x-monotone curves to the set of
curves associated with e.

void e.set left( Vertex const handle v)

sets the vertex lying to the left of e to be v.

void e.set right( Vertex const handle v)

sets the vertex lying to the right of e to be v.

See Also

EnvelopeDiagram 1 (page 2419)
EnvelopeDiagramVertex (page 2421)
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CGAL::Envelope diagram 1<Traits>

Definition

This class is the default envelope-diagram class used by envelope functions to represent the minimization or the
maximization diagram of a set of curves. It represents the diagram as a doubly-linked list of interleaved vertices
and edges. Thus, all operations provided by the envelope diagram take constant time, and the space needed to
store the diagram class is linear in the complexity of the envelope.

The envelope-diagram class is parameterized by a traits class, which is a model of the
ArrangementXMonotoneTraits 2 concept, in case we handle only envelopes of x-monotone curves, or of
the refined ArrangementTraits 2 concept in case we handle arbitrary planar curves.

#include <CGAL/Envelope diagram 1.h>

Is Model for the Concepts

EnvelopeDiagram 1
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Envelopes of Surfaces in 3D
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36.1 Introduction

A continuous surface S in R3 is called xy-monotone, if every line parallel to the z-axis intersects it at a single
point at most. For example, the sphere x2 +y2 +z2 = 1 is not xy-monotone as the z-axis intersects it at (0,0,−1)
and at (0,0,1); however, if we use the xy-plane to split it to an upper hemisphere and a lower hemisphere, these
two hemispheres are xy-monotone.

An xy-monotone surface can therefore be represented as a bivariate function z = S(x,y), defined over some
continuous range RS ⊆ R2. Given a set S = {S1,S2, . . . ,Sn} of xy-monotone surfaces, their lower envelope is
defined as the point-wise minimum of all surfaces. Namely, the lower envelope of the set S can be defined as
the following function:

LS (x,y) = min
1≤k≤n

Sk(x,y) ,

where we define Sk(x,y) = Sk(x,y) for (x,y) ∈ RSk , and Sk(x,y) = ∞ otherwise.

Similarly, the upper envelope of S is the point-wise maximum of the xy-monotone surfaces in the set:

US (x,y) = max
1≤k≤n

Sk(x,y) ,

where in this case Sk(x,y) =−∞ for (x,y) 6∈ RSk .
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Given a set of xy-monotone surfaces S , the minimization diagram of S is a subdivision of the xy-plane into cells,
such that the identity of the surfaces that induce the lower diagram over a specific cell of the subdivision (be it a
face, an edge, or a vertex) is the same. In non-degenerate situation, a face is induced by a single surface (or by no
surfaces at all, if there are no xy-monotone surfaces defined over it), an edge is induced by a single surface and
corresponds to its projected boundary, or by two surfaces and corresponds to their projected intersection curve,
and a vertex is induced by a single surface and corresponds to its projected boundary point, or by three surfaces
and corresponds to their projected intersection point. The maximization diagram is symmetrically defined for
upper envelopes. In the rest of this chapter, we refer to both these diagrams as envelope diagrams.

It is easy to see that an envelope diagram is no more than a planar arrangement (see Chapter 32), represented
using an extended DCEL structure, such that every DCEL record (namely each face, halfedge and vertex) stores
an additional container of it originators: the xy-monotone surfaces that induce this feature.

Lower and upper envelopes can be efficiently computed using a divide-and-conquer approach. First note that
the envelope diagram for a single xy-monotone curve Sk is trivial to compute: we project the boundary of
its range of definition RSk onto the xy-plane, and label the faces it induces accordingly. Given a set D of (non
necessarily xy-monotone) surfaces in R3, we subdivide each surface into a finite number of weakly xy-monotone
surfaces,1 and obtain the set S . Then, we split the set into two disjoint subsets S1 and S2, and we compute their
envelope diagrams recursively. Finally, we merge the diagrams, and we do this by overlaying them and then
applying some post-processing on the resulting diagram. The post-processing stage is non-trivial and involves
the projection of intersection curves onto the xy-plane — see [Mey06] for more details.

36.2 The Envelope-Traits Concept

The implementation of the envelope-computation algorithm is generic and can handle arbitrary surfaces. It
is parameterized with a traits class, which defines the geometry of surfaces it handles, and supports all the
necessary functionality on these surfaces, and on their projections onto the xy-plane. The traits class must
model the EnvelopeTraits 3 concept, the details of which are given below.

As the representation of envelope diagrams is based on 2D arrangements, and the envelop-computation algo-
rithm employs overlay of planar arrangements, the EnvelopeTraits 3 refines the ArrangementXMonotoneTraits
2 concept. Namely, a model of this concept must define the planar types Point 2 and X monotone curve 2 and
support basic operations on them, as listed in Section 32.6. Moreover, it must define the spacial types Surface 3
and Xy monotone surface 3 (in practice, these two types may be the same). Any model of the envelope-traits
concept must also support the following operations on these spacial types:

• Subdivide a given surface into continuous xy-monotone surfaces. It is possible to disregard xy-monotone
surfaces that do not contribute to the surface envelope at this stage (for example, if we are given a sphere,
it is possible to return just its lower hemisphere if we are interested in the lower envelope; the upper
hemisphere is obviously redundant).

• Given an xy-monotone surface S, construct all planar curves that form the boundary of the vertical pro-
jection S’s boundary onto the xy-plane.

This operation is used at the bottom of the recursion to build the minimization diagram of a single xy-
monotone surface.

• Construct all geometric entities that comprise the projection (onto the xy-plane) of the intersection be-
tween two xy-monotone surfaces S1 and S2. These entities may be:

1We consider vertical surfaces, namely patches of planes that are perpendicular to the xy-plane, as weakly xy-monotone, to handle
degenerate inputs properly.
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Figure 36.1: (a) The spheres S1 and S2 have only one two-dimensional point p in their common xy-definition
range. They do not necessarily intersect over this point, and the envelope-construction algorithm needs to
determine their relative z-order over p. (b) The z-order of the surfaces S1 and S2 should be determined over the
x-monotone curve c. The comparison is performed over the interior of c, excluding its endpoints.

– A planar curve, which is the projection of an 3D intersection curve of S1 and S2 (for example, the
intersection curve between two spheres is a 3D circle, which becomes an ellipse when projected
onto the xy-plane). In many cases it is also possible to indicate the multiplicity of the intersection: if
it is odd, the two surfaces intersect transversely and change their relative z-positions on either side of
the intersection curve; if it the multiplicity is even, they maintain their relative z-position. Providing
the multiplicity information is optional. When provided, it is used by the algorithm to determine the
relative order of S1 and S2 on one side of their intersection curve when their order on the other side
of that curve is known, thus improving the performance of the algorithm.

– A point, induces by the projection of a tangency point of S1 and S2, or by the projection of a vertical
intersection curve onto the xy-plane.

Needless to say, the set of intersection entities may be empty in case S1 and S2 do not intersect.

• Given two xy-monotone surfaces S1 and S2, and a planar point p = (x0,y0) that lies in their common xy-
definition range, determine the z-order of S1 and S2 over p, namely compare S1(x0,y0) and S2(x0,y0). This
operation is used only in degenerate situations, in order to determine the surface inducing the envelope
over a vertex (see Figure 36.1(a) for an illustration of a situation when this operation is used).

• Given two xy-monotone surfaces S1 and S2, and a planar x-monotone curve c, which is a part of their
projected intersection, determine the z-order of S1 and S2 immediately above (or, similarly, immediately
below) the curve c. Note that c is a planar x-monotone curve, and we refer to the region above (or below)
it in the plane. If c is a vertical curve, we regard the region to its left as lying above it, and the region to
its right as lying below it.

This operation is used by the algorithm to determine the surface that induce the envelope over a face
incident to c.

• Given two xy-monotone surfaces S1 and S2, and a planar x-monotone curve c, which fully lies in their
common xy-definition range, and such that S1 and S2 do not intersect over the interior of c, determine the
relative z-order of s1 and s2 over the interior of c. Namely, we compare S1(x0,y0) and S2(x0,y0) for some
point (x0,y0) on c.

This operation is used by the algorithm to determine which surface induce the envelope over an edge as-
sociated with the x-monotone curve c, or of a face incident to c, in situations where the previous predicate
cannot be used, as c is not an intersection curve of S1 and S2 (see Figure 36.1(b) for an illustration of a
situation where this operation is used).

The package currently contains a traits class for named Env triangle traits 3<Kenrel> handling 3D triangles,
and another named Env sphere traits 3<ConicTraits> for 3D spheres, based on geometric operations on conic
curves (ellipses). In addition, the package includes a traits-class decorator that enables users to attach external
(non-geometric) data to surfaces. The usage of the various traits classes is demonstrated in the next section.
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(a) (b) (c)

Figure 36.2: (a) Two triangles in R3, as given in envelope triangles.cpp. (b) Their lower envelope. (c) Their
upper envelope.

36.3 Examples

36.3.1 Example for Envelope of Triangles

The following example shows how to use the envelope-traits class for 3D triangles and how to traverse the
envelope diagram. It constructs the lower and upper envelopes of the two triangles, as depicted in Figure 36.2(a)
and prints the triangles that induce each face and each edge in the output diagrams. For convenience, we use
the traits-class decorator Env surface data traits 3 to label the triangles. When printing the diagrams, we just
output the labels of the triangles:� �
#include <CGAL/Gmpq.h>
#include <CGAL/Cartesian.h>
#include <CGAL/Env_triangle_traits_3.h>
#include <CGAL/Env_surface_data_traits_3.h>
#include <CGAL/envelope_3.h>
#include <iostream>
#include <list>

typedef CGAL::Gmpq Number_type;
typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Env_triangle_traits_3<Kernel> Traits_3;
typedef Kernel::Point_3 Point_3;
typedef Traits_3::Surface_3 Triangle_3;
typedef CGAL::Env_surface_data_traits_3<Traits_3, char> Data_traits_3;
typedef Data_traits_3::Surface_3 Data_triangle_3;
typedef CGAL::Envelope_diagram_2<Data_traits_3>

Envelope_diagram_2;

/* Auxiliary function - print the features of the given envelope diagram.
*/

void print_diagram (const Envelope_diagram_2& diag)
{

// Go over all arrangement faces.
Envelope_diagram_2::Face_const_iterator fit;
Envelope_diagram_2::Ccb_halfedge_const_circulator ccb;
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Envelope_diagram_2::Surface_const_iterator sit;

for (fit = diag.faces_begin(); fit != diag.faces_end(); ++fit)
{

// Print the face boundary.
if (fit->is_unbounded())
{

std::cout << "[Unbounded face]";
}
else
{

// Print the vertices along the outer boundary of the face.
ccb = fit->outer_ccb();
std::cout << "[Face] ";
do
{

std::cout << ’(’ << ccb->target()->point() << ") ";
++ccb;

} while (ccb != fit->outer_ccb());
}

// Print the labels of the triangles that induce the envelope on this
face.
std::cout << "--> " << fit->number_of_surfaces()

<< " triangles:";

for (sit = fit->surfaces_begin(); sit != fit->surfaces_end(); ++sit)
std::cout << ’ ’ << sit->data();

std::cout << std::endl;
}

// Go over all arrangement edges.
Envelope_diagram_2::Edge_const_iterator eit;

for (eit = diag.edges_begin(); eit != diag.edges_end(); ++eit)
{

// Print the labels of the triangles that induce the envelope on this
edge.
std::cout << "[Edge] (" << eit->source()->point()

<< ") (" << eit->target()->point()
<< ") --> " << eit->number_of_surfaces()
<< " triangles:";

for (sit = eit->surfaces_begin(); sit != eit->surfaces_end(); ++sit)
std::cout << ’ ’ << sit->data();

std::cout << std::endl;
}

return;
}

/* The main program: */
int main ()
{
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// Construct the input triangles, makred A and B.
std::list<Data_triangle_3> triangles;

triangles.push_back (Data_triangle_3 (Triangle_3 (Point_3 (0, 0, 0),
Point_3 (0, 6, 0),
Point_3 (5, 3, 4)),

’A’));
triangles.push_back (Data_triangle_3 (Triangle_3 (Point_3 (6, 0, 0),

Point_3 (6, 6, 0),
Point_3 (1, 3, 4)),

’B’));

// Compute and print the minimization diagram.
Envelope_diagram_2 min_diag;

CGAL::lower_envelope_3 (triangles.begin(), triangles.end(),
min_diag);

std::cout << std::endl << "The minimization diagram:" << std::endl;
print_diagram (min_diag);

// Compute and print the maximization diagram.
Envelope_diagram_2 max_diag;

CGAL::upper_envelope_3 (triangles.begin(), triangles.end(),
max_diag);

std::cout << std::endl << "The maximization diagram:" << std::endl;
print_diagram (max_diag);

return (0);
}� �
File: examples/Envelope_3/envelope_triangles.cpp

36.3.2 Example for Envelope of Spheres

The next example demonstrates how to instantiate and use the envelope-traits class for spheres, based on the
Arr conic traits 2 class that handles the projected intersecion curves. The program reads a set of spheres from
an input file and constructs their lower envelope:� �
#include <CGAL/basic.h>

#ifndef CGAL_USE_CORE
#include <iostream>
int main()
{

std::cout << "Sorry, this example needs CORE ..." << std::endl;
return 0;

}
#else

2432



#include <CGAL/Cartesian.h>
#include <CGAL/CORE_algebraic_number_traits.h>
#include <CGAL/Arr_conic_traits_2.h>
#include <CGAL/Env_sphere_traits_3.h>
#include <CGAL/envelope_3.h>
#include <CGAL/Timer.h>
#include <iostream>
#include <list>

typedef CGAL::CORE_algebraic_number_traits Nt_traits;
typedef Nt_traits::Rational Rational;
typedef Nt_traits::Algebraic Algebraic;
typedef CGAL::Cartesian<Rational> Rat_kernel;
typedef Rat_kernel::Point_3 Rat_point_3;
typedef CGAL::Cartesian<Algebraic> Alg_kernel;

typedef CGAL::Arr_conic_traits_2<Rat_kernel, Alg_kernel, Nt_traits>
Conic_traits_2;

typedef CGAL::Env_sphere_traits_3<Conic_traits_2> Traits_3;
typedef Traits_3::Surface_3 Sphere_3;
typedef CGAL::Envelope_diagram_2<Traits_3> Envelope_diagram_2;

int main(int argc, char **argv)
{

// Get the name of the input file from the command line, or use the
default

// fan_grids.dat file if no command-line parameters are given.
const char * filename = (argc > 1) ? argv[1] : "spheres.dat";

// Open the input file.
std::ifstream in_file(filename);

if (! in_file.is_open())
{

std::cerr << "Failed to open " << filename << " ..." << std::endl;
return 1;

}

// Read the spheres from the file.
// The input file format should be (all coordinate values are
integers):

// <n> // number of spheres.
// <x_1> <y_1> <x_1> <R_1> // center and squared radious of
sphere #1.

// <x_2> <y_2> <x_2> <R_2> // center and squared radious of
sphere #2.

// : : : :
// <x_n> <y_n> <x_n> <R_n> // center and squared radious of
sphere #n.

int n = 0;
std::list<Sphere_3> spheres;
int x = 0, y = 0, z = 0, sqr_r = 0;
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int i;

in_file >> n;
for (i = 0; i < n; ++i)
{

in_file >> x >> y >> z >> sqr_r;
spheres.push_back(Sphere_3(Rat_point_3(x, y, z), Rational(sqr_r)));

}
in_file.close();

// Compute the lower envelope.
Envelope_diagram_2 min_diag;
CGAL::Timer timer;

std::cout << "Constructing the lower envelope of "
<< n << " spheres." << std::endl;

timer.start();
CGAL::lower_envelope_3(spheres.begin(), spheres.end(), min_diag);
timer.stop();

// Print the dimensions of the minimization diagram.
std::cout << "V = " << min_diag.number_of_vertices()

<< ", E = " << min_diag.number_of_edges()
<< ", F = " << min_diag.number_of_faces() << std::endl;

std::cout << "Construction took " << timer.time()
<< " seconds." << std::endl;

return 0;
}

#endif� �
File: examples/Envelope_3/envelope_spheres.cpp

36.3.3 Example for Envelope of Planes

The next example demonstrates how to instantiate and use the envelope-traits class for planes, based on the
Arr linear traits 2 class that handles infinite linear objects such as lines and rays.� �
#include <CGAL/Gmpq.h>
#include <CGAL/Cartesian.h>
#include <CGAL/Env_plane_traits_3.h>
#include <CGAL/envelope_3.h>
#include <iostream>
#include <list>

typedef CGAL::Gmpq Number_type;
typedef CGAL::Cartesian<Number_type> Kernel;
typedef Kernel::Plane_3 Plane_3;
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typedef CGAL::Env_plane_traits_3<Kernel> Traits_3;
typedef Traits_3::Surface_3 Surface_3;
typedef CGAL::Envelope_diagram_2<Traits_3>

Envelope_diagram_2;

/* Auxiliary function - print the features of the given envelope diagram.
*/

void print_diagram (const Envelope_diagram_2& diag)
{

// Go over all arrangement faces.
Envelope_diagram_2::Face_const_iterator fit;
Envelope_diagram_2::Ccb_halfedge_const_circulator ccb;
Envelope_diagram_2::Surface_const_iterator sit;

for (fit = diag.faces_begin(); fit != diag.faces_end(); ++fit)
{

// Print the face boundary.

// Print the vertices along the outer boundary of the face.
ccb = fit->outer_ccb();
std::cout << "[Face] ";
do
{

if(!ccb->is_fictitious())
std::cout << ’(’ << ccb->curve() << ") ";

++ccb;
} while (ccb != fit->outer_ccb());

// Print the planes that induce the envelope on this face.
std::cout << "--> " << fit->number_of_surfaces()

<< " planes:";

for (sit = fit->surfaces_begin(); sit != fit->surfaces_end(); ++sit)
std::cout << ’ ’ << sit->plane();

std::cout << std::endl;
}

return;
}

/* The main program: */
int main ()
{

// Construct the input planes.
std::list<Surface_3> planes;

planes.push_back (Surface_3(Plane_3(0, -1, 1, 0)));
planes.push_back (Surface_3(Plane_3(-1, 0, 1, 0)));
planes.push_back (Surface_3(Plane_3(0, 1 , 1, 0)));
planes.push_back (Surface_3(Plane_3(1, 0, 1, 0)));

// Compute and print the minimization diagram.
Envelope_diagram_2 min_diag;
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CGAL::lower_envelope_3 (planes.begin(), planes.end(), min_diag);

std::cout << std::endl << "The minimization diagram:" << std::endl;
print_diagram (min_diag);

// Compute and print the maximization diagram.
Envelope_diagram_2 max_diag;

CGAL::upper_envelope_3 (planes.begin(), planes.end(), max_diag);

std::cout << std::endl << "The maximization diagram:" << std::endl;
print_diagram (max_diag);

return (0);
}� �
File: examples/Envelope_3/envelope_planes.cpp
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3D. The output is represented as an 2D envelope diagram — a planar subdivision such that the identity of the
surfaces that induce the envelope over each diagram cell is unique.
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CGAL::lower envelope 3

#include <CGAL/envelope 3.h>

template<class InputIterator, class Traits>
void lower envelope 3( InputIterator begin,

InputIterator end,
Envelope diagram 2<Traits>& diag)

Computes the lower envelope of a set of surfaces in R3, as
given by the range [begin, end). The lower envelope is rep-
resented using the output minimization diagram diag.
Precondition: The value-type of InputIterator is
Traits::Surface 3.
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CGAL::upper envelope 3

#include <CGAL/envelope 3.h>

template<class InputIterator, class Traits>
void upper envelope 3( InputIterator begin,

InputIterator end,
Envelope diagram 2<Traits>& diag)

Computes the upper envelope of a set of surfaces in R3, as
given by the range [begin, end). The upper envelope is rep-
resented using the output maximization diagram diag.
Precondition: The value-type of InputIterator is
Traits::Surface 3.

2440



F
un

ct
io

n

CGAL::lower envelope xy monotone 3

#include <CGAL/envelope 3.h>

template<class InputIterator, class Traits>
void lower envelope xy monotone 3( InputIterator begin,

InputIterator end,
Envelope diagram 2<Traits>& diag)

Computes the lower envelope of a set of xy-monotone sur-
faces in R3, as given by the range [begin, end). The lower
envelope is represented using the output minimization dia-
gram diag.
Precondition: The value-type of InputIterator is Traits::Xy
monotone surface 3.
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CGAL::upper envelope xy monotone 3

#include <CGAL/envelope 3.h>

template<class InputIterator, class Traits>
void upper envelope xy monotone 3( InputIterator begin,

InputIterator end,
Envelope diagram 2<Traits>& diag)

Computes the upper envelope of a set of xy-monotone sur-
faces in R3, as given by the range [begin, end). The lower
envelope is represented using the output maximization dia-
gram diag.
Precondition: The value-type of InputIterator is Traits::Xy
monotone surface 3.

2442



C
on

ce
pt

EnvelopeTraits 3

Definition

This concept defines the minimal set of geometric predicates and operations needed to compute the envelope
of a set of arbitrary surfaces in R3. It refines the ArrangementXMonotoneTraits 2 concept. In addition to
the Point 2 and X monotone curve 2 types and the Has boundary category category tag listed in the base
concept, it also lists the Surface 3 and Xy monotone surface 3 types, which represent arbitrary surfaces and
xy-monotone surfaces, respectively, and some constructions and predicates on these types. Note however, that
these operations usually involve the projection of 3D objects onto the xy-plane.

Refines

ArrangementXMonotoneTraits 2

Types

EnvelopeTraits 3:: Surface 3 represents an arbitrary surface in R3.
EnvelopeTraits 3:: Xy monotone surface 3 represents a weakly xy-monotone surface in R3.

Functor Types

EnvelopeTraits 3:: Make xy monotone 3

provides the operator (templated by the OutputIterator type) :

• OutputIterator operator() (Surface 3 S, bool is lower, OutputIterator oi)
which subdivides the given surface S into xy-monotone parts and inserts them into the output
iterator. The value of is lower indicates whether we compute the lower or the upper envelope,
so that xy-monotone surfaces that are irrelevant to the lower-envelope (resp. upper-envelope)
computation may be discarded. The value-type of OutputIterator is Xy monotone surface 3.
The operator returns a past-the-end iterator for the output sequence.

EnvelopeTraits 3:: Construct projected boundary 2

provides the operator (templated by the OutputIterator type) :

• OutputIterator operator() (Xy monotone surface 3 s, OutputIterator oi)
which computes all planar x-monotone curves and possibly isolated planar points that form
the projection of the boundary of the given xy-monotone surface s onto the xy-plane, and
inserts them into the output iterator. The value-type of OutputIterator is Object, where Object
wraps either a Point 2, or a pair<X monotone curve 2, Oriented side>. In the former case,
the object represents an isolated point of the projected boundary. In the latter, more general,
case the object represents an x-monotone boundary curve along with an enumeration value
which is either ON NEGATIVE SIDE or ON POSITIVE SIDE, indicating whether whether
the projection of the surface onto the xy-plane lies below or above this x-monotone curve,
respectively. In degenerate case, namely when the surface itself is vertical, and its projection
onto the plane is 1-dimensional, the Oriented side value is ON ORIENTED BOUNDARY .
The operator returns a past-the-end iterator for the output sequence.
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EnvelopeTraits 3:: Construct projected intersections 2

provides the operator (templated by the OutputIterator type) :

• OutputIterator operator() (Xy monotone surface 3 s1, Xy monotone surface 3 s2, OutputIt-
erator oi)
which computes the projection of the intersections of the xy-monotone surfaces s1 and s2 onto
the xy-plane, and inserts them into the output iterator. The value-type of OutputIterator is
Object, where each Object either wraps a pair<X monotone curve 2,Multiplicity> instance,
which represents a projected intersection curve with its multiplicity (in case the multiplicity
is undefined or not known, it should be set to 0) or an Point 2 instance, representing the pro-
jected image of a degenerate intersection (the projection of an isolated intersection point, or
of a vertical intersection curve). The operator returns a past-the-end iterator for the output
sequence.

EnvelopeTraits 3:: Compare z at xy 3

provides the operators :

• Comparison result operator() (Point 2 p, Xy monotone surface 3 s1, Xy monotone surface
3 s2)
which determines the relative z-order of the two given xy-monotone surfaces at the xy-
coordinates of the point p, with the precondition that both surfaces are defined over p. Namely,
it returns the comparison result of s1(p) and s2(p).

• Comparison result operator() (X monotone curve 2 c, Xy monotone surface 3 s1, Xy
monotone surface 3 s2)
which determines the relative z-order of the two given xy-monotone surfaces over the inte-
rior of a given x-monotone curve c, with the precondition that c is fully contained in the
xy-definition range of both s1 and s2, and that the surfaces do not intersect over c. The functor
should therefore return the comparison result of s1(p′) and s2(p′) for some point p′ in the
interior of c.

• Comparison result operator() (Xy monotone surface 3 s1, Xy monotone surface 3 s2)
which determines the relative z-order of the two given unbounded xy-monotone surfaces,
which are defined over the entire xy-plane and have no boundary, with the precondition that
the surfaces do not intersect at all. The functor should therefore return the comparison result
of s1(p) and s2(p) for some planar point p ∈R2. This operator is required iff the category tag
Has boundary category is defined as Tag true.

EnvelopeTraits 3:: Compare z at xy above 3

provides the operator :

• Comparison result operator() (X monotone curve 2 c, Xy monotone surface 3 s1, Xy
monotone surface 3 s2)
which determines the relative z-order of the two given xy-monotone surfaces immediately
above their projected intersection curve c (a planar point p is above an x-monotone curve
c if it is in the x-range of c, and lies to its left when the curve is traversed from its xy-
lexicographically smaller endpoint to its larger endpoint). We have the precondition that both
surfaces are defined “above” c, and their relative z-order is the same for some small enough
neighborhood of points above c.
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EnvelopeTraits 3:: Compare z at xy below 3

provides the operator :

• Comparison result operator() (X monotone curve 2 c, Xy monotone surface 3 s1, Xy
monotone surface 3 s2)
which determines the relative z-order of the two given xy-monotone surfaces immediately be-
low their projected intersection curve c (a planar point p is below an x-monotone curve c if it is
in the x-range of c, and lies to its right when the curve is traversed from its xy-lexicographically
smaller endpoint to its larger endpoint). We have the precondition that both surfaces are de-
fined “below” c, and their relative z-order is the same for some small enough neighborhood of
points below c.

Creation

EnvelopeTraits 3 traits; default constructor.
EnvelopeTraits 3 traits( other); copy constructor.
EnvelopeTraits 3 traits = other assignment operator.

Accessing Functor Objects

Make xy monotone 3 traits.make xy monotone 3 object()
Construct projected boundary 2 traits.construct projected boundary 2 object()
Construct projected intersections 2

traits.construct projected intersections 2 object()
Compare z at xy 3 traits.compare z at xy 3 object()
Compare z at xy above 3 traits.compare z at xy above 3 object()
Compare z at xy below 3 traits.compare z at xy below 3 object()

Has Models

CGAL::Env triangle traits 3<Kernel>
CGAL::Env sphere traits 3<ConicTraits>
CGAL::Env plane traits 3<Kernel>
CGAL::Env surface data traits 3<Traits,XyData,SData,Cnv>
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CGAL::Env triangle traits 3<Kernel>

Definition

The traits class Env triangle traits 3<Kernel> models the EnvelopeTraits 3 concept, and is used for the con-
struction of lower and upper envelopes of triangles in the space. It is parameterized by a CGAL-kernel, which
is parameterized in turn by a number type. The number type should support exact rational arithmetic, to avoid
numerical errors and robustness problems. In particular, the number type should support the arithmetic opera-
tions +, −, ×, and÷ without loss of precision. For optimal performance, we recommend instantiating the traits
class with the predefined Exact predicates exact constructions kernel provided by CGAL. Using this kernel
guarantees exactness and robustness, while it incurs only a minor overhead (in comparison to working with a
fast, inexact number type) for most inputs.

Note that when we project the boundary of a triangle, or the intersection of two triangles, onto the xy-plane, we
obtain line segments. Indeed, Env triangle traits 3<Kernel> inherits from the Arr segment traits 2<Kernel>
traits class, and extends it by adding operations on 3D objects, namely spacial triangles. Note that the traits
class does not define Kernel::Triangle 3 as its surface (and xy-monotone surface) type, as one may expect.
This is because the traits class needs to store extra data with the triangles in order to efficiently operate on
them. Nevertheless, the nested Xy monotone surface 3 and Surface 3 types are however constructible from a
Kernel::Triangle 3 instance and are also convertible to a Kernel::Triangle 3 object. Both types, Xy monotone
surface 3 and Surface 3, refer to the same class, as every triangle is (weakly) xy-monotone).

#include <CGAL/Env triangle traits 3.h>

Is Model for the Concepts

EnvelopeTraits 3

Inherits From

Arr segment traits 2<Kernel>
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CGAL::Env sphere traits 3<ConicTraits>

Definition

The traits class Env sphere traits 3<ConicTraits> models the EnvelopeTraits 3 concept, and is used for the
construction of lower and upper envelopes of spheres. Note that when projecting the intersection curve of
two spheres (a circle in 3D) onto the xy-plane, the resulting curve is an ellipse. The traits class is therefore
parameterized by an arrangement-traits class that is capable of handling conic curves — namely an instantiation
of the Arr conic traits 2 class-template — and inherits from it.

The conic-traits class defines a nested type named Rat kernel, which is a geometric kernel parameterized by
an exact rational type. Env sphere traits 3<ConicTraits> defines its Surface 3 type to be constructible from
Rat kernel::Sphere 3. Namely, it can handle spheres whose center points have rational coordinates (i.e., of the
type Rat kernel::FT), and whose squared radius is also rational. The Surface 3 type is also convertible to a
Rat kernel::Sphere 3 object.

The Xy monotone surface 3 type is the same as the nested Surface 3 type. The traits-class simply ignores the
upper hemisphere when it computes lower envelopes, and ignores the lower hemisphere when it computes upper
envelopes.

#include <CGAL/Env sphere traits 3.h>

Is Model for the Concepts

EnvelopeTraits 3

Inherits From

ConicTraits
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CGAL::Env surface data traits 3<Traits,XyData,SData,Cnv>

Definition

The class Env surface data traits 3<Traits,XyData,SData,Cnv> is a model of the EnvelopeTraits 3 concept
and serves as a decorator class that allows the extension of the surfaces defined by the base traits-class (the
Traits parameter), which serves as a geometric traits-class (a model of the EnvelopeTraits 3 concept), with
extraneous (non-geometric) data fields.

The traits-class decorator extends the Surface 3 and the Xy monotone surface 3 types as detailed below. Each
Surface 3 object is associated with a single data field of type SData, and each Xy monotone surface 3 object
is associated with a single data field of type XyData. When a surface is subdivided into xy-monotone surfaces,
its data field is converted using the conversion functor, which is specified by the Cnv template-parameter, and
the resulting objects is copied to all Xy monotone surface 3 objects induced by this surface. The conversion
functor should provide an operator with the following prototype:
XyData operator() (const SData& d) const;

By default, the two data types are the same, so the conversion operator is trivial and just copies the data object:

SData = XyData
Cnv = Default convert functor<SData,XyData>

#include <CGAL/Env surface data traits 3.h>

Is Model for the Concepts

EnvelopeTraits 3

Types

typedef Traits Base traits 3; the base traits-class.
typedef typename Base traits 3::Surface 3

Base surface 3; the base surface.
typedef typename Base traits 3::Xy monotone surface 3

Base xy monotone surface 3;

the base xy-monotone surface surface.

typedef Cnv Convert; the conversion functor.

typedef SData Surface data; the type of data associated with surfaces.
typedef XyData Xy monotone surface data;

the type of data associated with xy-monotone surfaces.
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Inherits From

Base traits 3

Class Env surface data traits 3<Traits,XyData,SData,Cnv>::Surface 3

The Surface 3 class nested within the surface-data traits extends the Base traits 3::Surface 3 type with an extra
data field.

Inherits From

Base surface 3

Creation

Env surface data traits 3<Traits,XyData,SData,Cnv>::Surface 3 s;

default constructor.

Env surface data traits 3<Traits,XyData,SData,Cnv>::Surface 3 s( Base surface 3 base);

constructs surface from the given base surface with uninitial-
ized data field.

Env surface data traits 3<Traits,XyData,SData,Cnv>::Surface 3 s( Base surface 3 base,
Surface data data)

constructs surface from the given base surface with an at-
tached data field.

Access Functions

Surface data s.data() const returns the data field (a non-const version, which returns a
reference to the data object, is also available).

void s.set data( Surface data data)

sets the data field.

Class Env surface data traits 3<Traits,XyData,SData,Cnv>::Xy monotone surface 3

The Xy monotone surface 3 class nested within the surface-data traits extends the Base traits 3::Xy
monotone surface 3 type with an extra data field.

2449



Inherits From

Base xy monotone surface 3

Creation

Arr surface data traits 3<Tr,XData,Mrg,CData,Cnv>::Xy monotone surface 3 xys;

default constructor.

Arr surface data traits 3<Tr,XData,Mrg,CData,Cnv>::Xy monotone surface 3 xys( Base xy monotone
surface 3 base)

constructs an xy-monotone surface from the given base sur-
face with uninitialized data field.

Arr surface data traits 3<Tr,XData,Mrg,CData,Cnv>::Xy monotone surface 3 xys( Base xy monotone
surface 3 base,

Xy monotone surface
data data)

constructs an x-monotone surface from the given base x-
monotone surface with an attached data field.

Access Functions

Xy monotone surface data

xys.data() const returns the field (a non-const version, which returns a refer-
ence to the data object, is also available).

void xys.set data( Xy monotone surface data data)

sets the data field.
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CGAL::Env plane traits 3<Kernel>

Definition

The traits class Env plane traits 3<Kernel> models the EnvelopeTraits 3 concept, and is used for the construc-
tion of lower and upper envelopes of planes and half planes in the space. It is parameterized by a CGAL-kernel
model, which is parameterized in turn by a number type. The number type should support exact rational arith-
metic, to avoid numerical errors and robustness problems. In particular, the number type should support the
arithmetic operations +, −, ×, and ÷ without loss of precision. For optimal performance, we recommend in-
stantiating the traits class with the predefined Exact predicates exact constructions kernel provided by CGAL.
Using this kernel guarantees exactness and robustness, while it incurs only a minor overhead (in comparison to
working with a fast, inexact number type) for most inputs.

Note that an entire plane has no boundaries, and the projection of a half-plane is an (unbounded) line. Naturally,
rays and segments may occur as a result of overlaying projections of several half planes. Indeed, Env plane
traits 3<Kernel> inherits from the Arr linear traits 2<Kernel> traits class, and extends it by adding operations
on planes and half planes. The nested Xy monotone surface 3 and Surface 3 types refer to the same type. They
are constructible from a Kernel::Plane 3 in case of an entire plane, or from Kernel::Plane 3 and Kernel::Line 2
in case of a half-plane. The line orientation determines which half is considered.

#include <CGAL/Env plane traits 3.h>

Is Model for the Concepts

EnvelopeTraits 3

Inherits From

Arr linear traits 2<Kernel>

2451



C
la

ss

CGAL::Envelope diagram 2<EnvTraits>

Definition

The class-template Envelope diagram 2<EnvTraits> represents the minimization diagram that corresponds to
the lower envelope of a set of curves, or the maximization diagram that corresponds to their upper envelope. It
is parameterized by a traits class that must be a model of the EnvelopeTraits 3 concept, and is basically a planar
arrangement of x-monotone curves, as defined by this traits class. These x-monotone curves are the projections
of boundary curves of xy-monotone surfaces, or the intersection curves between such surfaces, onto the xy-plane.
Thus, it is possible to traverse the envelope diagram using the methods inherited from the Arrangement 2 class.

The envelope diagram extends the arrangement features (namely the vertices, halfedges, and faces), such that
each feature stores a container of originators — namely, the xy-monotone surfaces (instances of the type
EnvTraits::Xy monotone surface 3) that induce the lower envelope (or the upper envelope, in case of a maxi-
mization diagram) over this feature. The envelope diagram provides access methods to these originators.

#include <CGAL/envelope 3.h>

Inherits From

Arrangement 2<EnvTraits>

Types

typedef Envelope diagram 2<EnvTraits>

Self;
typedef Arrangement 2<EnvTraits>

Base;

Envelope diagram 2<EnvTraits>:: Surface const iterator

an iterator for the xy-monotone surfaces that induce a di-
agram feature. Its value-type is EnvTraits::Xy monotone
surface 3.

Creation

Envelope diagram 2<EnvTraits> diag; constructs an empty diagram containing one unbounded face,
which corresponds to the entire plane and has no originators.

Envelope diagram 2<EnvTraits> diag( Self other);

copy constructor.
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Envelope diagram 2<EnvTraits> diag( EnvTraits *traits);

constructs an empty diagram that uses the given traits in-
stance for performing the geometric predicates.

Class Envelope diagram 2<EnvTraits>::Vertex

Inherits From

Base::Vertex

Access Functions

size t v.number of surfaces() const

returns the number of xy-monotone surfaces that induce v.

Surface const iterator

v.surfaces begin() const

returns an iterator for the first xy-monotone surface that in-
duces v.

Surface const iterator

v.surfaces end() const

returns a past-the-end iterator for the xy-monotone surfaces
that induce v.

Xy monotone surface 3

v.surface() const returns the first xy-monotone surface that induce v.
Precondition: The number of surfaces is not 0.

Class Envelope diagram 2<EnvTraits>::Halfedge

Inherits From

Base::Halfedge

Access Functions

size t e.number of surfaces() const

returns the number of xy-monotone surfaces that induce e.
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Surface const iterator

e.surfaces begin() const

returns an iterator for the first xy-monotone surface that in-
duces e.

Surface const iterator

e.surfaces end() const

returns a past-the-end iterator for the xy-monotone surfaces
that induce e.

Xy monotone surface 3

e.surface() const returns the first xy-monotone surface that induce e.
Precondition: The number of surfaces is not 0.

Class Envelope diagram 2<EnvTraits>::Face

Inherits From

Base::Face

Access Functions

size t f .number of surfaces() const

returns the number of xy-monotone surfaces that induce f .

Surface const iterator

f .surfaces begin() const

returns an iterator for the first xy-monotone surface that in-
duces f .

Surface const iterator

f .surfaces end() const

returns a past-the-end iterator for the xy-monotone surfaces
that induce f .

Xy monotone surface 3

f .surface() const returns the first xy-monotone surface that induce f .
Precondition: The number of surfaces is not 0.
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This chapter describes the two dimensional triangulations of CGAL. Section 37.1 recalls the main definitions
about triangulations. Sections 37.2 discusses the way two-dimensional triangulations are represented in CGAL.
Section 37.3 presents the overall software design of the 2D triangulations package. The next sections present
the different two dimensional triangulations classes available in CGAL : basic triangulations (section 37.4),
Delaunay triangulations (Section 37.5), regular triangulations (Section 37.6), constrained triangulations (Sec-
tion 37.7), and constrained Delaunay triangulations (Section 37.8). Section 37.9 describes a class which imple-
ments a constrained or constrained Delaunay triangulation with an additional data structure to describe how the
constraints are refined by the edges of the triangulations. Section 37.10 describes a hierarchical data structure
for fast point location queries. At last, Section 37.11 explains how the user can benefit from the flexibility of
CGAL triangulations using customized classes for faces and vertices.

37.1 Definitions

A two dimensional triangulation can be roughly described as a set T of triangular facets such that :
- two facets either are disjoint or share a lower dimensional face (edge or vertex).
- the set of facets in T is connected for the adjacency relation.
- the domain UT which is the union of facets in T has no singularity.

More precisely, a triangulation can be described as a simplicial complex. Let us first record a few definitions.

A simplicial complex is a set T of simplices such that
- any face of a simplex in T is a simplex in T
- two simplices in T either are disjoint or share a common sub-face.

The dimension d of a simplicial complex is the maximal dimension of its simplices.
A simplicial complex T is pure if any simplex of T is included in a simplex of T with maximal dimension.
Two simplexes in T with maximal dimension d are said to be adjacent if they share a d−1 dimensional sub-face.
A simplicial complex is connected if the adjacency relation defines a connected graph over the set of simplices
of T with maximal dimension.
The union UT of all simplices in T is called the domain of T . A point p in the domain of T is said to singular if
its surrounding in UT is neither a topological ball nor a topological disc.

Then, a two dimensional triangulation can be described as a two dimensional simplicial complex that is pure,
connected and without singularity.
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Each facet of a triangulation can be given an orientation which in turn induces an orientation on the edges
incident to that facet. The orientation of two adjacent facets are said to be consistent if they induce opposite
orientations on their common incident edge. A triangulation is said to be orientable if the orientation of each
facet can be chosen in such a way that all pairs of incident facets have consistent orientations.

The data structure underlying CGAL triangulations allows to represent the combinatorics of any orientable two
dimensional triangulations without boundaries. On top of this data structure, the 2D triangulations classes take
care of the geometric embedding of the triangulation and are designed to handle planar triangulations. The plane
of the triangulation may be embedded in a higher dimensional space.

The triangulations of CGAL are complete triangulations which means that their domain is the convex hull of
their vertices. Because any planar triangulation can be completed, this is not a real restriction. For instance, a
triangulation of a polygonal region can be constructed and represented as a subset of a constrained triangulation
in which the region boundary edges have been input as constrained edges (see Section 37.7, 37.8 and 37.9).

Strictly speaking, the term face should be used to design a face of any dimension, and the two-dimensional faces
of a triangulation should be properly called facets. However, following a common usage, we hereafter often call
faces, the facets of a two dimensional triangulation.

37.2 Representation

The Set of Faces

A 2D triangulation of CGAL can be viewed as a planar partition whose bounded faces are triangular and cover
the convex hull of the set of vertices. The single unbounded face of this partition is the complementary of the
convex hull. In many applications, such as Kirkpatrick’s hierarchy or incremental Delaunay construction, it is
convenient to deal with only triangular faces. Therefore, a fictitious vertex, called the infinite vertex is added
to the triangulation as well as infinite edges and infinite faces incident to it.. Each infinite edge is incident to
the infinite vertex and to a vertex of the convex hull. Each infinite face is incident to the infinite vertex and to a
convex hull edge.

Therefore, each edge of the triangulation is incident to exactly two faces and the set of faces of a triangula-
tion is topologically equivalent to a two-dimensional sphere. This extends to lower dimensional triangulations
arising in degenerate cases or when the triangulations as less than three vertices. Including the infinite faces,
a one dimensional triangulation is a ring of edges and vertices topologically equivalent to a 1-sphere. A zero
dimensional triangulation, whose domain is reduced to a single point, is represented by two vertices that is
topologically equivalent to a 0-sphere.

Note that the infinite vertex has no significant coordinates and that no geometric predicate can be applied on it
nor on an infinite face.

A Representation Based on Faces and Vertices

Because a triangulation is a set of triangular faces with constant-size complexity, triangulations are not im-
plemented as a layer on top of a planar map. CGAL uses a proper internal representation of triangulations
based on faces and vertices rather than on edges. Such a representation saves storage space and results in faster
algorithms [BDTY00].

The basic elements of the representation are vertices and faces. Each triangular face gives access to its three
incident vertices and to its three adjacent faces. Each vertex gives access to one of its incident faces and through
that face to the circular list of its incident faces.
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Figure 37.1: Infinite vertex and infinite faces
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Figure 37.2: Vertices and neighbors.

The three vertices of a face are indexed with 0, 1 and 2 in counterclockwise order. The neighbors of a face are
also indexed with 0,1,2 in such a way that the neighbor indexed by i is opposite to the vertex with the same
index. See Figure 37.2, the functions ccw(i) and cw(i) shown on this figure compute respectively i+1 and i−1
modulo 3.

The edges are not explicitly represented, they are only implicitly represented through the adjacency relations
of two faces. Each edge has two implicit representations: the edge of a face f which is opposed to the vertex
indexed i, can be represented as well as an edge of the neighbor(i) of f .

37.3 Software Design

The triangulations classes of CGAL provide high-level geometric functionalities such as location of a point in
the triangulation, insertion, removal, or displacement of a point. They are build as a layer on top of a data
structure called the triangulation data structure. The triangulation data structure can be thought of as a container
for the faces and vertices of the triangulation. This data structure also takes care of all the combinatorial aspects
of the triangulation.

This separation between the geometric aspect and the combinatorial part is reflected in the software design by
the fact that the triangulation classes have two template parameters:

• the first parameter stands for a geometric traits class providing the geometric primitives (points, segments
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Figure 37.3: The triangulations software design.

and triangles) of the triangulation and the elementary operations (predicate or constructions) on those
objects.

• the second parameter stands for a triangulation data structure class. The concept of triangulation data
structure is described in Section 38.2 of Chapter 38. The triangulation data structure defines the types
used to represent the faces and vertices of the triangulation, as well as additional types (handles, iterators
and circulators) to access and visit the faces and vertices.

CGAL provides the class Triangulation data structure 2<Vb,Fb> as a default model of triangulation data
structure. The class Triangulation data structure 2<Vb,Fb> has two template parameters standing for a
vertex class and a face class. CGAL defines concepts for these template parameters and provide default
models for these concepts. The vertex and base classes are templated by the geometric traits which allows
them to have some knowledge of the geometric primitives of the triangulation. Those default vertex and
face base classes can be replaced by user customized base classes in order, for example, to deal with
additional properties attached to the vertices or faces of a triangulation. See section 37.11 for more
details on the way to make use of this flexibility.

The Figure 37.3 summarizes the design of the triangulation package, showing the three layers (base classes,
triangulation data structure and triangulation) forming this design.

The top triangulation level, responsible for the geometric embedding of the triangulation comes in different
flavors according to the different kind of triangulations: basic, Delaunay, regular, constrained or constrained
Delaunay. Each kind of triangulations correspond to a different class. Figure 37.4 summarizes the derivation
dependencies of CGAL 2D triangulations classes. Any 2D triangulation class is parametrized by a geometric
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Figure 37.4: The derivation tree of 2D triangulations.

traits and a triangulation data structure. While a unique concept TriangulationDataStructure 2 describes the
triangulation data structure requirements for any triangulation class, the concept of geometric traits actually
depends on the triangulation class. In general, the requirements for the vertex and face base classes are described
by the basic concepts TriangulationVertexBase 2 and TriangulationFaceBase 2. However, some triangulation
classes requires base classes implementing refinements of the basic concepts.

37.4 Basic Triangulations

37.4.1 Description

The class Triangulation 2<Traits,Tds> serves as a base class for the other 2D triangulations classes and imple-
ments the user interface to a triangulation.

The vertices and faces of the triangulations are accessed through handles, iterators and circulators. A handle
is a model of the concept Handle which basically offers the two dereference operators * and -> . A circulator
is a type devoted to visit circular sequences. Handles are used whenever the accessed element is not part of a
sequence. Iterators and circulators are used to visit all or parts of the triangulation.

The iterators and circulators are all bidirectional and non mutable. The circulators and iterators are convertible
to the handles with the same value type, so that when calling a member function, any handle type argument can
be replaced by an iterator or a circulator with the same value type.

The triangulation class allows to visit the vertices and neighbors of a face in clockwise or counterclockwise
order.

There are circulators to visit the edges or faces incident to a given vertex or the vertices adjacent to it. Another
circulator type allows to visit all the faces traversed by a given line. Circulators step through infinite features as
well as through finite ones.

The triangulation class offers some iterators to visit all the faces, edges or vertices and also iterators to visit
selectively the finite faces, edges or vertices.
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Figure 37.5: Flip.

The triangulation class provides methods to test the infinite character of any feature, and also methods to test
the presence in the triangulation of a particular feature (edge or face) given its vertices.

The triangulation class provides a method to locate a given point with respect to a triangulation. In particular,
this method reports whether the point coincides with a vertex of the triangulation, lies on an edge, in a face or
outside of the convex hull. In case of a degenerate lower dimensional triangulation, the query point may also lie
outside the triangulation affine hull.

The triangulation class also provides methods to locate a point with respect to a given finite face of the tri-
angulation or with respect to its circumcircle. The faces of the triangulation and their circumcircles have the
counterclockwise orientation.

The triangulation can be modified by several functions: insertion of a point, removal of a vertex, displacement
of a vertex, flipping of an edge. The flipping of an edge is possible when the union of the two incident faces
forms a convex quadrilateral (see Figure 37.5).

Implementation

Locate is implemented by a line walk. The walk begins at a vertex of the face which is given as an optional
argument or at an arbitrary vertex of the triangulation if no optional argument is given. It takes time O(n)
in the worst case, but only O(

√
n) on average if the vertices are distributed uniformly at random. The class

Triangulation hierarchy 2<Traits,Tds>, described in section 37.10, implements a data structure designed to
offer an alternate more efficient point location algorithm.

Insertion of a point is done by locating a face that contains the point, and splitting this face into three new faces.
If the point falls outside the convex hull, the triangulation is restored by flips. Apart from the location, insertion
takes a time O(1). This bound is only an amortized bound for points located outside the convex hull.

Removal of a vertex is done by removing all adjacent triangles, and re-triangulating the hole. Removal takes a
time at most proportional to d2, where d is the degree of the removed vertex, which is O(1) for a random vertex.

Displacement of a vertex is done by: first, verifying if the triangulation embedding remains planar after the
displacement; if yes the vertex is directly placed at the new location; otherwise, a point is inserted at the new
location and the vertex at the obsolete location is removed.

The face, edge, and vertex iterators on finite features are derived from their counterparts visiting all (finite
and infinite) features which are themselves derived from the corresponding iterators of the triangulation data
structure.
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Geometric Traits

The geometric traits of a triangulation is required to provide the geometric objects (points, segments and tri-
angles) building up the triangulation together with the geometric predicates on those objects. The required
predicates are:
- comparison of the x or y coordinates of two points.
- the orientation test which computes the order type of three given point.

The concept TriangulationTraits 2 describes the requirements for the geometric traits class of a triangulation.
The CGAL kernel classes are models for this concept. The CGAL library also provides dedicated models of
TriangulationTraits 2 using the kernel geometric objects and predicates. These classes are themselves tem-
plated with a CGAL kernel and extract the required types and predicates from the kernel. The traits class
Triangulation euclidean traits 2<R> is designed to deal with ordinary two dimensional points. The class
Projection traits xy 3<R> is a geometric traits class to build the triangulation of a terrain. Such a triangulation
is a two-dimensional triangulation embedded in three dimensional space. The data points are three-dimensional
points. The triangulation is build according to the projections of those points on the xy plane and then lifted
up to the original three-dimensional data points. This is especially useful to deal with GIS terrains. Instead
of really projecting the three-dimensional points and maintaining a mapping between each point and its pro-
jection (which costs space and is error prone), the traits class supplies geometric predicates that ignore the
z-coordinates of the points. See Section 37.5 for an example. CGAL provides also the geometric traits classes
Projection traits yz 3<R> and Projection traits xz 3<R> to deal with projections on the yz plane and xz-plane,
respectively.

37.4.2 Example of a Basic Triangulation

The following program creates a triangulation of 2D points using the default kernel Exact predicate inexact
constructions kernel as geometric traits and the default triangulation data structure. The input points are read
from a file and inserted in the triangulation. Finally points on the convex hull are written to cout.� �
#include <fstream>

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Triangulation_2.h>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Triangulation_2<K> Triangulation;
typedef Triangulation::Vertex_circulator Vertex_circulator;
typedef Triangulation::Point Point;

int main() {
std::ifstream in("data/triangulation_prog1.cin");
std::istream_iterator<Point> begin(in);
std::istream_iterator<Point> end;

Triangulation t;
t.insert(begin, end);

Vertex_circulator vc = t.incident_vertices(t.infinite_vertex()),
done(vc);

if (vc != 0) {
do { std::cout << vc->point() << std::endl;
}while(++vc != done);
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}
return 0;

}� �
File: examples/Triangulation_2/triangulation_prog1.cpp

37.5 Delaunay Triangulations

37.5.1 Description

The class Delaunay triangulation 2<Traits,Tds> is designed to represent the Delaunay triangulation of a set
of data points in the plane. A Delaunay triangulation fulfills the following empty circle property (also called
Delaunay property): the circumscribing circle of any facet of the triangulation contains no data point in its
interior. For a point set with no subset of four co-circular points the Delaunay triangulation is unique, it is dual
to the Voronoi diagram of the set of points.

The class Delaunay triangulation 2<Traits,Tds> derives from the class Triangulation 2<Traits,Tds>.

The class Delaunay triangulation 2<Traits,Tds> inherits the types defined by the basic class Triangulation 2<
Traits,Tds>. Additional types, provided by the traits class, are defined to represent the dual Voronoi diagram.

The class Delaunay triangulation 2<Traits,Tds> overwrites the member functions that insert, move, or remove
a point in the triangulation to maintain the Delaunay property. It also has a member function (Vertex handle
nearest vertex(const Point& p)) to answer nearest neighbor queries and member functions to construct the ele-
ments (vertices and edges) of the dual Voronoi diagram.

Geometric traits

The geometric traits has to be a model of the concept DelaunayTriangulationTraits 2 which refines the concept
TriangulationTraits 2. In particular this concept provides the side of oriented circle predicate which, given
four points p,q,r,s decides the position of the point s with respect to the circle passing through p, q and r. The
side of oriented circle predicate actually defines the Delaunay triangulation. Changing this predicate allows to
build variant of Delaunay triangulations for different metrics such that L1 or L∞ metric or any metric defined by
a convex object. However, the user of an exotic metric must be careful that the constructed triangulation has to
be a triangulation of the convex hull which means that convex hull edges have to be Delaunay edges. This is
granted for any smooth convex metric (like L2) and can be ensured for other metrics (like L∞) by the addition to
the point set of well chosen sentinel points.

The CGAL kernel classes and the class Triangulation euclidean traits 2<R> are models of the concept
DelaunayTriangulationTraits 2 for the euclidean metric. The traits class for terrains, Projection traits xy
3<R>,
Projection traits yz 3<R>, and
Projection traits xz 3<R>
are also models of DelaunayTriangulationTraits 2 except that they do not fulfill the requirements for the duality
functions and nearest vertex queries.

Implementation

The insertion of a new point in the Delaunay triangulation is performed using first the insertion member function
of the basic triangulation and second performing a sequence of flips to restore the Delaunay property. The

2465



number of flips that have to be performed is O(d) if the new vertex has degree d in the updated Delaunay
triangulation. For points distributed uniformly at random, each insertion takes time O(1) on average, once the
point has been located in the triangulation.

Removal calls the removal in the triangulation and then re-triangulates the hole created in such a way that the
Delaunay criterion is satisfied. Removal of a vertex of degree d takes time O(d2). The degree d is O(1) for a
random vertex in the triangulation. When the degree of the removed vertex is small (≤ 7) a special procedure is
used that allows to increase global removal time by a factor of 2 for random points [Dev09].

The displacement of a vertex v at a point p to a new location p′, first checks whether the triangulation embedding
remains planar or not after moving v to p′. If yes, it moves v to p′ and simply performs a sequence of flips
to restore the Delaunay property, which is O(d) where d is the degree of the vertex after the displacement.
Otherwise, the displacement is done by inserting a vertex at the new location, and removing the obsolete vertex.
The complexity is O(n) in the worst case, but only O(1+δ

√
n) for evenly distributed vertices in the unit square,

where δ is the Euclidean distance between the new and old locations.

After having performed a point location, the nearest neighbor of a point is found in time O(n) in the worst case,
but in time O(1) for vertices distributed uniformly at random and any query point.

37.5.2 Example: a Delaunay Terrain

The following code creates a Delaunay triangulation with the usual Euclidean metric for the vertical projection
of a terrain model. The points have elevation, that is they are 3D points, but the predicates used to build the
Delaunay triangulation are computed using only the x and y coordinates of these points.

The class Projection traits xy 3<K> is part of the 2D and 3D Linear Geometric Kernel, and replaces the class
Triangulation euclidean traits xy 3<K> which is deprecated.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Projection_traits_xy_3.h>
#include <CGAL/Delaunay_triangulation_2.h>

#include <fstream>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Projection_traits_xy_3<K> Gt;
typedef CGAL::Delaunay_triangulation_2<Gt> Delaunay;

typedef K::Point_3 Point;

int main()
{

std::ifstream in("data/terrain.cin");
std::istream_iterator<Point> begin(in);
std::istream_iterator<Point> end;

Delaunay dt;
dt.insert(begin, end);
std::cout << dt.number_of_vertices() << std::endl;
return 0;

}� �
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File: examples/Triangulation_2/terrain.cpp

37.5.3 Example: Voronoi Diagram

The following code computes the edges of Voronoi diagram of a set of data points and counts the number of
finite edges and the number of rays of this diagram� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>

#include <fstream>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Delaunay_triangulation_2<K> Triangulation;
typedef Triangulation::Edge_iterator Edge_iterator;
typedef Triangulation::Point Point;

int main( )
{

std::ifstream in("data/voronoi.cin");
std::istream_iterator<Point> begin(in);
std::istream_iterator<Point> end;
Triangulation T;
T.insert(begin, end);

int ns = 0;
int nr = 0;
Edge_iterator eit =T.edges_begin();
for ( ; eit !=T.edges_end(); ++eit) {

CGAL::Object o = T.dual(eit);
if (CGAL::object_cast<K::Segment_2>(&o)) {++ns;}
else if (CGAL::object_cast<K::Ray_2>(&o)) {++nr;}

}
std::cout << "The Voronoi diagram has " << ns << " finite edges "

<< " and " << nr << " rays" << std::endl;
return 0;

}� �
File: examples/Triangulation_2/voronoi.cpp

37.5.4 Example: Print Voronoi Diagram Edges Restricted to a rectangle

The following code computes the Delaunay triangulation of a set of points and prints the Voronoi edges restricted
to a given rectangle.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <iterator>
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Figure 37.6: Voronoi diagram (in red) of the black points restricted to the blue rectangle.

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_2 Point_2;
typedef K::Iso_rectangle_2 Iso_rectangle_2;
typedef K::Segment_2 Segment_2;
typedef K::Ray_2 Ray_2;
typedef K::Line_2 Line_2;
typedef CGAL::Delaunay_triangulation_2<K> Delaunay_triangulation_2;

//A class to recover Voronoi diagram from stream.
//Rays, lines and segments are cropped to a rectangle
//so that only segments are stored
struct Cropped_voronoi_from_delaunay{

std::list<Segment_2> m_cropped_vd;
Iso_rectangle_2 m_bbox;

Cropped_voronoi_from_delaunay(const Iso_rectangle_2&
bbox):m_bbox(bbox){}

template <class RSL>
void crop_and_extract_segment(const RSL& rsl){

CGAL::Object obj = CGAL::intersection(rsl,m_bbox);
const Segment_2* s=CGAL::object_cast<Segment_2>(&obj);
if (s) m_cropped_vd.push_back(*s);

}

void operator<<(const Ray_2& ray) { crop_and_extract_segment(ray); }
void operator<<(const Line_2& line) { crop_and_extract_segment(line);
}

void operator<<(const Segment_2& seg){ crop_and_extract_segment(seg); }
};

int main(){
//consider some points
std::vector<Point_2> points;
points.push_back(Point_2(0,0));
points.push_back(Point_2(1,1));
points.push_back(Point_2(0,1));

Delaunay_triangulation_2 dt2;
//insert points into the triangulation
dt2.insert(points.begin(),points.end());
//construct a rectangle
Iso_rectangle_2 bbox(-1,-1,2,2);
Cropped_voronoi_from_delaunay vor(bbox);
//extract the cropped Voronoi diagram
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dt2.draw_dual(vor);
//print the cropped Voronoi diagram as segments
std::copy(vor.m_cropped_vd.begin(),vor.m_cropped_vd.end(),

std::ostream_iterator<Segment_2>(std::cout,"\n"));
}� �
File: examples/Triangulation_2/print_cropped_voronoi.cpp

37.6 Regular Triangulations

37.6.1 Description

Let PW = {(pi,wi)|i = 1, . . . ,n} be a set of weighted points where each pi is a point and each wi is a scalar
called the weight of point pi. Alternatively, each weighted point (pi,wi) can be regarded as a sphere (or a circle,
depending on the dimensionality of pi) with center pi and radius ri =

√
wi.

The power diagram of the set PW is a space partition in which each cell corresponds to a sphere (pi,wi) of PW
and is the locus of points p whose power with respect to (pi,wi) is less than its power with respect to any other
sphere in PW . In the two-dimensional space, the dual of this diagram is a triangulation whose domain covers
the convex hull of the set P = {pi|i = 1, . . . ,n} of center points and whose vertices form a subset of P. Such
a triangulation is called a regular triangulation. Three points pi, p j and pk of P form a triangle in the regular
triangulation of PW iff there is a point p of the plane with equal powers with respect to (pi,wi), (p j,w j) and
(pk,wk) and such that this power is less than the power of p with respect to any other sphere in PW .

Let us defined the power product of two weighted points (pi,wi) and (p j,w j) as:

Π(pi,wi, p j,w j) = pi p2
j −wi−w j.

Π(pi,wi, p j,0) is simply the power of point p j with respect to the sphere (pi,wi), and two weighted points are
said to be orthogonal if their power product is null. The power circle of three weighted points (pi,wi), (p j,w j)
and (pk,wk) is defined as the unique circle (π,ω) orthogonal to (pi,wi), (p j,w j) and (pk,wk).

The regular triangulation of the sets PW satisfies the following regular property (which just reduces to the
Delaunay property when all the weights are null): a triangle pi p j pk is a face of the regular triangulation of
PW iff the power product of any weighted point (pl ,wl) of PW with the power circle of (pi,wi), (p j,w j) and
(pk,wk) is positive or null. We call power test of (pi,wi), (p j,w j), (pk,wk), and (pl ,wl), the predicates which
amount to compute the sign of the power product of (pl ,wl) with respect to the power circle of (pi,wi), (p j,w j)
and (pk,wk). This predicate amounts to computing the sign of the following determinant∣∣∣∣∣∣∣∣

1 xi yi x2
i + y2

i −wi
1 x j y j x2

j + y2
j −w j

1 xk yk x2
k + y2

k−wk
1 xl yl x2

l + y2
l −wl

∣∣∣∣∣∣∣∣
A pair of neighboring faces pi p j pk and pi p j pl is said to be locally regular (with respect to the weights in PW ) if
the power test of (pi,wi), (p j,w j), (pk,wk), and (pl ,wl) is positive. A classical result of computational geometry
establishes that a triangulation of the convex hull of P such that any pair of neighboring faces is regular with
respect to PW , is a regular triangulation of PW .

Alternatively, the regular triangulation of the weighted points set PW can be obtained as the projection on the
two dimensional plane of the convex hull of the set of three dimensional points P′ = {(pi, p2

i −wi)|i = 1, . . . ,n}.
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The class Regular triangulation 2<Traits, Tds> is designed to maintain the regular triangulation of a set of 2d
weighted points. It derives from the class Triangulation 2<Traits, Tds>. The functions insert and remove are
overwritten to handle weighted points and maintain the regular property. The function move is not overwritten
and thus does not preserve the regular property. The vertices of the regular triangulation of a set of weighted
points PW correspond only to a subset of PW . Some of the input weighted points have no cell in the dual power
diagrams and therefore do not correspond to a vertex of the regular triangulation. Such a point is called a hidden
point. Because hidden points can reappear later on as vertices when some other point is removed, they have
to be stored somewhere. The regular triangulation store those points in special vertices, called hidden vertices.
A hidden point can reappear as vertex of the triangulation only when the two dimensional face that hides it is
removed from the triangulation. To deal with this feature, each face of a regular triangulation stores a list of
hidden vertices. The points in those vertices are reinserted in the triangulation when the face is removed.

Regular triangulation have member functions to construct the vertices and edges of the dual power diagrams.

The Geometric Traits

The geometric traits of a regular triangulation must provide a weighted point type and a power test
on these weighted points. The concept RegularTriangulationTraits 2, is a refinement of the concept
TriangulationTraits 2. CGAL provides the class Regular triangulation euclidean traits 2<Rep,Weight> which
is a model for the traits concept RegularTriangulationTraits 2. The class Regular triangulation euclidean
traits 2<Rep,Weight> derives from the class Triangulation euclidean traits 2<Rep> and uses a Weighted point
type derived from the type Point 2 of Triangulation euclidean traits 2<Rep>.

Note that, since the type Weighted point is not defined in CGAL kernels, plugging a filtered kernel such
as Exact predicates exact constructions kernel in Regular triangulation euclidean traits 2<K,Weight> will
in fact not provide exact predicates on weighted points. To solve this, there is also another model of the
traits concept, Regular triangulation filtered traits 2<FK>, which is providing filtered predicates (exact and
efficient). The argument FK must be a model of the Kernel concept, and it is also restricted to be a instance of
the Filtered kernel template.

The Vertex Type and Face Type of a Regular Triangulation

The base vertex type of a regular triangulation includes a Boolean data member to mark the hidden state of
the vertex. Therefore CGAL defines the concept RegularTriangulationVertexBase 2 which refine the concept
TriangulationVertexBase 2 and provides a default model for this concept.

The base face type of a regular triangulation is required to provide a list of hidden vertices, designed to store
the points hidden by the face. It has to be a model of the concept RegularTriangulationFaceBase 2. CGAL
provides the templated class Regular triangulation face base 2<Traits> as a default base class for faces of
regular triangulations.

37.6.2 Example: a Regular Triangulation

The following code creates a regular triangulation of a set of weighted points and output the number of vertices
and the number of hidden vertices.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Regular_triangulation_euclidean_traits_2.h>
#include <CGAL/Regular_triangulation_filtered_traits_2.h>
#include <CGAL/Regular_triangulation_2.h>
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#include <fstream>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Regular_triangulation_filtered_traits_2<K> Traits;
typedef CGAL::Regular_triangulation_2<Traits> Regular_triangulation;

int main()
{

Regular_triangulation rt;
std::ifstream in("data/regular.cin");

Regular_triangulation::Weighted_point wp;
int count = 0;
while(in >> wp){

count++;
rt.insert(wp);

}
rt.is_valid();
std::cout << "number of inserted points : " << count << std::endl;
std::cout << "number of vertices : " ;
std::cout << rt.number_of_vertices() << std::endl;
std::cout << "number of hidden vertices : " ;
std::cout << rt.number_of_hidden_vertices() << std::endl;
return 0;

}� �
File: examples/Triangulation_2/regular.cpp

37.7 Constrained Triangulations

A constrained triangulation is a triangulation of a set of points that has to include among its edges a given set of
segments joining the points. The corresponding edges are called constrained edges.

The endpoints of constrained edges are of course vertices of the triangulation. However the triangulation may
include include other vertices as well. There are three versions of constrained triangulations.

• In the basic version, the constrained triangulation does not handle intersecting constraints, and the set of
input constraints is required to be a set of segments that do not intersect except possibly at their endpoints.
Any number of constrained edges are allowed to share the same endpoint. Vertical constrained edges or
constrained edges with null length are allowed.

• The two other versions support intersecting input constraints. In those versions, input constraints are al-
lowed to be intersecting, overlapping or partially overlapping segments. The triangulation introduces ad-
ditional vertices at each point that is the proper intersection points of two constraints. A single constraint
intersecting other constraints will then appear as several edges in the triangulation. The two versions
dealing with intersecting constraints differ in the way intersecting constraints are dealt with.

– One of them is designed to be robust when predicates are evaluated exactly but constructions (i. e.
intersection computations) are approximate.
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– The other one is designed to be used with exact arithmetic (meaning exact evaluation of predi-
cates and exact computation of intersections.) This last version finds its full efficiency when used
in conjunction with a constraint hierarchy data structure (which allows one to avoid the cascad-
ing of intersection computations) as provided in the class Constrained triangulation plus 2. See
section 37.9.

A constrained triangulation is represented in the CGAL library as an object of the class Constrained
triangulation 2<Traits,Tds,Itag>. The third parameter Itag is the intersection tag which serves to choose how
intersecting constraints are dealt with. This parameter has to be instantiated by one of the following classes :
CGAL::No intersection tag when input constraints do not intersect
CGAL::Exact predicates tag if the geometric traits provides exact predicates but approximate constructions
CGAL::Exact intersections tag when an exact predicates and exact constructions are provided.

The class Constrained triangulation 2<Traits,Tds, Itag> inherits from Triangulation 2<Traits,Tds>. It defines
an additional type Constraint to represent the constraints. A constraint is represented as a pair of points.

A constrained triangulation can be created from a list of constrained edges. The class Constrained
triangulation 2<Traits,Tds,Itag> overrides the insertion and removal of a point to take care of the information
about constrained edges. The class also allows inline insertion of a new constraint, given by its two endpoints
or the removal of a constraint. In current version, function move is not overwritten and thus does not take care
of the constraints.

The Geometric Traits

The geometric traits of a constraint triangulation has to be a model of the concept TriangulationTraits 2. When
intersections of input constraints are supported, the geometric traits class has to be a model of the concept
ConstrainedTriangulationTraits 2 which refines the concept TriangulationTraits 2 providing additional func-
tion object types to compute the intersection of two segments.

The Base Face of a Constrained Triangulation

The information about constrained edges is stored in the faces of the triangulation. The base face of a Con-
strained Triangulation has to be a model for the concept ConstrainedTriangulationFaceBase 2 which refines
the concept TriangulationFaceBase 2. The concept ConstrainedTriangulationFaceBase 2 requires member
functions the get and set the constrained status of the edges.

CGAL provides a default base face class for constrained triangulations. This class, named Constrained
triangulation face base 2<Traits>, derives from the class Triangulation face base 2<Traits> and adds three
Boolean data members to store the status of its edges.
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Figure 37.7: Constrained and Constrained Delaunay triangulation: the constraining edges are the green edges,
a constrained triangulation is shown on the left, the constrained Delaunay triangulation with two examples of
circumcircles is shown on the right.

37.8 Constrained Delaunay Triangulations

A constrained Delaunay triangulation is a triangulation with constrained edges which tries to be as much De-
launay as possible. As constrained edges are not necessarily Delaunay edges, the triangles of a constrained
Delaunay triangulation do not necessarily fulfill the empty circle property but they fulfill a weaker constrained
empty circle property. To state this property, it is convenient to think of constrained edges as blocking the view.
Then, a triangulation is constrained Delaunay iff the circumscribing circle of any facet encloses no vertex visible
from the interior of the facet. As in the case of constrained triangulations, three different versions of Delaunay
constrained triangulations are provided. The first version handle set of constraints which do not intersect except
possibly at the endpoints. The two other versions handle intersecting input constraints. One of them is designed
to be designed to be robust when used in conjunction with a geometric traits providing exact predicates and
approximate constructions (such as a CGAL::Filtered Kernel or any kernel providing filtered exact predicates).
The third version is designed to be used with an exact arithmetic number type.

The CGAL class Constrained Delaunay triangulation 2<Traits,Tds,Itag> is designed to represent constrained
Delaunay triangulations.

As in the case of constraints triangulation, the third parameter Itag is the intersection tag and serves to choose
how intersecting constraints are dealt with. It can be instantiated with one of the following class : CGAL::No
intersection tag, CGAL::Exact predicates tag, CGAL::Exact intersections tag (see Section 37.7.

A constrained Delaunay triangulation is not a Delaunay triangulation but it is a constrained triangulation. There-
fore the class Constrained Delaunay triangulation 2<Traits,Tds,Itag> derives from the class Constrained
triangulation 2<Traits,Tds,Itag>.

The constrained Delaunay triangulation has member functions to override the insertion and removal of a point
or of a constraint. Each of those member function takes care to restore the constrained empty circle property.

The Geometric Traits

The geometric traits of a constrained Delaunay triangulation is required to provide the side of oriented
circle predicate as the geometric traits of a Delaunay triangulation and has to a model of the concept
DelaunayTriangulationTraits 2. When intersecting input constraints are supported the geometric traits is fur-
ther required to provide function objects to compute constraints intersections. Then the geometric traits has to
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be at the same time a model of the concept ConstrainedTriangulationTraits 2.

The Face Base Class

Information about the status (constrained or not) of the edges of the triangulation has to be stored in
the face class and the base face class of a constrained Delaunay triangulation has to be a model of
ConstrainedTriangulationFaceBase 2.

37.8.1 Example: a Constrained Delaunay Triangulation

The following code inserts a set of intersecting constraint segments into a triangulation and counts the number
of constrained edges of the resulting triangulation.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Constrained_Delaunay_triangulation_2.h>

#include <cassert>
#include <iostream>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Triangulation_vertex_base_2<K> Vb;
typedef CGAL::Constrained_triangulation_face_base_2<K> Fb;
typedef CGAL::Triangulation_data_structure_2<Vb,Fb> TDS;
typedef CGAL::Exact_predicates_tag Itag;
typedef CGAL::Constrained_Delaunay_triangulation_2<K, TDS, Itag> CDT;
typedef CDT::Point Point;

int
main( )
{

CDT cdt;
std::cout << "Inserting a grid of 5x5 constraints " << std::endl;
for (int i = 1; i < 6; ++i)

cdt.insert_constraint( Point(0,i), Point(6,i));
for (int j = 1; j < 6; ++j)

cdt.insert_constraint( Point(j,0), Point(j,6));

assert(cdt.is_valid());
int count = 0;
for (CDT::Finite_edges_iterator eit = cdt.finite_edges_begin();

eit != cdt.finite_edges_end();
++eit)

if (cdt.is_constrained(*eit)) ++count;
std::cout << "The number of resulting constrained edges is ";
std::cout << count << std::endl;
return 0;

}� �
File: examples/Triangulation_2/constrained.cpp
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37.8.2 Example: Triangulating a Polygonal Domain

The following code inserts two nested polygons into a constrained Delaunay triangulation and counts the number
of facets that are inside the domain delimited by these polygons. Note that the following code does not work if
the boundaries of the polygons intersect.

Figure 37.8: Triangulation (in blue) of the domain delimited by the red polygons.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Constrained_Delaunay_triangulation_2.h>
#include <CGAL/Triangulation_face_base_with_info_2.h>
#include <CGAL/Polygon_2.h>
#include <iostream>

struct FaceInfo2
{

FaceInfo2(){}
int nesting_level;

bool in_domain(){
return nesting_level%2 == 1;

}
};

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Triangulation_vertex_base_2<K> Vb;
typedef CGAL::Triangulation_face_base_with_info_2<FaceInfo2,K> Fbb;
typedef CGAL::Constrained_triangulation_face_base_2<K,Fbb> Fb;
typedef CGAL::Triangulation_data_structure_2<Vb,Fb> TDS;
typedef CGAL::Exact_predicates_tag Itag;
typedef CGAL::Constrained_Delaunay_triangulation_2<K, TDS, Itag> CDT;
typedef CDT::Point Point;
typedef CGAL::Polygon_2<K>

Polygon_2;

void
mark_domains(CDT& ct,

CDT::Face_handle start,
int index,
std::list<CDT::Edge>& border )

{
if(start->info().nesting_level != -1){

return;
}
std::list<CDT::Face_handle> queue;
queue.push_back(start);
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while(! queue.empty()){
CDT::Face_handle fh = queue.front();
queue.pop_front();
if(fh->info().nesting_level == -1){

fh->info().nesting_level = index;
for(int i = 0; i < 3; i++){

CDT::Edge e(fh,i);
CDT::Face_handle n = fh->neighbor(i);
if(n->info().nesting_level == -1){

if(ct.is_constrained(e)) border.push_back(e);
else queue.push_back(n);

}
}

}
}

}

//explore set of facets connected with non constrained edges,
//and attribute to each such set a nesting level.
//We start from facets incident to the infinite vertex, with a nesting
//level of 0. Then we recursively consider the non-explored facets

incident
//to constrained edges bounding the former set and increase the nesting

level by 1.
//Facets in the domain are those with an odd nesting level.
void
mark_domains(CDT& cdt)
{

for(CDT::All_faces_iterator it = cdt.all_faces_begin(); it !=
cdt.all_faces_end(); ++it){
it->info().nesting_level = -1;

}

int index = 0;
std::list<CDT::Edge> border;
mark_domains(cdt, cdt.infinite_face(), index++, border);
while(! border.empty()){

CDT::Edge e = border.front();
border.pop_front();
CDT::Face_handle n = e.first->neighbor(e.second);
if(n->info().nesting_level == -1){

mark_domains(cdt, n, e.first->info().nesting_level+1, border);
}

}
}

void insert_polygon(CDT& cdt,const Polygon_2& polygon){
if ( polygon.is_empty() ) return;
CDT::Vertex_handle
v_prev=cdt.insert(*CGAL::cpp0x::prev(polygon.vertices_end()));

for (Polygon_2::Vertex_iterator vit=polygon.vertices_begin();
vit!=polygon.vertices_end();++vit)

{
CDT::Vertex_handle vh=cdt.insert(*vit);
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cdt.insert_constraint(vh,v_prev);
v_prev=vh;

}
}

int main( )
{

//construct two non-intersecting nested polygons
Polygon_2 polygon1;
polygon1.push_back(Point(0,0));
polygon1.push_back(Point(2,0));
polygon1.push_back(Point(2,2));
polygon1.push_back(Point(0,2));
Polygon_2 polygon2;
polygon2.push_back(Point(0.5,0.5));
polygon2.push_back(Point(1.5,0.5));
polygon2.push_back(Point(1.5,1.5));
polygon2.push_back(Point(0.5,1.5));

//Insert the polyons into a constrained triangulation
CDT cdt;
insert_polygon(cdt,polygon1);
insert_polygon(cdt,polygon2);

//Mark facets that are inside the domain bounded by the polygon
mark_domains(cdt);

int count=0;
for (CDT::Finite_faces_iterator fit=cdt.finite_faces_begin();

fit!=cdt.finite_faces_end();++fit)
{

if ( fit->info().in_domain() ) ++count;
}

std::cout << "There are " << count << " facets in the domain." <<
std::endl;

return 0;
}� �
File: examples/Triangulation_2/polygon_triangulation.cpp

37.9 Constrained Triangulations Plus

The class Constrained triangulation plus 2<Tr> provides a constrained triangulation with an additional data
structure called the constraint hierarchy that keeps track of the input constraints and of their refinement in the
triangulation. The class Constrained triangulation plus 2<Tr> inherits from its template parameter Tr, which
has to be instantiated by a constrained or constrained Delaunay triangulation. According to its intersection
tag, the base class will support intersecting input constraints or not. When intersections of input constraints
are supported, the base class constructs a triangulation of the arrangement of the constraints, introducing new
vertices at each proper intersection points and refining the input constraints into sub-constraints which appear
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as edges (more precisely as constrained edges) of the triangulation. The data structure maintains for each input
constraint the sequence of intersection vertices added on this constraint. The constraint hierarchy also allows
the user to retrieve the set of constrained edges of the triangulation, and for each constrained edge, the set of
input constraints that overlap it.

The class Constrained triangulation plus 2<Tr> is especially useful when the base constrained triangulation
class handles intersections of constraints and uses an exact number type, i.e. when its intersection tag is
CGAL::Exact intersections tag. Indeed in this case, the Constrained triangulation plus 2<Tr> is specially
designed to avoid cascading in the computations of intersection points.

37.9.1 Example: Building a Triangulated Arrangement of Segments

The following code inserts a set of intersecting constraint segments into a triangulation and counts the number
of constrained edges of the resulting triangulation.� �
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/intersections.h>
#include <CGAL/Constrained_Delaunay_triangulation_2.h>
#include <CGAL/Constrained_triangulation_plus_2.h>

#include <cassert>
#include <iostream>

typedef CGAL::Exact_predicates_exact_constructions_kernel K;

typedef CGAL::Triangulation_vertex_base_2<K> Vb;
typedef CGAL::Constrained_triangulation_face_base_2<K> Fb;
typedef CGAL::Triangulation_data_structure_2<Vb,Fb> TDS;
typedef CGAL::Exact_intersections_tag Itag;
typedef CGAL::Constrained_Delaunay_triangulation_2<K,TDS,Itag> CDT;
typedef CGAL::Constrained_triangulation_plus_2<CDT> CDTplus;
typedef CDTplus::Point Point;

int
main( )
{

CDTplus cdt;
std::cout << "Inserting a grid 5 x 5 of constraints " << std::endl;
for (int i = 1; i < 6; ++i)

cdt.insert_constraint( Point(0,i), Point(6,i));
for (int j = 1; j < 6; ++j)

cdt.insert_constraint( Point(j,0), Point(j,6));

assert(cdt.is_valid());
int count = 0;
for (CDTplus::Subconstraint_iterator scit = cdt.subconstraints_begin();

scit != cdt.subconstraints_end();
++scit) ++count;

std::cout << "The number of resulting constrained edges is "
<< count << std::endl;

return 0;
}� �
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File: examples/Triangulation_2/constrained_plus.cpp

37.10 The Triangulation Hierarchy

The class Triangulation hierarchy 2<Tr> implements a triangulation augmented with a data structure to answer
efficiently point location queries. The data structure is a hierarchy of triangulations. The triangulation at the
lowest level is the original triangulation where operations and point location are to be performed. Then at
each succeeding level, the data structure stores a triangulation of a small random sample of the vertices of the
triangulation at the preceding level. Point location is done through a top down nearest neighbor query. The
nearest neighbor query is first performed naively in the top level triangulation. Then, at each following level,
the nearest neighbor at that level is found through a linear walk performed from the nearest neighbor found at
the preceding level. Because the number of vertices in each triangulation is only a small fraction of the number
of vertices of the preceding triangulation, the data structure remains small and achieves fast point location
queries on real data. As proved in [Dev98], this structure has an optimal behavior when it is built for Delaunay
triangulations. However it can be used as well for other triangulations and the class Triangulation hierarchy
2<Tr> is templated by a parameter which is to be instantiated by one of the CGAL triangulation classes.

The class Triangulation hierarchy 2<Tr> inherits from the triangulation type passed as template parameter Tr.
The insert, move, and remove member functions are overwritten to update the data structure at each operation.
The locate queries are also overwritten to take advantage of the data structure for a fast processing.

The Vertex of a Triangulation Hierarchy

The base vertex class of a triangulation hierarchy has to be a model of the concept
TriangulationHierarchyVertexBase 2 which extends the concept TriangulationVertexBase 2. This ex-
tension adds access and setting member functions for two pointers to the corresponding vertices in the
triangulations of the next and preceding levels.

CGAL provides the class Triangulation hierarchy vertex base 2<Vb> which is a model for the concept
TriangulationHierarchyVertexBase 2. This class is templated by a parameter Vb which is to be instantiated
by a model of the concept TriangulationVertexBase 2. The class Triangulation hierarchy vertex base 2<Vb>
inherits from its template parameter Vb. This design allows to use for Vb either the default vertex class or a user
customized vertex class with additional functionalities.

37.10.1 Examples For the Use of a Triangulation Hierarchy

The following program is example for the standard use of a triangulation hierarchy to enhance the efficiency of
a Delaunay triangulation. The program outputs the number of vertices at the different levels of the hierarchy.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/Triangulation_hierarchy_2.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/algorithm.h>
#include <cassert>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Triangulation_vertex_base_2<K> Vbb;
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typedef CGAL::Triangulation_hierarchy_vertex_base_2<Vbb> Vb;
typedef CGAL::Triangulation_face_base_2<K> Fb;
typedef CGAL::Triangulation_data_structure_2<Vb,Fb> Tds;
typedef CGAL::Delaunay_triangulation_2<K,Tds> Dt;
typedef CGAL::Triangulation_hierarchy_2<Dt> Triangulation;
typedef Triangulation::Point Point;
typedef CGAL::Creator_uniform_2<double,Point> Creator;

int main( )
{

std::cout << "insertion of 1000 random points" << std::endl;
Triangulation t;
CGAL::Random_points_in_square_2<Point,Creator> g(1.);
CGAL::cpp0x::copy_n( g, 1000, std::back_inserter(t));

//verbose mode of is_valid ; shows the number of vertices at each
level

std::cout << "The number of vertices at successive levels" <<
std::endl;

assert(t.is_valid(true));

return 0;
}� �
File: examples/Triangulation_2/hierarchy.cpp

The following program shows how to use a triangulation hierarchy in conjunction with a constrained triangula-
tion plus.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Constrained_Delaunay_triangulation_2.h>
#include <CGAL/Triangulation_hierarchy_2.h>
#include <CGAL/Constrained_triangulation_plus_2.h>

#include <cassert>
#include <iostream>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Triangulation_vertex_base_2<K> Vbb;
typedef CGAL::Triangulation_hierarchy_vertex_base_2<Vbb> Vb;
typedef CGAL::Constrained_triangulation_face_base_2<K> Fb;
typedef CGAL::Triangulation_data_structure_2<Vb,Fb> TDS;
typedef CGAL::Exact_predicates_tag Itag;
typedef CGAL::Constrained_Delaunay_triangulation_2<K,TDS,Itag> CDT;
typedef CGAL::Triangulation_hierarchy_2<CDT> CDTH;
typedef CGAL::Constrained_triangulation_plus_2<CDTH> Triangulation;

typedef Triangulation::Point Point;

int
main( )
{
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Triangulation cdt;
std::cout << "Inserting a grid 5 x 5 of constraints " << std::endl;

for (int i = 1; i < 6; ++i)
cdt.insert_constraint( Point(0,i), Point(6,i));
for (int j = 1; j < 6; ++j)
cdt.insert_constraint( Point(j,0), Point(j,6));

int count = 0;
for (Triangulation::Subconstraint_iterator scit =
cdt.subconstraints_begin();

scit != cdt.subconstraints_end();
++scit) ++count;

std::cout << "The number of resulting constrained edges is ";
std::cout << count << std::endl;

//verbose mode of is_valid ; shows the number of vertices at each
level

std::cout << "The number of vertices at successive levels" <<
std::endl;

assert(cdt.is_valid(true));

return 0;
}� �
File: examples/Triangulation_2/constrained_hierarchy_plus.cpp

37.11 Flexibility

37.11.1 Using Customized Vertices and Faces

To be able to adapt to various needs, a highly flexible design has been selected for 2D triangulations. We have
already seen that the triangulation classes have two parameters: a geometric traits class and a triangulation data
structure class which the user can instantiate with his own customized classes.

The most useful flexibility however comes from the fact that the triangulation data structure itself has two
template parameters to be instantiated by classes for the vertices and faces of the triangulation. Using his own
customized classes to instantiate these parameters, the user can easily build up a triangulation with additional
information or functionality in the vertices and faces.

A Cyclic Dependency

To insure flexibility, the triangulation data structure is templated by the vertex and face base classes. Also since
incidence and adjacency relations are stored in vertices and faces, the base classes have to know the types of
handles on vertices and faces provided by the triangulation data structure. Thus the vertex and base classes have
to be themselves parameterized by the triangulation data structure, and there is a cyclic dependency on template
parameter.

Previously, this cyclic dependency was avoided by using only void* pointers in the interface of base classes.
These void* were converted to appropriate types at the triangulation data structure levels. This solution had
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some drawbacks : mainly the user could not add in the vertices or faces of the triangulation a functionality
related to types defined by the triangulation data structure, for instance a handle to a vertex, and he was lead
to use himself void* pointers). The new solution to resolve the template dependency is based on a rebind
mechanism similar to the mechanism used in the standard allocator class std::allocator. The rebind mechanism
is described in Section 38.3 of Chapter 38. For now, we will just notice that the design requires the existence
in the vertex and face base classes of a nested template class Rebind TDS defining a type Other used by the
rebinding mechanism.

The two following examples show how the user can put in use the flexibility offered by the base classes param-
eters.

Adding Colors

The first example corresponds to a case where the user wishes to add in the vertices or faces of the triangu-
lation an additional information that does not depend on types provided by the triangulation data structure.
In that case, predefined classes Triangulation vertex base with info 2<Info,Traits,Vb> or Triangulation face
base with info 2<Info,Traits,Vb> can be used. Those classes have a template parameter Info devoted to handle
additional information. The following examples shows how to add a CGAL::Color in the triangulation faces.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/IO/Color.h>
#include <CGAL/Triangulation_2.h>
#include <CGAL/Triangulation_face_base_with_info_2.h>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Triangulation_vertex_base_2<K> Vb;
typedef CGAL::Triangulation_face_base_with_info_2<CGAL::Color,K> Fb;
typedef CGAL::Triangulation_data_structure_2<Vb,Fb> Tds;
typedef CGAL::Triangulation_2<K,Tds> Triangulation;

typedef Triangulation::Face_handle Face_handle;
typedef Triangulation::Finite_faces_iterator Finite_faces_iterator;
typedef Triangulation::Point Point;

int main() {
Triangulation t;
t.insert(Point(0,1));
t.insert(Point(0,0));
t.insert(Point(2,0));
t.insert(Point(2,2));

Finite_faces_iterator fc = t.finite_faces_begin();
for( ; fc != t.finite_faces_end(); ++fc) fc->info() = CGAL::BLUE;

Point p(0.5,0.5);
Face_handle fh = t.locate(p);
fh->info() = CGAL::RED;

return 0;
}� �
File: examples/Triangulation_2/colored_face.cpp
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Adding Handles

The second example shows how the user can still derive and plug in his own vertex or face class when he would
like to have additional functionalities depending on types provided by the triangulation data structure.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Triangulation_2.h>
#include <cassert>

/* A vertex class with an additionnal handle */
template < class Gt, class Vb = CGAL::Triangulation_vertex_base_2<Gt> >
class My_vertex_base

: public Vb
{

typedef Vb Base;
public:

typedef typename Vb::Vertex_handle Vertex_handle;
typedef typename Vb::Face_handle Face_handle;
typedef typename Vb::Point Point;

template < typename TDS2 >
struct Rebind_TDS {

typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
typedef My_vertex_base<Gt,Vb2> Other;

};

private:
Vertex_handle va_;

public:
My_vertex_base() : Base() {}
My_vertex_base(const Point & p) : Base(p) {}
My_vertex_base(const Point & p, Face_handle f) : Base(f,p) {}
My_vertex_base(Face_handle f) : Base(f) {}

void set_associated_vertex(Vertex_handle va) { va_ = va;}
Vertex_handle get_associated_vertex() {return va_ ; }

};

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef My_vertex_base<K> Vb;
typedef CGAL::Triangulation_data_structure_2<Vb> Tds;
typedef CGAL::Triangulation_2<K,Tds> Triangulation;

typedef Triangulation::Vertex_handle Vertex_handle;
typedef Triangulation::Finite_faces_iterator Finite_faces_iterator;
typedef Triangulation::Point Point;

int main() {
Triangulation t;
Vertex_handle v0 = t.insert(Point(0,1));
Vertex_handle v1 = t.insert(Point(0,0));
Vertex_handle v2 = t.insert(Point(2,0));
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Vertex_handle v3 = t.insert(Point(2,2));

// associate vertices as you like
v0->set_associated_vertex(v1);
v1->set_associated_vertex(v2);
v2->set_associated_vertex(v3);
v3->set_associated_vertex(v0);
assert( v0->get_associated_vertex() == v1);

return 0;
}� �
File: examples/Triangulation_2/adding_handles.cpp

37.11.2 Setting Information While Inserting a Range of Points

The most efficient method to insert (weighted) points in a Delaunay (or regular) triangulation is to provide an
iterator range over (weighted) points to the insert function. However, an iterator range of (weighted) points does
not allow to set different information to each vertex. To solve this problem, in the case the vertex type of the
triangulation is a model of the concept TriangulationVertexBaseWithInfo 2 (such as Triangulation vertex base
with info 2), we provide three examples doing the same operation: set an unsigned integer as the information of
each vertex. The value of this unsigned integer is the initial order of the corresponding point given in the range.

Using an Iterator Over Pairs

Each point and its information are gathered into a pair. We provide the insert function of the triangulation with
a range of such pairs.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/Triangulation_vertex_base_with_info_2.h>
#include <vector>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Triangulation_vertex_base_with_info_2<unsigned, K> Vb;
typedef CGAL::Triangulation_data_structure_2<Vb> Tds;
typedef CGAL::Delaunay_triangulation_2<K, Tds>

Delaunay;
typedef Delaunay::Point

Point;

int main()
{

std::vector< std::pair<Point,unsigned> > points;
points.push_back( std::make_pair(Point(0,0),0) );
points.push_back( std::make_pair(Point(1,0),1) );
points.push_back( std::make_pair(Point(0,1),2) );
points.push_back( std::make_pair(Point(14,4),3) );
points.push_back( std::make_pair(Point(2,2),4) );
points.push_back( std::make_pair(Point(-4,0),5) );
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Delaunay T;
T.insert( points.begin(),points.end() );

CGAL_assertion( T.number_of_vertices() == 6 );

// check that the info was correctly set.
Delaunay::Finite_vertices_iterator vit;
for (vit = T.finite_vertices_begin(); vit != T.finite_vertices_end();
++vit)
if( points[ vit->info() ].first != vit->point() ){

std::cerr << "Error different info" << std::endl;
exit(EXIT_FAILURE);

}
std::cout << "OK" << std::endl;

return 0;
}� �
File: examples/Triangulation_2/info_insert_with_pair_iterator_2.cpp

Using the Boost Zip Iterator

Information and points are in separate containers. We use boost::zip iterator to provide an iterator gathering
them.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/Triangulation_vertex_base_with_info_2.h>
#include <boost/iterator/zip_iterator.hpp>
#include <vector>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Triangulation_vertex_base_with_info_2<unsigned, K> Vb;
typedef CGAL::Triangulation_data_structure_2<Vb> Tds;
typedef CGAL::Delaunay_triangulation_2<K, Tds>

Delaunay;
typedef Delaunay::Point

Point;

int main()
{

std::vector<unsigned> indices;
indices.push_back(0);
indices.push_back(1);
indices.push_back(2);
indices.push_back(3);
indices.push_back(4);
indices.push_back(5);
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std::vector<Point> points;
points.push_back(Point(0,0));
points.push_back(Point(1,0));
points.push_back(Point(0,1));
points.push_back(Point(1,47));
points.push_back(Point(2,2));
points.push_back(Point(-1,0));

Delaunay T;
T.insert( boost::make_zip_iterator(boost::make_tuple(
points.begin(),indices.begin() )),

boost::make_zip_iterator(boost::make_tuple(
points.end(),indices.end() ) ) );

CGAL_assertion( T.number_of_vertices() == 6 );

// check that the info was correctly set.
Delaunay::Finite_vertices_iterator vit;
for (vit = T.finite_vertices_begin(); vit != T.finite_vertices_end();
++vit)
if( points[ vit->info() ] != vit->point() ){

std::cerr << "Error different info" << std::endl;
exit(EXIT_FAILURE);

}

return 0;
}� �
File: examples/Triangulation_2/info_insert_with_zip_iterator_2.cpp

Using the Boost Transform Iterator

We define a functor Auto count used together with boost::transform iterator to set the order of each point in
the range. Note that this is correct because the iterator is dereferenced only once per point during the insertion.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/Triangulation_vertex_base_with_info_2.h>
#include <boost/iterator/transform_iterator.hpp>
#include <vector>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Triangulation_vertex_base_with_info_2<unsigned, K> Vb;
typedef CGAL::Triangulation_data_structure_2<Vb> Tds;
typedef CGAL::Delaunay_triangulation_2<K, Tds>

Delaunay;
typedef Delaunay::Point

Point;

2487

http://www.boost.org/libs/iterator/doc/index.html#specialized-adaptors


//a functor that returns a std::pair<Point,unsigned>.
//the unsigned integer is incremented at each call to
//operator()
struct Auto_count : public std::unary_function<const

Point&,std::pair<Point,unsigned> >{
mutable unsigned i;
Auto_count() : i(0){}
std::pair<Point,unsigned> operator()(const Point& p) const {

return std::make_pair(p,i++);
}

};

int main()
{

std::vector<Point> points;
points.push_back(Point(0,0));
points.push_back(Point(1,0));
points.push_back(Point(0,1));
points.push_back(Point(4,10));
points.push_back(Point(2,2));
points.push_back(Point(-1,0));

Delaunay T;
T.insert( boost::make_transform_iterator(points.begin(),Auto_count()),

boost::make_transform_iterator(points.end(), Auto_count() )
);

CGAL_assertion( T.number_of_vertices() == 6 );

// check that the info was correctly set.
Delaunay::Finite_vertices_iterator vit;
for (vit = T.finite_vertices_begin(); vit != T.finite_vertices_end();
++vit)
if( points[ vit->info() ] != vit->point() ){

std::cerr << "Error different info" << std::endl;
exit(EXIT_FAILURE);

}
std::cout << "OK" << std::endl;

return 0;
}� �
File: examples/Triangulation_2/info_insert_with_transform_iterator_2.cpp

37.12 Design and Implementation History

The code of this package is the result of a long development process. Here follows a tentative list of people
who added their stone to this package : Jean-Daniel Boissonnat, Hervé Brönnimann, Olivier Devillers, Andreas
Fabri, Frédéric Fichel, Julia Flötotto, Monique Teillaud and Mariette Yvinec.
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A triangulation is a 2-dimensional simplicial complex which is pure connected and without singularities. Thus
a triangulation can be viewed as a collection of triangular faces, such that two faces either have an empty
intersection or share an edge or a vertex.

The basic elements of the representation are vertices and faces. Each triangular face gives access to its three
incident vertices and to its three adjacent faces. Each vertex gives access to one of its incident faces and
through that face to the circular list of its incident faces. The edges are not explicitly represented, they are only
represented through the adjacency relations of two faces.

The triangulation classes of CGAL depend on two template parameters. The first template parameter stands
for a geometric traits class which is assumed to provide the geometric objects (points, segments and triangles)
forming the triangulation and the geometric predicates on those objects. The second template parameter stands
for a model of triangulation data structure acting as a container for faces and vertices while taking care of the
combinatorial aspects of the triangulation. The concepts and models relative to the triangulation data structure
are described in Chapter 38.3.4.

37.13 Classified Reference Pages

Concepts

TriangulationTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2541
DelaunayTriangulationTraits 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 2513
RegularTriangulationTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2524
ConstrainedTriangulationTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2495
ConstrainedDelaunayTriangulationTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 2492

TriangulationFaceBase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2539
TriangulationVertexBase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2544
ConstrainedTriangulationFaceBase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2493
RegularTriangulationFaceBase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2523
RegularTriangulationVertexBase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2526
TriangulationHierarchyVertexBase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2540
TriangulationVertexBaseWithInfo 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2546

2489



Classes

CGAL::Triangulation 2<Traits,Tds> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2547
CGAL::Delaunay triangulation 2<Traits,Tds> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2516
CGAL::Regular triangulation 2<Traits,Tds> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2527
CGAL::Constrained triangulation 2<Traits,Tds,Itag> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2502
CGAL::Constrained Delaunay triangulation 2<Traits,Tds,Itag> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2497
CGAL::Constrained triangulation plus 2<Tr> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2508
CGAL::Triangulation hierarchy 2<Tr> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2571

CGAL::Triangulation euclidean traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2565
CGAL::Triangulation euclidean traits xy 3<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 2566
CGAL::Regular triangulation euclidean traits 2<K,Weight> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2535
CGAL::Regular triangulation filtered traits 2<FK> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2536

CGAL::Triangulation face base 2<Traits,Fb> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2569
CGAL::Triangulation vertex base 2<Traits,Vb> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 2573
CGAL::Regular triangulation face base 2<Traits,Fb> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2537
CGAL::Regular triangulation vertex base 2<Traits,Vb> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2538
CGAL::Constrained triangulation face base 2<Traits,Fb> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2507
CGAL::Triangulation vertex base with info 2<Info,Traits,Vb> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2574
CGAL::Triangulation face base with info 2<Info,Traits,Fb> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2570
CGAL::Triangulation hierarchy vertex base 2<Vb> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2572

CGAL::Weighted point<Pt,Wt> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2575
CGAL::Triangulation cw ccw 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2563

Enum

CGAL::Triangulation 2<Traits,Tds>::Locate type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2522

37.14 Alphabetical List of Reference Pages

ConstrainedDelaunayTriangulationTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2492
ConstrainedTriangulationFaceBase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2493
ConstrainedTriangulationTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2495
Constrained Delaunay triangulation 2<Traits,Tds,Itag> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2497
Constrained triangulation 2<Traits,Tds,Itag> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2502
Constrained triangulation face base 2<Traits,Fb> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2507
Constrained triangulation plus 2<Tr> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2508
DelaunayTriangulationTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2513
Delaunay triangulation 2<Traits,Tds> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 2516
Locate type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2522
RegularTriangulationFaceBase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2523
RegularTriangulationTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 2524
RegularTriangulationVertexBase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2526
Regular triangulation 2<Traits,Tds> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2527

2490



Regular triangulation euclidean traits 2<K,Weight> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2535
Regular triangulation face base 2<Traits,Fb> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2537
Regular triangulation filtered traits 2<FK> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2536
Regular triangulation vertex base 2<Traits,Vb> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2538
TriangulationFaceBase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2539
TriangulationHierarchyVertexBase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2540
TriangulationTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2541
TriangulationVertexBaseWithInfo 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2546
TriangulationVertexBase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2544
Triangulation 2<Traits,Tds> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2547
Triangulation cw ccw 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2563
Triangulation euclidean traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2565
Triangulation euclidean traits xy 3<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2566
Triangulation face base 2<Traits,Fb> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2569
Triangulation face base with info 2<Info,Traits,Fb> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2570
Triangulation hierarchy 2<Tr> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2571
Triangulation hierarchy vertex base 2<Vb> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2572
Triangulation vertex base 2<Traits,Vb> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2573
Triangulation vertex base with info 2<Info,Traits,Vb> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2574
Weighted point<Pt,Wt> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2575

2491



C
on

ce
pt

ConstrainedDelaunayTriangulationTraits 2

Definition

The concept ConstrainedDelaunayTriangulationTraits 2 defines the requirements for the geometric traits
class of a constrained Delaunay triangulation that supports intersections of input constraints. This is
the case when the template parameter Itag of ( Constrained Delaunay triangulation 2<Traits,Tds,Itag>)
is instantiated by one of the tag classes Exact intersections tag or Exact predicates tag). The concept
ConstrainedDelaunayTriangulationTraits 2 refines both the concept DelaunayTriangulationTraits 2 and the
concept ConstrainedTriangulationTraits 2.

Refines

DelaunayTriangulationTraits 2
ConstrainedTriangulationTraits 2

Has Models

The kernels of CGAL are models for this traits class.
Triangulation euclidean traits xy<K>
Triangulation euclidean traits yz<K>
Triangulation euclidean traits xz<K>

See Also

TriangulationTraits 2
ConstrainedTriangulationTraits 2
Constrained triangulation 2<Gt,Tds,Itag>
Constrained Delaunay triangulation 2<Gt,Tds,Itag>
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ConstrainedTriangulationFaceBase 2

Definition

In a constrained triangulation, the information about constrained edges is stored in the faces of
the triangulation. The base face of a constrained triangulation has to be a model of the concept
ConstrainedTriangulationFaceBase 2 which refines the concept TriangulationFaceBase 2 providing function-
alities to deal with constraints.

Refines

TriangulationFaceBase 2

Types

Defines the same types as the TriangulationFaceBase 2 concept

Access Functions

bool f .is constrained( int i)

returns true if the edge between f and its neighbor f .neighbor(i) is constrained.
Precondition: 0≤ i≤ 2.

advanced

Modifiers

void f .set constraint( int i, bool b)

sets the edge between f and its neighbor f .neighbor(i) as a constrained or un-
constrained edge according to b.

void f .set constraints( bool c0, bool c1, bool c2)

sets the status (constrained or unconstrained) of the three edges of f .

void f .reorient() Changes the orientation of f by exchanging vertex(0) with vertex(1) and neigh-
bor(0) with neighbor(1) and the corresponding constrained status.

void f .ccw permute() performs a counterclockwise permutation of the vertices, neighbors and con-
strained status of f .

void f .cw permute() performs a clockwise permutation of the vertices and neighbors and con-
strained status of f .
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Miscellaneous

bool f .is valid() tests the validity of face f as a face of a plain triangulation and additionally
checks if the edges of f are consistently marked as constrained or uncon-
strained edges in face f and its neighbors.

advanced

Has Models

CGAL::Constrained triangulation face base 2<Traits>

See Also

TriangulationFaceBase 2
CGAL::Constrained triangulation 2<Traits,Tds>
CGAL::Constrained triangulation face base 2<Traits>
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ConstrainedTriangulationTraits 2

Definition

The concept ConstrainedTriangulationTraits 2 defines the requirements for the geometric traits class of a con-
strained triangulation ( Constrained Triangulation 2<Traits,Tds,Itag>) that supports intersections of input con-
straints (i. e. when the template parameter Itag is instantiated by one of the tag classes Exact intersections tag
or Exact predicates tag). This concept refines the concept TriangulationTraits 2, adding requirements for
function objects to compute the intersection points of two constraints. When Exact predicates tag is used, the
traits class is also required to provide additional types to compute the squared distance between a point and a
line

Refines

TriangulationTraits 2

Types

ConstrainedTriangulationTraits 2:: Intersect 2

A function object whose operator() computes the intersection
of two segments :
Object 2 operator()(Segment 2 s1, Segment 2 s2); Returns
the intersection of s1 and s2.

When the constrained triangulation is instantiated with the intersection tag Exact
predicates tag, the used algorithm needs to be able to compare some dis-
tances between points and lines and the following types are further required.
ConstrainedTriangulationTraits 2:: RT A number type supporting the comparison operator <.

ConstrainedTriangulationTraits 2:: Line 2 The line type.
ConstrainedTriangulationTraits 2:: Construct line 2

A function object whose operator() constructs a line from
two points :
Line 2 operator()(Point 2 p1, Point 2 p2).

ConstrainedTriangulationTraits 2:: Compute squared distance 2

A function object with an operator() designed to compute the
squared distance between a line and a point :
RT operator()(Line 2 l, Point 2 p); Return the squared dis-
tance between p and l.

Access to constructor object

Intersect 2 traits.intersect 2 object()
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Construct line 2 traits.construct line 2 object()

required when the intersection tag is Exact predicates tag.

Compute squared distance 2

traits.compute squared distance 2 object()

required when the intersection tag is Exact predicates tag.

Has Models

The kernels of CGAL are models for this traits class.
CGAL::Projection traits xy 3<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 604
CGAL::Projection traits yz 3<K>
CGAL::Projection traits zx 3<K>

deprecated

CGAL::Triangulation euclidean traits xy 3<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2566,
CGAL::Triangulation euclidean traits yz 3<K>,
CGAL::Triangulation euclidean traits zx 3<K>.

deprecated

See Also

TriangulationTraits 2
ConstrainedDelaunayTriangulationTraits 2
CGAL:Constrained Triangulation 2<Traits,Tds,Itag>
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CGAL::Constrained Delaunay triangulation 2<Traits,Tds,Itag>

Definition

A constrained Delaunay triangulation is a triangulation with constrained edges which tries to be as much De-
launay as possible. Constrained edges are not necessarily Delaunay edges, therefore a constrained Delaunay
triangulation is not a Delaunay triangulation. A constrained Delaunay is a triangulation whose faces do not nec-
essarily fulfill the empty circle property but fulfill a weaker property called the constrained empty circle. To state
this property, it is convenient to think of constrained edges as blocking the view. Then, a triangulation is con-
strained Delaunay if the circumscribing circle of any of its triangular faces includes in its interior no vertex that
is visible from the interior of the triangle. The class Constrained Delaunay triangulation 2<Traits,Tds,Itag> is
designed to represent constrained Delaunay triangulations.

As in the case of constrained triangulations, three different versions of Delaunay constrained triangulations
are offered depending on whether the user wishes to handle intersecting input constraints or not. The desired
version can be selected through the instantiation of the third template parameter Itag which can be one of the
following :
CGAL::No intersection tag if intersections of input constraints are disallowed,
CGAL::Exact predicates tag allows intersections between input constraints and is to be used when the traits
class provides exact predicates but approximate constructions of the intersection points,
CGAL::Exact intersections tag allows intersections between input constraints and is to be used in conjunction
with an exact arithmetic type.

The template parameters Tds has to be instantiate with a model of TriangulationDataStructure 2. The geo-
metric traits of a constrained Delaunay triangulation is required to provide the side of oriented circle test as
the geometric traits of a Delaunay triangulation and the Traits parameter has to be instantiated with a model
DelaunayTriangulationTraits 2. When intersection of input constraints are supported, the geometric traits class
is required to provide additional function object types to compute the intersection of two segments. and has then
to be also a model of the concept ConstrainedTriangulationTraits 2.

A constrained Delaunay triangulation is not a Delaunay triangulation but it is a constrained triangulation. There-
fore the class Constrained Delaunay triangulation 2<Traits,Tds,Itag> derives from the class Constrained
triangulation 2<Traits,Tds>. Also, information about the status (constrained or not) of the edges of the triangu-
lation is stored in the faces. Thus the nested Face type of a constrained triangulation offers additional function-
alities to deal with this information. These additional functionalities induce additional requirements on the base
face class plugged into the triangulation data structure of a constrained Delaunay triangulation. The base face of
a constrained Delaunay triangulation has to be a model of the concept ConstrainedTriangulationFaceBase 2.

CGAL provides a default for the template parameters. If Gt is the geometric traits parameter, the default
for ConstrainedTriangulationFaceBase 2 is the class CGAL::Constrained triangulation face base 2<Gt> and
the default for the triangulation data structure parameter is the class CGAL::Triangulation data structure 2<
CGAL::Triangulation vertex base 2<Gt>, CGAL::Constrained triangulation face base 2<Gt> >. The default
intersection tag is CGAL::No intersection tag.

#include <CGAL/Constrained Delaunay triangulation 2.h>

Inherits From

Constrained triangulation 2<Traits,Tds,Itag>
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Types

All types used in this class are inherited from the base class Constrained triangulation 2<Traits,Tds,Itag>.

Creation

Constrained Delaunay triangulation 2<Traits,Tds,Itag> cdt( Traits t = Traits());

Introduces an empty constrained Delaunay triangulation cdt.

Constrained Delaunay triangulation 2<Traits,Tds,Itag> cdt( Constrained Delaunay triangulation 2 cdt1);

Copy constructor, all faces and vertices are duplicated and
the constrained status of edges is copied.

template<class InputIterator>
Constrained Delaunay triangulation 2<Traits,Tds,Itag> cdt( InputIterator first,

InputIterator last,
Traits t=Traits())

A templated constructor which introduces and builds a con-
strained triangulation with constrained edges in the range
[ first, last ).
Precondition: The value type of first and last is Constraint.

Insertion and Removal

The following member functions overwrite the corresponding members of the base class to include a step
restoring the Delaunay constrained property after modification of the triangulation.

Vertex handle cdt.insert( Point p, Face handle f = Face handle())

Inserts point p in the triangulation. If present f is used as an
hint for the location of p.

Vertex handle cdt.insert( Point p, Locate type& lt, Face handle loc, int li)

Same as above except that the location of the point p to be
inserted is assumed to be given by (lt,loc,i).

Vertex handle cdt.push back( Point p)

Equivalent to insert(p).

template < class InputIterator >
std::ptrdiff t cdt.insert( InputIterator first, InputIterator last)

Inserts the points in the range [ first, last ). Returns the num-
ber of inserted points.
Precondition: The value type of first and last is Point.
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void cdt.insert constraint( Point a, Point b)

Inserts segment ab as a constrained edge in the triangulation.

void cdt.push back( Constraint c)

Inserts constraints c as above.

void cdt.insert constraint( Vertex handle va, Vertex handle vb)

Inserts the line segment whose endpoints are the vertices va
and vb as a constrained edge e in the triangulation.

void cdt.remove( Vertex handle & v)

Removes vertex v.
Precondition: Vertex v is not incident to a constrained edge.

void cdt.remove incident constraints( Vertex handle v)

Make the edges incident to vertex v unconstrained edges.

void cdt.remove constraint( Face handle f, int i)

Edge (f,i) is no longer constrained.

Queries

The following template member functions query the set of faces in conflict with a point p. The notion of conflict
refers here to a constrained Delaunay setting which means the following. Constrained edges are considered as
visibility obstacles and a point p is considered to be in conflict with a face f iff it is visible from the interior of f
and included in the circumcircle of f .

template <class OutputItFaces, class OutputItBoundaryEdges>
std::pair<OutputItFaces,OutputItBoundaryEdges>

cdt.get conflicts and boundary( Point p,
OutputItFaces fit,
OutputItBoundaryEdges eit,
Face handle start) const

OutItFaces is an output iterator with Face handle as value
type. OutItBoundaryEdges stands for an output iterator with
Edge as value type. This members function outputs in the
container pointed to by fit the faces which are in conflict
with point p. It outputs in the container pointed to by eit the
boundary of the zone in conflict with p. The boundary edges
of the conflict zone are output in counterclockwise order and
each edge is described through its incident face which is not
in conflict with p. The function returns in a std::pair the re-
sulting output iterators.
Precondition: dimension()==2
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template <class OutputItFaces>
OutputItFaces cdt.get conflicts( Point p, OutputItFaces fit, Face handle start) const

Same as above except that only the faces in conflict with p
are output. The function returns the resulting output iterator.
Precondition: dimension()==2

template <class OutputItBoundaryEdges>
OutputItBoundaryEdges

cdt.get boundary of conflicts( Point p,
OutputItBoundaryEdges eit,
Face handle start) const

OutputItBoundaryEdges stands for an output iterator with
Edge as value type. This functions outputs in the container
pointed to by eit, the boundary of the zone in conflict with
p. The boundary edges of the conflict zone are output in
counter-clockwise order and each edge is described through
the incident face which is not in conflict with p. The function
returns the resulting output iterator.

Checking

bool cdt.is valid() Checks if the triangulation is valid and if each constrained
edge is consistently marked constrained in its two incident
faces.

advanced

Flips

bool cdt.is flipable( Face handle f, int i)

Determines if edge (f,i) can be flipped. Returns true if edge
(f,i) is not constrained and the circle circumscribing f con-
tains the vertex of f->neighbor(i) opposite to edge (f,i).

void cdt.flip( Face handle& f, int i)

Flip f and f->neighbor(i).

void cdt.propagating flip( List edges & edges)

Makes the triangulation constrained Delaunay by flipping
edges. List edges contains an initial list of edges to be
flipped. The returned triangulation is constrained Delaunay
if the initial list contains at least all the edges of the input tri-
angulation that failed to be constrained Delaunay. (An edge
is said to be constrained Delaunay if it is either constrained
or locally Delaunay.)
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advanced

See Also

CGAL::Constrained triangulation 2<Traits,Tds,Itag>
TriangulationDataStructure 2
DelaunayTriangulationTraits 2
ConstrainedTriangulationTraits 2
ConstrainedDelaunayTriangulationTraits 2
ConstrainedTriangulationFaceBase 2
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CGAL::Constrained triangulation 2<Traits,Tds,Itag>

Definition

A constrained triangulation is a triangulation of a set of points which has to include among its edges a given set
of segments joining the points. The given segments are called constraints and the corresponding edges in the
triangulation are called constrained edges.

The endpoints of constrained edges are of course vertices of the triangulation. However the triangulation may
include other vertices as well. There are three versions of constrained triangulations

• In the basic version, the constrained triangulation does not handle intersecting constraints, and the set of
input constraints is required to be a set of segments that do not intersect except possibly at their endpoints.
Any number of constrained edges are allowed to share the same endpoint. Vertical constrained edges are
allowed as well as constrained edges with null length.

• The two other versions support intersecting input constraints. In those versions, input constraints are
allowed to be intersecting, overlapping or partially overlapping segments. The triangulation introduce ad-
ditional vertices at each point which is a proper intersection point of two constraints. A single constraint
intersecting other constraints will then appear as the union of several constrained edges of the trian-
gulation. The two versions dealing with intersecting constraints, slightly differ in the way intersecting
constraints are dealt with.

– One of them is designed to be robust when predicates are evaluated exactly but constructions (i. e.
intersection computations) are approximate.

– The other one is designed to be used with an exact arithmetic (meaning exact evaluation of predi-
cates and exact computation of intersections.) This last version finds its full efficiency when used
in conjunction with a constraint hierarchy data structure as provided in the class Constrained
triangulation plus 2. See section 37.9.

The class Constrained triangulation 2<Traits,Tds,Itag> of the CGAL library implements constrained triangu-
lations. The template parameter Traits stands for a geometric traits class. It has to be a model of the concept
TriangulationTraits 2. When intersection of input constraints are supported, the geometric traits class is re-
quired to provide additional function object types to compute the intersection of two segments. It has then to
be a model of the concept ConstrainedTriangulationTraits 2. The template parameter Tds stands for a trian-
gulation data structure class that has to be a model of the concept TriangulationDataStructure 2. The third
parameter Itag is the intersection tag which serves to choose between the different strategies to deal with con-
straints intersections. CGAL provides three valid types for this parameter :
CGAL::No intersection tag disallows intersections of input constraints,
CGAL::Exact predicates tag is to be used when the traits class provides exact predicates but approximate con-
structions of the intersection points.
CGAL::Exact intersections tag is to be used in conjunction with an exact arithmetic type.

The information about constrained edges is stored in the faces of the triangulation. Thus the nested Face type
of a constrained triangulation offers additional functionalities to deal with this information. These additional
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functionalities induce additional requirements on the base face class plugged into the triangulation data structure
of a constrained Delaunay triangulation. The base face of a constrained Delaunay triangulation has to be a model
of the concept ConstrainedTriangulationFaceBase 2.

CGAL provides default instantiations for the template parameters Tds and Itag, and for the
ConstrainedTriangulationFaceBase 2. If Gt is the geometric traits parameter, the default for
ConstrainedTriangulationFaceBase 2 is the class CGAL::Constrained triangulation face base 2<Gt> and the
default for the triangulation data structure parameter is the class CGAL::Triangulation data structure 2 <
CGAL::Triangulation vertex base 2<Gt>, CGAL::Constrained triangulation face base 2<Gt> >. The default
intersection tag is CGAL::No intersection tag.

#include <CGAL/Constrained triangulation 2.h>

Inherits From

Triangulation 2<Traits,Tds>

Types

typedef std::pair<Point,Point>

Constraint; The type of input constraints

typedef Itag Intersection tag; The intersection tag which decides how intersections be-
tween input constraints are dealt with.

Creation

Constrained triangulation 2<Traits,Tds,Itag> ct;

default constructor.

Constrained triangulation 2<Traits,Tds,Itag> ct( Constrained triangulation 2 ct1);

Copy constructor, all faces and vertices are duplicated and
the constrained status of edges is copied.

template<class InputIterator>
Constrained triangulation 2<Traits,Tds,Itag> ct( InputIterator first, InputIterator last, Traits t=Traits());

A templated constructor which introduces and builds a con-
strained triangulation with constrained edges in the range
[ first, last ).
Precondition: The value type of first and last is Constraint.
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Queries

bool ct.is constrained( Edge e)

Returns true if edge e is a constrained edge.

bool ct.are there incident constraints( Vertex handle v)

Returns true if at least one of the edges incident to vertex v is
constrained.

template<class OutputItEdges>
OutputItEdges ct.incident constraints( Vertex handle v, OutputItEdges out) const

OutputItEdges is an output iterator with Edge as value type.
Outputs the constrained edges incident to v in the sequence
pointed to by out and returns the resulting output iterator.

Insertion and removal

Vertex handle ct.insert( Point p, Face handle f = Face handle())

Inserts point p and restores the status (constrained or not) of
all the touched edges. If present f is used as an hint for the
location of p.

Vertex handle ct.insert( Point p, Locate type& lt, Face handle loc, int li)

Same as above except that the location of the point p to be
inserted is assumed to be given by (lt,loc,i).

Vertex handle ct.push back( Point p)

Equivalent to insert(p).

template < class InputIterator >
std::ptrdiff t ct.insert( InputIterator first, InputIterator last)

Inserts the points in the range [ first, last ). Returns the num-
ber of inserted points.
Precondition: The value type of first and last is Point.

void ct.insert constraint( Point a, Point b)

Inserts points a and b, and inserts segment ab as a constraint.
Removes the faces crossed by segment ab and creates new
faces instead. If a vertex c lies on segment ab, constraint ab
is replaced by the two constraints ac and cb. Apart from the
insertion of a and b, the algorithm runs in time proportional
to the number of removed triangles.
Precondition: The relative interior of segment ab does not
intersect the relative interior of another constrained edge.
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void ct.push back( Constraint c)

Inserts constraints c as above.

void ct.insert constraint( Vertex handle va, Vertex handle vb)

Inserts the line segment s whose endpoints are the vertices va
and vb as a constrained edge e. The triangles intersected by
s are removed and new ones are created.

void ct.remove( Vertex handle v)

Removes a vertex v.
Precondition: Vertex v is not incident to a constrained edge.

void ct.remove incident constraints( Vertex handle v)

Make the edges incident to vertex v unconstrained edges.

void ct.remove constrained edge( Face handle f, int i)

Make edge (f,i) no longer constrained.

advanced

bool ct.is valid( bool verbose = false, int level = 0) const

Checks the validity of the triangulation and the consistency
of the constrained marks in edges.

advanced

I/O

ostream & ostream& os << Constrained triangulation 2<Traits,Tds> Ct

Writes the triangulation as for CGAL::Triangulation 2<
Traits,Tds> and, for each face f, and integers i=0,1,2, write
“C” or “N” depending whether edge (f,i) is constrained or
not.

istream& istream& is >> Constrained triangulation 2<Traits,Tds> Ct& t

Reads a triangulation from stream is and assigns it to t. Data
in the stream must have the same format operator<< uses.
Note that t is first cleared.
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See Also

CGAL::Triangulation 2<Traits,Tds>,
TriangulationDataStructure 2,
TriangulationTraits 2
ConstrainedTriangulationTraits 2
ConstrainedTriangulationFaceBase 2

Implementation

The insertion of a constrained edge runs in time proportional to the number of triangles intersected by this edge.
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CGAL::Constrained triangulation face base 2<Traits,Fb>

Definition

The class Constrained triangulation face base 2<Traits,Fb> is the default model for the concept
ConstrainedTriangulationFaceBase 2 to be used as base face class of constrained triangulations.

#include <CGAL/Constrained triangulation face base 2.h>

Is Model for the Concepts

ConstrainedTriangulationFaceBase 2

Parameters

The first template parameter is a geometric traits.

The second template parameter has to be a model of the concept TriangulationFaceBase 2. Its default is
CGAL::Triangulation face base 2<Traits>

Inherits From

The class Constrained triangulation face base 2<Traits,Fb> derives from its parameter Fb. and add three
Boolean to deal with information about constrained edges.

The member functions cw(int i), ccw(int i) and reorient are overloaded to update information about constrained
edges.

See Also

TriangulationFaceBase 2
ConstrainedTriangulationFaceBase 2
CGAL::Constrained triangulation 2<Traits,Tds>
CGAL::Triangulation face base 2<Traits>
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CGAL::Constrained triangulation plus 2<Tr>

The class Constrained triangulation plus 2<Tr> implements a constrained triangulation with an additional data
structure called the constraint hierarchy that keeps track of the input constraints and of their refinement in the
triangulation.

The class Constrained triangulation plus 2<Tr> inherits from its template parameter Tr, which has to be in-
stantiated by a constrained or constrained Delaunay triangulation.

According to its intersection tag, the base class will support intersecting input constraints or not. When inter-
sections of input constraints are supported, the base class constructs a triangulation of the arrangement of the
constraints, introducing new vertices at each proper intersection point and refining the input constraints into
sub-constraints which are edges (more precisely constrained edges) of the triangulation. In this context, the
constraint hierarchy keeps track of the input constraints and of their refinement in the triangulation. This data
structure maintains for each input constraints the sequence of intersection vertices added on this constraint. The
constraint hierarchy also allows the user to retrieve the set of constrained edges of the triangulation, and for
each constrained edge, the set of input constraints that overlap it.

#include <CGAL/Constrained triangulation plus 2.h>

Inherits From

Tr which is either a CGAL::Constrained triangulation 2<Traits,Tds> or a CGAL::Constrained Delaunay
triangulation 2<Traits,Tds>.

Types

typedef Tr Triangulation; the triangulation base class.
typedef Itag Intersection tag; the intersection tag.s

Constrained triangulation plus 2<Tr>:: Constraint iterator

An iterator to visit all the input constraints. The order of
visit is arbitrary. The value type of this iterator is a pair
std::pair<Vertex handle, Vertex handle> corresponding to
the endpoints of the constraint.

Constrained triangulation plus 2<Tr>:: Subconstraint iterator

An iterator to visit all the sub-constraints of the triangulation.
The order of visit is arbitrary. The value type of this iterator is
a pair std::pair<Vertex handle, Vertex handle> correspond-
ing to the vertices of the sub-constraint.

Constrained triangulation plus 2<Tr>:: Vertices in constraint iterator

An iterator on the vertices of the chain of triangulation edges
representing a constraint. The value type of this iterator is
Vertex handle.
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typedef Context; This type is intended to describe a constraint enclosing a sub-
constraint and the position of the sub-constraint in this con-
straint. It provides three member functions vertices begin(),
vertices end() and current() returning iterators of the type
Vertices in constraint iterator on the sequence of vertices
of the enclosing constraint. These iterators point respectively
on the first vertex of the enclosing constraint, past the last
vertex and on the first vertex of the sub-constraint.

typedef Context iterator; An iterator on constraints enclosing a given sub-constraint.
The value type of this iterator is Context.

Creation

Constrained triangulation plus 2<Tr> ctp( Geom traits gt=Geom traits());

Introduces an empty triangulation.

Constrained triangulation plus 2<Tr> ctp( Constrained triangulation plus 2 ct);

Copy constructor.

Constrained triangulation plus 2<Tr> ctp( std::list<Constraint>& lc, Geom traits t = Geom traits());

Introduces and builds a constrained triangulation from the list
of constraints lc.

template<class InputIterator>
Constrained triangulation plus 2<Tr> ctp( InputIterator first,

InputIterator last,
Geom traits gt= Geom traits())

Introduces and builds a constrained triangulation from the
constraints in the range [ first, last ).
Precondition: The value type of first and last is Constraint.

Assignment

Constrained triangulation plus 2

ctp = Constrained triangulation plus 2 tr

Assignment. All the vertices and faces are duplicated. The
constraint hierarchy is also duplicated.

void ctp.swap( Constrained triangulation plus 2 tr)

The triangulations tr and ctp are swapped. This operation
should be preferred to ctp = tr or to t(tr) if tr is deleted after
that.
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Insertion and Removal

The class Constrained triangulation plus 2<Tr> overwrites the following insertion and removal member func-
tions for points and constraints.

Vertex handle ctp.insert( Point p, Face handle start = Face handle())

Inserts point p as a vertex of the triangulation.

Vertex handle ctp.insert( Point p, Locate type lt, Face handle loc, int li)

inserts a point p whose location is assumed to be given by
(lt,loc,li).

Vertex handle ctp.push back( Point p)

Equivalent to insert(p).

template < class InputIterator >
size type ctp.insert( InputIterator first, InputIterator last)

Inserts the points in the range [ first, last ). Returns the num-
ber of inserted points.
Precondition: The value type of first and last is Point.

void ctp.insert constraint( Point a, Point b)

Inserts the constraint segment ab in the triangulation.

void ctp.push back( Constraint c)

Inserts the constraint c.

void ctp.insert constraint( Vertex handle va, Vertex handle vb)

Inserts a constraint whose endpoints are the vertices pointed
by va and vb in the triangulation.

void ctp.remove constraint( Vertex handle va, Vertex handle vb)

Removes the constraint joining the vertices pointed by va and
vb.
Precondition: va and vb have to refer to the endpoint vertices
of an input constraint.
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Queries

Constraint iterator ctp.constraints begin() const

Returns a Constraint iterator pointing on the first constraint.

Constraint iterator ctp.constraints end() const

Returns a Constraint iterator pointing past the last con-
straint.

Subconstraint iterator

ctp.subconstraints begin() const

Returns a Subconstraint iterator pointing on the first sub-
constraint.

Subconstraint iterator

ctp.subconstraints end() const

Returns a Subconstraint iterator pointing past the last sub-
constraint.

int ctp.number of enclosing constraints( Vertex handle va, Vertex handle vb)

Returns the number of constraints enclosing the sub-
constraint (va,vb).
Precondition: va and vb refer to the vertices of a constrained
edge of the triangulation.

Context ctp.context( Vertex handle va, Vertex handle vb)

Returns the Context relative to one of the constraint enclosing
the sub-constraint (va,vb).
Precondition: va and vb refer to the vertices of a constrained
edge of the triangulation.

Context iterator ctp.contexts begin( Vertex handle va, Vertex handle vb)

Returns an iterator pointing on the first Context of the se-
quence of Contexts corresponding to the constraints enclos-
ing the sub-constraint(va,vb).
Precondition: va and vb refer to the vertices of a constrained
edge of the triangulation.

Context iterator ctp.contexts end( Vertex handle va, Vertex handle vb)

Returns an iterator past the last Context of the sequence
of Contexts corresponding to the constraints enclosing the
(va,vb).
Precondition: va and vb refer to the vertices of a constrained
edge of the triangulation.

Vertices in constraint iterator

ctp.vertices in constraint begin( Vertex handle va, Vertex handle vb)

Returns an iterator on the first vertex on the constraint (va,vb)
Precondition: va and vb refer to the vertices of an input con-
straint.
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Vertices in constraint iterator

ctp.vertices in constraint end( Vertex handle va, Vertex handle vb)

Returns an iterator past the last vertex on the constraint
(va,vb)
Precondition: va and vb refer to the vertices of an input con-
straints.

See Also

CGAL::Constrained triangulation 2<Traits,Tds>
CGAL::Constrained Delaunay triangulation 2<Traits,Tds>
ConstrainedTriangulationTraits 2
ConstrainedDelaunayTriangulationTraits 2
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DelaunayTriangulationTraits 2

Definition

In addition to the requirements of the concept TriangulationTraits 2 described page 2541, the concept
DelaunayTriangulationTraits 2 provide a predicate to check the empty circle property. The corresponding pred-
icate type is called type Side of oriented circle 2.

The additional types Line 2, Ray 2 and the constructor objects Construct ray 2 Construct circumcenter 2,
Construct bisector 2, Construct midpoint are used to build the dual Voronoi diagram and are required only if
the dual functions are called. The additional predicate type Compare distance 2 is required if calls to nearest
vertex(..) are issued.

Refines

TriangulationTraits 2

Types

DelaunayTriangulationTraits 2:: Line 2 The line type. This type is required only if some dual func-
tions are called.

DelaunayTriangulationTraits 2:: Ray 2 The type for ray. This type is required only if some dual
functions are called.

DelaunayTriangulationTraits 2:: Side of oriented circle 2

Predicate type. Provides the operator :
Oriented side operator()(Point p, Point q, Point r, Point
s) which takes four points p,q,r,s as arguments and re-
turns ON POSITIVE SIDE, ON NEGATIVE SIDE or, ON
ORIENTED BOUNDARY according to the position of
points s with respect to the oriented circle through p,q and
r.

DelaunayTriangulationTraits 2:: Compare distance 2

Predicate type. Provides the operator :
Comparison result operator()(Point 2 p, Point 2 q, Point 2
r) which returns SMALLER, EQUAL or LARGER according
to the distance between p and q being smaller, equal or larger
than the distance between p and r. This type is only require
if nearest vertex queries are issued.

DelaunayTriangulationTraits 2:: Construct circumcenter 2

Constructor object. Provides the operator :
Point 2 operator()(Point 2 p, Point 2 q, Point 2 r) which
returns the circumcenter of the three points p, q and r. This
type is required only if functions relative to the dual Voronoi
diagram are called.
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DelaunayTriangulationTraits 2:: Construct bisector 2

Constructor object. Provides the operator :
Line 2 operator()(Point 2 p, Point 2 q) which constructs
the bisector line of points p and q. This type is required only
if functions relative to the dual Voronoi diagram are called.

DelaunayTriangulationTraits 2:: Construct ray 2

A constructor object to build a ray from a point and a line.
Provides :
Ray 2 operator() ( Point 2 p, Line 2 l);

Creation

DelaunayTriangulationTraits 2 traits; default constructor.
DelaunayTriangulationTraits 2 traits( dtt); copy constructor
DelaunayTriangulationTraits 2 traits = traits2

Assignment operator.

Access to predicate and constructor objects

Side of oriented circle 2 traits.side of oriented circle 2 object()

The following functions are required only if member functions of the Delaunay triangulation relative to the dual
Voronoi diagram are called. Compare distance 2 traits.compare distance 2 object()

Construct circumcenter 2 traits.construct circumcenter 2 object()
Construct bisector 2 traits.construct bisector 2 object()
Construct direction 2 traits.construct direction 2 object()
Construct ray 2 traits.construct ray 2 object()

Has Models

CGAL kernels
CGAL::Triangulation euclidean traits 2<Rep>.

The following traits classes provide everything except types and member functions required for the dual Voronoi
diagram:
CGAL::Projection traits xy 3<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 604
CGAL::Projection traits yz 3<K>
CGAL::Projection traits zx 3<K>

deprecated

CGAL::Triangulation euclidean traits xy 3<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2566,
CGAL::Triangulation euclidean traits yz 3<K>,
CGAL::Triangulation euclidean traits zx 3<K>.

deprecated
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See Also

TriangulationTraits 2
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CGAL::Delaunay triangulation 2<Traits,Tds>

Definition

The class Delaunay triangulation 2<Traits,Tds> is designed to represent the Delaunay triangulation of a set of
points in a plane. A Delaunay triangulation of a set of points is a triangulation of the sets of points that fulfills
the following empty circle property (also called Delaunay property): the circumscribing circle of any facet of
the triangulation contains no point of the set in its interior. For a point set with no case of co-circularity of more
than three points, the Delaunay triangulation is unique, it is the dual of the Voronoi diagram of the points.

#include <CGAL/Delaunay triangulation 2.h>

Parameters

The template parameter Tds is to be instantiated with a model of TriangulationDataStructure 2. CGAL pro-
vides a default instantiation for this parameter, which is the class CGAL::Triangulation data structure 2 <
CGAL::Triangulation vertex base 2<Traits>, CGAL::Triangulation face base 2<Traits> >.

The geometric traits Traits is to be instantiated with a model of DelaunayTriangulationTraits 2. The concept
DelaunayTriangulationTraits 2 refines the concept TriangulationTraits 2, providing a predicate type to check
the empty circle property.

Changing this predicate type allows to build Delaunay triangulations for different metrics such that L1 or L∞ or
any metric defined by a convex object. However, the user of an exotic metric must be careful that the constructed
triangulation has to be a triangulation of the convex hull which means that convex hull edges have to be Delaunay
edges. This is granted for any smooth convex metric (like L2) and can be ensured for other metrics (like L∞)
by the addition to the point set of well chosen sentinel points The concept of DelaunayTriangulationTraits 2 is
described page 2513.

When dealing with a large triangulations, the user is advised to encapsulate the Delaunay triangulation class
into a triangulation hierarchy, which means to use the class Triangulation hierarchy 2<Tr> with the template
parameter instantiated with Delaunay triangulation 2<Traits,Tds> . The triangulation hierarchy will then offer
the same functionalities but be much more for efficient for locations and insertions.

Inherits From

Triangulation 2<Traits,Tds>

Types

Inherits all the types defined in Triangulation 2<Traits,Tds>.

Creation

Delaunay triangulation 2<Traits,Tds> dt( Traits gt = Traits());

default constructor.
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Delaunay triangulation 2<Traits,Tds> dt( tr);

copy constructor. All the vertices and faces are duplicated.

Insertion and Removal

The following insertion and removal functions overwrite the functions inherited from the class Triangulation
2<Traits,Tds> to maintain the Delaunay property.

In the degenerate case when there are co-circular points, the Delaunay triangulation is known not to be
uniquely defined. In this case, CGAL chooses a particular Delaunay triangulation using a symbolic perturbation
scheme [DT03].

Vertex handle dt.insert( Point p, Face handle f=Face handle())

inserts point p. If point p coincides with an already existing
vertex, this vertex is returned and the triangulation is not up-
dated. Optional parameter f is used to initialize the location
of p.

Vertex handle dt.insert( Point p, Locate type& lt, Face handle loc, int li)

inserts a point p, the location of which is supposed to be given
by (lt,loc,li), see the description of member function locate
in class Triangulation 2<Traits,Tds>.

Vertex handle dt.push back( Point p)

equivalent to insert(p).

template < class PointInputIterator >
std::ptrdiff t dt.insert( PointInputIterator first, PointInputIterator last)

inserts the points in the range [ first, last ). Returns the num-
ber of inserted points. Note that this function is not guaran-
teed to insert the points following the order of PointInputIt-
erator, as spatial sort is used to improve efficiency.
Precondition: The value type of first and last is Point.

template < class PointWithInfoInputIterator >
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std::ptrdiff t dt.insert( PointWithInfoInputIterator first, PointWithInfoInputIterator last)

inserts the points in the iterator range [ first, last ). Re-
turns the number of inserted points. Note that this func-
tion is not guaranteed to insert the points following the or-
der of PointWithInfoInputIterator, as spatial sort is used to
improve efficiency. Given a pair (p,i), the vertex v storing
p also stores i, that is v.point() == p and v.info() == i. If
several pairs have the same point, only one vertex is created,
and one of the objects of type Vertex::Info will be stored in
the vertex.
Precondition: Vertex must be model of the concept
TriangulationVertexBaseWithInfo 2. The value type of first
and last is std::pair<Point,Vertex::Info>.

void dt.remove( Vertex handle v)

removes the vertex from the triangulation.

Note that the other modifier functions of Triangulation 2<Traits,Tds> are not overwritten. Thus a call to insert
in face insert in edge, insert outside convex hull, insert outside affine hull or flip on a valid Delaunay trian-
gulation might lead to a triangulation which is no longer a Delaunay triangulation.

Displacement

Vertex handle dt.move if no collision( Vertex handle v, Point p)

if there is not already another vertex placed on p, the trian-
gulation is modified such that the new position of vertex v
is p, and v is returned. Otherwise, the triangulation is not
modified and the vertex at point p is returned.
Precondition: Vertex v must be finite.

Vertex handle dt.move( Vertex handle v, Point p)

same as above if there is no collision. Otherwise, v is deleted
and the vertex placed on p is returned.
Precondition: Vertex v must be finite.

Queries

Vertex handle dt.nearest vertex( Point p, Face handle f=Face handle())

returns any nearest vertex of p. The implemented function
begins with a location step and f may be used to initialize the
location.

template <class OutputItFaces, class OutputItBoundaryEdges>
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std::pair<OutputItFaces,OutputItBoundaryEdges>

dt.get conflicts and boundary( Point p,
OutputItFaces fit,
OutputItBoundaryEdges eit,
Face handle start) const

OutputItFaces is an output iterator with Face handle as
value type. OutputItBoundaryEdges stands for an output iter-
ator with Edge as value type. This members function outputs
in the container pointed to by fit the faces which are in con-
flict with point p i. e. the faces whose circumcircle contains
p. It outputs in the container pointed to by eit the the bound-
ary of the zone in conflict with p. The boundary edges of
the conflict zone are output in counter-clockwise order and
each edge is described through its incident face which is not
in conflict with p. The function returns in a std::pair the re-
sulting output iterators.
Precondition: dimension()==2

template <class OutputItFaces>
OutputItFaces dt.get conflicts( Point p, OutputItFaces fit, Face handle start) const

same as above except that only the faces in conflict with p
are output. The function returns the resulting output iterator.
Precondition: dimension()==2

template <class OutputItBoundaryEdges>
OutputItBoundaryEdges

dt.get boundary of conflicts( Point p,
OutputItBoundaryEdges eit,
Face handle start) const

OutputItBoundaryEdges stands for an output iterator with
Edge as value type. This function outputs in the container
pointed to by eit, the boundary of the zone in conflict with p.
The boundary edges of the conflict zone are output in coun-
terclockwise order and each edge is described through the
incident face which is not in conflict with p. The function
returns the resulting output iterator.

Voronoi diagram

The following member functions provide the elements of the dual Voronoi diagram.

Point dt.dual( Face handle f) const

Returns the center of the circle circumscribed to face f .
Precondition: f is not infinite
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Object dt.dual( Edge e) const returns a segment, a ray or a line supported by the bisector of the
endpoints of e. If faces incident to e are both finite, a segment whose
endpoints are the duals of each incident face is returned. If only one
incident face is finite, a ray whose endpoint is the dual of the finite
incident face is returned. Otherwise both incident faces are infinite
and the bisector line is returned.

Object dt.dual( Edge circulator ec) const

Idem

Object dt.dual( Edge iterator ei) const

Idem

template < class Stream>
Stream&

dt.draw dual( Stream & ps) output the dual Voronoi diagram to stream ps.

Predicates

Oriented side dt.side of oriented circle( Face handle f, Point p) const

Returns the side of p with respect to the circle circumscribing the triangle associ-
ated with f

advanced

Miscellaneous

The checking function is valid() is also overwritten to additionally test the empty circle property.

bool dt.is valid( bool verbose = false, int level = 0) const

tests the validity of the triangulation as a Triangulation 2
and additionally tests the Delaunay property. This method
is mainly useful for debugging Delaunay triangulation algo-
rithms designed by the user.

advanced

See Also

CGAL::Triangulation 2<Traits,Tds>,
TriangulationDataStructure 2,
DelaunayTriangulationTraits 2,
Triangulation hierarchy 2<Tr>.
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Implementation

Insertion is implemented by inserting in the triangulation, then performing a sequence of Delaunay flips. The
number of flips is O(d) if the new vertex is of degree d in the new triangulation. For points distributed uniformly
at random, insertion takes time O(1) on average.

Removal calls the removal in the triangulation and then re-triangulates the hole in such a way that the Delaunay
criterion is satisfied. Removal of a vertex of degree d takes time O(d2). The degree d is O(1) for a random
vertex in the triangulation.

After a point location step, the nearest neighbor is found in time O(n) in the worst case, but in time O(1) for
vertices distributed uniformly at random and any query point.
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CGAL::Triangulation 2<Traits,Tds>::Locate type

Definition

The enum Locate type is defined by the Triangulation 2<Traits,Tds> class to specify which case occurs when
locating a point in the triangulation.

enum Locate type { VERTEX=0, EDGE, FACET, OUTSIDE CONVEX HULL, OUTSIDE AFFINE HULL};

The locate type is :
VERTEX when the located point coincides with a vertex of
the triangulation
EDGE when the point is in the relative interior of an edge
FACE when the point is in the interior of a facet
OUTSIDE CONVEX HULL when the point is outside the
convex hull but in the affine hull of the current triangulation
OUTSIDE AFFINE HULL when the point is outside the
affine hull of the current triangulation.

See Also

CGAL::Triangulation 2<Traits,Tds>.
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RegularTriangulationFaceBase 2

Definition

The regular triangulation of a set of weighted points does not necessarily have one vertex for each of the
input points. Some of the input weighted points have no cell in the dual power diagrams and therefore do not
correspond to a vertex of the regular triangulation. Those weighted points are said to be hidden points. A point
which is hidden at a given time may appear later as a vertex of the regular triangulation upon removal on some
other weighted point. Therefore, hidden points have to be stored somewhere. The regular triangulation store
those hidden points in special vertices called hidden vertices.

A hidden point can appear as vertex of the triangulation only when the two dimensional face where its point
component is located (the face which hides it) is removed. Therefore we decided to store in each face of a
regular triangulation the list of hidden vertices whose points are located in the face. Thus points hidden by a
face are easily reinserted in the triangulation when the face is removed.

The base face of a regular triangulation has to be a model of the concept RegularTriangulationFaceBase 2 ,
which refines the concept TriangulationFaceBase 2 by adding in the face a list to store hidden vertices.

Refines

TriangulationFaceBase 2

Types

typedef std::list<Vertex handle>

Vertex list; An std list of hidden vertices.

Access Functions

Vertex list& rfb.vertex list() Returns a reference to the list of vertices hidden by the face.

Has Models

CGAL::Regular triangulation face base 2

See Also

TriangulationFaceBase 2
RegularTriangulationVertexBase 2
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RegularTriangulationTraits 2

Definition

The concept RegularTriangulationTraits 2 describe the requirements for the traits class of regular triangulations.
It refines the concept TriangulationTraits 2 providing the type Weighted point 2 and the power-test predicate
on those weighted points. A weighted point is basically a point augmented with a scalar weight. It can be
seen as a circle when the weight is interpreted as a square radius. The power-test on weighted points is the
fundamental test to build regular triangulations as the side of oriented circle test is the fundamental test of
Delaunay triangulations.

Refines

TriangulationTraits 2

Types

RegularTriangulationTraits 2:: Bare point Another name for the point type.
RegularTriangulationTraits 2:: Weighted point 2

The weighted point type, it has to be a model of the concept
WeightedPoint.

RegularTriangulationTraits 2:: Power test 2 A predicate object type. Must provide the operators:
— Oriented side operator() ( Weighted point 2 p,
Weighted point 2 q, Weighted point 2 r, Weighted point 2
s) which is the power test for points p, q, r and s.
Precondition: the bare points corresponding to p, q, r are not
collinear.
— Oriented side operator() ( Weighted point 2 p,
Weighted point 2 q, Weighted point 2 r) which is the
degenerated power test for collinear points p, q, r.
Precondition: the bare points corresponding to p, q, r are
collinear and p != q.
— Oriented side operator() ( Weighted point 2 p,
Weighted point 2 q) which is the degenerated power
test for weighted points p and q whose corresponding
bare-points are identical.
Precondition: the bare points corresponding to p and q are
identical.

The following type/predicate is required if a call to nearest power vertex is issued:

RegularTriangulationTraits 2:: Compare power distance 2

A predicate object type. Must provide the operator:
Comparison result operator()(Bare point p, Weighted
point 2 q, Weighted point 2 r), which compares the power
distance between p and q to the power distance between p
and r.
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RegularTriangulationTraits 2:: Construct weighted circumcenter 2

A constructor object which constructs the weighted circum-
center of three weighted points. Provides the operator
Bare point operator() ( Weighted point 2 p, Weighted
point 2 q, Weighted point 2 r);

RegularTriangulationTraits 2:: Construct radical axis 2

A constructor type which constructs the radical axis of two
weighted points. Provides the operator :
Line 2 operator() ( Weighted point 2 p, Weighted point 2
q);

Creation

RegularTriangulationTraits 2 traits; default constructor.

RegularTriangulationTraits 2 traits( RegularTriangulatioTraits 2);

copy constructor.

RegularTriangulationTraits 2&

traits = RegularTriangulationTraits 2

assignment operator

Access to predicate and constructors objects

Power test 2 traits.power test 2 object()
Compare power distance 2 traits.compare power distance 2 object()
Construct weighted circumcenter 2 traits.construct weighted circumcenter 2 object()
Construct radical axis 2 traits.construct radical axis 2 object()

Has Models

CGAL::Regular triangulation traits 2<Rep>
CGAL::Regular triangulation filtered traits 2<FK>

See Also

TriangulationTraits 2
CGAL::Regular triangulation 2<Traits,Tds>
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RegularTriangulationVertexBase 2

Definition

The regular triangulation of a set of weighted points does not necessarily have one vertex for each of the
input points. Some of the input weighted points have no cell in the dual power diagrams and therefore do not
correspond to a vertex of the regular triangulation. Those weighted point are said to be hidden points. A point
which is hidden at a given time may appear later as a vertex of the regular triangulation upon removal on some
other weighted point. Therefore, hidden points have to be stored somewhere. The regular triangulation store
those hidden points in special vertices called hidden vertices.

A hidden point can appear as vertex of the triangulation only when the two dimensional face where its point
component is located (the face which hides it) is removed. Therefore we decided to store in each face of a
regular triangulation the list of hidden vertices whose points are located in the face. Thus points hidden by a
face are easily reinserted in the triangulation when the face is removed.

The base vertex of a regular triangulation has to be a model of the concept RegularTriangulationVertexBase 2
. The concept RegularTriangulationVertexBase 2 refines the concept TriangulationVertexBase 2, just adding a
Boolean to mark if the vertex is a vertex of the triangulation or a hidden vertex.

Refines

TriangulationVertexBase 2

Access Functions

bool rvb.is hidden() returns true, iff the vertex is hidden.

void rvb.set hidden( bool b)

Mark the vertex as hidden or as not hidden.

Has Models

CGAL::Regular triangulation vertex base 2

See Also

TriangulationVertexBase 2 CGAL::Regular triangulation vertex base 2
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CGAL::Regular triangulation 2<Traits,Tds>

Definition

The class Regular triangulation 2<Traits,Tds> is designed to maintain the regular triangulation of a set of
weighted points.

Let PW = {(pi,wi), i = 1, . . . ,n} be a set of weighted points where each pi is a point and each wi is a scalar
called the weight of point pi. Alternatively, each weighted point (pi,wi) can be regarded as a two dimensional
sphere with center pi and radius ri =

√
wi.

The power diagram of the set PW is a planar partition such that each cell corresponds to sphere (pi,wi) of PW
and is the locus of points p whose power with respect to (pi,wi) is less than its power with respect to any other
sphere (p j,w j) in PW . The dual of this diagram is a triangulation whose domain covers the convex hull of the
set P = {pi, i = 1, . . . ,n} of center points and whose vertices are a subset of P. Such a triangulation is called a
regular triangulation. The three points pi, p j and pk of P form a triangle in the regular triangulation of PW iff
there is a point p of the plane whose powers with respect to (pi,wi), (p j,w j) and (pk,wk) are equal and less
than the power of p with respect to any other sphere in PW .

Let us defined the power product of two weighted points (pi,wi) and (p j,w j) as:

Π(pi,wi, p j,w j) = pi p2
j −wi−w j.

Π(pi,wi, p j,0) is simply the power of point p j with respect to the sphere (pi,wi), and two weighted points are
said to be orthogonal if their power product is null. The power circle of three weighted points (pi,wi), (p j,w j)
and (pk,wk) is defined as the unique circle (π,ω) orthogonal to (pi,wi), (p j,w j) and (pk,wk).

The regular triangulation of the sets PW satisfies the following regular property (which just reduces to the
Delaunay property when all the weights are null): a triangle pi p j pk of the regular triangulation of PW is such
that the power product of any weighted point (pl ,wl) of PW with the power circle of (pi,wi), (p j,w j) is (pk,wk)
is positive or null. We call power test of the weighted point (pl ,wl) with respect to the face pi p j pk, the predicates
testing the sign of the power product of (pl ,wl) with respect to the power circle of (pi,wi), (p j,w j) is (pk,wk).
This power product is given by the following determinant∣∣∣∣∣∣∣∣

1 xi yi x2
i + y2

i −wi
1 x j y j x2

j + y2
j −w j

1 xk yk x2
k + y2

k−wk
1 xl yl x2

l + y2
l −wl

∣∣∣∣∣∣∣∣
A pair of neighboring faces pi p j pk and pi p j pl is said to be locally regular (with respect to the weights in PW )
if the power test of (pl ,wl) with respect to pi p j pk is positive. A classical result of computational geometry
establishes that a triangulation of the convex hull of P such that any pair of neighboring faces is regular with
respect to PW , is a regular triangulation of PW .

Alternatively, the regular triangulation of the weighted points set PW can be obtained as the projection on the
two dimensional plane of the convex hull of the set of three dimensional points P′ = {(pi, p2

i −wi), i = 1, . . . ,n}.

The vertices of the regular triangulation of a set of weighted points PW form only a subset of the set of center
points of PW . Therefore the insertion of a weighted point in a regular triangulation does not necessarily imply
the creation of a new vertex. If the new inserted point does not appear as a vertex in the regular triangulation, it
is said to be hidden.
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Hidden points are stored in special vertices called hidden vertices. A hidden point is considered as hidden by
the facet of the triangulation where its point component is located : in fact, the hidden point can appear as vertex
of the triangulation only if this facet is removed. Each face of a regular triangulation stores the list of hidden
vertices whose points are located in the facet. When a facet is removed, points hidden by this facet are reinserted
in the triangulation.

#include <CGAL/Regular triangulation 2.h>

Parameters

The geometric traits parameter Traits has to be instantiated with a model of the concept
RegularTriangulationTraits 2. The concept RegularTriangulationTraits 2 refines the concept
TriangulationTraits 2 by adding the type Weighted point 2 to describe weighted points and the type
Power test 2 to perform power tests on weighted points.

The Tds parameter has to be instantiated by a model of TriangulationDataStructure 2. The face base of a
regular triangulation has to be a model of the concept RegularTriangulationFaceBase 2. while the vertex base
class has to be a model of RegularTriangulationVertexBase 2. CGAL provides a default instantiation for the
Tds parameter by the class CGAL::Triangulation data structure 2 < CGAL::Reugular triangulation vertex
base 2<Traits>, CGAL::Regular Triangulation face base 2<Traits> >.

Inherits From

Triangulation 2<Traits,Tds>

Types

typedef Traits::Distance Distance;

typedef Traits::Line Line;
typedef Traits::Ray Ray;
typedef Traits::Bare point Bare point;
typedef Traits::Weighted point Weighted point;

Regular triangulation 2<Traits,Tds>:: All vertices iterator

An iterator that allows to enumerate the vertices that are
not hidden.

Regular triangulation 2<Traits,Tds>:: Finite vertices iterator

An iterator that allows to enumerate the finite vertices
that are not hidden.

Regular triangulation 2<Traits,Tds>:: Hidden vertices iterator

An iterator that allows to enumerate the hidden vertices.
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Creation

Regular triangulation 2<Traits,Tds> rt( Traits gt = Traits());

Introduces an empty regular triangulation rt.

Regular triangulation 2<Traits,Tds> rt( Regular triangulation 2 rt);

Copy constructor.

Insertion and Removal

Vertex handle rt.insert( Weighted point p, Face handle f=Face handle())

inserts weighted point p in the regular triangulation. If the
point p does not appear as a vertex of the triangulation, the
returned vertex is a hidden vertex. If given the parameter f
is used as an hint for the place to start the location process
of point p.

Vertex handle rt.insert( Weighted point p, Locate type lt, Face handle loc, int li)

insert a weighted point p whose bare-point is assumed to be
located in lt,loc,li.

Vertex handle rt.push back( Point p) Equivalent to insert(p).

template < class InputIterator >
std::ptrdiff t rt.insert( InputIterator first, InputIterator last)

inserts the weighted points in the range [ first, last ). It re-
turns the difference of the number of vertices between after
and before the insertions (it may be negative due to hidden
points). Note that this function is not guaranteed to insert
the weighted points following the order of InputIterator, as
spatial sort is used to improve efficiency.
Precondition: The value type of first and last is Weighted
point.

template < class WeightedPointWithInfoInputIterator >
std::ptrdiff t rt.insert( WeightedPointWithInfoInputIterator first,

2529



WeightedPointWithInfoInputIterator last)

inserts the weighted points in the iterator range [ first, last ).
It returns the difference of the number of vertices between
after and before the insertions (it may be negative due to
hidden points). Note that this function is not guaranteed
to insert the weighted points following the order of Weight-
edPointWithInfoInputIterator, as spatial sort is used to im-
prove efficiency. Given a pair (p,i), the vertex v storing p also
stores i, that is v.point() == p and v.info() == i. If several
pairs have the same point, only one vertex is created, one of
the objects of type Vertex::Info will be stored in the vertex.
Precondition: Vertex must be model of the concept
TriangulationVertexBaseWithInfo 2. The value type of first
and last is std::pair<Weighted point,Vertex::Info>.

void rt.remove( Vertex handle v) removes the vertex from the triangulation.

Queries

template <class OutputItFaces, class OutputItBoundaryEdges, class OutputItHiddenVertices>
CGAL::Triple<OutputItFaces,OutputItBoundaryEdges,OutputItHiddenVertices>

rt.get conflicts and boundary and hidden vertices( Weighted point p,
OutputItFaces fit,
OutputItBoundaryEdges eit,
OutputItHiddenVertices vit,
Face handle start) const

OutputItFaces is an output iterator with Face handle as
value type. OutputItBoundaryEdges stands for an output it-
erator with Edge as value type. OutputItHiddenVertices is an
output iterator with Vertex handle as value type. This mem-
ber function outputs in the container pointed to by fit the
faces which are in conflict with point p i. e. the faces whose
power circles have negative power wrt. p. It outputs in the
container pointed to by eit the boundary of the zone in con-
flict with p. It inserts the vertices that would be hidden by p
into the container pointed to by vit. The boundary edges of
the conflict zone are output in counter-clockwise order and
each edge is described through its incident face which is not
in conflict with p. The function returns in a CGAL::Triple
the resulting output iterators.
Precondition: dimension()==2

template <class OutputItFaces, class OutputItBoundaryEdges>
std::pair<OutputItFaces,OutputItBoundaryEdges>

rt.get conflicts and boundary( Weighted point p,
OutputItFaces fit,
OutputItBoundaryEdges eit,
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Face handle start) const

same as above except that only the faces in conflict with p
and the boundary edges of the conflict zone are output via
the corresponding output iterators. The function returns in a
std::pair the resulting output iterators.
Precondition: dimension()==2

template <class OutputItFaces, class OutputItHiddenVertices>
std::pair<OutputItFaces,OutputItHiddenVertices>

rt.get conflicts and hidden vertices( Weighted point p,
OutputItFaces fit,
OutputItHiddenVertices vit,
Face handle start) const

same as above except that only the faces in conflict with p
and the vertices that would be hidden by p are output via
the corresponding output iterators. The function returns in a
std::pair the resulting output iterators.
Precondition: dimension()==2

template <class OutputItBoundaryEdges, class OutputItHiddenVertices>
std::pair<OutputItBoundaryEdges,OutputItHiddenVertices>

rt.get boundary of conflicts and hidden vertices( Weighted point p,
OutputItBoundaryEdges eit,
OutputItHiddenVertices vit,
Face handle start) const

same as above except that only the vertices that would be
hidden by p and the boundary of the zone in conflict with
p are output via the corresponding output iterators. The
boundary edges of the conflict zone are output in counter-
clockwise order and each edge is described through the inci-
dent face which is not in conflict with p. The function returns
in a std::pair the resulting output iterators.

template <class OutputItFaces>
OutputItFaces

rt.get conflicts( Point p, OutputItFaces fit, Face handle start) const

same as above except that only the faces in conflict with p
are output. The function returns the resulting output iterator.
Precondition: dimension()==2

template <class OutputItBoundaryEdges>
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OutputItBoundaryEdges

rt.get boundary of conflicts( Point p, OutputItBoundaryEdges eit, Face handle start) const

same as above except that only the boundary edges of the
conflict zone are output in counterclockwise order where
each edge is described through the incident face which is not
in conflict with p. The function returns the resulting output
iterator.

template <class OutputItHiddenVertices>
OutputItHiddenVertices

rt.get hidden vertices( Point p, OutputItHiddenVertices vit, Face handle start) const

same as above except that only the vertices that would be
hidden by p are output. The function returns the resulting
output iterator.

Vertex handle rt.nearest power vertex( Bare point p)

Returns the vertex of the triangulation which is nearest to
p with respect to the power distance. This means that the
power of the query point p with respect to the weighted point
in the nearest vertex is smaller than the power of p with re-
spect to the weighted point in any other vertex. Ties are bro-
ken arbitrarily. The default constructed handle is returned if
the triangulation is empty.

Access functions

int rt.number of vertices() const

returns the number of finite vertices that are not hidden.

int rt.number of hidden vertices() const

returns the number of hidden vertices.

Hidden vertices iterator rt.hidden vertices begin() const

starts at an arbitrary hidden vertex.

Hidden vertices iterator rt.hidden vertices end() const

past the end iterator for the sequence of hidden ver-
tices.

Finite vertices iterator rt.finite vertices begin() const

starts at an arbitrary unhidden finite vertex

Finite vertices iterator rt.finite vertices end() const

Past-the-end iterator
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All vertices iterator rt.all vertices end() const

starts at an arbitrary unhidden vertex.

All vertices iterator rt.all vertices begin() const

past the end iterator.

Dual power diagram

The following member functions provide the elements of the dual power diagram.

Point rt.weighted circumcenter( Face handle f) const

returns the center of the circle orthogonal to the three
weighted points corresponding to the vertices of face
f .
Precondition: f is not infinite

Point rt.dual( Face handle f) const

same as weighted circumcenter

Object rt.dual( Edge e) const If both incident faces are finite, returns a segment
whose endpoints are the duals of each incident face.
If only one incident face is finite, returns a ray whose
endpoint is the dual of the finite incident face and sup-
ported by the line which is the bisector of the edge’s
endpoints. If both incident faces are infinite, returns
the line which is the bisector of the edge’s endpoints
otherwise.

Object rt.dual( Edge circulator ec) const

Idem

Object rt.dual( Edge iterator ei) const

Idem

template < class Stream>
Stream& rt.draw dual( Stream & ps)

output the dual power diagram to stream ps.
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Predicates

Oriented side rt.power test( Face handle f, Weighted point p) const

Returns the power test of p with respect to the power circle associated with f

advanced

Miscellaneous

bool rt.is valid( bool verbose = false, int level = 0) const

Tests the validity of the triangulation as a Triangulation 2
and additionally test the regularity of the triangulation. This
method is useful to debug regular triangulation algorithms
implemented by the user.

advanced

See Also

CGAL::Triangulation 2<Traits,Tds>,
TriangulationDataStructure 2,
RegularTriangulationTraits 2
RegularTriangulationFaceBase 2
RegularTriangulationVertexBase 2
CGAL::Regular triangulation face base 2<Traits>
CGAL::Regular triangulation vertex base 2<Traits>
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CGAL::Regular triangulation euclidean traits 2<K,Weight>

Definition

Regular triangulation euclidean traits 2<K,Weight> is a model for the concept RegularTriangulationTraits 2
This traits class is templated by a kernel class K and a weight type Weight. This class inherits from K and uses
a Weighted point type derived from the type K::Point 2.

Note that this template class is specialized for CGAL::Exact predicates inexact constructions kernel, so that it
is as if Regular triangulation filtered traits 2 was used, i.e. you get filtered predicates automatically.

#include <CGAL/Regular triangulation euclidean traits 2.h>

Is Model for the Concepts

RegularTriangulationTraits 2

Inherits From

K

See Also

RegularTriangulationTraits 2
CGAL::Regular triangulation filtered traits 2
CGAL::Regular triangulation 2
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CGAL::Regular triangulation filtered traits 2<FK>

Definition

The class Regular triangulation filtered traits 2<FK> is designed as a traits class for the class Regular
triangulation 2<RegularTriangulationTraits 2,TriangulationDataStructure 2>. Its difference with Regular
triangulation euclidean traits 2 is that it provides filtered predicates which are meant to be fast and exact.

The first argument FK must be a model of the Kernel concept, and it is also restricted to be an instance of the
Filtered kernel template.

#include <CGAL/Regular triangulation filtered traits 2.h>

Is Model for the Concepts

RegularTriangulationTraits 2

Inherits From

Regular triangulation euclidean traits 2<FK>

See Also

CGAL::Regular triangulation euclidean traits 2.
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CGAL::Regular triangulation face base 2<Traits,Fb>

Definition

The class Regular triangulation face base 2<Traits,Fb> is a model of the concept
RegularTriangulationFaceBase 2. It is the default face base class of regular triangulations.

#include <CGAL/Regular triangulation face base 2.h>

Parameters

The template parameters Traits has to be a model of RegularTriangulationTraits 2.

The template parameter Fb has to be a model of TriangulationFaceBase 2. By default, this parameter is instan-
tiated by CGAL::Triangulation face base 2<Traits>.

Is Model for the Concepts

RegularTriangulationFaceBase 2

Inherits From

Fb

See Also

RegularTriangulationFaceBase 2
RegularTriangulationTraits 2
CGAL::Regular triangulation 2<Traits,Tds>
CGAL::Regular triangulation vertex base 2<Traits,Vb>
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CGAL::Regular triangulation vertex base 2<Traits,Vb>

Definition

The class Regular triangulation vertex base 2<Traits,Vb> is a model of the concept
RegularTriangulationVertexBase 2. It is the default vertex base class of regular triangulations.

#include <CGAL/Regular triangulation vertex base 2.h>

Parameters

The template parameters Traits has to be a model of RegularTriangulationTraits 2.

The template parameters Vb has to be a model of the concept TriangulationVertexBase 2 and is by default
instantiated by CGAL::Triangulation vertex base 2<Traits>.

Is Model for the Concepts

RegularTriangulationVertexBase 2

Inherits From

Vb

See Also

CGA::Triangulation vertex base 2<Traits,Vb>
CGAL::Regular triangulation 2<Traits,Tds>
CGAL::Regular triangulation face base 2<Traits,Fb>
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TriangulationFaceBase 2

Definition

The concept TriangulationFaceBase 2 describes the requirements for the base face class of a triangulation data
structure that is itself plugged into a basic triangulation or a Delaunay triangulation.

This concept refines the concept TriangulationDSFaceBase 2 and could add geometric information. In fact,
currently the triangulations of CGAL do not store any geometric information in the faces and, thus this concept
is just equal to TriangulationDSFaceBase 2 and only provided for symmetry with the vertex case.

Refines

TriangulationDSFaceBase 2

Has Models

CGAL::Triangulation face base 2<Traits>

See Also

TriangulationVertexBase 2
CGAL::Triangulation face base 2<Traits>
CGAL::Triangulation 2<Traits,Tds>
CGAL::Delaunay triangulation 2<Traits,Tds>

2539



C
on

ce
pt

TriangulationHierarchyVertexBase 2

Definition

The vertex of a triangulation included in a triangulation hierarchy has to provide some pointers to the
corresponding vertices in the triangulations of the next and preceding levels. Therefore, the concept
TriangulationHierarchyVertexBase 2 refines the concept TriangulationVertexBase 2, adding handles to the
corresponding vertices in the next and previous level triangulations.

Refines

TriangulationVertexBase 2

Operations

Vertex handle v.up() returns the corresponding vertex (if any) of the next level
triangulation;

Vertex handle v.down() returns the corresponding vertex of the previous level trian-
gulation;

void v.set up( Vertex handle u) sets the handle pointing to to the corresponding vertex of
the next level triangulation;

void v.set down( Vertex handle d) sets the handle pointing to the corresponding vertex of the
previous level triangulation;

Has Models

CGAL::Triangulation hierarchy vertex base 2<Vb>

See Also

Triangulation hierarchy 2<Tr>
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TriangulationTraits 2

Definition

The concept TriangulationTraits 2 describes the set of requirements to be fulfilled by any class used to instan-
tiate the first template parameter of the class Triangulation 2<Traits,Tds>. This concept provides the types of
the geometric primitives used in the triangulation and some function object types for the required predicates on
those primitives.

Types

TriangulationTraits 2:: Point 2 The point type.
TriangulationTraits 2:: Segment 2 The segment type.
TriangulationTraits 2:: Triangle 2 The triangle type.

TriangulationTraits 2:: Construct segment 2 A constructor object for Segment 2. Provides :
Segment 2 operator()(Point 2 p,Point 2 q),
which constructs a segment from two points.

TriangulationTraits 2:: Construct triangle 2 A constructor object for Triangle 2. Provides :
Triangle 2 operator()(Point 2 p,Point 2 q,Point 2 r ),
which constructs a triangle from three points.

TriangulationTraits 2:: Less x 2 Predicate object. Provides the operator :
bool operator()(Point p, Point q)
which returns true if p is before q according to the x-ordering
of points.

TriangulationTraits 2:: Less y 2 Predicate object. Provides the operator :
bool operator()(Point p, Point q)
which returns true if p is before q according to the y-ordering
of points.

TriangulationTraits 2:: Compare x 2 Predicate object. Provides the operator :
Comparison result operator()(Point p, Point q)
which returns SMALLER, EQUAL or LARGER according to
the x-ordering of points p and q.

TriangulationTraits 2:: Compare y 2 Predicate object. Provides the operator :
Comparison result operator()(Point p, Point q)
which returns (SMALLER, EQUAL or LARGER) according
to the y-ordering of points p and q.

TriangulationTraits 2:: Orientation 2 Predicate object. Provides the operator :
Orientation operator()(Point p, Point q, Point r)
which returns LEFT TURN, RIGHT TURN or COLLINEAR
depending on r being, with respect to the oriented line pq, on
the left side , on the right side or on the line.
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TriangulationTraits 2:: Side of oriented circle 2

Predicate object. Must provide the operator Oriented
side operator()(Point p, Point q, Point r, Point s)
which takes four points p,q,r,s as arguments and re-
turns ON POSITIVE SIDE, ON NEGATIVE SIDE or, ON
ORIENTED BOUNDARY according to the position of points
s with respect to the oriented circle through through p,q and
r. This type is required only if the function side of oriented
circle(Face handle f, Point p) is called.

TriangulationTraits 2:: Construct circumcenter 2

Constructor object. Provides the operator :
Point operator()(Point p, Point q, Point r)
which returns the circumcenter of the three points p, q
and r. This type is required only if the function Point
circumcenter(Face handle f)is called.

Creation

Only a default constructor, copy constructor and an assignment oper-
ator are required. Note that further constructors can be provided.
TriangulationTraits 2 traits; default constructor.
TriangulationTraits 2 traits( gtr); Copy constructor

TriangulationTraits 2 traits = gtr Assignment operator.

Predicate functions

The following functions give access to the predicate and constructor objects.
Construct segment 2 traits.construct segment 2 object()
Construct triangle 2 traits.construct triangle 2 object()
Comparison x 2 traits.compare x 2 object()
Comparison y 2 traits.compare y 2 object()
Orientation 2 traits.orientation 2 object()
Side of oriented circle 2

traits.side of oriented circle 2 object()

Required only if side of oriented circle is
called called.

Construct circumcenter 2

traits.construct circumcenter 2 object()

Required only if circumcenter is called.

Has Models

All the CGAL Kernels
CGAL::Triangulation euclidean traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2565
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CGAL::Projection traits xy 3<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 604
CGAL::Projection traits yz 3<K>
CGAL::Projection traits zx 3<K>

deprecated

CGAL::Triangulation euclidean traits xy 3<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2566,
CGAL::Triangulation euclidean traits yz 3<K>,
CGAL::Triangulation euclidean traits zx 3<K>.

deprecated

See Also

CGAL::Triangulation 2<Traits,Tds>
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TriangulationVertexBase 2

Definition

The concept TriangulationVertexBase 2 describes the requirements for the vertex base class of a triangulation
data structure to be plugged in a basic, Delaunay or constrained triangulations.

The concept TriangulationVertexBase 2 refines the concept TriangulationDSVertexBase 2 adding geometric
information : the vertex base of a triangulation stores a point.

Refines

TriangulationDSVertexBase 2

Types

TriangulationVertexBase 2:: Point Must be the same as the point type TriangulationTraits
2::Point 2 defined by the geometric traits class of the tri-
angulation.

Creation

TriangulationVertexBase 2 v( Point p); constructs a vertex embedded in point p.

TriangulationVertexBase 2 v( Point p, Face handle f );

constructs a vertex embedded in point p and pointing on face
f .

Access Functions

Point v.point() const returns the point.

Setting

void v.set point( Point p)

sets the point.

I/O

istream& istream& is >> & v

Inputs the non-combinatorial information given by the vertex: the point and
other possible information.
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ostream&

ostream& os << v

Outputs the non combinatorial operation given by the vertex: the point and
other possible information.

Has Models

CGAL::TriangulationVertexBase 2<Traits>.

See Also

TriangulationDataStructure 2
TriangulationDataStructure 2::Vertex
CGAL::Triangulation vertex base 2<Traits>
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TriangulationVertexBaseWithInfo 2

Definition

A type model of this concept can be used as vertex base by a triangulation and provides an additional information
storage.

Refines

TriangulationVertexBase 2

Types

TriangulationVertexBaseWithInfo 2:: Info A type which is DefaultConstructible and Assignable.

Access Functions

Info v.info() const Returns a const reference to the object of type Info stored in
the vertex.

Info& v.info() Returns a reference to the object of type Info stored in the
vertex.

Has Models

CGAL::Triangulation vertex base with info 2
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CGAL::Triangulation 2<Traits,Tds>

Definition

The class Triangulation 2<Traits,Tds> is the basic class designed to handle triangulations of set of points A in
the plane.

Such a triangulation has vertices at the points of A and its domain covers the convex hull of A. It can be viewed
as a planar partition of the plane whose bounded faces are triangular and cover the convex hull of A. The single
unbounded face of this partition is the complementary of the convex hull of A.

In many applications, it is convenient to deal only with triangular faces. Therefore, we add to the triangulation a
fictitious vertex, called the infinite vertex and we make each convex hull edge incident to an infinite face having
as third vertex the infinite vertex. In that way, each edge is incident to exactly two faces and special cases at the
boundary of the convex hull are simpler to deal with.

∞

∞

∞

∞

∞

Figure 37.10: The infinite vertex.

The class Triangulation 2<Traits,Tds> implements this point of view and therefore considers the triangulation
of the set of points as a set of triangular, finite and infinite faces. Although it is convenient to draw a triangulation
as in figure 37.10, note that the infinite vertex has no significant coordinates and that no geometric predicate can
be applied on it or on an infinite face.

A triangulation is a collection of vertices and faces that are linked together through incidence and adjacency
relations. Each face give access to its three incident vertices and to its three adjacent faces. Each vertex give
access to one of its incident faces.

The three vertices of a face are indexed with 0, 1 and 2 in counterclockwise order. The neighbor of a face are
also indexed with 0,1,2 in such a way that the neighbor indexed by i is opposite to the vertex with the same
index.

The triangulation class offer two functions int cw(int i) and int ccw(int i) which given the index of a vertex in
a face compute the index of the next vertex of the same face in clockwise or counterclockwise order. Thus, for
example the neighbor neighbor(cw(i)) is the neighbor of f which is next to neighbor(i) turning clockwise around
f . The face neighbor(cw(i)) is also the first face encountered after f when turning clockwise around vertex i of f
(see Figure 37.11).

#include <CGAL/Triangulation 2.h>

Parameters

The class Triangulation 2<Traits,Tds> has two template parameters. The first one Traits is the geometric traits,
it is to be instantiated by a model of the concept TriangulationTraits 2.
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vertex(i)

vertex(ccw(i)) vertex(cw(i))

neighbor(ccw(i))

neighbor(i)

neighbor(cw(i))

f

Figure 37.11: Vertices and neighbors.

The second parameter is the triangulation data structure, it has to be instantiated by a model of the
concept TriangulationDataStructure 2. By default, the triangulation data structure is instantiated by
CGAL::Triangulation data structure 2 < CGAL::Triangulation vertex base 2<Gt>, CGAL::Triangulation
face base 2<Gt> >.

Inherits From

Triangulation cw ccw 2 This class provides the functions cw(i) and ccw(i).

Types

typedef Traits Geom traits; the traits class.
typedef Tds Triangulation data structure; the triangulation data structure type.

typedef Traits::Point 2 Point; the point type
typedef Traits::Segment 2 Segment; the segment type
typedef Traits::Triangle 2 Triangle; the triangle type

typedef Tds::Vertex Vertex; the vertex type.
typedef Tds::Face Face; the face type.
typedef Tds::Edge Edge; the edge type.

typedef Tds::size type size type; Size type (an unsigned integral type)
typedef Tds::difference type difference type; Difference type (a signed integral type)

The vertices and faces of the triangulations are accessed through handles, iterators and circulators. The handles
are models of the concept Handle which basically offers the two dereference operators * and ->. The iterators
and circulators are all bidirectional and non mutable. The circulators and iterators are convertible to handles
with the same value type, so that whenever a handle appear in the parameter list of a function, an appropriate
iterator or circulator can be passed as well.

The edges of the triangulation can also be visited through iterators and circulators, the edge circulators and
iterators are also bidirectional and non mutable.

In the following, we called infinite any face or edge incident to the infinite vertex and the infinite vertex itself.
Any other feature (face, edge or vertex) of the triangulation is said to be finite. Some iterators (the All iterators
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) allows to visit finite or infinite feature while others (the Finite iterators) visit only finite features. Circulators
visit infinite features as well as finite ones.

typedef Tds::Vertex handle Vertex handle; handle to a vertex
typedef Tds::Face handle Face handle; handle to a face

typedef Tds::Face iterator All faces iterator; iterator over all faces.
typedef Tds::Edge iterator All edges iterator; iterator over all edges
typedef Tds::Vertex iterator All vertices iterator; iterator over all vertices

Triangulation 2<Traits,Tds>:: Finite faces iterator iterator over finite faces.
Triangulation 2<Traits,Tds>:: Finite edges iterator iterator over finite edges.
Triangulation 2<Traits,Tds>:: Finite vertices iterator iterator over finite vertices.
Triangulation 2<Traits,Tds>:: Point iterator iterator over the points correspond-

ing the finite vertices of the triangu-
lation.

Triangulation 2<Traits,Tds>:: Line face circulator circulator over all faces intersected
by a line.

Triangulation 2<Traits,Tds>:: Face circulator circulator over all faces incident to
a given vertex.

Triangulation 2<Traits,Tds>:: Edge circulator circulator over all edges incident to
a given vertex.

Triangulation 2<Traits,Tds>:: Vertex circulator circulator over all vertices incident
to a given vertex.

The triangulation class also defines the following enum type to specify which case occurs when locating a point
in the triangulation.

enum Locate type { VERTEX=0, EDGE, FACE, OUTSIDE CONVEX HULL, OUTSIDE AFFINE HULL};

The locate type is OUTSIDE
CONVEX HULL when the point is
outside the convex hull but in the
affine hull of the current triangula-
tion.
The locate type is OUTSIDE
AFFINE HULL when the point is
outside the affine hull of the current
triangulation.

Creation

Triangulation 2<Traits,Tds> t; default constructor.
Triangulation 2<Traits,Tds> t( Traits gt = Traits());

Introduces an empty triangulation t.
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Triangulation 2<Traits,Tds> t( Triangulation 2 tr);

Copy constructor. All the vertices and faces are duplicated. Af-
ter the copy, t and tr refer to different triangulations : if tr is
modified, t is not.

Triangulation 2 t = tr Assignment. All the vertices and faces are duplicated. After
the assignment, t and tr refer to different triangulations : if tr is
modified, t is not.

void t.swap( Triangulation 2& tr)

The triangulations tr and t are swapped. t.swap(tr) should be pre-
ferred to t = tr or to t(tr) if tr is deleted after that.

void t.clear() Deletes all faces and finite vertices resulting in an empty triangu-
lation.

Access Functions

Geom traits t.geom traits() const Returns a const reference to the triangulation traits object.
TriangulationDataStructure 2

t.tds() const Returns a const reference to the triangulation data structure.

advanced

Non const access

The responsibility of keeping a valid triangulation belongs to the user when using advanced operations allowing
a direct manipulation of the tds.

TriangulationDataStructure 2&

t.tds() Returns a reference to the triangulation data structure.

This method is mainly a help for users implementing their own triangulation algorithms.

advanced
int t.dimension() const Returns the dimension of the convex hull.
size type t.number of vertices() const

Returns the number of finite vertices.

size type t.number of faces() const

Returns the number of finite faces.

Face handle t.infinite face() const a face incident to the infinite vertex.
Vertex handle t.infinite vertex() the infinite vertex.
Vertex handle t.finite vertex() const a vertex distinct from the infinite vertex.
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Predicates

The class Triangulation 2<Traits,Tds> provides methods to test the finite or infinite character of any feature,
and also methods to test the presence in the triangulation of a particular feature (edge or face).

bool t.is infinite( Vertex handle v) const

true iff v is the infinite vertex.

bool t.is infinite( Face handle f) const true iff face f is infinite.
bool t.is infinite( Face handle f, int i) const

true iff edge (f,i) is infinite.

bool t.is infinite( Edge e) const true iff edge e is infinite.
bool t.is infinite( Edge circulator ec) const

true iff edge *ec is infinite.

bool t.is infinite( Edge iterator ei) const

true iff edge *ei is infinite.

bool t.is edge( Vertex handle va, Vertex handle vb)

true if there is an edge having va and vb as vertices.

bool t.is edge( Vertex handle va, Vertex handle vb, Face handle& fr, int & i)

as above. In addition, if true is returned, the edge with vertices va
and vb is the edge e=(fr,i) where fr is a handle to the face incident
to e and on the right side of e oriented from va to vb.

bool t.includes edge( Vertex handle va, Vertex handle & vb, Face handle& fr, int & i)

true if the line segment from va to vb includes an edge e incident
to va. If true, vb becomes the other vertex of e, e is the edge (fr,i)
where fr is a handle to the face incident to e and on the right side
e oriented from va to vb.

bool t.is face( Vertex handle v1, Vertex handle v2, Vertex handle v3)

true if there is a face having v1, v2 and v3 as vertices.

bool t.is face( Vertex handle v1, Vertex handle v2, Vertex handle v3, Face handle &fr)

as above. In addition, if true is returned, fr is a handle to the face
with v1, v2 and v3 as vertices.

Queries

The class Triangulation 2<Traits,Tds> provides methods to locate a given point with respect to a triangulation.
It also provides methods to locate a point with respect to a given finite face of the triangulation.
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Face handle t.locate( Point query, Face handle f = Face handle())

If the point query lies inside the convex hull of the points, a face that
contains the query in its interior or on its boundary is returned.
If the point query lies outside the convex hull of the triangulation but
in the affine hull, the returned face is an infinite face which is a proof
of the point’s location :
- for a two dimensional triangulation, it is a face (∞, p,q) such that
query lies to the left of the oriented line pq (the rest of the triangula-
tion lying to the right of this line).
- for a degenerate one dimensional triangulation it is the (degenerate
one dimensional) face (∞, p,NULL) such that query and the triangu-
lation lie on either side of p.
If the point query lies outside the affine hull, the returned Face
handle is NULL.
The optional Face handle argument, if provided, is used as a hint of
where the locate process has to start its search.

Face handle t.locate( Point query, Locate type& lt, int& li, Face handle h =Face handle())

Same as above. Additionally, the parameters lt and li describe where
the query point is located. The variable lt is set to the locate type of
the query. If lt==VERTEX the variable li is set to the index of the ver-
tex, and if lt==EDGE li is set to the index of the vertex opposite to the
edge. Be careful that li has no meaning when the query type is FACE,
OUTSIDE CONVEX HULL, or OUTSIDE AFFINE HULL or when
the triangulation is 0-dimensional.

Oriented side t.oriented side( Face handle f, Point p) const

Returns on which side of the oriented boundary of f lies the point p.
Precondition: f is finite.

Oriented side t.side of oriented circle( Face handle f, Point p)

Returns on which side of the circumcircle of face f lies the point p.
The circle is assumed to be counterclockwise oriented, so its positive
side correspond to its bounded side. This predicate is available only
if the corresponding predicates on points is provided in the geometric
traits class.

Modifiers

The following operations are guaranteed to lead to a valid triangulation when they are applied on a valid trian-
gulation.

void t.flip( Face handle f, int i)

Exchanges the edge incident to f and f->neighbor(i) with the other
diagonal of the quadrilateral formed by f and f->neighbor(i).
Precondition: The faces f and f->neighbor(i) are finite faces and their
union form a convex quadrilateral.
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Vertex handle t.insert( Point p, Face handle f = Face handle())

Inserts point p in the triangulation and returns the corresponding ver-
tex.
If point p coincides with an already existing vertex, this vertex is re-
turned and the triangulation remains unchanged.
If point p is on an edge, the two incident faces are split in two.
If point p is strictly inside a face of the triangulation, the face is split
in three.
If point p is strictly outside the convex hull, p is linked to all visible
points on the convex hull to form the new triangulation.
At last, if p is outside the affine hull (in case of degenerate 1-
dimensional or 0-dimensional triangulations), p is linked all the other
vertices to form a triangulation whose dimension is increased by one.
The last argument f is an indication to the underlying locate algorithm
of where to start.

Vertex handle t.insert( Point p, Locate type lt, Face handle loc, int li)

Same as above except that the location of the point p to be inserted
is assumed to be given by (lt,loc,i) (see the description of the locate
method above.)

Vertex handle t.push back( Point p)

Equivalent to insert(p).

template < class InputIterator >
std::ptrdiff t t.insert( InputIterator first, InputIterator last)

Inserts the points in the range [ first, last ). Returns the number of
inserted points.
Precondition: The value type of InputIterator is Point.

void t.remove( Vertex handle v)

Removes the vertex from the triangulation. The created hole is re-
triangulated.
Precondition: Vertex v must be finite.

Vertex handle t.move if no collision( Vertex handle v, Point p)

if there is not already another vertex placed on p, the triangulation is
modified such that the new position of vertex v is p, and v is returned.
Otherwise, the triangulation is not modified and the vertex at point p
is returned.
Precondition: Vertex v must be finite.
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Figure 37.12: Insertion of a point on an edge.

Figure 37.13: Insertion in a face.

Vertex handle t.move( Vertex handle v, Point p)

same as above if there is no collision. Otherwise, v is deleted and the
vertex placed on p is returned.
Precondition: Vertex v must be finite.

advanced

The following member functions offer more specialized versions of the insertion or removal operations to be
used when one knows to be in the corresponding case.

Vertex handle t.insert first( Point p)

Inserts the first finite vertex .

Vertex handle t.insert second( Point p)

Inserts the second finite vertex .

Vertex handle t.insert in face( Point p, Face handle f)

Inserts vertex v in face f . Face f is modified, two new faces are cre-
ated.
Precondition: The point in vertex v lies inside face f .
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Figure 37.14: Insertion outside the convex hull.

Figure 37.15: Removal

2555



Vertex handle t.insert in edge( Point p, Face handle f, int i)

Inserts vertex v in edge i of f .
Precondition: The point in vertex v lies on the edge opposite to the
vertex i of face f .

Vertex handle t.insert outside convex hull( Point p, Face handle f)

Inserts a point which is outside the convex hull but in the affine hull.
Precondition: The handle f points to a face which is a proof of the
location ofp, see the description of the locate method above.

Vertex handle t.insert outside affine hull( Point p)

Inserts a point which is outside the affine hull.

void t.remove degree 3( Vertex handle v)

Removes a vertex of degree three. Two of the incident faces are de-
stroyed, the third one is modified.
Precondition: Vertex v is a finite vertex with degree three.

void t.remove second( Vertex handle v)

Removes the before last finite vertex.

void t.remove first( Vertex handle v)

Removes the last finite vertex.

The following functions are mainly intended to be used in conjunction with the find conflicts() member func-
tions of Delaunay and constrained Delaunay triangulations to perform insertions.

template<class EdgeIt>
Vertex handle t.star hole( Point p, EdgeIt edge begin, EdgeIt edge end)

creates a new vertex v and use it to star the hole whose boundary is
described by the sequence of edges [edge begin, edge end[. Returns
a handle to the new vertex.

template<class EdgeIt, class FaceIt>
Vertex handle t.star hole( Point p,

EdgeIt edge begin,
EdgeIt edge end,
FaceIt face begin,
FaceIt face end)

same as above, except that the algorithm first recycles faces in the
sequence [face begin, face end[ and create new ones only when the
sequence is exhausted.
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advanced

Traversal of the Triangulation

A triangulation can be seen as a container of faces and vertices. Therefore the triangulation provides several
iterators and circulators that allow to traverse it (completely or partially).

Face, Edge and Vertex Iterators

The following iterators allow respectively to visit finite faces, finite edges and finite vertices of the triangulation.
These iterators are non mutable, bidirectional and their value types are respectively Face, Edge and Vertex. They
are all invalidated by any change in the triangulation.

Finite vertices iterator t.finite vertices begin() const

Starts at an arbitrary finite vertex

Finite vertices iterator t.finite vertices end() const

Past-the-end iterator

Finite edges iterator t.finite edges begin() const

Starts at an arbitrary finite edge

Finite edges iterator t.finite edges end() const

Past-the-end iterator

Finite faces iterator t.finite faces begin() const

Starts at an arbitrary finite face

Finite faces iterator t.finite faces end() const

Past-the-end iterator

Point iterator t.points begin() const
Point iterator t.points end() const Past-the-end iterator

The following iterators allow respectively to visit all (finite or infinite) faces, edges and vertices of the trian-
gulation. These iterators are non mutable, bidirectional and their value types are respectively Face, Edge and
Vertex. They are all invalidated by any change in the triangulation.

All vertices iterator t.all vertices begin() const

Starts at an arbitrary vertex

All vertices iterator t.all vertices end() const

Past-the-end iterator
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All edges iterator t.all edges begin() const

Starts at an arbitrary edge

All edges iterator t.all edges end() const Past-the-end iterator

All faces iterator t.all faces begin() const Starts at an arbitrary face
All faces iterator t.all faces end() const Past-the-end iterator

Line Face Circulator

The triangulation defines a circulator that allows to visit all faces that are intersected by a line. A face f is
considered has being intersected by the oriented line l if either:

• f is a finite face whose interior intersects l, or

• f is a finite face with an edge collinear with l and lies to the left of l, or

• f is an infinite face incident to a convex hull edge whose interior is intersected by l, or

• f is an infinite face incident to a convex hull vertex lying on l and the finite edge of f lies to the left of l.

The circulator has a singular value if the line l intersect no finite face of the triangulation. This circulator is
non-mutable and bidirectional. Its value type is Face.

Line face circulator t.line walk( Point p, Point q, Face handle f = Face handle())

This function returns a circulator that allows to visit the faces
intersected by the line pq. If there is no such face the circulator
has a singular value.
The starting point of the circulator is the face f , or the first finite
face traversed by l , if f is omitted.
The circulator wraps around the infinite vertex : after the last
traversed finite face, it steps through the infinite face adjacent
to this face then through the infinite face adjacent to the first
traversed finite face then through the first finite traversed face
again.
Precondition: The triangulation must have dimension 2.
Precondition: Points p and q must be different points.
Precondition: If f != NULL, it must point to a finite face and
the point p must be inside or on the boundary of f .

Figure 37.16 illustrates which finite faces are enumerated. Lines l1 and l2 have no face to their left. Lines l3
and l4 have faces to their left. Note that the finite faces that are only vertex incident to lines l3 and l4 are not
enumerated.

A line face circulator is invalidated if the face the circulator refers to is changed.

Face, Edge and Vertex Circulators

The triangulation also provides circulators that allows to visit respectively all faces or edges incident to a given
vertex or all vertices adjacent to a given vertex. These circulators are non-mutable and bidirectional. The
operator++ moves the circulator counterclockwise around the vertex while the operator-- moves clockwise.
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Figure 37.16: The line face circulator.

A face circulator is invalidated by any modification of the face pointed to. An edge or a vertex circulator are
invalidated by any modification of one of the two faces incident to the edge pointed to.

Face circulator t.incident faces( Vertex handle v) const

Starts at an arbitrary face incident to v.

Face circulator t.incident faces( Vertex handle v, Face handle f) const

Starts at face f .
Precondition: Face f is incident to vertex v.

Edge circulator t.incident edges( Vertex handle v) const

Starts at an arbitrary edge incident to v.

Edge circulator t.incident edges( Vertex handle v, Face handle f) const

Starts at the first edge of f incident to v, in counterclockwise
order around v.
Precondition: Face f is incident to vertex v.

Vertex circulator t.incident vertices( Vertex handle v) const

Starts at an arbitrary vertex incident to v.

Vertex circulator t.incident vertices( Vertex handle v, Face handle f)

Starts at the first vertex of f adjacent to v in counterclockwise
order around v.
Precondition: Face f is incident to vertex v.

Traversal of the Convex Hull

Applied on the infinite vertex the above functions allow to visit the vertices on the convex hull and the infi-
nite edges and faces. Note that a counterclockwise traversal of the vertices adjacent to the infinite vertex is a
clockwise traversal of the convex hull.

Face circulator t.incident faces( t.infinite vertex())
Face circulator t.incident faces( t.infinite vertex(), Face handle f) const
Edge circulator t.incident edges( t.infinite vertex())
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Edge circulator t.incident edges( t.infinite vertex(), Face handle f)
Vertex circulator t.incident vertices( t.infinite vertex() v)
Vertex circulator t.incident vertices( t.infinite vertex(), Face handle f)

Traversal between adjacent faces

Vertex handle t.mirror vertex( Face handle f, int i) const

returns the vertex of the ith neighbor of f that is opposite to f .
Precondition: 0≤ i≤ 2.

int t.mirror index( Face handle f, int i) const

returns the index of f in its ith neighbor.
Precondition: 0≤ i≤ 2.

Edge t.mirror edge( Edge e) const

returns the same edge seen from the other adjacent face.
Precondition: 0≤ i≤ 2.

Miscellaneous

int t.ccw( int i) const Returns i+1 modulo 3.
Precondition: 0≤ i≤ 2.

int t.cw( int i) const Returns i+2 modulo 3.
Precondition: 0≤ i≤ 2.

Triangle

t.triangle( Face handle f) const

Returns the triangle formed by the three vertices of f .
Precondition: The face is finite.

Segment t.segment( Face handle f, int i) const

Returns the line segment formed by the vertices ccw(i) and cw(i)
of face f .
Precondition: 0 ≤ i ≤ 2. The vertices ccw(i) and cw(i) of f are
finite.

Segment t.segment( Edge e) const Returns the line segment corresponding to edge e.
Precondition: e is a finite edge

Segment t.segment( Edge circulator ec) const

Returns the line segment corresponding to edge *ec.
Precondition: *ec is a finite edge.

Segment t.segment( Edge iterator ei) const

Returns the line segment corresponding to edge *ei.
Precondition: *ei is a finite edge.
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Point t.circumcenter( Face handle f) const

Compute the circumcenter of the face pointed to by f. This func-
tion is available only if the corresponding function is provided
in the geometric traits.

advanced

Setting

void t.set infinite vertex( Vertex handle v)

Checking

The responsibility of keeping a valid triangulation belongs to the users if advanced operations are used. Obvi-
ously the advanced user, who implements higher levels operations may have to make a triangulation invalid at
some times. The following method is provided to help the debugging.

bool t.is valid( bool verbose = false, int level = 0) const

Checks the combinatorial validity of the triangulation and also
the validity of its geometric embedding. This method is mainly
a debugging help for the users of advanced features.

advanced

I/O

The I/O operators are defined for iostream. The format for the iostream is an internal format.

ostream& ostream& os << T

Inserts the triangulation t into the stream os.
Precondition: The insert operator must be defined for Point.

istream& istream& is >> T Reads a triangulation from stream is and assigns it to t.
Precondition: The extract operator must be defined for Point.

The information output in the iostream is:
- the number of vertices (including the infinite one), the number of faces (including infinite ones), and the
dimension.
- for each vertex (except the infinite vertex), the non combinatorial information stored in that vertex (point, etc.).
- for each faces, the indices of its vertices and the non combinatorial information (if any) in this face.
- for each face again the indices of the neighboring faces.
The index of an item (vertex of face) is the rank of this item in the output order. When dimension < 2, the same
information is output for faces of maximal dimension instead of faces.

CGAL also provides a stream operator << to draw triangulations for CGAL::Qt widget, the Qt based graphic
package. These operators require the include statement :
#include CGAL/IO/Qt widget Triangulation 2.h
See the Qt widget class.
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Implementation

Locate is implemented by a line walk from a vertex of the face given as optional parameter (or from a finite
vertex of infinite face() if no optional parameter is given). It takes time O(n) in the worst case, but only O(

√
n)

on average if the vertices are distributed uniformly at random.

Insertion of a point is done by locating a face that contains the point, and then splitting this face. If the point
falls outside the convex hull, the triangulation is restored by flips. Apart from the location, insertion takes a time
time O(1). This bound is only an amortized bound for points located outside the convex hull.

Removal of a vertex is done by removing all adjacent triangles, and re-triangulating the hole. Removal takes
time O(d2) in the worst case, if d is the degree of the removed vertex, which is O(1) for a random vertex.

The face, edge, and vertex iterators on finite features are derived from their counterparts visiting all (finite
and infinite) features which are themselves derived from the corresponding iterators of the triangulation data
structure.

See Also

TriangulationTraits 2
TriangulationDataStructure 2
TriangulationDataStructure 2::Face
TriangulationDataStructure 2::Vertex
CGAL::Triangulation data structure 2<Vb,Fb>
CGAL::Triangulation vertex base 2<Traits>
CGAL::Triangulation face base 2<Traits>
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Figure 37.17: Vertices and neighbors.
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CGAL::Triangulation cw ccw 2

Definition

The class Triangulation cw ccw 2 offer two functions int cw(int i) and int ccw(int i) which given the index
of a vertex in a face compute the index of the next vertex of the same face in clockwise or counterclockwise
order. This works also for neighbor indexes. Thus, for example the neighbor neighbor(cw(i)) of a face f is the
neighbor which is next to neighbor(i) turning clockwise around f . The face neighbor(cw(i)) is also the first face
encountered after f when turning clockwise around vertex i of f .

Many of the classes in the triangulation package inherit from Triangulation cw ccw 2. This is for instance the
case for CGAL::Triangulation 2<Traits,Tds>::Face. Thus, for example the neighbor neighbor(cw(i)) of a face
f is the neighbor which is next to neighbor(i) turning clockwise around f . The face neighbor(cw(i)) is also the
first face encountered after f when turning clockwise around vertex i of f .

#include <CGAL/Triangulation 2.h>

Creation

Triangulation cw ccw 2 a; default constructor.

Operations

int a.ccw( const int i) const

returns the index of the neighbor or vertex that is next to the
neighbor or vertex with index i in counterclockwise order
around a face.

int a.cw( const int i) const

returns the index of the neighbor or vertex that is next to the
neighbor or vertex with index i in counterclockwise order
around a face.
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See Also

CGAL::Triangulation 2<Traits,Tds>
CGAL::TriangulationDSFace 2
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CGAL::Triangulation euclidean traits 2<K>

Definition

The class Triangulation euclidean traits 2<K> can be used to instantiate the geometric traits class of basic and
Delaunay triangulations. The templated parameter K has to be instantiated by a model of the Kernel concept.
The class Triangulation euclidean traits 2<K> uses types and predicates defined K.

#include <CGAL/Triangulation euclidean traits 2.h>

Is Model for the Concepts

TriangulationTraits 2
DelaunayTriangulationTraits 2

See Also

TriangulationTraits 2
DelaunayTriangulationTraits 2
CGAL::Triangulation 2<Traits,Tds>
CGAL::Delaunay triangulation 2<Traits,Tds>
CGAL::Triangulation euclidean traits xy 3<K>
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CGAL::Triangulation euclidean traits xy 3<K>

The functionality of this class has been generalized to other packages than 2D triangulations. The more general
class Projection traits xy 3 can be found in the 2D and 3D Linear Geometric Kernel.

deprecated

Definition

The class Triangulation euclidean traits xy 3<K> is a geometric traits class which allows to triangulate a ter-
rain. This traits class is designed to build a two dimensional triangulation embedded in 3D space, i.e. a tri-
angulated surface, such that its on the xy plane is a Delaunay triangulation. This is a usual construction for
GIS terrains. Instead of really projecting the 3D points and maintaining a mapping between each point and
its projection (which costs space and is error prone) the class Triangulation euclidean traits xy 3<K> supplies
geometric predicates that ignore the z-coordinate of the points.

The class is a model of the concept DelaunayTriangulationTraits 2 except that it does not provide the type
and constructors required to build the dual Voronoi diagram. The class is also a model of the concept
ConstrainedTriangulationTraits 2.

Parameters

The template parameter K has to be instantiated by a model of the Kernel concept. Triangulation euclidean
traits xy 3<K> uses types and predicates defined in K.

#include <CGAL/Triangulation euclidean traits xy 3.h>

Types

typedef Point 3<K> Point 2;
typedef Segment 3<K>

Segment 2;
typedef Triangle 3<K>

Triangle 2;
typedef Line 3<K> Line 2;

The following predicates and constructor types are provided

Triangulation euclidean traits xy 3<K>:: Construct segment 2

A constructor object for Segment 2. Provides :
Segment 2 operator()(Point 2 p,Point 2 q),
which constructs a segment from two points.

Triangulation euclidean traits xy 3<K>:: Construct triangle 2

A constructor object for Triangle 2. Provides :
Triangle 2 operator()(Point 2 p,Point 2 q,Point 2 r ),
which constructs a triangle from three points.
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Triangulation euclidean traits xy 3<K>:: Construct line 2

A constructor object for Line 2. Provides :
Line 2 operator()(Point 2 p,Point 2 q),
which constructs a line from two points.

Triangulation euclidean traits xy 3<K>:: Compute squared distance 2

A construction object. Provides the operator :
RT operator()(Line 2 l, Point 2 p); which returns the squared distance between the
projection of p and the projection of l.

Triangulation euclidean traits xy 3<K>:: Intersect 2

A construction object. Provides the operator :
Object 2 operator()(Segment 2 s1, Segment 2 s2); which returns the intersection of
the projection of s1 and the projection of s2 embedded in 3D. If the intersection is a
segment, the z-coordinates of its extremities is 0. If the intersection is a point p, let
p1 and p2 be the points on s1 and s2 respectively, such that their projections are p.
The point returned is the middle of the segment p1p2.
Precondition: The projection of s1 and the projection of s2 are non-degenerate 2D
segments.

Triangulation euclidean traits xy 3<K>:: Compare x 2

Predicate object. Provides the operator :
Comparison result operator()(Point 2 p, Point 2 q)
which returns SMALLER, EQUAL or LARGER according to the x-ordering of points
p and q.

Triangulation euclidean traits xy 3<K>:: Compare y 2

Predicate object. Provides the operator :
Comparison result operator()(Point 2 p, Point 2 q)
which returns (SMALLER, EQUAL or LARGER) according to the y-ordering of points
p and q.

Triangulation euclidean traits xy 3<K>:: Orientation 2

Predicate object. Provides the operator :
Orientation operator()(Point 2 p, Point 2 q, Point 2 r)
which returns LEFT TURN, RIGHT TURN or COLLINEAR according to the posi-
tion of the projection of r with respect to the projection of the oriented line pq.

Triangulation euclidean traits xy 3<K>:: Side of oriented circle 2

Predicate object. Provides the operator : Oriented side operator()(Point 2 p, Point
2 q, Point 2 r, Point 2 s) which takes four points p,q,r,s as arguments and returns
ON POSITIVE SIDE, ON NEGATIVE SIDE or, ON ORIENTED BOUNDARY ac-
cording to the position of the projection of points with respect to the oriented circle
through the projections of p,q and r.

Triangulation euclidean traits xy 3<K>:: Compare distance 2

Predicate object. Provides the operator :
Comparison result operator()(Point 2 p, Point 2 q, Point 2 r) which returns
SMALLER, EQUAL or LARGER according to the distance between the projection
of p and the projection of q being smaller, equal or larger than the distance between
the projection of p and the projection of r.
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Creation

Triangulation euclidean traits xy 3<K> traits;

default constructor.

Triangulation euclidean traits xy 3<K> traits( Triangulation euclidean traits xy 3 tr);

Copy constructor.

Triangulation euclidean traits xy 3 traits = Triangulation euclidean traits xy 3 tr

Assignment operator.

Access to predicate objects

The following access functions are provided

Construct segment 2 traits.construct segment 2 object()
Construct triangle 2 traits.construct triangle 2 object()
Construct line 2 traits.construct line 2 object()
Comparison x 2 traits.compare x 2 object()
Comparison y 2 traits.compare y 2 object()
Orientation 2 traits.orientation 2 object()
Side of oriented circle 2 traits.side of oriented circle 2 object()
Compare distance 2 traits.compare distance 2 object()
Intersect 2 traits.intersect 2 object()
Compute squared distance 2

traits.compute squared distance 2 object()

See Also

TriangulationTraits 2
DelaunayTriangulationTraits 2
CGAL::Triangulation 2<Traits,Tds>
CGAL::Delaunay triangulation 2<Traits,Tds>

CGAL provides also predefined geometric traits class Triangulation euclidean traits yz 3<K> and
Triangulation euclidean traits xz 3<K> to deal with projections on the xz- or the yz-plane, respectively.

#include <CGAL/Triangulation euclidean traits xz 3.h>
#include <CGAL/Triangulation euclidean traits yz 3.h>

deprecated
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CGAL::Triangulation face base 2<Traits,Fb>

Definition

The class Triangulation face base 2<Traits,Fb> is a model for the concept TriangulationFaceBase 2. It is the
default face base class for basic and Delaunay triangulation.

These default base class can be used directly or can serve as a base to derive other base classes with some
additional attribute (a color for example) tuned for specific applications.

Parameters

The first template parameter of Triangulation face base 2<Traits,Fb> is a geometric traits class. The geometric
traits is actually not used by the class.

The second template parameter has to be a model of the concept TriangulationDSFaceBase 2 and will serve as a
base class for Triangulation face base 2<Traits,Fb> . CGAL provides a default instantiation for this parameter
which is Triangulation ds face base 2<>.

#include <CGAL/Triangulation face base 2.h>

Is Model for the Concepts

TriangulationFaceBase 2

See Also

CGAL::Triangulation ds face base 2<Tds>
CGAL::Triangulation vertex base 2<Traits,Vb>
CGAL::Triangulation 2<Traits,Tds>
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CGAL::Triangulation face base with info 2<Info,Traits,Fb>

Definition

The class Triangulation face base with info 2<Info,Traits,Fb> is a model of the concept
TriangulationFaceBase 2 to be plugged into the triangulation data structure of a triangulation class. It
provides an easy way to add some user defined information in the faces of a triangulation.

#include <CGAL/Triangulation face base with info 2.h>

Parameters

The first template argument is the information the user would like to add to a face. It has to be DefaultCon-
structible and Assignable.

The second template argument is a geometric traits class and is actually not used in Triangulation face base
with info 2<Info,Traits,Fb> .

The third parameter is a face base class from which Triangulation face base with info 2<Info,Traits,Fb> de-
rives.

Inherits From

Fb

Is Model for the Concepts

Because Triangulation face base with info 2<Info,Traits,Fb> derives from the class instantiating its third pa-
rameter, it will be a model of the same face base concept as its parameter : TriangulationFaceBase 2,
ConstrainedTriangulationFaceBase 2 ,
or RegularTriangulationFaceBase 2

Types

typedef Info Info;

Access Functions

const Info& f .info() const Returns a const reference to the object of type Info stored in the face.
Info& f .info() Returns a reference to the object of type Info stored in the face.

See Also

CGAL::Triangulation face base 2<Traits,Fb>
CGAL::Constrained triangulation face base 2<Traits,Fb>
CGAL::Regular triangulation face base 2<Traits,Fb>
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CGAL::Triangulation hierarchy 2<Tr>

Definition

The class Triangulation hierarchy 2<Tr> implements a triangulation augmented with a data structure which
allows fast point location queries.

The data structure is a hierarchy of triangulations. The triangulation at the lowest level is the original triangula-
tion where operations and point location are to be performed. Then at each succeeding level, the data structure
stores a triangulation of a small random sample of the vertices of the triangulation at the preceding level.

Point location is done through a top-down nearest neighbor query. The nearest neighbor query is first performed
naively in the top level triangulation. Then, at each following level, the nearest neighbor at that level is found
through a linear walk performed from the nearest neighbor found at the preceding level.

Because the number of vertices in each triangulation is only a small fraction of the number of vertices of the
preceding triangulation the data structure remains small and achieves fast point location queries on real data. As
proved in [Dev98], this structure has an optimal behavior when it is built for Delaunay triangulations. However
it can be used as well for other triangulations. The class Triangulation hierarchy 2<Tr> is templated by a
parameter which is to be instantiated by anyone of the CGAL triangulation classes.

#include <CGAL/Triangulation hierarchy 2.h>

Inherits From

Tr

Types

The class Triangulation hierarchy 2<Tr> inherits the types from its base triangulation class Tr.

The class Triangulation hierarchy 2<Tr> offers exactly the same functionalities as the triangulation Tr does.
Location queries are overloaded to benefit from the data structure. Modifiers (insertion, removal, and displace-
ment) are overloaded to take care of updating the data structure.

Be careful that I/O operations are not overloaded. Writing a Triangulation hierarchy 2<Tr> into a file writes
only the lowest level triangulation and drop the hierarchy and reading it from a file results in a triangulation
whose efficiency will be that of an ordinary triangulation.

See Also

CGAL::Triangulation 2<Traits,Tds>
CGAL::Delaunay triangulation 2<Traits,Tds> TriangulationHierarchyVertexBase 2,
CGAL::Triangulation hierarchy vertex base 2<Vb>
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CGAL::Triangulation hierarchy vertex base 2<Vb>

Definition

The class Triangulation hierarchy vertex base 2<Vb> is designed to be used as a vertex base class of a trian-
gulation plugged into a Triangulation hierarchy 2<Tr>.

It is a model of the concept TriangulationHierarchyVertexBase 2 which refines the concept
TriangulationVertexBase 2.

This class is templated by a parameter Vb which is to be instantiated by a model of the concept
TriangulationVertexBase 2. The class Triangulation hierarchy vertex base 2<Vb> inherits from the class Vb.
This design allows to use either the default vertex base class or a user customized vertex base with additional
functionalities.

#include <CGAL/Triangulation hierarchy 2.h>

Is Model for the Concepts

TriangulationHierarchyVertexBase 2

Inherits From

Vb

See Also

TriangulationVertexBase 2
TriangulationHierarchyVertexBase 2
CGAL::Triangulation vertex base 2<Traits>
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CGAL::Triangulation vertex base 2<Traits,Vb>

Definition

The class Triangulation vertex base 2<Traits,Vb> is the default model for the concept
TriangulationVertexBase 2.

Triangulation vertex base 2<Traits,Vb> can be simply plugged in the triangulation data structure of a triangu-
lation, or used as a base class to derive other base vertex classes tuned for specific applications.

#include <CGAL/Triangulation vertex base 2.h>

Parameters

Triangulation vertex base 2<Traits,Vb> is templated by a geometric traits class which provide the type Point.
It is strongly recommended to instantiate this traits class with the model used for the triangulation traits class.
This ensures that the point type defined by Triangulation vertex base 2<Traits,Vb> is the same as the point
type defined by the triangulation.

The second template parameter of Triangulation vertex base 2<Traits,Vb> has to be a model of the concept
TriangulationDSVertexBase 2 By default this parameter is instantiated by CGAL::Triangulation ds vertex
base 2<>.

Is Model for the Concepts

TriangulationVertexBase 2

Inherits From

Vb

See Also

CGAL::Triangulation ds vertex base 2<Tds>
CGAL::Triangulation face base 2<Traits,Fb>
CGAL::Regular triangulation vertex base 2<Traits,Vb>
CGAL::Triangulation vertex base with info 2<Info,Traits,Vb>
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CGAL::Triangulation vertex base with info 2<Info,Traits,Vb>

Definition

The class Triangulation vertex base with info 2<Info,Traits,Vb> is designed to be used as a base vertex class
of a triangulation. It provides an easy way to add some user defined information in vertices.

#include <CGAL/Triangulation vertex base with info 2.h>

Parameters

The first template parameter is the information the user would like to add to a vertex. It has to be DefaultCon-
structible and Assignable.

The second template parameter is the geometric traits class which provides the Point 2. It is strongly recom-
mended to instantiate this parameter with the traits class used for the triangulation. This ensures that the point
type defined by Triangulation vertex base with info 2<Info,Traits,Vb> matches the point type defined by the
triangulation.

The third template parameter is a vertex base class from which Triangulation vertex base with info 3 derives.
By default this parameter is instantiated by CGAL::Triangulation vertex base 2<Traits>.

Is Model for the Concepts

TriangulationVertexBaseWithInfo 2
The parameter Vb is a model of some vertex base concept. Triangulation vertex base with info 2<
Info,Traits,Vb> derives from Vb and will be a model of the same vertex base concept : TriangulationVertexBase
2, or
RegularTriangulationVertexBase 2.

Types

typedef Info Info;

Access Functions

const Info& v.info() const Returns a const reference to the object of type Info stored in the vertex.
Info& v.info() Returns a reference to the object of type Info stored in the vertex.

See Also

CGAL::Triangulation face base with info 2<Info,Traits,Fb>
CGAL::Triangulation vertex base 2<Traits,Vb>
CGAL::Regular triangulation vertex base 2<Traits,Vb>
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CGAL::Weighted point<Pt,Wt>

Definition

The class Weighted point<Pt,Wt> provides a type associating a point type Pt with a weight type Wt. It is used
in the traits classes Regular triangulation euclidean traits 2 and Regular triangulation euclidean traits 3.

#include <CGAL/Weighted point.h>

Inherits From

Pt

Types

Pt Point; The point type
Wt Weight; The weight type.

Creation

Weighted point<Pt,Wt> wp( Weighted point wq);

copy constructor.

Weighted point<Pt,Wt> wp( Point p=Point(), Weight w= Weight(0));
Weighted point<Pt,Wt> wp( FT x, FT y); Constructs the point from x and y coordinates, with a weight

of 0. Requires that the ambient dimension be 2.

Weighted point<Pt,Wt> wp( FT x, FT y, FT z);

Constructs the point from x, y and z coordinates, with a
weight of 0. Requires that the ambient dimension be 3.

Access Functions

Point wp.point() const
Weight wp.weight() const

See Also

CGAL::Regular triangulation euclidean traits 2<Rep,Weight>
CGAL::Regular triangulation euclidean traits 3<R,Weight>.
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38.1 Definition

A triangulation data structure is a data structure designed to handle the representation of a two dimensional
triangulation. The concept of triangulation data structure was primarily designed to serve as a data structure
for CGAL 2D triangulation classes which are triangulations embedded in a plane. However it appears that the
concept is more general and can be used for any orientable triangulated surface without boundary, whatever
may be the dimensionality of the space the triangulation is embedded in.

38.1.1 A Data Structure Based on Faces and Vertices

The representation of CGAL 2D triangulations is based on faces and vertices, Edges are only implicitly repre-
sented trough the adjacency relations between two faces.

The triangulation data structure can be seen as a container for faces and vertices maintaining incidence and
adjacency relations among them.
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Figure 38.1: Vertices and neighbors.

Each triangular face gives access to its three incident vertices and to its three adjacent faces. Each vertex gives
access to one of its incident faces and through that face to the circular list of its incident faces.

The three vertices of a face are indexed with 0, 1 and 2. The neighbors of a face are also indexed with 0,1,2 in
such a way that the neighbor indexed by i is opposite to the vertex with the same index. See Figure 38.1, the
functions ccw(i) and cw(i) shown on this figure compute respectively i+1 and i−1 modulo 3

Each edge has two implicit representations: the edge of a face f which is opposed to the vertex indexed i, can
be represented as well as an edge of the neighbor(i) of f .

This kind or representation of simplicial complexes extends in any dimension. More precisely, in dimension d,
the data structure will explicitly represents cells (i. e. faces of maximal dimension) and vertices (i. e. faces
of dimension 0). All faces of dimension between 1 and d− 1 will have an implicit representation. The 2D
triangulation data structure can represent simplicial complexes of dimension 2, 1 or 0.

38.1.2 The Set of Faces and Vertices

The set of faces maintained by a 2D triangulation data structure is such that each edge is incident to two faces.
In other words, the set of maintained faces is topologically equivalent to a two-dimensional triangulated sphere.

This rules extends to lower dimensional triangulation data structure arising in degenerate cases or when the
triangulations have less than three vertices. A one dimensional triangulation structure maintains a set of vertices
and edges which forms a ring topologically equivalent to a 1-sphere.

A zero dimensional triangulation data structure only includes two adjacent vertices that is topologically equiva-
lent to a 0-sphere.

38.2 The Concept of Triangulation Data Structure

A model of TriangulationDataStructure 2 can be seen has a container for the faces and vertices of the trian-
gulation. This class is also responsible for the combinatorial integrity of the triangulation. This means that the
triangulation data structure maintains proper incidence and adjacency relations among the vertices and faces of
a triangulation while combinatorial modifications of the triangulation are performed. The term combinatorial
modification refers to operations which do not involve any knowledge about the geometric embedding of the
triangulation. For example, the insertion of a new vertex in a given face, or in a given edge, the suppression
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of a vertex of degree three, the flip of two edge are examples of combinatorial operation performed at the data
structure level.

The triangulation data structure is required to provide:

• the types Vertex and Face for the vertices and faces of the triangulations

• the type Vertex handle and Face handle which are models of the concept Handle and through which the
vertices and faces are accessed.

• iterators to visit all the vertices, edges and faces of the triangulation,

• circulators to visit all the vertices, edges and faces incident to a given vertex

The triangulation data structure is responsible for the creation and removal of faces and vertices (memory
management). It provides function that gives the number of faces, edges and vertices of the triangulation.

The triangulation data structure provides member functions to perform the following combinatorial transforma-
tion of the triangulation:

• flip of two adjacent faces,

• addition of a new vertex splitting a given face see Figure 38.2,

• addition of a new vertex splitting a given edge,

• addition of a new vertex raising by one the dimension of a degenerate – lower dimensional triangulation,

• removal of a vertex incident to three faces,

• removal of a vertex lowering the dimension of the triangulation

38.3 The Default Triangulation Data Structure

CGAL provides the class CGAL::Triangulation data structure 2<Vb,Fb> as a default triangulation data struc-
ture.
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Figure 38.3: The cyclic dependency in triangulations software design.

38.3.1 Flexibility

In order to provide flexibility, the default triangulation data structure is templated by two parameters which
stands respectively for a vertex base class and a face base class. The concept TriangulationDSVertexBase 2 and
TriangulationDSFaceBase 2 describe the requirements for the vertex and face classes of a triangulation data
structure.

This design allows the user to plug in the triangulation data structure his own vertex or face classes tuned for
his application.

38.3.2 The Cyclic Dependency of Template Parameters

Since adjacency and incidence relation are stored in vertices and faces, the vertex and face classes have to know
the types of handles on faces and vertices provided by the triangulation data structure. Therefore, vertex and
face classes need to be templated by the triangulation data structure. Because the triangulation data structure is
itself templated by the vertex and face classes this induces a cyclic dependency. See figure 38.3.
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38.3.3 The Rebind Mechanism

The solution proposed by CGAL to resolve this cyclic dependency is based on a rebind mechanism similar
to the mechanism used in the standard allocator class std::allocator. The vertex and face classes plugged in
the instantiation of a triangulation data structure are themselves instantiated with a fake data structure. The
triangulation data structure will then rebind these classes, plugging itself at the place of the fake data structure,
before using them to derive the vertex and face classes. The rebinding is performed through a nested template
class Rebind TDS in the vertex and face class, which provide the rebound class as a type called Other.

Here is how it works schematically. First, here is the rebinding taking place in the triangulation data structure.� �
template < class Vb, class Fb >
class Triangulation_data_structure
{

typedef Triangulation_data_structure<Vb,Fb> Self;

// Rebind the vertex and face base to the actual TDS (Self).
typedef typename Vb::template Rebind_TDS<Self>::Other VertexBase;
typedef typename Fb::template Rebind_TDS<Self>::Other FaceBase;

// ... further internal machinery leads to the final public types:
public:

typedef ... Vertex;
typedef ... Face;
typedef ... Vertex_handle;
typedef ... Face_handle;

};� �
Then, here is the vertex class with its nested Rebind TDS template class and its template parameter set by default
to an an internal type faking a triangulation data structure.� �
template < class TDS = an internal type faking a triangulation data
structure >
class Vertex_base
{
public:

template < class TDS2 >
struct Rebind_TDS {

typedef Vertex_base<TDS2> Other;
};

...
};� �
Imagine an analog Face base class. The triangulation data structure is then instantiate as follows :� �
typedef Triangulation_data_structure< Vertex_base<>, Face_base<> > TDS;� �
38.3.4 Making Use of the Flexibility

There is several possibilities to make use of the flexibility offered by the triangulation data structure.
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• First, when the user needs to have, in vertices and faces, additional information which do not depend on
types defined by the triangulated data structure, predefined classes Triangulation vertex base with info
and Triangulation face base with info can be plugged in. Those classes have a template parameter Info
to be instantiated by a user defined type. They store a data member of this type and gives access to it.

• Second, the user can derive his own base classes from the default base classes: Triangulation ds vertex
base 2, and Triangulation ds face base 2 are the default base classes to be plugged in a triangulation
data structure used alone. Triangulation classes requires a data structure in which other base classes have
been plugged it. The default base classes for most of the triangulation classes are Triangulation vertex
base 2, and Triangulation face base 2 are the default base classes to be used when the triangulation data
structure is plugged in a triangulation class.

When derivation is used, the rebind mechanism is slightly more involved, because it is necessary to rebind
the base class itself. However the user will be able to use in his classes references to types provided by
the triangulation data structure. For example,� �
template < class Gt, class Vb = CGAL::Triangulation_vertex_base_2<Gt>

>
class My_vertex_base

: public Vb
{
public :

template < typename TDS2 >
struct Rebind_TDS {

typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
typedef My_vertex_base<Gt,Vb2> Other;

};

typedef typename Vb::Triangulation_data_structure Tds;
typedef typename Tds::Vertex_handle Vertex_handle;
......

};� �
• At last the user can write his own base classes. If the triangulation data structure is used alone,

the requirements for the base classes are described by the concepts TriangulationDSVertexBase 2 and
TriangulationDSFaceBase 2, documented page 2600 and page 2594. If the triangulation data structure is
plugged into a triangulation class, the concepts for the vertex and base classes depends on the triangulation
class. The most basic concepts, valid for basic and Delaunay triangulations are TriangulationVertexBase
2 and TriangulationFaceBase 2, documented page 2544 and page 2539.

See section 37.11 for examples of using the triangulation data structure flexibility.
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The triangulation data structure can be seen as a container for the faces and vertices of a triangulation. This
class also takes care of all the combinatorial operations performed on the triangulation.

The class CGAL::Triangulation data structure 2<Vb,Fb> is a model of the concept
TriangulationDataStructure 2. which includes the sub-concepts TriangulationDataStructure 2::Face
and TriangulationDataStructure 2::Vertex.

To ensure all the flexibility of the triangulation classes, described and in Section 37.11 of Chap-
ter 37, the model CGAL::Triangulation data structure 2<Vb,Fb> has two templates parameters. The class
CGAL::Triangulation data structure 2<Vb,Fb> derives its Vertex and Face types from the two template pa-
rameters Vb and Fb respectively.
If the triangulation data structure is used alone, these parameters have to be instantiated by models
of the concepts TriangulationDSFaceBase 2 and TriangulationDSVertexBase 2. These concepts are de-
scribed in this chapter together with their default models CGAL::Triangulation ds face base 2<Tds> and
CGAL::Triangulation ds vertex base 2<Tds>.
If the triangulation data structure is plugged into a triangulation class, the parameters have to be instantiated by
models of different refining concepts according to the actual type of the triangulation. These refining concepts
and their models are described in Chapter 37.12
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TriangulationDataStructure 2

Definition

The concept TriangulationDataStructure 2 describes the requirements for the second template parameter of the
basic triangulation class Triangulation 2<Traits,Tds> and of all other 2D triangulation classes.

The concept can be seen as a container for the faces and vertices of the triangulation. The con-
cept TriangulationDataStructure 2 includes two sub-concepts TriangulationDataStructure 2::Vertex and
TriangulationDataStructure 2::Face, described respectively page 2602 and page 2597.

The TriangulationDataStructure 2 maintains incidence and adjacency relations among vertices and faces.

Each triangular face gives access to its three incident vertices and to its three adjacent faces. Each vertex gives
access to one of its incident faces and through that face to the circular list of its incident faces.

The three vertices of a face are indexed with 0, 1 and 2. The neighbors of a face are also indexed with 0,1,2 in
such a way that the neighbor indexed by i is opposite to the vertex with the same index.

Each edge has two implicit representations : the edge of a face f which is opposed to the vertex indexed i, can
be represented as well as an edge of the neighbor(i) of f . See Figure 37.2

The triangulation data structure is responsible for the combinatorial integrity of the triangulation. This means
that the triangulation data structure allows to perform some combinatorial operations on the triangulation and
guarantees the maintenance on proper incidence and adjacency relations among the vertices and faces. The term
combinatorial operations means that those operations are purely topological and do not depend on the geometric
embedding. Insertion of a new vertex in a given face, or in a given edge, suppression of a vertex of degree three,
flip of two edges are examples of combinatorial operations.

Types

TriangulationDataStructure 2:: size type Size type (unsigned integral type)
TriangulationDataStructure 2:: difference type Difference type (signed integral type)

TriangulationDataStructure 2:: Vertex The vertex type. Requirements for this type are described
in concept TriangulationDataStructure 2::Vertex
page 2602.

TriangulationDataStructure 2:: Face The face type. Requirements for this type are described in
concept TriangulationDataStructure 2::Face page 2597.

Vertices and faces are accessed via Vertex handle and Face handle. These types are models of the concept
Handles which basically supports the two dereference operators * and ->.

TriangulationDataStructure 2:: Vertex handle Handle to a vertex
TriangulationDataStructure 2:: Face handle Handle to a face.
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advanced

TriangulationDataStructure 2:: template <typename Vb2> struct Rebind vertex

This nested template class allows to get the type of a
triangulation data structure that only changes the ver-
tex type. It has to define a type Other which is a re-
bound triangulation data structure, that is, the one whose
TriangulationDSVertexBase 2 will be Vb2.

TriangulationDataStructure 2:: template <typename Fb2> struct Rebind face

This nested template class allows to get the type of a
triangulation data structure that only changes the face
type. It has to define a type Other which is a re-
bound triangulation data structure, that is, the one whose
TriangulationDSFaceBase 2 will be Fb2.

advanced

typedef std::pair<Face handle,int> Edge; The edge type. The Edge(f,i) is edge common to faces f
and f.neighbor(i). It is also the edge joining the vertices
vertex(cw(i)) and vertex(ccw(i)) of f .

The following iterators allow one to visit all the vertices, edges and faces of a triangulation data structure. They
are all bidirectional, non-mutable iterators.

TriangulationDataStructure 2:: Face iterator
TriangulationDataStructure 2:: Edge iterator
TriangulationDataStructure 2:: Vertex iterator

The following circulators allow to visit all the edges or faces incident to a given vertex and all the vertices
adjacent to a given vertex. They are all bidirectional and non mutable.

TriangulationDataStructure 2:: Face circulator
TriangulationDataStructure 2:: Edge circulator
TriangulationDataStructure 2:: Vertex circulator

Iterators and circulators are convertible to the corresponding handles, thus they can be passed directly as argu-
ment to the functions expecting a handle.

Creation

TriangulationDataStructure 2 tds; default constructor.

TriangulationDataStructure 2 tds( tds1); Copy constructor. All the vertices and faces are duplicated.

TriangulationDataStructure 2& tds = tds1

Assignment. All the vertices and faces of tds1 are duplicated in
tds . Former faces and vertices of tds , if any, are deleted
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Vertex handle tds.copy tds( tds1, Vertex handle v = Vertex handle())

tds1 is copied into tds. If v != NULL, the vertex of tds corresponding to
v is returned, otherwise Vertex handle() is returned.
Precondition: The optional argument v is a vertex of tds1.

void tds.swap( & tds1) Swaps tds and tds1. Should be preferred to tds=tds1 or tds(tds1) when
tds1 is deleted after that.

void tds.clear() Deletes all faces and all finite vertices.

Access Functions

int tds.dimension() const returns the dimension of the triangulation.
size type

tds.number of vertices() const returns the number of vertices in the data structure.
size type

tds.number of faces() const returns the number of two dimensional faces in the data
structure.

size type

tds.number of edges() const returns the number of edges in the triangulation data struc-
ture.

size type

tds.number of full dim faces() const returns the number of full dimensional faces, i.e. faces of
dimension equal to the dimension of the triangulation. This
is the actual number of faces stored in the triangulation data
structure.

advanced

Setting

void tds.set dimension( int n) sets the dimension.

advanced

Queries

bool tds.is vertex( Vertex handle v) const

returns true if v is a vertex of tds.

bool tds.is edge( Face handle fh, int i) const

tests whether (fh,i) is an edge of tds. Answers false when dimension()
< 1 .

bool tds.is edge( Vertex handle va, Vertex handle vb) const

returns true if va vb is an edge of tds.
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bool tds.is edge( Vertex handle va, Vertex handle vb, Face handle &fr, int &i) const

as previous. In addition, if true is returned fr and i are set such that the
pair (fr,i) is the description of the ordered edge va vb.

bool tds.is face( Face handle fh) const

tests whether fh is a face of tds. Answers false when dimension() < 2
.

bool tds.is face( Vertex handle v1, Vertex handle v2, Vertex handle v3) const

true if there is a face having v1, v2 andv3 as vertices.

bool tds.is face( Vertex handle v1, Vertex handle v2, Vertex handle v3, Face handle &fr) const

as above. In addition, if true is returned, fr is a pointer to the face with
v1, v2 and v3 as vertices.

Traversing the triangulation

Face iterator tds.faces begin() const visits all faces
Face iterator tds.faces end() const
Vertex iterator tds.vertices begin() const

visits all vertices

Vertex iterator tds.vertices end() const
Edge iterator tds.edges begin() const

visits all edges

Edge iterator tds.edges end() const

Three circulator classes allow to traverse the edges or faces incident to a vertex or the vertices adjacent to this
vertex.. A face circulator is invalidated by any modification of the face it points to. An edge circulator is
invalidated by any modification of anyone of the two faces incident to the edge pointed to. A vertex circulator
that turns around vertex v and that has as value a pointer to vertex w, is invalidated by any modification of
anyone of the two faces incident to v and w.

Vertex circulator tds.incident vertices( Vertex handle v, Face handle f=NULL) const

Precondition: If the face f is given, it has to be incident to be a
face of tds incident to v and the circulator begins with the vertex
f->vertex(ccw(i)) if i is the index of v in f .

Edge circulator tds.incident edges( Vertex handle v, Face handle f=NULL) const

Precondition: If the face f is given, it has to be a face of tds
incident to v and the circulator begins with the edge (f,cw(i)) of
f if i is the index of v in f .

Face circulator tds.incident faces( Vertex handle v, Face handle f=NULL) const

Precondition: If the face f is given, it has to be a face of tds
incident to v and the circulator begins with the face f .
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Vertex handle tds.mirror vertex( Face handle f, int i) const

returns vertex of f->neighbor(i).

int tds.mirror index( Face handle f, int i) const

returns the index of f as a neighbor of f->neighbor(i).

Edge tds.mirror edge( Edge e) const

returns the same edge seen from the other adjacent face.

Modifiers

The following modifier member functions guarantee the combinatorial validity of the resulting triangulation.

void tds.flip( Face handle f, int i) exchanges the edge incident to f and f->neighbor(i) with the other di-
agonal of the quadrilateral formed by f and f->neighbor(i).

Vertex handle tds.insert first() creates the first vertex and returns a pointer to it.
Vertex handle tds.insert second() creates the second vertex and returns a pointer to

it.

Vertex handle tds.insert in edge( Face handle f, int i) adds a vertex v splitting edge i of face f . Return a
pointer to v.

Vertex handle tds.insert in face( Face handle f) adds a vertex v splitting face f in three. Face f
is modified, two new faces are created. Return a
pointer to v

Vertex handle tds.insert dim up( Vertex handle w, bool orient=true)

adds a vertex v, increasing by one the dimension
of the triangulation. Vertex v and the existing ver-
tex w are linked to all the vertices of the triangula-
tion. The Boolean orient decides the final orienta-
tion of all faces. A pointer to vertex v is returned.
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void tds.remove degree 3( Vertex handle v, Face *f=NULL)

removes a vertex of degree 3. Two of the incident faces
are destroyed, the third one is modified. If parameter f is
specified, it has to be a face incident to v and will be the
modified face.
Precondition: Vertex v is a finite vertex with degree 3 and,
if specified, face f is incident to v.

void tds.remove second( Vertex handle v) removes the before last vertex.
void tds.remove first( Vertex handle v) removes the last vertex.
void tds.remove dim down( Vertex handle v) removes vertex v incident to all other vertices and decreases

by one the dimension of the triangulation.
Precondition: if the dimension is 2, the number of vertices
is more than 3, if the dimension is 1, the number of vertices
is 2.

2590



v
f

dim down

vv = f ->vertex(i)

Figure 38.6: From a two-dimensional data structure to a one-dimensional data structure.

The following operation, dim down, is necessary when the displacement of a vertex decreases the dimension of
the triangulation.

void tds.dim down( Face handle f, int i) The link of a vertex v is formed by the edges disjoint from
v that are included in the faces incident to v. When the
link of v = f->vertex(i) contains all the other vertices of
the two-dimensional triangulation data-structure (S2), dim
down crushes the two-dimensional data-structure (S2) onto
the one-dimensional data structure (S1) formed by the link
of v augmented with the vertex v itself; this one is placed
on the edge (f, i). (see Fig. 38.6).
Precondition: dimension() must be equal to 2, the degree
of f->vertex(i) must be equal to the total number of vertices
minus 1.

advanced

The following modifiers are required for convenience of the advanced user. They do not guarantee the combi-
natorial validity of the resulting triangulation.

template< class EdgeIt>
Vertex handle tds.star hole( EdgeIt edge begin, EdgeIt edge end)

creates a new vertex v and use it to star the hole whose
boundary is described by the sequence of edges [edge
begin, edge end[. Returns a pointer to the vertex.

template< class EdgeIt, class FaceIt>
Vertex handle tds.star hole( EdgeIt edge begin, EdgeIt edge end, FaceIt face begin, FaceIt face end)

same as above, except that, to build the new faces, the al-
gorithm first recycles faces in the sequence [face begin,
face end[ and create new ones when the sequence is ex-
hausted.

template< class EdgeIt>
void tds.star hole( Vertex handle v, EdgeIt edge begin, EdgeIt edge end)

uses vertex v to star the hole whose boundary is described
by the sequence of edges[edge begin, edge end[.

template< class EdgeIt, class FaceIt>
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void tds.star hole( Vertex handle v,
EdgeIt edge begin,
EdgeIt edge end,
FaceIt face begin,
FaceIt face end)

same as above, recycling faces in the sequence [face
begin, face end[ .

void tds.make hole( Vertex handle v, List edges& hole)

removes the vertex v, and store in hole the list of edges
on the boundary of the hole.

Vertex handle tds.create vertex() adds a new vertex.
Face handle tds.create face( Face handle f1, int i1, Face handle f2, int i2, Face handle f3, int i3)

adds a face which is the neighbor i1 of f1, i2 of f2 and i3
of f3.

Face handle tds.create face( Face handle f1, int i1, Face handle f2, int i2)

adds a face which is the neighbor i1 of f1, and the neigh-
bor i2 of f2.

Face handle tds.create face( Face handle f1, int i1, Vertex handle v)

adds a face which is the neighbor i1 of f1, and has v as
vertex.

Face handle tds.create face( Vertex handle v1, Vertex handle v2, Vertex handle v3)

adds a face with vertices v1, v2 and v3.

Face handle tds.create face( Vertex handle v1,
Vertex handle v2,
Vertex handle v3,
Face handle f1,
Face handle f2,
Face handle f3)

adds a face with vertices v1, v2 and v3, and neighbors f1,
f2, f3.

Face handle tds.create face() adds a face whose vertices and neighbors are set to
NULL.

void tds.delete face( Face handle) deletes a face.
void tds.delete vertex( Vertex handle)

deletes a vertex.

advanced

Miscellaneous

int tds.ccw( int i) const returns i+1 modulo 3.
Precondition: 0≤ i≤ 2.
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int tds.cw( int i) const returns i+2 modulo 3.
Precondition: 0≤ i≤ 2.

bool tds.is valid() checks the combinatorial validity of the triangulation:
call the is valid() member function for each vertex and
each face, checks the number of vertices and the Euler
relation between numbers of vertices, faces and edges.

size type tds.degree( Vertex handle v) const

Returns the degree of v in the triangulation.

I/O

The information output in the iostream is: the dimension, the number of (finite) vertices, the number of (finite)
faces. Then comes for each vertex, the non combinatorial information stored in that vertex if any. Then comes
for each faces, the indices of its vertices and the non combinatorial information (if any) stored in this face. Then
comes for each face again the indices of the neighboring faces. The index of an item (vertex of face) the rank
of this item in the output order. When dimension < 2, the same information is output for faces of maximal
dimension instead of faces.

void tds.file output( ostream& os, Vertex handle v = Vertex handle(), bool skip first=false)

writes tds into the stream os. If v is not a null handle, vertex
v is output first or skipped if skip first is true.

Vertex handle tds.file input( istream& is, bool skip first=false)

inputs tds from file and returns a pointer to the first input ver-
tex. If skip first is true, it is assumed that the first vertex has
been omitted when output.

istream& istream& is >> TriangulationDataStructure 3 & tds

reads a combinatorial triangulation from is and assigns it to
tds

ostream& ostream& os << TriangulationDataStructure 3 tds

writes tds into the stream os

Has Models

CGAL::Triangulation data structure 2<Vb,Fb>

See Also

TriangulationDataStructure 2::Face
TriangulationDataStructure 2::Vertex
CGAL::Triangulation 2<Traits,Tds>
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TriangulationDSFaceBase 2

Definition

The concept TriangulationDSFaceBase 2 describes the requirements for the base face of a Triangulation data
structure 2<Vb,Fb>.

Note that if the Triangulation data structure 2 is plugged into a triangulation class, the face base class may
have additional geometric requirements depending on the triangulation class.

At the base level, (see Sections 37.3 and 38.3), a face stores handles on its three vertices and on the three
neighboring faces. The vertices and neighbors are indexed 0,1 and 2. Neighbor i lies opposite to vertex i.

Since the Triangulation data structure 2 is the class which defines the handle types, the face base class has to be
somehow parameterized by the triangulation data structure. But since the Triangulation data structure 2 itself
is parameterized by the face and vertex base classes, there is a cycle in the definition of these classes. In order
to break the cycle, the base classes for faces and vertices which are plugged in to instantiate a Triangulation
data structure 2 use a void as triangulation data structure parameter. Then, the Triangulation data structure 2
uses a rebind mechanism (similar to the one specified in std::allocator) in order to plug itself as parameter in
the face and vertex base classes. This mechanism requires that the base class provides a templated nested class
Rebind TDS that itself provides the subtype Rebind TDS<TDS2>::Other which is the rebound version of the
base class. This rebound base class is the class that the Triangulation data structure 2 actually uses as a base
class for the class Triangulation data structure 2::Face.

Types

The concept TriangulationDSFaceBase 2 has to provide the following types.

TriangulationDSFaceBase 2:: template <typename TDS2> struct Rebind TDS

This nested template class has to define a type
Other which is the rebound face base, where
the Triangulation data structure 2 is actually
plugged in. This type Other will be the actual
base of the class Triangulation data structure
2::Face.

typedef TriangulationDataStructure 2 Triangulation data structure;
typedef TriangulationDataStructure 2::Vertex handle Vertex handle;
typedef TriangulationDataStructure 2::Face handle Face handle;

Creation

TriangulationDSFaceBase 2 f ; default constructor.
TriangulationDSFaceBase 2 f ( Vertex handle v0, Vertex handle v1, Vertex handle v2);

Initializes the vertices with v0, v1, v2 and the neighbors
with Face handle().
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TriangulationDSFaceBase 2 f ( Vertex handle v0,
Vertex handle v1,
Vertex handle v2,
Face handle n0,
Face handle n1,
Face handle n2)

initializes the vertices with v0,v1, v2 and the neighbors with
n0, n1, n2.

Access Functions

int f .dimension() returns the dimension.

Vertex handle f .vertex( int i) const returns the vertex i of f .
Precondition: 0≤ i≤ 2.

bool f .has vertex( Vertex handle v) returns true if v is a vertex of f .
bool f .has vertex( Vertex handle v, int& i) const

as above, and sets i to the index of v in f .

int f .index( Vertex handle v) const returns the index of v in f .
Face handle f .neighbor( int i) const returns the neighbor i of f .

Precondition: 0≤ i≤ 2.
bool f .has neighbor( Face handle n) returns true if n is a neighbor of f .
bool f .has neigbor( Face handle n, int& i) const

as above, and sets i to the index of n in f .

int f .index( const Face handle n) const returns the index of neighbor n in f .

Setting

void f .set vertex( int i, Vertex handle v) sets vertex i to v.
Precondition: 0≤ i≤ 2.

void f .set vertices() sets the vertices to Vertex handle().
void f .set vertices( Vertex handle v0, Vertex handle v1, Vertex handle v2)

sets the vertices.

void f .set neighbor( int i, Face handle n) sets neighbors i to n.
Precondition: 0≤ i≤ 2.

void f .set neighbors() sets the neighbors to Face handle().
void f .set neighbors( Face handle n0, Face handle n1, Face handle n2)

sets the neighbors.

Orientation

void f .reorient() Changes the orientation of f by exchanging
vertex(0) with vertex(1) and neighbor(0) with
neighbor(1).
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void f .ccw permute() preforms a counterclockwise permutation of
the vertices and neighbors of f .

void f .cw permute() preforms a clockwise permutation of the ver-
tices and neighbors of f .

Checking

bool f .is valid( bool verbose = false) const performs any required test on a face.
If verbose is set to true, messages are printed
to give a precise indication of the kind of inva-
lidity encountered.

Various

void* f .for compact container() const
void*& f .for compact container()

These member functions are required by Triangulation data structure 2 because it uses Compact container to
store its faces. See the documentation of Compact container for the exact requirements.

Has Models

CGAL::Triangulation ds face base 2<Tds>
CGAL::Triangulation face base 2<Traits,Fb>
CGAL::Regular triangulation face base 2<Traits,Fb>
CGAL::Constrained triangulation face base 2<Traits,Fb>
CGAL::Triangulation face base with info 2<Info,Traits,Fb>

See Also

TriangulationDSVertexBase 2
TriangulationDataStructure 2::Face
TriangulationFaceBase 2
Triangulation data structure 2<Vb,Fb>
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TriangulationDataStructure 2::Face

Definition

The concept TriangulationDataStructure 2::Face describes the types used to store the faces face class of a
TriangulationDataStructure 2, see page 2585. A TriangulationDataStructure 2::Face stores three pointers to its
three vertices and three pointers to its three neighbors. The vertices are indexed 0,1, and 2 in counterclockwise
order. The neighbor indexed i lies opposite to vertex i.

In degenerate cases, when the triangulation data structure stores a simplicial complex of dimension 0 and 1, the
type TriangulationDataStructure 2::Face is used to store the faces of maximal dimension of the complex : i.e.
a vertex in dimension 0, an edge in dimension 1. Only vertices and neighbors with index 0 are set in the first
case, only vertices and neighbors with index 0 or 1 are set in the second case.

Types

The class TriangulationDataStructure 2::Face defines the same types as the triangulation data structure except
the iterators and the circulators.

Creation

The methods create face and delete face() have to be used to define new faces and to delete non longer used
faces.

Vertex Access Functions

Vertex handle f .vertex( int i) const returns the vertex i of f .
Precondition: 0≤ i≤ 2.

int f .index( Vertex handle v) const returns the index of vertex v in f .
Precondition: v is a vertex of f

bool f .has vertex( Vertex handle v) const

returns true if v is a vertex of f .

bool f .has vertex( Vertex handle v, int& i) const

returns true if v is a vertex of f , and computes the index
i of v in f .

Neighbor Access Functions

The neighbor with index i is the neighbor which is opposite to the vertex with index i.

Face handle f .neighbor( int i) const returns the neighbor i of f .
Precondition: 0≤ i≤ 2.

int f .index( Face handle n) const returns the index of face n.
Precondition: n is a neighbor of f .
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bool f .has neighbor( Face handle n) const

returns true if n is a neighbor of f .

bool f .has neighbor( Face handle n, int& i) const

returns true if n is a neighbor of f , and compute the in-
dex i of n.

advanced

Setting

void f .set vertex( int i, Vertex handle v) sets vertex i to be v.
Precondition: 0≤ i≤ 2.

void f .set neighbor( int i, Face handle n) sets neighbor i to be n.
Precondition: 0≤ i≤ 2.

void f .set vertices() sets the vertices pointers to NULL.
void f .set vertices( Vertex handle v0, Vertex handle v1, Vertex handle v2)

sets the vertices pointers.

void f .set neighbors() sets the neighbors pointers to NULL.
void f .set neighbors( Face handle n0, Face handle n1, Face handle n2)

sets the neighbors pointers.

Checking

bool f .is valid() const returns true if the function is valid() of the base
class returns true and if, for each index i, 0≤ i < 3,
face f is a neighbor of its neighboring face neigh-
bor(i) and shares with this neighbor the vertices
cw(i) and ccw(i) in correct reverse order.

advanced

Miscellaneous

int f .ccw( int i) const Returns i+1 modulo 3.
Precondition: 0≤ i≤ 2.

int f .cw( int i) const Returns i+2 modulo 3.
Precondition: 0≤ i≤ 2.

I/O

istream& istream& is >> & f Inputs any non combinatorial information possibly
stored in the face.

ostream& ostream& os << f Outputs any non combinatorial information possi-
bly stored in the face.
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See Also

TriangulationDataStructure 2,
TriangulationDataStructure 2::Vertex,
TriangulationFaceBase 2.
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TriangulationDSVertexBase 2

Definition

The concept TriangulationDSVertexBase 2 describes the requirements for the vertex base class of a
Triangulation data structure 2<Vb,Fb>.

Note that if the Triangulation data structure 2 is plugged into a triangulation class, the vertex base class has
additional geometric requirements depending on the triangulation class.

At the base level, provides access to one of its incident face through a Face handle.

Since the Triangulation data structure 2 is the class which defines the handle types, the vertex base class has
to be somehow parameterized by the triangulation data structure. But since the Triangulation data structure 2
itself is parameterized by the face and vertex base classes, there is a cycle in the definition of these classes. In or-
der to break the cycle, the base classes for faces and vertices which are plugged in to instantiate a Triangulation
data structure 2 use a void as triangulation data structure parameter. Then, the Triangulation data structure 2
uses a rebind mechanism (similar to the one specified in std::allocator) in order to plug itself as parameter in
the face and vertex base classes. This mechanism requires that the base class provides a templated nested class
Rebind TDS that itself provides the subtype Rebind TDS<TDS2>::Other which is the rebound version of the
base class. This rebound base class is the class that the Triangulation data structure 2 actually uses as a base
class for the class of Triangulation data structure 2::Vertex.

Refines

TriangulationDataStructure 2::Vertex

Types

The concept TriangulationDSVertexBase 2 has to provide the following types.

TriangulationDSVertexBase 2:: template <typename TDS2> struct Rebind TDS

This nested template class has to define a
type Other which is the rebound vertex base ,
where the actual Triangulation data structure 2
is plugged in. This type Other will be the actual
base of the class Triangulation data structure
2::Vertex.

typedef TriangulationDataStructure 2 Triangulation data structure;
typedef TriangulationDataStructure 2::Vertex handle Vertex handle;
typedef TriangulationDataStructure 2::Face handle Face handle;

Creation

TriangulationDSVertexBase 2 v; default constructor.
TriangulationDSVertexBase 2 v( Face handle f ); Constructs a vertex pointing to face f .
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Various

void* v.for compact container() const
void*& v.for compact container()

These member functions are required by Triangulation data structure 2 because it uses Compact container to
store its faces. See the documentation of Compact container for the exact requirements.

Has Models

CGAL::Triangulation ds vertex base 2<Tds>
CGAL::Triangulation vertex base 2<Traits,Vb>
CGAL::Regular triangulation vertex base 2<Traits,Vb>
CGAL::Triangulation hierarchy vertex base 2<Vb>
CGAL::Triangulation vertex base with info 2<Info,Traits,vb>

See Also

TriangulationVertexBase 2
TriangulationDSFaceBase 2
TriangulationFaceBase 2
TriangulationDataStructure 2::Vertex
Triangulation data structure 2<Vb,Fb>
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TriangulationDataStructure 2::Vertex

Definition

The concept TriangulationDataStructure 2::Vertex describes the type used by a TriangulationDataStructure 2
to store the vertices, see page 2585.

Some of the requirements listed below are of geometric nature and are optional when using the triangulation data
structure class alone. They became required when the triangulation data structure is plugged into a triangulation.

Types

The class TriangulationDataStructure 2::Vertex defines the same types as the triangulation data structure except
the iterators.

TriangulationDataStructure 2::Vertex:: Point Optional for the triangulation data structure used alone.

Creation

In order to obtain new vertices or destruct unused vertices, the user must call the create vertex() and delete
vertex() methods of the triangulation data structure.

Access Functions

Point v.point() const returns the geometric information of v.
Face handle v.face() const returns a face of the triangulation having v as vertex.

advanced

Setting

void v.set point( Point p) sets the geometric information to p.
void v.set face( Face handle f) sets the incident face to f .

advanced

Checking

bool v.is valid( bool verbose = false) const

Checks the validity of the vertex. Must check that its incident face
has this vertex. The validity of the base vertex is also checked.
When verbose is set to true, messages are printed to give a precise
indication on the kind of invalidity encountered.
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I/O

istream& istream& is >> & v Inputs the non-combinatorial information possibly stored in the
vertex.

ostream& ostream& os << v Outputs the non combinatorial operation possibly stored in the
vertex.

Has Models

CGAL::Triangulation ds vertex 2<Vb,Fb>

See Also

TriangulationDataStructure 2
TriangulationDataStructure 2::Face
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CGAL::Triangulation data structure 2<Vb,Fb>

Definition

The class Triangulation data structure 2<Vb,Fb> is a model for the TriangulationDataStructure 2 concept. It
can be used to represent an orientable 2D triangulation embedded in a space of any dimension.

The vertices and faces are stored in two nested containers, which are implemented using CGAL::Compact
container. The class may offer some flexibility for the choice of container in the future, in the form of additional
template parameters.

#include <CGAL/Triangulation data structure 2.h>

Is Model for the Concepts

TriangulationDataStructure 2

advanced

In addition to the interface documented in the concept, the class offers the following types and functions.

Types

typedef CGAL::Compact container<Vertex>

Vertex range; Vertex container type.
typedef CGAL::Compact container<Face>

Face range; Face container type.

Operations

Face range& tds.faces() const Returns a reference to the container of faces.
Face range& tds.faces() Returns a reference to the container of faces.
Vertex range& tds.vertices() const Returns a reference to the container of vertices.
Vertex range& tds.vertices() Returns a reference to the container of vertices.

advanced

Modifiers

In addition to the modifiers required by the TriangulationDataStructure 2 concept, the Triangulation data
structure 2<Vb,Fb> class supports also the modifiers below. Note also that the modifiers below guarantee the
combinatorial validity of the resulting data structure.

Vertex handle tds.join vertices( Face handle f, int i) Joins the vertices that are endpoints of the edge
(f,i). It returns a vertex handle to common vertex
(see Fig. 38.7).
Precondition: f must be different from Face
handle() and i must be 0, 1 or 2.
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Vertex handle tds.join vertices( Edge e) Joins the vertices that are endpoints of the edge e.
It returns a vertex handle to common vertex.

Vertex handle tds.join vertices( Edge iterator eit) Joins the vertices that are endpoints of the edge
*eit. It returns a vertex handle to common vertex.

Vertex handle tds.join vertices( Edges circulator ec) Joins the vertices that are endpoints of the edge
*ec. It returns a vertex handle to common vertex.

boost::tuples::tuple<Vertex handle, Vertex handle, Face handle, Face handle>

tds.split vertex( Vertex handle v, Face handle f1, Face handle f2)

Splits the vertex v into two vertices v1 and v2. The
common faces f and g of v1 and v2 are created after
(in the counter-clockwise sense) the faces f1 and f2.
The 4-tuple (v1,v2,f,g) is returned (see Fig. 38.7).
Precondition: dimension() must be equal to 2, f1
and f2 must be different from Face handle() and v
must be a vertex of both f1 and f2.

Vertex handle tds.insert degree 2( Face handle f, int i) Inserts a degree two vertex and two faces ad-
jacent to it that have two common edges. The
edge defined by the face handle f and the in-
teger i is duplicated. It returns a handle to the
vertex created (see Fig. 38.8).

void tds.remove degree 2( Vertex handle v) Removes a degree 2 vertex and the two faces
adjacent to it. The two edges of the star of v
that are not incident to it are collapsed (see Fig.
38.8).
Precondition: The degree of v must be equal to
2.

v1 2v

f 1

f 2

f 1

f 2

f

i

v

g
join_vertices

split_vertex

Figure 38.7: The join and split operations.
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Figure 38.8: Insertion and removal of degree 2 vertices.
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CGAL::Triangulation ds face base 2<Tds>

Definition

The class Triangulation ds face base 2<Tds> is a model for the concept TriangulationDSFaceBase 2 to be
used by Triangulation data structure 2.

#include <CGAL/Triangulation ds face base 2.h>

Is Model for the Concepts

TriangulationDSFaceBase 2

See Also

CGAL::Triangulation face base 2<Traits,Fb>
CGAL::Triangulation ds vertex base 2<Tds>
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CGAL::Triangulation ds vertex base 2<Tds>

Definition

The class Triangulation ds vertex base 2 can be used as the base vertex for a Triangulation data structure 2,
it is a model of the concept TriangulationDSVertexBase 2.

This base class can be used directly or can serve as a base to derive other base classes with some additional
attributes (a color for example) tuned for a specific application.

Note that if the Triangulation data structure 2 is used as a parameter of a geometric triangulation, there are
additional geometric requirements to be fulfilled by the vertex base class, and Triangulation ds vertex base 2
cannot be plugged in.

#include <CGAL/Triangulation ds vertex base 2.h>

Is Model for the Concepts

TriangulationDSVertexBase 2

See Also

CGAL::Triangulation vertex base 2<Traits,Vb>
CGAL::Triangulation ds face base 2<Tds>
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The basic 3D-triangulation class of CGAL is primarily designed to represent the triangulations of a set of points
A in R3. It is a partition of the convex hull of A into tetrahedra whose vertices are the points of A. Together with
the unbounded cell having the convex hull boundary as its frontier, the triangulation forms a partition of R3. Its
cells (3-faces) are such that two cells either do not intersect or share a common facet (2-face), edge (1-face) or
vertex (0-face).

39.1 Representation

In order to deal only with tetrahedra, which is convenient for many applications, the unbounded cell can be
subdivided into tetrahedra by considering that each convex hull facet is incident to an infinite cell having as
fourth vertex an auxiliary vertex called the infinite vertex. In that way, each facet is incident to exactly two cells
and special cases at the boundary of the convex hull are simple to deal with.

The class Triangulation 3<TriangulationTraits 3,TriangulationDataStructure 3> of CGAL implements this
point of view and therefore considers the triangulation of the set of points as a set of finite and infinite tetrahedra.
Notice that the infinite vertex has no significant coordinates and that no geometric predicate can be applied on
it.

A triangulation is a collection of vertices and cells that are linked together through incidence and adjacency
relations. Each cell gives access to its four incident vertices and to its four adjacent cells. Each vertex gives
access to one of its incident cells.

The four vertices of a cell are indexed with 0, 1, 2 and 3 in positive orientation, the positive orientation being
defined by the orientation of the underlying Euclidean space R3 (see Figure 39.1). The neighbors of a cell are
also indexed with 0, 1, 2, 3 in such a way that the neighbor indexed by i is opposite to the vertex with the same
index.

As in the underlying combinatorial triangulation (see Chapter 40), edges (1-faces) and facets (2-faces) are not
explicitly represented: a facet is given by a cell and an index (the facet i of a cell c is the facet of c that is
opposite to the vertex with index i) and an edge is given by a cell and two indices (the edge (i,j) of a cell c is the
edge whose endpoints are the vertices of c with indices i and j). See Figure 40.1.

Degenerate Dimensions The class Triangulation 3 can also deal with triangulations whose dimension d is
less than 3. A triangulation of a set of points in Rd covers the whole space Rd and consists of cells having d +1
vertices: some of them are infinite, they are obtained by linking the additional infinite vertex to each facet of the
convex hull of the points.
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Figure 39.1: Orientation of a cell (3-dimensional case).

• dimension 2: when a triangulation only contains coplanar points (which is the case when there are only
three points), it consists of triangular faces.

• dimension 1: the triangulation contains only collinear points (which is the case when there are only two
points), it consists of edges.

• dimension 0: the triangulation contains only one finite point.

• dimension -1: this is a convention to handle the case when the only vertex of the triangulation is the
infinite one.

The same cell class is used in all cases: triangular faces in 2D can be considered as degenerate cells, having
only three vertices (resp. neighbors) numbered (0,1,2); edges in 1D have only two vertices (resp. neighbors)
numbered 0 and 1.

The implicit representation of facets (resp. edges) still holds for degenerate dimensions (i.e. dimensions < 3):
in dimension 2, each cell has only one facet of index 3, and 3 edges (0,1), (1,2) and (2,0); in dimension 1,
each cell has one edge (0,1).

Validity A triangulation of R3 is said to be locally valid iff

(a)-(b) Its underlying combinatorial graph, the triangulation data structure, is locally valid (see Section 40.1 of
Chapter 40)
(c) Any cell has its vertices ordered according to positive orientation. See Figure 39.1.

When the triangulation is degenerated into a triangulation of dimension 2, the geometric validity reduces to:

(c-2D) For any two adjacent triangles (u,v,w1) and (u,v,w2) with common edge (u,v), w1 and w2 lie on opposite
sides of (u,v) in the plane.

When all the points are collinear, this condition becomes:

(c-1D) For any two adjacent edges (u,v) and (v,w), u and w lie on opposite sides of the common vertex v on the
line.

The is valid() method provided in Triangulation 3 checks the local validity of a given triangulation. This does
not always ensure global validity [MNS+96, DLPT98] but it is sufficient for practical cases.

2611



39.2 Delaunay Triangulation

The class Delaunay triangulation 3 represents a three-dimensional Delaunay triangulation.

Delaunay triangulations have the specific empty sphere property, that is, the circumscribing sphere of each cell
of such a triangulation does not contain any other vertex of the triangulation in its interior. These triangulations
are uniquely defined except in degenerate cases where five points are co-spherical. Note however that the CGAL
implementation computes a unique triangulation even in these cases.

This implementation is fully dynamic: it supports insertions of points, vertex removals and displacements of
points.

39.3 Regular Triangulation

The class Regular triangulation 3 implements incremental regular triangulations, also known as weighted De-
launay triangulations.

Let S(w) be a set of weighted points in R3. Let p(w) = (p,wp), p ∈R3,wp ∈R and z(w) = (z,wz),z ∈R3,wz ∈R
be two weighted points. A weighted point p(w) = (p,wp) can also be seen as a sphere of center p and radius
√wp. The power product between p(w) and z(w) is defined as

Π(p(w),z(w)) = ‖p− z‖2−wp−wz

where ‖p− z‖ is the Euclidean distance between p and z. p(w) and z(w) are said to be orthogonal iff
Π(p(w),z(w)) = 0 (see Figure 39.2).

p z

wp
wz

Figure 39.2: Orthogonal weighted points (picture in 2D).

Four weighted points have a unique common orthogonal weighted point called the power sphere. The weighted
point orthogonal to three weighted points in the plane defined by these three points is called the power circle.
The power segment will denote the weighted point orthogonal to two weighted points on the line defined by
these two points.

A sphere z(w) is said to be regular if ∀p(w) ∈ S(w),Π(p(w),z(w))≥ 0.

A triangulation of S(w) is regular if the power spheres of all simplices are regular.

The regular triangulation of S(w) is in fact the projection onto R3 of the convex hull of the four-dimensional
points (p,‖p−O‖2−wp), for p(w) = (p,wp) ∈ S(w). Note that all points of S(w) do not necessarily appear as
vertices of the regular triangulation. To know more about regular triangulations, see for example [ES96].
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When all weights are 0, power spheres are nothing more than circumscribing spheres, and the regular triangula-
tion is exactly the Delaunay triangulation.

The implementation of 3D regular triangulation supports insertions of weighted points, and vertex removals.
Displacements are not supported in the current implementation.

39.4 Software Design

The main classes Triangulation 3, Delaunay triangulation 3 and Regular triangulation 3 are connected to
each other by the derivation diagram shown in Figure 39.3. This diagram also shows another class:
Triangulation utils 3 (page 2743), which provides a set of tools operating on the indices of vertices in cells.

Triangulation_utils_3

Delaunay_triangulation_3 Regular_triangulation_3

Triangulation_3

Figure 39.3: Derivation diagram of the 3D triangulation classes.

The three main classes (Triangulation 3, Delaunay triangulation 3 and Regular triangulation 3) provide high-
level geometric functionality such as location of a point in the triangulation [DPT02], insertion and possibly
removal of a point [DT03], and are responsible for the geometric validity. They are built as layers on top of a
triangulation data structure, which stores their combinatorial structure. This separation between the geometry
and the combinatorics is reflected in the software design by the fact that these three triangulation classes take
the following template parameters :

• the geometric traits class, which provides the type of points to use as well as the elementary operations
on them (predicates and constructions). The concepts for these parameters are described in more details
in Section 39.4.1 and in page 2672.

• the triangulation data structure class, which stores their combinatorial structure, described in Sec-
tion 40.2 of Chapter 40.

• the location policy tag, which is supported only by the Delaunay triangulation class, described in Sec-
tion 39.4.3.

39.4.1 The Geometric Traits Parameter

The first template parameter of the triangulation class Triangulation 3<TriangulationTraits 3,
TriangulationDataStructure 3> is the geometric traits class, described by the concept TriangulationTraits 3.
It must define the types of the geometric objects (points, segments, triangles and tetrahedra) forming the
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triangulation together with a few geometric predicates on these objects: orientation in space, orientation in case
of coplanar points, order of collinear points.

In addition to the requirements described before, the geometric traits class of Delaunay triangulation
3 must define predicates to test for the empty sphere property. It is described by the concept
DelaunayTriangulationTraits 3, which refines TriangulationTraits 3.

The kernels provided by CGAL: Cartesian, Homogeneous, Simple cartesian, Simple homogeneous and
Filtered kernel can all be used as models for the geometric traits parameter. They supply the user with all the
functionalities described for the concepts TriangulationTraits 3 (page 2672) and DelaunayTriangulationTraits
3 (page 2674). In addition, the predefined kernels Exact predicates inexact constructions kernel (page ??) and
Exact predicates exact constructions kernel (page ??) can also be used, the latter being recommended when
the dual construction is used.

In order to be used as the traits class for Regular triangulation 3, a class must provide functions to compute the
power tests (see Section 39.3). Regular triangulation euclidean traits 3<K,Weight> is a traits class designed to
be used by the class Regular triangulation 3<RegularTriangulationTraits 3, TriangulationDataStructure 3>.
It provides Weighted point, a class for weighted points needed by the regular triangulation, which derives from
the three dimensional point class K::Point 3. It supplies the user with all the functionalities described for the
concept RegularTriangulationTraits 3 (page 2677). It can be used as a traits class for Regular triangulation
3<RegularTriangulationTraits 3, TriangulationDataStructure 3>.

Note that for regular triangulations, plugging a filtered kernel such as Exact predicates inexact constructions
kernel or Exact predicates exact constructions kernel in Regular triangulation euclidean traits 3<K,Weight>
will provide exact and efficient filtered predicates.

39.4.2 The Triangulation Data Structure Parameter

The second template parameter of the main classes (Triangulation 3, Delaunay triangulation 3 and Regular
triangulation 3) is a triangulation data structure class. This class can be seen as a container for the cells and
vertices maintaining incidence and adjacency relations (see Chapter 40). A model of this triangulation data
structure is Triangulation data structure 3 (page 2739), and it is described by the TriangulationDataStructure
3 concept (page 2715). This model is itself parameterized by a vertex base and a cell base classes, which gives
the possibility to customize the vertices and cells used by the triangulation data structure, and hence by the
geometric triangulation using it. Depending on the kind of triangulation used, the requirements on the vertex
and cell base classes vary, and are expressed by various concepts, following the refinement diagram shown in
Figure 39.4.

RegularTriangulationCellBase_3

TriangulationDSVertexBase_3

TriangulationVertexBase_3TriangulationCellBase_3

TriangulationDSCellBase_3

Figure 39.4: Concepts refinement hierarchy for the vertex and cell base classes parameters.
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A default value for the triangulation data structure parameter is provided in all the triangulation classes, so it
need not be specified by the user unless he wants to use a different triangulation data structure or a different
vertex or cell base class.

39.4.3 The Location Policy Parameter

The Delaunay triangulation class supports an optional feature which maintains an additional data structure for
fast point location queries. The fast location policy should be used when the user inserts points in a random
order or needs to do many unrelated queries. If the user is able to give a good hint to help the point location of
its queries (and its newly inserted points), then it should prefer the default policy. In such a case where good
hints are provided, the default policy save some memory (few percents), and is faster. Notice that if points are
not inserted one by one, but as a range, then a good hint is automatically computed using spatial sort.

Reading Section 39.6 on complexity and performance can help making an informed choice for this parameter.

The point location strategy can be selected with the third template argument of Delaunay triangulation 3,
LocationPolicy, which enables a fast point location data structure when set to Fast location. By default, it uses
Compact location.

Note that you can specify the LocationPolicy parameter without specifying the triangulation data structure, in
case you are fine with the default there. In this case, the LocationPolicy appears as a second parameter after the
geometric traits.1

The Fast location policy is implemented using a hierarchy of triangulations; it changes the behavior of functions
locate, insert, move, and remove. As proved in [Dev02], this structure has an optimal behavior when it is built
for Delaunay triangulations.

In this setting, if you build a triangulation by iteratively inserting points, you should try to shuffle the points
beforehand, as the time complexity is guaranteed only for a randomized order. For example, inserting points in
lexicographic order is typically much slower. Note that this shuffling is performed internally by the constructor
taking a range of points.

Prior to CGAL 3.6, this functionality was available through the Triangulation hierarchy 3 class, which is now
deprecated.

39.4.4 Flexibility of the Design

In order to satisfy as many uses as possible, a design has been selected that allows to exchange different parts to
meet the users’ needs, while still re-using a maximum of the provided functionalities. We have already seen that
the main triangulation classes are parameterized by a geometric traits class and a triangulation data structure
(TDS), so that each of them can be interchanged with alternate implementations.

The most useful flexibility is the ability given to the user to add his own data in the vertices and cells by providing
his own vertex and cell base classes to Triangulation data structure 3. The Figure 39.5 shows in more detail
the flexibility that is provided, and the place where the user can insert his own vertex and/or cell base classes.

The design of the triangulation data structure gives the possibility to store any kind of data, including handles
(an entity akin to pointers) directly in the vertex and cell base classes.

To do so, there are three possibilities. The simplest one is to use the class Triangulation vertex base with info
3, and this approach is illustrated in a following subsection 39.5.2. The most complicated one, and probably

1The mechanism used behind the scenes to allow this syntactical convenience is called deduced parameters.
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Figure 39.5: Triangulation software design.

useless for almost all cases, is to write a vertex base class from scratch, following the documented requirements.
This is mostly useless because most of the time it is enough to derive from the models that CGAL provides, and
add the desired features. In this case, when the user needs to access some type that depends on the triangulation
data structure (typically handles), then he should write something like:� �
...
template < class GT, class Vb = Triangulation_vertex_base<GT> >
class My_vertex

: public Vb
{
public:

typedef typename Vb::Point Point;
typedef typename Vb::Cell_handle Cell_handle;

template < class TDS2 >
struct Rebind_TDS {

typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
typedef My_vertex<GT, Vb2> Other;

};

My_vertex() {}
My_vertex(const Point&p) : Vb(p) {}
My_vertex(const Point&p, Cell_handle c) : Vb(p, c) {}

...
};
... // The rest has not changed� �
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The situation is exactly similar for cell base classes. Section 40.2 provides more detailed information.

39.5 Examples

39.5.1 Basic Example

This example shows the incremental construction of a 3D triangulation, the location of a point and how to
perform elementary operations on indices in a cell. It uses the default parameter of the Triangulation 3 class.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Triangulation_3.h>

#include <iostream>
#include <fstream>
#include <cassert>
#include <list>
#include <vector>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Triangulation_3<K> Triangulation;

typedef Triangulation::Cell_handle Cell_handle;
typedef Triangulation::Vertex_handle Vertex_handle;
typedef Triangulation::Locate_type Locate_type;
typedef Triangulation::Point Point;

int main()
{

// construction from a list of points :
std::list<Point> L;
L.push_front(Point(0,0,0));
L.push_front(Point(1,0,0));
L.push_front(Point(0,1,0));

Triangulation T(L.begin(), L.end());

Triangulation::size_type n = T.number_of_vertices();

// insertion from a vector :
std::vector<Point> V(3);
V[0] = Point(0,0,1);
V[1] = Point(1,1,1);
V[2] = Point(2,2,2);

n = n + T.insert(V.begin(), V.end());

assert( n == 6 ); // 6 points have been inserted
assert( T.is_valid() ); // checking validity of T

Locate_type lt;
int li, lj;
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Point p(0,0,0);
Cell_handle c = T.locate(p, lt, li, lj);
// p is the vertex of c of index li :
assert( lt == Triangulation::VERTEX );
assert( c->vertex(li)->point() == p );

Vertex_handle v = c->vertex( (li+1)&3 );
// v is another vertex of c
Cell_handle nc = c->neighbor(li);
// nc = neighbor of c opposite to the vertex associated with p
// nc must have vertex v :
int nli;
assert( nc->has_vertex( v, nli ) );
// nli is the index of v in nc

std::ofstream oFileT("output",std::ios::out);
// writing file output;
oFileT << T;

Triangulation T1;
std::ifstream iFileT("output",std::ios::in);
// reading file output;
iFileT >> T1;
assert( T1.is_valid() );
assert( T1.number_of_vertices() == T.number_of_vertices() );
assert( T1.number_of_cells() == T.number_of_cells() );

return 0;
}� �
File: examples/Triangulation_3/simple_triangulation_3.cpp

39.5.2 Changing the Vertex Base

The following two examples show how the user can plug his own vertex base in a triangulation. Changing the
cell base is similar.

Adding a Color

When the user doesn’t need to add a type in a vertex which depends on the TriangulationDataStructure 3 (e.g.
a Vertex handle or Cell handle), then he can use the Triangulation vertex base with info 3 class to add his
own information easily in the vertices. The example below shows how to add a CGAL::Color this way.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_with_info_3.h>
#include <CGAL/IO/Color.h>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
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typedef CGAL::Triangulation_vertex_base_with_info_3<CGAL::Color, K> Vb;
typedef CGAL::Triangulation_data_structure_3<Vb> Tds;
typedef CGAL::Delaunay_triangulation_3<K, Tds>

Delaunay;

typedef Delaunay::Point Point;

int main()
{

Delaunay T;

T.insert(Point(0,0,0));
T.insert(Point(1,0,0));
T.insert(Point(0,1,0));
T.insert(Point(0,0,1));
T.insert(Point(2,2,2));
T.insert(Point(-1,0,1));

// Set the color of finite vertices of degree 6 to red.
Delaunay::Finite_vertices_iterator vit;
for (vit = T.finite_vertices_begin(); vit != T.finite_vertices_end();
++vit)

if (T.degree(vit) == 6)
vit->info() = CGAL::RED;

return 0;
}� �
File: examples/Triangulation_3/color.cpp

Adding Handles

When the user needs to add a type in a vertex which depends on the TriangulationDataStructure 3 (e.g. a
Vertex handle or Cell handle), then he has to derive his own vertex base class, as the following example shows.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_3.h>

template < class GT, class Vb = CGAL::Triangulation_vertex_base_3<GT> >
class My_vertex_base

: public Vb
{
public:

typedef typename Vb::Vertex_handle Vertex_handle;
typedef typename Vb::Cell_handle Cell_handle;
typedef typename Vb::Point Point;

template < class TDS2 >
struct Rebind_TDS {

typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
typedef My_vertex_base<GT, Vb2> Other;
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};

My_vertex_base() {}

My_vertex_base(const Point& p)
: Vb(p) {}

My_vertex_base(const Point& p, Cell_handle c)
: Vb(p, c) {}

Vertex_handle vh;
Cell_handle ch;

};

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Triangulation_data_structure_3<My_vertex_base<K> > Tds;
typedef CGAL::Delaunay_triangulation_3<K, Tds>

Delaunay;

typedef Delaunay::Vertex_handle Vertex_handle;
typedef Delaunay::Point Point;

int main()
{

Delaunay T;

Vertex_handle v0 = T.insert(Point(0,0,0));
Vertex_handle v1 = T.insert(Point(1,0,0));
Vertex_handle v2 = T.insert(Point(0,1,0));
Vertex_handle v3 = T.insert(Point(0,0,1));
Vertex_handle v4 = T.insert(Point(2,2,2));
Vertex_handle v5 = T.insert(Point(-1,0,1));

// Now we can link the vertices as we like.
v0->vh = v1;
v1->vh = v2;
v2->vh = v3;
v3->vh = v4;
v4->vh = v5;
v5->vh = v0;

return 0;
}� �
File: examples/Triangulation_3/adding_handles_3.cpp

39.5.3 Setting Information While Inserting a Range of Points

The most efficient method to insert (weighted) points in a Delaunay (or regular) triangulation is to provide an
iterator range over (weighted) points to the insert function. However, an iterator range of (weighted) points does
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not allow to set different information to each vertex. To solve this problem, in the case the vertex type of the
triangulation is a model of the concept TriangulationVertexBaseWithInfo 3 (such as Triangulation vertex base
with info 3), we provide three examples doing the same operation: set an unsigned integer as the information of
each vertex. The value of this unsigned integer is the initial order of the corresponding point given in the range.

Using an Iterator Over Pairs

Each point and its information are gathered into a pair. We provide the constructor of the triangulation (which
is calling the insert function) with a range of such pairs.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_with_info_3.h>
#include <vector>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Triangulation_vertex_base_with_info_3<unsigned, K> Vb;
typedef CGAL::Triangulation_data_structure_3<Vb> Tds;
typedef CGAL::Delaunay_triangulation_3<K, Tds>

Delaunay;
typedef Delaunay::Point

Point;

int main()
{

std::vector< std::pair<Point,unsigned> > points;
points.push_back( std::make_pair(Point(0,0,0),0) );
points.push_back( std::make_pair(Point(1,0,0),1) );
points.push_back( std::make_pair(Point(0,1,0),2) );
points.push_back( std::make_pair(Point(0,0,1),3) );
points.push_back( std::make_pair(Point(2,2,2),4) );
points.push_back( std::make_pair(Point(-1,0,1),5) );

Delaunay T( points.begin(),points.end() );

CGAL_assertion( T.number_of_vertices() == 6 );

// check that the info was correctly set.
Delaunay::Finite_vertices_iterator vit;
for (vit = T.finite_vertices_begin(); vit != T.finite_vertices_end();
++vit)
if( points[ vit->info() ].first != vit->point() ){

std::cerr << "Error different info" << std::endl;
exit(EXIT_FAILURE);

}
std::cout << "OK" << std::endl;

return 0;
}� �
File: examples/Triangulation_3/info_insert_with_pair_iterator.cpp
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Using the Boost Zip Iterator

Information and points are in separate containers. We use boost::zip iterator to provide an iterator gathering
them.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_with_info_3.h>
#include <boost/iterator/zip_iterator.hpp>
#include <vector>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Triangulation_vertex_base_with_info_3<unsigned, K> Vb;
typedef CGAL::Triangulation_data_structure_3<Vb> Tds;
typedef CGAL::Delaunay_triangulation_3<K, Tds>

Delaunay;
typedef Delaunay::Point

Point;

int main()
{

std::vector<unsigned> indices;
indices.push_back(0);
indices.push_back(1);
indices.push_back(2);
indices.push_back(3);
indices.push_back(4);
indices.push_back(5);

std::vector<Point> points;
points.push_back(Point(0,0,0));
points.push_back(Point(1,0,0));
points.push_back(Point(0,1,0));
points.push_back(Point(0,0,1));
points.push_back(Point(2,2,2));
points.push_back(Point(-1,0,1));

Delaunay T( boost::make_zip_iterator(boost::make_tuple(
points.begin(),indices.begin() )),

boost::make_zip_iterator(boost::make_tuple(
points.end(),indices.end() ) ) );

CGAL_assertion( T.number_of_vertices() == 6 );

// check that the info was correctly set.
Delaunay::Finite_vertices_iterator vit;
for (vit = T.finite_vertices_begin(); vit != T.finite_vertices_end();
++vit)
if( points[ vit->info() ] != vit->point() ){

std::cerr << "Error different info" << std::endl;
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exit(EXIT_FAILURE);
}

return 0;
}� �
File: examples/Triangulation_3/info_insert_with_zip_iterator.cpp

Using the Boost Transform Iterator

We define a functor Auto count used together with boost::transform iterator to set the order of each point in
the range. Note that this is correct because the iterator is dereferenced only once per point during the insertion.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_with_info_3.h>
#include <boost/iterator/transform_iterator.hpp>
#include <vector>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Triangulation_vertex_base_with_info_3<unsigned, K> Vb;
typedef CGAL::Triangulation_data_structure_3<Vb> Tds;
typedef CGAL::Delaunay_triangulation_3<K, Tds>

Delaunay;
typedef Delaunay::Point

Point;

//a functor that returns a std::pair<Point,unsigned>.
//the unsigned integer is incremented at each call to
//operator()
struct Auto_count : public std::unary_function<const

Point&,std::pair<Point,unsigned> >{
mutable unsigned i;
Auto_count() : i(0){}
std::pair<Point,unsigned> operator()(const Point& p) const {

return std::make_pair(p,i++);
}

};

int main()
{

std::vector<Point> points;
points.push_back(Point(0,0,0));
points.push_back(Point(1,0,0));
points.push_back(Point(0,1,0));
points.push_back(Point(0,0,1));
points.push_back(Point(2,2,2));
points.push_back(Point(-1,0,1));

Delaunay T(
boost::make_transform_iterator(points.begin(),Auto_count()),
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boost::make_transform_iterator(points.end(), Auto_count()
) );

CGAL_assertion( T.number_of_vertices() == 6 );

// check that the info was correctly set.
Delaunay::Finite_vertices_iterator vit;
for (vit = T.finite_vertices_begin(); vit != T.finite_vertices_end();
++vit)
if( points[ vit->info() ] != vit->point() ){

std::cerr << "Error different info" << std::endl;
exit(EXIT_FAILURE);

}
std::cout << "OK" << std::endl;

return 0;
}� �
File: examples/Triangulation_3/info_insert_with_transform_iterator.cpp

39.5.4 The Simplex Class

The triangulation defines a Simplex class that represents a simplex (vertex, edge, facet or cell). This example
demonstrates how simplices can be stored in a set.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Triangulation_3.h>

#include <iostream>
#include <fstream>
#include <list>
#include <set>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Triangulation_3<K> Triangulation;

typedef Triangulation::Finite_vertices_iterator Finite_vertices_iterator;
typedef Triangulation::Finite_edges_iterator Finite_edges_iterator;
typedef Triangulation::Finite_facets_iterator Finite_facets_iterator;
typedef Triangulation::Finite_cells_iterator Finite_cells_iterator;
typedef Triangulation::Simplex Simplex;
typedef Triangulation::Locate_type Locate_type;
typedef Triangulation::Point Point;

int main()
{

// construction from a list of points :
std::list<Point> L;
L.push_front(Point(0,0,0));
L.push_front(Point(1,0,0));
L.push_front(Point(0,1,0));
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L.push_front(Point(0,1,1));

Triangulation T(L.begin(), L.end());

std::set<Simplex> simplices;

Finite_vertices_iterator vit = T.finite_vertices_begin();
simplices.insert(Simplex(vit));

Finite_cells_iterator cit = T.finite_cells_begin();
simplices.insert(Simplex(cit));

Finite_edges_iterator eit = T.finite_edges_begin();
simplices.insert(Simplex(*eit));

Finite_facets_iterator fit = T.finite_facets_begin();
simplices.insert(Simplex(*fit));

for (std::set<Simplex>::iterator it = simplices.begin();
it != simplices.end(); it++) {

std::cout << it->dimension() << std::endl;
}

return 0;
}� �
File: examples/Triangulation_3/simplex.cpp

39.5.5 Fast Point Location for Delaunay Triangulations� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Random.h>

#include <vector>
#include <cassert>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Delaunay_triangulation_3<K, CGAL::Fast_location> Delaunay;
typedef Delaunay::Point Point;

int main()
{

// generating points on a grid.
std::vector<Point> P;

for (int z=0 ; z<20 ; z++)
for (int y=0 ; y<20 ; y++)

for (int x=0 ; x<20 ; x++)
P.push_back(Point(x,y,z));
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// building their Delaunay triangulation.
Delaunay T(P.begin(), P.end());

assert( T.number_of_vertices() == 8000 );

// performing nearest vertex queries to a series of random points,
// which is a case where the Fast_location policy is beneficial.
for (int i=0; i<10000; ++i)

T.nearest_vertex(Point(CGAL::default_random.get_double(0, 20),
CGAL::default_random.get_double(0, 20),
CGAL::default_random.get_double(0, 20)));

return 0;
}� �
File: examples/Triangulation_3/fast_location_3.cpp

39.5.6 Finding the Cells in Conflict with a Point in a Delaunay Triangulation� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/point_generators_3.h>

#include <vector>
#include <cassert>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Delaunay_triangulation_3<K> Delaunay;
typedef Delaunay::Point Point;
typedef Delaunay::Cell_handle Cell_handle;
typedef Delaunay::Facet Facet;

int main()
{

Delaunay T;
CGAL::Random_points_in_sphere_3<Point> rnd;

// First, make sure the triangulation is 3D.
T.insert(Point(0,0,0));
T.insert(Point(1,0,0));
T.insert(Point(0,1,0));
T.insert(Point(0,0,1));

assert(T.dimension() == 3);

// Inserts 100 random points if and only if their insertion
// in the Delaunay tetrahedralization conflicts with
// an even number of cells.
for (int i = 0; i != 100; ++i) {

Point p = *rnd++;

2626



// Locate the point
Delaunay::Locate_type lt;
int li, lj;
Cell_handle c = T.locate(p, lt, li, lj);
if (lt == Delaunay::VERTEX)

continue; // Point already exists

// Get the cells that conflict with p in a vector V,
// and a facet on the boundary of this hole in f.
std::vector<Cell_handle> V;
Facet f;

T.find_conflicts(p, c,
CGAL::Oneset_iterator<Facet>(f), // Get one boundary

facet
std::back_inserter(V)); // Conflict cells

in V

if ((V.size() & 1) == 0) // Even number of conflict cells ?
T.insert_in_hole(p, V.begin(), V.end(), f.first, f.second);

}

std::cout << "Final triangulation has " << T.number_of_vertices()
<< " vertices." << std::endl;

return 0;
}� �
File: examples/Triangulation_3/find_conflicts_3.cpp

39.5.7 Regular Triangulation

This example shows the building of a regular triangulation. In this triangulation, points have an associated
weight, and some points can be hidden and do not result in vertices in the triangulation. Another difference is
that a specific traits class has to be used (at least at the moment).� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Regular_triangulation_3.h>
#include <CGAL/Regular_triangulation_euclidean_traits_3.h>
#include <cassert>
#include <vector>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Regular_triangulation_euclidean_traits_3<K> Traits;

typedef Traits::RT Weight;
typedef Traits::Bare_point Point;
typedef Traits::Weighted_point

Weighted_point;

typedef CGAL::Regular_triangulation_3<Traits> Rt;
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typedef Rt::Vertex_iterator
Vertex_iterator;

typedef Rt::Vertex_handle
Vertex_handle;

int main()
{

// generate points on a 3D grid
std::vector<Weighted_point> P;

int number_of_points = 0;

for (int z=0 ; z<5 ; z++)
for (int y=0 ; y<5 ; y++)

for (int x=0 ; x<5 ; x++) {
Point p(x, y, z);
Weight w = (x+y-z*y*x)*2.0; // let’s say this is the weight.
P.push_back(Weighted_point(p, w));
++number_of_points;

}

Rt T;

// insert all points in a row (this is faster than one insert() at a
time).

T.insert (P.begin(), P.end());

assert( T.is_valid() );
assert( T.dimension() == 3 );

std::cout << "Number of vertices : " << T.number_of_vertices() <<
std::endl;

// removal of all vertices
int count = 0;
while (T.number_of_vertices() > 0) {

T.remove (T.finite_vertices_begin());
++count;

}

assert( count == number_of_points );

return 0;
}� �

File: examples/Triangulation_3/regular_3.cpp
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39.6 Complexity and Performance

In 3D, the worst case complexity of a triangulation is quadratic in the number of points. For Delaunay triangu-
lations, this bound is reached in cases such as points equally distributed on two non-coplanar lines. However,
the good news is that, in many cases, the complexity of a Delaunay triangulation is linear or close to linear in the
number of points. Several articles [Dwy89, Eri02, AAD07, AB03, ABL03] have proved such good complexity
bounds for specific point distributions, such as points distributed on surfaces under some conditions.

39.6.1 Running Time

There are several algorithms provided in this package. We will focus here on the following ones and give
practical numbers on their efficiency :

• construction of a triangulation from a range of points,

• location of a point (using the locate function),

• removal of a vertex (using the remove function).

We will use the following types of triangulations, using Exact predicates inexact constructions kernel as geo-
metric traits (combined with Regular triangulation euclidean traits 3 in the weighted case) :

• Delaunay : Delaunay triangulation 3

• Delaunay - Fast location : Delaunay triangulation 3 with Fast location

• Regular : Regular triangulation 3 (default setting : memorize hidden points)

• Regular - No hidden points : Regular triangulation 3 with hidden points discarded (using
Triangulation cell base 3 instead of Regular triangulation cell base 3).

Figure 39.6 shows, for all these types of triangulations, the times in seconds taken to build a triangulation
from a given number of points, then the average time to perform one point location in triangulations of various
sizes, and the average time to perform one vertex removal (which is largely independent on the size of the
triangulation).

The data sets used here are points randomly distributed in the unit cube (the coordinates are generated using
the drand48 C function). In the weighted case, the weights are all zero, which means that there are actually no
hidden points during execution.

The measurements have been performed using CGAL 3.6, using the GNU C++ compiler version 4.3.2, under
Linux (Fedora 10 distribution), with the compilation options -O3 -DCGAL NDEBUG. The computer used was
equipped with a 64bit Intel Xeon 3GHz processor and 32GB of RAM (a recent desktop machine as of 2009).

More benchmarks comparing CGAL to other software can be found in [LS05].

39.6.2 Memory Usage

We give here some indication about the memory usage of the triangulations. Those structures being intensively
based on pointers, the size almost doubles on 64bit platforms compared to 32bit.
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Delaunay Delaunay Regular Regular
Fast location No hidden points

Construction from 102 points 0.00054 0.000576 0.000948 0.000955
Construction from 103 points 0.00724 0.00748 0.0114 0.0111
Construction from 104 points 0.0785 0.0838 0.122 0.117
Construction from 105 points 0.827 0.878 1.25 1.19
Construction from 106 points 8.5 9.07 12.6 12.2
Construction from 107 points 87.4 92.5 129 125
Point location in 102 points 9.93e-07 1.06e-06 7.19e-06 6.99e-06
Point location in 103 points 2.25e-06 1.93e-06 1.73e-05 1.76e-05
Point location in 104 points 4.79e-06 3.09e-06 3.96e-05 3.76e-05
Point location in 105 points 2.98e-05 6.12e-06 1.06e-04 1.06e-04
Point location in 106 points 1e-04 9.65e-06 2.7e-04 2.67e-04
Point location in 107 points 2.59e-04 1.33e-05 6.25e-04 6.25e-04
Vertex removal 1e-04 1.03e-04 1.42e-04 1.38e-04

Figure 39.6: Running times in seconds for algorithms on 3D triangulations.

The size also depends on the size of the point type which is copied in the vertices (hence on the kernel).
Obviously, any user data added to vertices and cells also affect the memory used.

More specifically, the memory space used to store a triangulation is first a function of the size of its Vertex
and Cell types times their numbers (and for volumic distribution, one sees about 6.7 times more cells than
vertices). However, these are stored in memory using Compact container, which allocates them in lists of
blocks of growing size, and this requires some additional overhead for bookkeeping. Moreover, memory is
only released to the system when clearing or destroying the triangulation. This can be important for algorithms
like simplifications of data sets which will produce fragmented memory usage (doing fresh copies of the data
structures are one way out in such cases). The asymptotic memory overhead of Compact container for its
internal bookkeeping is otherwise on the order of O(

√
n).

Figure 39.7 shows the number of bytes used per points, as measured empirically using Memory sizer for large
triangulations (106 random points).

Delaunay Delaunay Regular Regular
Fast location No hidden points

32bit 274 291 336 282
64bit 519 553 635 527

Figure 39.7: Memory usage in bytes per point for large data sets.

39.6.3 Variability Depending on the Data Sets and the Kernel

Besides the complexity of the Delaunay triangulation that varies with the distribution of the points, another
critical aspect affects the efficiency : the degeneracy of the data sets. These algorithms are quite sensitive to
numerical accuracy and it is important to run them using exact predicates.

Using a kernel with no exact predicates will quickly lead to crashes or infinite loops once they are executed
on non-random data sets. More precisely, problems appear with data sets which contain (nearly) degenerate
cases for the orientation and side of oriented sphere predicates, namely when there are (nearly) coplanar or
(nearly) cospherical points. This unfortunately happens often in practice with data coming from various kinds
of scanners or other automatic acquisition devices.
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Using an inexact kernel such as Simple cartesian<double> would lead to optimal performance, which is only
about 30% better than Exact predicates inexact constructions kernel. The latter is strongly recommended
since it takes care about potential robustness issues. The former can be used for benchmarking purposes mostly,
or when you really know that your data sets won’t exhibit any robustness issue.

Exact predicates take more time to compute when they hit (nearly) degenerate cases. Depending on the data set,
this can have a visible impact on the overall performance of the algorithm or not.

Sometimes you need exact constructions as well, so Exact predicates exact constructions kernel is a must.
This is the case for example when you need the dual functions to be exact, or when your input is stored in points
of such a kernel for other reasons (because it is the output of another algorithm which has this requirement, for
example). This will slow down the computations by a factor of 4 to 5 at least, and it can be much more.

Figure 39.8 gives more detailed timings about various kernels one the following data sets : random points in a
cube, random points on the surface of an ellipsoid, points scanned on the surface of a Buddha statue, points on
a molecular surface, and points scanned on a dryer handle. See Figure 39.9 for pictures of the last 3 objects,
which respectively illustrate volumic data, surfacic data, and data with many degenerate cases. This last data
set exhibits an infinite loop with an inexact kernel, and of course we are not sure whether what is computed
for the other data sets with this inexact kernel is a Delaunay triangulation. General introductory information
about these robustness issues can be found in [KMP+08]. More benchmarks around this issue can also be found
in [DP03].

Random Ellipsoid Buddha Molecule Dryer
Handle

#points 100000 100000 542548 525296 49787
Simple cartesian<double> 0.69 0.627 4.21 3.8 ∞-loop
Exact predicates inexact constructions kernel 0.824 0.749 4.99 4.64 1.68
Exact predicates exact constructions kernel 4.59 3.85 30.1 26.4 4.57
Simple cartesian<Gmpq> 492 534 1120 1030 75.2

Figure 39.8: Running times (seconds) for various kernels and data sets.

Figure 39.9: Data sets used in the benchmark of Figure 39.8.
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39.7 Design and Implementation History

Monique Teillaud started to work on the 3D triangulation packages in 1997, following the design of the 2D
triangulation packages. The notions of degenerate dimensions and infinite vertex were formalized [Tei99] and
induced changes in the 2D triangulation packages. The packages were first released in CGAL 2.1. They con-
tained basic functionalities on triangulations, Delaunay triangulations, regular triangulations.

A first version of removal of a vertex from a Delaunay triangulation was released in CGAL 2.2. However,
this removal became really robust only in CGAL 2.3, after some research that allowed to deal with degenerate
cases quite easily [DT03]. Andreas Fabri implemented this revised version of the removal, and a faster removal
algorithm for CGAL 3.0.

The latter algorithm was proposed by Mariette Yvinec, who contributed in several ways to the package, first
since she was maintaining the close 2D triangulation package and participated in many discussions, she also
wrote the traits classes for regular triangulations.

In 2000, Sylvain Pion started working on these packages. He improved the efficiency of triangulations in CGAL
2.3 and 2.4 in several ways [BDP+02]: he implemented the Delaunay hierarchy [Dev02] in 2.3, he improved
the memory footprint in 2.4 and 3.0, he also performed work on arithmetic filters [DP03] (see Filtered kernel)
to improve the speed of triangulations. He changed the design in CGAL 3.0, allowing users to add handles in
their own vertices and cells.

Olivier Devillers, co-author of preliminary versions of the CGAL 2d triangulations, participated in many dis-
cussions, in particular about the perturbations, and more concretely in the implementation of the Delaunay
hierarchy.

In 2005, Christophe Delage implemented the vertex removal function for regular triangulations, using the sym-
bolic perturbation proposed in [DT06], which allowed to release this functionality in CGAL 3.2.

In 2006, Nico Kruithof wrote the Triangulation simplex 3 class that can store simplices of any dimension and
improved the internal organization of the code.

As of March 2007, Christophe Delage made the iterator range insert methods and constructors use spatial sort
to improve efficiency.

In 2008, Camille Wormser added a few more iterators in the package that were integrated in release 3.4.

In 2009, Sylvain Pion simplified the design of the Delaunay hierarchy so that it became the simple Fast location
policy in release 3.6.

In 2010, Pedro de Castro and Olivier Devillers added the point displacement in release 3.7.

In 2011, Pedro de Castro and Olivier Devillers implemented in release 3.8 the structural filtering method, im-
proving the efficiency of point location.

A new demo of this package was introduced in CGAL 3.8, coded by Fei (Sophie) Che, who was co-mentored
by Manuel Caroli and Monique Teillaud in the framework of the Google Summer of Code, 2010.

The authors wish to thank Lutz Kettner for inspiring discussions about the design of CGAL. Jean-Daniel Bois-
sonnat is also acknowledged [BDTY00].
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A three-dimensional triangulation is a three-dimensional simplicial complex, pure connected and without sin-
gularities [BY98]. Its cells (3-faces) are such that two cells either do not intersect or share a common facet
(2-face), edge (1-face) or vertex (0-face).

The basic 3D-triangulation class of CGAL is primarily designed to represent the triangulations of a set of points
A in R3. It can be viewed as a partition of the convex hull of A into tetrahedra whose vertices are the points of
A. Together with the unbounded cell having the convex hull boundary as its frontier, the triangulation forms a
partition of R3.

In order to deal only with tetrahedra, which is convenient for many applications, the unbounded cell can be
subdivided into tetrahedra by considering that each convex hull facet is incident to an infinite cell having as
fourth vertex an auxiliary vertex called the infinite vertex. In that way, each facet is incident to exactly two cells
and special cases at the boundary of the convex hull are simple to deal with.

A triangulation is a collection of vertices and cells that are linked together through incidence and adjacency
relations. Each cell gives access to its four incident vertices and to its four adjacent cells. Each vertex gives
access to one of its incident cells.

The four vertices of a cell are indexed with 0, 1, 2 and 3 in positive orientation, the positive orientation being
defined by the orientation of the underlying Euclidean space R3. The neighbors of a cell are also indexed with
0, 1, 2, 3 in such a way that the neighbor indexed by i is opposite to the vertex with the same index. See
Figure 39.1.
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CGAL::Triangulation 3<TriangulationTraits 3,TriangulationDataStructure
3>

Definition

The class Triangulation 3 represents a 3-dimensional tetrahedralization of points.

#include <CGAL/Triangulation 3.h>

Parameters

The first template argument must be a model of the TriangulationTraits 3 concept.

The second template argument must be a model of the TriangulationDataStructure 3 concept. It
has the default value Triangulation data structure 3< Triangulation vertex base 3<TriangulationTraits 3>
,Triangulation cell base 3<TriangulationTraits 3> >.

Inherits From

Triangulation utils 3

Types

The class Triangulation 3 defines the following types:

typedef TriangulationDataStructure 3 Triangulation data structure;
typedef TriangulationTraits 3 Geom traits;

typedef TriangulationTraits 3::Point 3 Point;
typedef TriangulationTraits 3::Segment 3 Segment;
typedef TriangulationTraits 3::Triangle 3 Triangle;
typedef TriangulationTraits 3::Tetrahedron 3 Tetrahedron;

Only vertices (0-faces) and cells (3-faces) are stored. Edges (1-faces) and facets (2-faces) are not explicitly
represented and thus there are no corresponding classes (see Section 39.1).

typedef TriangulationDataStructure 3::Vertex Vertex;
typedef TriangulationDataStructure 3::Cell Cell;
typedef TriangulationDataStructure 3::Facet Facet;
typedef TriangulationDataStructure 3::Edge Edge;

The vertices and faces of the triangulations are accessed through handles, iterators and circulators. A handle
is a model of the Handle concept, and supports the two dereference operators operator* and operator->. A
circulator is a model of the concept Circulator. Iterators and circulators are bidirectional and non-mutable. The
edges and facets of the triangulation can also be visited through iterators and circulators which are bidirectional
and non-mutable.

Iterators and circulators are convertible to the corresponding handles, thus the user can pass them directly as
arguments to the functions.
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typedef TriangulationDataStructure 3::Vertex handle Vertex handle; handle to a vertex
typedef TriangulationDataStructure 3::Cell handle Cell handle; handle to a cell

typedef Triangulation simplex 3<Self> Simplex; Reference to a simplex (vertex,
edge, facet or cell) of the trian-
gulation

typedef TriangulationDataStructure 3::size type size type; Size type (an unsigned integral
type)

typedef TriangulationDataStructure 3::difference type

difference type; Difference type (a signed inte-
gral type)

typedef TriangulationDataStructure 3::Cell iterator All cells iterator; iterator over cells
typedef TriangulationDataStructure 3::Facet iterator All facets iterator; iterator over facets
typedef TriangulationDataStructure 3::Edge iterator All edges iterator; iterator over edges
typedef TriangulationDataStructure 3::Vertex iterator All vertices iterator;

iterator over vertices

Triangulation 3<TriangulationTraits 3,TriangulationDataStructure 3>:: Finite cells iterator

iterator over finite cells

Triangulation 3<TriangulationTraits 3,TriangulationDataStructure 3>:: Finite facets iterator

iterator over finite facets

Triangulation 3<TriangulationTraits 3,TriangulationDataStructure 3>:: Finite edges iterator

iterator over finite edges

Triangulation 3<TriangulationTraits 3,TriangulationDataStructure 3>:: Finite vertices iterator

iterator over finite vertices

Triangulation 3<TriangulationTraits 3,TriangulationDataStructure 3>:: Point iterator

iterator over the points corresponding to the
finite vertices of the triangulation.

typedef TriangulationDataStructure 3::Cell circulator Cell circulator;

circulator over all cells incident to a given
edge

typedef TriangulationDataStructure 3::Facet circulator Facet circulator;

circulator over all facets incident to a given
edge

The triangulation class also defines the following enum type to specify which case occurs when locating a point
in the triangulation.
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enum Locate type { VERTEX=0,
EDGE,
FACET,
CELL,
OUTSIDE CONVEX HULL,
OUTSIDE AFFINE HULL}

Creation

Triangulation 3<TriangulationTraits 3,TriangulationDataStructure 3> t( TriangulationTraits 3 traits =
TriangulationTraits 3())

Introduces a triangulation t having only one vertex which is the infinite ver-
tex.

Triangulation 3<TriangulationTraits 3,TriangulationDataStructure 3> t( Triangulation 3 tr);

Copy constructor. All vertices and faces are duplicated.

template < class InputIterator>
Triangulation 3<TriangulationTraits 3,TriangulationDataStructure 3> t( InputIterator first,

InputIterator last,
TriangulationTraits 3 traits =

TriangulationTraits 3())

Equivalent to constructing an empty triangulation with the optional traits
class argument and calling insert(first,last).

Assignment

Triangulation 3 & t = Triangulation 3 tr

The triangulation tr is duplicated, and modifying the copy after the dupli-
cation does not modify the original. The previous triangulation held by t is
deleted.

void t.swap( Triangulation 3 & tr)

The triangulations tr and t are swapped. t.swap(tr) should be preferred to t
= tr or to t(tr) if tr is deleted after that. Indeed, there is no copy of cells and
vertices, thus this method runs in constant time.

void t.clear() Deletes all finite vertices and all cells of t.

template < class GT, class Tds1, class Tds2 >
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bool Triangulation 3<GT, Tds1> t1 == Triangulation 3<GT, Tds2> t2

Equality operator. Returns true iff there exist a bijection between the vertices
of t1 and those of t2 and a bijection between the cells of t1 and those of t2,
which preserve the geometry of the triangulation, that is, the points of each
corresponding pair of vertices are equal, and the tetrahedra corresponding to
each pair of cells are equal (up to a permutation of their vertices).

template < class GT, class Tds1, class Tds2 >
bool Triangulation 3<GT, Tds1> t1 != Triangulation 3<GT, Tds2> t2

The opposite of operator==.

Access Functions

TriangulationTraits 3 t.geom traits() const Returns a const reference to the geometric traits
object.

TriangulationDataStructure 3 t.tds() const Returns a const reference to the triangulation
data structure.

advanced

Non const access

The responsibility of keeping a valid triangulation belongs to the user when using advanced operations allowing
a direct manipulation of the tds.

TriangulationDataStructure 3& t.tds() Returns a reference to the triangulation data
structure.

This method is mainly a help for users implementing their own triangulation algorithms.

advanced

int t.dimension() const Returns the dimension of the affine hull.
size type t.number of vertices() const

Returns the number of finite vertices.

size type t.number of cells() const

Returns the number of cells or 0 if t.dimension()< 3.

Vertex handle t.infinite vertex() Returns the infinite vertex.
Cell handle t.infinite cell() const Returns a cell incident to the infinite vertex.

Non-constant-time access functions

As previously said, the triangulation is a collection of cells that are either infinite or represent a finite tetrahedra,
where an infinite cell is a cell incident to the infinite vertex. Similarly we call an edge (resp. facet) infinite if it
is incident to the infinite vertex.
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size type t.number of facets() const The number of facets. Returns 0 if t.dimension()< 2.
size type t.number of edges() const The number of edges. Returns 0 if t.dimension()< 1.

size type t.number of finite cells() const

The number of finite cells. Returns 0 if t.dimension()< 3.

size type t.number of finite facets() const

The number of finite facets. Returns 0 if t.dimension()< 2.

size type t.number of finite edges() const

The number of finite edges. Returns 0 if t.dimension()< 1.

Geometric access functions

Tetrahedron t.tetrahedron( Cell handle c) const

Returns the tetrahedron formed by the four vertices of c.
Precondition: t.dimension() = 3 and the cell is finite.

Triangle t.triangle( Cell handle c, int i) const

Returns the triangle formed by the three vertices of facet (c,i). The triangle is
oriented so that its normal points to the inside of cell c.
Precondition: t.dimension() ≥ 2 and i ∈ {0,1,2,3} in dimension 3, i = 3 in
dimension 2, and the facet is finite.

Triangle t.triangle( Facet f) const

Same as the previous method for facet f .
Precondition: t.dimension() ≥ 2 and the facet is finite.

Segment t.segment( Edge e) const

Returns the line segment formed by the vertices of e.
Precondition: t.dimension() ≥ 1 and e is finite.

Segment t.segment( Cell handle c, int i, int j) const

Same as the previous method for edge (c,i,j).
Precondition: As above and i 6= j. Moreover i, j ∈ {0,1,2,3} in dimension 3,
i, j ∈ {0,1,2} in dimension 2, i, j ∈ {0,1} in dimension 1, and the edge is
finite.

Point t.point( Cell handle c, int i) const

Returns the point given by vertex i of cell c.
Precondition: t.dimension() ≥ 0 and i ∈ {0,1,2,3} in dimension 3, i ∈
{0,1,2} in dimension 2, i ∈ {0,1} in dimension 1, i = 0 in dimension 0,
and the vertex is finite.

Point t.point( Vertex handle v) const

Same as the previous method for vertex v.
Precondition: t.dimension() ≥ 0 and the vertex is finite.
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Tests for Finite and Infinite Vertices and Faces

bool t.is infinite( Vertex handle v) const

true, iff vertex v is the infinite vertex.

bool t.is infinite( Cell handle c) const

true, iff c is incident to the infinite vertex.
Precondition: t.dimension() = 3.

bool t.is infinite( Cell handle c, int i) const

true, iff the facet i of cell c is incident to the infinite vertex.
Precondition: t.dimension() ≥ 2 and i ∈ {0,1,2,3} in dimension 3, i = 3 in
dimension 2.

bool t.is infinite( Facet f) const

true iff facet f is incident to the infinite vertex.
Precondition: t.dimension() ≥ 2.

bool t.is infinite( Cell handle c, int i, int j) const

true, iff the edge (i,j) of cell c is incident to the infinite vertex.
Precondition: t.dimension() ≥ 1 and i 6= j. Moreover i, j ∈ {0,1,2,3} in
dimension 3, i, j ∈ {0,1,2} in dimension 2, i, j ∈ {0,1} in dimension 1.

bool t.is infinite( Edge e) const

true iff edge e is incident to the infinite vertex.
Precondition: t.dimension() ≥ 1.

Queries

bool t.is vertex( Point p, Vertex handle & v) const

Tests whether p is a vertex of t by locating p in the triangulation. If p is found,
the associated vertex v is given.

bool t.is vertex( Vertex handle v) const

Tests whether v is a vertex of t.

bool t.is edge( Vertex handle u, Vertex handle v, Cell handle & c, int & i, int & j) const

Tests whether (u,v) is an edge of t. If the edge is found, it gives a cell c having
this edge and the indices i and j of the vertices u and v in c, in this order.
Precondition: u and v are vertices of t.

bool t.is facet( Vertex handle u,
Vertex handle v,
Vertex handle w,
Cell handle & c,
int & i,
int & j,
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int & k) const

Tests whether (u,v,w) is a facet of t. If the facet is found, it computes a cell
c having this facet and the indices i, j and k of the vertices u, v and w in c, in
this order.
Precondition: u, v and w are vertices of t.

bool t.is cell( Cell handle c) const

Tests whether c is a cell of t.

bool t.is cell( Vertex handle u,
Vertex handle v,
Vertex handle w,
Vertex handle x,
Cell handle & c,
int & i,
int & j,
int & k,
int & l) const

Tests whether (u,v,w,x) is a cell of t. If the cell c is found, the method com-
putes the indices i, j, k and l of the vertices u, v, w and x in c, in this order.
Precondition: u, v, w and x are vertices of t.

bool t.is cell( Vertex handle u,
Vertex handle v,
Vertex handle w,
Vertex handle x,
Cell handle & c) const

Tests whether (u,v,w,x) is a cell of t and computes this cell c.
Precondition: u, v, w and x are vertices of t.

There is a method has vertex in the cell class. The analogous methods for facets are defined here.

bool t.has vertex( Facet f, Vertex handle v, int & j) const

If v is a vertex of f , then j is the index of v in the cell f.first, and the method
returns true.
Precondition: t.dimension()=3

bool t.has vertex( Cell handle c, int i, Vertex handle v, int & j) const

Same for facet (c,i). Computes the index j of v in c.

bool t.has vertex( Facet f, Vertex handle v) const
bool t.has vertex( Cell handle c, int i, Vertex handle v) const

Same as the first two methods, but these two methods do not return the index
of the vertex.

The following three methods test whether two facets have the same vertices.

bool t.are equal( Cell handle c, int i, Cell handle n, int j) const
bool t.are equal( Facet f, Facet g) const
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bool t.are equal( Facet f, Cell handle n, int j) const

For these three methods:
Precondition: t.dimension()=3.

Point location

The class Triangulation 3<TriangulationTraits 3,TriangulationDataStructure 3> provides two functions to lo-
cate a given point with respect to a triangulation. It provides also functions to test if a given point is inside a
finite face or not. Note that the class Delaunay triangulation 3 also provides a nearest vertex() function.

Cell handle t.locate( Point query, Cell handle start = Cell handle())

If the point query lies inside the convex hull of the points, the cell that con-
tains the query in its interior is returned. If query lies on a facet, an edge or
on a vertex, one of the cells having query on its boundary is returned.
If the point query lies outside the convex hull of the points, an infinite cell
with vertices {p,q,r,∞} is returned such that the tetrahedron (p,q,r,query)
is positively oriented (the rest of the triangulation lies on the other side of
facet (p,q,r)).
Note that locate works even in degenerate dimensions: in dimension 2 (resp.
1, 0) the Cell handle returned is the one that represents the facet (resp. edge,
vertex) containing the query point.
The optional argument start is used as a starting place for the search.

Cell handle t.locate( Point query, Vertex handle hint) const

Same as above but uses hint as the starting place for the search.

Cell handle t.locate( Point query, Locate type & lt, int & li, int & lj, Cell handle start = Cell handle())

If query lies inside the affine hull of the points, the k-face (finite or infi-
nite) that contains query in its interior is returned, by means of the cell re-
turned together with lt, which is set to the locate type of the query (VERTEX,
EDGE, FACET, CELL, or OUTSIDE CONVEX HULL if the cell is infinite
and query lies strictly in it) and two indices li and lj that specify the k-face of
the cell containing query.
If the k-face is a cell, li and lj have no meaning; if it is a facet (resp. vertex),
li gives the index of the facet (resp. vertex) and lj has no meaning; if it is and
edge, li and lj give the indices of its vertices.
If the point query lies outside the affine hull of the points, which can happen
in case of degenerate dimensions, lt is set to OUTSIDE AFFINE HULL, and
the cell returned has no meaning. As a particular case, if there is no finite
vertex yet in the triangulation, lt is set to OUTSIDE AFFINE HULL and lo-
cate returns the default constructed handle.
The optional argument start is used as a starting place for the search.

Cell handle t.locate( Point query, Locate type & lt, int & li, int & lj, Vertex handle hint) const

Same as above but uses hint as the starting place for the search.
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Bounded side t.side of cell( Point p, Cell handle c, Locate type & lt, int & li, int & lj) const

Returns a value indicating on which side of the oriented boundary of c the
point p lies. More precisely, it returns:
- ON BOUNDED SIDE if p is inside the cell. For an infinite cell this means
that p lies strictly in the half space limited by its finite facet and not contain-
ing any other point of the triangulation.
- ON BOUNDARY if p on the boundary of the cell. For an infinite cell this
means that p lies on the finite facet. Then lt together with li and lj give the
precise location on the boundary. (See the descriptions of the locate meth-
ods.)
- ON UNBOUNDED SIDE if p lies outside the cell. For an infinite cell this
means that p does not satisfy either of the two previous conditions.
Precondition: t.dimension() = 3

Bounded side t.side of facet( Point p, Facet f, Locate type & lt, int & li, int & lj) const

Returns a value indicating on which side of the oriented boundary of f the
point p lies:
- ON BOUNDED SIDE if p is inside the facet. For an infinite facet this
means that p lies strictly in the half plane limited by its finite edge and not
containing any other point of the triangulation .
- ON BOUNDARY if p is on the boundary of the facet. For an infinite facet
this means that p lies on the finite edge. lt, li and lj give the precise location
of p on the boundary of the facet. li and lj refer to indices in the degenerate
cell c representing f .
- ON UNBOUNDED SIDE if p lies outside the facet. For an infinite facet
this means that p does not satisfy either of the two previous conditions.

Precondition: t.dimension() = 2 and p lies in the plane containing the trian-
gulation. f.second = 3 (in dimension 2 there is only one facet per cell).

Bounded side t.side of facet( Point p, Cell handle c, Locate type & lt, int & li, int & lj) const

Same as the previous method for the facet (c,3).

Bounded side t.side of edge( Point p, Edge e, Locate type & lt, int & li) const

Returns a value indicating on which side of the oriented boundary of e the
point p lies:
- ON BOUNDED SIDE if p is inside the edge. For an infinite edge this
means that p lies in the half line defined by the vertex and not containing any
other point of the triangulation.
- ON BOUNDARY if p equals one of the vertices, li give the index of the
vertex in the cell storing e
- ON UNBOUNDED SIDE if p lies outside the edge. For an infinite edge
this means that p lies on the other half line, which contains the other points
of the triangulation.
Precondition: t.dimension() = 1 and p is collinear with the points of the tri-
angulation. e.second = 0 and e.third = 1 (in dimension 1 there is only one
edge per cell).

Bounded side t.side of edge( Point p, Cell handle c, Locate type & lt, int & li) const

Same as the previous method for edge (c,0,1).
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3 tetrahedra 2 tetrahedra

Figure 39.10: Flips.

Flips

Two kinds of flips exist for a three-dimensional triangulation. They are reciprocal. To be flipped, an edge
must be incident to three tetrahedra. During the flip, these three tetrahedra disappear and two tetrahedra appear.
Figure 39.10(left) shows the edge that is flipped as bold dashed, and one of its three incident facets is shaded.
On the right, the facet shared by the two new tetrahedra is shaded.

Flips are possible only under the following conditions:
- the edge or facet to be flipped is not on the boundary of the convex hull of the triangulation
- the five points involved are in convex position.

The following methods guarantee the validity of the resulting 3D triangulation.

Flips for a 2d triangulation are not implemented yet

bool t.flip( Edge e)
bool t.flip( Cell handle c, int i, int j)

Before flipping, these methods check that edge e=(c,i,j) is flippable (which
is quite expensive). They return false or true according to this test.

void t.flip flippable( Edge e)
void t.flip flippable( Cell handle c, int i, int j)

Should be preferred to the previous methods when the edge is known to be
flippable.
Precondition: The edge is flippable.

bool t.flip( Facet f)
bool t.flip( Cell handle c, int i)

Before flipping, these methods check that facet f=(c,i) is flippable (which is
quite expensive). They return false or true according to this test.
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void t.flip flippable( Facet f)
void t.flip flippable( Cell handle c, int i)

Should be preferred to the previous methods when the facet is known to be
flippable.
Precondition: The facet is flippable.

Insertions

The following operations are guaranteed to lead to a valid triangulation when they are applied on a valid trian-
gulation.

Vertex handle t.insert( Point p, Cell handle start = Cell handle())

Inserts point p in the triangulation and returns the corresponding vertex.
If point p coincides with an already existing vertex, this vertex is returned
and the triangulation remains unchanged.
If point p lies in the convex hull of the points, it is added naturally: if it lies
inside a cell, the cell is split into four cells, if it lies on a facet, the two incident
cells are split into three cells, if it lies on an edge, all the cells incident to this
edge are split into two cells.
If point p is strictly outside the convex hull but in the affine hull, p is linked
to all visible points on the convex hull to form the new triangulation. See
Figure 39.11.
If point p is outside the affine hull of the points, p is linked to all the points,
and the dimension of the triangulation is incremented. All the points now
belong to the boundary of the convex hull, so, the infinite vertex is linked
to all the points to triangulate the new infinite face. See Figure 39.12. The
optional argument start is used as a starting place for the search.

Vertex handle t.insert( Point p, Vertex handle hint)

Same as above but uses hint as the starting place for the search.

Vertex handle t.insert( Point p, Locate type lt, Cell handle loc, int li, int lj)

Inserts point p in the triangulation and returns the corresponding vertex. Sim-
ilar to the above insert() function, but takes as additional parameter the return
values of a previous location query. See description of locate() above.

template < class InputIterator >
std::ptrdiff t t.insert( InputIterator first, InputIterator last)

Inserts the points in the range [ first, last ). Returns the number of inserted
points. Note that this function is not guaranteed to insert the points following
the order of InputIterator.
Precondition: The value type of first and last is Point.

The previous methods are sufficient to build a whole triangulation. We also provide some other methods that
can be used instead of insert(p) when the place where the new point p must be inserted is already known. They
are also guaranteed to lead to a valid triangulation when they are applied on a valid triangulation.
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Vertex handle t.insert in cell( Point p, Cell handle c)

Inserts point p in cell c. Cell c is split into 4 tetrahedra.
Precondition: t.dimension() = 3 and p lies strictly inside cell c.

Vertex handle t.insert in facet( Point p, Facet f)

Inserts point p in facet f . In dimension 3, the 2 neighboring cells are split into
3 tetrahedra; in dimension 2, the facet is split into 3 triangles.
Precondition: t.dimension() ≥ 2 and p lies strictly inside face f .

Vertex handle t.insert in facet( Point p, Cell handle c, int i)

As above, insertion in facet (c,i).
Precondition: As above and i ∈ {0,1,2,3} in dimension 3, i = 3 in dimen-
sion 2.

Vertex handle t.insert in edge( Point p, Edge e)

Inserts p in edge e. In dimension 3, all the cells having this edge are split
into 2 tetrahedra; in dimension 2, the 2 neighboring facets are split into 2
triangles; in dimension 1, the edge is split into 2 edges.
Precondition: t.dimension() ≥ 1 and p lies on edge e.

Vertex handle t.insert in edge( Point p, Cell handle c, int i, int j)

As above, inserts p in edge (i, j) of c.
Precondition: As above and i 6= j. Moreover i, j ∈ {0,1,2,3} in dimension 3,
i, j ∈ {0,1,2} in dimension 2, i, j ∈ {0,1} in dimension 1.

Vertex handle t.insert outside convex hull( Point p, Cell handle c)

The cell c must be an infinite cell containing p.
Links p to all points in the triangulation that are visible from p. Updates
consequently the infinite faces. See Figure 39.11.
Precondition: t.dimension() > 0, c, and the k-face represented by c is infinite
and contains t.

pc

Figure 39.11: insert outside convex hull (2-dimensional case).
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Vertex handle t.insert outside affine hull( Point p)

p is linked to all the points, and the infinite vertex is linked to all the points
(including p) to triangulate the new infinite face, so that all the points now
belong to the boundary of the convex hull. See Figure 39.12.
This method can be used to insert the first point in an empty triangulation.
Precondition: t.dimension() < 3 and p lies outside the affine hull of the points.

p

The infinite cells are not shown

Figure 39.12: insert outside affine hull (2-dimensional case).

template <class CellIt>
Vertex handle t.insert in hole( Point p, CellIt cell begin, CellIt cell end, Cell handle begin, int i)

Creates a new vertex by starring a hole. It takes an iterator range [cell begin;
cell end[ of Cell handles which specifies a hole: a set of connected cells
(resp. facets in dimension 2) which is star-shaped wrt p. (begin, i) is a facet
(resp. an edge) on the boundary of the hole, that is, begin belongs to the
set of cells (resp. facets) previously described, and begin->neighbor(i) does
not. Then this function deletes all the cells (resp. facets) describing the hole,
creates a new vertex v, and for each facet (resp. edge) on the boundary of the
hole, creates a new cell (resp. facet) with v as vertex. Then v->set point(p) is
called and v is returned.
This operation is equivalent to calling tds().insert in hole(cell begin, cell
end, begin, i); v->set point(p).
Precondition: t.dimension() ≥ 2, the set of cells (resp. facets in dimension 2)
is connected, its boundary is connected, and p lies inside the hole, which is
star-shaped wrt p.

template <class CellIt>
Vertex handle t.insert in hole( Point p,

CellIt cell begin,
CellIt cell end,
Cell handle begin,
int i,
Vertex handle newv)

Same as above, except that newv will be used as the new vertex, which must
have been allocated previously with e.g. create vertex.

2648



Traversal of the Triangulation

The triangulation class provides several iterators and circulators that allow one to traverse it (completely or
partially).

Cell, Face, Edge and Vertex Iterators

The following iterators allow the user to visit cells, facets, edges and vertices of the triangulation. These iterators
are non-mutable, bidirectional and their value types are respectively Cell, Facet, Edge and Vertex. They are all
invalidated by any change in the triangulation.

Finite vertices iterator t.finite vertices begin() const

Starts at an arbitrary finite vertex. Then ++ and -- will
iterate over finite vertices. Returns finite vertices end()
when t.number of vertices() = 0.

Finite vertices iterator t.finite vertices end() const

Past-the-end iterator

Finite edges iterator t.finite edges begin() const

Starts at an arbitrary finite edge. Then ++ and -- will it-
erate over finite edges. Returns finite edges end() when
t.dimension() < 1.

Finite edges iterator t.finite edges end() const

Past-the-end iterator

Finite facets iterator t.finite facets begin() const

Starts at an arbitrary finite facet. Then ++ and -- will it-
erate over finite facets. Returns finite facets end() when
t.dimension() < 2.

Finite facets iterator t.finite facets end() const

Past-the-end iterator

Finite cells iterator t.finite cells begin() const

Starts at an arbitrary finite cell. Then ++ and -- will
iterate over finite cells. Returns finite cells end() when
t.dimension() < 3.

Finite cells iterator t.finite cells end() const Past-the-end iterator

All vertices iterator t.all vertices begin() const

Starts at an arbitrary vertex. Iterates over all vertices
(even the infinite one). Returns vertices end() when
t.number of vertices() = 0.

All vertices iterator t.all vertices end() const

Past-the-end iterator
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All edges iterator t.all edges begin() const

Starts at an arbitrary edge. Iterates over all edges (even
infinite ones). Returns edges end() when t.dimension()
< 1.

All edges iterator t.all edges end() const Past-the-end iterator
All facets iterator t.all facets begin() const

Starts at an arbitrary facet. Iterates over all facets (even
infinite ones). Returns facets end() when t.dimension()
< 2.

All facets iterator t.all facets end() const Past-the-end iterator
All cells iterator t.all cells begin() const Starts at an arbitrary cell. Iterates over all cells (even

infinite ones). Returns cells end() when t.dimension()
< 3.

All cells iterator t.all cells end() const Past-the-end iterator

Point iterator t.points begin() const Iterates over the points of the triangulation.
Point iterator t.points end() const Past-the-end iterator

Cell and Facet Circulators

The following circulators respectively visit all cells or all facets incident to a given edge. They are non-mutable
and bidirectional. They are invalidated by any modification of one of the cells traversed.

Cell circulator t.incident cells( Edge e) const

Starts at an arbitrary cell incident to e.
Precondition: t.dimension() = 3.

Cell circulator t.incident cells( Cell handle c, int i, int j) const

As above for edge (i,j) of c.

Cell circulator t.incident cells( Edge e, Cell handle start) const

Starts at cell start.
Precondition: t.dimension() = 3 and start is incident to e.

Cell circulator t.incident cells( Cell handle c, int i, int j, Cell handle start) const

As above for edge (i,j) of c.

The following circulators on facets are defined only in dimension 3, though facets are defined also in dimen-
sion 2: there are only two facets sharing an edge in dimension 2.

Facet circulator t.incident facets( Edge e) const

Starts at an arbitrary facet incident to e.
Precondition: t.dimension() = 3

Facet circulator t.incident facets( Cell handle c, int i, int j) const

As above for edge (i,j) of c.
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Facet circulator t.incident facets( Edge e, Facet start) const

Starts at facet start.
Precondition: start is incident to e.

Facet circulator t.incident facets( Edge e, Cell handle start, int f) const

Starts at facet of index f in start.

Facet circulator t.incident facets( Cell handle c, int i, int j, Facet start) const

As above for edge (i,j) of c.

Facet circulator t.incident facets( Cell handle c, int i, int j, Cell handle start, int f) const

As above for edge (i,j) of c and facet (start,f).

Traversal of the incident cells, facets and edges, and the adjacent vertices of a given vertex

template <class OutputIterator>
OutputIterator t.incident cells( Vertex handle v, OutputIterator cells) const

Copies the Cell handles of all cells incident to v to the output iterator
cells. Returns the resulting output iterator.
Precondition: t.dimension() = 3, v 6= Vertex handle(), t.is vertex(v).

template <class OutputIterator>
OutputIterator t.finite incident cells( Vertex handle v, OutputIterator cells) const

Copies the Cell handles of all finite cells incident to v to the output iter-
ator cells. Returns the resulting output iterator.
Precondition: t.dimension() = 3, v 6= Vertex handle(), t.is vertex(v).

template <class OutputIterator>
OutputIterator t.incident facets( Vertex handle v, OutputIterator facets) const

Copies all Facets incident to v to the output iterator facets. Returns the
resulting output iterator.
Precondition: t.dimension() > 1, v 6= Vertex handle(), t.is vertex(v).

template <class OutputIterator>
OutputIterator t.finite incident facets( Vertex handle v, OutputIterator facets) const

Copies all finite Facets incident to v to the output iterator facets. Returns
the resulting output iterator.
Precondition: t.dimension() > 1, v 6= Vertex handle(), t.is vertex(v).

template <class OutputIterator>
OutputIterator t.incident edges( Vertex handle v, OutputIterator edges) const

Copies all Edges incident to v to the output iterator edges. Returns the
resulting output iterator.
Precondition: t.dimension() > 0, v 6= Vertex handle(), t.is vertex(v).
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template <class OutputIterator>
OutputIterator t.finite incident edges( Vertex handle v, OutputIterator edges) const

Copies all finite Edges incident to v to the output iterator edges. Returns
the resulting output iterator.
Precondition: t.dimension() > 0, v 6= Vertex handle(), t.is vertex(v).

template <class OutputIterator>
OutputIterator t.adjacent vertices( Vertex handle v, OutputIterator vertices) const

Copies the Vertex handles of all vertices adjacent to v to the output iter-
ator vertices. If t.dimension() < 0, then do nothing. Returns the resulting
output iterator.
Precondition: v 6= Vertex handle(), t.is vertex(v).

template <class OutputIterator>
OutputIterator t.finite adjacent vertices( Vertex handle v, OutputIterator vertices) const

Copies the Vertex handles of all finite vertices adjacent to v to the out-
put iterator vertices. If t.dimension() < 0, then do nothing. Returns the
resulting output iterator.
Precondition: v 6= Vertex handle(), t.is vertex(v).

size type t.degree( Vertex handle v) const

Returns the degree of a vertex, that is, the number of incident vertices.
The infinite vertex is counted.
Precondition: v 6= Vertex handle(), t.is vertex(v).

Traversal between adjacent cells

int t.mirror index( Cell handle c, int i) const

Returns the index of c in its ith neighbor.
Precondition: i ∈ {0,1,2,3}.

Vertex handle t.mirror vertex( Cell handle c, int i) const

Returns the vertex of the ith neighbor of c that is oppo-
site to c.
Precondition: i ∈ {0,1,2,3}.

Facet t.mirror facet( Facet f) const Returns the same facet seen from the other adjacent
cell.

debugging support

Checking

The responsibility of keeping a valid triangulation belongs to the user when using advanced operations allowing
a direct manipulation of cells and vertices. We provide the user with the following methods to help debugging.
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bool t.is valid( bool verbose = false) const

Checks the combinatorial validity of the triangulation.
Checks also the validity of its geometric embedding
(see Section 39.1).
When verbose is set to true, messages describing the
first invalidity encountered are printed.

bool t.is valid( Cell handle c, bool verbose = false) const

Checks the combinatorial validity of the
cell by calling the is valid method of the
TriangulationDataStructure 3 cell class. Also
checks the geometric validity of c, if c is finite. (See
Section 2610.)
When verbose is set to true, messages are printed
to give a precise indication of the kind of invalidity
encountered.

debugging support

I/O

CGAL provides an interface to Geomview for a 3D-triangulation, see Chapter 80 on Geomview stream. #include
<CGAL/IO/Triangulation geomview ostream 3.h>

istream& istream& is >> Triangulation 3 &t Reads the underlying combinatorial triangulation from
is by calling the corresponding input operator of the
triangulation data structure class (note that the infinite
vertex is numbered 0), and the non-combinatorial in-
formation by calling the corresponding input operators
of the vertex and the cell classes (such as point coordi-
nates), which are provided by overloading the stream
operators of the vertex and cell types. Assigns the re-
sulting triangulation to t.

ostream& ostream& os << Triangulation 3 t Writes the triangulation t into os.

The information in the iostream is: the dimension, the number of finite vertices, the non-combinatorial informa-
tion about vertices (point, etc; note that the infinite vertex is numbered 0), the number of cells, the indices of the
vertices of each cell, plus the non-combinatorial information about each cell, then the indices of the neighbors of
each cell, where the index corresponds to the preceding list of cells. When dimension < 3, the same information
is stored for faces of maximal dimension instead of cells.

See Also

TriangulationDataStructure 3::Vertex
TriangulationDataStructure 3::Cell
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CGAL::Delaunay triangulation 3<DelaunayTriangulationTraits
3,TriangulationDataStructure 3,LocationPolicy>

Definition

The class Delaunay triangulation 3 represents a three-dimensional Delaunay triangulation.

#include <CGAL/Delaunay triangulation 3.h>

Parameters

The first template argument must be a model of the DelaunayTriangulationTraits 3 concept.

The second template argument must be a model of the TriangulationDataStructure 3 concept. It has the
default value Triangulation data structure 3<Triangulation vertex base 3<DelaunayTriangulationTraits 3>,
Triangulation cell base 3<DelaunayTriangulationTraits 3> >.

The third template argument is a tag which must be a Location policy<Tag> : either Fast location or Compact
location. Fast location offers faster (O(logn) time) point location, which can be beneficial when performing
point locations or random point insertions (with no good location hint) in large data sets. It is currently imple-
mented using an additional triangulation hierarchy data structure [Dev02]. The default is Compact location,
which saves memory (3-5%) by avoiding the need for this separate data structure, and point location is then
performed roughly in O(n1/3) time. Note that this argument can also come in second position, which can be
useful when the default value for the TriangulationDataStructure 3 parameter is satisfactory (this is using so-
called deduced parameters). Note that this argument replaces the functionality provided before CGAL 3.6 by
Triangulation hierarchy 3. An example of use can be found in the user manual 39.5.5.

Inherits From

Triangulation 3<DelaunayTriangulationTraits 3,Delaunay triangulation 3<DelaunayTriangulationTraits
3,TriangulationDataStructure 3,LocationPolicy>::Triangulation data structure >

Types

typedef LocationPolicy Location policy;

In addition to those inherited, the following types are defined, for use by the construction of the Voronoi diagram:

typedef DelaunayTriangulationTraits 3::Line 3 Line;
typedef DelaunayTriangulationTraits 3::Ray 3 Ray;
typedef DelaunayTriangulationTraits 3::Plane 3 Plane;
typedef DelaunayTriangulationTraits 3::Object 3 Object;

Creation

Delaunay triangulation 3<DelaunayTriangulationTraits 3,TriangulationDataStructure 3,LocationPolicy>
dt( DelaunayTriangulationTraits 3 traits = DelaunayTriangulationTraits 3())

Creates an empty Delaunay triangulation, possibly specify-
ing a traits class traits.
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Delaunay triangulation 3<DelaunayTriangulationTraits 3,TriangulationDataStructure 3,LocationPolicy>
dt( Delaunay triangulation 3 dt1)

Copy constructor.

template < class InputIterator >
Delaunay triangulation 3<DelaunayTriangulationTraits 3,TriangulationDataStructure 3,LocationPolicy>
dt( InputIterator first,

In-
putIterator last,

DelaunayTriangulationTraits
3 traits = DelaunayTriangulationTraits 3())

Equivalent to constructing an empty triangulation with the
optional traits class argument and calling insert(first,last).

Operations

Insertion

The following methods overload the corresponding methods of triangulations to ensure the empty sphere prop-
erty of Delaunay triangulations.

In the degenerate case when there are co-spherical points, the Delaunay triangulation is known not to be
uniquely defined. In this case, CGAL chooses a particular Delaunay triangulation using a symbolic perturbation
scheme [DT03].

Vertex handle dt.insert( Point p, Cell handle start = Cell handle())

Inserts point p in the triangulation and returns the corresponding vertex. Simi-
lar to the insertion in a triangulation, but ensures in addition the empty sphere
property of all the created faces. The optional argument start is used as a
starting place for the search.

Vertex handle dt.insert( Point p, Vertex handle hint)

Same as above but uses hint as a starting place for the search.

Vertex handle dt.insert( Point p, Locate type lt, Cell handle loc, int li, int lj)

Inserts point p in the triangulation and returns the corresponding vertex. Sim-
ilar to the above insert() function, but takes as additional parameter the re-
turn values of a previous location query. See description of Triangulation
3::locate().

The following method allows one to insert several points. It returns the number of inserted points.

template < class PointInputIterator >
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std::ptrdiff t dt.insert( PointInputIterator first, PointInputIterator last)

Inserts the points in the iterator range [ first, last ). Returns the number of
inserted points. Note that this function is not guaranteed to insert the points
following the order of PointInputIterator, as spatial sort is used to improve
efficiency.
Precondition: The value type of first and last is Point.

template < class PointWithInfoInputIterator >
std::ptrdiff t dt.insert( PointWithInfoInputIterator first, PointWithInfoInputIterator last)

Inserts the points in the iterator range [ first, last ). Returns the number of
inserted points. Note that this function is not guaranteed to insert the points
following the order of PointWithInfoInputIterator, as spatial sort is used to
improve efficiency. Given a pair (p,i), the vertex v storing p also stores i, that
is v.point() == p and v.info() == i. If several pairs have the same point, only
one vertex is created, and one of the objects of type Vertex::Info will be stored
in the vertex.
Precondition: Vertex must be model of the concept
TriangulationVertexBaseWithInfo 3. The value type of first and last is
std::pair<Point,Vertex::Info>.

Displacement

Vertex handle dt.move if no collision( Vertex handle v, Point p)

if there is not already another vertex placed on p, the triangulation is modified
such that the new position of vertex v is p, and v is returned. Otherwise, the
triangulation is not modified and the vertex at point p is returned.
Precondition: Vertex v must be finite.

Vertex handle dt.move( Vertex handle v, Point p)

same as above if there is no collision. Otherwise, v is deleted and the vertex
placed on p is returned.
Precondition: Vertex v must be finite.

Removal

When a vertex v is removed from a triangulation, all the cells incident to v must be removed, and the polyhedral
region consisting of all the tetrahedra that are incident to v must be re-triangulated. So, the problem reduces
to triangulating a polyhedral region, while preserving its boundary, or to compute a constrained triangulation.
This is known to be sometimes impossible: the Schönhardt polyhedron cannot be triangulated [She98a].

However, when dealing with Delaunay triangulations, the case of such polyhedra that cannot be re-triangulated
cannot happen, so CGAL proposes a vertex removal.

void dt.remove( Vertex handle v)

Removes the vertex v from the triangulation.
Precondition: v is a finite vertex of the triangulation.
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template < typename InputIterator >
int dt.remove( InputIterator first, InputIterator beyond)

Removes the vertices specified by the iterator range [first, beyond) of value
type Vertex handle. remove() is called over each element of the range. The
number of vertices removed is returned.
Precondition: (i) all vertices of the range are finite vertices of the triangulation;
and (ii) no vertices are repeated in the range.

template < typename InputIterator >
int dt.remove cluster( InputIterator first, InputIterator beyond)

This function has exactly the same result and the same preconditions as re-
move(first, beyond). The difference is in the implementation and efficiency.
This version does not re-triangulate the hole after each point removal but only
after removing all vertices. This is more efficient if (and only if) the removed
points are organized in a small number of connected components of the De-
launay triangulation.

If, due to some point removals, the size of the Delaunay triangulation decreases drastically, it might be interest-
ing to defragment the CGAL::Compact container (used by the Triangulation data structure 3).

Queries

Bounded side dt.side of sphere( Cell handle c, Point p) const

Returns a value indicating on which side of the circumscribed sphere of c the
point p lies. More precisely, it returns:
- ON BOUNDED SIDE if p is inside the sphere. For an infinite cell this means
that p lies strictly either in the half space limited by its finite facet and not
containing any other point of the triangulation, or in the interior of the disk
circumscribing the finite facet.
- ON BOUNDARY if p on the boundary of the sphere. For an infinite cell this
means that p lies on the circle circumscribing the finite facet.
- ON UNBOUNDED SIDE if p lies outside the sphere. For an infinite cell
this means that p does not satisfy either of the two previous conditions.
Precondition: dt.dimension() = 3.
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Bounded side dt.side of circle( Facet f, Point p) const

Returns a value indicating on which side of the circumscribed circle of f the
point p lies. More precisely, it returns:
- in dimension 3:
– For a finite facet, ON BOUNDARY if p lies on the circle, ON
UNBOUNDED SIDE when it lies in the exterior of the disk, ON BOUNDED
SIDE when it lies in its interior.
– For an infinite facet, it considers the plane defined by the finite facet of the
same cell, and does the same as in dimension 2 in this plane.
- in dimension 2:
– For a finite facet, ON BOUNDARY if p lies on the circle, ON
UNBOUNDED SIDE when it lies in the exterior of the disk, ON BOUNDED
SIDE when it lies in its interior.
– For an infinite facet, ON BOUNDARY if the point lies on the finite edge
of f (endpoints included), ON BOUNDED SIDE for a point in the open half
plane defined by f and not containing any other point of the triangulation,
ON UNBOUNDED SIDE elsewhere.
Precondition: dt.dimension() ≥ 2 and in dimension 3, p is coplanar with f .

Bounded side dt.side of circle( Cell handle c, int i, Point p)

Same as the previous method for facet i of cell c.

Vertex handle dt.nearest vertex( Point p, Cell handle c = Cell handle())

Returns any nearest vertex to the point p, or the default constructed handle if
the triangulation is empty. The optional argument c is a hint specifying where
to start the search.
Precondition: c is a cell of dt.

Vertex handle dt.nearest vertex in cell( Point p, Cell handle c)

Returns the vertex of the cell c that is nearest to p.

A point p is said to be in conflict with a cell c in dimension 3 (resp. a facet f in dimension 2) iff dt.side
of sphere(c, p) (resp. dt.side of circle(f, p)) returns ON BOUNDED SIDE. The set of cells (resp. facets in
dimension 2) which are in conflict with p is connected, and it forms a hole.

template <class OutputIteratorBoundaryFacets, class OutputIteratorCells>
std::pair<OutputIteratorBoundaryFacets, OutputIteratorCells>

dt.find conflicts( Point p,
Cell handle c,
OutputIteratorBoundaryFacets bfit,
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OutputIteratorCells cit)

Computes the conflict hole induced by p. The starting cell (resp. facet) c must
be in conflict. Then this function returns respectively in the output iterators:
– cit: the cells (resp. facets) in conflict.
– bfit: the facets (resp. edges) on the boundary, that is, the facets (resp. edges)
(t, i) where the cell (resp. facet) t is in conflict, but t->neighbor(i) is not.
This function can be used in conjunction with insert in hole() in order to de-
cide the insertion of a point after seeing which elements of the triangulation
are affected. Returns the pair composed of the resulting output iterators.
Precondition: dt.dimension() ≥ 2, and c is in conflict with p.

template <class OutputIteratorBoundaryFacets, class OutputIteratorCells, class OutputIteratorInternalFacets>

Triple<OutputIteratorBoundaryFacets, OutputIteratorCells, OutputIteratorInternalFacets>

dt.find conflicts( Point p,
Cell handle c,
OutputIteratorBoundaryFacets bfit,
OutputIteratorCells cit,
OutputIteratorInternalFacets ifit)

Same as the other find conflicts() function, except that it also computes the
internal facets, i.e. the facets common to two cells which are in conflict with
p. Then this function returns respectively in the output iterators:
– cit: the cells (resp. facets) in conflict.
– bfit: the facets (resp. edges) on the boundary, that is, the facets (resp. edges)
(t, i) where the cell (resp. facet) t is in conflict, but t->neighbor(i) is not.
– ifit: the facets (resp. edges) inside the hole, that is, delimiting two cells (resp
facets) in conflict.
Returns the Triple composed of the resulting output iterators.
Precondition: dt.dimension() ≥ 2, and c is in conflict with p.

deprecated

template <class OutputIterator>
OutputIterator dt.vertices in conflict( Point p, Cell handle c, OutputIterator res)

This function is renamed vertices on conflict zone boundary since CGAL-
3.8.

deprecated template <class OutputIterator>

OutputIterator dt.vertices on conflict zone boundary( Point p, Cell handle c, OutputIterator res)

Similar to find conflicts(), but reports the vertices which are on the boundary
of the conflict hole of p, in the output iterator res. Returns the resulting output
iterator.
Precondition: dt.dimension() ≥ 2, and c is in conflict with p.

A face (cell, facet or edge) is said to be a Gabriel face iff its smallest circumscribing sphere do not en-
close any vertex of the triangulation. Any Gabriel face belongs to the Delaunay triangulation, but the re-
ciprocal is not true. The following member functions test the Gabriel property of Delaunay faces.
bool dt.is Gabriel( Cell handle c, int i)
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bool dt.is Gabriel( Cell handle c, int i, int j)
bool dt.is Gabriel( Facet f)
bool dt.is Gabriel( Edge e)

Voronoi diagram

CGAL offers several functionalities to display the Voronoi diagram of a set of points in 3D.

Note that the user should use a kernel with exact constructions in order to guarantee the computation of the
Voronoi diagram (as opposed to computing the triangulation only, which requires only exact predicates).

Point dt.dual( Cell handle c) const

Returns the circumcenter of the four vertices of c.
Precondition: dt.dimension()= 3 and c is not infinite.

Object dt.dual( Facet f) const

Returns the dual of facet f , which is
in dimension 3: either a segment, if the two cells incident to f are finite, or a
ray, if one of them is infinite;
in dimension 2: a point.
Precondition: dt.dimension() ≥ 2 and f is not infinite.

Object dt.dual( Cell handle c, int i) const

same as the previous method for facet (c,i).

Line dt.dual support( Cell handle c, int i) const

returns the line supporting the dual of the facet.
Precondition: dt.dimension() ≥ 2 and f is not infinite.

template <class Stream>
Stream& dt.draw dual( Stream & os)

Sends the set of duals to all the facets of dt into os.

debugging support

Checking

bool dt.is valid( bool verbose = false) const

Checks the combinatorial validity of the triangulation and the validity of its ge-
ometric embedding (see Section 39.1). Also checks that all the circumscribing
spheres (resp. circles in dimension 2) of cells (resp. facets in dimension 2) are
empty.
When verbose is set to true, messages describing the first invalidity encoun-
tered are printed.
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bool dt.is valid( Cell handle c, bool verbose = false) const

Checks the combinatorial and geometric validity of the cell (see Section 39.1).
Also checks that the circumscribing sphere (resp. circle in dimension 2) of
cells (resp. facet in dimension 2) is empty.
When verbose is set to true, messages are printed to give a precise indication
of the kind of invalidity encountered.

These methods are mainly a debugging help for the users of advanced features.

debugging support

See Also

CGAL::Regular triangulation 3
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CGAL::Triangulation hierarchy 3<Tr>

deprecated

Note : this class is deprecated since CGAL 3.6. Its functionality has been replaced by the use of the Fast location
tag as the LocationPolicy template parameter in Delaunay triangulation 3.

Definition

The class Triangulation hierarchy 3 implements a triangulation augmented with a data structure which allows
fast point location queries. As proved in [Dev02], this structure has an optimal behavior when it is built for
Delaunay triangulations. It can however be used for other triangulations.

#include <CGAL/Triangulation hierarchy 3.h>

Parameters

It is templated by a parameter which must be instantiated by one of the CGAL triangulation classes. In the
current implementation, only Delaunay triangulation 3 is supported for Tr.

Tr::Vertex has to be a model of the concept TriangulationHierarchyVertexBase 3.
Tr::Geom traits has to be a model of the concept DelaunayTriangulationTraits 3.

Inherits From

Tr

Triangulation hierarchy 3<Tr> offers exactly the same functionalities as Tr. Most of them (point location,
insertion, removal. . . ) are overloaded to improve their efficiency by using the hierarchic structure.

Note that, since the algorithms that are provided are randomized, the running time of constructing a triangulation
with a hierarchy may be improved when shuffling the data points.

However, the I/O operations are not overloaded. So, writing a hierarchy into a file will lose the hierarchic
structure and reading it from the file will result in an ordinary triangulation whose efficiency will be the same
as Tr.

Implementation

The data structure is a hierarchy of triangulations. The triangulation at the lowest level is the original triangula-
tion where operations and point location are to be performed. Then at each succeeding level, the data structure
stores a triangulation of a small random sample of the vertices of the triangulation at the preceding level. Point
location is done through a top-down nearest neighbor query. The nearest neighbor query is first performed
naively in the top level triangulation. Then, at each following level, the nearest neighbor at that level is found
through a linear walk performed from the nearest neighbor found at the preceding level. Because the number
of vertices in each triangulation is only a small fraction of the number of vertices of the preceding triangulation
the data structure remains small and achieves fast point location queries on real data.
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See Also

CGAL::Triangulation hierarchy vertex base 3
CGAL::Delaunay triangulation 3

deprecated
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CGAL::Regular triangulation 3<RegularTriangulationTraits
3,TriangulationDataStructure 3>

Definition

Let S(w) be a set of weighted points in R3. Let p(w) = (p,wp), p ∈R3,wp ∈R and z(w) = (z,wz),z ∈R3,wz ∈R
be two weighted points. A weighted point p(w) = (p,wp) can also be seen as a sphere of center p and radius
√wp. The power product (or power distance ) between p(w) and z(w) is defined as

Π(p(w),z(w)) = ‖p− z‖2−wp−wz

where ‖p− z‖ is the Euclidean distance between p and z. p(w) and z(w) are said to be orthogonal if
Π(p(w)− z(w)) = 0 (see Figure 39.2).

Four weighted points have a unique common orthogonal weighted point called the power sphere. A sphere z(w)

is said to be regular if ∀p(w) ∈ S(w),Π(p(w)− z(w))≥ 0.

A triangulation of S(w) is regular if the power spheres of all simplices are regular.

#include <CGAL/Regular triangulation 3.h>

Parameters

The first template argument must be a model of the RegularTriangulationTraits 3 concept.

The second template argument must be a model of the TriangulationDataStructure 3 concept. It has the default
value Triangulation data structure 3<Triangulation vertex base 3<RegularTriangulationTraits 3>, Regular
triangulation cell base 3<RegularTriangulationTraits 3> >.

Inherits From

Triangulation 3<RegularTriangulationTraits 3,TriangulationDataStructure 3>

Types

typedef RegularTriangulationTraits 3::Bare point Bare point; The type for points p of
weighted points p(w) = (p,wp)

typedef RegularTriangulationTraits 3::Weighted point 3 Weighted point;

Creation

Regular triangulation 3<RegularTriangulationTraits 3,TriangulationDataStructure 3> rt(
RegularTriangulationTraits 3 traits = RegularTriangulationTraits 3())

Creates an empty regular triangulation, possibly specifying a
traits class traits.
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Regular triangulation 3<RegularTriangulationTraits 3,TriangulationDataStructure 3> rt( Regular
triangulation 3 rt1)

Copy constructor.

template < class InputIterator >
Regular triangulation 3<RegularTriangulationTraits 3,TriangulationDataStructure 3> rt( InputIterator first,

InputIterator last,
RegularTriangulationTraits

3 traits = RegularTriangulationTraits 3())

Equivalent to constructing an empty triangulation with the
optional traits class argument and calling insert(first,last).

Operations

Insertion

The following methods, which already exist in Triangulation 3, are overloaded to ensure the property that all
power spheres are regular.

Vertex handle rt.insert( Weighted point p, Cell handle start = Cell handle())

Inserts weighted point p in the triangulation. The optional argument start is
used as a starting place for the search.
If this insertion creates a vertex, this vertex is returned.
If p coincides with an existing vertex and has a greater weight, then the existing
weighted point becomes hidden (see RegularTriangulationCellBase 3) and p
replaces it as vertex of the triangulation.
If p coincides with an already existing vertex (both point and weights being
equal), then this vertex is returned and the triangulation remains unchanged.
Otherwise if p does not appear as a vertex of the triangulation, then it is stored
as a hidden point and this method returns the default constructed handle.

Vertex handle rt.insert( Weighted point p, Vertex handle hint)

Same as above but uses hint as a starting place for the search.

Vertex handle rt.insert( Weighted point p, Locate type lt, Cell handle loc, int li, int lj)

Inserts weighted point p in the triangulation and returns the corresponding ver-
tex. Similar to the above insert() function, but takes as additional parameter the
return values of a previous location query. See description of Triangulation
3::locate().

The following method allows one to insert several points.

template < class InputIterator >
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std::ptrdiff t rt.insert( InputIterator first, InputIterator last)

Inserts the weighted points in the range [ first, last ). It returns the difference
of the number of vertices between after and before the insertions (it may be
negative due to hidden points). Note that this function is not guaranteed to
insert the points following the order of InputIterator, as spatial sort is used to
improve efficiency.
Precondition: The value type of first and last is Weighted point.

template < class WeightedPointWithInfoInputIterator >
std::ptrdiff t rt.insert( WeightedPointWithInfoInputIterator first,

WeightedPointWithInfoInputIterator last)

Inserts the weighted points in the iterator range [ first, last ). It returns the differ-
ence of the number of vertices between after and before the insertions (it may
be negative due to hidden points). Note that this function is not guaranteed
to insert the weighted points following the order of WeightedPointWithInfoIn-
putIterator, as spatial sort is used to improve efficiency. Given a pair (p,i), the
vertex v storing p also stores i, that is v.point() == p and v.info() == i. If several
pairs have the same point, only one vertex is created, one of the objects of type
Vertex::Info will be stored in the vertex.
Precondition: Vertex must be model of the concept
TriangulationVertexBaseWithInfo 3. The value type of first and last is
std::pair<Weighted point,Vertex::Info>.

The following methods, which already exist in Triangulation 3, are overloaded to ensure that hidden points are
well created and maintained.

template <class CellIt>
Vertex handle rt.insert in hole( Weighted point p,

CellIt cell begin,
CellIt cell end,
Cell handle begin,
int i)

Creates a new vertex by starring a hole. It takes an iterator range [cell begin;
cell end[ of Cell handles which specifies a hole: a set of connected cells (resp.
facets in dimension 2) which is star-shaped wrt p. (begin, i) is a facet (resp.
an edge) on the boundary of the hole, that is, begin belongs to the set of cells
(resp. facets) previously described, and begin->neighbor(i) does not. Then this
function deletes all the cells (resp. facets) describing the hole, creates a new
vertex v, and for each facet (resp. edge) on the boundary of the hole, creates a
new cell (resp. facet) with v as vertex. Then v->set point(p) is called and v is
returned.
If the hole contains interior vertices, each of them is hidden by the insertion of
p and is stored in the new cell which contains it.
Precondition: rt.dimension() ≥ 2, the set of cells (resp. facets in dimension 2)
is connected, not empty, its boundary is connected, and p lies inside the hole,
which is star-shaped wrt p.

template <class CellIt>
Vertex handle rt.insert in hole( Weighted point p,
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CellIt cell begin,
CellIt cell end,
Cell handle begin,
int i,
Vertex handle newv)

Same as above, except that newv will be used as the new vertex, which must
have been allocated previously with e.g. create vertex.

Removal

void rt.remove( Vertex handle v)

Removes the vertex v from the triangulation.

Queries

Let us remark that

Π(p(w)− z(w)) > 0

is equivalent to
p lies outside the sphere with center z and radius

√
w2

p +w2
z .

This remark helps provide an intuition about the following predicates.

orthocircle of f

p

wp wz

z

wz

zp

wp wz

zp

wp

> π/2 < π/2

ON BOUNDED SIDE ON BOUNDARY ON UNBOUNDED SIDE

π/2

Figure 39.13: side of power circle.
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Bounded side rt.side of power sphere( Cell handle c, Weighted point p) const

Returns the position of the weighted point p with respect to the power
sphere of c. More precisely, it returns:
- ON BOUNDED SIDE if Π(p(w)− z(c)(w)) < 0 where z(c)(w) is the
power sphere of c. For an infinite cell this means either that p lies
strictly in the half space limited by its finite facet and not containing
any other point of the triangulation, or that the angle between p and the
power circle of the finite facet of c is greater than π/2.
- ON BOUNDARY if p is orthogonal to the power sphere of c i.e.
Π(p(w)− z(c)(w)) = 0. For an infinite cell this means that p is orthogo-
nal to the power circle of its finite facet.
- ON UNBOUNDED SIDE if Π(p(w)− z(c)(w)) > 0 i.e. the angle be-
tween the weighted point p and the power sphere of c is less than π/2
or if these two spheres do not intersect. For an infinite cell this means
that p does not satisfy either of the two previous conditions.
Precondition: rt.dimension() = 3.

Bounded side rt.side of power circle( Facet f, Weighted point p) const

Returns the position of the point p with respect to the power circle of f .
More precisely, it returns:
— in dimension 3:
– For a finite facet,
ON BOUNDARY if p is orthogonal to the power circle in the plane of
the facet,
ON UNBOUNDED SIDE when their angle is less than π/2,
ON BOUNDED SIDE when it is greater than π/2 (see Figure 39.13).
– For an infinite facet, it considers the plane defined by the finite facet
of the cell f.first, and does the same as in dimension 2 in this plane.
— in dimension 2:
– For a finite facet,
ON BOUNDARY if p is orthogonal to the circle,
ON UNBOUNDED SIDE when the angle between p and the power cir-
cle of f is less than π/2, ON BOUNDED SIDE when it is greater than
π/2.
– For an infinite facet,
ON BOUNDED SIDE for a point in the open half plane defined by f
and not containing any other point of the triangulation,
ON UNBOUNDED SIDE in the other open half plane.
If the point p is collinear with the finite edge e of f , it returns:
ON BOUNDED SIDE if Π(p(w) − z(e)(w)) < 0, where z(e)(w) is the
power segment of e in the line supporting e,
ON BOUNDARY if Π(p(w)− z(e)(w)) = 0,
ON UNBOUNDED SIDE if Π(p(w)− z(e)(w)) > 0 .
Precondition: rt.dimension() ≥ 2.

Bounded side rt.side of power circle( Cell handle c, int i, Weighted point p) const

Same as the previous method for facet i of cell c.
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Bounded side rt.side of power segment( Cell handle c, Weighted point p) const

In dimension 1, returns
ON BOUNDED SIDE if Π(p(w) − z(c)(w)) < 0, where z(c)(w) is the
power segment of the edge represented by c,
ON BOUNDARY if Π(p(w)− z(c)(w)) = 0,
ON UNBOUNDED SIDE if Π(p(w)− z(c)(w)) > 0 .
Precondition: rt.dimension() = 1.

Vertex handle rt.nearest power vertex( Weighted point p, Cell handle c = Cell handle())

Returns the vertex of the triangulation which is nearest to p with respect
to the power distance. This means that the power of the query point p
with respect to the weighted point in the returned vertex is smaller than
the power of p with respect to the weighted point in any other vertex.
Ties are broken arbitrarily. The default constructed handle is returned if
the triangulation is empty. The optional argument c is a hint specifying
where to start the search.
Precondition: c is a cell of rt.

Vertex handle rt.nearest power vertex in cell( Weighted point p, Cell handle c)

Returns the vertex of the cell c that is nearest to p with respect to the
power distance.

A weighted point p is said to be in conflict with a cell c in dimension 3 (resp. with a facet f in dimension 2) if
it has a negative power distance to the power sphere of c (resp. to the power circle of f ). The set of cells (resp.
facets in dimension 2) which are in conflict with p is connected.

template <class OutputIteratorBoundaryFacets, class OutputIteratorCells, class OutputIteratorInternalFacets>

Triple<OutputIteratorBoundaryFacets, OutputIteratorCells, OutputIteratorInternalFacets>

rt.find conflicts( const Weighted point p,
Cell handle c,
OutputIteratorBoundaryFacets bfit,
OutputIteratorCells cit,
OutputIteratorInternalFacets ifit)

Compute the conflicts with p. The starting cell (resp. facet) c must be
in conflict with p. Then this function returns respectively in the output
iterators:
– cit: the cells (resp. facets) in conflict with p.
– bfit: the facets (resp. edges) on the boundary of the conflict zone,
that is, the facets (resp. edges) (t, i) where the cell (resp. facet) t is in
conflict, but t->neighbor(i) is not.
– ifit: the facets (resp. edges) inside the conflict zone, that facets inci-
dent to two cells (resp facets) in conflict.
Returns the Triple composed of the resulting output iterators.
Precondition: rt.dimension() ≥ 2, and c is in conflict with p.

deprecated

template <class OutputIterator>
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OutputIterator rt.vertices in conflict( Weighted point p, Cell handle c, OutputIterator res)

This function is renamed vertices on conflict zone boundary since
CGAL-3.8.

deprecated template <class OutputIterator>

OutputIterator rt.vertices on conflict zone boundary( Weighted point p,
Cell handle c,
OutputIterator res)

Similar to find conflicts(), but reports the vertices which are on the
boundary of the conflict zone of p, in the output iterator res. Returns
the resulting output iterator.
Precondition: rt.dimension() ≥ 2, and c is a cell containing p.

template <class OutputIterator>
OutputIterator rt.vertices inside conflict zone( Weighted point p, Cell handle c, OutputIterator res)

Similar to find conflicts(), but reports the vertices which are in the inte-
rior of the conflict zone of p, in the output iterator res. The vertices that
are on the boundary of the conflict zone are not reported. Returns the
resulting output iterator.
Precondition: rt.dimension() ≥ 2, and c is a cell containing p.

In the weighted setting, a face (cell, facet, edge or vertex) is said to be a Gabriel face iff
the smallest sphere orthogonal to the weighted points associated to its vertices, has a positive
power product with the weighted point of any other vertex of the triangulation. Any weighted
Gabriel face belongs to the regular triangulation, but the reciprocal is not true. The follow-
ing member functions test the Gabriel property of the faces of the regular triangulation.
bool rt.is Gabriel( Cell handle c, int i)

bool rt.is Gabriel( Cell handle c, int i, int j)
bool rt.is Gabriel( Facet f)
bool rt.is Gabriel( Edge e)
bool rt.is Gabriel( Vertex handle v)

Power diagram

CGAL offers several functionalities to display the Power diagram of a set of points in 3D.

Note that the user should use a kernel with exact constructions in order to guarantee the computation of the
Voronoi diagram (as opposed to computing the triangulation only, which requires only exact predicates).

Weighted point

rt.dual( Cell handle c) const

Returns the weighted circumcenter of the four vertices of c.
Precondition: rt.dimension()= 3 and c is not infinite.
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Object rt.dual( Facet f) const

Returns the dual of facet f , which is
in dimension 3: either a segment, if the two cells incident to f are finite,
or a ray, if one of them is infinite;
in dimension 2: a point.
Precondition: rt.dimension() ≥ 2 and f is not infinite.

Object rt.dual( Cell handle c, int i) const

same as the previous method for facet (c,i).

template <class Stream>
Stream& rt.draw dual( Stream & os)

Sends the set of duals to all the facets of rt into os.

debugging support

Checking

bool rt.is valid( bool verbose = false) const

Checks the combinatorial validity of the triangulation and the validity
of its geometric embedding (see Section 39.1). Also checks that all the
power spheres (resp. power circles in dimension 2, power segments in
dimension 1) of cells (resp. facets in dimension 2, edges in dimension 1)
are regular. When verbose is set to true, messages describing the first
invalidity encountered are printed.
This method is mainly a debugging help for the users of advanced fea-
tures.

debugging support
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TriangulationTraits 3

Definition

The concept TriangulationTraits 3 is the first template parameter of the class Triangulation 3. It defines the
geometric objects (points, segments, triangles and tetrahedra) forming the triangulation together with a few
geometric predicates and constructions on these objects : lexicographical comparison, orientation in case of
coplanar points and orientation in space.

Types

TriangulationTraits 3:: Point 3 The point type. It must be DefaultConstructible, CopyCon-
structible and Assignable.

TriangulationTraits 3:: Segment 3 The segment type.
TriangulationTraits 3:: Tetrahedron 3 The tetrahedron type.
TriangulationTraits 3:: Triangle 3 The triangle type.

TriangulationTraits 3:: Construct segment 3

A constructor object that must provide the function operator
Segment 3 operator()(Point 3 p, Point 3 q),
which constructs a segment from two points.

TriangulationTraits 3:: Construct triangle 3

A constructor object that must provide the function operator
Triangle 3 operator()(Point 3 p, Point 3 q, Point 3 r ),
which constructs a triangle from three points.

TriangulationTraits 3:: Construct tetrahedron 3

A constructor object that must provide the function operator
Tetrahedron 3 operator()(Point 3 p, Point 3 q, Point 3 r, Point 3 s),
which constructs a tetrahedron from four points.

TriangulationTraits 3:: Compare xyz 3

A predicate object that must provide the function operator
Comparison result operator()(Point p, Point q),
which returns EQUAL if the two points are equal. Otherwise it must return a consistent
order for any two points chosen in a same line.

TriangulationTraits 3:: Coplanar orientation 3

A predicate object that must provide the function operator
Orientation operator()(Point p, Point q, Point r),
which returns COLLINEAR if the points are collinear. Otherwise it must return a
consistent orientation for any three points chosen in a same plane.
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TriangulationTraits 3:: Orientation 3

A predicate object that must provide the function operator
Orientation operator()(Point p, Point q, Point r, Point s),
which returns POSITIVE, if s lies on the positive side of the oriented plane h defined
by p, q, and r, returns NEGATIVE if s lies on the negative side of h, and returns
COPLANAR if s lies on h.

Creation

TriangulationTraits 3 traits; Default constructor.
TriangulationTraits 3 traits( Triangulation traits 3 tr); Copy constructor.

Operations

The following functions give access to the predicate and construction objects:

Construct tetrahedron 3 traits.construct tetrahedron 3 object()
Construct triangle 3 traits.construct triangle 3 object()
Construct segment 3 traits.construct segment 3 object()

Compare xyz 3 traits.compare xyz 3 object()
Coplanar orientation 3 traits.coplanar orientation 3 object()
Orientation 3 traits.orientation 3 object()

Has Models

CGAL::Exact predicates inexact constructions kernel (recommended)
CGAL::Exact predicates exact constructions kernel
CGAL::Filtered kernel
CGAL::Cartesian
CGAL::Simple cartesian
CGAL::Homogeneous
CGAL::Simple homogeneous
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DelaunayTriangulationTraits 3

Definition

The concept DelaunayTriangulationTraits 3 is the first template parameter of the class Delaunay triangulation
3. It defines the geometric objects (points, segments...) forming the triangulation together with a few geometric
predicates and constructions on these objects.

Refines

TriangulationTraits 3

In addition to the requirements described for the traits class of Triangulation 3, the geometric traits class of a
Delaunay triangulation must fulfill the following requirements:

Types

DelaunayTriangulationTraits 3:: Line 3 The line type.
DelaunayTriangulationTraits 3:: Object 3 The object type.
DelaunayTriangulationTraits 3:: Ray 3 The ray type.

DelaunayTriangulationTraits 3:: Coplanar side of bounded circle 3

A predicate object that must provide the function operator
Bounded side operator()(Point p, Point q, Point r, Point s),
which determines the bounded side of the circle defined by p, q, and r on which
s lies.
Precondition: p, q, r, and s are coplanar and p, q, and r are not collinear.

DelaunayTriangulationTraits 3:: Side of oriented sphere 3

A predicate object that must provide the function operator
Oriented side operator()(Point p, Point q, Point r, Point s, Point t),
which determines on which side of the oriented sphere circumscribing p, q, r,
s the point t lies.

DelaunayTriangulationTraits 3:: Compare distance 3

A predicate object that must provide the function operator
Comparison result operator()(Point p, Point q, Point r),
which compares the distance between p and q to the distance between p and r.
It is only needed when using the Fast location policy or the nearest vertex
function.

In addition, only when the dual operations are used, the traits class must provide the following constructor
objects:
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DelaunayTriangulationTraits 3:: Construct circumcenter 3

A constructor object that must provide the function operator
Point 3 operator()(Point 3 p, Point 3 q, Point 3 r, Point 3 s),
which constructs the circumcenter of four points.
Precondition: p, q, r and s must be non coplanar.
It must also provide the function operator
Point 3 operator()(Point 3 p, Point 3 q, Point 3 r),
which constructs the circumcenter of three points.
Precondition: p, q and r must be non collinear.

DelaunayTriangulationTraits 3:: Construct object 3

A constructor object that must provide the function operators
Object 3 operator()(Point 3 p),
Object 3 operator()(Segment 3 s) and
Object 3 operator()(Ray 3 r)
that construct an object respectively from a point, a segment and a ray.

DelaunayTriangulationTraits 3:: Construct equidistant line 3

A constructor object that must provide the function operator
Line 3 operator()(Point 3 p1, Point 3 p2, Point 3 p3),
which constructs the line which is at the same distance from the three points.
Precondition: p1, p2 and p3 must be non collinear.

DelaunayTriangulationTraits 3:: Construct ray 3

A constructor object that must provide the function operator
Ray 3 operator()(Point 3 p, Line 3 l),
which constructs the ray starting at p with direction given by l.

Operations

The following functions give access to the predicate and construction objects:

Coplanar side of bounded circle 3 traits.coplanar side of bounded circle 3 object()
Side of oriented sphere 3 traits.side of oriented sphere 3 object()

When using the Fast location policy or the nearest vertex function, the traits must provide:

Compare distance 3 traits.compare distance 3 object()

The following functions must be provided only if the methods of Delaunay triangulation 3 returning elements
of the Voronoi diagram are instantiated:

Construct circumcenter 3 traits.construct circumcenter 3 object()
Construct object 3 traits.construct object 3 object()
Construct perpendicular line 3 traits.construct perpendicular line object()
Construct plane 3 traits.construct plane 3 object()
Construct ray 3 traits.construct ray 3 object()
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Has Models

CGAL::Exact predicates inexact constructions kernel (recommended)
CGAL::Exact predicates exact constructions kernel (recommended for Voronoi)
CGAL::Filtered kernel
CGAL::Cartesian
CGAL::Simple cartesian
CGAL::Homogeneous
CGAL::Simple homogeneous
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RegularTriangulationTraits 3

Definition

The concept RegularTriangulationTraits 3 is the first template parameter of the class Regular triangulation 3.
It defines the geometric objects (points, segments...) forming the triangulation together with a few geometric
predicates and constructions on these objects.

Refines

TriangulationTraits 3

In addition to the requirements described for the traits class of Triangulation 3, the geometric traits class of
Regular triangulation 3 must fulfill the following requirements.

Types

RegularTriangulationTraits 3:: Line 3 The line type.
RegularTriangulationTraits 3:: Object 3 The object type.
RegularTriangulationTraits 3:: Plane 3 The plane type.
RegularTriangulationTraits 3:: Ray 3 The ray type.

We use here the same notation as in Section 39.3. To simplify notation, p will often denote in the sequel either
the point p ∈ R3 or the weighted point p(w) = (p,wp).

RegularTriangulationTraits 3:: Weighted point 3 The weighted point type.
RegularTriangulationTraits 3:: Bare point The (un-weighted) point type.
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RegularTriangulationTraits 3:: Power test 3

A predicate object which must provide the following function operators:

Oriented side operator()( Weighted point 3 p, Weighted point 3 q, Weighted point 3 r, Weighted
point 3 s, Weighted point 3 t),
which performs the following:
Let z(p,q,r,s)(w) be the power sphere of the weighted points (p,q,r,s). Returns
ON ORIENTED BOUNDARY if t is orthogonal to z(p,q,r,s)(w),
ON NEGATIVE SIDE if t lies outside the oriented sphere of center z(p,q,r,s) and radius√

w2
z(p,q,r,s) +w2

t (which is equivalent to Π(t(w),z(p,q,r,s)(w) > 0)),
ON POSITIVE SIDE if t lies inside this oriented sphere.
Precondition: p, q, r, s are not coplanar. Note that with this definition, if all the points have a weight
equal to 0, then power test 3(p,q,r,s,t) = side of oriented sphere(p,q,r,s,t).

Oriented side operator()( Weighted point 3 p, Weighted point 3 q, Weighted point 3 r, Weighted
point 3 t),
which has an definition analogous to the previous method, for coplanar points, with the power circle
z(p,q,r)(w).
Precondition: p, q, r are not collinear and p, q, r, t are coplanar. If all the points have a weight equal
to 0, then power test 3(p,q,r,t) = side of oriented circle(p,q,r,t).

Oriented side operator()( Weighted point 3 p, Weighted point 3 q, Weighted point 3 t),
which is the same for collinear points, where z(p,q)(w) is the power segment of p and q.
Precondition: p and q have different Bare points, and p, q, t are collinear. If all points have a weight
equal to 0, then power test 3(p,q,t) gives the same answer as the kernel predicate s(p,q).has on(t)
would give, where s(p,q) denotes the segment with endpoints p and q.

Oriented side operator()( Weighted point 3 p, Weighted point 3 q),
which is the same for equal points, that is when p and q have equal coordinates, then it returns the
comparison of the weights (ON POSITIVE SIDE when q is heavier than p).
Precondition: p and q have equal Bare points.

The following predicate is required if a call to nearest power vertex or nearest power vertex in cell is issued:

RegularTriangulationTraits 3:: Compare power distance 3

A predicate object that must provide the function operator
Comparison result operator()(Point 3 p, Weighted point 3 q, Weighted point 3 r),
which compares the power distance between p and q to the power distance between p and r.

In addition, only when the dual operations are used, the traits class must provide the following constructor
objects:

RegularTriangulationTraits 3:: Construct weighted circumcenter 3

A constructor type. The operator() constructs the bare point which is the
center of the smallest orthogonal sphere to the input weighted points.
Bare point operator() ( Weighted point 3 p, Weighted point 3 q, Weighted
point 3 r, Weighted point 3 s);
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RegularTriangulationTraits 3:: Construct object 3

A constructor object that must provide the function operators
Object 3 operator()(Point 3 p),
Object 3 operator()(Segment 3 s) and
Object 3 operator()(Ray 3 r)
that construct an object respectively from a point, a segment and a ray.

RegularTriangulationTraits 3:: Construct perpendicular line 3

A constructor object that must provide the function operator
Line 3 operator()(Plane 3 pl, Point 3 p),
which constructs the line perpendicular to pl passing through p.

RegularTriangulationTraits 3:: Construct plane 3

A constructor object that must provide the function operator
Plane 3 operator()(Point 3 p, Point 3 q, Point 3 r),
which constructs the plane passing through p, q and r.
Precondition: p, q and r are non collinear.

RegularTriangulationTraits 3:: Construct ray 3

A constructor object that must provide the function operator
Ray 3 operator()(Point 3 p, Line 3 l),
which constructs the ray starting at p with direction given by l.

Operations

The following function gives access to the predicate object:

Power test 3 traits.power test 3 object()

The following functions must be provided only if the member functions of Regular triangulation 3 returning
elements of the dual diagram are called:

Construct weighted circumcenter 3

traits.construct weighted circumcenter 3 object()
Construct object 3 traits.construct object 3 object()
Construct perpendicular line 3

traits.construct perpendicular line object()
Construct plane 3 traits.construct plane 3 object()
Construct ray 3 traits.construct ray 3 object()

Has Models

CGAL::Regular triangulation euclidean traits 3
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CGAL::Regular triangulation euclidean traits 3<K,Weight>

Definition

The class Regular triangulation euclidean traits 3<K,Weight> is designed as a default traits class for
the class Regular triangulation 3<RegularTriangulationTraits 3,TriangulationDataStructure 3>. It provides
Weighted point 3, a class for weighted points, which derives from the three dimensional point class K::Point
3.

The first argument K must be a model of the Kernel concept.

The second argument Weight of the class Regular triangulation euclidean traits 3<K,Weight> is in fact op-
tional: if is it not provided, K::RT will be used.

The class is a model of the concept RegularTriangulationTraits 3 but it also contains predicates and constructors
on weighted points that are not required in the concept RegularTriangulationTraits 3.

Note that filtered predicates are automatically used if the boolean Has filtered predicates in the kernel provided
as template parameter of that class is set to true.

#include <CGAL/Regular triangulation euclidean traits 3.h>

Is Model for the Concepts

RegularTriangulationTraits 3

Inherits From

K

Types

typedef K::Point 3 Bare point; The type for point p of a weighted point
p(w) = (p,wp).

typedef Weighted point <Bare point, Weight> Weighted point 3; The type for weighted points.

Types for predicate functors

Regular triangulation euclidean traits 3<K,Weight>:: Power test 3

A predicate type for power test. Belongs to the RegularTriangulationTraits 3 concept.

Regular triangulation euclidean traits 3<K,Weight>:: Compare power distance 3

A predicate type to compare power distance. Belongs to the RegularTriangulationTraits 3 concept.
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Regular triangulation euclidean traits 3<K,Weight>:: Compare weighted squared radius 3

A predicate type. The operator() takes weighted point(s) as arguments, together with one weight. It
compares the weight of the smallest sphere orthogonal to the weighted points with the input weight.
Comparison result operator()( Weighted point 3 p, Weighted point 3 q, Weighted point 3 r,
Weighted point 3 s, FT w) ;
Comparison result operator()( Weighted point 3 p, Weighted point 3 q, Weighted point 3 r, FT
w) ;
Comparison result operator()( Weighted point 3 p, Weighted point 3 q, FT w) ;
Comparison result operator()( Weighted point 3 p, FT w) ;

Regular triangulation euclidean traits 3<K,Weight>:: In smallest orthogonal sphere 3

A predicate type. The operator() takes weighted points as arguments and returns the sign of the
power distance of the last one with respect to the smallest sphere orthogonal to the others.
Sign operator()( Weighted point 3 p, Weighted point 3 q, Weighted point 3 r, Weighted point 3
s, Weighted point 3 t) ;
Sign operator()( Weighted point 3 p, Weighted point 3 q, Weighted point 3 r, Weighted point 3
s) ;
Sign operator()( Weighted point 3 p, Weighted point 3 q, Weighted point 3 r) ;
Sign operator()( Weighted point 3 p, Weighted point 3 q) ;

Regular triangulation euclidean traits 3<K,Weight>:: Side of bounded orthogonal sphere 3

A predicate type. The operator() is similar to the operator() of In smallest orthogonal sphere 3
except that the returned type is not a Sign but belongs to the enum Bounded side (A NEGATIVE,
ZERO and POSITIVE) corresponding respectively to ON BOUNDED SIDE, ON BOUNDARY and
ON UNBOUNDED SIDE)).
Bounded side operator() ( Weighted point 3 p, Weighted point 3 q, Weighted point 3 r, Weighted
point 3 s, Weighted point 3 t) ;
Bounded side operator() ( Weighted point 3 p, Weighted point 3 q, Weighted point 3 r, Weighted
point 3 s) ;
Bounded side operator() ( Weighted point 3 p, Weighted point 3 q, Weighted point 3 r) ;

Regular triangulation euclidean traits 3<K,Weight>:: Does simplex intersect dual support 3

A predicate type. The operator() takes weighted points as arguments, considers the subspace of
points with equal power distance with respect to its arguments and the intersection of this subspace
with the affine hull of the bare points associated to the arguments. The operator() returns ON
BOUNDED SIDE, ON BOUNDARY or ON UNBOUNDED SIDE according to the position of this
intersection with respect to the simplex formed by the bare points. This predicate is useful for flow
computations.
Bounded side operator()( Weighted point 3 p, Weighted point 3 q, Weighted point 3 r, Weighted
point 3 s) ;
Bounded side operator()( Weighted point 3 p, Weighted point 3 q, Weighted point 3 r) ;
Bounded side operator()( Weighted point 3 p, Weighted point 3 q) ;
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Types for constructor functors

Regular triangulation euclidean traits 3<K,Weight>:: Construct weighted circumcenter 3

A constructor type. The operator() constructs the bare point which is the center of the smallest
orthogonal sphere to the input weighted points.
Bare point operator() ( Weighted point 3 p, Weighted point 3 q, Weighted point 3 r, Weighted
point 3 s);
Bare point operator() ( Weighted point 3 p, Weighted point 3 q, Weighted point 3 r);
Bare point operator() ( Weighted point 3 p, Weighted point 3 q);

Regular triangulation euclidean traits 3<K,Weight>:: Compute power product 3

A functor type. The operator() computes the power distance between its arguments.
FT operator() ( Weighted point 3 p, Weighted point 3 q) ;

Regular triangulation euclidean traits 3<K,Weight>:: Compute squared radius smallest orthogonal
sphere 3

A functor type. The operator() computes the squared radius of the smallest sphere orthogonal to the
argument(s).
FT operator() ( Weighted point 3 p, Weighted point 3 q, Weighted point 3 r, Weighted point 3
s);
FT operator() ( Weighted point 3 p, Weighted point 3 q, Weighted point 3 r);
FT operator() ( Weighted point 3 p, Weighted point 3 q);
FT operator() ( Weighted point 3 p);

Regular triangulation euclidean traits 3<K,Weight>:: Compute critical squared radius 3

A functor type. The operator() takes weighted points as arguments and computes the squared ra-
dius of the sphere centered in the last point and orthogonal to the other weighted points. The last
argument is a weighted point but its weight does not matter. This construction is ad hoc for pump-
ing slivers. For robustness issue, a predicate to compare critical squared radii for a given last point
should be needed.
FT operator() ( Weighted point 3 p, Weighted point 3 q, Weighted point 3 r, Weighted point 3 s,
Weighted point 3 t);

Operations

The following functions give access to the predicate and constructor functors.

Power test 3 traits.power test 3 object()
Compare power distance 3 traits.compare power distance 3 object()
Compare weighted squared radius 3 traits.compare weighted squared radius 3 object()
In smallest orthogonal sphere 3 traits.in smallest orthogonal sphere 3 object()
Side of bounded orthogonal sphere 3 traits.side of bounded orthogonal sphere 3 object()
Does simplex intersect dual support 3 traits.does simplex intersect dual support 3 object()
Construct weighted circumcenter 3 traits.construct weighted circumcenter 3 object()
Compute power product 3 traits.compute power product 3 object()
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Compute squared radius smallest orthogonal sphere 3

traits.compute squared radius smallest orthogonal sphere 3
object( )

Compute critical squared radius 3 traits.compute critical squared radius 3 object()
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TriangulationCellBase 3

Definition

The cell base required by the basic triangulation does not need to store any geometric information, so only the
requirements of the triangulation data structure apply.

However, for the Delaunay triangulation, the ability to store the circumcenter is provided (for optimization
reasons), hence an additional requirement only in this case, and only when the dual functions are called.

Refines

TriangulationDSCellBase 3

DelaunayTriangulationTraits 3::Point 3

c.circumcenter( DelaunayTriangulationTraits 3 gt = DelaunayTriangulationTraits
3())

Returns the circumcenter.

Has Models

CGAL::Triangulation cell base 3
CGAL::Triangulation cell base with info 3
CGAL::Triangulation cell base with circumcenter 3

See Also

TriangulationVertexBase 3
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TriangulationVertexBase 3

Definition

The vertex base used by the geometric triangulation must store a point. So we list here the additional require-
ments compared to a vertex base usable for the triangulation data structure.

Refines

TriangulationDSVertexBase 3

Types

TriangulationVertexBase 3:: Point Must be the same as the point type TriangulationTraits
3::Point 3 defined by the geometric traits class of the tri-
angulation.

Creation

TriangulationVertexBase 3 v( Point p); Constructs a vertex whose geometric embedding is point p.
TriangulationVertexBase 3 v( Point p, Cell handle c);

Constructs a vertex embedding the point p and pointing to
cell c.

Access Functions

Point v.point() const Returns the point.

Setting

void v.set point( Point p) Sets the point.

I/O

istream& istream& is >> & v Inputs the non-combinatorial information given by the vertex:
the point and other possible information.

ostream& ostream& os << v Outputs the non-combinatorial information given by the ver-
tex: the point and other possible information.
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Has Models

CGAL::Triangulation vertex base 3
CGAL::Triangulation vertex base with info 3

See Also

TriangulationCellBase 3
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TriangulationVertexBaseWithInfo 3

Definition

A type model of this concept can be used as vertex base by a triangulation and provides an additional information
storage.

Refines

TriangulationVertexBase 3

Types

TriangulationVertexBaseWithInfo 3:: Info A type which is DefaultConstructible and Assignable.

Access Functions

Info v.info() const Returns a const reference to the object of type Info stored in
the vertex.

Info& v.info() Returns a reference to the object of type Info stored in the
vertex.

Has Models

CGAL::Triangulation vertex base with info 3
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CGAL::Triangulation simplex 3<Triangulation 3>

Definition

The class Triangulation simplex 3<Triangulation 3> stores a simplex of any dimension defined by the
Triangulation 3 class. It also defines the operator less such that simplices can be stored in a map or a set
of simplices. The simplex is invalidated by any change in the triangulation.

#include <CGAL/Triangulation simplex 3.h>

Parameters

It is parameterized by the triangulation it derives the simplices from.

Types

typedef Triangulation simplex 3<Triangulation 3> Simplex; The simplex class itself.

typedef Triangulation 3::Vertex handle Vertex handle;
typedef Triangulation 3::Edge Edge;
typedef Triangulation 3::Facet Facet;
typedef Triangulation 3::Cell handle Cell handle;

typedef Triangulation 3::Cell circulator Cell circulator;
typedef Triangulation 3::Facet circulator Facet circulator;

typedef Triangulation 3::Edge iterator Edge iterator;
typedef Triangulation 3::Facet iterator Facet iterator;

typedef Triangulation 3::Finite vertices iterator Finite vertices iterator;
typedef Triangulation 3::Finite edges iterator Finite edges iterator;
typedef Triangulation 3::Finite facets iterator Finite facets iterator;
typedef Triangulation 3::Finite cells iterator Finite cells iterator;

Creation

Triangulation simplex 3<Triangulation 3> simplex; Initializes the simplex to an invalid simplex.

Triangulation simplex 3<Triangulation 3> simplex( Vertex handle vh);
Triangulation simplex 3<Triangulation 3> simplex( Edge e);
Triangulation simplex 3<Triangulation 3> simplex( Facet f );
Triangulation simplex 3<Triangulation 3> simplex( Cell handle ch);

Triangulation simplex 3<Triangulation 3> simplex( Cell circulator ccir);
Triangulation simplex 3<Triangulation 3> simplex( Facet circulator fcir);
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Triangulation simplex 3<Triangulation 3> simplex( Edge iterator eit);
Triangulation simplex 3<Triangulation 3> simplex( Facet iterator fit);

Operations

int simplex.dimension() const

returns the dimension of the simplex.

Vertex handle Vertex handle (simplex) Returns the Vertex handle stored in the simplex.
Precondition: dimension() == 0

Edge Edge (simplex) Returns the Edge stored in the simplex.
Precondition: dimension() == 1

Facet Facet (simplex) Returns the Facet stored in the simplex.
Precondition: dimension() == 2

Cell handle Cell handle (simplex) Returns the Cell handle stored in the simplex.
Precondition: dimension() == 3

Cell handle simplex.incident cell() const

Returns a cell incident to the simplex.

bool simplex == s1 Test whether two simplices are equal.
bool simplex < s1 Defines a ordering on the simplices. This ordering depends on

the memory layout and is independent of the geometry. There-
fore, the ordering is not intrinsic

See Also

CGAL::Triangulation 3<TriangulationTraits 3,TriangulationDataStructure 3> . . . . . . . . . . . . . . . . . . page 2636
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TriangulationHierarchyVertexBase 3

deprecated

Note : this concept is deprecated since CGAL 3.6, as the only class using it, Triangulation hierarchy 3 has been
deprecated as well.

Definition

The vertex base used by Triangulation hierarchy 3 must provide access to two vertex handles for linking be-
tween the levels of the hierarchy.

Refines

TriangulationVertexBase 3

Access Functions

Vertex handle v.up() const Returns the Vertex handle pointing to the level above.
Vertex handle v.down() const Returns the Vertex handle pointing to the level below.

Setting

void v.set up( Vertex handle v) Sets the Vertex handle pointing to the level above to v.
void v.set down( Vertex handle v) Sets the Vertex handle pointing to the level below to v.

Has Models

CGAL::Triangulation hierarchy vertex base 3

deprecated

2690



C
on

ce
pt

RegularTriangulationCellBase 3

Definition

The regular triangulation of a set of weighted points does not necessarily have one vertex for each of the
input points. Some of the input weighted points have no cell in the dual power diagrams and therefore do not
correspond to a vertex of the regular triangulation. Those weighted points are said to be hidden points. A point
which is hidden at a given time may appear later as a vertex of the regular triangulation upon removal on some
other weighted point. Therefore, hidden points have to be stored somewhere. The regular triangulation stores
those hidden points in its cells.

A hidden point can appear as vertex of the triangulation only when the three dimensional cell where its point
component is located (the cell which hides it) is removed. Therefore we decided to store in each cell of a
regular triangulation the list of hidden points that are located in the face. Thus points hidden by a face are easily
reinserted in the triangulation when the face is removed.

The base cell of a regular triangulation has to be a model of the concept RegularTriangulationCellBase 3, which
refines the concept TriangulationCellBase 3 by adding in the cell a container to store hidden points.

Refines

TriangulationCellBase 3

Types

RegularTriangulationCellBase 3:: Point Must be the same as the point type TriangulationTraits
3::Point 3 defined by the geometric traits class of the tri-
angulation.

Types

RegularTriangulationCellBase 3:: Point iterator

Iterator of value type Point

Access Functions

Point iterator rcb.hidden points begin()

Returns an iterator pointing to the first hidden point.

Point iterator rcb.hidden points end()

Returns a past-the-end iterator.
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Setting

void rcb.hide point( Point p)

Adds p to the set of hidden points of the cell.

Has Models

CGAL::Regular triangulation cell base 3

See Also

TriangulationCellBase 3
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CGAL::Triangulation cell base 3<TriangulationTraits 3,
TriangulationDSCellBase 3>

Definition

The class Triangulation cell base 3 is a model of the concept TriangulationCellBase 3, the base cell of a 3D-
triangulation.

This class can be used directly or can serve as a base to derive other classes with some additional attributes (a
color for example) tuned for a specific application.

#include <CGAL/Triangulation cell base 3.h>

Parameters

The first template argument is the geometric traits class TriangulationTraits 3. It is actually not used by this
class.

The second template argument is a combinatorial cell base class from which Triangulation cell base 3 derives.
It has the default value Triangulation ds cell base 3<>.

Note that this model does not store the circumcenter, but computes it every time the circumcenter function is
called. See CGAL::Triangulation cell base with circumcenter 3 for a way to cache the circumcenter compu-
tation.

Is Model for the Concepts

TriangulationCellBase 3

Inherits From

TriangulationDSCellBase 3

See Also

CGAL::Triangulation ds cell base 3
CGAL::Triangulation cell base with info 3
CGAL::Triangulation cell base with circumcenter 3
CGAL::Triangulation vertex base 3
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CGAL::Triangulation cell base with info 3<Info, TriangulationTraits
3, TriangulationCellBase 3>

Definition

The class Triangulation cell base with info 3 is a model of the concept TriangulationCellBase 3, the base
cell of a 3D-triangulation. It provides an easy way to add some user defined information in cells. Note that
input/output operators discard this additional information.

#include <CGAL/Triangulation cell base with info 3.h>

Parameters

The first template argument is the information the user would like to add to a cell. It has to be DefaultCon-
structible and Assignable.

The second template argument is the geometric traits class TriangulationTraits 3. It is actually not used by this
class.

The third template argument is a cell base class from which Triangulation cell base with info 3 derives. It has
the default value Triangulation cell base 3<TriangulationTraits 3>.

Is Model for the Concepts

TriangulationCellBase 3

Inherits From

TriangulationCellBase 3

Types

typedef Info Info;

Access Functions

const Info& v.info() const Returns a const reference to the object of type Info stored in the cell.
Info& v.info() Returns a reference to the object of type Info stored in the cell.

See Also

CGAL::Triangulation cell base 3
CGAL::Triangulation cell base with circumcenter 3 CGAL::Triangulation vertex base with info 3
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CGAL::Triangulation cell base with circumcenter 3<
DelaunayTriangulationTraits 3, TriangulationCellBase 3>

Definition

The class Triangulation cell base with circumcenter 3 is a model of the concept TriangulationCellBase 3,
the base cell of a 3D-triangulation. It provides an easy way to cache the computation of the circumcenter of
tetrahedra. Note that input/output operators discard this additional information.

All functions modifying the vertices of the cell, invalidate the cached circumcenter.

#include <CGAL/Triangulation cell base with circumcenter 3.h>

Parameters

The first template argument is the geometric traits class DelaunayTriangulationTraits 3.

The second template argument is a cell base class from which Triangulation cell base with circumcenter 3
derives. It has the default value Triangulation cell base 3<DelaunayTriangulationTraits 3>.

Is Model for the Concepts

TriangulationCellBase 3

Inherits From

TriangulationCellBase 3

Access Functions

const DelaunayTriangulationTraits 3::Point 3&

v.circumcenter( const DelaunayTriangulationTraits 3&gt = DelaunayTriangulationTraits 3())

Computes the circumcenter of the tetrahedron, or retrieve it if already com-
puted.

See Also

CGAL::Triangulation cell base 3
CGAL::Triangulation cell base with info 3
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CGAL::Triangulation vertex base 3<TriangulationTraits 3,
TriangulationDSVertexBase 3>

Definition

The class Triangulation vertex base 3 is a model of the concept TriangulationVertexBase 3, the base vertex of
a 3D-triangulation. This class stores a point.

This class can be used directly or can serve as a base to derive other classes with some additional attributes (a
color for example) tuned for a specific application.

#include <CGAL/Triangulation vertex base 3.h>

Parameters

The first template argument is the geometric traits class TriangulationTraits 3 which provides the point type,
Point 3. Users of the geometric triangulations (Section 40.2 and Chapter 39) are strongly advised to use the
same geometric traits class TriangulationTraits 3 as the one used for Triangulation 3. This way, the point type
defined by the base vertex is the same as the point type defined by the geometric traits class.

The second template argument is a combinatorial vertex base class from which Triangulation vertex base 3
derives. It has the default value Triangulation ds vertex base 3<>.

Is Model for the Concepts

TriangulationVertexBase 3

Inherits From

TriangulationDSVertexBase 3

Types

typedef TriangulationTraits 3::Point 3 Point;

See Also

CGAL::Triangulation cell base 3
CGAL::Triangulation ds vertex base 3
CGAL::Triangulation vertex base with info 3
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CGAL::Triangulation vertex base with info 3<Info,
TriangulationTraits 3, TriangulationVertexBase 3>

Definition

The class Triangulation vertex base with info 3 is a model of the concept TriangulationVertexBase 3, the base
vertex of a 3D-triangulation. It provides an easy way to add some user defined information in vertices. Note
that input/output operators discard this additional information.

#include <CGAL/Triangulation vertex base with info 3.h>

Parameters

The first template argument is the information the user would like to add to a vertex. It has to be DefaultCon-
structible and Assignable.

The second template argument is the geometric traits class TriangulationTraits 3 which provides the Point 3.

The third template argument is a vertex base class from which Triangulation vertex base with info 3 derives.
It has the default value Triangulation vertex base 3<TriangulationTraits 3>.

Is Model for the Concepts

TriangulationVertexBase 3
TriangulationVertexBaseWithInfo 3

Inherits From

TriangulationVertexBase 3

Types

typedef Info Info;

Access Functions

const Info& v.info() const Returns a const reference to the object of type Info stored in the vertex.
Info& v.info() Returns a reference to the object of type Info stored in the vertex.

See Also

CGAL::Triangulation cell base with info 3
CGAL::Triangulation vertex base 3
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CGAL::Triangulation hierarchy vertex base 3<TriangulationVertexBase
3>

deprecated

Note : this class is deprecated since CGAL 3.6. Its functionality is now transparently added when using the Fast
location tag as the LocationPolicy template parameter in Delaunay triangulation 3, instead of Triangulation
hierarchy 3.

Definition

This class is designed to be used as the vertex base class for Triangulation hierarchy 3.

It inherits from its parameter TriangulationVertexBase 3, and adds the requirements in order to match the
concept TriangulationHierarchyVertexBase 3, it does so by storing two Vertex handles. This design allows to
use either a vertex base class provided by CGAL, or a user customized vertex base with additional functionalities.

#include <CGAL/Triangulation hierarchy vertex base 3.h>

Parameters

It is parameterized by a model of the concept TriangulationVertexBase 3.

Is Model for the Concepts

TriangulationHierarchyVertexBase 3

Inherits From

TriangulationVertexBase 3

See Also

CGAL::Triangulation hierarchy 3
CGAL::Triangulation vertex base 3
CGAL::Triangulation vertex base with info 3

deprecated
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CGAL::Regular triangulation cell base 3<Traits,Cb>

Definition

The class Regular triangulation cell base 3<Traits,Cb> is a model of the concept
RegularTriangulationCellBase 3. It is the default face base class of regular triangulations.

#include <CGAL/Regular triangulation cell base 3.h>

Parameters

The template parameters Traits has to be a model of RegularTriangulationTraits 3.

The template parameter Cb has to be a model of TriangulationCellBase 3. By default, this parameter is instan-
tiated by CGAL::Triangulation cell base 3<Traits>.

Is Model for the Concepts

RegularTriangulationCellBase 3

Inherits From

Cb

See Also

RegularTriangulationCellBase 3
RegularTriangulationTraits 3
CGAL::Regular triangulation 3<Traits,Tds>

2699



E
nu

m

CGAL::Triangulation 3::Locate type

Definition

The enum Locate type is defined by Triangulation 3 to specify which case occurs when locating a point in the
triangulation.

enum Locate type { VERTEX=0,
EDGE,
FACET,
CELL,
OUTSIDE CONVEX HULL,
OUTSIDE AFFINE HULL}

See Also

CGAL::Triangulation 3
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WeightedPoint

Definition

The concept WeightedPoint is needed by Regular triangulation euclidean traits 3. It must fulfill the following
requirements:

Types

WeightedPoint:: Point The point type
WeightedPoint:: Weight The weight type
typedef Point::RT RT; The ring type

Creation

WeightedPoint wp( Point p=Point(), Weight w = Weight(0));

Access Functions

Point point() const
Weight weight() const

Has Models

Weighted point.

See Also

CGAL::Regular triangulation euclidean traits 3
CGAL::Regular triangulation 3.
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CGAL::Regular triangulation filtered traits 3<FK>

deprecated

Note : this class is deprecated since CGAL 3.6. The class CGAL::Regular triangulation euclidean traits 3
should be used instead. Filtered predicates are automatically used if the boolean Has filtered predicates in the
kernel provided as template parameter of that class is set to true.

Definition

The class Regular triangulation filtered traits 3<FK> is designed as a traits class for the class Regular
triangulation 3<RegularTriangulationTraits 3,TriangulationDataStructure 3>. Its difference with Regular
triangulation euclidean traits 3 is that it provides filtered predicates which are meant to be fast and exact.

The first argument FK must be a model of the Kernel concept, and it is also restricted to be a instance of the
Filtered kernel template.

#include <CGAL/Regular triangulation filtered traits 3.h>

Is Model for the Concepts

RegularTriangulationTraits 3

Inherits From

Regular triangulation euclidean traits 3<FK>

See Also

CGAL::Regular triangulation euclidean traits 3.

deprecated
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A geometric triangulation has two aspects: the combinatorial structure, which gives the incidence and adjacency
relations between faces, and the geometric information related to the position of vertices.

CGAL provides 3D geometric triangulations in which these two aspects are clearly separated. As described in
Chapter 39, a geometric triangulation of a set of points in Rd , d ≤ 3 is a partition of the whole space Rd into
cells having d +1 vertices. Some of them are infinite, they are obtained by linking an additional vertex at infinity
to each facet of the convex hull of the points (see Section 39.1). The underlying combinatorial graph of such a
triangulation without boundary of Rd can be seen as a triangulation of the topological sphere Sd in Rd+1.

This chapter deals with 3D-triangulation data structures, meant to maintain the combinatorial information for
3D-geometric triangulations. The reader interested in geometric triangulations of R3 is advised to read Chap-
ter 39.

40.1 Representation

In CGAL, a 3D triangulation data structure is a container of cells (3-faces) and vertices (0-faces).

Following the standard vocabulary of simplicial complexes, an i-face fi and a j-face f j (0≤ j < i≤ 3) are said
to be incident in the triangulation if f j is a (sub)face of fi, and two i-faces (0≤ i≤ 3) are said to be adjacent if
they share a commun incident (sub)face.
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Figure 40.1: Representation.

Each cell gives access to its four incident vertices and to its four adjacent cells. Each vertex gives direct access
to one of its incident cells, which is sufficient to retrieve all the incident cells when needed.

The four vertices of a cell are indexed with 0, 1, 2 and 3. The neighbors of a cell are also indexed with 0, 1, 2,
3 in such a way that the neighbor indexed by i is opposite to the vertex with the same index (see Figure 40.1).

Edges (1-faces) and facets (2-faces) are not explicitly represented: a facet is given by a cell and an index (the
facet i of a cell c is the facet of c that is opposite to the vertex of index i) and an edge is given by a cell and two
indices (the edge (i,j) of a cell c is the edge whose endpoints are the vertices of indices i and j of c).

Degenerate Dimensions As CGAL explicitly deals with all degenerate cases, a 3D-triangulation data structure
in CGAL can handle the cases when the dimension of the triangulation is lower than 3.

Thus, a 3D-triangulation data structure can store a triangulation of a topological sphere Sd of Rd+1, for any
d ∈ {−1,0,1,2,3}.

Let us give, for each dimension, the example corresponding to the triangulation data structure having a min-
imal number of vertices, i.e. a simplex. These examples are illustrated by presenting their usual geometric
embedding.

• dimension 3. The triangulation data structure consists of the boundary of a 4-dimensional simplex, which
has 5 vertices. A geometric embedding consists in choosing one of these vertices to be infinite, thus four
of the five 3-cells become infinite: the geometric triangulation has one finite tetrahedron remaining, each
of its facets being incident to an infinite cell. See Figure 40.2.

• dimension 2. We have 4 vertices forming one 3-dimensional simplex, i.e. the boundary of a tetrahedron.
The geometric embedding in the plane results from choosing one of these vertices to be infinite, then
the geometric triangulation has one finite triangle whose edges are incident to the infinite triangles. See
Figure 40.3.

• dimension 1. A 2-dimensional simplex (a triangle) has 3 vertices. The geometric embedding is an edge
whose vertices are linked to an infinite point. See Figure 40.4.

The last three cases are defined uniquely:

• dimension 0. A 0-dimensional triangulation is combinatorially equivalent to the boundary of a 1-
dimensional simplex (an edge), which consists of 2 vertices. One of them becomes infinite in the ge-
ometric embedding, and there is only one finite vertex remaining. The two vertices are adjacent.
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Figure 40.2: 4D simplex and a 3D geometric embedding.
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Figure 40.3: 3D simplex and a 2D geometric embedding.
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Figure 40.4: 2D simplex and a 1D geometric embedding.
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• dimension -1. This dimension is a convention to represent a 0-dimensional simplex, that is a sole vertex,
which will be geometrically embedded as an “empty” triangulation, having only one infinite vertex.

• dimension -2. This is also a convention. The triangulation data structure has no vertex. There is no
associated geometric triangulation.

Note that the notion of infinite vertex has no meaning for the triangulation data structure. The infinite vertex of
the geometric embedding is a vertex that cannot be distinguished from the other vertices in the combinatorial
triangulation.

The same cell class is used in all cases: triangular faces in 2D can be considered as degenerate cells, having
only three vertices (resp. neighbors) numbered (0,1,2); edges in 1D have only two vertices (resp. neighbors)
numbered 0 and 1.

The implicit representation of facets (resp. edges) still holds for degenerate (< 3) dimensions : in dimension 2,
each cell has only one facet of index 3, and 3 edges (0,1), (1,2) and (2,0); in dimension 1, each cell has one
edge (0,1).

Validity A 3D combinatorial triangulation is said to be locally valid iff the following is true:

(a) When a cell c has a neighbor pointer to another cell c′, then reciprocally this cell c′ has a neighbor pointer
to c, and c and c′ have three vertices in common. These cells are called adjacent.

(b) The cells have a coherent orientation: if two cells c1 and c2 are adjacent and share a facet with vertices u,v,w,
then the vertices of c1 are numbered (v1

0 = u,v1
1 = v,v1

2 = w,v1
3), and the vertices of c2 are numbered (v2

0 = v,v2
1 =

u,v2
2 = w,v2

3), up to positive permutations of (0,1,2,3). In other words, if we embed the triangulation in R3,
then the fourth vertices v1

3 and v2
3 of c1 and c2 see the common facet in opposite orientations. See Figure 40.5.

The set σ4 of permutations of (0,1,2,3) has cardinality 24, and the set of positive permutations A4 has cardi-
nality 12. Thus, for a given orientation, there are up to 12 different orderings of the four vertices of a cell. Note
that cyclic permutations are negative and so do not preserve the orientation of a cell.

v1
3

v2
3

v2
0 = v1

1 = v

v2
1 = v1

0 = u

v2
2 = v1

2 = w

Figure 40.5: Coherent orientations of two cells (3-dimensional case).

The is valid() method provided by Triangulation data structure 3 checks the local validity of a given triangu-
lation data structure.
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40.2 Software Design

The 3D-triangulation data structure class of CGAL, Triangulation data structure 3, is designed to be used as a
combinatorial layer upon which a geometric layer can be built [Ket98]. This geometric layer is typically one of
the 3D-triangulation classes of CGAL: Triangulation 3, Delaunay triangulation 3 and Regular triangulation
3. This relation is described in more details in Chapter 39, where the Section 39.4 explains other important parts
of the design related to the geometry.

We focus here on the design of the triangulation data structure (TDS) itself, which the Figure 40.6 illustrates.
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and/or Geometric
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Vertex Cell

Rebind_TDS

Types

Derivation

Template parameters

UserVB<...,DSVB<TDS=Self> >

DSVertexBase<TDS=Dummy> DSCellBase<TDS=Dummy>

UserVB<...,DSVB<TDS=Dummy> > UserCB<...,DSCB<TDS=Dummy> >

UserCB<...,DSCB<TDS=Self> >

Figure 40.6: Triangulation Data Structure software design.

40.2.1 Flexibility of the Design

In order for the user to be able to add his own data in the vertices and cells, the design of the TDS is split into
two layers:

• In the bottom layer, the (vertex and cell) base classes store elementary incidence and adjacency (and
possibly geometric or other) information. These classes are parameterized by the TDS which provides
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the handle types. (They can also be parameterized by a geometric traits class or anything else.) A vertex
stores a Cell handle, and a cell stores four Vertex handles and four Cell handles.

• The middle layer is the TDS, which is purely combinatorial. It provides operations such as insertion of
a new vertex in a given cell, on a 1 or 2-face. It also allows one, if the dimension of the triangulation is
smaller than 3, to insert a vertex so that the dimension of the triangulation is increased by one. The TDS
is responsible for the combinatorial integrity of the eventual geometric triangulation built on top of it (the
upper layer, see Chapter 39).

The user has several ways to add his own data in the vertex and cell base classes used by the TDS. He can either:

• use the classes Triangulation vertex base with info 3 and Triangulation cell base with info 3, which
allow to add one data member of a user provided type, and give access to it.

• derive his own classes from the default base classes Triangulation ds vertex base, and Triangulation
ds cell base (or the geometric versions typically used by the geometric layer, Triangulation vertex base,
and Triangulation cell base).

• write his own base classes following the requirements given by the concepts TriangulationCellBase 3
and TriangulationVertexBase 3 (described in page 2684 and page 2685).

40.2.2 Cyclic Dependency

Since adjacency relations are stored in the vertices and cells, it means that the vertex and cell base classes have
to be able to store handles (an entity akin to pointers) to their neighbors in the TDS. This in turns means that the
vertex and cell base classes have to know the types of these handles, which are provided by the TDS. So in a
sense, the base classes are parameterized by the TDS, and the TDS is parameterized by the vertex and cell base
classes ! This is a cycle which cannot be resolved easily.

The solution that we have chosen is similar to the mechanism used by the standard class std::allocator: the
vertex and cell base classes are initially given a fake or dummy TDS template parameter, whose unique purpose
is to provide the types that can be used by the vertex and cell base classes (such as handles). Then, inside the
TDS itself, these base classes are rebound to the real TDS type, that is we obtain the same vertex and cell base
classes, but parameterized with the real TDS instead of the dummy one. Rebinding is performed by a nested
template class of the vertex and cell base classes (see code below), which provides a type which is the rebound
vertex or cell base class1.

Here is how it works, schematically:� �
template < class Vb, class Cb >
class TDS
{

typedef TDS<Vb, Cb> Self;

// Rebind the vertex and cell base to the actual TDS (Self).
typedef typename Vb::template Rebind_TDS<Self>::Other VertexBase;
typedef typename Cb::template Rebind_TDS<Self>::Other CellBase;

// ... further internal machinery leads to the final public types:
public:

typedef ... Vertex;
typedef ... Cell;

1It is logically equivalent to a mechanism that does not exist yet in the C++ language: template typedef or template aliasing
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typedef ... Vertex_handle;
typedef ... Cell_handle;

};

template < class TDS = ... > // The default is some internal type faking
a TDS

class Triangulation_ds_vertex_base_3
{
public:

template < class TDS2 >
struct Rebind_TDS {

typedef Triangulation_ds_vertex_base_3<TDS2> Other;
};

...
};� �
When derivation is used for the vertex or cell base classes, which is the case at the geometric level with
Triangulation vertex base 3, then it gets slightly more involved because its base class has to be rebound as
well:� �
template < class GT, class Vb = Triangulation_ds_vertex_base_3<> >
class Triangulation_vertex_base_3 : public Vb
{
public:

template < class TDS2 >
struct Rebind_TDS {

typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
typedef Triangulation_vertex_base_3<GT, Vb2> Other;

};
...
};� �
40.3 Examples

40.3.1 Incremental Construction

The following example shows how to construct a 3D triangulation data structure by inserting vertices.� �
#include <CGAL/Triangulation_data_structure_3.h>
#include <iostream>
#include <fstream>
#include <cassert>
#include <vector>

typedef CGAL::Triangulation_data_structure_3<> Tds;

typedef Tds::size_type size_type;
typedef Tds::Cell_handle Cell_handle;
typedef Tds::Vertex_handle Vertex_handle;

int main()
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{
Tds T;

assert( T.number_of_vertices() == 0 );
assert( T.dimension() == -2 );
assert( T.is_valid() );

std::vector<Vertex_handle> PV(7);

PV[0] = T.insert_increase_dimension();
assert( T.number_of_vertices() == 1 );
assert( T.dimension() == -1 );
assert( T.is_valid() );

// each of the following insertions of vertices increases the dimension
for ( int i=1; i<5; i++ ) {

PV[i] = T.insert_increase_dimension(PV[0]);
assert( T.number_of_vertices() == (size_type) i+1 );
assert( T.dimension() == i-1 );
assert( T.is_valid() );

}
assert( T.number_of_cells() == 5 );

// we now have a simplex in dimension 4

// cell incident to PV[0]
Cell_handle c = PV[0]->cell();
int ind;
bool check = c->has_vertex( PV[0], ind );
assert( check );
// PV[0] is the vertex of index ind in c

// insertion of a new vertex in the facet opposite to PV[0]
PV[5] = T.insert_in_facet(c, ind);

assert( T.number_of_vertices() == 6 );
assert( T.dimension() == 3 );
assert( T.is_valid() );

// insertion of a new vertex in c
PV[6] = T.insert_in_cell(c);

assert( T.number_of_vertices() == 7 );
assert( T.dimension() == 3 );
assert( T.is_valid() );

std::ofstream oFileT("output_tds",std::ios::out);
// writing file output_tds;
oFileT << T;

return 0;
}� �
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File: examples/Triangulation_3/tds.cpp

40.3.2 Cross-Linking Between a 2D and a 3D Data Structures

This example program illustrates how to setup a 2D and a 3D triangulation data structures whose vertices
respectively store vertex handles of the other one.� �
#include <CGAL/Triangulation_data_structure_2.h>
#include <CGAL/Triangulation_data_structure_3.h>
#include <cassert>

// declare the 2D vertex base type, parametrized by some 3D TDS.
template < typename T3, typename Vb =

CGAL::Triangulation_ds_vertex_base_2<> >
class My_vertex_2;

// declare the 3D vertex base type, parametrized by some 2D TDS.
template < typename T2, typename Vb =

CGAL::Triangulation_ds_vertex_base_3<> >
class My_vertex_3;

// Then, we have to break the dependency cycle.

// we need to refer to a dummy 3D TDS.
typedef

CGAL::Triangulation_ds_vertex_base_3<>::Triangulation_data_structure
Dummy_tds_3;

// the 2D TDS, initially plugging a dummy 3D TDS in the vertex type
// (to break the dependency cycle).
typedef CGAL::Triangulation_data_structure_2<My_vertex_2<Dummy_tds_3> >

TDS_2;
// the 3D TDS, here we can plug the 2D TDS directly.
typedef CGAL::Triangulation_data_structure_3<My_vertex_3<TDS_2> >

TDS_3;

template < typename T3, typename Vb >
class My_vertex_2

: public Vb
{
public:

typedef typename Vb::Face_handle Face_handle;

template <typename TDS2>
struct Rebind_TDS {

typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
// we also have to break the cycle here by hardcoding TDS_3 instead
of T3.
typedef My_vertex_2<TDS_3, Vb2> Other;

};

My_vertex_2() {}
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My_vertex_2(Face_handle f) : Vb(f) {}

// we store a vertex handle of the 3D TDS.
typename T3::Vertex_handle v3;

};

template < typename T2, typename Vb >
class My_vertex_3

: public Vb
{
public:

typedef typename Vb::Cell_handle Cell_handle;

template <typename TDS2>
struct Rebind_TDS {

typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
typedef My_vertex_3<T2, Vb2> Other;

};

My_vertex_3() {}

My_vertex_3(Cell_handle c) : Vb(c) {}

// we store a vertex handle of the 2D TDS.
typename T2::Vertex_handle v2;

};

int main() {
TDS_2 t2;
TDS_3 t3;

TDS_2::Vertex_handle v2 = t2.insert_dim_up();
TDS_3::Vertex_handle v3 = t3.insert_increase_dimension();

v2->v3 = v3;
v3->v2 = v2;

assert(t2.is_valid());
assert(t3.is_valid());
return 0;

}� �
File: examples/Triangulation_3/linking_2d_and_3d.cpp

40.4 Design and Implementation History

Monique Teillaud introduced the triangulation of the topological sphere Sd in Rd+1 to manage the underlying
graph of geometric triangulations and handle degenerate dimensions [Tei99].

Sylvain Pion improved the software in several ways, in particular regarding the memory management.
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The triangulation data structure is able to represent a triangulation of a topological sphere Sd of Rd+1, for
d ∈ {−1,0,1,2,3}. (See 40.1.)

The vertex class of a 3D-triangulation data structure must define a number of types and operations. The require-
ments that are of geometric nature are required only when the triangulation data structure is used as a layer for
the geometric triangulation classes. (See Section 40.2.)

The cell class of a triangulation data structure stores four handles to its four vertices and four handles to its four
neighbors. The vertices are indexed 0, 1, 2, and 3 in a consistent order. The neighbor indexed i lies opposite to
vertex i.

In degenerate dimensions, cells are used to store faces of maximal dimension: in dimension 2, each cell repre-
sents only one facet of index 3, and 3 edges (0,1), (1,2) and (2,0); in dimension 1, each cell represents one
edge (0,1). (See Section 40.1.)

40.5 Classified Reference Pages

Concepts

TriangulationDataStructure 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2715

TriangulationDataStructure 3::Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2730
TriangulationDataStructure 3::Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2732

TriangulationDSCellBase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2734
TriangulationDSVertexBase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2737

Classes

CGAL::Triangulation data structure 3<TriangulationDSVertexBase 3,TriangulationDSCellBase 3>
page 2739

This class is a model for the concept of the 3D-triangulation data structure TriangulationDataStructure 3. It is
templated by base classes for vertices and cells.
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CGAL provides base vertex classes and base cell classes:

CGAL::Triangulation ds cell base 3<> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2741
CGAL::Triangulation ds vertex base 3<> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2742
CGAL::Triangulation cell base 3<TriangulationTraits 3, TriangulationDSCellBase 3> . . . . . . . . . . page 2693
CGAL::Triangulation vertex base 3<TriangulationTraits 3, TriangulationDSVertexBase 3> . . . . . . page 2696
CGAL::Triangulation hierarchy vertex base 3<TriangulationVertexBase 3> . . . . . . . . . . . . . . . . . . . . page 2698

Helper Classes

CGAL::Triangulation utils 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2743

It defines operations on the indices of vertices and neighbors within a cell of a triangulation.
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Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2730
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TriangulationDSVertexBase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2737
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TriangulationDataStructure 3

Definition

3D-triangulation data structures are meant to maintain the combinatorial information for 3D-geometric triangu-
lations.

In CGAL, a triangulation data structure is a container of cells (3-faces) and vertices (0-faces). Following the
standard vocabulary of simplicial complexes, an i-face fi and a j-face f j (0≤ j < i≤ 3) are said to be incident
in the triangulation if f j is a (sub)face of fi, and two i-faces (0 ≤ i ≤ 3) are said to be adjacent if they share a
common incident (sub)face.

Each cell gives access to its four incident vertices and to its four adjacent cells. Each vertex gives direct access
to one of its incident cells, which is sufficient to retrieve all the incident cells when needed.

The four vertices of a cell are indexed with 0, 1, 2 and 3. The neighbors of a cell are also indexed with 0, 1, 2,
3 in such a way that the neighbor indexed by i is opposite to the vertex with the same index (see Figure 40.1).

Edges (1-faces) and facets (2-faces) are not explicitly represented: a facet is given by a cell and an index (the
facet i of a cell c is the facet of c that is opposite to the vertex of index i) and an edge is given by a cell and two
indices (the edge (i,j) of a cell c is the edge whose endpoints are the vertices of indices i and j of c).

As CGAL explicitly deals with all degenerate cases, a 3D-triangulation data structure in CGAL can handle the
cases when the dimension of the triangulation is lower than 3 (see Section 40.1).

Thus, a 3D-triangulation data structure can store a triangulation of a topological sphere Sd of Rd+1, for any
d ∈ {−1,0,1,2,3}.

The second template parameter of the basic triangulation class (see Chapter 39 , page 2636) Triangulation 3 is
a triangulation data structure class. (See Chapter 40.)

To ensure all the flexibility of the class Triangulation 3, a model of a triangulation data structure must
be templated by the base vertex and the base cell classes (see 40.1): TriangulationDataStructure 3<
TriangulationVertexBase 3,TriangulationCellBase 3>. The optional functionalities related to geometry are
compulsory for this use as a template parameter of Triangulation 3.

A class that satisfies the requirements for a triangulation data structure class must provide the following types
and operations.

Types

TriangulationDataStructure 3:: Vertex Vertex type
TriangulationDataStructure 3:: Cell Cell type

TriangulationDataStructure 3:: size type Size type (unsigned integral type)
TriangulationDataStructure 3:: difference type

Difference type (signed integral type)
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Vertices and cells are usually manipulated via handles, which support the two dereference operators operator*
and operator->.

TriangulationDataStructure 3:: Vertex handle
TriangulationDataStructure 3:: Cell handle

Requirements for Vertex and Cell are described in TriangulationDataStructure 3::Vertex and
TriangulationDataStructure 3::Cell ( page 2732 and page 2730).

advanced

TriangulationDataStructure 3:: template <typename Vb2> struct Rebind vertex

This nested template class allows to get the type of a
triangulation data structure that only changes the vertex
type. It has to define a type Other which is a re-
bound triangulation data structure, that is, the one whose
TriangulationDSVertexBase 3 will be Vb2.

TriangulationDataStructure 3:: template <typename Cb2> struct Rebind cell

This nested template class allows to get the type of a trian-
gulation data structure that only changes the cell type. It has
to define a type Other which is a rebound triangulation data
structure, that is, the one whose TriangulationDSCellBase 3
will be Cb2.

advanced

typedef Triple<Cell handle, int, int> Edge; (c,i,j) is the edge of cell c whose vertices indices are i and j.
(See Section 40.1.)

typedef std::pair<Cell handle, int> Facet; (c,i) is the facet of c opposite to the vertex of index i. (See
Section 40.1.)

The following iterators allow one to visit all the vertices, edges, facets and cells of the triangulation data struc-
ture. They are all bidirectional, non-mutable iterators.

TriangulationDataStructure 3:: Cell iterator
TriangulationDataStructure 3:: Facet iterator
TriangulationDataStructure 3:: Edge iterator
TriangulationDataStructure 3:: Vertex iterator

The following circulators allow us to visit all the cells and facets incident to a given edge. They are bidirectional
and non-mutable.

TriangulationDataStructure 3:: Facet circulator
TriangulationDataStructure 3:: Cell circulator

Iterators and circulators are convertible to the corresponding handles, thus the user can pass them directly as
arguments to the functions.

Creation

TriangulationDataStructure 3 tds; Default constructor.
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TriangulationDataStructure 3 tds( tds1); Copy constructor. All vertices and cells are duplicated.

TriangulationDataStructure 3& tds = tds1 Assignment operator. All vertices and cells are dupli-
cated, and the former data structure of tds is deleted.

Vertex handle tds.copy tds( tds1, Vertex handle v = Vertex handle())

tds1 is copied into tds. If v != Vertex handle(), the vertex of tds corre-
sponding to v is returned, otherwise Vertex handle() is returned.
Precondition: The optional argument v is a vertex of tds1.

void tds.swap( & tds1) Swaps tds and tds1. There is no copy of cells and vertices, thus this
method runs in constant time. This method should be preferred to
tds=tds1 or tds(tds1) when tds1 is deleted after that.

void tds.clear() Deletes all cells and vertices. tds is reset as a triangulation data struc-
ture constructed by the default constructor.

Operations

Access Functions

int tds.dimension() const The dimension of the triangulated topological sphere.
size type tds.number of vertices() const The number of vertices. Note that the triangulation data struc-

ture has one more vertex than an associated geometric trian-
gulation, if there is one, since the infinite vertex is a standard
vertex and is thus also counted.

size type tds.number of cells() const The number of cells. Returns 0 if tds.dimension()< 3.

Non constant-time access functions

size type tds.number of facets() const The number of facets. Returns 0 if tds.dimension()< 2.
size type tds.number of edges() const The number of edges. Returns 0 if tds.dimension()< 1.

advanced

Setting

void tds.set dimension( int n) Sets the dimension to n.

advanced

Queries

bool tds.is vertex( Vertex handle v) const

Tests whether v is a vertex of tds.
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bool tds.is edge( Cell handle c, int i, int j) const

Tests whether (c,i,j) is an edge of tds. Answers false when di-
mension() < 1 .
Precondition: i, j ∈ {0,1,2,3}

bool tds.is edge( Vertex handle u, Vertex handle v, Cell handle & c, int & i, int & j) const

Tests whether (u,v) is an edge of tds. If the edge is found, it
computes a cell c having this edge and the indices i and j of the
vertices u and v, in this order.

bool tds.is edge( Vertex handle u, Vertex handle v) const

Tests whether (u,v) is an edge of tds.

bool tds.is facet( Cell handle c, int i) const

Tests whether (c,i) is a facet of tds. Answers false when dimen-
sion() < 2 .
Precondition: i ∈ {0,1,2,3}

bool tds.is facet( Vertex handle u,
Vertex handle v,
Vertex handle w,
Cell handle & c,
int & i,
int & j,
int & k) const

Tests whether (u,v,w) is a facet of tds. If the facet is found, it
computes a cell c having this facet and the indices i, j and k of
the vertices u, v and w, in this order.

bool tds.is cell( Cell handle c) const Tests whether c is a cell of tds. Answers false when dimension()
< 3 .

bool tds.is cell( Vertex handle u,
Vertex handle v,
Vertex handle w,
Vertex handle t,
Cell handle & c,
int & i,
int & j,
int & k,
int & l) const

Tests whether (u,v,w,t) is a cell of tds. If the cell c is found, it
computes the indices i, j, k and l of the vertices u, v, w and t in
c, in this order.

There is a method has vertex in the cell class. The analogous methods for facets are defined here.
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3 tetrahedra 2 tetrahedra

Figure 40.7: Flips.

bool tds.has vertex( Facet f, Vertex handle v, int & j) const

If v is a vertex of f , then j is the index of v in the cell f.first, and
the method returns true.
Precondition: tds.dimension()=3

bool tds.has vertex( Cell handle c, int i, Vertex handle v, int & j) const

Same for facet (c,i). Computes the index j of v in c.

bool tds.has vertex( Facet f, Vertex handle v) const
bool tds.has vertex( Cell handle c, int i, Vertex handle v) const

Same as the first two methods, but these two methods do not
return the index of the vertex.

The following three methods test whether two facets have the same vertices.

bool tds.are equal( Facet f, Facet g) const
bool tds.are equal( Cell handle c, int i, Cell handle n, int j) const
bool tds.are equal( Facet f, Cell handle n, int j) const

For these three methods:
Precondition: tds.dimension()=3.

Flips

Two kinds of flips exist for a three-dimensional triangulation. They are reciprocal. To be flipped, an edge
must be incident to three tetrahedra. During the flip, these three tetrahedra disappear and two tetrahedra appear.
Figure 40.7(left) shows the edge that is flipped as bold dashed, and one of its three incident facets is shaded. On
the right, the facet shared by the two new tetrahedra is shaded.

The following methods guarantee the validity of the resulting 3D combinatorial triangulation. Moreover the flip
operations do not invalidate the vertex handles, and only invalidate the cell handles of the affected cells.
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Flips for a 2d triangulation are not implemented yet

bool tds.flip( Edge e)
bool tds.flip( Cell handle c, int i, int j)

Before flipping, these methods check that edge e=(c,i,j) is flip-
pable (which is quite expensive). They return false or true ac-
cording to this test.

void tds.flip flippable( Edge e)
void tds.flip flippable( Cell handle c, int i, int j)

Should be preferred to the previous methods when the edge is
known to be flippable.
Precondition: The edge is flippable.

bool tds.flip( Facet f)
bool tds.flip( Cell handle c, int i) Before flipping, these methods check that facet f=(c,i) is flip-

pable (which is quite expensive). They return false or true ac-
cording to this test.

void tds.flip flippable( Facet f)
void tds.flip flippable( Cell handle c, int i)

Should be preferred to the previous methods when the facet is
known to be flippable.
Precondition: The facet is flippable.

Insertions

The following modifier member functions guarantee the combinatorial validity of the resulting triangulation.

Vertex handle tds.insert in cell( Cell handle c)

Creates a new vertex, inserts it in cell c and returns its handle.
The cell c is split into four new cells, each of these cells being
formed by the new vertex and a facet of c.
Precondition: tds.dimension() = 3 and c is a cell of tds.

Vertex handle tds.insert in facet( Facet f)

Creates a new vertex, inserts it in facet f and returns its handle.
In dimension 3, the two incident cells are split into 3 new cells;
in dimension 2, the facet is split into 3 facets.
Precondition: tds.dimension() ≥ 2 and f is a facet of tds.

Vertex handle tds.insert in facet( Cell handle c, int i)

Creates a new vertex, inserts it in facet i of c and returns its han-
dle.
Precondition: tds.dimension() ≥ 2, i ∈ {0,1,2,3} in dimen-
sion 3, i = 3 in dimension 2 and (c,i) is a facet of tds.
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Vertex handle tds.insert in edge( Edge e)

Creates a new vertex, inserts it in edge e and returns its handle.
In dimension 3, all the incident cells are split into 2 new cells; in
dimension 2, the 2 incident facets are split into 2 new facets; in
dimension 1, the edge is split into 2 new edges.
Precondition: tds.dimension() ≥ 1 and e is an edge of tds.

Vertex handle tds.insert in edge( Cell handle c, int i, int j)

Creates a new vertex, inserts it in edge (i, j) of c and returns its
handle.
Precondition: tds.dimension() ≥ 1. i 6= j, i, j ∈ {0,1,2,3} in
dimension 3, i, j ∈ {0,1,2} in dimension 2, i, j ∈ {0,1} in di-
mension 1 and (c,i,j) is an edge of tds.

Vertex handle tds.insert increase dimension( Vertex handle star = Vertex handle())

Transforms a triangulation of the sphere Sd of Rd+1 into the tri-
angulation of the sphere Sd+1 of Rd+2 by adding a new vertex v:
v is linked to all the vertices to triangulate one of the two half-
spheres of dimension (d + 1). Vertex star is used to triangulate
the second half-sphere (when there is an associated geometric
triangulation, star is in fact the vertex associated with its infinite
vertex). See Figure 40.8.
The numbering of the cells is such that, if f was a face of maxi-
mal dimension in the initial triangulation, then (f,v) (in this order)
is the corresponding face in the new triangulation. This method
can be used to insert the first two vertices in an empty triangula-
tion.
A handle to v is returned.
Precondition: tds.dimension() = d < 3. When tds.number of
vertices() > 0, star 6= Vertex handle() and star is a vertex of tds.

template <class CellIt>
Vertex handle tds.insert in hole( CellIt cell begin, CellIt cell end, Cell handle begin, int i)

Creates a new vertex by starring a hole. It takes an iterator range
[cell begin; cell end[ of Cell handles which specifies a set of
connected cells (resp. facets in dimension 2) describing a hole.
(begin, i) is a facet (resp. an edge) on the boundary of the hole,
that is, begin belongs to the set of cells (resp. facets) previously
described, and begin->neighbor(i) does not. Then this function
deletes all the cells (resp. facets) describing the hole, creates a
new vertex v, and for each facet (resp. edge) on the boundary of
the hole, creates a new cell (resp. facet) with v as vertex. v is
returned.
Precondition: tds.dimension() ≥ 2, the set of cells (resp. facets)
is connected, and its boundary is connected.

template <class CellIt>
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star p

triangulation of S1 triangulation of S2

Figure 40.8: insert increase dimension (1-dimensional case).

Vertex handle tds.insert in hole( CellIt cell begin,
CellIt cell end,
Cell handle begin,
int i,
Vertex handle newv)

Same as above, except that newv will be used as the new ver-
tex, which must have been allocated previously with e.g. create
vertex.

Removal

void tds.remove decrease dimension( Vertex handle v, Vertex handle w = v)

This operation is the reciprocal of insert increase dimension().
It transforms a triangulation of the sphere Sd of Rd+1 into the
triangulation of the sphere Sd−1 of Rd by removing the vertex v.
Delete the cells incident to w, keep the others.
Precondition: tds.dimension() = d ≥ −1. tds.degree(v) = de-
gree(w) = tds.number of vertices() −1.
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Cell handle tds.remove from maximal dimension simplex( Vertex handle v)

Removes v. The incident simplices of maximal dimension inci-
dent to v are replaced by a single simplex of the same dimen-
sion. This operation is exactly the reciprocal to tds.insert in
cell(v) in dimension 3, tds.insert in facet(v) in dimension 2, and
tds.insert in edge(v) in dimension 1.
Precondition: tds.degree(v) = tds.dimension()+1.
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Figure 40.9: From an Sd data structure to an Sd−1 data structure (top: d == 2, bottom: d == 3).

Dimension Manipulation

The following operation, decrease dimension, is necessary when the displacement of a vertex decreases the
dimension of the triangulation.

void tds.decrease dimension( Cell handle c, int i)

The link of a vertex v is formed by the facets disjoint from v
that are included in the cells incident to v. When the link of v =
c->vertex(i) contains all the other vertices, decrease dimension
crushes the triangulation of the sphere Sd of Rd+1 onto the trian-
gulation of the sphere Sd−1 of Rd formed by the link of v aug-
mented with the vertex v itself, for d==2,3; this one is placed on
the facet (c, i) (see Fig. 40.9).
Precondition: The dimension must be 2 or 3. The degree of v
must be equal to the total number of vertices of the triangulation
data structure minus 1.

advanced

Other modifiers

The following modifiers can affect the validity of the triangulation data structure.
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void tds.reorient() Changes the orientation of all cells of the triangulation data
structure.
Precondition: tds.dimension() ≥ 1.

Vertex handle tds.create vertex( Vertex v = Vertex())

Adds a copy of the vertex v to the triangulation data structure.

Vertex handle tds.create vertex( Vertex handle v)

Creates a vertex which is a copy of the one pointed to by v and
adds it to the triangulation data structure.

Cell handle tds.create cell( Cell c = Cell())

Adds a copy of the cell c to the triangulation data structure.

Cell handle tds.create cell( Cell handle c)

Creates a cell which is a copy of the one pointed to by c and adds
it to the triangulation data structure.

Cell handle tds.create cell( Vertex handle v0, Vertex handle v1, Vertex handle v2, Vertex handle v3)

Creates a cell and adds it into the triangulation data structure.
Initializes the vertices of the cell, its neighbor handles being ini-
tialized with the default constructed handle.

Cell handle tds.create cell( Vertex handle v0,
Vertex handle v1,
Vertex handle v2,
Vertex handle v3,
Cell handle n0,
Cell handle n1,
Cell handle n2,
Cell handle n3)

Creates a cell, initializes its vertices and neighbors, and adds it
into the triangulation data structure.

void tds.delete vertex( Vertex handle v)

Removes the vertex from the triangulation data structure.
Precondition: The vertex is a vertex of tds.

void tds.delete cell( Cell handle c)

Removes the cell from the triangulation data structure.
Precondition: The cell is a cell of tds.
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template <class VertexIt>
void tds.delete vertices( VertexIt first, VertexIt last)

Calls delete vertex over an iterator range of value type Vertex
handle.

template <class CellIt>
void tds.delete cells( CellIt first, CellIt last)

Calls delete cell over an iterator range of value type Cell handle.

advanced

Traversing the triangulation

Cell iterator tds.cells begin() const

Returns cells end() when tds.dimension() < 3.

Cell iterator tds.cells end() const
Cell iterator tds.raw cells begin() const

Low-level access to the cells, does not return cells end() when
tds.dimension() < 3.

Cell iterator tds.raw cells end() const
Facet iterator tds.facets begin() const

Returns facets end() when tds.dimension() < 2.

Facet iterator tds.facets end() const
Edge iterator tds.edges begin() const

Returns edges end() when tds.dimension() < 1.

Edge iterator tds.edges end() const
Vertex iterator tds.vertices begin() const
Vertex iterator tds.vertices end() const

Cell and facet circulators

Cell circulator tds.incident cells( Edge e) const Starts at an arbitrary cell incident to e.
Precondition: tds.dimension() = 3

Cell circulator tds.incident cells( Cell handle c, int i, int j) const

As above for edge (i,j) of c.

Cell circulator tds.incident cells( Edge e, Cell handle start) const

Starts at cell start.
Precondition: tds.dimension() = 3 and
start is incident to e.

Cell circulator tds.incident cells( Cell handle c, int i, int j, Cell handle start) const

As above for edge (i,j) of c.
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The following circulators on facets are defined only in dimension 3, though facets are defined
also in dimension 2: there are only two facets sharing an edge in dimension 2.
Facet circulator tds.incident facets( Edge e) const Starts at an arbitrary facet incident to e.

Precondition: tds.dimension() = 3

Facet circulator tds.incident facets( Cell handle c, int i, int j) const

As above for edge (i,j) of c.

Facet circulator tds.incident facets( Edge e, Facet start) const

Starts at facet start.
Precondition: start is incident to e.

Facet circulator tds.incident facets( Edge e, Cell handle start, int f) const

Starts at facet of index f in start.

Facet circulator tds.incident facets( Cell handle c, int i, int j, Facet start) const

As above for edge (i,j) of c.

Facet circulator tds.incident facets( Cell handle c, int i, int j, Cell handle start, int f) const

As above for edge (i,j) of c and facet
(start,f).

Traversal of the incident cells, facets and edges, and the adjacent vertices of a given vertex

template <class OutputIterator>
OutputIterator tds.incident cells( Vertex handle v, OutputIterator cells) const

Copies the Cell handles of all cells incident to v to the output iter-
ator cells. Returns the resulting output iterator.
Precondition: tds.dimension() = 3, v 6= Vertex handle(), tds.is
vertex(v).

template <class OutputIterator>
OutputIterator tds.incident facets( Vertex handle v, OutputIterator facets) const

Copies the Facets incident to v to the output iterator facets. Returns
the resulting output iterator.
Precondition: tds.dimension() > 1, v 6= Vertex handle(), tds.is
vertex(v).

template <class OutputIterator>
OutputIterator tds.incident edges( Vertex handle v, OutputIterator edges) const

Copies all Edges incident to v to the output iterator edges. Returns
the resulting output iterator.
Precondition: tds.dimension() > 0, v 6= Vertex handle(), tds.is
vertex(v).

template <class OutputIterator>
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OutputIterator tds.adjacent vertices( Vertex handle v, OutputIterator vertices) const

Copies the Vertex handles of all vertices adjacent to v to the output
iterator vertices. If tds.dimension() < 0, then do nothing. Returns
the resulting output iterator.
Precondition: v 6= Vertex handle(), tds.is vertex(v).

size type tds.degree( Vertex handle v) const

Returns the degree of a vertex, that is, the number of incident ver-
tices.
Precondition: v 6= Vertex handle(), tds.is vertex(v).

Traversal between adjacent cells

int tds.mirror index( Cell handle c, int i) const

Returns the index of c in its ith neighbor.
Precondition: i ∈ {0,1,2,3}.

Vertex handle tds.mirror vertex( Cell handle c, int i) const

Returns the vertex of the ith neighbor of c that is oppo-
site to c.
Precondition: i ∈ {0,1,2,3}.

Facet tds.mirror facet( Facet f) const Returns the same facet seen from the other adjacent
cell.

debugging support

Checking

bool tds.is valid( bool verbose = false) const

Checks the combinatorial validity of the triangulation
by checking the local validity of all its cells and ver-
tices (see functions below). (See Section 40.1.) More-
over, the Euler relation is tested.
When verbose is set to true, messages are printed to
give a precise indication on the kind of invalidity en-
countered.

bool tds.is valid( Vertex handle v, bool verbose = false) const

Checks the local validity of the adjacency relations of
the triangulation. It also calls the is valid member
function of the vertex. When verbose is set to true,
messages are printed to give a precise indication on
the kind of invalidity encountered.
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bool tds.is valid( Cell handle c, bool verbose = false) const

Checks the local validity of the adjacency relations of
the triangulation. It also calls the is valid member
function of the cell. When verbose is set to true, mes-
sages are printed to give a precise indication on the
kind of invalidity encountered.

debugging support

I/O

istream& istream& is >> & tds Reads a combinatorial triangulation from is and as-
signs it to tds

ostream& ostream& os << tds Writes tds into the stream os

The information stored in the iostream is: the dimension, the number of vertices, the number of cells, the indices
of the vertices of each cell, then the indices of the neighbors of each cell, where the index corresponds to the
preceding list of cells. When dimension < 3, the same information is stored for faces of maximal dimension
instead of cells.

Has Models

CGAL::Triangulation data structure 3

See Also

TriangulationDataStructure 3::Vertex
TriangulationDataStructure 3::Cell
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TriangulationDataStructure 3::Cell

Definition

The concept Cell stores four Vertex handles to its four vertices and four Cell handles to its four neighbors. The
vertices are indexed 0, 1, 2, and 3 in consistent order. The neighbor indexed i lies opposite to vertex i.

In degenerate dimensions, cells are used to store faces of maximal dimension: in dimension 2, each cell repre-
sents only one facet of index 3, and 3 edges (0,1), (1,2) and (2,0); in dimension 1, each cell represents one
edge (0,1). (See also Section 40.1.)

Types

The class Cell defines the following types.

typedef TriangulationDataStructure 3 Triangulation data structure;
typedef TriangulationDataStructure 3::Vertex handle Vertex handle;
typedef TriangulationDataStructure 3::Cell handle Cell handle;

Creation

In order to obtain new cells or destruct unused cells, the user must call the create cell() and delete cell() methods
of the triangulation data structure.

Operations

Access Functions

Vertex handle c.vertex( int i) const Returns the vertex i of c.
Precondition: i ∈ {0,1,2,3}.

int c.index( Vertex handle v) const Returns the index of vertex v in c.
Precondition: v is a vertex of c.

bool c.has vertex( Vertex handle v) const Returns true if v is a vertex of c.
bool c.has vertex( Vertex handle v, int & i) const

Returns true if v is a vertex of c, and computes its
index i in c.

Cell handle c.neighbor( int i) const Returns the neighbor i of c.
Precondition: i ∈ {0,1,2,3}.

int c.index( Cell handle n) const Returns the index corresponding to neighboring
cell n.
Precondition: n is a neighbor of c.

bool c.has neighbor( Cell handle n) const Returns true if n is a neighbor of c.
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bool c.has neighbor( Cell handle n, int & i) const

Returns true if n is a neighbor of c, and computes
its index i in c.

Setting

void c.set vertex( int i, Vertex handle v) Sets vertex i to v.
Precondition: i ∈ {0,1,2,3}.

void c.set vertices( Vertex handle v0, Vertex handle v1, Vertex handle v2, Vertex handle v3)

Sets the vertex pointers.

void c.set neighbor( int i, Cell handle n) Sets neighbor i to n.
Precondition: i ∈ {0,1,2,3}.

void c.set neighbors( Cell handle n0, Cell handle n1, Cell handle n2, Cell handle n3)

Sets the neighbors pointers.

debugging support

Checking

bool c.is valid( bool verbose = false, int level = 0) const

User defined local validity checking function.

debugging support

See Also

TriangulationDataStructure 3::Vertex.
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TriangulationDataStructure 3::Vertex

Definition

The concept Vertex represents the vertex class of a 3D-triangulation data structure. It must define the types
and operations listed in this section. Some of these requirements are of geometric nature, they are optional
when using the triangulation data structure class alone. They become compulsory when the triangulation data
structure is used as a layer for the geometric triangulation class. (See Section 40.2.)

Types

Vertex:: Point Optional for the triangulation data structure alone.

The class Vertex defines types that are the same as some of the types defined by the triangulation data structure
class TriangulationDataStructure 3.

typedef TriangulationDataStructure 3 Triangulation data structure;
typedef TriangulationDataStructure 3::Vertex handle Vertex handle;
typedef TriangulationDataStructure 3::Cell handle Cell handle;

Creation

In order to obtain new vertices or destruct unused vertices, the user must call the create vertex() and delete
vertex() methods of the triangulation data structure.

Operations

Access Functions

Cell handle v.cell() const Returns a cell of the triangulation having v as vertex.

Point v.point() const Returns the point stored in the vertex. Optional for the trian-
gulation data structure alone.

Setting

void v.set cell( Cell handle c) Sets the incident cell to c.

void v.set point( Point p) Sets the point to p. Optional for the triangulation data struc-
ture alone.

debugging support
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Checking

bool v.is valid( bool verbose = false) const

Checks the validity of the vertex. Must check that its incident
cell has this vertex. The validity of the base vertex is also
checked.
When verbose is set to true, messages are printed to give a
precise indication on the kind of invalidity encountered.

debugging support

See Also

TriangulationDataStructure 3::Cell.

2733



C
on

ce
pt

TriangulationDSCellBase 3

Definition

At the base level (see Sections 39.4 and 40.2), a cell stores handles to its four vertices and to its four neighbor
cells. The vertices and neighbors are indexed 0, 1, 2 and 3. Neighbor i lies opposite to vertex i.

Since the Triangulation data structure is the class which defines the handle types, the cell base class has to be
somehow parameterized by the Triangulation data structure. But since it is itself parameterized by the cell and
vertex base classes, there is a cycle in the definition of these classes. In order to break the cycle, the base classes
for vertex and cell which are given as arguments for the Triangulation data structure use void as Triangulation
data structure parameter, and the Triangulation data structure then uses a rebind-like mechanism (similar to the
one specified in std::allocator) in order to put itself as parameter to the vertex and cell classes. The rebound
base classes so obtained are the classes which are used as base classes for the final vertex and cell classes. More
information can be found in Section 40.2.

Types

The concept TriangulationDSCellBase 3 has to provide the following types.

TriangulationDSCellBase 3:: template <typename TDS2> struct Rebind TDS

This nested template class has to define a type
Other which is the rebound cell, that is, the one
whose Triangulation data structure will be the
actually used one. The Other type will be the
real base class of Triangulation data structure
3::Cell.

typedef TriangulationDataStructure 3 Triangulation data structure;
typedef TriangulationDataStructure 3::Vertex handle Vertex handle;
typedef TriangulationDataStructure 3::Cell handle Cell handle;
typedef TriangulationDataStructure 3::Cell data TDS data;

Creation

TriangulationDSCellBase 3 c; Default constructor
TriangulationDSCellBase 3 c( Vertex handle v0, Vertex handle v1, Vertex handle v2, Vertex handle v3);

Initializes the vertices with v0, v1, v2, v3. Neigh-
bors are initialized to the default constructed han-
dle.

TriangulationDSCellBase 3 c( Vertex handle v0,
Vertex handle v1,
Vertex handle v2,
Vertex handle v3,
Cell handle n0,
Cell handle n1,
Cell handle n2,
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Cell handle n3)

Initializes the vertices with v0, v1, v2, v3 and the
neighbors with n0, n1, n2, n3.

Access Functions

Vertex handle c.vertex( int i) const Returns the vertex i of c.
Precondition: i ∈ {0,1,2,3}.

int c.index( Vertex handle v) const Returns the index of v.
Precondition: v is a vertex of c

bool c.has vertex( Vertex handle v) True iff v is a vertex of c.
bool c.has vertex( Vertex handle v, int & i) const

Returns true if v is a vertex of c, and computes
its index i in c.

Cell handle c.neighbor( int i) const Returns the neighbor i of c.
Precondition: i ∈ {0,1,2,3}.

int c.index( Cell handle n) const Returns the index of cell n in c.
Precondition: n is a neighbor of c.

bool c.has neighbor( Cell handle n) Returns true if n is a neighbor of c.
bool c.has neighbor( Cell handle n, int & i) const

Returns true if n is a neighbor of c, and computes
its index i in c.

Setting

void c.set vertex( int i, Vertex handle v) Sets vertex i to v.
Precondition: i ∈ {0,1,2,3}.

void c.set vertices() Sets the vertices to the default constructed han-
dle.

void c.set vertices( Vertex handle v0, Vertex handle v1, Vertex handle v2, Vertex handle v3)

Sets the vertices.

void c.set neighbor( int i, Cell handle n) Sets neighbor i to n.
Precondition: i ∈ {0,1,2,3}.

void c.set neighbors() Sets the neighbors to the default constructed han-
dle.

void c.set neighbors( Cell handle n0, Cell handle n1, Cell handle n2, Cell handle n3)

Sets the neighbors.

debugging support
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Checking

bool c.is valid( bool verbose = false, int level = 0) const

Performs any desired geometric test on a cell.
When verbose is set to true, messages are printed
to give a precise indication of the kind of inva-
lidity encountered. level increases the level of
testing.

debugging support

advanced

Various

void* c.for compact container() const
void*& c.for compact container()

These member functions are required by Triangulation data structure 3 because it uses Compact container to
store its cells. See the documentation of Compact container for the exact requirements.

TDS data& c.tds data()
TDS data c.tds data() const

These functions are used internally by the triangulation data structure. The user is not encouraged to use them
directly as they may change in the future.

advanced

I/O

istream& istream& is >> & c Inputs the possible non combinatorial informa-
tion given by the cell.

ostream& ostream& os << c Outputs the possible non combinatorial informa-
tion given by the cell.

Has Models

CGAL::Triangulation ds cell base 3
CGAL::Triangulation cell base 3
CGAL::Triangulation cell base with info 3

See Also

TriangulationDSVertexBase 3
TriangulationVertexBase 3
TriangulationHierarchyVertexBase 3
TriangulationCellBase 3
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TriangulationDSVertexBase 3

Definition

At the bottom level of 3D-triangulations (see Sections 39.4 and 40.2), a vertex provides access to one of its
incident cells through a handle.

Note that when you use the triangulation data structure as parameter of a geometric triangulation, the vertex
base class has additional geometric requirements : it has to match the TriangulationVertexBase 3 concept.

Since the Triangulation data structure is the class which defines the handle types, the vertex base class has to be
somehow parameterized by the Triangulation data structure. But since it is itself parameterized by the cell and
vertex base classes, there is a cycle in the definition of these classes. In order to break the cycle, the base classes
for vertex and cell which are given as arguments for the Triangulation data structure use void as Triangulation
data structure parameter, and the Triangulation data structure then uses a rebind-like mechanism (similar to the
one specified in std::allocator) in order to put itself as parameter to the vertex and cell classes. The rebound
base classes so obtained are the classes which are used as base classes for the final vertex and cell classes. More
information can be found in Section 40.2.

Types

The class TriangulationDSVertexBase 3 has to define the following types.

TriangulationDSVertexBase 3:: template <typename TDS2> struct Rebind TDS

This nested template class has to define a type
Other which is the rebound vertex, that is, the
one whose Triangulation data structure will be
the actually used one. The Other type will be the
real base class of Triangulation data structure
3::Vertex.

typedef TriangulationDataStructure 3 Triangulation data structure;
typedef TriangulationDataStructure 3::Vertex handle Vertex handle;
typedef TriangulationDataStructure 3::Cell handle Cell handle;

Creation

TriangulationDSVertexBase 3 v; Default constructor.
TriangulationDSVertexBase 3 v( Cell handle c); Constructs a vertex pointing to cell c.

Operations

Access Functions

Cell handle v.cell() const Returns the pointer to an incident cell
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Setting

void v.set cell( Cell handle c) Sets the incident cell.

debugging support

Checking

bool v.is valid( bool verbose=false, int level=0) const

Performs any desired test on a vertex. Checks that the
pointer to an incident cell is not the default constructed
handle.

debugging support

Various

void* v.for compact container() const
void*& v.for compact container()

These member functions are required by Triangulation data structure 3 because it uses Compact container to
store its cells. See the documentation of Compact container for the exact requirements.

I/O

istream& istream& is >> & v Inputs the non-combinatorial information given by the
vertex.

ostream& ostream& os << v Outputs the non-combinatorial information given by the
vertex.

Has Models

CGAL::Triangulation ds vertex base 3
CGAL::Triangulation vertex base 3
CGAL::Triangulation vertex base with info 3
CGAL::Triangulation hierarchy vertex base 3

See Also

TriangulationVertexBase 3
TriangulationHierarchyVertexBase 3
TriangulationDSCellBase 3
TriangulationCellBase 3
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CGAL::Triangulation data structure 3<TriangulationDSVertexBase
3,TriangulationDSCellBase 3>

Definition

The class Triangulation data structure 3 stores a 3D-triangulation data structure and provides the optional
geometric functionalities to be used as a parameter for a 3D-geometric triangulation (see Chapter 39).

The vertices and cells are stored in two nested containers, which are implemented using CGAL::Compact
container. The class may offer some flexibility for the choice of container in the future, in the form of additional
template parameters.

#include <CGAL/Triangulation data structure 3.h>

Parameters

It is parameterized by base classes for vertices and cells which have to match the requirements for the concepts
TriangulationDSCellBase 3 and TriangulationDSVertexBase 3 respectively (see page 2734 and page 2737).

They have the default values Triangulation ds vertex base 3<> and Triangulation ds cell base 3<> respec-
tively.

Is Model for the Concepts

TriangulationDataStructure 3

Inherits From

CGAL::Triangulation utils 3

The class Triangulation utils 3 defines basic computations on indices of vertices and neighbors of cells.

advanced

In addition to the interface documented in the concept, the class offers the following types and functions.

Types

typedef CGAL::Compact container<Vertex>

Vertex range; Vertex container type.
typedef CGAL::Compact container<Cell>

Cell range; Cell container type.
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Operations

Cell range& tds.cells() const Returns a reference to the container of cells.
Cell range& tds.cells() Returns a reference to the container of cells.
Vertex range& tds.vertices() const Returns a reference to the container of vertices.
Vertex range& tds.vertices() Returns a reference to the container of vertices.

advanced

See Also

CGAL::Triangulation ds vertex base 3
CGAL::Triangulation ds cell base 3
CGAL::Triangulation vertex base with info 3
CGAL::Triangulation cell base with info 3
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CGAL::Triangulation ds cell base 3<>

Definition

The class Triangulation ds cell base 3 is a model for the concept TriangulationDSCellBase 3 to be used by
Triangulation data structure 3.

#include <CGAL/Triangulation ds cell base 3.h>

Is Model for the Concepts

TriangulationDSCellBase 3

See Also

CGAL::Triangulation cell base 3
CGAL::Triangulation ds vertex base 3
CGAL::Triangulation cell base with info 3
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CGAL::Triangulation ds vertex base 3<>

Definition

The class Triangulation ds vertex base 3 can be used as the base vertex for a 3D-triangulation data structure,
it is a model of the concept TriangulationDSVertexBase 3.

Note that if the triangulation data structure is used as a parameter of a geometric triangulation (Section 40.2 and
Chapter 39), then the vertex base class has to fulfill additional geometric requirements, i.e. it has to be a model
of the concept TriangulationVertexBase 3.

This base class can be used directly or can serve as a base to derive other base classes with some additional
attributes (a color for example) tuned for a specific application.

#include <CGAL/Triangulation ds vertex base 3.h>

Is Model for the Concepts

TriangulationDSVertexBase 3

See Also

CGAL::Triangulation vertex base 3
CGAL::Triangulation ds cell base 3
CGAL::Triangulation vertex base with info 3
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CGAL::Triangulation utils 3

Definition

The class Triangulation utils 3 defines operations on the indices of vertices and neighbors within a cell.

#include <CGAL/Triangulation utils 3.h>

Operations

unsigned int next around edge( unsigned int i, unsigned int j) const

In dimension 3, index of the neighbor n that is next to the current cell,
when turning positively around an oriented edge whose endpoints are
indexed i and j. According to the usual numbering of vertices and
neighbors in a given cell, it is also the index of the vertex opposite to
this neighbor n. (see Figure 40.10).
Precondition: ( i < 4 ) && ( j < 4 ) && ( i != j ).

unsigned int ccw( unsigned int i) const

Has a meaning only in dimension 2.
Computes the index of the vertex that is next to the vertex numbered
i in counterclockwise direction. (see Figure 40.10).
Precondition: i<3.

unsigned int cw( unsigned int i) const

Same for clockwise.

vertex i

vertex j

vertex next around edge(i,j)

facet next around edge(i,j)

cell next around edge(i,j)

current cell

dimension 3

vertex i vertex ccw(i)

vertex cw(i)

dimension 2

Figure 40.10: Operations on indices.
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The periodic 3D-triangulation class of CGAL is designed to represent the triangulations of a set of points in the
three-dimensional flat torus. The triangulation forms a partition of the space it is computed in. It is a simplicial
complex, i.e. it contains all incident j-simplices ( j < k) of any k-simplex and two k-simplices either do not
intersect or share a common j-face, j < k. The occurring simplices of dimension up to three are called vertex,
edge, facet, and cell, respectively.

41.1 The Flat Torus

The 3D Periodic Triangulation package computes triangulations in the space T3
c , which is defined as follows:

Let c ∈ R\{0} and G be the group (c ·Z3,+), where c ·Z denotes the set containing all integer multiples of c.
The flat torus is the quotient space: T3

c := R3/G. The parameter c defines the period.

The elements of T3
c are the equivalence classes of sets of points in R3. We call these points representatives of

an element of T3
c . The implementation works not directly on elements of T3

c but on some representatives in R3.
So there need to be distinguished representatives to work on. Given α, β, and γ, the cube [α,α + c)× [β,β +
c)× [γ,γ+ c) contains exactly one representative of each element in T3

c . We call it original domain. From now
on, when we talk about points, we generally mean representatives of elements of T3

c that lie inside the original
domain. Note that any input point is required to be an element of the half-open cube representing the original
domain as defined above.

There are simplices containing points inside the original domain but also points outside it. The points outside the
original domain are periodic copies of points inside the original domain. So, to specify a simplex we need points
together with some additional information that determines the respective periodic copy of each point. The set of
representatives of an element of T3

c is a cubic point grid. We address each representative by a three-dimensional
integer vector (ox,oy,oz), called offset. It represents the number of periods a representative in the original
domain must be translated in x-, y-, and z-direction. The vector (0,0,0) corresponds to the representative in the
original domain. To specify a k-simplex we need k +1 point-offset pairs (cf. Fig. 41.1).
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0
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 0
0
0
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 1
0
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z

y

x

Figure 41.1: Offsets in a cell.

41.2 Representation

A triangulation is a collection of vertices and cells that are linked together through incidence and adjacency
relations. Each cell gives access to its four incident vertices, their corresponding offsets, and to its four adjacent
cells. Each vertex gives access to one of its incident cells.

The four vertices of a cell are indexed with 0, 1, 2 and 3 in positive orientation. The orientation of a simplex in
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T3
c is defined as the orientation of the corresponding simplex in R3 given by representatives determined by the

respective offsets (see Figure 41.2).

0

1

2

3

z

y

x

Figure 41.2: Orientation of a cell.

As in the underlying combinatorial triangulation (see Chapter 40), the neighbors of a cell are indexed with 0,
1, 2, 3 in such a way that the neighbor indexed by i is opposite to the vertex with the same index. Also edges
(1-faces) and facets (2-faces) are not explicitly represented: a facet is given by a cell and an index (the facet i of
a cell c is the facet of c that is opposite to the vertex with index i) and an edge is given by a cell and two indices
(the edge (i,j) of a cell c is the edge whose endpoints are the vertices of c with indices i and j). See Figure 40.1.

Some point sets do not admit a triangulation in T3
c . In this case we use 27 periodic copies of the point set

arranged in a cube of edge length 3c. Any point set constructed in this way has a triangulation in R3/G′ with
G′ = ((3c ·Z)3,+) [CT09]. So we compute the triangulation in this space, which is a 27-sheeted covering space
of T3

c (see Figure 41.3).

Figure 41.3: The same periodic triangulation in the 1-sheeted covering space and the 27-sheeted covering space.

The machinery that manages the copies is largely hidden from the user. However there are some effects that
cannot be ignored. For example if the point set does not permit a triangulation in T3

c then the combinatorial it-
erators (Cell iterator, Facet iterator, Edge iterator, and Vertex iterator) return all simplices that are internally
stored, which correspond to 27 periodic copies of each geometric primitive (Tetrahedron, Triangle, Segment,
and Point). This is necessary to ensure consistency in the adjacency relations. In case it is desired to have
only one periodic copy of each primitive, we provide geometric iterators. They return geometric primitives of
the triangulation without relations between them. Another effect is that when the algorithm switches from the
27-sheeted covering space to the 1-sheeted covering space, the Vertex handles and Cell handles referencing
deleted items become invalid.

In the data structure each vertex stores the input point it corresponds to. If we are computing in the 27-sheeted
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covering space, each vertex stores the representative inside the original domain it corresponds to. So, the 27
vertices corresponding to the same element of T3

c all store the same representative in R3, and not different
periodic copies.

Validity A periodic triangulation is said to be locally valid iff

(a)-(b) Its underlying combinatorial graph, the triangulation data structure, is locally valid (see Section 40.1 of
Chapter 40)
(c) Any cell has its vertices ordered according to positive orientation. See Figure 41.2.

41.3 Delaunay Triangulation

The class Periodic 3 Delaunay triangulation 3 implements Delaunay triangulations of point sets in T3
c .

Delaunay triangulations have the empty sphere property, that is, the circumscribing sphere of each cell does not
contain any other vertex of the triangulation in its interior. These triangulations are uniquely defined except in
degenerate cases where five points are co-spherical. Note however that the CGAL implementation computes a
unique triangulation even in these cases [DT03].

This implementation is fully dynamic: it supports both insertions of points and vertex removal.

41.4 Triangulation Hierarchy

The class Periodic 3 triangulation hierarchy 3 is the adaptation of the hierarchical structure described in chap-
ter 39 to the periodic case.

41.5 Software Design

We have chosen the prefix “Periodic 3” to emphasize that the triangulation is periodic in all three directions of
space. There are also “cylindrical” periodicities where the triangulation is periodic only in one or two directions
of space.

The two main classes Periodic 3 Delaunay triangulation 3 and Periodic 3 triangulation 3 provide high-level
geometric functionality and are responsible for the geometric validity. Periodic 3 Delaunay triangulation
3 contains all the functionality that is special to Delaunay triangulations, such as point insertion and vertex
removal, the side-of-sphere test, finding the conflicting region of a given point, dual functions etc. Periodic 3
triangulation 3 contains all the functionality that is common to triangulations in general, such as location of a
point in the triangulation [DPT02], access functions, geometric queries like the orientation test etc.

They are built as layers on top of a triangulation data structure, which stores their combinatorial structure. This
separation between the geometry and the combinatorics is reflected in the software design by the fact that the
triangulation classes take two template parameters:

• the geometric traits class, which provides the type of points to use as well as the elementary op-
erations on them (predicates and constructions). Furthermore it contains the offset type. The con-
cept for this parameter is described in more detail in Section 41.5.1 and as the concept Periodic
3DelaunayTriangulationTraits 3 in the reference manual on page 2783.
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• the triangulation data structure class, which stores the combinatorial structure, described in Sec-
tion 41.5.2 and in more detail in Chapter 40. The triangulation data structure needs models of the concepts
Periodic 3TriangulationDSCellBase 3 and Periodic 3TriangulationDSVertexBase 3 as template param-
eters.

41.5.1 The Geometric Traits Parameter

The first template parameter of the Delaunay triangulation class Periodic 3 Delaunay triangulation 3<
Periodic 3DelaunayTriangulationTraits 3, TriangulationDataStructure 3> is the geometric traits class, de-
scribed by the concept Periodic 3DelaunayTriangulationTraits 3. It is different to the DelaunayTriangulation-
Traits 3 (see chapter 39.4.1) in that it implements all objects, predicates and constructions with using offsets.

The class Periodic 3 triangulation traits 3<Traits,Periodic 3Offset 3> provides the required functionality. It
expects two template parameters: A model of the concept DelaunayTriangulationTraits 3 and a model of the
concept Periodic 3Offset 3.

The kernels Cartesian, Homogeneous, Simple cartesian, Simple homogeneous and Filtered kernel can all be
used as models for Traits. Periodic 3 triangulation traits 3 provides exact predicates and exact constructions
if Traits does. It provides exact predicates but not exact constructions if Filtered kernel<CK> with CK an
inexact kernel is used as its first template parameter. Using Exact predicates inexact constructions kernel
(page ??) as Traits provides fast and exact predicates and not exact constructions, using Exact predicates
exact constructions kernel (page ??) provides fast and exact predicates and exact constructions. The latter is
recommended if the dual constructions and constructions of points, segments, triangles, and tetrahedra are used.

The second parameter Periodic 3Offset 3 defaults to Periodic 3 offset 3.

41.5.2 The Triangulation Data Structure Parameter

The second template parameter of the main classes Periodic 3 triangulation 3 and Periodic 3 Delaunay
triangulation 3 is a triangulation data structure class. This class can be seen as a container for the cells and
vertices maintaining incidence and adjacency relations (see Chapter 40). A model of this triangulation data
structure is Triangulation data structure 3, and it is described by the TriangulationDataStructure 3 concept.
This model is itself parameterized by a vertex base class and a cell base class, which gives the possibility to
customize the vertices and cells used by the triangulation data structure, and hence by the geometric triangula-
tion using it. To represent periodic triangulations the cell base and vertex base classes need to meet the concepts
Periodic 3TriangulationDSCellBase 3 and Periodic 3TriangulationDSVertexBase 3.

A default value for the triangulation data structure parameter is provided in all the triangulation classes, so it
does not need to be specified by the user unless he wants to use a different triangulation data structure or a
different vertex or cell base class.

41.5.3 Flexibility of the Design

Periodic 3 triangulation 3 uses the TriangulationDataStructure 3 in essentially the same way as
Triangulation 3. That is why the flexibility described in 39.4 is applicable in exactly the same way. Also the
classes Triangulation vertex base with info 3 and Triangulation cell base with info 3 can be reused directly,
see also Example 41.6.2.
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41.6 Examples

41.6.1 Basic Example

This example shows the incremental construction of a 3D Delaunay triangulation, the location of a point and
how to perform elementary operations on indices in a cell. It uses the default parameter of the Periodic 3
Delaunay triangulation 3 class for the triangulation data structure.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Periodic_3_triangulation_traits_3.h>
#include <CGAL/Periodic_3_Delaunay_triangulation_3.h>

#include <iostream>
#include <fstream>
#include <cassert>
#include <list>
#include <vector>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Periodic_3_triangulation_traits_3<K> GT;

typedef CGAL::Periodic_3_Delaunay_triangulation_3<GT> PDT;

typedef PDT::Cell_handle Cell_handle;
typedef PDT::Vertex_handle Vertex_handle;
typedef PDT::Locate_type Locate_type;
typedef PDT::Point Point;
typedef PDT::Iso_cuboid Iso_cuboid;

int main()
{

Iso_cuboid domain(-1,-1,-1,2,2,2); // The cube for the periodic domain

// construction from a list of points :
std::list<Point> L;
L.push_front(Point(0,0,0));
L.push_front(Point(1,0,0));
L.push_front(Point(0,1,0));

PDT T(L.begin(), L.end(), domain); // Put the domain with the
constructor

PDT::size_type n = T.number_of_vertices();

// insertion from a vector :
std::vector<Point> V(3);
V[0] = Point(0,0,1);
V[1] = Point(1,1,1);
V[2] = Point(-1,-1,-1);

n = n + T.insert(V.begin(), V.end());

assert( n == 6 ); // 6 points have been inserted
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assert( T.is_valid() ); // checking validity of T

Locate_type lt;
int li, lj;
Point p(0,0,0);
Cell_handle c = T.locate(p, lt, li, lj);
// p is the vertex of c of index li :
assert( lt == PDT::VERTEX );
assert( c->vertex(li)->point() == p );

Vertex_handle v = c->vertex( (li+1)&3 );
// v is another vertex of c
Cell_handle nc = c->neighbor(li);
// nc = neighbor of c opposite to the vertex associated with p
// nc must have vertex v :
int nli;
assert( nc->has_vertex( v, nli ) );
// nli is the index of v in nc

std::ofstream oFileT("output.tri",std::ios::out);
// writing file output;
oFileT << T;

PDT T1;
std::ifstream iFileT("output.tri",std::ios::in);
// reading file output;
iFileT >> T1;
assert( T1.is_valid() );
assert( T1.number_of_vertices() == T.number_of_vertices() );
assert( T1.number_of_cells() == T.number_of_cells() );

return 0;
}� �
File: examples/Periodic_3_triangulation_3/simple_example.cpp

41.6.2 Changing the Vertex Base

The following two examples show how the user can plug his own vertex base in a triangulation. Changing the
cell base is similar.

Adding a Color

If the user does not need to add a type in a vertex that depends on the TriangulationDataStructure 3 (e.g. a
Vertex handle or Cell handle), then he can use the Triangulation vertex base with info 3 class to add his own
information easily in the vertices. The example below shows how to add a CGAL::Color this way.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Periodic_3_triangulation_filtered_traits_3.h>
#include <CGAL/Periodic_3_Delaunay_triangulation_3.h>
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#include <CGAL/Triangulation_vertex_base_with_info_3.h>
#include <CGAL/IO/Color.h>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Periodic_3_triangulation_filtered_traits_3<K> GT;

typedef CGAL::Periodic_3_triangulation_ds_vertex_base_3<> VbDS;
typedef CGAL::Triangulation_vertex_base_3<GT,VbDS> Vb;

typedef CGAL::Periodic_3_triangulation_ds_cell_base_3<> CbDS;
typedef CGAL::Triangulation_cell_base_3<GT,CbDS> Cb;

typedef CGAL::Triangulation_vertex_base_with_info_3<CGAL::Color, GT, Vb>
VbInfo;

typedef CGAL::Triangulation_data_structure_3<VbInfo, Cb> TDS;
typedef CGAL::Periodic_3_Delaunay_triangulation_3<GT, TDS> PDT;

typedef PDT::Point Point;

int main()
{

PDT T;

T.insert(Point(0,0,0));
T.insert(Point(.1,0,0));
T.insert(Point(0,.1,0));
T.insert(Point(0,0,.1));
T.insert(Point(.2,.2,.2));
T.insert(Point(.9,0,.1));

// Set the color of finite vertices of degree 6 to red.
PDT::Vertex_iterator vit;
for (vit = T.vertices_begin(); vit != T.vertices_end(); ++vit)

if (T.degree(vit) == 6)
vit->info() = CGAL::RED;

return 0;
}� �
File: examples/Periodic_3_triangulation_3/colored_vertices.cpp

Adding Handles

If the user needs to add a type in a vertex that depends on the TriangulationDataStructure 3 (e.g. a Vertex
handle or Cell handle), then he has to derive his own vertex base class, as the following example shows.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Periodic_3_triangulation_filtered_traits_3.h>
#include <CGAL/Periodic_3_Delaunay_triangulation_3.h>
#include <CGAL/Periodic_3_triangulation_ds_vertex_base_3.h>
#include <CGAL/Triangulation_vertex_base_3.h>
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template < class GT, class VbDS,
class Vb = CGAL::Triangulation_vertex_base_3<GT,VbDS> >

class My_vertex_base
: public Vb

{
public:

typedef typename Vb::Vertex_handle Vertex_handle;
typedef typename Vb::Cell_handle Cell_handle;
typedef typename Vb::Point Point;

template < class TDS2 >
struct Rebind_TDS {

typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
typedef My_vertex_base<GT, Vb2> Other;

};

My_vertex_base() {}

My_vertex_base(const Point& p)
: Vb(p) {}

My_vertex_base(const Point& p, Cell_handle c)
: Vb(p, c) {}

Vertex_handle vh;
Cell_handle ch;

};

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Periodic_3_triangulation_filtered_traits_3<K> GT;

typedef CGAL::Periodic_3_triangulation_ds_vertex_base_3<> VbDS;
typedef CGAL::Periodic_3_triangulation_ds_cell_base_3<> CbDS;
typedef CGAL::Triangulation_cell_base_3<GT,CbDS> Cb;

typedef CGAL::Triangulation_data_structure_3<My_vertex_base<GT,VbDS>, Cb>
TDS;

typedef CGAL::Periodic_3_Delaunay_triangulation_3<GT,TDS> PDT;

typedef PDT::Vertex_handle Vertex_handle;
typedef PDT::Point Point;

int main()
{

PDT T;

Vertex_handle v0 = T.insert(Point(0,0,0));
Vertex_handle v1 = T.insert(Point(.1,0,0));
Vertex_handle v2 = T.insert(Point(0,.1,0));
Vertex_handle v3 = T.insert(Point(0,0,.1));
Vertex_handle v4 = T.insert(Point(.2,.2,.2));
Vertex_handle v5 = T.insert(Point(.9,0,.1));
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// Now we can link the vertices as we like.
v0->vh = v1;
v1->vh = v2;
v2->vh = v3;
v3->vh = v4;
v4->vh = v5;
v5->vh = v0;

return 0;
}� �
File: examples/Periodic_3_triangulation_3/periodic_adding_handles.cpp

41.6.3 The 27-sheeted Covering Space

The user can check at any time whether a triangulation would be a simplicial complex in T3
c and force a con-

version if so. However this should be done very carefully in order to be sure that the internal structure always
remains a simplicial complex and thus a triangulation.

In this example we construct a triangulation that can be converted to the 1-sheeted covering space. However, we
can insert new points such that the point set does not have a Delaunay triangulation in the 1-sheeted covering
space anymore, so the triangulation is not extensible.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Periodic_3_triangulation_traits_3.h>
#include <CGAL/Periodic_3_Delaunay_triangulation_3.h>

#include <iostream>
#include <vector>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Periodic_3_triangulation_traits_3<K> GT;

typedef CGAL::Periodic_3_Delaunay_triangulation_3<GT> PDT;

typedef PDT::Point Point;
typedef PDT::Covering_sheets Covering_sheets;

int main()
{

PDT T;

// Input point grid (27 points)
for (double x=0. ; x < .9 ; x += 0.33) {

for (double y=0. ; y < .9 ; y += 0.33) {
for (double z=0. ; z < .9 ; z += 0.33) {

T.insert(Point(x,y,z));
} } }

Covering_sheets cs = T.number_of_sheets();
std::cout<<"Current covering: "<<cs[0]<<’ ’<<cs[1]<<’
’<<cs[2]<<std::endl;
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if ( T.is_triangulation_in_1_sheet() ) {
// = true

bool is_extensible = T.is_extensible_triangulation_in_1_sheet_h1()
|| T.is_extensible_triangulation_in_1_sheet_h2();

// = false
T.convert_to_1_sheeted_covering();
cs = T.number_of_sheets();
std::cout<<"Current covering: "<<cs[0]<<’ ’<<cs[1]<<’
’<<cs[2]<<std::endl;
if ( is_extensible )

// = false
std::cout<<"It is safe to change the triangulation

here."<<std::endl;
else

std::cout<<"It is NOT safe to change the triangulation
here!"<<std::endl;

T.convert_to_27_sheeted_covering();
cs = T.number_of_sheets();
std::cout<<"Current covering: "<<cs[0]<<’ ’<<cs[1]<<’
’<<cs[2]<<std::endl;

}

std::cout<<"It is (again) safe to modify the
triangulation."<<std::endl;

return 0;
}� �
File: examples/Periodic_3_triangulation_3/covering.cpp

41.6.4 Large Point Set

For large point sets there are two optimizations available. Firstly, there is spatial sorting that sorts the input
points according to a Hilbert curve, see chapter 65.3 on page ??. The second one inserts 36 appropriately
chosen dummy points to avoid the use of a 27-sheeted covering space in the beginning. The 36 dummy points
are deleted in the end. If the point set turns out to not have a Delaunay triangulation in the 1-sheeted covering
space, the triangulation is converted to the 27-sheeted covering space during the removal of the 36 dummy
points. This might take even longer than computing the triangulation without using this optimization. In general,
uniformly distributed random point sets of more than 1000 points have a Delaunay triangulation in the 1-sheeted
covering space.

It is recommended to run this example only when compiled in release mode because of the relatively large
number of points.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Periodic_3_triangulation_traits_3.h>
#include <CGAL/Periodic_3_Delaunay_triangulation_3.h>

#include <CGAL/Random.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/Timer.h>

2755



#include <iostream>
#include <vector>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Periodic_3_triangulation_traits_3<K> GT;

typedef CGAL::Periodic_3_Delaunay_triangulation_3<GT> PDT;

typedef PDT::Point Point;

int main()
{

CGAL::Timer t;
typedef CGAL::Creator_uniform_3<double, Point> Creator;
CGAL::Random random(7);
CGAL::Random_points_in_cube_3<Point, Creator> in_cube(.5, random);

int n = 10000;
std::vector<Point> pts;

PDT PT1, PT2, PT3;

// Generating n random points
for (int i=0 ; i < n ; i++) {

Point p = *in_cube;
in_cube++;
pts.push_back(Point(p.x()+.5,p.y()+.5,p.z()+.5));

}

// Standard insertion
t.start();
for (int i=0 ; i < n ; i++) {

PT1.insert(pts[i]);
}
t.stop();
std::cout<<" Time: "<<t.time()<<" sec. (Standard
insertion)"<<std::endl;

t.reset();

// Iterator range insertion using spatial sorting but no dummy points
t.start();
PT2.insert(pts.begin(), pts.end()); // third parameter defaults to
false

t.stop();
std::cout<<" Time: "<<t.time()<<" sec. (with spatial
sorting)"<<std::endl;

t.reset();

// Iterator range insertion using spatial sorting and dummy point
heuristic

t.start();
PT3.insert(pts.begin(), pts.end(), true);
t.stop();
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std::cout<<" Time: "<<t.time()<<" sec. (Dummy point
heuristic)"<<std::endl;

return 0;
}� �
File: examples/Periodic_3_triangulation_3/large_point_set.cpp

41.6.5 Geometric Access

There might be applications that need the geometric primitives of a triangulation as an input but do not re-
quire a simplicial complex. For these cases we provide the geometric iterators that return only the geometric
primitives fulfilling some properties. In the following example we use the Periodic triangle iterator with the
option UNIQUE COVER DOMAIN. This means that only those triangles are returned that have a non-empty
intersection with the original domain of the 1-sheeted covering space, see Figure 41.4 (Page 2772). The
Periodic triangle is actually a three-dimensional array of point-offset pairs. We check for all three entries of the
periodic triangle whether the offset is (0,0,0) using the method is null. If so, we convert the periodic triangle to
a PK::Triangle 3, which requires exact constructions to be exact.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Periodic_3_triangulation_traits_3.h>
#include <CGAL/Periodic_3_Delaunay_triangulation_3.h>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Periodic_3_triangulation_traits_3<K> PK;
typedef CGAL::Periodic_3_Delaunay_triangulation_3<PK> P3DT3;

typedef PK::Point_3 Point;
typedef PK::Triangle_3 Triangle;

typedef P3DT3::Periodic_triangle Periodic_triangle;
typedef P3DT3::Periodic_triangle_iterator Periodic_triangle_iterator;
typedef P3DT3::Iterator_type Iterator_type;

int main() {
P3DT3 T;

T.insert(Point(0,0,0));
T.insert(Point(0,0,0.5));
T.insert(Point(0,0.5,0.5));
T.insert(Point(0.5,0,0.5));

Periodic_triangle pt;
Triangle t_bd;

// Extracting the triangles that have a non-empty intersection with
// the original domain of the 1-sheeted covering space
for (Periodic_triangle_iterator ptit =
T.periodic_triangles_begin(P3DT3::UNIQUE_COVER_DOMAIN);

ptit != T.periodic_triangles_end(P3DT3::UNIQUE_COVER_DOMAIN);
++ptit) {
pt = *ptit;
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if (! (pt[0].second.is_null() && pt[1].second.is_null() &&
pt[2].second.is_null()) ) {

// Convert the current Periodic_triangle to a Triangle if it is
// not strictly contained inside the original domain.
// Note that this requires EXACT constructions to be exact!
t_bd = T.construct_triangle(pt);

}
}

}� �
File: examples/Periodic_3_triangulation_3/geometric_access.cpp

41.6.6 Periodic Alpha Shapes

It is possible to use Periodic 3 Delaunay triangulation 3 as underlying triangulation for computing alpha
shapes (cf. Chapter 43). For an example see Section 43.5.6.

41.7 Design and Implementation History

In 2006, Nico Kruithof started to work with Monique Teillaud on the 3D Periodic Triangulations package.

In 2007, Manuel Caroli continued work on the algorithms [CT09] and on the package with Monique Teillaud.

The package follows the design of the 3D Triangulations package (see Chapter 39).
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The main classes of the 3D Periodic Triangulation package are Periodic 3 triangulation 3 and Periodic 3
Delaunay triangulation 3. They contain functionality to access triangulations and to run queries on them.
Periodic 3 Delaunay triangulation 3 can construct and modify Delaunay triangulations. It takes the geometric
traits as well as the triangulation data structure as template parameters.

The geometric traits class must be a model of the concept Periodic 3DelaunayTriangulationTraits 3. It contains
all predicates and constructions that are needed by the functions in the triangulation classes.

The package uses Triangulation data structure 3 to represent the triangulation. The cells and vertices need to
be models of the concepts Periodic 3TriangulationDSCellBase 3 and Periodic 3TriangulationDSVertexBase
3, respectively. A triangulation is stored as a collection of vertices and cells that are linked together through
incidence and adjacency relations. Each cell gives access to its four incident vertices and to its four adjacent
cells. Each vertex gives access to one of its incident cells.

The four vertices of a cell are indexed with 0, 1, 2 and 3 in positive orientation, the positive orientation being
defined by the orientation of the underlying space T3

c . The neighbors of a cell are also indexed with 0, 1, 2, 3 in
such a way that the neighbor indexed by i is opposite to the vertex with the same index. See Figure 41.2.

In order to be able to specify the tetrahedra that contain vertices both inside and outside the original domain
we store an additional offset information in each vertex of a cell. These offsets are models of the concept
Periodic 3Offset 3.
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CGAL::Periodic 3 triangulation 3<PT,TDS>

Definition

The class Periodic triangulation 3 represents a 3-dimensional triangulation of a point set in T3
c .

#include <CGAL/Periodic 3 triangulation 3.h>

Parameters

The first template argument PT must be a model of the Periodic 3DelaunayTriangulationTraits 3 concept.

The second template argument TDS must be a model of the TriangulationDataStructure 3 concept with
some additional functionality in cells and vertices. Its default value is Triangulation data structure 3<
Triangulation vertex base 3<PT,Periodic 3 triangulation ds vertex base 3<>>,Triangulation cell base 3<
PT,Periodic 3 triangulation ds cell base 3<>>>.

Types

The class Triangulation 3 defines the following types:

typedef PT Geometric traits;
typedef TDS Triangulation data structure;

typedef Geometric traits::Periodic 3 offset 3 Offset;
typedef Geometric traits::Iso cuboid 3 Iso cuboid; A type representing an axis-aligned

cuboid. It must be a model of PT::Iso
cuboid 3. Used to represent the original
domain.

typedef array<int,3> Covering sheets; Integer triple to store the number of
sheets in each direction of space.

typedef Geometric traits::Point 3 Point;
typedef Geometric traits::Segment 3 Segment;
typedef Geometric traits::Triangle 3 Triangle;
typedef Geometric traits::Tetrahedron 3 Tetrahedron;

typedef std::pair< Point, Offset > Periodic point; Represents a point-offset pair. The point
in the pair lies in the original domain.

typedef array< Periodic point, 2> Periodic segment;
typedef array< Periodic point, 3> Periodic triangle;
typedef array< Periodic point, 4> Periodic tetrahedron;

Only vertices (0-faces) and cells (3-faces) are stored. Edges (1-faces) and facets (2-faces) are not explicitly
represented and thus there are no corresponding classes (see Section 41.2).

typedef Triangulation data structure::Vertex Vertex;
typedef Triangulation data structure::Cell Cell;
typedef Triangulation data structure::Edge Edge;
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typedef Triangulation data structure::Facet Facet;

The vertices and faces of the triangulations are accessed through handles, iterators and circulators. A handle
is a type which supports the two dereference operators operator* and operator->. The Handle concept is
documented in the support library. Iterators and circulators are bidirectional and non-mutable. The edges
and facets of the triangulation can also be visited through iterators and circulators which are bidirectional and
non-mutable.

Iterators and circulators are convertible to the corresponding handles, thus the user can pass them directly as
arguments to the functions.

typedef Triangulation data structure::Vertex handle Vertex handle; handle to a vertex
typedef Triangulation data structure::Cell handle Cell handle; handle to a cell

typedef Triangulation data structure::size type size type; Size type (an unsigned integral
type)

typedef Triangulation data structure::difference type difference type; Difference type (a signed inte-
gral type)

typedef Triangulation data structure::Cell iterator Cell iterator; iterator over cells
typedef Triangulation data structure::Facet iterator Facet iterator; iterator over facets
typedef Triangulation data structure::Edge iterator Edge iterator; iterator over edges
typedef Triangulation data structure::Vertex iterator Vertex iterator; iterator over vertices
Periodic 3 triangulation 3<PT,TDS>:: Unique vertex iterator iterator over the vertices

whose corresponding points
lie in the original domain, i.e.
for each set of periodic copies
the Unique vertex iterator
iterates over exactly one
representative.

typedef Triangulation data structure::Cell circulator Cell circulator; circulator over all cells inci-
dent to a given edge

typedef Triangulation data structure::Facet circulator Facet circulator; circulator over all facets inci-
dent to a given edge

Geometric iterators:

Periodic 3 triangulation 3<PT,TDS>:: Periodic tetrahedron iterator iterator over the tetrahedra corre-
sponding to cells of the triangulation.

Periodic 3 triangulation 3<PT,TDS>:: Periodic triangle iterator iterator over the triangles corre-
sponding to facets of the triangula-
tion.

Periodic 3 triangulation 3<PT,TDS>:: Periodic segment iterator iterator over the segments corre-
sponding to edges of the triangula-
tion.

Periodic 3 triangulation 3<PT,TDS>:: Periodic point iterator iterator over the points corresponding
to vertices of the triangulation.

Enums:

The triangulation class also defines the following enum types:
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To specify which case occurs when locating a point in the triangulation.
enum Locate type { VERTEX=0, EDGE, FACET, CELL, EMPTY};

To specify the behavior of geometric iterators.
enum Iterator type { STORED=0, UNIQUE, STORED COVER DOMAIN, UNIQUE COVER DOMAIN};

Creation

Periodic 3 triangulation 3<PT,TDS> t( Iso cuboid domain = Iso cuboid(0,0,0,1,1,1),
Geometric traits traits = Geometric traits())

Introduces an empty triangulation t with domain as
original domain.
Precondition: domain is a cube.

Periodic 3 triangulation 3<PT,TDS> t( Periodic 3 triangulation 3 tr);

Copy constructor. All vertices and faces are dupli-
cated.

Assignment

Periodic 3 triangulation 3 & t = Periodic 3 triangulation 3 tr

The triangulation tr is duplicated, and modifying the copy after
the duplication does not modify the original. The previous trian-
gulation held by t is deleted.

void t.swap( Periodic 3 triangulation 3 & tr)

The triangulations tr and t are swapped. t.swap(tr) should be pre-
ferred to t = tr or to t(tr) if tr is deleted after that. Indeed, there
is no copy of cells and vertices, thus this method runs in constant
time.

void t.clear() Deletes all vertices and all cells of t.

template < class PT, class TDS1, class TDS2 >
bool operator==( Periodic 3 triangulation 3<PT, TDS1> t1,

Periodic 3 triangulation 3<PT, TDS2> t2)

Equality operator. Returns true iff there exist a bijection between
the vertices of t1 and those of t2 and a bijection between the cells
of t1 and those of t2, which preserve the geometry of the trian-
gulation, that is, the points of each corresponding pair of vertices
are equal, and the tetrahedra corresponding to each pair of cells
are equal (up to a permutation of their vertices).

template < class PT, class TDS1, class TDS2 >
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bool operator!=( Periodic 3 triangulation 3<PT, TDS1> t1,
Periodic 3 triangulation 3<PT, TDS2> t2)

The opposite of operator==.

Access Functions

Geometric traits t.geom traits() const Returns a const reference to the geometric traits ob-
ject.

Triangulation data structure t.tds() const Returns a const reference to the triangulation data
structure.

Iso cuboid t.domain() const Returns the original domain.

advanced

Covering sheets t.number of sheets() const

Returns the number of sheets of the covering space
the triangulation is currently computed in.

Non const access

void t.set domain( const Iso cuboid dom)

Changes the domain. Note that this function calls
clear(), i.e., it erases the existing triangulation.

The responsibility of keeping a valid triangulation belongs to the user when using advanced operations allowing
a direct manipulation of the tds. This method is mainly a help for users implementing their own triangulation
algorithms.

Triangulation data structure& t.tds() Returns a reference to the triangulation data struc-
ture.

Non-constant-time queries and conversions

bool t.is extensible triangulation in 1 sheet h1() const

The current triangulation remains a triangulation in
the 1-sheeted covering space even after adding points
if this method returns true. This test relies on a heuris-
tic, i.e. if it answers false nothing is known. This
test runs in constant-time when not computing in the
1-sheeted covering space. (This test uses the length
of the longest edge in the triangulation as a criterion
[CT09].)
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bool t.is extensible triangulation in 1 sheet h2() const

The same as is extensible triangulation in 1 sheet
h1() but with a more precise heuristic, i.e. it
might answer true in cases in which is extensible
triangulation in 1 sheet h1() would not. However, it
is much less time efficient when not computing in the
1-sheeted covering space. (This test uses the diame-
ter of the largest empty ball in the input point set as a
criterion [CT09].)

bool t.is triangulation in 1 sheet() const Returns true if the current triangulation would still
be a triangulation in the 1-sheeted covering space, re-
turns false otherwise.

It is not recommended to interfere with the built-in covering management. Especially a premature conver-
sion to the 1-sheeted covering space might lead to problems when modifying the triangulation later.
void t.convert to 1 sheeted covering() const Converts the current triangulation into the same peri-

odic triangulation in the 1-sheeted covering space.

void t.convert to 27 sheeted covering() const Converts the current triangulation into the same peri-
odic triangulation in the 27-sheeted covering space.

advanced

size type t.number of vertices() const Returns the number of vertices. Counts all vertices that are repre-
sentatives of the same point in T3

c as one vertex.

size type t.number of cells() const Returns the number of cells. Counts all cells that are representa-
tives of the same tetrahedron in T3

c as one cell.

advanced

size type t.number of stored vertices() const

Returns the number of vertices in the data structure. This is the
same as the number of sheets times number of vertices().

size type t.number of stored cells() const

Returns the number of cells in the data structure. This is the same
as the number of sheets times number of cells().

advanced

Non-constant-time access functions

size type t.number of edges() const Returns the number of edges. Counts all edges that are represen-
tatives of the same segment in T3

c as one edge.

size type t.number of facets() const Returns the number of facets. Counts all facets that are represen-
tatives of the same triangle in T3

c as one facet.

advanced

size type t.number of stored edges() const

Returns the number of edges in the data structure. This is the same
as the number of sheets times number of edges().
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size type t.number of stored facets() const

Returns the number of facets in the data structure. This is the
same as the number of sheets times number of facets().

advanced

Geometric access functions

Periodic point t.periodic point( const Vertex handle v) const

Returns the periodic point given by vertex v. If t is represented in
the 1-sheeted covering space, the offset is always zero. Otherwise v
can correspond to a periodic copy outside domain of an input point.

Periodic point t.periodic point( const Cell handle c, int i) const

If t is represented in the 1-sheeted covering space, this function re-
turns the periodic point given by the i-th vertex of cell c, that is the
point in the original domain and the offset of the vertex in c. If t is
represented in the 27-sheeted covering space, this offset is possibly
added to another offset determining the periodic copy.
Precondition: i ∈ {0,1,2,3}

Periodic segment t.periodic segment( const Cell handle c, int i, int j) const

Returns the periodic segment formed by the two point-offset pairs
corresponding to the two vertices of edge (c,i,j).
Precondition: i, j ∈ {0,1,2,3}, i 6= j

Periodic segment t.periodic segment( Edge e) const

Same as the previous method for edge e.

Periodic triangle t.periodic triangle( const Cell handle c, int i) const

Returns the periodic triangle formed by the three point-offset pairs
corresponding to the three vertices of facet (c,i). The triangle is
oriented so that its normal points to the inside of cell c.
Precondition: i ∈ {0,1,2,3}

Periodic triangle t.periodic triangle( Facet f) const

Same as the previous method for facet f .

Periodic tetrahedron t.periodic tetrahedron( const Cell handle c) const

Returns the periodic tetrahedron formed by the four point-offset
pairs corresponding to the four vertices of c.

Note that a traits class providing exact constructions should be used in order to guarantee the following opera-
tions to be exact (as opposed to computing the triangulation only, which requires only exact predicates).

Point t.point( Periodic point p) const

Converts the Periodic point s (point-offset pair) to the correspond-
ing Point in R3.
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Segment t.segment( Periodic segment s) const

Converts the Periodic segment s to a Segment.

Triangle t.triangle( Periodic triangle t) const

Converts the Periodic triangle t to a Triangle.

Tetrahedron t.tetrahedron( Periodic tetrahedron t) const

Converts the Periodic tetrahedron t to a Tetrahedron.

Queries

bool t.is vertex( Point p, Vertex handle & v) const

Tests whether p is a vertex of t by locating p in the triangulation. If p is
found, the associated vertex v is given.

bool t.is vertex( Vertex handle v) const

Tests whether v is a vertex of t.

bool t.is edge( Vertex handle u, Vertex handle v, Cell handle & c, int & i, int & j) const

Tests whether (u,v) is an edge of t. If the edge is found, it gives a cell
c having this edge and the indices i and j of the vertices u and v in c, in
this order.
Precondition: u and v are vertices of t.

bool t.is edge( Vertex handle u,
Offset offu,
Vertex handle v,
Offset offv,
Cell handle & c,
int & i,
int & j) const

Tests whether ((u,offu),(v,offu)) is an edge of t. If the edge is found, it
gives a cell c having this edge and the indices i and j of the vertices u
and v in c, in this order.
Precondition: u and v are vertices of t.

bool t.is facet( Vertex handle u,
Vertex handle v,
Vertex handle w,
Cell handle & c,
int & i,
int & j,
int & k) const

Tests whether (u,v,w) is a facet of t. If the facet is found, it computes a
cell c having this facet and the indices i, j and k of the vertices u, v and
w in c, in this order.
Precondition: u, v and w are vertices of t.
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bool t.is facet( Vertex handle u,
Offset offu,
Vertex handle v,
Offset offv,
Vertex handle w,
Offset offw,
Cell handle & c,
int & i,
int & j,
int & k) const

Tests whether ((u,offu),(v,offv),(w,offw)) is a facet of t. If the facet is
found, it computes a cell c having this facet and the indices i, j and k of
the vertices u, v and w in c, in this order.
Precondition: u, v and w are vertices of t.

bool t.is cell( Cell handle c) const

Tests whether c is a cell of t.

bool t.is cell( Vertex handle u,
Vertex handle v,
Vertex handle w,
Vertex handle x,
Cell handle & c,
int & i,
int & j,
int & k,
int & l) const

Tests whether (u,v,w,x) is a cell of t. If the cell c is found, the method
computes the indices i, j, k and l of the vertices u, v, w and x in c, in this
order.
Precondition: u, v, w and x are vertices of t.

bool t.is cell( Vertex handle u, Vertex handle v, Vertex handle w, Vertex handle x, Cell handle & c) const

Tests whether (u,v,w,x) is a cell of t and computes this cell c.
Precondition: u, v, w and x are vertices of t.

bool t.is cell( Vertex handle u,
Offset offu,
Vertex handle v,
Offset offv,
Vertex handle w,
Offset offw,
Vertex handle x,
Offset offx,
Cell handle & c,
int & i,
int & j,
int & k,
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int & l) const

Tests whether ((u,offu),(v,offv),(w,offv),(x,offx)) is a cell of t. If the cell
c is found, the method computes the indices i, j, k and l of the vertices
u, v, w and x in c, in this order.
Precondition: u, v, w and x are vertices of t.

bool t.is cell( Vertex handle u,
Offset offu,
Vertex handle v,
Offset offv,
Vertex handle w,
Offset offw,
Vertex handle x,
Offset offx,
Cell handle & c) const

Tests whether ((u,offu),(v,offv),(w,offv),(x,offx)) is a cell of t and com-
putes this cell c.
Precondition: u, v, w and x are vertices of t.

There is a method has vertex in the cell class. The analogous methods for facets are defined here.

bool t.has vertex( Facet f, Vertex handle v, int & j) const

If v is a vertex of f , then j is the index of v in the cell f.first, and the
method returns true.

bool t.has vertex( Cell handle c, int i, Vertex handle v, int & j) const

Same for facet (c,i). Computes the index j of v in c.

bool t.has vertex( Facet f, Vertex handle v) const
bool t.has vertex( Cell handle c, int i, Vertex handle v) const

Same as the first two methods, but these two methods do not return the
index of the vertex.

The following three methods test whether two facets have the same vertices.

bool t.are equal( Cell handle c, int i, Cell handle n, int j) const
bool t.are equal( Facet f, Facet g) const
bool t.are equal( Facet f, Cell handle n, int j) const

Point location

The class Periodic 3 triangulation 3<PT,TDS> provides three functions to locate a given point with respect to
a triangulation. It provides also functions to test if a given point is inside a face or not. Note that the class
Periodic 3 Delaunay triangulation 3 also provides a nearest vertex() function.

Cell handle t.locate( Point query, Cell handle start = Cell handle())

Returns the cell that contains the query in its interior. If query lies on a
facet, an edge or on a vertex, one of the cells having query on its boundary is
returned.
The optional argument start is used as a starting place for the search.
Precondition: query lies in the original domain domain.
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Cell handle t.locate( Point query, Locate type & lt, int & li, int & lj, Cell handle start = Cell handle())

The k-face that contains query in its interior is returned, by means of the
cell returned together with lt, which is set to the locate type of the query
(VERTEX, EDGE, FACET, CELL) and two indices li and lj that specify the
k-face of the cell containing query.
If the k-face is a cell, li and lj have no meaning; if it is a facet (resp. vertex),
li gives the index of the facet (resp. vertex) and lj has no meaning; if it is an
edge, li and lj give the indices of its vertices.
If there is no vertex in the triangulation yet, lt is set to EMPTY and locate
returns the default constructed handle.
The optional argument start is used as a starting place for the search.
Precondition: query lies in the original domain domain.

Bounded side t.side of cell( Point p, Cell handle c, Locate type & lt, int & li, int & lj) const

Returns a value indicating on which side of the oriented boundary of c the
point p lies. More precisely, it returns:
- ON BOUNDED SIDE if p is inside the cell.
- ON BOUNDARY if p on the boundary of the cell. Then lt together with li
and lj give the precise location on the boundary. (See the descriptions of the
locate methods.)
- ON UNBOUNDED SIDE if p lies outside the cell.
Precondition: query lies in the original domain domain.

Traversal of the Triangulation

The periodic triangulation class provides several iterators and circulators that allow one to traverse it.

Cell, Face, Edge and Vertex Iterators

The following iterators allow the user to visit cells, facets, edges and vertices of the stored triangulation, i.e.
in case of computing in a multiply sheeted covering space all stored periodic copies of each item are returned.
These iterators are non-mutable, bidirectional and their value types are respectively Cell, Facet, Edge and
Vertex. They are all invalidated by any change in the triangulation.

Vertex iterator t.vertices begin() const Starts at an arbitrary vertex. Iterates over all vertices.
Returns vertices end() if t.number of vertices() = 0.

Vertex iterator t.vertices end() const Past-the-end iterator

Edge iterator t.edges begin() const Starts at an arbitrary edge. Iterates over all edges. Re-
turns edges end() if t.number of vertices() = 0.

Edge iterator t.edges end() const Past-the-end iterator

Facet iterator t.facets begin() const Starts at an arbitrary facet. Iterates over all facets. Re-
turns facets end() if t.number of vertices() = 0.

Facet iterator t.facets end() const Past-the-end iterator

Cell iterator t.cells begin() const Starts at an arbitrary cell. Iterates over all cells. Re-
turns cells end() if t.number of vertices() = 0.
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Cell iterator t.cells end() const Past-the-end iterator

Unique vertex iterator t.unique vertices begin() const

Starts at an arbitrary vertex. Iterates over all vertices
whose corresponding points lie in the original domain,
i.e. for each set of periodic copies the Unique vertex
iterator iterates over exactly one representative. Re-
turns unique vertices end() if t.number of vertices()
= 0.

Unique vertex iterator t.unique vertices end() const

Past-the-end iterator

Geometric iterators

The following iterators allow the user to obtain geometric primitives corresponding to cells, facets, edges, and
vertices of the triangulation. These iterators are non-mutable, bidirectional and their value types are respectively
Periodic point, Periodic segment, Periodic triangle, and Periodic tetrahedron. They are all invalidated by any
change in the triangulation. If the periodic triangulation is not computed in the 1-sheeted covering space, these
iterators can be used to retain only the geometric primitives in the original domain. This can be controlled using
the enum Iterator type, see page 2796.

Periodic point iterator t.periodic points begin( Iterator type it = STORED) const

Iterates over the points of the triangulation. Its behavior is de-
fined by the Iterator type it as described on page 2796.

Periodic point iterator t.periodic points end( Iterator type it = STORED) const

Past-the-end iterator. Note that to match another Periodic
point iterator both must have the same Iterator type it.

Periodic segment iterator t.periodic segments begin( Iterator type it = STORED) const

Iterates over the segments of the triangulation. Its behavior is
defined by the Iterator type it as described on page 2796.

Periodic segment iterator t.periodic segments end( Iterator type it = STORED) const

Past-the-end iterator. Note that to match another Periodic
segment iterator both must have the same Iterator type it.

Periodic triangle iterator t.periodic triangles begin( Iterator type it = STORED) const

Iterates over the triangles of the triangulation. Its behavior is
defined by the Iterator type it as described on page 2796.

Periodic triangle iterator t.periodic triangles end( Iterator type it = STORED) const

Past-the-end iterator. Note that to match another Periodic
triangle iterator both must have the same Iterator type it.
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Figure 41.4: The four different modes of the geometric iterators: STORED, STORED COVER DOMAIN,
UNIQUE, UNIQUE COVER DOMAIN. Note that in case of computing in the 1-sheeted covering space,
STORED and UNIQUE give the same result.
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Periodic tetrahedron iterator t.periodic tetrahedra begin( Iterator type it = STORED) const

Iterates over the tetrahedra of the triangulation. Its behavior is
defined by the Iterator type it as described on page 2796.

Periodic tetrahedron iterator t.periodic tetrahedra end( Iterator type it = STORED) const

Past-the-end iterator. Note that to match another Periodic
tetrahedron iterator both must have the same Iterator type it.

Cell and Facet Circulators

The following circulators respectively visit all cells or all facets incident to a given edge. They are non-mutable
and bidirectional. They are invalidated by any modification of one of the cells traversed.

Cell circulator t.incident cells( Edge e) const Starts at an arbitrary cell incident to e.
Cell circulator t.incident cells( Cell handle c, int i, int j) const

As above for edge (i,j) of c.

Cell circulator t.incident cells( Edge e, Cell handle start) const

Starts at cell start.
Precondition: start is incident to e.

Cell circulator t.incident cells( Cell handle c, int i, int j, Cell handle start) const

As above for edge (i,j) of c.

Facet circulator t.incident facets( Edge e) const Starts at an arbitrary facet incident to e.
Facet circulator t.incident facets( Cell handle c, int i, int j) const

As above for edge (i,j) of c.

Facet circulator t.incident facets( Edge e, Facet start) const

Starts at facet start.
Precondition: start is incident to e.

Facet circulator t.incident facets( Edge e, Cell handle start, int f) const

Starts at facet of index f in start.

Facet circulator t.incident facets( Cell handle c, int i, int j, Facet start) const

As above for edge (i,j) of c.

Facet circulator t.incident facets( Cell handle c, int i, int j, Cell handle start, int f) const

As above for edge (i,j) of c and facet (start,f).

Traversal of the incident cells and facets, and the adjacent vertices of a given vertex

template <class OutputIterator>
2773



OutputIterator t.incident cells( Vertex handle v, OutputIterator cells) const

Copies the Cell handles of all cells incident to v to the output iterator
cells. Returns the resulting output iterator.
Precondition: v 6= Vertex handle(), t.is vertex(v).

template <class OutputIterator>
OutputIterator t.incident facets( Vertex handle v, OutputIterator facets) const

Copies the Facets incident to v to the output iterator facets. Returns the
resulting output iterator.
Precondition: v 6= Vertex handle(), t.is vertex(v).

template <class OutputIterator>
OutputIterator t.incident edges( Vertex handle v, OutputIterator edges) const

Copies the Edges incident to v to the output iterator edges. Returns the
resulting output iterator.
Precondition: v 6= Vertex handle(), t.is vertex(v).

template <class OutputIterator>
OutputIterator t.adjacent vertices( Vertex handle v, OutputIterator vertices) const

Copies the Vertex handles of all vertices adjacent to v to the output iter-
ator vertices. Returns the resulting output iterator.
Precondition: v 6= Vertex handle(), t.is vertex(v).

size type t.degree( Vertex handle v) const

Returns the degree of a vertex, that is, the number of adjacent vertices.
Precondition: v 6= Vertex handle(), t.is vertex(v).

Traversal between adjacent cells

int t.mirror index( Cell handle c, int i) const

Returns the index of c in its ith neighbor.
Precondition: i ∈ {0,1,2,3}.

Vertex handle t.mirror vertex( Cell handle c, int i) const

Returns the vertex of the ith neighbor of c that is op-
posite to c.
Precondition: i ∈ {0,1,2,3}.

Facet t.mirror facet( Facet f) const Returns the same facet viewed from the other adja-
cent cell.

advanced
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Checking

The responsibility of keeping a valid triangulation belongs to the user when using advanced operations allowing
a direct manipulation of cells and vertices. We provide the user with the following methods to help debugging.

bool t.is valid( bool verbose = false) const

Checks the combinatorial validity of the triangulation. Checks also the validity of
its geometric embedding (see Section 41.2).
When verbose is set to true, messages describing the first invalidity encountered
are printed.

bool t.is valid( Cell handle c, bool verbose = false) const

Checks the combinatorial validity of the cell by calling the is valid method of the
Triangulation data structure cell class. Also checks the geometric validity of c, if
c is finite. (See Section 41.2.)
When verbose is set to true, messages are printed to give a precise indication of the
kind of invalidity encountered.

advanced

I/O

istream& istream& is >> Periodic 3 triangulation 3 &t Reads a triangulation from is and stores it in t.
Precondition: is has the below described for-
mat.

ostream& ostream& os << Periodic 3 triangulation 3 t Writes the triangulation t into os.

The information in the iostream is:

• the original domain

• the number of sheets of the covering space as in number of sheets()

• the number of vertices

• the non-combinatorial information of vertices (point resp. point-offset pairs, etc.)

• the number of cells

• the indices of the vertices of each cell

• the indices of the neighbors of each cell, where the index corresponds to the preceding list of cells

• the offsets corresponding to the vertices of the cells

• the non-combinatorial information of each cell

See Also

Periodic 3 Delaunay triangulation 3
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CGAL::Periodic 3 Delaunay triangulation 3<PT,TDS>

Definition

The class Periodic 3 Delaunay triangulation 3 represents a Delaunay triangulation in three-dimensional peri-
odic space.

#include <CGAL/Periodic 3 Delaunay triangulation 3.h>

Parameters

The first template argument PT must be a model of the Periodic 3DelaunayTriangulationTraits 3 concept.

The second template argument TDS must be a model of the TriangulationDataStructure 3 concept with
some additional functionality in cells and vertices. Its default value is Triangulation data structure 3<
Triangulation vertex base 3<PT,Periodic 3 triangulation ds vertex base 3<>>,Triangulation cell base 3<
PT,Periodic 3 triangulation ds cell base 3<>>>.

Inherits From

Periodic 3 triangulation 3<Periodic 3DelaunayTriangulationTraits 3,TriangulationDataStructure 3>

Creation

Periodic 3 Delaunay triangulation 3<PT,TDS> dt( Iso cuboid domain = Iso cuboid(0,0,0,1,1,1),
Geom traits traits = Geom traits())

Creates an empty periodic Delaunay triangulation dt, with domain as original domain and
possibly specifying a traits class traits.
Precondition: domain is a cube.

Periodic 3 Delaunay triangulation 3<PT,TDS> dt( Periodic 3 Delaunay triangulation 3 dt1);

Copy constructor.

template < class InputIterator >
Periodic 3 Delaunay triangulation 3<PT,TDS> dt( InputIterator first,

InputIterator last,
Iso cuboid domain = Iso cuboid(0,0,0,1,1,1),
Geom traits traits = Geom traits())

Equivalent to constructing an empty triangulation with the optional domain and traits class
arguments and calling insert(first,last).
Precondition: The value type of first and last are Points lying inside domain and domain is a
cube.
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Operations

Insertion

The following methods insert points in the triangulation ensuring the empty sphere property of Delaunay trian-
gulations. The inserted points need to lie in the original domain (see Section 41.1 of the user manual).

In the degenerate case when there are co-spherical points, the Delaunay triangulation is known not to be
uniquely defined. In this case, CGAL chooses a particular Delaunay triangulation using a symbolic perturbation
scheme [DT03].

Note that insertion of a new point can cause a switch from computing in the 27-sheeted covering space to
computing in the 1-sheeted covering space, which invalidates some Vertex handles and Cell handles.

Vertex handle dt.insert( Point p, Cell handle start = Cell handle())

Inserts point p in the triangulation and returns the corresponding vertex. The
optional argument start is used as a starting place for the point location.
Precondition: p lies in the original domain domain.

Vertex handle dt.insert( Point p, Locate type lt, Cell handle loc, int li, int lj)

Inserts point p in the triangulation and returns the corresponding vertex. Sim-
ilar to the above insert() function, but takes as additional parameter the re-
turn values of a previous location query. See description of Periodic 3
triangulation 3::locate().
Precondition: p lies in the original domain domain.

The following method allows one to insert several points. It returns the number of inserted points.

template < class InputIterator >
std::ptrdiff t dt.insert( InputIterator first, InputIterator last, bool is large point set = false)

Inserts the points in the iterator range [ first, last ). Returns the number of in-
serted points. This function uses spatial sorting (cf. chapter 65.3) and therefore
is not guaranteed to insert the points following the order of InputIterator. If
the third argument is large point set is set to true a heuristic for optimizing
the insertion of large point sets is applied.
Precondition: The value type of first and last are Points lying inside domain.

Point moving

Vertex handle dt.move point( Vertex handle v, Point p)

Moves the point stored in v to p, while preserving the Delaunay property. This
performs an action semantically equivalent to remove(v) followed by insert(p),
but is supposedly faster when the point has not moved much. Returns the
handle to the new vertex.
Precondition: p lies in the original domain domain.
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Removal

When a vertex v is removed from a triangulation, all the cells incident to v must be removed, and the polyhedral
region consisting of all the tetrahedra that are incident to v must be re-triangulated. So, the problem reduces
to triangulating a polyhedral region, while preserving its boundary, or to compute a constrained triangulation.
This is known to be sometimes impossible: the Schönhardt polyhedron cannot be triangulated [She98a].

However, when dealing with Delaunay triangulations, the case of such polyhedra that cannot be re-triangulated
cannot happen, so CGAL proposes a vertex removal.

void dt.remove( Vertex handle v)

Removes the vertex v from the triangulation. When computing in the 27-
sheeted covering space it removes all 27 copies of v.

template < class InputIterator >
std::ptrdiff t dt.remove( InputIterator first, InputIterator beyond)

Removes the vertices specified by the iterator range (first, beyond) of value
type Vertex handle. remove() is called for each element of the range. The
number of vertices removed is returned; this number does not account for pe-
riodic copies of removed vertices.
Precondition: The iterator must not iterate over several periodic copies of the
same vertex, use e.g. the Unique vertex iterator.

Queries

Bounded side dt.side of sphere( Cell handle c, Point p, Offset off = Offset(0,0,0))

Returns a value indicating on which side of the circumscribed sphere of c the
point-offset pair (p,off ) lies. More precisely, it returns:
- ON BOUNDED SIDE if (p,off ) is inside the sphere.
- ON BOUNDARY if (p,off ) on the boundary of the sphere.
- ON UNBOUNDED SIDE if (p,off ) lies outside the sphere.
Precondition: p lies in the original domain domain.

Vertex handle dt.nearest vertex( Point p, Cell handle c = Cell handle())

Returns any nearest vertex to the point p, or the default constructed handle if
the triangulation is empty. The optional argument c is a hint specifying where
to start the search. It always returns a vertex corresponding to a point inside
domain even if computing in a multiply sheeted covering space.
Precondition: c is a cell of dt and p lies in the original domain domain.

Vertex handle dt.nearest vertex in cell( Cell handle c, Point p, Offset off = Offset(0,0,0))

Returns the vertex of the cell c that is nearest to the point-offset pair (p,off ).
Precondition: p lies in the original domain domain.

A point-offset pair (p,off ) is said to be in conflict with a cell c iff dt.side of sphere(c, p, off) returns ON
BOUNDED SIDE. The set of cells that are in conflict with (p,off ) is star-shaped.
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template <class OutputIteratorBoundaryFacets, class OutputIteratorCells, class OutputIteratorInternalFacets>

Triple<OutputIteratorBoundaryFacets, OutputIteratorCells, OutputIteratorInternalFacets>

dt.find conflicts( Point p,
Cell handle c,
OutputIteratorBoundaryFacets bfit,
OutputIteratorCells cit,
OutputIteratorInternalFacets ifit)

Computes the conflict hole induced by p. The starting cell c must be in conflict.
Then this function returns respectively in the output iterators:
– cit: the cells in conflict.
– bfit: the facets on the boundary, that is, the facets (t, i) where the cell t is in
conflict, but t->neighbor(i) is not.
– ifit: the facets inside the hole, that is, delimiting two cells in conflict.
Returns the pair composed of the resulting output iterators.
Precondition: c is in conflict with p and p lies in the original domain domain.

template <class OutputIterator>
OutputIterator

dt.vertices in conflict( Point p, Cell handle c, OutputIterator res)

Similar to find conflicts(), but reports the vertices which are on the boundary
of the conflict hole of p, in the output iterator res. Returns the resulting output
iterator.
Precondition: c is in conflict with p and p lies in the original domain domain.

A face (cell, facet or edge) is said to be a Gabriel face iff its smallest circumscribing sphere do not en-
close any vertex of the triangulation. Any Gabriel face belongs to the Delaunay triangulation, but the re-
ciprocal is not true. The following member functions test the Gabriel property of Delaunay faces.
bool dt.is Gabriel( Cell handle c, int i)
bool dt.is Gabriel( Cell handle c, int i, int j)
bool dt.is Gabriel( Facet f)
bool dt.is Gabriel( Edge e)

Voronoi diagram

CGAL offers several functions to display the Voronoi diagram of a set of points in 3D.

Note that a traits class providing exact constructions should be used in order to guarantee the computation of
the Voronoi diagram (as opposed to computing the triangulation only, which requires only exact predicates).

Point dt.dual( Cell handle c) const Returns the representative of the circumcenter of the four
vertices of c that lies in the original domain domain.

Periodic segment dt.dual( Facet f) const Returns the dual of facet f , which is a periodic segment.

Periodic segment dt.dual( Cell handle c, int i) const

same as the previous method for facet (c,i).
Precondition: i ∈ {0,1,2,3}
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template <class OutputIterator>
OutputIterator dt.dual( Edge e, OutputIterator pts) const

Returns in the output iterator the points of the dual poly-
gon of edge e in the same order as the Facet circulator
returns facets incident to the edge e. The points form the
dual polygon in R3, so they do not necessarily all lie in-
side the original domain.

template <class OutputIterator>
OutputIterator dt.dual( Cell handle c, int i, int j, OutputIterator pts) const

same as the previous method for edge (c,i,j).
Precondition: i, j ∈ {0,1,2,3}, i 6= j

template <class OutputIterator>
OutputIterator dt.dual( Vertex handle v, OutputIterator pts) const

Returns in the output iterator the points of the dual poly-
hedron of vertex v in no particular order. The points form
the dual polyhedron in R3, so they do not necessarily lie
all inside the original domain.

template <class Stream>
Stream& dt.draw dual( Stream & os) Sends the set of duals to all the facets of dt into os.

Geom traits::FT dt.dual volume( Vertex handle v) const

Returns the volume of the Voronoi cell dual to v.

Point dt.dual centroid( Vertex handle v) const

Returns the centroid of the Voronoi cell dual to v.

advanced

Checking

bool dt.is valid( bool verbose = false) const

Checks the combinatorial validity of the triangulation
and the validity of its geometric embedding (see Sec-
tion 41.2). Also checks that all the circumscribing
spheres of cells are empty.
When verbose is set to true, messages describing the first
invalidity encountered are printed.
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bool dt.is valid( Cell handle c, bool verbose = false) const

Checks the combinatorial and geometric validity of the
cell (see Section 41.2). Also checks that the circumscrib-
ing sphere of cells is empty.
When verbose is set to true, messages are printed to give
a precise indication of the kind of invalidity encountered.

These methods are mainly a debugging help for the users of advanced features.

advanced

See Also

Periodic 3 triangulation 3
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CGAL::Periodic 3 triangulation hierarchy 3<PTr>

Definition

The class Periodic 3 triangulation hierarchy 3 implements a triangulation augmented with a data structure
which allows fast point location queries.

#include <CGAL/Periodic 3 triangulation hierarchy 3.h>

Parameters

It is templated by a parameter which must be instantiated by one of the CGAL periodic triangulation classes. In
the current implementation, only Periodic 3 Delaunay triangulation 3 is supported for PTr.

PTr::Vertex has to be a model of the concept Periodic 3TriangulationHierarchyVertexBase 3.
PTr::Geom traits has to be a model of the concept Periodic 3DelaunayTriangulationTraits 3.

Inherits From

PTr

Periodic 3 triangulation hierarchy 3<PTr> offers exactly the same functionalities as PTr. Most of them (point
location, insertion, removal. . . ) are overloaded to improve their efficiency by using the hierarchic structure.

Note that, since the algorithms that are provided are randomized, the running time of constructing a triangulation
with a hierarchy may be improved when shuffling the data points.

However, the I/O operations are not overloaded. So, writing a hierarchy into a file will lose the hierarchic
structure and reading it from the file will result in an ordinary triangulation whose efficiency will be the same
as PTr.

Implementation

The data structure is a hierarchy of triangulations. The triangulation at the lowest level is the original triangula-
tion where operations and point location are to be performed. Then at each succeeding level, the data structure
stores a triangulation of a small random sample of the vertices of the triangulation at the preceding level. Point
location is done through a top-down nearest neighbor query. The nearest neighbor query is first performed
naively in the top level triangulation. Then, at each following level, the nearest neighbor at that level is found
through a linear walk performed from the nearest neighbor found at the preceding level. Because the number
of vertices in each triangulation is only a small fraction of the number of vertices of the preceding triangulation
the data structure remains small and achieves fast point location queries on real data.

See Also

CGAL::Periodic 3 triangulation hierarchy vertex base 3
CGAL::Periodic 3 Delaunay triangulation 3
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Periodic 3DelaunayTriangulationTraits 3

Definition

The concept Periodic 3DelaunayTriangulationTraits 3 is the first template parameter of the classes
Periodic 3 Delaunay triangulation 3 and Periodic 3 triangulation 3. It refines the concept
DelaunayTriangulationTraits 3 from the CGAL 3D Triangulation (Page ??) package. It redefines the
geometric objects, predicates and constructions to work with point-offset pairs. In most cases the offsets will
be (0,0,0) and the predicates from DelaunayTriangulationTraits 3 can be used directly. For efficiency reasons
we maintain for each functor the version without offsets.

Refines

DelaunayTriangulationTraits 3

In addition to the requirements described for the traits class DelaunayTriangulationTraits 3, the geometric traits
class of a Periodic Delaunay triangulation must fulfill the following requirements:

Types

Periodic 3DelaunayTriangulationTraits 3:: Point 3 The point type. It must be a model of
Kernel::Point 3.

Periodic 3DelaunayTriangulationTraits 3:: Vector 3 The vector type. It must be a model of
Kernel::Vector 3.

Periodic 3DelaunayTriangulationTraits 3:: Periodic 3 offset 3

The offset type. It must be a model of the con-
cept Periodic 3Offset 3.

Periodic 3DelaunayTriangulationTraits 3:: Iso cuboid 3 A type representing an axis-aligned cuboid. It
must be a model of Kernel::Iso cuboid 3.

The following three types represent geometric primitives in R3. They are required to pro-
vide functions converting primitives from T3

c to R3, i.e. constructing representatives in R3.
Periodic 3DelaunayTriangulationTraits 3:: Segment 3 A segment type. It must be a model of

Kernel::Segment 3.

Periodic 3DelaunayTriangulationTraits 3:: Triangle 3 A triangle type. It must be a model of
Kernel::Triangle 3.

Periodic 3DelaunayTriangulationTraits 3:: Tetrahedron 3 A tetrahedron type. It must be a model of
Kernel::Tetrahedron 3.

Periodic 3DelaunayTriangulationTraits 3:: Compare xyz 3

A predicate object that must provide the function operators
Comparison result operator()(Point 3 p, Point 3 q),
which returns EQUAL if the two points are equal and
Comparison result operator()(Point 3 p, Point 3 q, Periodic 3 offset 3 o p, Periodic 3 offset 3
o q),
which returns EQUAL if the two point-offset pairs are equal. Otherwise it must return a consistent
order for any two points chosen in a same line.
Precondition: p, q lie inside the domain.
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Periodic 3DelaunayTriangulationTraits 3:: Orientation 3

A predicate object that must provide the function operators
Orientation operator()(Point 3 p, Point 3 q, Point 3 r, Point 3 s),
which returns POSITIVE, if s lies on the positive side of the oriented plane h defined by p, q, and
r, returns NEGATIVE if s lies on the negative side of h, and returns COPLANAR if s lies on h and
Orientation operator()(Point 3 p, Point 3 q, Point 3 r, Point 3 s, Periodic 3 offset 3 o p,
Periodic 3 offset 3 o q, Periodic 3 offset 3 o r, Periodic 3 offset 3 o s),
which returns POSITIVE, if the point-offset pair (s,o s) lies on the positive side of the oriented
plane h defined by (p,o p), (q,o q), and (r,o r), returns NEGATIVE if (s,o s) lies on the negative
side of h, and returns COPLANAR if (s,o s) lies on h.
Precondition: p, q, r, s lie inside the domain.

Periodic 3DelaunayTriangulationTraits 3:: Side of oriented sphere 3

A predicate object that must provide the function operators
Oriented side operator()(Point 3 p, Point 3 q, Point 3 r, Point 3 s, Point 3 t),
which determines on which side of the oriented sphere circumscribing p, q, r, s the point t lies
and
Oriented side operator()(Point 3 p, Point 3 q, Point 3 r, Point 3 s, Point 3 t, Periodic 3 offset
3 o p, Periodic 3 offset 3 o q, Periodic 3 offset 3 o r, Periodic 3 offset 3 o s, Periodic 3
offset 3 o t),
which determines on which side of the oriented sphere circumscribing (p,o p), (q,o q), (r,o r),
(s,o s) the point-offset pair (t,o t) lies.
Precondition: p, q, r, s, t lie inside the domain.

Periodic 3DelaunayTriangulationTraits 3:: Compare distance 3

A predicate object that must provide the function operators
Comparison result operator()(Point 3 p, Point 3 q, Point 3 r),
which compares the distance between p and q to the distance between p and r and
Comparison result operator()(Point 3 p, Point 3 q, Point 3 r, Periodic 3 offset 3 o p, Periodic
3 offset 3 o q, Periodic 3 offset 3 o r),
which compares the distance between (p,o p) and (q,o q) to the distance between (p,o p) and
(r,o r).
Precondition: p, q, r lie inside the domain.

In addition, only when vertex removal is used, the traits class must provide the following predicate objects:
Periodic 3DelaunayTriangulationTraits 3:: Coplanar orientation 3

A predicate object that must provide the function operators
Orientation operator()(Point 3 p, Point 3 q, Point 3 r),
which returns COLLINEAR, if the points are collinear; otherwise it must return a consistent ori-
entation for any three points chosen in a same plane and
Orientation operator()(Point 3 p, Point 3 q, Point 3 r Periodic 3 offset 3 o p, Periodic 3
offset 3 o q, Periodic 3 offset 3 o r),
which returns COLLINEAR, if the point-offset pairs are collinear; otherwise it must return a con-
sistent orientation for any three point-offset pairs chosen in a same plane.
Precondition: p, q, r lie inside the domain.
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Periodic 3DelaunayTriangulationTraits 3:: Coplanar side of bounded circle 3

A predicate object that must provide the function operators
Bounded side operator()(Point 3 p, Point 3 q, Point 3 r, Point 3 s),
which determines the bounded side of the circle defined by p, q, and r on which the point s lies
and
Bounded side operator()(Point 3 p, Point 3 q, Point 3 r, Point 3 s, Periodic 3 offset 3 o p,
Periodic 3 offset 3 o q, Periodic 3 offset 3 o r, Periodic 3 offset 3 o s),
which determines the bounded side of the circle defined by (p,o p), (q,o q), and (r,o r) on which
the point-offset pair (s,o s) lies.
Precondition: p,q,r, and s are coplanar and p,q, and r are not collinear, (p,o p),(q,o q),(r,o r),
and (s,o s) are coplanar and (p,o p),(q,o q), and (r,o r) are not collinear, respectively, and p, q,
r, s, t lie inside the domain.

In addition, only when is Gabriel is used, the traits class must provide the following predicate object:
Periodic 3DelaunayTriangulationTraits 3:: Side of bounded sphere 3

A predicate object that must provide the function operators
Bounded side operator()(Point 3 p, Point 3 q, Point 3 t),
which returns the position of the point t relative to the sphere that has pq as its diameter,
Bounded side operator()(Point 3 p, Point 3 q, Point 3 t, Periodic 3 offset 3 o p, Periodic 3
offset 3 o q, Periodic 3 offset 3 o t),
which returns the position of the point-offset pair (t,o t) relative to the sphere that has (p,o p)(q,o
q) as its diameter,
Bounded side operator()(Point 3 p, Point 3 q, Point 3 r, Point 3 t),
which returns the position of the point t relative to the sphere passing through p, q, and r and
whose center is in the plane defined by these three points,
Bounded side operator()(Point 3 p, Point 3 q, Point 3 r, Point 3 t, Periodic 3 offset 3 o p,
Periodic 3 offset 3 o q, Periodic 3 offset 3 o r, Periodic 3 offset 3 o q),
which returns the position of the point-offset pair (t,o t) relative to the sphere passing through
(p,o p), (q,o q), and (r,o r) and whose center is in the plane defined by these three point-offset
pairs,
Bounded side operator()(Point 3 p, Point 3 q, Point 3 r, Point 3 s, Point 3 t),
which returns the relative position of point t to the sphere defined by p, q, r, and s; the order of
the points p, q, r, and s does not matter, and
Bounded side operator()(Point 3 p, Point 3 q, Point 3 r, Point 3 s, Point 3 t, Periodic 3 offset
3 o p, Periodic 3 offset 3 o q, Periodic 3 offset 3 o r, Periodic 3 offset 3 o s, Periodic 3
offset 3 o q),
which returns the relative position of the point-offset pair (t,o t) to the sphere defined by (p,o p),
(q,o q), (r,o r), and (s,o s); the order of the point-offset pairs (p,o p), (q,o q), (r,o r), and (s,o s)
does not matter.
Precondition: p, q, r, and s are not coplanar, (p,o p), (q,o q), (r,o r), and (s,o s) are not coplanar,
p, q, r, s, t lie inside the domain.

Note that the traits must provide exact constructions in order to guarantee exactness of the following construction
functors.

Periodic 3DelaunayTriangulationTraits 3:: Construct point 3

A constructor object that must provide the function operator
Point 3 operator()(Point 3 p, Periodic 3 offset 3 o p),
which constructs a point from a point-offset pair.
Precondition: p lies inside the domain.
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Periodic 3DelaunayTriangulationTraits 3:: Construct segment 3

A constructor object that must provide the function operators
Segment 3 operator()(Point 3 p, Point 3 q),
which constructs a segment from two points and
Segment 3 operator()(Point 3 p, Point 3 q, Periodic 3 offset 3 o p, Periodic 3 offset 3 o q),
which constructs a segment from two point-offset pairs.
Precondition: p, q lie inside the domain.

Periodic 3DelaunayTriangulationTraits 3:: Construct triangle 3

A constructor object that must provide the function operators
Triangle 3 operator()(Point 3 p, Point 3 q, Point 3 r ),
which constructs a triangle from three points and
Triangle 3 operator()(Point 3 p, Point 3 q, Point 3 r, Periodic 3 offset 3 o q, Periodic 3
offset 3 o q, Periodic 3 offset 3 o r),
which constructs a triangle from three point-offset pairs.
Precondition: p, q, r lie inside the domain.

Periodic 3DelaunayTriangulationTraits 3:: Construct tetrahedron 3

A constructor object that must provide the function operators
Tetrahedron 3 operator()(Point 3 p, Point 3 q, Point 3 r, Point 3 s),
which constructs a tetrahedron from four points and
Tetrahedron 3 operator()(Point 3 p, Point 3 q, Point 3 r, Point 3 s, Periodic 3 offset 3 o q,
Periodic 3 offset 3 o q, Periodic 3 offset 3 o r, Periodic 3 offset 3 o s),
which constructs a tetrahedron from four point-offset pairs.
Precondition: p, q, r, s lie inside the domain.

In addition, only when the dual operations are used, the traits class must provide the following constructor
object:

Periodic 3DelaunayTriangulationTraits 3:: Construct circumcenter 3

A constructor object that must provide the function operators
Point 3 operator()(Point 3 p, Point 3 q, Point 3 r, Point 3 s),
which constructs the circumcenter of four points and
Point 3 operator()(Point 3 p, Point 3 q, Point 3 r, Point 3 s, Periodic 3 offset 3 o p, Periodic
3 offset 3 o q, Periodic 3 offset 3 o r, Periodic 3 offset 3 o s),
which constructs the circumcenter of four point-offset pairs.
Precondition: p, q, r and s as well as (p,o p), (q,o q), (r,o r) and (s,o s) must be non coplanar. p,
q, r, s lie inside the domain.

The optional types must be provided in any case, however they can be replaced by dummy types if the respective
functions are not used.

Creation

Periodic 3DelaunayTriangulationTraits 3 traits; Default constructor.
Periodic 3DelaunayTriangulationTraits 3 traits( Periodic triangulation traits 3 tr);

Copy constructor.
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Access Functions

void traits.set domain( Iso cuboid 3 domain)

Set the size of the fundamental domain. This is necessary to eval-
uate predicates correctly.
Precondition: domain represents a cube.

Operations

The following functions give access to the predicate and construction objects:

Compare xyz 3 traits.compare xyz 3 object()
Orientation 3 traits.orientation 3 object()

Side of oriented sphere 3 traits.side of oriented sphere 3 object()
Compare distance 3 traits.compare distance 3 object()

The following functions must be provided if vertex removal is used; otherwise dummy functions can be pro-
vided.

Coplanar orientation 3 traits.coplanar 3 orientation 3 object()
Coplanar side of bounded circle 3 traits.coplanar side of bounded circle 3 object()

The following function must be provided only if the is Gabriel methods of Periodic 3 Delaunay triangulation
3 are used; otherwise a dummy function can be provided.

Side of bounded sphere 3 traits.side of bounded sphere 3 object()

Construct segment 3 traits.construct segment 3 object()
Construct triangle 3 traits.construct triangle 3 object()
Construct tetrahedron 3 traits.construct tetrahedron 3 object()

The following function must be provided only if the methods of Periodic 3 Delaunay triangulation 3 returning
elements of the Voronoi diagram are used; otherwise a dummy function can be provided:

Construct circumcenter 3 traits.construct circumcenter 3 object()

Has Models

CGAL::Periodic 3 triangulation traits 3

See Also

DelaunayTriangulationTraits 3
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CGAL::Periodic 3 triangulation traits 3<Traits,Periodic 3Offset 3>

Definition

The class Periodic 3 triangulation traits 3<Traits,Periodic 3Offset 3> is designed as a default traits class for
the class Periodic 3 triangulation 3<Periodic 3TriangulationTraits 3,TriangulationDataStructure 3>.

The argument Traits must be a model of the DelaunayTriangulationTraits 3 concept. The argument Periodic
3Offset 3 must be a model of the concept Periodic 3Offset 3 and defaults to Periodic 3 offset 3.

Note that this template class is specialized for CGAL::Filtered kernel, so that it automatically provides filtered
predicates. This holds implicitly for CGAL::Exact predicates inexact constructions kernel, as it is an instanti-
ation of CGAL::Filtered kernel.

#include <CGAL/Periodic 3 triangulation traits 3.h>

Is Model for the Concepts

Periodic 3DelaunayTriangulationTraits 3

Inherits From

Traits
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Periodic 3TriangulationDSCellBase 3

Definition

At the base level (see Sections 41.5 and 40.2), a cell stores handles to its four vertices and to its four neighbor
cells. The vertices and neighbors are indexed 0, 1, 2 and 3. Neighbor i lies opposite to vertex i.

Refines

TriangulationDSCellBase 3

For periodic triangulation the cell base class needs to additionally store an offset for each vertex. Only the last
three bits of each integer are required to be stored. The remaining part does not contain any information.

Access Functions

int c.offset( int i) const

Returns the offset of vertex i.
Precondition: i ∈ {0,1,2,3}.

Setting

void c.set offsets( int off0, int off1, int off2, int off3)

Sets the vertex offsets according to off0 to off3.

Has Models

CGAL::Periodic 3 triangulation ds cell base 3

See Also

TriangulationDataStructure 3
TriangulationDSCellBase 3
Periodic 3TriangulationDSVertexBase 3
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Periodic 3TriangulationDSVertexBase 3

Definition

At the base level of 3D-triangulations (see Sections 41.5 and 40.2), a vertex provides access to one of its incident
cells through a handle.

For optimization purposes we need to extend the concept TriangulationDSVertexBase 3 as follows.

Refines

TriangulationDSVertexBase 3

Periodic 3TriangulationDSVertexBase 3 needs to store an offset and some index inside the vertex.

Types

Periodic 3TriangulationDSVertexBase 3:: Periodic 3 offset 3 A model of the concept Periodic 3Offset 3

Access Functions

Periodic 3 offset 3 v.offset() const Returns the offset stored in the vertex.
bool v.get offset flag() const Returns true if the offset has been set, false oth-

erwise.
void v.set offset( Periodic 3 offset 3 o) Sets the offset and sets the offset flag to true.
void v.clear offset() Sets the offset flag to false and clears the offset.

Has Models

CGAL::Periodic 3 triangulation ds vertex base 3

See Also

TriangulationDataStructure 3
TriangulationDSVertexBase 3
Periodic 3TriangulationDSCellBase 3
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CGAL::Periodic 3 triangulation ds cell base 3<>

Definition

The class Periodic 3 triangulation ds cell base 3 is a model of the concept Periodic
3TriangulationDSCellBase 3 to be used by Triangulation data structure 3 to represent cells of a periodic
triangulation.

#include <CGAL/Periodic 3 triangulation ds cell base 3.h>

Is Model for the Concepts

Periodic 3TriangulationDSCellBase 3

See Also

CGAL::Periodic 3 triangulation ds vertex base 3
CGAL::Triangulation cell base 3
CGAL::Triangulation cell base with info 3
CGAL::Triangulation cell base with circumcenter 3
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CGAL::Periodic 3 triangulation ds vertex base 3<>

Definition

The class Periodic 3 triangulation ds vertex base 3 is a model of the concept Periodic
3TriangulationDSVertexBase 3 to be used by Triangulation data structure 3 to represent vertices of a
periodic triangulation.

#include <CGAL/Periodic 3 triangulation ds vertex base 3.h>

Is Model for the Concepts

Periodic 3TriangulationDSVertexBase 3

See Also

CGAL::Periodic 3 triangulation ds cell base 3
CGAL::Triangulation vertex base 3
CGAL::Triangulation vertex base with info 3
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Periodic 3Offset 3

Definition

The concept Periodic 3Offset 3 describes a three-dimensional integer vector with some specialized access func-
tions and operations.

Creation

Periodic 3Offset 3 o; Default constructor.
Periodic 3Offset 3 o( int x, int y, int z); Constructs the offset (x,y,z).

Operations

Periodic 3Offset 3 o+o’ Return the vector sum of o and o’.
Periodic 3Offset 3 o−o’ Return the vector difference of o and o’.
Periodic 3Offset 3 −o Return the negative vector of o.
void o+= o’ Add o’ to o using vector addition.
void o−= o’ Subtract o’ from o using vector subtraction.
bool o == o’ Return true if o’ and o represent the same vec-

tor.
bool o != o’ Return true if o’ and o do not represent the

same vector.
bool o < o’ Compare o and o’ lexicographically.

Access Functions

int o[ int i] Return the i-th entry of o.
int o.x() const Return the x-entry of o.
int o.y() const Return the y-entry of o.
int o.z() Return the z-entry of o.
bool o.is null() const Returns true if o is equal to (0,0,0).

I/O

istream& istream & is >> Periodic 3 offset 3 & off

Inputs an offset from is.

ostream& ostream & os << Periodic 3 offset 3 & off

Outputs an offset from os.

Has Models

CGAL::Periodic 3 offset 3
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See Also

Periodic 3DelaunayTriangulationTraits 3
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CGAL::Periodic 3 offset 3

Definition

The class Periodic 3 offset 3 is a model of the concept Periodic 3Offset 3.

#include <CGAL/Periodic 3 offset 3.h>

Is Model for the Concepts

Periodic 3Offset 3
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CGAL::Periodic 3 triangulation 3::Iterator type

Definition

The enum Iterator type is defined by Periodic 3 triangulation 3 to specify the behavior of geometric iterators.

enum Iterator type { STORED=0, UNIQUE, STORED COVER DOMAIN, UNIQUE COVER DOMAIN};

The elements of the enum have the following meaning:

• STORED: Return all geometric primitives as they are stored internally in Triangulation data structure 3.

• UNIQUE: Return only one representative of each geometric primitive even if the triangulation is com-
puted in a multiply sheeted covering space. Choose the representative whose maximum offset is minimal
but non-negative in each direction of space.

• STORED COVER DOMAIN: Same as STORED but return additionally all primitives whose intersection
with the original domain of the current covering space is non-empty.

• UNIQUE COVER DOMAIN: Same as UNIQUE but return additionally all primitives whose intersection
with the original domain is non-empty.

See Also

CGAL::Periodic 3 triangulation 3
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CGAL::Periodic 3 triangulation 3::Locate type

Definition

The enum Locate type is defined by Periodic 3 triangulation 3 to specify which case occurs when locating a
point in the triangulation. If the triangulation does not contain any points EMPTY is returned.

enum Locate type { VERTEX=0, EDGE, FACET, CELL, EMPTY};

See Also

CGAL::Periodic 3 triangulation 3
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Chapter 42

2D Alpha Shapes
Tran Kai Frank Da
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Assume we are given a set S of points in 2D or 3D and we’d like to have something like “the shape formed by
these points.” This is quite a vague notion and there are probably many possible interpretations, the α-shape
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being one of them. Alpha shapes can be used for shape reconstruction from a dense unorganized set of data
points. Indeed, an α-shape is demarcated by a frontier, which is a linear approximation of the original shape
[BB97].

As mentioned in Edelsbrunner’s and Mücke’s paper [EM94], one can intuitively think of an α-shape as the
following. Imagine a huge mass of ice-cream making up the space R3 and containing the points as “hard”
chocolate pieces. Using one of these sphere-formed ice-cream spoons we carve out all parts of the ice-cream
block we can reach without bumping into chocolate pieces, thereby even carving out holes in the inside (e.g.
parts not reachable by simply moving the spoon from the outside). We will eventually end up with a (not
necessarily convex) object bounded by caps, arcs and points. If we now straighten all “round” faces to triangles
and line segments, we have an intuitive description of what is called the α-shape of S. Here’s an example for
this process in 2D (where our ice-cream spoon is simply a circle):

And what is α in the game? α is the squared radius of the carving spoon. A very small value will allow us
to eat up all of the ice-cream except the chocolate points themselves. Thus we already see that the α-shape
degenerates to the point-set S for α→ 0. On the other hand, a huge value of α will prevent us even from moving
the spoon between two points since it’s way too large. So we will never spoon up ice-cream lying in the inside
of the convex hull of S, and hence the α-shape for α→ ∞ is the convex hull of S.1

42.1 Definitions

We distinguish two versions of alpha shapes. Basic alpha shapes are based on the Delaunay triangulation.
Weighted alpha shapes are based on its generalization, the regular triangulation, replacing the euclidean distance
by the power to weighted points.

There is a close connection between alpha shapes and the underlying triangulations. More precisely, the α-
complex of S is a subcomplex of this triangulation of S, containing the α-exposed k-simplices, 0 ≤ k ≤ d. A
simplex is α-exposed, if there is an open disk (resp. ball) of radius

√
α through the vertices of the simplex that

does not contain any other point of S, for the metric used in the computation of the underlying triangulation.
The corresponding α-shape is defined as the underlying interior space of the α-complex (see [EM94]).

In general, an α-complex is a non-connected and non-pure polytope, it means, that one k-simplex, 0≤ k≤ d−1
is not necessary adjacent to a (k +1)-simplex.

The α-shapes of S form a discrete family, even though they are defined for all real numbers α with 0 ≤ α ≤
∞. Thus, we can represent the entire family of α-shapes of S by the underlying triangulation of S. In this
representation each k-simplex of the underlying triangulation is associated with an interval that specifies for
which values of α the k-simplex belongs to the α-shape. Relying on this fact, the family of α-shapes can be
computed efficiently and relatively easily. Furthermore, we can select an appropriate α-shape from a finite
number of different α-shapes and corresponding α-values.

42.2 Functionality

The class CGAL::Alpha shape 2<Dt> represents the family of α-shapes of points in a plane for all positive α.
It maintains the underlying triangulation Dt which represents connectivity and order among squared radius of
its faces. Each k-dimensional face of the Dt is associated with an interval that specifies for which values of

1ice cream, ice cream!!! The wording of this introductory paragraphs is borrowed from Kaspar Fischer’s “ Introduction to Alpha
Shapes” which can be found at http://people.inf.ethz.ch/fischerk/pubs/as.pdf. The picture has been taken from Walter Luh’s homepage at
http://www.stanford.edu/w̃luh/cs448b/alphashapes.html.
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α the face belongs to the α-shape. There are links between the intervals and the k-dimensional faces of the
triangulation.

The class CGAL::Alpha shape 2<Dt> provides functions to set and get the current α-value, as well as an iterator
that enumerates the α-values where the α-shape changes.

It provides iterators to enumerate the vertices and edges that are in the α-shape, and functions that allow to
classify vertices, edges and faces with respect to the α-shape. They can be in the interior of a face that belongs
or does not belong to the α-shape. They can be singular/regular, that is be on the boundary of the α-shape, but
not incident/incident to a triangle of the α-complex.

Finally, it provides a function to determine the α-value such that the α-shape satisfies the following two proper-
ties, or at least the second one if there is no such α that both are satisfied:

(i) The number of components equals a number of your choice and
(ii) all data points are either on the boundary or in the interior of the regularized version of the α-shape (no
singular edges).

The current implementation is static, that is after its construction points cannot be inserted or removed.

42.3 Concepts and Models

We currently do not specify concepts for the underlying triangulation type. Models that work for a basic alpha-
shape are the classes CGAL::Delaunay triangulation 2 and CGAL::Triangulation hierarchy 2 templated with
a Delaunay triangulation. A model that works for a weighted alpha-shape is the class CGAL::Regular
triangulation 2.

The triangulation needs a geometric traits class as argument. The requirements of this class are described
in the concept CGAL::AlphaShapeTraits 2 for which the CGAL kernels and CGAL::Weighted alpha shape
euclidean traits 2 are models.

There are no requirements on the triangulation data structure. However it must be parameterized with vertex
and face classes, which are model of the concepts AlphaShapeVertex 2 and AlphaShapeFace 2, by default the
classes CGAL::Alpha shape vertex base 2<Gt> and CGAL::Alpha shape face base 2<Gt>.

42.4 Examples

42.4.1 Example for Basic Alpha-Shapes

The basic alpha shape needs a Delaunay triangulation as underlying triangulation Dt. The Delaunay triangula-
tion class is parameterized with a geometric and a triangulation data structure traits.

For the geometric traits class we can use a CGAL kernel.

For the triangulation data structure traits, we have to choose the vertex and face classes needed for alpha shapes,
namely CGAL::Alpha shape vertex base 2<Gt, Dv> and CGAL::Alpha shape face base 2<Gt,Df>. As de-
fault vertex and face type they use CGAL::Triangulation vertex base 2<Gt> and CGAL::Triangulation face
base 2<Gt> respectively.

The following code snippet shows how to obtain a basic alpha shape type.
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typedef CGAL::Exact predicates inexact constructions kernel K;

typedef CGAL::Alpha shape vertex base 2<K> Av;

typedef CGAL::Triangulation face base 2<K> Tf;

typedef CGAL::Alpha shape face base 2<K,Tf> Af;

typedef CGAL::Triangulation default data structure 2<K,Av,Af> Tds;

typedef CGAL::Delaunay triangulation 2<K,Tds> Dt;

typedef CGAL::Alpha shape 2<Dt> Alpha shape 2;

42.4.2 Example for Basic Alpha-Shapes with Many Points

When the input data set is huge, say more than 10.000 points, it pays off to use a triangulation hierarchy. It has
the same API as the Delaunay triangulation and differs only in the types of the vertices and faces. Therefore,
the only part that changes are the typedefs in the beginning.

typedef CGAL::Exact predicates inexact constructions kernel K;

typedef CGAL::Alpha shape vertex base 2<K> Avb;

typedef CGAL::Triangulation hierarchy vertex base 2<Avb> Av

typedef CGAL::Triangulation face base 2<K> Tf;

typedef CGAL::Alpha shape face base 2<K,Tf> Af;

typedef CGAL::Triangulation default data structure 2<K,Av,Af> Tds;

typedef CGAL::Delaunay triangulation 2<K,Tds> Dt;

typedef CGAL::Triangulation hierarchy 2<Dt> Ht;

typedef CGAL::Alpha shape 2<Ht> Alpha shape 2;

42.4.3 Example for Weighted Alpha-Shapes

A weighted alpha shape, needs a regular triangulation as underlying triangulation Dt, and it needs a particular
face class, namely CGAL::Regular triangulation face base 2<Gt>. Note that there is no special weighted alpha
shape class.

typedef CGAL::Exact predicates inexact constructions kernel K;

typedef CGAL::Weighted alpha shape euclidean traits 2<K> Gt;

typedef CGAL::Alpha shape vertex base 2<Gt> Av;

typedef CGAL::Regular triangulation face base 2<Gt> Rf;

typedef CGAL::Alpha shape face base 2<Gt,Rf> Af;

typedef CGAL::Triangulation default data structure 2<Gt,Av,Af> Tds;

typedef CGAL::Regular triangulation 2<Gt,Tds> Rt;

typedef CGAL::Alpha shape 2<Rt> Alpha shape 2;
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2D Alpha Shapes
Reference Manual
Tran Kai Frank Da

This chapter presents a framework for alpha shapes. The description is based on the articles [EM94, Ede92].
Alpha shapes are the generalization of the convex hull of a point set. Let S be a finite set of points in Rd , d = 2,3
and α a parameter with 0≤ α≤∞. For α = ∞, the α-shape is the convex hull of S. As α decreases, the α-shape
shrinks and develops cavities, as soon as a sphere of radius

√
α can be put inside. Finally, for α = 0, the α-shape

is the set S itself.

We distinguish two versions of alpha shapes, one is based on the Delaunay triangulation and the other on its
generalization, the regular triangulation, replacing the natural distance by the power to weighted points. The
metric used determines an underlying triangulation of the alpha shape and thus, the version computed. The
basic alpha shape (cf. 42.4.1) is associated with the Delaunay triangulation (cf. 37.5). The weighted alpha
shape (cf. 42.4.3) is associated with the regular triangulation (cf. 37.6).

There is a close connection between alpha shapes and the underlying triangulations. More precisely, the α-
complex of S is a subcomplex of this triangulation of S, containing the α-exposed k-simplices, 0 ≤ k ≤ d. A
simplex is α-exposed, if there is an open disk (resp. ball) of radius

√
α through the vertices of the simplex that

does not contain any other point of S, for the metric used in the computation of the underlying triangulation.
The corresponding α-shape is defined as the underlying interior space of the α-complex.

In general, an α-complex is a non-connected and non-pure polytope, it means, that one k-simplex, 0≤ k≤ d−1
is not necessary adjacent to a (k +1)-simplex.

The α-shapes of S form a discrete family, even though they are defined for all real numbers α with 0 ≤ α ≤
∞. Thus, we can represent the entire family of α-shapes of S by the underlying triangulation of S. In this
representation each k-simplex of the underlying triangulation is associated with an interval that specifies for
which values of α the k-simplex belongs to the α-shape. Relying on this result, the family of α-shapes can
be computed efficiently and relatively easily. Furthermore, we can select an appropriate α-shape from a finite
number of different α-shapes and corresponding α-values.

42.5 Classified Reference Pages

Concepts

AlphaShapeTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2814
AlphaShapeFace 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 2811
AlphaShapeVertex 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2817
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Classes

CGAL::Alpha shape 2<Dt> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page ??
CGAL::Weighted alpha shape euclidean traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2816
CGAL::Alpha shape vertex base 2<AlphaShapeTraits 2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
CGAL::Alpha shape face base 2<AlphaShapeTraits 2, TriangulationFaceBase 2> . . . . . . . . . . . . . . . . . page ??

42.6 Alphabetical List of Reference Pages

AlphaShapeFace 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2811
AlphaShapeTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2814
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CGAL::Alpha shape 2<Dt,ExactAlphaComparisonTag>

Definition

The class Alpha shape 2<Dt,ExactAlphaComparisonTag> represents the family of α-shapes of points in a plane
for all positive α. It maintains the underlying triangulation Dt which represents connectivity and order among
its faces. Each k-dimensional face of the Dt is associated with an interval that specifies for which values of
α the face belongs to the α-shape. There are links between the intervals and the k-dimensional faces of the
triangulation.

Note that this class is at the same time used for basic and for weighted Alpha Shapes.

#include <CGAL/Alpha shape 2.h>

Parameters

The template parameter Dt has to be either Delaunay triangulation 2 or Regular triangulation 2. Note that
DT::Geom traits, DT::Vertex and DT::Face must model the concepts AlphaShapeTraits 2, AlphaShapeVertex
2 and AlphaShapeFace 2 respectively.

The template parameter ExactAlphaComparisonTag is a tag that, when set to CGAL::Tag true, triggers exact
comparisons between alpha values. This is useful when the underlying triangulation is instantiated with an exact
predicates inexact constructions kernel. By default the ExactAlphaComparisonTag is set to CGAL::Tag false
as it induces a small overhead. Note that since such a strategy does not make sense if used together with a
traits class with exact constructions, the tag ExactAlphaComparisonTag is not taken into account if Dt::Geom
traits::FT is not a floating point number type.

Inherits From

Dt

This class is the underlying triangulation class.

The modifying functions insert and remove will overwrite the inherited functions. At the moment, only the
static version is implemented.

Types

Alpha shape 2<Dt,ExactAlphaComparisonTag>:: Gt

the alpha shape traits type.

it has to derive from a triangulation traits class. For example Dt::Point is a Point class.

typedef Gt::FT

FT; the number type for computation.
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Alpha shape 2<Dt,ExactAlphaComparisonTag>:: size type

The size type.

Alpha shape 2<Dt,ExactAlphaComparisonTag>:: Alpha iterator

A bidirectional and non-mutable iterator that allow to traverse the in-
creasing sequence of different α-values.
Precondition: Its value type is FT

Alpha shape 2<Dt,ExactAlphaComparisonTag>:: Alpha shape vertices iterator

A bidirectional and non-mutable iterator that allow to traverse the ver-
tices which belongs to the α-shape for the current α.
Precondition: Its value type is Dt::Vertex handle

Alpha shape 2<Dt,ExactAlphaComparisonTag>:: Alpha shape edges iterator

A bidirectional and non-mutable iterator that allow to traverse the edges
which belongs to the α-shape for the current α.
Precondition: Its value type is Dt::Edge.

enum Classification type { EXTERIOR, SINGULAR, REGULAR, INTERIOR};

Distinguishes the different cases for classifying a k-dimensional face of
the underlying triangulation of the α-shape.
EXTERIOR if the face does not belong to the α-complex.
SINGULAR if the face belongs to the boundary of the α-shape, but is
not incident to any 2-dimensional face of the α-complex
REGULAR if the face belongs to the boundary of the α-shape and is
incident to a 2-dimensional face of the α-complex
INTERIOR if the face belongs to the α-complex, but does not belong to
the boundary of the α-shape.

enum Mode { GENERAL, REGULARIZED};

In general, an alpha shape can be disconnected and contain many sin-
gular edges or vertices. Its regularized version is formed by the set of
regular edges and their vertices.

Creation

Alpha shape 2<Dt,ExactAlphaComparisonTag> A( FT alpha = 0, Mode m = GENERAL);

Introduces an empty α-shape A for a positive α-value alpha.
Precondition: alpha ≥ 0.
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Alpha shape 2<Dt,ExactAlphaComparisonTag> A( Dt& dt, FT alpha = 0, Mode m = GENERAL);

Builds an alpha shape of mode m from the triangulation dt for a positive
α-value alpha. Be careful that this operation destroys the triangulation.
Precondition: alpha ≥ 0.

template < class InputIterator >
Alpha shape 2<Dt,ExactAlphaComparisonTag> A( InputIterator first,

InputIterator last,
FT alpha = 0,
Mode m = GENERAL)

Initializes the family of alpha-shapes with the points in the range [ first,
last ) and introduces an α-shape A for a positive α-value alpha.
Precondition: The value type of first and last is Point.
alpha ≥ 0.

Operations

template < class InputIterator >
std::ptrdiff t A.make alpha shape( InputIterator first, InputIterator last)

Initialize the family of alpha-shapes with the points in the range [ first,
last ). Returns the number of inserted points.
If the function is applied to an non-empty family of alpha-shape, it is
cleared before initialization.
Precondition: The value type of first and last is Point.

void A.clear() Clears the structure.

FT A.set alpha( FT alpha)

Sets the α-value to alpha. Returns the previous α-value.
Precondition: alpha ≥ 0.

FT A.get alpha( void) const

Returns the current α-value.

FT A.get nth alpha( size type n) const

Returns the n-th alpha-value, sorted in an increasing order.
Precondition: n < number of alphas.

size type A.number of alphas() const

Returns the number of different alpha-values.
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Mode A.set mode( Mode m = GENERAL)

Sets A to its general or regularized version. Returns the previous mode.

Mode A.get mode( void) const

Returns whether A is general or regularized.

Alpha shape vertices iterator

A.alpha shape vertices begin()

Starts at an arbitrary finite vertex which belongs to the α-shape for the
current α.

Alpha shape vertices iterator

A.alpha shape vertices end()

Past-the-end iterator.

Alpha shape edges iterator

A.alpha shape edges begin()

Starts at an arbitrary finite edge which belongs to the α-shape for the
current α. In regularized mode, edges are represented as a pair (f,i),
where f is an interior face of the α-shape.

Alpha shape edges iterator

A.alpha shape edges end()

Past-the-end iterator.

Predicates

Classification type

A.classify( Point p, FT alpha = get alpha())

Locates a point p in the underlying triangulation and Classifies the as-
sociated k-face with respect to A.

Classification type

A.classify( Face handle f, FT alpha = get alpha())

Classifies the face f of the underlying triangulation with respect to A.
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Classification type

A.classify( Edge e, FT alpha = get alpha())

Classifies the edge e of the underlying triangulation with respect to A.

Classification type

A.classify( Face handle f, int i, FT alpha = get alpha())

Classifies the edge of the face f opposite to the vertex with index i of
the underlying triangulation with respect to A.

Classification type

A.classify( Vertex handle v, FT alpha = get alpha())

Classifies the vertex v of the underlying triangulation with respect to A.

Traversal of the α-Values

Alpha iterator

A.alpha begin() const

Returns an iterator that allows to traverse the sorted sequence of α-
values of the family of alpha shapes.

Alpha iterator

A.alpha end() const

Returns the corresponding past-the-end iterator.

Alpha iterator

A.alpha find( FT alpha) const

Returns an iterator pointing to an element with α-value alpha, or the
corresponding past-the-end iterator if such an element is not found.

Alpha iterator

A.alpha lower bound( FT alpha) const

Returns an iterator pointing to the first element with α-value not less
than alpha.
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Alpha iterator

A.alpha upper bound( FT alpha) const

Returns an iterator pointing to the first element with α-value greater
than alpha.

Operations

size type A.number of solid components( FT alpha = get alpha())

Returns the number of solid components of A, that is, the number of
components of its regularized version.

Alpha iterator

A.find optimal alpha( size type nb components) const

Returns an iterator pointing to the first element with α-value such that
A satisfies the following two properties:
nb components equals the number of solid components and
all data points are either on the boundary or in the interior of the regu-
larized version of A.
If no such value is found, the iterator points to the first element with
α-value such that A satisfies the second property.

I/O

The I/O operators are defined for iostream. The format for the iostream is an internal format.

#include <CGAL/IO/io.h>

ostream& ostream& os << Alpha shape 2<Dt> A

Inserts the alpha shape A for the current α-value into the stream os.
Precondition: The insert operator must be defined for Point.

Implementation

The set of intervals associated with the k-dimensional faces of the underlying triangulation are stored in mul-
timaps.

The cross links between the intervals and the k-dimensional faces of the triangulation are realized using methods
in the k-dimensional faces themselves.

A.alpha find uses linear search, while A.alpha lower bound and A.alpha upper bound use binary search.
A.number of solid components performs a graph traversal and takes time linear in the number of faces of the
underlying triangulation. A.find optimal alpha uses binary search and takes time O( n log n ), where n is the
number of points.
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AlphaShapeFace 2

Definition

Refines

TriangulationFaceBase 2.

Types

AlphaShapeFace 2:: Interval 3 A container type to get (and put) the three special values
(α1,α2,α3) associated with an alpha shape edge.

AlphaShapeFace 2:: FT A type to hold a coordinate type class. The type must provide
a copy constructor, assignment, comparison operators, nega-
tion, multiplication, division and allow the declaration and
initialization with a small integer constant (cf. requirements
for number types). An obvious choice would be coordinate
type of the point class

Creation

advanced

AlphaShapeFace 2 f ; default constructor.
AlphaShapeFace 2 f ( Vertex handle v0, Vertex handle v1, Vertex handle v2);

constructor setting the incident vertices.

AlphaShapeFace 2 f ( Vertex handle v0,
Vertex handle v1,
Vertex handle v2,
Face handle n0,
Face handle n1,
Face handle n2)

constructor setting the incident vertices and the neighboring
faces.

advanced

Access Functions

Interval 3 f .get ranges( int i) returns the interval associated with the edge indexed with i,
which contains three alpha values α1 ≤ α2 ≤ α3, such as for
α between α1 and α2, the edge indexed with i is attached but
singular, for α between α2 and α3, the edge is regular, and
for α greater than α3, the edge is interior.
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FT f .get alpha() return the alpha value, under which the alpha shape contains
the face.

Modifiers

advanced

void f .set ranges( int i, Interval 3 V)

sets the interval associated with the edge indexed with i,
which contains three alpha values α1 ≤ α2 ≤ α3, such as for
α between α1 and α2, the edge indexed with i is attached but
singular, for α between α2 and α3, the edge is regular, and
for α greater than α3, the edge is interior.

void f .set alpha( FT A) sets the alpha value, under which the alpha shape contains
the face.

advanced
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CGAL::Alpha shape face base 2<Traits, Fb, ExactAlphaComparison-
Tag>

Definition

The class Alpha shape face base 2<Traits, Fb, ExactAlphaComparisonTag> is the default model for the con-
cept AlphaShapeFace 2.

#include <CGAL/Alpha shape face base 2.h>

Parameters

The template parameter Traits has to be a model of AlphaShapeTraits 2.

The template parameter Fb has to be a model of TriangulationFaceBase 2 (or RegularTriangulationFaceBase
2) if Alpha shape face base 2<Traits, Fb, ExactAlphaComparisonTag> is intended to be used with an alpha-
shape class based on a Delaunay triangulation 2 (or a Regular triangulation 2).

The template parameter ExactAlphaComparisonTag is a tag that, when set to CGAL::Tag true, triggers exact
comparisons between alpha values. See the description provided in the documentation of Alpha shape 2 for
more details. The default value is CGAL::Tag false.

Is Model for the Concepts

AlphaShapeFace 2

Inherits From

Fb
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AlphaShapeTraits 2

Definition

A model of the concept AlphaShapeTraits 2 must provide the following predicate and operations in addition
to the requirements for the underlying triangulation traits class. It means, the metric has to be Euclidean for
Delaunay triangulation or the power metric for regular triangulation.

Refines

TriangulationTraits 2

Has Models

The kernels supplied by CGAL are models of AlphaShapeTraits 2.

Projection traits xy 3<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??

Types

AlphaShapeTraits 2:: FT A type to hold a coordinate type class. The type must provide
a copy constructor, assignment, comparison operators, nega-
tion, multiplication, division and allow the declaration and
initialization with a small integer constant (cf. requirements
for number types).
Precondition: An obvious choice would be coordinate type
of the point class.

Creation

Only a default constructor is required. Note that further constructors can be provided.

AlphaShapeTraits 2 t; A default constructor.

Constructions by function objects

Compute squared radius 2

t.compute squared radius 2 object()

Returns an object, which has to be able to compute the
squared radius of the circle of the points p0, p1, p2 or the
squared radius of smallest circle of the points p0, p1, as FT
associated with the metric used by Dt.
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Predicate by function object

Side of bounded circle 2

t.side of bounded circle 2 object()

Returns an object, which has to be able to compute the rela-
tive position of point test to the smallest circle of the points
p0, p1, using the same metric as Dt.
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CGAL::Weighted alpha shape euclidean traits 2<K>

Definition

The class Weighted alpha shape euclidean traits 2<K> is the default model for the concept AlphaShapeTraits
2 for the regular version of Alpha Shapes. K must be a kernel.

#include <CGAL/Weighted alpha shape euclidean traits 2.h>

Refines

Regular triangulation euclidean traits 2<K, typename K::FT>

Is Model for the Concepts

AlphaShapeTraits 2
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AlphaShapeVertex 2

Definition

Refines

TriangulationVertexBase 2.

Types

AlphaShapeVertex 2:: FT A type to hold a coordinate type class. The type must provide
a copy constructor, assignment, comparison operators, nega-
tion, multiplication, division and allow the declaration and
initialization with a small integer constant (cf. requirements
for number types). An obvious choice would be coordinate
type of the point class.

Creation

advanced

AlphaShapeVertex 2 v; default constructor.
AlphaShapeVertex 2 v( Point p); constructor setting the point.
AlphaShapeVertex 2 v( Point p, Face handle ff );

constructor setting the point associated to and an incident
face.

advanced

Access Functions

std::pair< FT, FT > v.get range() returns two alpha values α1 ≤ α2, such as for α between α1
and α2, the vertex is attached but singular, and for α upper
α2, the vertex is regular.

Modifiers

advanced

void v.set range( std::pair< FT, FT > I)

sets the alpha values α1 ≤ α2, such as for α between α1 and
α2, the vertex is attached but singular, and for α upper α2,
the vertex is regular.

advanced
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CGAL::Alpha shape vertex base 2< Traits, Vb, ExactAlphaCompar-
isonTag>

Definition

The class Alpha shape vertex base 2< Traits, Vb, ExactAlphaComparisonTag> is the default model for the
concept AlphaShapeVertex 2.

#include <CGAL/Alpha shape vertex base 2.h>

Parameters

The template parameter Traits has to be a model of AlphaShapeTraits 2.

The template parameter Vb has to be a model of TriangulationVertexBase 2 (or
RegularTriangulationVertexBase 2) if Alpha shape vertex base 2< Traits, Vb, ExactAlphaComparisonTag>
is intended to be used with an alpha-shape class based on a Delaunay triangulation 2 (or a Regular
triangulation 2).

The template parameter ExactAlphaComparisonTag is a tag that, when set to CGAL::Tag true, triggers exact
comparisons between alpha values. See the description provided in the documentation of Alpha shape 2 for
more details. The default value is CGAL::Tag false.

Is Model for the Concepts

AlphaShapeVertex 2

Inherits From

Vb
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Assume we are given a set S of points in 2D or 3D and we’d like to have something like “the shape formed by
these points.” This is quite a vague notion and there are probably many possible interpretations, the alpha shape
being one of them. Alpha shapes can be used for shape reconstruction from a dense unorganized set of data
points. Indeed, an alpha shape is demarcated by a frontier, which is a linear approximation of the original shape
[BB97].

As mentioned in Edelsbrunner’s and Mücke’s paper [EM94], one can intuitively think of an alpha shape as
the following. Imagine a huge mass of ice-cream making up the space R3 and containing the points as “hard”
chocolate pieces. Using one of those sphere-formed ice-cream spoons we carve out all parts of the ice-cream
block we can reach without bumping into chocolate pieces, thereby even carving out holes in the inside (e.g.
parts not reachable by simply moving the spoon from the outside). We will eventually end up with a (not
necessarily convex) object bounded by caps, arcs and points. If we now straighten all “round” faces to triangles
and line segments, we have an intuitive description of what is called the alpha shape of S. Here’s an example
for this process in 2D (where our ice-cream spoon is simply a circle):

Alpha shapes depend on a parameter α from which they are named. What is α in the ice-cream game? α is the
squared radius of the carving spoon. A very small value will allow us to eat up all of the ice-cream except the
chocolate points themselves. Thus we already see that the alpha shape degenerates to the point-set S for α→ 0.
On the other hand, a huge value of α will prevent us even from moving the spoon between two points since it’s
way too large. So we will never spoon up ice-cream lying in the inside of the convex hull of S, and hence the
alpha shape for α→ ∞ is the convex hull of S.1

43.1 Definitions

More precisely, the definition of alpha shapes is based on an underlying triangulation that may be a Delaunay
triangulation in case of basic alpha shapes or a regular triangulation (cf. 39.3) in case of weighted alpha shapes.

Let us consider the basic case with a Delaunay triangulation. We first define the alpha complex of the set of
points S. The alpha complex is a subcomplex of the Delaunay triangulation. For a given value of α, the alpha
complex includes all the simplices in the Delaunay triangulation which have an empty circumscribing sphere
with squared radius equal or smaller than α. Here “empty” means that the open sphere do not include any points
of S. The alpha shape is then simply the domain covered by the simplices of the alpha complex (see [EM94]).

In general, an alpha complex is a disconnected and non-pure complex: This means in particular that the alpha
complex may have singular faces. For 0≤ k≤ d−1, a k-simplex of the alpha complex is said to be singular if it
is not a facet of a (k +1)-simplex of the complex. CGAL provides two versions of alpha shapes. In the general
mode, the alpha shapes correspond strictly to the above definition. The regularized mode provides a regularized
version of the alpha shapes. It corresponds to the domain covered by a regularized version of the alpha complex
where singular faces are removed (See Figure 43.1 for an example).

The alpha shapes of a set of points S form a discrete family, even though they are defined for all real numbers
α. The entire family of alpha shapes can be represented through the underlying triangulation of S. In this
representation each k-simplex of the underlying triangulation is associated with an interval that specifies for
which values of α the k-simplex belongs to the alpha complex. Relying on this fact, the family of alpha shapes
can be computed efficiently and relatively easily. Furthermore, we can select the optimal value of α to get an
alpha shape including all data points and having less than a given number of connected components. Also, the
alpha-values allows to define a filtration on the faces of the triangulation of a set of points. In this filtration, the
faces of the triangulation are output in increasing order of the alpha value for which they appear in the alpha
complex. In case of equal alpha value lower dimensional faces are output first.

1ice cream, ice cream!!! The wording of this introductory paragraphs is borrowed from Kaspar Fischer’s “ Introduction to Alpha
Shapes” which can be found at http://people.inf.ethz.ch/fischerk/pubs/as.pdf. The picture has been taken from Walter Luh’s homepage at
http://www.stanford.edu/w̃luh/cs448b/alphashapes.html.
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Figure 43.1: Comparison of general and regularized alpha-shape. Left: Some points are taken on the surface of
a torus, three points being taken relatively far from the surface of the torus; Middle: The general alpha-shape
(for a large enough alpha value) contains the singular triangle facet of the three isolated points; Right: The
regularized version (for the same value of alpha) does not contains any singular facet.

The definition is analog in the case of weighted alpha shapes. The input set is now a set of weighted points
(which can be regarded as spheres) and the underlying triangulation is the regular triangulation of this set. Two
spheres, or two weighted points , with centers C1,C2 and radii r1,r2 are said to be orthogonal iff C1C2

2 = r2
1 + r2

2
and suborthogonal iff C1C2

2 < r2
1 + r2

2. For a given value of α the weighted alpha complex is formed with the
simplices of the regular triangulation triangulation such that there is a sphere orthogonal to the weighted points
associated with the vertices of the simplex and suborthogonal to all the other input weighted points. Once
again the alpha shape is then defined as the domain covered by a the alpha complex and comes in general and
regularized versions.

43.2 Functionality

43.2.1 Family of alpha shapes

The class CGAL::Alpha shape 3<Dt,ExactAlphaComparisonTag> represents the whole family of alpha shapes
for a given set of points. The class includes the underlying triangulation Dt of the set, and associates to each
k-face of this triangulation an interval specifying for which values of α the face belongs to the alpha complex.

The class provides functions to set and get the current α-value, as well as an iterator that enumerates the α

values where the alpha shape changes.

Also the class has a filtration member function that, given an output iterator with CGAL::object as value type,
outputs the faces of the triangulation according to the order of apparition in the alpha complex when alpha
increases.

Finally, it provides a function to determine the smallest value α such that the alpha shape satisfies the following
two properties
(ii) all data points are either on the boundary or in the interior of the regularized version of the alpha shape (no
singular faces).
(i) The number of components is equal or less than a given number .

The current implementation is static, that is after its construction points cannot be inserted or removed.
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Figure 43.2: Classification of simplices, a 2D example. Left: The 2D Delaunay triangulation of a set of
points; Right: Classification of simplices for a given alpha (the squared radius of the red circle). INTERIOR,
REGULAR and SINGULAR simplices are depicted in black, green and blue respectively. EXTERIOR simplices
are not depicted. The vertex s and the edge tu are SINGULAR since all higher dimension simplices they are
incident to are EXTERIOR. The facet pqr is EXTERIOR because the squared radius of its circumscribed circle
is larger than alpha.

43.2.2 Alpha shape for a fixed alpha

Given a value of alpha, the class CGAL::Fixed alpha shape 3<Dt> represents one alpha shape for a given set
of points. The class includes the underlying triangulation Dt of the set, and associates to each k-face of this
triangulation a classification type.

The current implementation of this class is dynamic, that is after its construction points can be inserted or
removed.

43.2.3 Classification and iterators

Both classes provide member functions to classify for a (given) value of al pha the different faces of the trian-
gulation as EXTERIOR, SINGULAR, REGULAR or INTERIOR with respect to the alpha shape. A k-face on
the boundary of the alpha complex is said to be: REGULAR if it is a subface of the alpha-complex which is a
subface of a (k+1)-face of the alpha complex, and SINGULAR otherwise. A k-face of the alpha complex which
is not on the boundary of the alpha complex is said to be INTERIOR. See Figure 43.2 for a 2D illustration.

The classes provide also output iterators to get for a given al pha value the vertices, edges, facets and cells of
the different types (EXTERIOR, SINGULAR, REGULAR or INTERIOR).

43.3 Concepts and Models

We currently do not specify concepts for the underlying triangulation type. Models that work for a familly
alpha-shapes are the instantiations of the classes CGAL::Delaunay triangulation 3 and CGAL::Periodic 3
Delaunay triangulation 3 (see example 43.5.6). A model that works for a fixed alpha-shape are the instanti-
ations of the class CGAL::Delaunay triangulation 3. A model that works for a weighted alpha-shape is the
class CGAL::Regular triangulation 3. The triangulation needs a geometric traits class and a triangulation data
structure as template parameters.

For the class CGAL::Alpha shape 3<Dt,ExactAlphaComparisonTag>, the requirements of the traits
class are described in the concepts CGAL::AlphaShapeTraits 3 in the non-weighted case and
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CGAL::WeightedAlphaShapeTraits 3 in the weighted case. The CGAL kernels are models in the non-weighted
case, and the class CGAL::Regular triangulation euclidean traits 3 is a model in the weighted case. The trian-
gulation data structure of the triangulation has to be a model of the concept CGAL::TriangulationDataStructure
3, and it must be parameterized with vertex and cell classes, which are model of the concepts AlphaShapeVertex
3 and AlphaShapeCell 3. The package provides by default the classes CGAL::Alpha shape vertex base 3<Gt>
and CGAL::Alpha shape cell base 3<Gt>. When using CGAL::Periodic 3 Delaunay triangulation 3 as un-
derlying triangulation the vertex and cell classes need to be models to both AlphaShapeVertex 3 and Periodic
3TriangulationDSVertexBase 3 as well as AlphaShapeCell 3 and Periodic 3TriangulationDSCellBase 3 (see
example 43.5.6).

For the class CGAL::Fixed alpha shape 3<Dt>, the requirements of the traits class are described in the concepts
CGAL::FixedAlphaShapeTraits 3 in the non-weighted case and CGAL::FixedWeightedAlphaShapeTraits 3 in
the weighted case. The CGAL kernels are models in the non-weighted case, and the class CGAL::Regular
triangulation euclidean traits 3 is a model in the weighted case. The triangulation data structure of the triangu-
lation has to be a model of the concept CGAL::TriangulationDataStructure 3, and it must be parameterized with
vertex and cell classes, which are model of the concepts FixedAlphaShapeVertex 3 and FixedAlphaShapeCell
3. The package provides models CGAL::Fixed alpha shape vertex base 3<Gt> and CGAL::Fixed alpha
shape cell base 3<Gt>, respectively.

43.4 Alpha shape 3 or Fixed alpha shape 3

The class CGAL::Alpha shape 3<Dt,ExactAlphaComparisonTag> represents the whole family of alpha shapes
for a given set of points while the class CGAL::Fixed alpha shape 3<Dt> represents only one alpha shape (for
a fixed alpha). When using the same kernel, CGAL::Fixed alpha shape 3<Dt> being a lighter version, it is
naturally much more efficient when the alpha-shape is needed for a single given value of alpha. In addition note
that the class CGAL::Alpha shape 3<Dt,ExactAlphaComparisonTag> requires constructions (squared radius of
simplices) while the class CGAL::Fixed alpha shape 3<Dt> uses only predicates. This implies that a certified
construction of one (several) alpha-shape, using the CGAL::Alpha shape 3<Dt,ExactAlphaComparisonTag>
requires a kernel with exact predicates and exact constructions (or setting ExactAlphaComparisonTag to
CGAL::Tag true) while using a kernel with exact predicates is sufficient for the class CGAL::Fixed alpha
shape 3<Dt>. This makes the class CGAL::Fixed alpha shape 3<Dt> even more efficient in this setting. In
addition, note that the Fixed version is the only of the two that supports incremental insertion and removal of
points.

We give the time spent while computing the alpha shape of a protein (considered as a set of weighted points) fea-
turing 4251 atoms (using gcc 4.3 under Linux with -O3 and -DNDEBUG flags, on a 2.27GHz Intel(R) Xeon(R)
E5520 CPU): Using CGAL::Exact predicates inexact constructions kernel, building the regular triangulation
requires 0.09s, then the class CGAL::Fixed alpha shape 3<Dt> required 0.05s while the class CGAL::Alpha
shape 3<Dt,ExactAlphaComparisonTag> requires 0.35s if ExactAlphaComparisonTag is CGAL::Tag false
(and 0.70s with CGAL::Tag true). Using CGAL::Exact predicates exact constructions kernel, building the
regular triangulation requires 0.19s and then the class CGAL::Alpha shape 3<Dt,ExactAlphaComparisonTag>
requires 0.90s.

43.5 Examples

43.5.1 Example for Basic Alpha-Shapes

This example builds a basic alpha shape using a Delaunay triangulation as underlying triangulation.
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� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Alpha_shape_3.h>

#include <fstream>
#include <list>
#include <cassert>

typedef CGAL::Exact_predicates_inexact_constructions_kernel Gt;

typedef CGAL::Alpha_shape_vertex_base_3<Gt> Vb;
typedef CGAL::Alpha_shape_cell_base_3<Gt> Fb;
typedef CGAL::Triangulation_data_structure_3<Vb,Fb> Tds;
typedef CGAL::Delaunay_triangulation_3<Gt,Tds> Triangulation_3;
typedef CGAL::Alpha_shape_3<Triangulation_3> Alpha_shape_3;

typedef Gt::Point_3 Point;
typedef Alpha_shape_3::Alpha_iterator Alpha_iterator;

int main()
{

std::list<Point> lp;

//read input
std::ifstream is("./data/bunny_1000");
int n;
is >> n;
std::cout << "Reading " << n << " points " << std::endl;
Point p;
for( ; n>0 ; n--) {

is >> p;
lp.push_back(p);

}

// compute alpha shape
Alpha_shape_3 as(lp.begin(),lp.end());
std::cout << "Alpha shape computed in REGULARIZED mode by default"

<< std::endl;

// find optimal alpha value
Alpha_iterator opt = as.find_optimal_alpha(1);
std::cout << "Optimal alpha value to get one connected component is "

<< *opt << std::endl;
as.set_alpha(*opt);
assert(as.number_of_solid_components() == 1);
return 0;

}� �

File: examples/Alpha_shapes_3/ex_alpha_shapes_3.cpp
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43.5.2 Building Basic Alpha Shapes for Many Points

When many points are input in the alpha shape, say more than 10 000, it may pay off to use a Delaunay
triangulation with Fast location policy as underlying triangulation in order to speed up point location queries
(cf. 39.4.3).� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Alpha_shape_3.h>

#include <fstream>
#include <list>
#include <cassert>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Alpha_shape_vertex_base_3<K> Vb;
typedef CGAL::Alpha_shape_cell_base_3<K> Fb;
typedef CGAL::Triangulation_data_structure_3<Vb,Fb> Tds;
typedef CGAL::Delaunay_triangulation_3<K,Tds,CGAL::Fast_location>

Delaunay;
typedef CGAL::Alpha_shape_3<Delaunay> Alpha_shape_3;

typedef K::Point_3 Point;
typedef Alpha_shape_3::Alpha_iterator Alpha_iterator;
typedef Alpha_shape_3::NT NT;

int main()
{

Delaunay dt;
std::ifstream is("./data/bunny_1000");
int n;
is >> n;
Point p;
std::cout << n << " points read" << std::endl;
for( ; n>0 ; n--) {

is >> p;
dt.insert(p);

}
std::cout << "Delaunay computed." << std::endl;

// compute alpha shape
Alpha_shape_3 as(dt);
std::cout << "Alpha shape computed in REGULARIZED mode by defaut."

<< std::endl;

// find optimal alpha values
Alpha_shape_3::NT alpha_solid = as.find_alpha_solid();
Alpha_iterator opt = as.find_optimal_alpha(1);
std::cout << "Smallest alpha value to get a solid through data points
is "

<< alpha_solid << std::endl;
std::cout << "Optimal alpha value to get one connected component is "

<< *opt << std::endl;
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as.set_alpha(*opt);
assert(as.number_of_solid_components() == 1);
return 0;

}� �
File: examples/Alpha_shapes_3/ex_alpha_shapes_with_fast_location_3.cpp

43.5.3 Example for Weighted Alpha-Shapes

The following examples build a weighted alpha shape requiring a regular triangulation as underlying triangula-
tion. The alpha shape is built in GENERAL mode.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Regular_triangulation_euclidean_traits_3.h>
#include <CGAL/Regular_triangulation_3.h>
#include <CGAL/Alpha_shape_3.h>
#include <list>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Regular_triangulation_euclidean_traits_3<K> Gt;

typedef CGAL::Alpha_shape_vertex_base_3<Gt> Vb;
typedef CGAL::Alpha_shape_cell_base_3<Gt> Fb;
typedef CGAL::Triangulation_data_structure_3<Vb,Fb> Tds;
typedef CGAL::Regular_triangulation_3<Gt,Tds> Triangulation_3;
typedef CGAL::Alpha_shape_3<Triangulation_3> Alpha_shape_3;

typedef Alpha_shape_3::Cell_handle Cell_handle;
typedef Alpha_shape_3::Vertex_handle Vertex_handle;
typedef Alpha_shape_3::Facet Facet;
typedef Alpha_shape_3::Edge Edge;
typedef Gt::Weighted_point Weighted_point;
typedef Gt::Bare_point Bare_point;

int main()
{

std::list<Weighted_point> lwp;

//input : a small molecule
lwp.push_back(Weighted_point(Bare_point( 1, -1, -1), 4));
lwp.push_back(Weighted_point(Bare_point(-1, 1, -1), 4));
lwp.push_back(Weighted_point(Bare_point(-1, -1, 1), 4));
lwp.push_back(Weighted_point(Bare_point( 1, 1, 1), 4));
lwp.push_back(Weighted_point(Bare_point( 2, 2, 2), 1));

//build alpha_shape in GENERAL mode and set alpha=0
Alpha_shape_3 as(lwp.begin(), lwp.end(), 0, Alpha_shape_3::GENERAL);

//explore the 0-shape - It is dual to the boundary of the union.
std::list<Cell_handle> cells;
std::list<Facet> facets;
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std::list<Edge> edges;
as.get_alpha_shape_cells(std::back_inserter(cells),

Alpha_shape_3::INTERIOR);
as.get_alpha_shape_facets(std::back_inserter(facets),

Alpha_shape_3::REGULAR);
as.get_alpha_shape_facets(std::back_inserter(facets),

Alpha_shape_3::SINGULAR);
as.get_alpha_shape_edges(std::back_inserter(edges),

Alpha_shape_3::SINGULAR);
std::cout << " The 0-shape has : " << std::endl;
std::cout << cells.size() << " interior tetrahedra" << std::endl;
std::cout << facets.size() << " boundary facets" << std::endl;
std::cout << edges.size() << " singular edges" << std::endl;
return 0;

}� �
File: examples/Alpha_shapes_3/ex_weighted_alpha_shapes_3.cpp

43.5.4 Example for Fixed Weighted Alpha-Shapes

Same example as previous but using a fixed value of alpha.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Regular_triangulation_3.h>
#include <CGAL/Regular_triangulation_euclidean_traits_3.h>
#include <CGAL/Fixed_alpha_shape_3.h>
#include <CGAL/Fixed_alpha_shape_vertex_base_3.h>
#include <CGAL/Fixed_alpha_shape_cell_base_3.h>
#include <list>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Regular_triangulation_euclidean_traits_3<K> Gt;

typedef CGAL::Fixed_alpha_shape_vertex_base_3<Gt> Vb;
typedef CGAL::Fixed_alpha_shape_cell_base_3<Gt> Fb;
typedef CGAL::Triangulation_data_structure_3<Vb,Fb> Tds;
typedef CGAL::Regular_triangulation_3<Gt,Tds>

Triangulation_3;
typedef CGAL::Fixed_alpha_shape_3<Triangulation_3>

Fixed_alpha_shape_3;

typedef Fixed_alpha_shape_3::Cell_handle Cell_handle;
typedef Fixed_alpha_shape_3::Vertex_handle Vertex_handle;
typedef Fixed_alpha_shape_3::Facet Facet;
typedef Fixed_alpha_shape_3::Edge Edge;
typedef Gt::Weighted_point Weighted_point;
typedef Gt::Bare_point Bare_point;

int main()
{

std::list<Weighted_point> lwp;
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//input : a small molecule
lwp.push_back(Weighted_point(Bare_point( 1, -1, -1), 4));
lwp.push_back(Weighted_point(Bare_point(-1, 1, -1), 4));
lwp.push_back(Weighted_point(Bare_point(-1, -1, 1), 4));
lwp.push_back(Weighted_point(Bare_point( 1, 1, 1), 4));
lwp.push_back(Weighted_point(Bare_point( 2, 2, 2), 1));

//build one alpha_shape with alpha=0
Fixed_alpha_shape_3 as(lwp.begin(), lwp.end(), 0);

//explore the 0-shape - It is dual to the boundary of the union.
std::list<Cell_handle> cells;
std::list<Facet> facets;
std::list<Edge> edges;
as.get_alpha_shape_cells(std::back_inserter(cells),

Fixed_alpha_shape_3::INTERIOR);
as.get_alpha_shape_facets(std::back_inserter(facets),

Fixed_alpha_shape_3::REGULAR);
as.get_alpha_shape_facets(std::back_inserter(facets),

Fixed_alpha_shape_3::SINGULAR);
as.get_alpha_shape_edges(std::back_inserter(edges),

Fixed_alpha_shape_3::SINGULAR);
std::cout << " The 0-shape has : " << std::endl;
std::cout << cells.size() << " interior tetrahedra" << std::endl;
std::cout << facets.size() << " boundary facets" << std::endl;
std::cout << edges.size() << " singular edges" << std::endl;
return 0;

}� �
File: examples/Alpha_shapes_3/ex_fixed_weighted_alpha_shapes_3.cpp

43.5.5 Building an Alpha Shapes with Exact Comparisons of Alpha Values

On some platforms, the alpha shapes of the set of points of this example cannot be computed when using a
traits with inexact constructions. To be able to compute them with a traits with inexact constructions, the tag
ExactAlphaComparisonTag is set to CGAL::Tag true.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Alpha_shape_3.h>

#include <fstream>
#include <list>
#include <cassert>

typedef CGAL::Exact_predicates_inexact_constructions_kernel
Gt;

typedef CGAL::Tag_true
Alpha_cmp_tag;

//We use CGAL::Default to skip the complete declaration of base classes
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typedef CGAL::Alpha_shape_vertex_base_3<Gt,CGAL::Default,Alpha_cmp_tag>
Vb;

typedef CGAL::Alpha_shape_cell_base_3<Gt,CGAL::Default,Alpha_cmp_tag>
Fb;

typedef CGAL::Triangulation_data_structure_3<Vb,Fb>
Tds;

typedef CGAL::Delaunay_triangulation_3<Gt,Tds>
Triangulation_3;

//Alpha shape with ExactAlphaComparisonTag set to true (note that the tag
is also

//set to true for Vb and Fb)
typedef CGAL::Alpha_shape_3<Triangulation_3,Alpha_cmp_tag>

Alpha_shape_3;
typedef Gt::Point_3

Point;

int main()
{

//Set of points for which the alpha shapes cannot be computed with
//a floating point alpha value (on certain platforms)
std::list<Point> lp;
lp.push_back(Point(49.2559,29.1767,6.7723));
lp.push_back(Point(49.3696,31.4775,5.33777));
lp.push_back(Point(49.4264,32.6279,4.6205));
lp.push_back(Point(49.3127,30.3271,6.05503));

// compute alpha shape
Alpha_shape_3 as(lp.begin(),lp.end(),0,Alpha_shape_3::GENERAL);

return 0;
}� �
File: examples/Alpha_shapes_3/ex_alpha_shapes_exact_alpha.cpp

43.5.6 Example for periodic Alpha Shapes

The following example shows how to use the periodic Delaunay triangulation (Chapter 41) as underlying trian-
gulation for the alpha shape computation.

In order to define the original domain and to benefit from the built-in heuristic optimizations of the periodic
Delaunay triangulation computation it is recommended to first construct the triangulation and then construct the
alpha shape from it. The alpha shape constructor that takes a point range can be used as well but in this case the
original domain cannot be specified and the default unit cube will be chosen and no optimizations will be used.

It is also recommended to switch the triangulation to 1-sheeted covering if possible. Note that a periodic
triangulation in 27-sheeted covering space is degenerate. In this case an exact constructions kernel needs to be
used to compute the alpha shapes. Otherwise the results will suffer from round-off problems.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Periodic_3_triangulation_traits_3.h>
#include <CGAL/Periodic_3_Delaunay_triangulation_3.h>
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#include <CGAL/Alpha_shape_3.h>

#include <CGAL/Random.h>
#include <CGAL/point_generators_3.h>

// Traits
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Periodic_3_triangulation_traits_3<K> PK;

// Vertex type
typedef CGAL::Periodic_3_triangulation_ds_vertex_base_3<> DsVb;
typedef CGAL::Triangulation_vertex_base_3<PK,DsVb> Vb;
typedef CGAL::Alpha_shape_vertex_base_3<PK,Vb> AsVb;
// Cell type
typedef CGAL::Periodic_3_triangulation_ds_cell_base_3<> DsCb;
typedef CGAL::Triangulation_cell_base_3<PK,DsCb> Cb;
typedef CGAL::Alpha_shape_cell_base_3<PK,Cb> AsCb;

typedef CGAL::Triangulation_data_structure_3<AsVb,AsCb> Tds;
typedef CGAL::Periodic_3_Delaunay_triangulation_3<PK,Tds> P3DT3;
typedef CGAL::Alpha_shape_3<P3DT3> Alpha_shape_3;

typedef PK::Point_3 Point;

int main()
{

typedef CGAL::Creator_uniform_3<double, Point> Creator;
CGAL::Random random(7);
CGAL::Random_points_in_cube_3<Point, Creator> in_cube(1, random);
std::vector<Point> pts;

// Generating 1000 random points
for (int i=0 ; i < 1000 ; i++) {

Point p = *in_cube++;
pts.push_back(p);

}

// Define the periodic cube
P3DT3 pdt(PK::Iso_cuboid_3(-1,-1,-1,1,1,1));
// Heuristic for inserting large point sets (if pts is reasonably
large)

pdt.insert(pts.begin(), pts.end(), true);
// As pdt won’t be modified anymore switch to 1-sheeted cover if
possible

if (pdt.is_triangulation_in_1_sheet())
pdt.convert_to_1_sheeted_covering();

std::cout << "Periodic Delaunay computed." << std::endl;

// compute alpha shape
Alpha_shape_3 as(pdt);
std::cout << "Alpha shape computed in REGULARIZED mode by default."

<< std::endl;

// find optimal alpha values
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Alpha_shape_3::NT alpha_solid = as.find_alpha_solid();
Alpha_shape_3::Alpha_iterator opt = as.find_optimal_alpha(1);
std::cout << "Smallest alpha value to get a solid through data points
is "

<< alpha_solid << std::endl;
std::cout << "Optimal alpha value to get one connected component is "

<< *opt << std::endl;
as.set_alpha(*opt);
assert(as.number_of_solid_components() == 1);
return 0;

}� �
File: examples/Alpha_shapes_3/ex_periodic_alpha_shapes_3.cpp
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Alpha shapes definition is based on an underlying triangulation that may be a Delaunay triangulation in case of
basic alpha shapes or a regular triangulation (cf. 39.3) in case of weighted alpha shapes.

Let us consider the basic case with a Delaunay triangulation. We first define the alpha complex of the set of
points S. The alpha complex is a subcomplex of the Delaunay triangulation. For a given value of α, the alpha
complex includes all the simplices in the Delaunay triangulation which have an empty circumscribing sphere
with squared radius equal or smaller than α. Here “empty” means that the open sphere do not include any points
of S. The alpha shape is then simply the domain covered by the simplices of the alpha complex (see [EM94]).

In general, an alpha complex is a non-connected and non-pure complex. This means in particular that the alpha
complex may have singular faces. For 0≤ k ≤ d−1, a k-simplex of the alpha complex is said to be singular if
it is not a facet of a (k +1)-simplex of the complex

The alpha shapes of a set of points S form a discrete family, even though they are defined for all real numbers
α. The entire family of alpha shapes can be represented through the underlying triangulation of S. In this
representation each k-simplex of the underlying triangulation is associated with an interval that specifies for
which values of α the k-simplex belongs to the alpha complex. Relying on this fact, the family of alpha shapes
can be computed efficiently and relatively easily. Furthermore, we can select the optimal value of α to get an
alpha shape including all data points and having less than a given number of connected components.

The definition is analog in the case of weighted alpha shapes. The input set is now a set of weighted points
(which can be regarded as spheres) and the underlying triangulation is the regular triangulation of this set. Two
spheres, or two weighted points , with centers C1,C2 and radii r1,r2 are said to be orthogonal iff C1C2

2 = r2
1 + r2

2
and suborthogonal iff C1C2

2 < r2
1 + r2

2. For a given value of α the weighted alpha complex is formed with the
simplices of the regular triangulation triangulation such that there is a sphere orthogonal to the weighted points
associated with the vertices of the simplex and suborthogonal to all the other input weighted points. Once again
the alpha shape is then defined as the domain covered by a the alpha complex.

CGAL provides two versions to compute alpha shapes. The first one gives access to an explicit classification
of all the simplices for a fixed alpha value. The second one gives access to the entire family of alpha shapes of
a set of points. This latter version comes with two modes. In the general mode, the alpha shapes correspond
strictly to the definition previously made. The regularized mode provides a regularized version of the alpha
shapes corresponding to the domain covered by a regularized version of the alpha complex where singular faces
are removed.
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AlphaShapeCell 3

Definition

This concept describes the requirements for the base cell of an alpha shape.

Refines

TriangulationCellBase 3.

AlphaShapeCell 3:: NT A number type. Must be the same as the number type used
in the traits class of the triangulation underlying the alpha
shape.

AlphaShapeCell 3:: Alpha status iterator An iterator with value type CGAL::Alpha status<NT>.

Creation

AlphaShapeCell 3 f ; default constructor.
AlphaShapeCell 3 f ( Vertex handle v0, Vertex handle v1, Vertex handle v2, Vertex handle v3);

constructor setting the incident vertices.

AlphaShapeCell 3 f ( Vertex handle v0,
Vertex handle v1,
Vertex handle v2,
Vertex handle v3,
Cell handle n0,
Cell handle n1,
Cell handle n2,
Cell handle n3)

constructor setting the incident vertices and the neighboring
cells.

Access Functions

NT f .get alpha() Returns the alpha value of the cell.

Alpha status iterator

f .get facet status( int i)

Returns an iterator on the CGAL::Alpha status<NT> of the
facet i of the cell.
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Modifiers

void f .set alpha( NT alpha)

Sets the critical value of the cell.

void f .set facet status( int i, Alpha status iterator as)

Sets the iterator pointing to the CGAL::Alpha status<NT> of
the facet i of the cell.

See Also

CGAL::Alpha status
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AlphaShapeTraits 3

Definition

The concept AlphaShapeTraits 3 describes the requirements for the geometric traits class of the underlying
Delaunay triangulation of a basic alpha shape.

Refines

DelaunayTriangulationTraits 3

In addition to the requirements described in the concept DelaunayTriangulationTraits 3, the geometric traits
class of a Delaunay triangulation plugged in a basic alpha shapes provides the following.

Types

AlphaShapeTraits 3:: FT A number type compatible with the type used for the points
coordinate.

AlphaShapeTraits 3:: Compute squared radius 3

An object constructor able to compute:
the squared radius of the smallest circumscribing sphere of 4
points p0, p1, p2, p3,
the squared radius of the smallest circumscribing sphere of 3
points p0, p1, p2,
the squared radius of the smallest circumscribing sphere of 2
points p0, p1,
and also the squared radius of the smallest circumscribing
sphere to a single point p0 (which is FT(0)).

Creation

AlphaShapeTraits 3 traits; Default constructor.

Access Functions

Compute squared radius 3 traits.compute squared radius 3 object()

Has Models

All CGAL kernels.
CGAL::Exact predicates inexact constructions kernel (recommended)
CGAL::Exact predicates exact constructions kernel
CGAL::Filtered kernel
CGAL::Cartesian
CGAL::Simple cartesian
CGAL::Homogeneous
CGAL::Simple homogeneous
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AlphaShapeVertex 3

Definition

This concept describe the requirements for the base vertex of an alpha shape.

Refines

TriangulationVertexBase 3.

Types

AlphaShapeVertex 3:: Point Must be the same as the point type provided by the geometric
traits class of the triangulation.

AlphaShapeVertex 3:: Alpha status Must be CGAL::Alpha status<NT> where NT is the number
type used in the geometric traits class of the triangulation.

Creation

AlphaShapeVertex 3 v; default constructor.
AlphaShapeVertex 3 v( Point p); constructor setting the point associated to.
AlphaShapeVertex 3 v( Point p, Cell handle c);

constructor setting the point associated to and an incident
cell.

Modifiers

Alpha status* v.get alpha status() Returns a pointer the alpha status of the vertex.

See Also

CGAL::Alpha status
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CGAL::Alpha shape 3<Dt,ExactAlphaComparisonTag>

Definition

The class Alpha shape 3<Dt,ExactAlphaComparisonTag> represents the family of alpha shapes of points in the
3D space for all real α. It maintains an underlying triangulation of the class Dt. Each k-dimensional face of
Dt is associated with an interval that specifies for which values of alpha the face belongs to the alpha shape.
The second template parameter ExactAlphaComparisonTag is a tag that, when set to CGAL::Tag true, triggers
exact comparisons between alpha values. This is useful when the Delaunay triangulation is instantiated with an
exact predicates inexact constructions kernel. By default the ExactAlphaComparisonTag is set to CGAL::Tag
false as it induces a small overhead. Note that since such a strategy does not make sense if used together with a
traits class with exact constructions, the tag ExactAlphaComparisonTag is not taken into account if Dt::Geom
traits::FT is not a floating point number type.

Note that this class is at the same time used for basic and for weighted Alpha Shapes.

#include <CGAL/Alpha shape 3.h>

Inherits From

Dt

This class is the underlying triangulation class.

The modifying functions insert and remove will overwrite the inherited functions. At the moment, only the
static version is implemented.

Types

Alpha shape 3<Dt,ExactAlphaComparisonTag>:: Gt

the alpha shape traits type.

it has to derive from a triangulation traits class. For example Dt::Point is a Point class.
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Alpha shape 3<Dt,ExactAlphaComparisonTag>:: FT

the number type of alpha values.
In case ExactAlphaComparisonTag is CGAL::Tag false, it is Gt::FT.
In case ExactAlphaComparisonTag is CGAL::Tag true, it is a number
type allowing filtered exact comparisons (that is, interval arithmetic is
first used before resorting to exact arithmetic).
Access to the interval containing the exact value is provided through the
function FT::Approximate nt approx() const where FT::Approximate
nt is Interval nt<Protected> with Protected=true.
Access to the exact value is provided through the function FT::Exact
nt exact() const where FT::Exact nt depends on the configuration of
CGAL (it is CGAL::Gmpq if gmp is available and CGAL::Quotient<
CGAL::MP Float> otherwise).
It must be noted that an object of type FT is valid as long as the al-
pha shapes class that creates it is valid and has not been modified. For
convenience, classical comparison operators are provided for the type
FT .

Alpha shape 3<Dt,ExactAlphaComparisonTag>:: size type

The size type.

Alpha shape 3<Dt,ExactAlphaComparisonTag>:: Alpha iterator

A bidirectional and non-mutable iterator that allow to traverse the in-
creasing sequence of different alpha values.
Precondition: Its value type is FT

enum Mode { GENERAL, REGULARIZED};

In GENERAL mode, the alpha complex can have singular faces, i. e.
faces of dimension k, for k = (0,1,2) that are not subfaces of a k+1 face
of the complex. In REGULARIZED mode, the complex is regularized,
that is singular faces are dropped and the alpha complex includes only
a subset of the tetrahedral cells of the triangulation and the subfaces of
those cells.

enum Classification type { EXTERIOR, SINGULAR, REGULAR, INTERIOR};

Enum to classify the faces of the underlying triangulation with respect
to the alpha shape.
In GENERAL mode, for k = (0,1,2), each k-dimensional simplex of
the triangulation can be classified as EXTERIOR, SINGULAR, REG-
ULAR or INTERIOR. In GENERAL mode a k simplex is REGULAR
if it is on the boundary f the alpha complex and belongs to a k +1 sim-
plex in this complex and it is SINGULAR if it is a boundary simplex
that is not included in a k +1 simplex of the complex.
In REGULARIZED mode, for k = (0,1,2) each k-dimensional simplex
of the triangulation can be classified as EXTERIOR, REGULAR or IN-
TERIOR, i.e. there is no singular faces. A k simplex is REGULAR if it
is on the boundary of alpha complex and belongs to a tetrahedral cell of
the complex.
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Creation

Alpha shape 3<Dt,ExactAlphaComparisonTag> A( FT alpha = 0, Mode m = REGULARIZED);

Introduces an empty alpha shape data structure A for and set the current
alpha value to alpha and the mode to m.

Alpha shape 3<Dt,ExactAlphaComparisonTag> A( Dt& dt, FT alpha = 0, Mode m = REGULARIZED);

Build an alpha shape of mode m from the triangulation dt. Be careful
that this operation destroys the triangulation.

template < class InputIterator >
Alpha shape 3<Dt,ExactAlphaComparisonTag> A( InputIterator first,

InputIterator last,
FT alpha = 0,
Mode m = REGULARIZED)

Build an alpha shape data structure in mode m for the points in the range
[ first, last ) and set the current alpha value to alpha.
Precondition: The value type of first and last is Point (the type point of
the underlying triangulation.)

Modifiers

template < class InputIterator >
std::ptrdiff t A.make alpha shape( InputIterator first, InputIterator last)

Initialize the alpha shape data structure for points in the range [ first,
last ). Returns the number of data points inserted in the underlying tri-
angulation.
If the function is applied to an non-empty alpha shape data structure, it
is cleared before initialization.
Precondition: The value type of first and last is Point.

void A.clear() Clears the structure.

FT A.set alpha( FT alpha)

Sets the α-value to alpha. Returns the previous α-value.
Precondition: alpha ≥ 0.

Mode A.set mode( Mode m = REGULARIZED)

Sets A in GENERAL or REGULARIZED. Returns the previous mode.
Changing the mode of an alpha shape data structure entails a partial
re-computation of the data structure.
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Query Functions

Mode A.get mode( void) const

Returns whether A is general or regularized.

FT A.get alpha( void) const

Returns the current α-value.

FT A.get nth alpha( int n) const

Returns the n-th alpha-value, sorted in an increasing order.
Precondition: n ¡ number of alphas.

size type A.number of alphas() const

Returns the number of different alpha-values.

Classification type

A.classify( Point p, FT alpha = get alpha())

Locates a point p in the underlying triangulation and Classifies the as-
sociated k-face with respect to alpha.

Classification type

A.classify( Cell handle f, FT alpha = get alpha())

Classifies the cell f of the underlying triangulation with respect to alpha.

Classification type

A.classify( Facet f, FT alpha = get alpha())

Classifies the facet f of the underlying triangulation with respect to al-
pha.

Classification type

A.classify( Cell handle f, int i, FT alpha = get alpha())

Classifies the facet of the cell f opposite to the vertex with index i of the
underlying triangulation with respect to alpha.
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Classification type

A.classify( Edge e, FT alpha = get alpha())

Classifies the edge e with respect to alpha .

Classification type

A.classify( Vertex handle v, FT alpha = get alpha())

Classifies the vertex v of the underlying triangulation with respect to
alpha.

template<class OutputIterator>
OutputIterator

A.get alpha shape cells( OutputIterator it, Classification type type, FT alpha = get alpha())

Write the cells which are of type type for the alpha value alpha to the
sequence pointed to by the output iterator it. Returns past the end of the
output sequence.

template<class OutputIterator>
OutputIterator

A.get alpha shape facets( OutputIterator it,
Classification type type,
FT alpha= get alpha())

Write the facets which are of type type for the alpha value alpha to the
sequence pointed to by the output iterator it. Returns past the end of the
output sequence.

template<class OutputIterator>
OutputIterator

A.get alpha shape edges( OutputIterator it,
Classification type type,
FT alpha = get alpha())

Write the edges which are of type type for the alpha value alpha to the
sequence pointed to by the output iterator it. Returns past the end of the
output sequence.

template<class OutputIterator>
OutputIterator

A.get alpha shape vertices( OutputIterator it, Classification type type, FT alpha)

Write the vertices which are of type type for the alpha value alpha to
the sequence pointed to by the output iterator it. Returns past the end of
the output sequence.
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template<class OutputIterator>
OutputIterator

A.filtration( OutputIterator it)

Output all the faces of the triangulation in increasing order of the alpha
value for which they appear in the alpha complex. In case of equal
alpha value lower dimensional faces are output first. The value type of
the OutputIterator has to be a CGAL::Object

Traversal of the α-Values

Alpha iterator

A.alpha begin() const

Returns an iterator that allows to traverse the sorted sequence of α-
values of the family of alpha shapes.

Alpha iterator

A.alpha end() const

Returns the corresponding past-the-end iterator.

Alpha iterator

A.alpha find( FT alpha) const

Returns an iterator pointing to an element with α-value alpha, or the
corresponding past-the-end iterator if such an element is not found.

Alpha iterator

A.alpha lower bound( FT alpha) const

Returns an iterator pointing to the first element with α-value not less
than alpha.

Alpha iterator

A.alpha upper bound( FT alpha) const

Returns an iterator pointing to the first element with α-value greater
than alpha.
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Operations

size type A.number of solid components( FT alpha = get alpha())

Returns the number of solid components of A, that is, the number of
components of its regularized version.

Alpha iterator

A.find optimal alpha( size type nb components) const

Returns an iterator pointing to smallest α value such that A satisfies the
following two properties:
all data points are either on the boundary or in the interior of the regu-
larized version of A.
The number of solid component of A is equal to or smaller than nb
components.

I/O

The I/O operators are defined for iostream, and for the window stream provided by CGAL. The format for the
iostream is an internal format.

#include <CGAL/IO/io.h>

ostream& ostream& os << A Inserts the alpha shape A for the current alpha value into the stream os.
Precondition: The insert operator must be defined for Point.

#include <CGAL/IO/Geomview stream.h>

#include <CGAL/IO/alpha shape geomview ostream 3.h>

Geomview stream&

Geomview stream& W << A

Inserts the alpha shape A for the current alpha value into the Geomview
stream W.
Precondition: The insert operator must be defined for GT::Point and
GT::Triangle.

Implementation

In GENERAL mode, the alpha intervals of each triangulation face is computed and stored at initialization time.
In REGULARIZED mode, the alpha shape intervals of edges are not stored nor computed at initialization.
Edges are simply classified on the fly upon request. This allows to have much faster building of alpha shapes in
REGULARIZED mode.

A.alpha find uses linear search, while A.alpha lower bound and A.alpha upper bound use binary search.
A.number of solid components performs a graph traversal and takes time linear in the number of cells of the
underlying triangulation. A.find of optimal alpha uses binary search and takes time O( n log n ), where n is the
number of points.
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CGAL::Alpha shape cell base 3<Traits,Fb,ExactAlphaComparisonTag,WeightedTag>

Definition

The class Alpha shape cell base 3<Traits,Fb,ExactAlphaComparisonTag,WeightedTag> is the default model
for the concept AlphaShapeCell 3.

The class has four parameters. The traits class Traits is the one that is provided to the Alpha shape 3 class.
The second parameter Fb is a base class instantiated by default with CGAL::Triangulation cell base 3<Traits>
. The third parameter ExactAlphaComparisonTag is a tag that, when set to CGAL::Tag true, triggers exact
comparisons between alpha values. See the description provided in the documentation of Alpha shape 3 for
more details. The default value is CGAL::Tag false. The fourth parameter WeightedTag is used only if ExactAl-
phaComparisonTag is CGAL::Tag true. It must be CGAL::Tag true if the underlying triangulation of the alpha
shape to be used is a regular triangulation and CGAL::Tag false otherwise. The default is CGAL::Tag false.

#include <CGAL/Alpha shape cell base 3.h>

Is Model for the Concepts

AlphaShapeCell 3

Inherits From

Fb
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CGAL::Alpha shape vertex base 3<Traits,Vb,ExactAlphaComparisonTag,WeightedTag>

Definition

The class Alpha shape vertex base 3<Traits,Vb,ExactAlphaComparisonTag,WeightedTag> is the default
model for the concept AlphaShapeVertex 3.

The class has four parameters : the traits class Traits which provides the type for the points or the weighted
points. The second parameter Vb is a base class instantiated by default with CGAL::Triangulation vertex base
3<Traits>. The third parameter ExactAlphaComparisonTag is a tag that, when set to CGAL::Tag true, triggers
exact comparisons between alpha values. See the description provided in the documentation of Alpha shape 3
for more details. The default value is CGAL::Tag false. The fourth parameter WeightedTag is used only if
ExactAlphaComparisonTag is CGAL::Tag true. It must be CGAL::Tag true if the underlying triangulation of
the alpha shape to be used is a regular triangulation and CGAL::Tag false otherwise. The default is CGAL::Tag
false.

#include <CGAL/Alpha shape vertex base 3.h>

Is Model for the Concepts

AlphaShapeVertex 3

Inherits From

Vb
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CGAL::Alpha status<NT>

Definition

The class Alpha status<NT> is a small data structure to store the critical alpha values of faces of an alpha shape.
Each face has three critical alpha values, called alpha min, alpha mid and alpha max in increasing order. The
face will be exterior for any α < alpha min, singular for alpha min ≤ α < alpha mid, regular for alpha mid
≤ α < alpha max and interior for alpha max ≤ al pha. The value alpha min is undefined for faces which are
not Gabriel faces and therefore do not appear in the alpha complex without any of their including face. The
value alpha max is undefined for convex hull faces which can never be interior, The data structure also includes
two Boolean to mark if the face is a Gabriel face or a convex hull face.

The class Alpha status<NT> is parameterized by a number type NT .

#include <CGAL/Alpha shape cell base 3.h>

Creation

Alpha status<NT> a; default constructor.

Modifiers

void a.set is Gabriel( bool yesorno)

sets Gabriel marker;

void a.set is on chull( bool yesorno)

sets convex hull marker;

void a.set alpha min( NT alpha)

sets alpha min.

void a.set alpha mid( NT alpha)

sets alpha mid.

void a.set alpha max( NT alpha)

sets alpha max.

Access Functions

bool a.is Gabriel() const Returns true for Gabriel faces;
bool a.is on chull() const Returns true for convex hull faces;
NT a.alpha min() const Returns the alpha min

Precondition: is Gabriel() returns false;
NT a.alpha mid() const Returns the alpha mid;
NT a.alpha max() const Returns alpha max.

Precondition: is on chull() returns false.
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See Also

AlphaShapeCellBase 3
AlphaShapeVertexBase 3
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WeightedAlphaShapeTraits 3

Definition

The concept WeightedAlphaShapeTraits 3 describes the requirements for the geometric traits class of the un-
derlying regular triangulation of a weighted alpha shape.

Refines

RegularTriangulationTraits 3

In addition to the requirements described in the concept RegularTriangulationTraits 3, the geometric traits class
of a Regular triangulation plugged in a basic alpha shapes provides the following.

Types

WeightedAlphaShapeTraits 3:: FT A number type compatible with the type used for the points
coordinates.

WeightedAlphaShapeTraits 3:: Compute squared radius smallest orthogonal sphere 3

An object constructor able to compute the squared radius of
the smallest sphere orthogonal to four weighted points p0,
p1, p2, p3, and the squared radius of the smallest sphere or-
thogonal to three weighted points p0, p1, p2, and the squared
radius of smallest sphere orthogonal to two weighted points
p0, p1, and the squared radius of the smallest sphere orthog-
onal to a single point p0.

Creation

WeightedAlphaShapeTraits 3 wast; default constructor.

Access Functions

Compute squared radius smallest orthogonal sphere 3

wast.compute squared radius smallest orthogonal sphere 3 object()

Has Models

CGAL::Regular triangulation euclidean traits 3<K>
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CGAL::Weighted alpha shape euclidean traits 3<K>

deprecated

Note : this class is deprecated since CGAL 3.6. CGAL::Regular triangulation euclidean traits 3 can be directly
used instead.

Definition

The class Weighted alpha shape euclidean traits 3<K> is the default model for the concept
WeightedAlphaShapeTraits 3 of traits class for the underlying triangulation of a weighted alpha shapes.
K must be a kernel.

#include <CGAL/Weighted alpha shape euclidean traits 3.h>

Refines

Regular triangulation euclidean traits 3<K, typename K::FT>

Is Model for the Concepts

WeightedAlphaShapeTraits 3

deprecated
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FixedAlphaShapeTraits 3

Definition

The concept FixedAlphaShapeTraits 3 describes the requirements for the geometric traits class of the underly-
ing Delaunay triangulation of a basic alpha shape with a fixed value alpha.

Refines

DelaunayTriangulationTraits 3

In addition to the requirements described in the concept DelaunayTriangulationTraits 3, the geometric traits
class of a Delaunay triangulation plugged in a basic alpha shape with fixed alpha value provides the following.

Types

FixedAlphaShapeTraits 3:: Comparison result

CGAL::Comparison result or Uncertain<
CGAL::Comparison result>

FixedAlphaShapeTraits 3:: Compare squared radius 3

An object constructor able to compare
the squared radius of the smallest circumscribing sphere of
either four, three, two or one point(s) with a given value of
alpha. It provides:
Comparison result operator()(Point 3,Point 3,Point
3,Point 3)
Comparison result operator()(Point 3,Point 3,Point 3)
Comparison result operator()(Point 3,Point 3)
Comparison result operator()(Point 3)

Creation

FixedAlphaShapeTraits 3 traits; Default constructor.

Access Functions

Compare squared radius 3

traits.compare squared radius 3 object()
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Has Models

All CGAL kernels.
CGAL::Exact predicates inexact constructions kernel (recommended)
CGAL::Exact predicates exact constructions kernel
CGAL::Filtered kernel
CGAL::Cartesian
CGAL::Simple cartesian
CGAL::Homogeneous
CGAL::Simple homogeneous
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FixedAlphaShapeCell 3

Definition

This concept describes the requirements for the base cell of a alpha shape with a fixed value alpha.

Refines

TriangulationCellBase 3.

Creation

FixedAlphaShapeCell 3 f ; default constructor.
FixedAlphaShapeCell 3 f ( Vertex handle v0, Vertex handle v1, Vertex handle v2, Vertex handle v3);

constructor setting the incident vertices.

FixedAlphaShapeCell 3 f ( Vertex handle v0,
Vertex handle v1,
Vertex handle v2,
Vertex handle v3,
Cell handle n0,
Cell handle n1,
Cell handle n2,
Cell handle n3)

constructor setting the incident vertices and the neighboring
cells.

Access Functions

Classification type f .get classification type()

Returns the classification of the cell.

Classification type f .get facet classification type( int i)

Returns the classification of the i-th facet of the cell.

Modifiers

void f .set classification type( Classification type type)

Sets classification of the cell.

void f .set facet classification type( int i, Classification type type)

Sets the classification of the i-th facet of the cell.
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FixedAlphaShapeVertex 3

Definition

This concept describes the requirements for the base vertex of a alpha shape with a fixed value alpha.

Refines

TriangulationVertexBase 3.

Types

FixedAlphaShapeVertex 3:: Point Must be the same as the point type provided by the geometric
traits class of the triangulation.

Creation

FixedAlphaShapeVertex 3 v; default constructor.
FixedAlphaShapeVertex 3 v( Point p); constructor setting the point associated to.
FixedAlphaShapeVertex 3 v( Point p, Cell handle c);

constructor setting the point associated to and an incident
cell.

Access Functions

bool v.is on chull() Returns a boolean indicating whether the point is on the con-
vex hull of the point of the triangulation.

Classification type v.get classification type()

Returns the classification of the vertex.

Modifiers

void v.set classification type( Classification type type)

Sets the classification of the vertex.

void v.is on chull( bool b) Sets whether the vertex is on the convex hull.
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CGAL::Fixed alpha shape 3<Dt>

Definition

The class Fixed alpha shape 3<Dt> represents one (fixed) alpha shape of points in the 3D space for a real α. It
maintains an underlying triangulation of the class Dt which represents connectivity and order among its faces.
Each k-dimensional face of the Dt is associated with a classification that specifies its status in the alpha complex,
alpha being fixed.

Note that this class can be used at the same time to build a basic or a weighted Alpha Shape.

#include <CGAL/Fixed alpha shape 3.h>

Inherits From

Dt

This class is the underlying triangulation class.

The modifying functions insert and remove will overwrite the inherited functions.

Types

Fixed alpha shape 3<Dt>:: Gt the alpha shape traits type.

it has to derive from a triangulation traits class. For example Dt::Point is a Point class.

typedef Gt::FT

FT; the number type of alpha.

enum Classification type { EXTERIOR, SINGULAR, REGULAR, INTERIOR};

Enum to classify the simplices of the underlying triangulation with
respect to a given alpha value.
Each k-dimensional simplex of the triangulation can be classified as
EXTERIOR, SINGULAR, REGULAR or INTERIOR. A k simplex
is REGULAR if it is on the boundary of the alpha complex and
belongs to a k+1 simplex in this complex and it is SINGULAR if it is a
boundary simplex that is not included in a k+1 simplex of the complex.

Creation

Fixed alpha shape 3<Dt> A( FT alpha = 0);

Introduces an empty alpha shape data structure A and set the alpha value
to alpha.
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Fixed alpha shape 3<Dt> A( Dt& dt, FT alpha = 0);

Builds an alpha shape from the triangulation dt, and set the alpha value
to alpha. Be careful that this operation destroys the triangulation.

template < class InputIterator >
Fixed alpha shape 3<Dt> A( InputIterator first, InputIterator last, FT alpha = 0);

Builds an alpha shape data structure for the points in the range [ first,
last ) and set the alpha value to alpha.
Requirement: The value type of first and last is Point (the type point of
the underlying triangulation.)

Modifiers

Vertex handle

A.insert( Point p, Cell handle start = Cell handle())

Inserts point p in the underlying triangulation and returns the corre-
sponding vertex. The optional argument start is used as a starting place
for the search. The classification types of the new simplices are com-
puted and that of the simplices incident to the new ones are updated.

void A.remove( Vertex handle v)

Removes the vertex v from the underlying triangulation. The classifica-
tion types of new simplices and their incident faces are set or reset

void A.clear() Clears the structure.

Query Functions

FT A.get alpha( void) const

Returns the α-value.

Classification type

A.classify( Cell handle c) const

Classifies the cell c of the underlying triangulation in the alpha complex.

Classification type

A.classify( Facet f) const

Classifies the facet f of the underlying triangulation in the alpha com-
plex.
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Classification type

A.classify( Cell handle f, int i) const

Classifies the facet of the cell f opposite to the vertex with index i of the
underlying triangulation in the alpha complex.

Classification type

A.classify( Edge e) const

Classifies the edge e of the underlying triangulation in the alpha com-
plex.

Classification type

A.classify( Vertex handle v) const

Classifies the vertex v of the underlying triangulation in the alpha com-
plex.

template<class OutputIterator>
OutputIterator

A.get alpha shape cells( OutputIterator it, Classification type type)

Writes the cells which are of type type in the alpha complex to the se-
quence pointed to by the output iterator it. Returns past the end of the
output sequence.

template<class OutputIterator>
OutputIterator

A.get alpha shape facets( OutputIterator it, Classification type type)

Writes the facets which are of type type in the alpha complex to the
sequence pointed to by the output iterator it. Returns past the end of the
output sequence.

template<class OutputIterator>
OutputIterator

A.get alpha shape edges( OutputIterator it, Classification type type)

Writes the edges which are of type type in the alpha complex to the
sequence pointed to by the output iterator it. Returns past the end of the
output sequence.

template<class OutputIterator>
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OutputIterator

A.get alpha shape vertices( OutputIterator it, Classification type type)

Writes the vertices which are of type type in the alpha complex to the
sequence pointed to by the output iterator it. Returns past the end of the
output sequence.

I/O

The I/O operators are defined for iostream, and for the window stream provided by CGAL. The format for the
iostream is an internal format.

#include <CGAL/IO/io.h>

ostream& ostream& os << A Inserts the alpha shape A into the stream os.
Requirement: The insert operator must be defined for GT::Point.
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CGAL::Fixed alpha shape cell base 3<Traits,Fb>

Definition

The class Fixed alpha shape cell base 3<Traits,Fb> is the default model for the concept
FixedAlphaShapeCell 3.

The class has two parameters. The traits class Traits provides the number type for alpha values. The second
parameter Fb is a base class instantiated by default with CGAL::Triangulation cell base 3<Traits>.

#include <CGAL/Fixed alpha shape cell base 3.h>

Is Model for the Concepts

FixedAlphaShapeCellBase 3

Inherits From

Fb
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CGAL::Fixed alpha shape vertex base 3<Traits,Vb>

Definition

The class Fixed alpha shape vertex base 3<Traits,Vb> is the default model for the concept
FixedAlphaShapeVertex 3.

The class has two parameters : the traits class Traits which provides the type for the points or the weighted
points. The second parameter Vb is a base class instantiated by default with CGAL::Triangulation vertex base
3<Traits>.

#include <CGAL/Fixed alpha shape vertex base 3.h>

Is Model for the Concepts

FixedAlphaShapeVertexBase 3

Inherits From

Vb
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FixedWeightedAlphaShapeTraits 3

Definition

The concept FixedWeightedAlphaShapeTraits 3 describes the requirements for the geometric traits class of the
underlying regular triangulation of a weighted alpha shape with fixed alpha value.

Refines

RegularTriangulationTraits 3

In addition to the requirements described in the concept RegularTriangulationTraits 3, the geometric traits class
of a Regular triangulation plugged in a weighted alpha shape with fixed alpha value provides the following.

Types

FixedWeightedAlphaShapeTraits 3:: Comparison result

CGAL::Comparison result or Uncertain<
CGAL::Comparison result>

FixedWeightedAlphaShapeTraits 3:: Compare weighted squared radius 3

An object constructor able to compare the squared radius of
the smallest sphere orthogonal to either four, three, two or
one weighted point(s) to a given value of alpha. It provides:
Comparison result operator()(Weighted point 3 ,Weighted
point 3 ,Weighted point 3 ,Weighted point 3 )
Comparison result operator()(Weighted point 3 ,Weighted
point 3 ,Weighted point 3 )
Comparison result operator()(Weighted point 3 ,Weighted
point 3 )
Comparison result operator()(Weighted point 3 )

Creation

FixedWeightedAlphaShapeTraits 3 wast; default constructor.

Access Functions

Compare weighted squared radius 3

wast.compare weighted squared radius 3 object()

Has Models

CGAL::Regular triangulation euclidean traits 3<K>,
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Voronoi Diagrams
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Chapter 44

2D Segment Delaunay Graphs
Menelaos Karavelas
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This chapter describes the two-dimensional segment Delaunay graph package of CGAL. We start with a few
definitions in Section 44.1. The software design of the 2D segment Delaunay graph package is described in
Section 44.2. In Section 44.3 we discuss the geometric traits of the 2D segment Delaunay graph package and in
Section 44.4 the segment Delaunay graph hierarchy, a data structure suitable for fast nearest neighbor queries,
is briefly described.

44.1 Definitions

The 2D segment Delaunay graph package of CGAL is designed to compute the Delaunay graph of a set of
possibly intersecting segments on the plane. Although we compute the Delaunay graph, we will often refer
to its dual, the segment Voronoi diagram, since it is easier to explain and understand. The algorithm that
has been implemented is incremental. The corresponding CGAL class is called Segment Delaunay graph 2<
SegmentDelaunayGraphTraits 2,SegmentDelaunayGraphStructure 2> and will be discussed in more detail in
the sequel. The interested reader may want to refer to the paper by Karavelas [Kar04] for the general idea as
well as the details of the algorithm implemented.

Definitions. Before describing the details of the implementation we make a brief introduction to the theory of
segment Delaunay graphs and segment Voronoi diagrams. The segment Voronoi diagram is defined over a set
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Figure 44.1: The segment Voronoi diagram for a set of weakly (left) and strongly (right) intersecting sites.

of non-intersecting sites, which can either be points or linear segments, which we assume that are given through
their endpoints. The segment Voronoi diagram a subdivision of the plane into connected regions, called cells,
associated with the sites. The dual graph of the segment Voronoi diagram is called the segment Delaunay graph.
The cell of a site ti is the locus of points on the plane that are closer to ti than any other site t j, j 6= i. The distance
δ(x, ti) of a point x in the plane to a site ti is defined as the minimum of the Euclidean distances of x from the
points in ti. Hence, if ti is a point pi, then

δ(x, ti) = ‖x− ti‖,
whereas if ti, is a segment, then

δ(x, ti) = min
y∈ti
‖x− y‖,

where ‖ · ‖ denotes the Euclidean norm. It can easily be seen that it is a generalization of the Voronoi diagram
for points.

In many applications the restriction that sites are non-intersecting is too strict. Often we want to allow segments
that touch at their endpoints, or even segments that overlap or intersect properly at their interior (for example, see
Fig. 44.1). Allowing such configurations poses certain problems. More specifically, when we allow segments to
touch at their endpoints we may end up with pairs of segments whose bisector is two-dimensional. If we allow
pairs of segments that intersect properly at their interior, the interiors of their Voronoi cells are no longer simply
connected. In both cases above the resulting Voronoi diagrams are no longer instances of abstract Voronoi
diagrams (cf. [Kle89]), which has a direct consequence on the efficient computation of the corresponding
Voronoi diagram. The remedy to these problems is to consider linear segments not as one object, but rather
as three, namely the two endpoints and the interior. This choice guarantees that all bisectors in the Voronoi
diagram are one-dimensional and that all Voronoi cells are simply connected. Moreover, we further distinguish
between two cases, according to the type of intersecting pair that our input data set contains. A pair of sites is
called weakly intersecting if they have a single common point and this common point does not lie in the interior
of any of the two sites. A pair of sites is called strongly intersecting if they intersect and they either have more
than one common point or their common point lies in the interior of at least one of the two sites. As it will be
seen later the two cases have different representation (and thus storage) requirements, as well as they require a
somehow different treatment on how the predicates are evaluated. Having made the distinction between weakly
and strongly intersecting sites, and having said that segment sites are treated as three objects, we are now ready
to precisely define the Delaunay graph we compute. Given a set S of input sites, let SA be the set of points and
(open) segments in the arrangement A(S) of S . The 2D segment Delaunay graph package of CGAL computes
the (triangulated) Delaunay graph that is dual to the Euclidean Voronoi diagram of the sites in the set SA .

The segment Delaunay graph is uniquely defined once we have the segment Voronoi diagram. If the all sites are
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in general position, then Delaunay graph is a graph with triangular faces away from the convex hull of the set of
sites. To unify our approach and handling of the Delaunay graph we add to the set of (finite) sites a fictitious site
at infinity, which we call the site at infinity. We can then connect all vertices of the outer face of the Delaunay
graph to the site at infinity which gives us a graph with the property that all of its faces are now triangular.
However, the Delaunay graph is not a triangulation for two main reasons: we cannot always embed it on the
plane with straight line segments that yield a triangulation and, moreover, we may have two faces of the graph
that have two edges in common, which is not allowed in a triangulation.

We would like to finish our brief introduction to the theory of segment Delaunay graphs and segment Voronoi
diagrams by discussing the concept of general position. We say that a set of sites is in general position if no
two triplets of sites have the same tritangent Voronoi circle. This statement is rather technical and it is best
understood in the context of points. The equivalent statement for points is that we have no two triplets of points
that define the same circumcircle, or equivalently that no four points are co-circular. The statement about general
position made above is a direct generalization of the (much simpler to understand) statement about points. On
the contrary, when we have sites in degenerate position, the Delaunay graph has faces with more than three
edges on their boundary. We can get a triangulated version of the Delaunay graph by simply triangulating the
corresponding faces in an arbitrary way. In fact the algorithm that has been implemented in CGAL has the
property that it always returns a valid triangulated version of the segment Delaunay graph. By valid we mean
that it contains the actual (non-triangulated) Delaunay graph, and whenever there are faces with more than three
faces then they are triangulated. The way that they are triangulated depends on the order of insertion of the sites
in the diagram.

One final remark has to be made with respect to the difference between the set of input sites and the set of output
sites. The set of input sites consists of the closed sites that the user inserts in the diagram. Since segment sites
are treated as three objects, internally our algorithm sees only points and open segments. As a result, from the
point of view of the algorithm, the input sites have no real meaning. What has real meaning is the set of sites
that correspond to cells of the Voronoi diagram and this is the set of output sites.

Degenerate Dimensions. The dimension of the segment Delaunay graph is in general 2. The exceptions to
this rule are as follows:

• The dimension is −1 if the segment Delaunay graph contains no sites.

• The dimension is 0 if the segment Delaunay graph contains exactly one (output) site.

• The dimension is 1 is the segment Delaunay graph contains exactly two (output) sites.

44.2 Software Design

The 2D segment Delaunay graph class Segment Delaunay graph 2<SegmentDelaunayGraphTraits
2,SegmentDelaunayGraphDataStructure 2> follows the design of the triangulation package of CGAL. It
is parametrized by two arguments:

• the geometric traits class. It provides the basic geometric objects involved in the algorithm, such as
sites, points etc. It also provides the geometric predicates for the computation of the segment Delaunay
graph, as well as some basic constructions that can be used, for example, to visualize the diagram. The
geometric traits for the segment Delaunay graph will be discussed in more detail in the next section.

• the segment Delaunay graph data structure. This is essentially the same as the Apollonius graph data
structure (discussed in Chapter 45.2), augmented with some additional operations that are specific to seg-
ment Voronoi diagrams. The corresponding concept is that of SegmentDelaunayGraphDataStructure 2,
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which in fact is a refinement of the ApolloniusGraphDataStructure 2 concept. The class Triangulation
data structure 2<Vb,Fb> is a model of the concept SegmentDelaunayGraphDataStructure 2. A default
value for the corresponding template parameter is provided, so the user does not need to specify it.

Strongly Intersecting Sites and their Representation. As we have mentioned above, the segment Delaunay
graph package of CGAL is designed to support the computation of the segment Voronoi diagram even when the
input segment sites are intersecting. This choice poses certain issues for the design of the software package. The
major concern is the representation of the subsegments that appear in the arrangement of the these sites, because
the sites in the arrangement are the ones over which the diagram is actually defined. A direct consequence of
the choice of representation is the algebraic degree of the predicates involved in the computation of the segment
Delaunay graph, as well as the storage requirements for the subsegments and points on intersection in the
arrangement.

The case of weakly intersecting sites does not require any special treatment. We can simply represent points
by their coordinates and segments by their endpoints. In the case of strongly intersecting sites, the obvious
choice to use the afore-mentioned representation has severe disadvantages. Consider two strongly intersecting
segments ti and t j, whose endpoints have homogeneous coordinates of size b. Their intersection point will have
homogeneous coordinates of bit size 6b+O(1). This effect can be cascaded, which implies that after inserting
k (input) segments we can arrive at having points of intersection whose bit sizes are exponential with respect to
k, i.e., their homogeneous coordinates will have bit size Ω(2kb). Not only the points of intersection, but also the
adjacent subsegments will be represented by quantities of arbitrarily high bit size, and as a result we would not
be able to give a bound on the bit sizes of the coordinates of the points of intersection. As a result, we would not
be able to give a bound on the memory needed to store these coordinates. An equally important consequence is
that we would also not be able to give a bound on the algebraic degree of the algebraic expressions involved in
the evaluation of the predicates.

Such a behavior is obviously undesirable. For robustness, efficiency, and scalability purposes, it is critical that
the bit size of the algebraic expressions in the predicates does not depend on the input size. For this reason, as
well as for others to be discussed below, we decided to represent sites in a implicit manner, which somehow
encodes the history of their construction. In particular, we exploit the fact that points of intersection always lie
on two input segments, and that segments that are not part of the input are always supported by input segments.

For example, let us consider the configuration in Fig. 44.2. We assume that the segments ti = piqi, i = 1,2,3,
are inserted in that order. Upon the insertion of t2, our algorithm will split the segment t1 into the subsegments
p1s1 and s1q1, then add s1, and finally insert the subsegments p2s1 and s1q2. How do we represent the five new
sites? s1 will be represented by its two defining segments t1 and t2. The segment p1s1 will be represented by two
segments, a point, and a boolean. The first segment is t1, which is always the segment with the same support
as the newly created segment. The second segment is t2 and the point is p1. The boolean indicates whether the
first endpoint of p1s1 is an input point; in this case the boolean is equal to true. The segment s1q1 will also be
represented by two segments, a point, and a boolean, namely, t1 (the supporting segment of s1q1), t2 and false (it
is the second endpoint of s1q1 that is an input point). Subsegments p2s1 and s1q2 are represented analogously.
Consider now what happens when we insert t3. The point s2 will again be represented by two segments, but not
s1q1 and t3. In fact, it will be represented by t1 (the supporting segment of s1q1) and t3. s2q1 will be represented
by two segments, a point, and a boolean (t1, t3, q1 and false), and similarly for p3s2 and s2q3. On the other hand,
both endpoints of s1s2 are non-input points. In such a case we represent the segment by three input segments.
More precisely, s1s2 is represented by the segments t1 (the supporting segment of s1q1), t2 (it defines s1 along
with t1) and t3 (it defines s2 along with t1).

The five different presentations, two for points (coordinates; two input segments) and three for segments (two
input points; two input segments, an input point and a boolean; three input segments), form a closed set of
representations and thus represent any point of intersection or subsegment regardless of the number of input
segments. Moreover, every point (input or intersection) has homogeneous coordinates of bit size at most 3b +
O(1). The supporting lines of the segments (they are needed in some of the predicates) have coefficients which
are always of bit size 2b+O(1). As a result, the bit size of the expressions involved in our predicates will always
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Figure 44.2: Site representation. The point s1 is represented by the four points p1, q1, p2 and q2. The segment
p1s1 is represented by the points p1, q1, p2, q2 and a boolean which is set to true to indicate that the first
endpoint in not a point of intersection. The segment s1s2 is represented by the six points: p1, q1, p2, q2, p3 and
q3. The remaining (non-input) points and segments in the figure are represented similarly.

be O(b), independently of the size of the input. The SegmentDelaunayGraphSite 2 concept encapsulates the
ideas presented above. A site is represented in this concept by up to four points and a boolean, or up to six
points, depending on its type. The class Segment Delaunay graph site 2<K> implements this concept.

Even this representation, however, has some degree of redundancy. The endpoint of a segment appears in both
the representation of the (open) segment site as well as the representation of the point site itself. The situation
becomes even worse in the presence of strongly intersecting sites: a point may appear in the representation
of multiple subsegments and/or points of intersection. To avoid this redundancy, input points are stored in a
container, and the various types of sites (input points and segments, points of intersection, subsegments with
one or two points of intersection as endpoints) only store handles to the points in the container. This is achieved
by the Segment Delaunay graph storage site 2<Gt> class which is a model of the corresponding concept:
SegmentDelaunayGraphStorageSite 2. This concept enforces a site to be represented by up to 6 handles (which
are very lightweight objects) instead of 6 points, which are, compared to handles of course, very heavy objects.

Optimizing Memory Allocation. There are applications where we know beforehand that the input consists
of only weakly intersecting sites. In these cases the site representation described above poses a significant
overhead in the memory requirements of our implementation: instead of representing sites with up to two points
(or ultimately with to two handles), we require sites to store six points (respectively, six handles). To avoid this
overhead we have introduced two series of traits classes:

• One that supports the full-fledged sites, and is suitable when the input consists of strongly intersecting
sites. This series consists of the Segment Delaunay graph traits 2<K,MTag> and Segment Delaunay
graph filtered traits 2<CK,CM,EK,EM,FK,FM> classes.

• One that is customized for input that contain only weakly intersecting sites. This series consists of
the Segment Delaunay graph traits without intersections 2<K,MTag> and Segment Delaunay graph
filtered traits without intersections 2<CK,CM,EK,EM,FK,FM> classes.

The advantages of having different traits classes are as follows:
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• When the user chooses to use one of the traits classes in the second series we only store two handles per
site. This implies a reduction by a factor of three in the memory allocated per site with respect to the first
series of traits classes.

• In the case of the first series of traits classes, we can better exploit the knowledge that have strongly
intersecting sites, in order to further apply geometric filters (see below) during the evaluation of the
predicates. On the contrary, if the second series of traits classes is used, we can avoid geometric filtering
tests that have meaning only in the case of strongly intersecting sites.

44.3 The Geometric Traits

The predicates required for the computation of the segment Voronoi diagram are rather complicated. It is not
the purpose of this document to discuss them in detail. The interested reader may refer to Burnikel’s thesis
[Bur96], where it is shown that in the case of weakly intersecting sites represented in homogeneous coordinates
of bit size b, the maximum bit size of the algebraic expressions involved in the predicates is 40b+O(1). Given
our site representation given above we can guarantee that even in the case of strongly intersecting sites, the
algebraic degree of the predicates remains O(b), independently of the size of the input. What we want to focus
in the remainder of this section are the different kinds of filtering techniques that we have employed in our
implementation.

Geometric Filtering. Our representation of sites is coupled very naturally, with what we call geometric fil-
tering. The technique amounts to performing simple geometric tests exploiting the representation of our data,
as well as the geometric structure inherent in our problem, in order to evaluate predicates in seemingly de-
generate configurations. Geometric filtering can be seen as a preprocessing step before performing arithmetic
filtering. Roughly speaking, by arithmetic filtering we mean that we first try to evaluate the predicates using
a fixed-precision floating-point number type (such as double), and at the same time keep error bounds on the
numerical errors of the computations we perform. If the numerical errors are too big and do not permit us to
evaluate the predicate, we switch to an exact number type, and repeat the evaluation of the predicate. Geometric
filtering can help by eliminating situations in which the arithmetic filter will fail, thus decreasing the number of
times we need to evaluate a predicate using exact arithmetic.

To illustrate the application and effectiveness of this approach, let us consider a very simple example usage.
Suppose we want to determine if two non-input points are identical (we assume here that the input sites are
represented by doubles). In order to do that we need to compute their coordinates and compare them. If the
two points are identical, the answer to our question using double arithmetic may be wrong (due to numerical
errors), in which case we will have to reside to the more expensive exact computation. Instead, before testing
the coordinates for equality, we can use the representation of the points to potentially answer the question. More
specifically, and this is the geometric filtering part of the computation, we can first test if the defining segments
of the two points are the same. If they are not, then we proceed to comparing their coordinates as usual. Testing
the defining segments for equality does not involve any arithmetic operations on the input, but rather only
comparisons on doubles. By performing this very simple test we avoid a numerically difficult computation,
which could be performed thousands of times during the computation of a Delaunay graph.

Geometric filtering has been implemented in all our models of the SegmentDelaunayGraphTraits 2 concept.
These models are the classes: Segment Delaunay graph traits 2<K,MTag>, Segment Delaunay graph traits
without intersections 2<K,MTag>, Segment Delaunay graph filtered traits 2<CK,CM,EK,EM,FK,FM> and
Segment Delaunay graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM>.

Arithmetic Filtering. As mentioned above, performing computations with exact arithmetic can be very costly.
For this reason we have devoted considerable effort in implementing different kinds of arithmetic filtering
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mechanisms. Presently, there two ways of performing arithmetic filtering for the predicates involved in the
computation of segment Delaunay graphs:

1. The user can define his/her kernel using as number type, a number type of the form CGAL::Filtered
exact<CT,ET>. Then this kernel can be entered as the first template parameter in the Segment Delaunay
graph 2<K,MTag> or Segment Delaunay graph without intersections 2<K,MTag> class.

2. The user can define up to three different kernels CK, FK and EK (default values are provided for
most parameters). The first kernel CK is used only for constructions. The second kernel FK is the
filtering kernel: the traits class will attempt to compute the predicates using this kernel. If the fil-
tering kernel fails to successfully compute a predicate, the exact kernel EK will be used. These
three kernels are then used in the Segment Delaunay graph filtered traits 2<CK,CM,EK,EM,FK,FM>
and Segment Delaunay graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM> classes,
which have been implemented using the Filtered predicate<EP,FP> mechanism.

Our experience so far has shown that for all reasonable and valid values of the template parameters, the second
method for arithmetic filtering is more efficient among the two.

Let’s consider once more the classes Segment Delaunay graph 2<K,MTag> and Segment Delaunay graph
without intersections 2<K,MTag>. The template parameter MTag provides another degree of freedom to the
user, who can indicate the type of arithmetic operations to be used in the evaluation of the predicates. More
specifically, in both classes, MTag can be CGAL::Field with sqrt tag, in which case the predicates will be
evaluated using all four basic arithmetic operations plus square roots; this requires, of course, that the number
type used in the kernel K supports these operations exactly. The second choices are CGAL::Field tag for
the Segment Delaunay graph 2<K,MTag> class, and CGAL::Euclidean ring tag for the Segment Delaunay
graph without intersections 2<K,MTag> class. In the first case we indicate that we want the predicates to be
computed using only the four basic arithmetic operations, whereas in the second case we evaluate the predicates
using only ring operations. Again, for the predicates to be evaluated correctly, the number type used in the
kernel K must support the corresponding operations exactly.

The semantics for the template parameters CM, FM and EM in the Segment Delaunay graph
filtered traits 2<CK,CM,EK,EM,FK,FM> and Segment Delaunay graph filtered traits without intersections
2<CK,CM,EK,EM,FK,FM> classes are analogous. With each of these template parameters we can control the
type of arithmetic operations that are going to be used in calculations involving each of the corresponding ker-
nels CK, FK and EK. When the Segment Delaunay graph filtered traits 2<CK,CM,EK,EM,FK,FM> is used
the possible values for CM, FM and EM are CGAL::Field with sqrt tag and CGAL::Field tag, whereas if the
Segment Delaunay graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM> class is used, the
possible values are CGAL::Field with sqrt tag and CGAL::Euclidean ring tag. The semantics are the same as
in the case of the Segment Delaunay graph 2<K,MTag> and Segment Delaunay graph without intersections
2<K,MTag> classes.

44.4 The Segment Delaunay Graph Hierarchy

The Segment Delaunay graph hierarchy 2<SegmentDelaunayGraphTraits 2, SSTag,
SegmentDelaunayGraphDataStructure 2> class is the analogue of the Triangulation hierarchy 2 or the
Apollonius graph hierarchy 2 classes, applied to the segment Delaunay graph. It consists of a hierarchy of
segment Delaunay graphs constructed in a manner analogous to the Delaunay hierarchy by Devillers [Dev02].
Unlike the triangulation hierarchy or the Apollonius graph hierarchy, the situation here is more complicated
because of two factors: firstly, segments are treated as three objects instead of one (the two endpoints and the
interior of the segments), and secondly, the presence of strongly intersecting sites complicates significantly the
way the hierarchy is constructed. The interested reader may refer to the paper by Karavelas [Kar04] for the
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details of the construction of the hierarchy. Another alternative is to have a hybrid hierarchy that consists of the
segment Delaunay graph at the bottom-most level and point Voronoi diagrams at all other levels. This choice
seems to work very well in practice , primarily because it avoids the overhead of maintaining a Delaunay graph
for segments at the upper levels of the hierarchy. However, it seems much less likely to be possible to give
any theoretical guarantees for its performance, in contrast to the hierarchy with segment Delaunay graphs at
all levels (cf. [Kar04]). The user can choose between the two types of hierarchies by means of the template
parameter SSTag. If SSTag is set to false (which is also the default value), the upper levels of the hierarchy
consist of point Delaunay graphs. If SSTag is set to true, we have segment Delaunay graphs at all levels of the
hierarchy.

The class Segment Delaunay graph hierarchy 2<SegmentDelaunayGraphTraits 2, SSTag,
SegmentDelaunayGraphDataStructure 2> has exactly the same interface and functionality as the Segment
Delaunay graph 2<SegmentDelaunayGraphTraits 2,SegmentDelaunayGraphDataStructure 2> class. Using
the segment Delaunay graph hierarchy involves an additional cost in space and time for maintaining the
hierarchy. Our experiments have shown that it usually pays off to use the hierarchy for inputs consisting of
more than about 1,000 sites.

44.5 Examples

44.5.1 First Example

The following example shows how to use the segment Delaunay graph traits in conjunction with the Filtered
exact<CT,ET> mechanism. In addition it shows how to use a few of the iterators provided by the Segment
Delaunay graph 2 class in order to count a few site-related quantities.� �
#include <iostream>
#include <fstream>
#include <cassert>

// define the exact number type
# include <CGAL/Quotient.h>
# include <CGAL/MP_Float.h>
typedef CGAL::Quotient<CGAL::MP_Float> ENT;

// define the kernels
#include <CGAL/Simple_cartesian.h>

typedef CGAL::Simple_cartesian<double> CK;
typedef CGAL::Simple_cartesian<ENT> EK;

// typedefs for the traits and the algorithm
#include <CGAL/Segment_Delaunay_graph_filtered_traits_2.h>
#include <CGAL/Segment_Delaunay_graph_2.h>

typedef CGAL::Segment_Delaunay_graph_filtered_traits_2<CK,
/* The construction kernel allows for / and sqrt */

CGAL::Field_with_sqrt_tag,
EK,

/* The exact kernel supports field ops exactly */ CGAL::Field_tag>
Gt;

typedef CGAL::Segment_Delaunay_graph_2<Gt> SDG2;
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using namespace std;

int main() {
ifstream ifs("data/sitesx.cin");
assert( ifs );

SDG2 sdg;
SDG2::Site_2 site;

while ( ifs >> site ) { sdg.insert( site ); }

ifs.close();

assert( sdg.is_valid(true, 1) );
cout << endl << endl;

// print the number of input and output sites
cout << "# of input sites : " << sdg.number_of_input_sites() << endl;
cout << "# of output sites: " << sdg.number_of_output_sites() << endl;

unsigned int n_ipt(0), n_iseg(0), n_opt(0), n_oseg(0), n_ptx(0);

// count the number of input points and input segments
SDG2::Input_sites_iterator iit;
for (iit = sdg.input_sites_begin(); iit != sdg.input_sites_end();
++iit)
{

if ( iit->is_point() ) { n_ipt++; } else { n_iseg++; }
}

// count the number of output points and output segments, as well
// as the number of points that are points of intersection of pairs
// of strongly intersecting sites
SDG2::Output_sites_iterator oit;
for (oit = sdg.output_sites_begin(); oit != sdg.output_sites_end();
++oit)
{

if ( oit->is_segment() ) { n_oseg++; } else {
n_opt++;
if ( !oit->is_input() ) { n_ptx++; }

}
}

cout << endl << "# of input segments: " << n_iseg << endl;
cout << "# of input points: " << n_ipt << endl << endl;
cout << "# of output segments: " << n_oseg << endl;
cout << "# of output points: " << n_opt << endl << endl;
cout << "# of intersection points: " << n_ptx << endl;

return 0;
}� �
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File: examples/Segment_Delaunay_graph_2/sdg-count-sites.cpp

44.5.2 Second Example

The following example shows how to use the segment Delaunay graph hierarchy along with the filtered traits
class that supports intersecting sites.� �
#include <iostream>
#include <fstream>
#include <cassert>

// example that uses the filtered traits and
// the segment Delaunay graph hierarchy

// choose the kernel
#include <CGAL/Simple_cartesian.h>

struct Rep : public CGAL::Simple_cartesian<double> {};

// typedefs for the traits and the algorithm
#include <CGAL/Segment_Delaunay_graph_hierarchy_2.h>
#include <CGAL/Segment_Delaunay_graph_filtered_traits_2.h>

struct Gt
: public CGAL::Segment_Delaunay_graph_filtered_traits_2<Rep> {};

typedef CGAL::Segment_Delaunay_graph_hierarchy_2<Gt> SDG2;

int main()
{

std::ifstream ifs("data/sites.cin");
assert( ifs );

SDG2 sdg;
SDG2::Site_2 site;

// read the sites and insert them in the segment Delaunay graph
while ( ifs >> site ) {

sdg.insert(site);
}

// validate the segment Delaunay graph
assert( sdg.is_valid(true, 1) );

return 0;
}� �
File: examples/Segment_Delaunay_graph_2/sdg-filtered-traits.cpp
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44.5.3 Third Example

The following example demonstrates how to recover the defining sites for the edges of the Voronoi diagram
(which are the duals of the edges of the segment Delaunay graph computed).� �
#include <iostream>
#include <fstream>
#include <cassert>
#include <string>

// define the kernel
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Filtered_kernel.h>

typedef CGAL::Simple_cartesian<double> CK;
typedef CGAL::Filtered_kernel<CK> Kernel;

// typedefs for the traits and the algorithm
#include <CGAL/Segment_Delaunay_graph_traits_2.h>
#include <CGAL/Segment_Delaunay_graph_2.h>

typedef CGAL::Segment_Delaunay_graph_traits_2<Kernel> Gt;
typedef CGAL::Segment_Delaunay_graph_2<Gt> SDG2;

using namespace std;

int main()
{

ifstream ifs("data/sites2.cin");
assert( ifs );

SDG2 sdg;
SDG2::Site_2 site;

// read the sites from the stream and insert them in the diagram
while ( ifs >> site ) { sdg.insert( site ); }

ifs.close();

// validate the diagram
assert( sdg.is_valid(true, 1) );
cout << endl << endl;

/*
// now walk through the non-infinite edges of the segment Delaunay
// graphs (which are dual to the edges in the Voronoi diagram) and
// print the sites defining each Voronoi edge.
//
// Each oriented Voronoi edge (horizontal segment in the figure
// below) is defined by four sites A, B, C and D.
//
// \ /
// \ B /
// \ /
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// C ----------------- D
// / \
// / A \
// / \
//
// The sites A and B define the (oriented) bisector on which the
// edge lies whereas the sites C and D, along with A and B define
// the two endpoints of the edge. These endpoints are the Voronoi
// vertices of the triples A, B, C and B, A, D.
// If one of these vertices is the vertex at infinity the string
// "infinite vertex" is printed; the corresponding Voronoi edge is
// actually a stright-line or parabolic ray.
// The sites below are printed in the order A, B, C, D.
*/

string inf_vertex("infinite vertex");
char vid[] = {’A’, ’B’, ’C’, ’D’};

SDG2::Finite_edges_iterator eit = sdg.finite_edges_begin();
for (int k = 1; eit != sdg.finite_edges_end(); ++eit, ++k) {

SDG2::Edge e = *eit;
// get the vertices defining the Voronoi edge
SDG2::Vertex_handle v[] = { e.first->vertex( sdg.ccw(e.second) ),

e.first->vertex( sdg.cw(e.second) ),
e.first->vertex( e.second ),
sdg.tds().mirror_vertex(e.first,

e.second) };

cout << "--- Edge " << k << " ---" << endl;
for (int i = 0; i < 4; i++) {

// check if the vertex is the vertex at infinity; if yes, print
// the corresponding string, otherwise print the site
if ( sdg.is_infinite(v[i]) ) {

cout << vid[i] << ": " << inf_vertex << endl;
} else {

cout << vid[i] << ": " << v[i]->site() << endl;
}

}
cout << endl;

}

return 0;
}� �
File: examples/Segment_Delaunay_graph_2/sdg-voronoi-edges.cpp
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2D Segment Delaunay Graphs
Reference Manual
Menelaos Karavelas

CGAL provides the class CGAL::Segment Delaunay graph 2<Gt,DS> for computing the 2D Delaunay graph
of segments and points. The two template parameters must be models of the SegmentDelaunayGraphTraits
2 and SegmentDelaunayGraphDataStructure 2 concepts. The first concept is related to the geo-
metric objects and predicates associated with segment Delaunay graphs, whereas the second concept
refers to the data structure used to represent the segment Delaunay graph, which is dual to the
2D Voronoi diagram of segments and points. The classes Segment Delaunay graph traits 2<K,MTag>,
Segment Delaunay graph traits without intersections 2<K,MTag> Segment Delaunay graph filtered traits
2<K,MTag> Segment Delaunay graph filtered traits without intersections 2<K,MTag> are models of the
SegmentDelaunayGraphTraits 2 concept, whereas the class Triangulation data structure 2<Vb,Fb> is a model
of the SegmentDelaunayGraphDataStructure 2 concept.
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CGAL::Segment Delaunay graph 2<Gt,DS>

Definition

The class Segment Delaunay graph 2<Gt,DS> represents the segment Delaunay graph (which is the dual graph
of the 2D segment Voronoi diagram). Currently it supports only insertions of sites. It is templated by two tem-
plate arguments Gt, which must be a model of SegmentDelaunayGraphTraits 2 and DS, which must be a model
of SegmentDelaunayGraphDataStructure 2. The second template argument defaults to CGAL::Triangulation
data structure 2< CGAL::Segment Delaunay graph vertex base 2<Gt>, CGAL::Triangulation face base 2<
Gt> >.

#include <CGAL/Segment Delaunay graph 2.h>

Is Model for the Concepts

DelaunayGraph 2

Types

typedef Gt Geom traits; A type for the geometric traits.
typedef DS Data structure; A type for the underlying data structure.
typedef Data structure Triangulation data structure;

This type has been added so that the
Segment Delaunay graph 2<Gt,DS> class
is a model of the DelaunayGraph 2 con-
cept.

typedef typename DS::size type size type; Size type (an unsigned integral type)
typedef typename Gt::Point 2 Point 2; A type for the point defined in the geomet-

ric traits.
typedef typename Gt::Site 2 Site 2; A type for the segment Delaunay graph

site, defined in the geometric traits.

Segment Delaunay graph 2<Gt,DS>:: Point container A type for the container of points.
typedef typename Point container::iterator Point handle; A handle for points in the point container.

The vertices and faces of the segment Delaunay graph are accessed through handles, iterators and circulators.
The iterators and circulators are all bidirectional and non-mutable. The circulators and iterators are assignable
to the corresponding handle types, and they are also convertible to the corresponding handles. The edges of the
segment Delaunay graph can also be visited through iterators and circulators, the edge circulators and iterators
are also bidirectional and non-mutable. In the following, we call infinite any face or edge incident to the infinite
vertex and the infinite vertex itself. Any other feature (face, edge or vertex) of the segment Delaunay graph is
said to be finite. Some iterators (the All iterators ) allow to visit finite or infinite features while the others (the
Finite iterators) visit only finite features. Circulators visit both infinite and finite features.

typedef typename DS::Edge Edge; The edge type. The Edge(f,i) is the edge
common to faces f and f.neighbor(i). It
is also the edge joining the vertices ver-
tex(cw(i)) and vertex(ccw(i)) of f .
Precondition: i must be 0, 1 or 2.
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typedef typename DS::Vertex Vertex; A type for a vertex.
typedef typename DS::Face Face; A type for a face.
typedef typename DS::Vertex handle Vertex handle; A type for a handle to a vertex.
typedef typename DS::Face handle Face handle; A type for a handle to a face.
typedef typename DS::Vertex circulator Vertex circulator; A type for a circulator over vertices inci-

dent to a given vertex.

typedef typename DS::Face circulator Face circulator; A type for a circulator over faces incident
to a given vertex.

typedef typename DS::Edge circulator Edge circulator; A type for a circulator over edges incident
to a given vertex.

typedef typename DS::Vertex iterator All vertices iterator; A type for an iterator over all vertices.
typedef typename DS::Face iterator All faces iterator; A type for an iterator over all faces.
typedef typename DS::Edge iterator All edges iterator; A type for an iterator over all edges.
Segment Delaunay graph 2<Gt,DS>:: Finite vertices iterator A type for an iterator over finite vertices.
Segment Delaunay graph 2<Gt,DS>:: Finite faces iterator A type for an iterator over finite faces.
Segment Delaunay graph 2<Gt,DS>:: Finite edges iterator A type for an iterator over finite edges.

In addition to iterators and circulators for vertices and faces, iterators for sites are provided. In particular there
are iterators for the set of input sites and the set of output sites. The set of input sites is the set of sites inserted
by the user using the insert methods of this class. If a site is inserted multiple times, every instance of this site
will be reported. The set of output sites is the set of sites in the segment Delaunay graph. The value type of
these iterators is Site 2.

Segment Delaunay graph 2<Gt,DS>:: Input sites iterator A type for a bidirectional iterator over all in-
put sites.

Segment Delaunay graph 2<Gt,DS>:: Output sites iterator A type for a bidirectional iterator over all out-
put sites (the sites in the Delaunay graph).

Creation

In addition to the default and copy constructors the following constructors are defined:

Segment Delaunay graph 2<Gt,DS> sdg( Gt gt=Gt()); Creates the segment Delaunay graph using gt as
geometric traits.

template< class Input iterator >
Segment Delaunay graph 2<Gt,DS> sdg( Input iterator first, Input iterator beyond, Gt gt=Gt());

Creates the segment Delaunay graph using gt as
geometric traits and inserts all sites in the range
[first, beyond).
Precondition: Input iterator must be a model of
InputIterator. The value type of Input iterator
must be either Point 2 or Site 2.

Access Functions

Geom traits sdg.geom traits() Returns a reference to the segment Delaunay graph traits
object.
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int sdg.dimension() Returns the dimension of the segment Delaunay graph.
The dimension is −1 if the graph contains no sites, 0 if
the graph contains one site, 1 if it contains two sites and
2 if it contains three or more sites.

size type sdg.number of vertices() Returns the number of finite vertices of the segment De-
launay graph.

size type sdg.number of faces() Returns the number of faces (both finite and infinite) of
the segment Delaunay graph.

size type sdg.number of input sites() Return the number of input sites.
size type sdg.number of output sites() Return the number of output sites. This is equal to the

number of vertices in the segment Delaunay graph.

Face handle sdg.infinite face() Returns a face incident to the infinite vertex.
Vertex handle sdg.infinite vertex() Returns the infinite vertex.
Vertex handle sdg.finite vertex() Returns a vertex distinct from the infinite vertex.

Precondition: The number of sites in the segment Delau-
nay graph must be at least one.

Data structure sdg.data structure() Returns a reference to the segment Delaunay graph data
structure object.

Data structure sdg.tds() Same as data structure(). It has been added for compli-
ance to the DelaunayGraph 2 concept.

Point container sdg.point container() Returns a reference to the point container object.

Traversal of the segment Delaunay graph

A segment Delaunay graph can be seen as a container of faces and vertices. Therefore the Segment Delaunay
graph 2<Gt,DS> class provides several iterators and circulators that allow to traverse it (completely or partially).

Face, Edge and Vertex Iterators

The following iterators allow respectively to visit finite faces, finite edges and finite vertices of the segment
Delaunay graph. These iterators are non-mutable, bidirectional and their value types are respectively Face,
Edge and Vertex. They are all invalidated by any change in the segment Delaunay graph.

Finite vertices iterator sdg.finite vertices begin() Starts at an arbitrary finite vertex.
Finite vertices iterator sdg.finite vertices end() Past-the-end iterator.

Finite edges iterator sdg.finite edges begin() Starts at an arbitrary finite edge.
Finite edges iterator sdg.finite edges end() Past-the-end iterator.

Finite faces iterator sdg.finite faces begin() Starts at an arbitrary finite face.
Finite faces iterator sdg.finite faces end() const Past-the-end iterator.

The following iterators allow respectively to visit all (both finite and infinite) faces, edges and vertices of the
segment Delaunay graph. These iterators are non-mutable, bidirectional and their value types are respectively
Face, Edge and Vertex. They are all invalidated by any change in the segment Delaunay graph.

All vertices iterator sdg.all vertices begin() Starts at an arbitrary vertex.
All vertices iterator sdg.all vertices end() Past-the-end iterator.

All edges iterator sdg.all edges begin() Starts at an arbitrary edge.
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All edges iterator sdg.all edges end() Past-the-end iterator.

All faces iterator sdg.all faces begin() Starts at an arbitrary face.
All faces iterator sdg.all faces end() Past-the-end iterator.

Site iterators

The following iterators allow respectively to visit all sites. These iterators are non-mutable, bidirectional and
their value type is Site 2. They are all invalidated by any change in the segment Delaunay graph.

Input sites iterator sdg.input sites begin() Starts at an arbitrary input site.
Input sites iterator sdg.input sites end() Past-the-end iterator.
Output sites iterator sdg.output sites begin() Starts at an arbitrary output site.
Output sites iterator sdg.output sites end() Past-the-end iterator.

Face, Edge and Vertex Circulators

The Segment Delaunay graph 2<Gt,DS> class also provides circulators that allow to visit respectively all faces
or edges incident to a given vertex or all vertices adjacent to a given vertex. These circulators are non-mutable
and bidirectional. The operator operator++ moves the circulator counterclockwise around the vertex while the
operator-- moves clockwise. A face circulator is invalidated by any modification of the face pointed to. An
edge circulator is invalidated by any modification in one of the two faces incident to the edge pointed to. A
vertex circulator is invalidated by any modification in any of the faces adjacent to the vertex pointed to.

Face circulator sdg.incident faces( Vertex handle v)

Starts at an arbitrary face incident to v.

Face circulator sdg.incident faces( Vertex handle v, Face handle f)

Starts at face f .
Precondition: Face f is incident to vertex v.

Edge circulator sdg.incident edges( Vertex handle v)

Starts at an arbitrary edge incident to v.

Edge circulator sdg.incident edges( Vertex handle v, Face handle f)

Starts at the first edge of f incident to v, in counterclockwise
order around v.
Precondition: Face f is incident to vertex v.

Vertex circulator sdg.incident vertices( Vertex handle v)

Starts at an arbitrary vertex incident to v.

Vertex circulator sdg.incident vertices( Vertex handle v, Face handle f)

Starts at the first vertex of f adjacent to v in counterclockwise
order around v.
Precondition: Face f is incident to vertex v.
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Traversal of the Convex Hull

Applied on the infinite vertex the above methods allow to visit the vertices on the convex hull and the infi-
nite edges and faces. Note that a counterclockwise traversal of the vertices adjacent to the infinite vertex is a
clockwise traversal of the convex hull.

Vertex circulator sdg.incident vertices( sdg.infinite vertex())
Vertex circulator sdg.incident vertices( sdg.infinite vertex(), Face handle f)
Face circulator sdg.incident faces( sdg.infinite vertex())
Face circulator sdg.incident faces( sdg.infinite vertex(), Face handle f)
Edge circulator sdg.incident edges( sdg.infinite vertex())
Edge circulator sdg.incident edges( sdg.infinite vertex(), Face handle f)

Predicates

The class Segment Delaunay graph 2<Gt,DS> provides methods to test the finite or infinite character of any
feature.

bool sdg.is infinite( Vertex handle v) const

true, iff v is the infinite vertex.

bool sdg.is infinite( Face handle f) const true, iff face f is infinite.
bool sdg.is infinite( Face handle f, int i) const

true, iff edge (f,i) is infinite.

bool sdg.is infinite( Edge e) const true, iff edge e is infinite.
bool sdg.is infinite( Edge circulator ec) const

true, iff edge *ec is infinite.

Insertion

template< class Input iterator >
size type sdg.insert( Input iterator first, Input iterator beyond)

Inserts the sites in the range [first,beyond). The number of ad-
ditional sites inserted in the Delaunay graph is returned. Input
iterator must be a model of InputIterator and its value type must be
either Point 2 or Site 2.

template< class Input iterator >
size type sdg.insert( Input iterator first, Input iterator beyond, Tag false)

Same as the previous method. Input iterator must be a model of
InputIterator and its value type must be either Point 2 or Site 2.

template< class Input iterator >
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size type sdg.insert( Input iterator first, Input iterator beyond, Tag true)

Inserts the sites in the range [first,beyond) after performing a ran-
dom shuffle on them. The number of additional sites inserted in
the Delaunay graph is returned. Input iterator must be a model of
InputIterator and its value type must be either Point 2 or Site 2.

Vertex handle sdg.insert( Point 2 p) Inserts the point p in the segment Delaunay graph. If p has already
been inserted, then the vertex handle of its already inserted copy is
returned. If p has not been inserted yet, the vertex handle of p is
returned.

Vertex handle sdg.insert( Point 2 p, Vertex handle vnear)

Inserts p in the segment Delaunay graph using the site associated
with vnear as an estimate for the nearest neighbor of p. The ver-
tex handle returned has the same semantics as the vertex handle
returned by the method Vertex handle insert(Point 2 p).

Vertex handle sdg.insert( Point 2 p1, Point 2 p2)

Inserts the closed segment with endpoints p1 and p2 in the segment
Delaunay graph. If the segment has already been inserted in the De-
launay graph then the vertex handle of its already inserted copy is
returned. If the segment does not intersect any segment in the exist-
ing diagram, the vertex handle corresponding to its corresponding
open segment is returned. Finally, if the segment intersects other
segments in the existing Delaunay graph, the vertex handle to one
of its open subsegments is returned.

Vertex handle sdg.insert( Point 2 p1, Point 2 p2, Vertex handle vnear)

Inserts the segment whose endpoints are p1 and p2 in the segment
Delaunay graph using the site associated with vnear as an estimate
for the nearest neighbor of p1. The vertex handle returned has the
same semantics as the vertex handle returned by the method Vertex
handle insert(Point 2 p1, Point 2 p2).

Vertex handle sdg.insert( Site 2 s) Inserts the site s in the segment Delaunay graph. The vertex han-
dle returned has the same semantics as the vertex handle returned
by the methods Vertex handle insert(Point 2 p) and Vertex handle
insert(Point 2 p1, Point 2 p2), depending on whether s represents
a point or a segment respectively.
Precondition: s.is input() must be true.

Vertex handle sdg.insert( Site 2 s, Vertex handle vnear)

Inserts s in the segment Delaunay graph using the site associated
with vnear as an estimate for the nearest neighbor of s, if s is a
point, or the first endpoint of s, if s is a segment. The vertex handle
returned has the same semantics as the vertex handle returned by
the method Vertex handle insert(Site 2 s).
Precondition: s.is input() must be true.

Nearest neighbor location
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Vertex handle sdg.nearest neighbor( Point 2 p) Finds the nearest neighbor of the point p. In other words
it finds the site whose segment Voronoi diagram cell
contains p. Ties are broken arbitrarily and one of the
nearest neighbors of p is returned. If there are no sites
in the segment Delaunay graph Vertex handle() is re-
turned.

Vertex handle sdg.nearest neighbor( Point 2 p, Vertex handle vnear)

Finds the nearest neighbor of the point p using the site
associated with vnear as an estimate for the nearest
neighbor of p. Ties are broken arbitrarily and one of
the nearest neighbors of p is returned. If there are no
sites in the segment Delaunay graph Vertex handle() is
returned.

I/O

template < class Stream >
Stream& sdg.draw dual( Stream& str) Draws the segment Voronoi diagram to the stream str. The follow-

ing operators must be defined:
Stream& operator<<(Stream&, Gt::Segment 2)
Stream& operator<<(Stream&, Gt::Ray 2)
Stream& operator<<(Stream&, Gt::Line 2)template < class Stream >

Stream& sdg.draw skeleton( Stream& str)

Draws the segment Voronoi diagram to the stream str, except the
edges of the diagram corresponding to a segment and its endpoints.
The following operators must be defined:
Stream& operator<<(Stream&, Gt::Segment 2)
Stream& operator<<(Stream&, Gt::Ray 2)
Stream& operator<<(Stream&, Gt::Line 2)

template< class Stream >
Stream& sdg.draw dual edge( Edge e, Stream& str)

Draws the edge e of the segment Voronoi diagram to the stream
str. The following operators must be defined:
Stream& operator<<(Stream&, Gt::Segment 2)
Stream& operator<<(Stream&, Gt::Ray 2)
Stream& operator<<(Stream&, Gt::Line 2)
Precondition: e must be a finite edge.

template< class Stream >
Stream& sdg.draw dual edge( Edge circulator ec, Stream& str)

Draws the edge *ec of the segment Voronoi diagram to the stream
str. The following operators must be defined:
Stream& operator<<(Stream&, Gt::Segment 2)
Stream& operator<<(Stream&, Gt::Ray 2)
Stream& operator<<(Stream&, Gt::Line 2)
Precondition: *ec must be a finite edge.

template< class Stream >
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Stream& sdg.draw dual edge( All edges iterator eit, Stream& str)

Draws the edge *eit of the segment Voronoi diagram to the stream
str. The following operators must be defined:
Stream& operator<<(Stream&, Gt::Segment 2)
Stream& operator<<(Stream&, Gt::Ray 2)
Stream& operator<<(Stream&, Gt::Line 2)
Precondition: *eit must be a finite edge.

template< class Stream >
Stream& sdg.draw dual edge( Finite edges iterator eit, Stream& str)

Draws the edge *eit of the segment Voronoi diagram to the stream
str. The following operators must be defined:
Stream& operator<<(Stream&, Gt::Segment 2)
Stream& operator<<(Stream&, Gt::Ray 2)
Stream& operator<<(Stream&, Gt::Line 2)

void sdg.file output( std::ostream& os) Writes the current state of the segment Delaunay graph
to an output stream. In particular, all sites in the di-
agram are written to the stream (represented through
appropriate input sites), as well as the underlying com-
binatorial data structure.

void sdg.file input( std::istream& is) Reads the state of the segment Delaunay graph from an
input stream.

std::ostream& std::ostream& os << sdg Writes the current state of the segment Delaunay graph
to an output stream.

std::istream& std::istream& is >> sdg Reads the state of the segment Delaunay graph from an
input stream.

Validity check

bool sdg.is valid( bool verbose = false, int level = 1)

Checks the validity of the segment Delaunay graph. If
verbose is true a short message is sent to std::cerr. If
level is 0, only the data structure is validated. If level is
1, then both the data structure and the segment Delau-
nay graph are validated. Negative values of level always
return true, and values greater than 1 are equivalent to
level being 1.

Miscellaneous

void sdg.clear() Clears all contents of the segment Delaunay graph.
void sdg.swap( other) The segment Delaunay graphs other and sdg are swapped. sdg.swap(other)

should be preferred to sdg= other or to sdg(other) if other is deleted afterwards.

See Also

DelaunayGraph 2
SegmentDelaunayGraphTraits 2
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SegmentDelaunayGraphDataStructure 2
SegmentDelaunayGraphVertexBase 2
TriangulationFaceBase 2
CGAL::Segment Delaunay graph hierarchy 2<Gt,STag,DS>
CGAL::Segment Delaunay graph traits 2<K,MTag>
CGAL::Segment Delaunay graph traits without intersections 2<K,MTag>
CGAL::Segment Delaunay graph filtered traits 2<CK,CM,EK,EM,FK,FM>
CGAL::Segment Delaunay graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM>
CGAL::Triangulation data structure 2<Vb,Fb>
CGAL::Segment Delaunay graph vertex base 2<Gt,SSTag>
CGAL::Triangulation face base 2<Gt>
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SegmentDelaunayGraphSite 2

Definition

The concept SegmentDelaunayGraphSite 2 provides the requirements for the sites of a segment Delaunay
graph.

Refines

DefaultConstructible
CopyConstructible
Assignable

Types

SegmentDelaunayGraphSite 2:: Point 2 The point type.
SegmentDelaunayGraphSite 2:: Segment 2 The segment type.
SegmentDelaunayGraphSite 2:: FT The field number type.
SegmentDelaunayGraphSite 2:: RT The ring number type.

Creation

In addition to the default and copy constructors the following static methods are available for constructing sites:

SegmentDelaunayGraphSite 2 s.construct site 2( Point 2 p)

Constructs a site from a point: the site rep-
resents the point p.

SegmentDelaunayGraphSite 2 s.construct site 2( Point 2 p1, Point 2 p2)

Constructs a site from two points: the site
represents the (open) segment (p1,p2).

SegmentDelaunayGraphSite 2 s.construct site 2( Point 2 p1, Point 2 p2, Point 2 q1, Point 2 q2)

Constructs a site from four points: the site
represents the point of intersection of the
segments (p1,p2) and (q1,q2).

SegmentDelaunayGraphSite 2 s.construct site 2( Point 2 p1, Point 2 p2, Point 2 q1, Point 2 q2, bool b)

Constructs a site from four points and a
boolean: the site represents a segment. If
b is true the endpoints are p1 and p×, oth-
erwise p× and p2. p× is the point of inter-
section of the segments (p1,p2),(q1,q2).

SegmentDelaunayGraphSite 2 s.construct site 2( Point 2 p1,
Point 2 p2,
Point 2 q1,
Point 2 q2,
Point 2 r1,

2888



Point 2 r2)

Constructs a site from six points: the site
represents the segment with endpoints the
points of intersection of the pairs of seg-
ments (p1,p2),(q1,q2) and (p1,p2),(r1,r2).

Predicates

bool s.is defined() Returns true if the site represents a valid point or segment.
bool s.is point() Returns true if the site represents a point.
bool s.is segment() Returns true if the site represents a segment.
bool s.is input() Returns true if the site represents an input point or a segment defined by

two input points. Returns false if it represents a point of intersection of
two segments, or if it represents a segment, at least one endpoint of which
is a point of intersection of two segments.

bool s.is input( unsigned int i) Returns true if the i-th endpoint of the site is an input point. Returns false
if the i-th endpoint of the site is the intersection of two segments.
Precondition: i must be at most 1, and s.is segment() must be true.

Access Functions

Point 2 s.point() const

Returns the point represented by the site s.
Precondition: s.is point() must be true.

Segment 2 s.segment() const

Returns the segment represented by the site s.
Precondition: s.is segment() must be true.

Point 2 s.source() const

Returns the source endpoint of the segment. Note that this method can construct
an inexact point if the number type used is inexact.
Precondition: s.is segment() must be true.

Point 2 s.target() const

Returns the target endpoint of the segment. Note that this method can construct
an inexact point if the number type used is inexact.
Precondition: s.is segment() must be true.

SegmentDelaunayGraphSite 2 s.supporting site()

Returns a segment site object representing the segment that supports the
segment represented by the site. Both endpoints of the returned site are
input points.
Precondition: s.is segment() must be true.

SegmentDelaunayGraphSite 2 s.supporting site( unsigned int i)

Returns a segment site object representing the i-th segment that supports
the point of intersection represented by the site. Both endpoints of the
returned site are input points.
Precondition: i must be at most 1, s.is point() must be true and s.is
input() must be false.

2889



SegmentDelaunayGraphSite 2 s.crossing site( unsigned int i)

Returns a segment site object representing the i-th segment that supports
the i-th endpoint of the site which is not the supporting segment of the
site. Both endpoints of the returned site are input points.
Precondition: i must be at most 1, s.is segment() must be true and s.is
input(i) must be false.

SegmentDelaunayGraphSite 2 s.source site()

Returns a point site object representing the source point of the site.
Precondition: s.is segment() must be true.

SegmentDelaunayGraphSite 2 s.target site()

Returns a point site object representing the target point of the site.
Precondition: s.is segment() must be true.

Point 2 s.source of supporting site()

Returns the source point of the supporting site of the this site.
Precondition: is segment() must be true.

Point 2 s.target of supporting site()

Returns the target point of the supporting site of the this site.
Precondition: is segment() must be true.

Point 2 s.source of supporting site( unsigned int i)

Returns the source point of the i-th supporting site of the this site.
Precondition: is point() must be true, is input() must be false and i must
either be 0 or 1.

Point 2 s.target of supporting site( unsigned int i)

Returns the target point of the i-th supporting site of the this site.
Precondition: is point() must be true, is input() must be false and i must
either be 0 or 1.

Point 2 s.source of crossing site( unsigned int i)

Returns the source point of the i-th crossing site of the this site.
Precondition: is segment() must be true, is input(i) must be false and i
must either be 0 or 1.

Point 2 s.target of crossing site( unsigned int i)

Returns the target point of the i-th supporting site of the this site.
Precondition: is segment() must be true, is input(i) must be false and i
must either be 0 or 1.

Has Models

CGAL::Segment Delaunay graph site 2<K>

See Also

SegmentDelaunayGraphTraits 2
CGAL::Segment Delaunay graph site 2<K>
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CGAL::Segment Delaunay graph traits 2<K,MTag>
CGAL::Segment Delaunay graph traits without intersections 2<K,MTag>
CGAL::Segment Delaunay graph filtered traits 2<CK,CM,EK,EM,FK,FM>
CGAL::Segment Delaunay graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM>
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CGAL::Segment Delaunay graph site 2<K>

Definition

The class Segment Delaunay graph site 2<K> is a model for the concept SegmentDelaunayGraphSite 2. It is
parametrized by a template parameter K which must be a model of the Kernel concept.

#include <CGAL/Segment Delaunay graph site 2.h>

Is Model for the Concepts

SegmentDelaunayGraphSite 2

Types

The class Segment Delaunay graph site 2<K> introduces the following type in addition to the types in the
concept SegmentDelaunayGraphSite 2.

typedef K Kernel; A type for the template parameter K.

See Also

Kernel
SegmentDelaunayGraphSite 2
CGAL::Segment Delaunay graph traits 2<K,MTag>
CGAL::Segment Delaunay graph traits without intersections 2<K,MTag>
CGAL::Segment Delaunay graph filtered traits 2<CK,CM,EK,EM,FK,FM>
CGAL::Segment Delaunay graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM>
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SegmentDelaunayGraphStorageSite 2

Definition

The concept SegmentDelaunayGraphStorageSite 2 provides the requirements for the storage sites of a segment
Delaunay graph. The storage sites are sites that are used to store the information of a site in a more compact
form (that uses less storage). This is achieved by storing handles to points instead of points.

Refines

DefaultConstructible
CopyConstructible
Assignable

Types

SegmentDelaunayGraphStorageSite 2:: Site 2 The site type.
typedef typename std::set<typename Site 2::Point 2>::iterator Point handle; The type for a handle to a

point.

Creation

In addition to the default and copy constructors, the following static methods should be available for constructing
sites:

SegmentDelaunayGraphStorageSite 2 ss.construct storage site 2( Point handle hp)

Constructs a storage site from a point handle. The stor-
age site represents the point associated with the point
handle hp.

SegmentDelaunayGraphStorageSite 2 ss.construct storage site 2( Point handle hp1, Point handle hp2)

Constructs a storage site from two point handles. The
storage site represents the segment the endpoints of
which are the points associated with the point handles
hp1 and hp2.

SegmentDelaunayGraphStorageSite 2 ss.construct storage site 2( Point handle hp1,
Point handle hp2,
Point handle hq1,
Point handle hq2)

Constructs a storage site from four point handles. The
storage site represents the point of intersection of the
segments the endpoints of which are the points associ-
ated with the point handles hp1, hp2 and hq1 and hq2,
respectively.
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SegmentDelaunayGraphStorageSite 2 ss.construct storage site 2( Point handle hp1,
Point handle hp2,
Point handle hq1,
Point handle hq2,
bool b)

Constructs a site from four point handles and a boolean.
The storage site represents a segment. If b is true, the
first endpoint of the segment is the point associated with
the handle hp1 and the second endpoint is the point of
intersection of the segments the endpoints of which are
the point associated with the point handles hp1, hp2 and
hq1, hq2, respectively. If b is false, the first endpoint
of the represented segment is the one mentioned above,
whereas the second endpoint if the point associated with
the point handle hp2.

SegmentDelaunayGraphStorageSite 2 ss.construct storage site 2( Point handle hp1,
Point handle hp2,
Point handle hq1,
Point handle hq2,
Point handle hr1,
Point handle hr2)

Constructs a storage site from six point handles. The
storage site represents of segment the endpoints of which
are points of intersection of two pairs of segments, the
endpoints of which are hp1, hp2/hq1, hq2 and hp1,
hp2/hr1, hr2, respectively.

Predicates

bool ss.is defined() Returns true if the storage site represents a valid point or segment.
bool ss.is point() Returns true if the storage site represents a point.
bool ss.is segment() Returns true if the storage site represents a segment.
bool ss.is input() Returns true if the storage site represents an input point or a segment

defined by two input points. Returns false if it represents a point of
intersection of two segments, or if it represents a segment, at least one
endpoint of which is a point of intersection of two segments.

bool ss.is input( unsigned int i) Returns true if the i-th endpoint of the corresponding site is an input
point. Returns false if the i-th endpoint of the corresponding site is the
intersection of two segments.
Precondition: i must be at most 1, and ss.is segment() must be true.

Access Functions
SegmentDelaunayGraphStorageSite 2 ss.supporting site()

Returns a storage site object representing the segment that sup-
ports the segment represented by the storage site. The returned
storage site represents a site, both endpoints of which are input
points.
Precondition: ss.is segment() must be true.
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SegmentDelaunayGraphStorageSite 2 ss.source site()

Returns a storage site that represents the first endpoint of the rep-
resented segment.
Precondition: ss.is segment() must be true.

SegmentDelaunayGraphStorageSite 2 ss.target site()

Returns a storage site that represents the second endpoint of the
represented segment.
Precondition: ss.is segment() must be true.

SegmentDelaunayGraphStorageSite 2 ss.supporting site( unsigned int i)

Returns a storage site object representing the i-th segment that
supports the point of intersection represented by the storage site.
The returned storage site represents a site, both endpoints of
which are input points.
Precondition: i must be at most 1, ss.is point() must be true and
ss.is input() must be false.

SegmentDelaunayGraphStorageSite 2 ss.crossing site( unsigned int i)

Returns a storage site object representing the i-th segment that
supports the i-th endpoint of the site which is not the supporting
segment of the site. The returned storage site represents a site,
both endpoints of which are input points.
Precondition: i must be at most 1, ss.is segment() must be true
and ss.is input(i) must be false.

Site 2 ss.site()

Returns the site represented by the storage site.

Point handle ss.point()

Returns a handle associated with the represented point.
Precondition: is point() and is input() must both be true.

Point handle ss.source of supporting site()

Returns a handle to the source point of the supporting site of the
this site.
Precondition: is segment() must be true.

Point handle ss.target of supporting site()

Returns a handle to the target point of the supporting site of the
this site.
Precondition: is segment() must be true.

Point handle ss.source of supporting site( unsigned int i)

Returns a handle to the source point of the i-th supporting site of
the this site.
Precondition: is point() must be true, is input() must be false and
i must either be 0 or 1.

Point handle ss.target of supporting site( unsigned int i)

Returns a handle to the target point of the i-th supporting site of
the this site.
Precondition: is point() must be true, is input() must be false and
i must either be 0 or 1.
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Point handle ss.source of crossing site( unsigned int i)

Returns a handle to the source point of the i-th crossing site of the
this site.
Precondition: is segment() must be true, is input(i) must be false
and i must either be 0 or 1.

Point handle ss.target of crossing site( unsigned int i)

Returns a handle to the target point of the i-th supporting site of
the this site.
Precondition: is segment() must be true, is input(i) must be false
and i must either be 0 or 1.

Has Models

CGAL::Segment Delaunay graph storage site 2<Gt>

See Also

SegmentDelaunayGraphTraits 2
CGAL::Segment Delaunay graph site 2<K>
CGAL::Segment Delaunay graph storage site 2<Gt>
CGAL::Segment Delaunay graph traits 2<K,MTag>
CGAL::Segment Delaunay graph traits without intersections 2<K,MTag>
CGAL::Segment Delaunay graph filtered traits 2<CK,CM,EK,EM,FK,FM>
CGAL::Segment Delaunay graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM>
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CGAL::Segment Delaunay graph storage site 2<Gt>

Definition

The class Segment Delaunay graph storage site 2<Gt> is a model for the concept
SegmentDelaunayGraphStorageSite 2. It is parametrized by a single template parameter Gt, which
must be a model of the SegmentDelaunayGraphTraits 2 concept.

#include <CGAL/Segment Delaunay graph storage site 2.h>

Is Model for the Concepts

SegmentDelaunayGraphStorageSite 2

Types

The class Segment Delaunay graph storage site 2<Gt> introduces the following type in addition to the types
in the concept SegmentDelaunayGraphStorageSite 2.

typedef Gt Geom traits; A type for the template parameter Gt.

See Also

SegmentDelaunayGraphSite 2
SegmentDelaunayGraphTraits 2
CGAL::Segment Delaunay graph site 2<K>
CGAL::Segment Delaunay graph traits 2<K,MTag>
CGAL::Segment Delaunay graph traits without intersections 2<K,MTag>
CGAL::Segment Delaunay graph filtered traits 2<CK,CM,EK,EM,FK,FM>
CGAL::Segment Delaunay graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM>

2897



C
on

ce
pt

SegmentDelaunayGraphDataStructure 2

Definition

The concept SegmentDelaunayGraphDataStructure 2 refines the concept ApolloniusGraphDataStructure 2. In
addition it provides two methods for the merging of two vertices joined by an edge of the data structure, and
the splitting of a vertex into two. The method that merges two vertices, called join vertices identifies the two
vertices and deletes their common two faces. The method that splits a vertex, called split vertex introduces a
new vertex that shares an edge and two faces with the old vertex (see figure below). Notice that the join vertices
and split vertex operations are complementary, in the sense that one reverses the action of the other.

v1 2v

f 1

f 2

f 1

f 2

f

i

v

g
join_vertices

split_vertex

Figure 44.3: The join and split operations. Left to right: The vertex v is split into v1 and v2. The faces f and g
are inserted after f1 and f2, respectively, in the counter-clockwise sense. The vertices v1, v2 and the faces f and
g are returned as a boost tuple in that order. Right to left: The edge (f,i) is collapsed, and thus the vertices v1
and v2 are joined. The vertex v is returned.

We only describe the additional requirements with respect to the ApolloniusGraphDataStructure 2 concept.

Refines

ApolloniusGraphDataStructure 2

Modification

Vertex handle sdgds.join vertices( Face handle f, int i) Joins the vertices that are endpoints of the edge
(f,i). It returns a vertex handle to common ver-
tex.
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boost::tuples::tuple<Vertex handle, Vertex handle, Face handle, Face handle>

sdgds.split vertex( Vertex handle v, Face handle f1, Face handle f2)

Splits the vertex v into two vertices v1 and v2.
The common faces f and g of v1 and v2 are cre-
ated after (in the counter-clockwise sense) the
faces f1 and f2. The 4-tuple (v1,v2,f,g) is re-
turned (see Fig. 44.6).

Has Models

CGAL::Triangulation data structure 2<Vb,Fb>

See Also

TriangulationDataStructure 2
ApolloniusGraphDataStructure 2
SegmentDelaunayGraphVertexBase 2
TriangulationFaceBase 2
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SegmentDelaunayGraphVertexBase 2

Definition

The concept SegmentDelaunayGraphVertexBase 2 describes the requirements for the vertex base class of the
SegmentDelaunayGraphDataStructure 2 concept. A vertex stores a site of the segment Delaunay graph and
provides access to one of its incident faces through a Face handle.

Refines

DefaultConstructible
CopyConstructible
Assignable

Types

SegmentDelaunayGraphVertexBase 2:: Geom traits A type for the geometric traits that defines
the site.
Precondition: The type Geom traits must
define the type Site 2.

SegmentDelaunayGraphVertexBase 2:: Site 2 A type for the site. This type must coincide
with the type Geom traits::Site 2.

SegmentDelaunayGraphVertexBase 2:: Storage site tag A type that indicates what kind of storage
type to use. Storage site tag must either be
CGAL::Tag true or CGAL::Tag false.

SegmentDelaunayGraphVertexBase 2:: Storage site 2 A type for the internal representa-
tion of sites. This type must sat-
isfy the requirements of the concept
SegmentDelaunayGraphStorageSite 2.

SegmentDelaunayGraphVertexBase 2:: Data structure A type for the underlying data structure, to
which the vertex belongs to.

SegmentDelaunayGraphVertexBase 2:: Vertex handle A type for the vertex handle of the segment
Delaunay graph data structure.

SegmentDelaunayGraphVertexBase 2:: Face handle A type for the face handle of the segment
Delaunay graph data structure.

Creation

In addition to the default and copy constructors and following constructors are required:

SegmentDelaunayGraphVertexBase 2 v( Storage site 2 ss); Constructs a vertex associated with the site
represented by the storage site ss.

SegmentDelaunayGraphVertexBase 2 v( Storage site 2 ss, Face handle f );

Constructs a vertex associated with the site
represented by the storage site ss, and point-
ing to the face associated with the face han-
dle f .
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Access Functions

Storage site 2 v.storage site() Returns the storage site representing the site.
Site 2 v.site() Returns the site.
Face handle v.face() Returns a handle to an incident face.

Setting

void v.set site( Storage site 2 ss) Sets the storage site.
void v.set face( Face handle f) Sets the incident face.

Checking

bool v.is valid( bool verbose, int level) const

Performs any required tests on a vertex.

Has Models

CGAL::Segment Delaunay graph vertex base 2<Gt>.

See Also

SegmentDelaunayGraphDataStructure 2
SegmentDelaunayGraphTraits 2
SegmentDelaunayGraphSite 2
SegmentDelaunayGraphStorageSite 2
CGAL::Segment Delaunay graph vertex base 2<Gt>
CGAL::Segment Delaunay graph site 2<K>
CGAL::Segment Delaunay graph storage site 2<Gt,SSTag>
CGAL::Triangulation data structure 2<Vb,Fb>
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CGAL::Segment Delaunay graph vertex base 2<Gt,SSTag>

Definition

The class Segment Delaunay graph vertex base 2<Gt,SSTag> provides a model for the
SegmentDelaunayGraphVertexBase 2 concept which is the vertex base required by the
SegmentDelaunayGraphDataStructure 2 concept. The class Segment Delaunay graph vertex base 2<
Gt,SSTag> has two template arguments, the first being the geometric traits of the segment Delaunay graph and
should be a model of the concept SegmentDelaunayGraphTraits 2. The second template argument indicates
whether or not to use the simple storage site that does not support intersecting segments, or the full storage
site, that supports intersecting segments. The possible values are CGAL::Tag true and CGAL::Tag false.
CGAL::Tag true indicates that the full storage site is to be used, whereas CGAL::Tag false indicates that the
simple storage site is to be used.

#include <CGAL/Segment Delaunay graph vertex base 2.h>

Is Model for the Concepts

SegmentDelaunayGraphVertexBase 2

See Also

SegmentDelaunayGraphVertexBase 2
SegmentDelaunayGraphDataStructure 2
SegmentDelaunayGraphTraits 2
CGAL::Triangulation data structure 2<Vb,Fb>
CGAL::Segment Delaunay graph traits 2<K,MTag>
CGAL::Segment Delaunay graph traits without intersections 2<K,MTag>
CGAL::Segment Delaunay graph filtered traits 2<CK,CM,EK,EM,FK,FM>
CGAL::Segment Delaunay graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM>
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SegmentDelaunayGraphTraits 2

Definition

The concept SegmentDelaunayGraphTraits 2 provides the traits requirements for the Segment Delaunay
graph 2<Gt,DS> and Segment Delaunay graph hierarchy 2<Gt,STag,DS> classes. In particular, it provides
a type Site 2, which must be a model of the concept SegmentDelaunayGraphSite 2. It also provides construc-
tions for sites and several function object types for the predicates.

Refines

DefaultConstructible
CopyConstructible
Assignable

Types

SegmentDelaunayGraphTraits 2:: Intersections tag Indicates or not whether the intersecting segments
are to be supported. The tag must either be
CGAL::Tag true or CGAL::Tag false.

SegmentDelaunayGraphTraits 2:: Site 2 A type for a site of the segment Delaunay
graph. Must be a model of the concept
SegmentDelaunayGraphSite 2.

SegmentDelaunayGraphTraits 2:: Point 2 A type for a point.
SegmentDelaunayGraphTraits 2:: Line 2 A type for a line. Only required if the segment De-

launay graph is inserted in a stream.

SegmentDelaunayGraphTraits 2:: Ray 2 A type for a ray. Only required if the segment Delau-
nay graph is inserted in a stream.

SegmentDelaunayGraphTraits 2:: Segment 2 A type for a segment. Only required if if the segment
Delaunay graph is inserted in a stream.

SegmentDelaunayGraphTraits 2:: FT A type for the field number type of sites, points, etc..

SegmentDelaunayGraphTraits 2:: RT A type for the ring number type of sites, points, etc.
SegmentDelaunayGraphTraits 2:: Arrangement type An enumeration type that indicates the type of

the arrangement of two sites. The possible val-
ues are DISJOINT , IDENTICAL, CROSSING,
TOUCHING 1, TOUCHING 2, TOUCHING 11,
TOUCHING 12, TOUCHING 21, TOUCHING
22, OVERLAPPING 11, OVERLAPPING 12,
OVERLAPPING 21, OVERLAPPING 22, INTE-
RIOR, INTERIOR 1, INTERIOR 2, TOUCHING
11 INTERIOR 1, TOUCHING 11 INTERIOR 2,
TOUCHING 12 INTERIOR 1, TOUCHING 12
INTERIOR 2, TOUCHING 21 INTERIOR 1,
TOUCHING 21 INTERIOR 2, TOUCHING 22
INTERIOR 1, TOUCHING 22 INTERIOR 2. A
detailed description of the meaning of these values
is shown the end of the reference manual for this
concept. (to be done)
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SegmentDelaunayGraphTraits 2:: Object 2 A type representing different types of objects in two
dimensions, namely: Point 2, Site 2, Line 2, Ray 2
and Segment 2.

SegmentDelaunayGraphTraits 2:: Assign 2 Must provide template <class T> bool operator() (
T& t, Object 2 o) which assigns o to t if o was con-
structed from an object of type T . Returns true, if the
assignment was possible.

SegmentDelaunayGraphTraits 2:: Construct object 2 Must provide template <class T> Object 2 opera-
tor()( T t) that constructs an object of type Object 2
that contains t and returns it.

SegmentDelaunayGraphTraits 2:: Construct svd vertex 2

A constructor for a point of the segment Voronoi di-
agram equidistant from three sites. Must provide
Point 2 operator()(Site 2 s1, Site 2 s2, Site 2 s3),
which constructs a point equidistant from the sites
s1, s2 and s3.

SegmentDelaunayGraphTraits 2:: Compare x 2

A predicate object type. Must provide Comparison result operator()(Site
2 s1, Site 2 s2), which compares the x-coordinates of the points represented
by the sites s1 and s2.
Precondition: s1 and s2 must be points.

SegmentDelaunayGraphTraits 2:: Compare y 2

A predicate object type. Must provide Comparison result operator()(Site
2 s1, Site 2 s2), which compares the y-coordinates of the points represented
by the sites s1 and s2.
Precondition: s1 and s2 must be points.

SegmentDelaunayGraphTraits 2:: Orientation 2

A predicate object type. Must provide Orientation operator()(Site 2 s1,
Site 2 s2, Site 2 s3), which performs the usual orientation test for three
points. s1, s2 and s3.
Precondition: the sites s1, s2 and s3 must be points.

SegmentDelaunayGraphTraits 2:: Equal 2

A predicate object type. Must provide bool operator()(Site 2 s1, Site 2
s2), which determines is the points represented by the sites s1 and s2 are
identical.
Precondition: s1 and s2 must be points.

SegmentDelaunayGraphTraits 2:: Are parallel 2

A predicate object type. Must provide bool operator()(Site 2 s1, Site 2
s2), which determines is the segments represented by the sites s1 and s2
are parallel.
Precondition: s1 and s2 must be segments.

SegmentDelaunayGraphTraits 2:: Oriented side of bisector 2

A predicate object type. Must provide Oriented side operator()(Site 2 s1,
Site 2 s2, Point 2 p), which returns the oriented side of the bisector of s1
and s2 that contains p. Returns ON POSITIVE SIDE if p lies in the half-
space of s1 (i.e., p is closer to s1 than s2); returns ON NEGATIVE SIDE
if p lies in the half-space of s2; returns ON ORIENTED BOUNDARY if p
lies on the bisector of s1 and s2.
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SegmentDelaunayGraphTraits 2:: Vertex conflict 2

A predicate object type. Must provide Sign operator()(Site 2 s1, Site 2 s2,
Site 2 s3, Site 2 q), which returns the sign of the distance of q from the
Voronoi circle of s1, s2, s3 (the Voronoi circle of three sites s1, s2, s3 is
a circle co-tangent to all three sites, that touches them in that order as we
walk on its circumference in the counter-clockwise sense).
Precondition: the Voronoi circle of s1, s2, s3 must exist.
Must also provide Sign operator()(Site 2 s1, Site 2 s2, Site 2 q), which
returns the sign of the distance of q from the bitangent line of s1, s2 (a
degenerate Voronoi circle, with its center at infinity).

SegmentDelaunayGraphTraits 2:: Finite edge interior conflict 2

A predicate object type. Must provide bool operator()(Site 2 s1, Site 2 s2,
Site 2 s3, Site 2 s4, Site 2 q, Sign sgn). The sites s1, s2, s3 and s4 define
a Voronoi edge that lies on the bisector of s1 and s2 and has as endpoints
the Voronoi vertices defined by the triplets s1, s2, s3 and s1, s4 and s2. The
sign sgn is the common sign of the distance of the site q from the Voronoi
circle of the triplets s1, s2, s3 and s1, s4 and s2. In case that sgn is equal to
NEGATIVE, the predicate returns true if and only if the entire Voronoi edge
is in conflict with q. If sgn is equal to POSITIVE or ZERO, the predicate
returns false if and only if q is not in conflict with the Voronoi edge.
Precondition: the Voronoi vertices of s1, s2, s3, and s1, s4, s2 must exist.
Must also provide bool operator()(Site 2 s1, Site 2 s2, Site 2 s3, Site 2 q,
Sign sgn). The sites s1, s2, s3 and the site at infinity s∞ define a Voronoi
edge that lies on the bisector of s1 and s2 and has as endpoints the Voronoi
vertices v123 and v1∞2 defined by the triplets s1, s2, s3 and s1, s∞ and s2
(the second vertex is actually at infinity). The sign sgn is the common
sign of the distance of the site q from the two Voronoi circles centered at
the Voronoi vertices v123 and v1∞2. In case that sgn is NEGATIVE, the
predicate returns true if and only if the entire Voronoi edge is in conflict
with q. If sgn is POSITIVE or ZERO, the predicate returns false if and only
if q is not in conflict with the Voronoi edge.
Precondition: the Voronoi vertex v123 of s1, s2, s3 must exist.
Must finally provide bool operator()(Site 2 s1, Site 2 s2, Site 2 q, Sign
sgn). The sites s1, s2 and the site at infinity s∞ define a Voronoi edge that
lies on the bisector of v12∞ and v1∞2 s1 and s2 and has as endpoints the
Voronoi vertices defined by the triplets s1, s2, s∞ and s1, s∞ and s2 (both
vertices are actually at infinity). The sign sgn denotes the common sign
of the distance of the site q from the Voronoi circles centered at v12∞ and
v1∞2. If sgn is NEGATIVE, the predicate returns true if and only if the
entire Voronoi edge is in conflict with q. If POSITIVE or ZERO is false,
the predicate returns false if and only if q is not in conflict with the Voronoi
edge.

SegmentDelaunayGraphTraits 2:: Infinite edge interior conflict 2

A predicate object type. Must provide bool operator()(Site 2 s1, Site 2 s2,
Site 2 s3, Site 2 q, Sign sgn). The sites s∞, s1, s2 and s3 define a Voronoi
edge that lies on the bisector of s∞ and s1 and has as endpoints the Voronoi
vertices v∞12 and v∞31 defined by the triplets s∞, s1, s2 and s∞, s3 and s1.
The sign sgn is the common sign of the distances of q from the Voronoi
circles centered at the vertices v∞12 and v∞31. If sgn is NEGATIVE, the
predicate returns true if and only if the entire Voronoi edge is in conflict
with q. If sgn is POSITIVE or ZERO, the predicate returns false if and only
if q is not in conflict with the Voronoi edge.
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SegmentDelaunayGraphTraits 2:: Oriented side 2

A predicate object type. Must provide Oriented side operator()(Site 1 s1,
Site 2 s2, Site 2 s3, Site 2 s, Site 2 p). Determines the oriented side of the
line ` that contains the point site p, where ` is the line that passes through
the Voronoi vertex of the sites s1, s2, s3 and is perpendicular to the segment
site s.
Precondition: s must be a segment and p must be a point.

SegmentDelaunayGraphTraits 2:: Arrangement type 2

A predicate object type. Must provide Arrangement type operator()(Site 2
s1, Site 2 s2) that returns the type of the arrangement of the two sites s1
and s2.

Access to predicate objects

Compare x 2 gt.compare x 2 object()
Compare y 2 gt.compare y 2 object()
Orientation 2 gt.orientation 2 object()
Equal 2 gt.equal 2 object()
Are parallel 2 gt.are parallel 2 object()
Oriented side of bisector 2 gt.oriented side of bisector test 2 object()
Vertex conflict 2 gt.vertex conflict 2 object()
Finite edge interior conflict 2 gt.finite edge interior conflict 2 object()
Infinite edge interior conflict 2 gt.infinite edge interior conflict 2 object()
Oriented side 2 gt.oriented side 2 object()
Arrangement type 2 gt.arrangement type 2 object()

Access to contructor objects

Construct object 2 gt.construct object 2 object()
Construct svd vertex 2 gt.construct svd vertex 2 object()

Access to other objects

Assign 2 gt.assign 2 object()

Has Models

CGAL::Segment Delaunay graph traits 2<K,MTag>
CGAL::Segment Delaunay graph traits without intersections 2<K,MTag>
CGAL::Segment Delaunay graph filtered traits 2<CK,CM,EK,EM,FK,FM>
CGAL::Segment Delaunay graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM>

See Also

SegmentDelaunayGraphSite 2
CGAL::Segment Delaunay graph 2<Gt,DS>
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CGAL::Segment Delaunay graph hierarchy 2<Gt,STag,DS>
CGAL::Segment Delaunay graph traits 2<K,MTag>
CGAL::Segment Delaunay graph traits without intersections 2<K,MTag>
CGAL::Segment Delaunay graph filtered traits 2<CK,CM,EK,EM,FK,FM>
CGAL::Segment Delaunay graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM>
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CGAL::Segment Delaunay graph traits 2<K,MTag>

Definition

The class Segment Delaunay graph traits 2<K,MTag> provides a model for the
SegmentDelaunayGraphTraits 2 concept. This class has two template parameters. The first template
parameter must be a model of the Kernel concept. The second template parameter corresponds to how
predicates are evaluated. There are two possible values for MTag, namely CGAL::Field with sqrt tag and
CGAL::Field tag. The first one must be used when the number type used in the representation supports the
exact evaluation of signs of expressions involving all four basic operations and square roots, whereas the
second one requires the exact evaluation of signs of field-type expressions, i.e., expressions involving additions,
subtractions, multiplications and divisions. The default value for MTag is CGAL::Field tag. The way the
predicates are evaluated is discussed in [Bur96] and [Kar04] (the geometric filtering part).

#include <CGAL/Segment Delaunay graph traits 2.h>

Is Model for the Concepts

SegmentDelaunayGraphTraits 2

Types

typedef CGAL::Tag true Intersections tag;

The Segment Delaunay graph traits 2<K,MTag> class introduces a few additional types with respect to the
SegmentDelaunayGraphTraits 2 concept. These are:

typedef K Kernel; A typedef for the template parameter K.
typedef MTag Method tag; A typedef for the template parameter MTag.

See Also

Kernel
SegmentDelaunayGraphTraits 2
CGAL::Field tag
CGAL::Field with sqrt tag
CGAL::Segment Delaunay graph 2<Gt,DS>
CGAL::Segment Delaunay graph hierarchy 2<Gt,STag,DS>
CGAL::Segment Delaunay graph traits without intersections 2<K,MTag>
CGAL::Segment Delaunay graph filtered traits 2<CK,CM,EK,EM,FK,FM>
CGAL::Segment Delaunay graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM>
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CGAL::Segment Delaunay graph traits without intersections 2<
K,MTag>

Definition

The class Segment Delaunay graph traits without intersections 2<K,MTag> provides a model for the
SegmentDelaunayGraphTraits 2 concept. This class has two template parameters. The first template parameter
must be a model of the Kernel concept. The second template parameter corresponds to how predicates are evalu-
ated. There are two possible values for MTag, namely CGAL::Field with sqrt tag and CGAL::Euclidean ring
tag. The first one must be used when the number type used in the representation supports the exact evaluation
of signs of expressions involving all four basic operations and square roots, whereas the second one requires
the exact evaluation of signs of ring-type expressions, i.e., expressions involving only additions, subtractions
and multiplications. The default value for MTag is CGAL::Euclidean ring tag. The way the predicates are
evaluated is discussed in [Bur96] and [Kar04] (the geometric filtering part).

#include <CGAL/Segment Delaunay graph traits 2.h>

Is Model for the Concepts

SegmentDelaunayGraphTraits 2

Types

typedef CGAL::Tag false Intersections tag;

The Segment Delaunay graph traits without intersections 2<K,MTag> class introduces a few additional types
with respect to the SegmentDelaunayGraphTraits 2 concept. These are:

typedef K Kernel; A typedef for the template parameter K.
typedef MTag Method tag; A typedef for the template parameter MTag.

See Also

Kernel
SegmentDelaunayGraphTraits 2
CGAL::Euclidean ring tag
CGAL::Field with sqrt tag
CGAL::Segment Delaunay graph 2<Gt,DS>
CGAL::Segment Delaunay graph hierarchy 2<Gt,STag,DS>
CGAL::Segment Delaunay graph traits 2<K,MTag>
CGAL::Segment Delaunay graph filtered traits 2<CK,CM,EK,EM,FK,FM>
CGAL::Segment Delaunay graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM>
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CGAL::Segment Delaunay graph filtered traits 2<
CK,CM,EK,EM,FK,FM>

Definition

The class Segment Delaunay graph filtered traits 2<CK,CM,EK,EM,FK,FM> provides a model for the
SegmentDelaunayGraphTraits 2 concept.

The class Segment Delaunay graph filtered traits 2<CK,CM,EK,EM,FK,FM> uses the filtering technique
[BBP01] to achieve traits for the Segment Delaunay graph 2<Gt,DS> class with efficient and exact predicates
given an exact kernel EK and a filtering kernel FK. The geometric constructions associated provided by this
class are equivalent to those provided by the traits class Segment Delaunay graph traits 2<CK,CM>, which
means that they may be inexact depending on the choice of the CK kernel.

This class has six template parameters. The first, third and fifth template parameters must be a models of
the Kernel concept. The parameter CK is the construction kernel and it is the kernel that will be used for
constructions. The parameter FK is the filtering kernel; this kernel will be used for performing the arithmetic
filtering for the predicates involved in the computation of the segment Delaunay graph. Finally, the parameter
EK is the exact kernel; this kernel will be used for computing the predicates if the filtering kernel fails to produce
an answer.

The second, fourth and sixth template parameters correspond to how predicates are evaluated. There are two
predefined possible values for these parameters, namely CGAL::Field with sqrt tag and CGAL::Field tag. The
first one must be used when the number type used in the representation supports the exact evaluation of signs of
expressions involving all four basic operations and square roots, whereas the second one requires that only field
operations are exact. Finally, in order to get exact constructions CM must be set to CGAL::Field with sqrt tag
and the number type in CK must support operations involing divisions and square roots (as well as the other
three basic operations of course). The way the predicates are evaluated is discussed in [Bur96] and [Kar04] (the
geometric filtering part).

The default values for the template parameters are as follows: CM = CGAL::Field with sqrt tag (it is as-
sumed that CGAL::Cartesian<double> or CGAL::Simple cartesian<double> will be the entry for the template
parameter CK), EM = CGAL::Field tag, FK = CGAL::Simple cartesian<CGAL::Interval nt<false> >, FM =
CGAL::Field with sqrt tag. If the GMP package is installed with CGAL, the template parameter EK has the de-
fault value: EK = CGAL::Simple cartesian<CGAL::Gmpq>, otherwise its default value is EK = CGAL::Simple
cartesian<CGAL::Quotient<CGAL::MP Float> >.

#include <CGAL/Segment Delaunay graph filtered traits 2.h>

Is Model for the Concepts

SegmentDelaunayGraphTraits 2
DefaultConstructible
CopyConstructible
Assignable

Types

typedef CGAL::Tag true Intersections tag;
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In addition to the types required by the SegmentDelaunayGraphTraits 2 concept the class Segment Delaunay
graph filtered traits 2<CK,CM,EK,EM,FK,FM> defines the following types:

typedef CK Kernel;
typedef CK Construction kernel;
typedef FK Filtering kernel;
typedef EK Exact kernel;
typedef CM Method tag;
typedef CM Construction traits method tag;
typedef FM Filtering traits method tag;
typedef EM Exact traits method tag;
Segment Delaunay graph filtered traits 2<CK,CM,EK,EM,FK,FM>:: Construction traits

A type for the segment Delaunay graph traits, where the ker-
nel is CK.

Segment Delaunay graph filtered traits 2<CK,CM,EK,EM,FK,FM>:: Filtering traits

A type for the segment Delaunay graph traits, where the ker-
nel is FK.

Segment Delaunay graph filtered traits 2<CK,CM,EK,EM,FK,FM>:: Exact traits

A type for the segment Delaunay graph traits, where the ker-
nel is EK.

See Also

Kernel
SegmentDelaunayGraphTraits 2
CGAL::Field tag
CGAL::Field with sqrt tag
CGAL::Segment Delaunay graph 2<Gt,DS>
CGAL::Segment Delaunay graph hierarchy 2<Gt,STag,DS>
CGAL::Segment Delaunay graph traits 2<K,MTag>
CGAL::Segment Delaunay graph traits without intersections 2<K,MTag>
CGAL::Segment Delaunay graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM>
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CGAL::Segment Delaunay graph filtered traits without intersections
2<CK,CM,EK,EM,FK,FM>

Definition

The class Segment Delaunay graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM> provides
a model for the SegmentDelaunayGraphTraits 2 concept.

The class Segment Delaunay graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM> uses the
filtering technique [BBP01] to achieve traits for the Segment Delaunay graph 2<Gt,DS> class with efficient
and exact predicates given an exact kernel EK and a filtering kernel FK. The geometric constructions associated
provided by this class are equivalent to those provided by the traits class Segment Delaunay graph traits
without intersections 2<CK,CM>, which means that they may be inexact, depending on the choice of the CK
kernel.

This class has six template parameters. The first, third and fifth template parameters must be a models of
the Kernel concept. The parameter CK is the construction kernel and it is the kernel that will be used for
constructions. The parameter FK is the filtering kernel; this kernel will be used for performing the arithmetic
filtering for the predicates involved in the computation of the segment Delaunay graph. Finally, the parameter
EK is the exact kernel; this kernel will be used for computing the predicates if the filtering kernel fails to produce
an answer.

The second, fourth and sixth template parameters correspond to how predicates are evaluated. There are two
predefined possible values for these parameters, namely CGAL::Field with sqrt tag and CGAL::Euclidean
ring tag. The first one must be used when the number type used in the representation supports the exact evalu-
ation of signs of expressions involving all four basic operations and square roots, whereas the second requires
the exact evaluation of signs of ring-type expressions, i.e., expressions involving only additions, subtractions
and multiplications. Finally, in order to get exact constructions CM must be set to CGAL::Field with sqrt tag
and the number type in CK must support operations involing divisions and square roots (as well as the other
three basic operations of course). The way the predicates are evaluated is discussed in [Bur96] and [Kar04] (the
geometric filtering part).

The default values for the template parameters are as follows: CM = CGAL::Field with sqrt tag (it is as-
sumed that CGAL::Cartesian<double> or CGAL::Simple cartesian<double> will be the entry for the template
parameter CK), EM = CGAL::Euclidean ring tag, FK = CGAL::Simple cartesian<CGAL::Interval nt<false>
>, FM = CGAL::Field with sqrt tag. If the GMP package is installed with CGAL, the template parameter
EK has the default value: EK = CGAL::Simple cartesian<CGAL::Gmpq>, otherwise its default value is EK =
CGAL::Simple cartesian<CGAL::MP Float>.

#include <CGAL/Segment Delaunay graph filtered traits 2.h>

Is Model for the Concepts

SegmentDelaunayGraphTraits 2
DefaultConstructible
CopyConstructible
Assignable

Types
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typedef CGAL::Tag false Intersections tag;

In addition to the types required by the SegmentDelaunayGraphTraits 2 concept the class Segment Delaunay
graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM> defines the following types:

typedef CK Kernel;
typedef CK Construction kernel;
typedef FK Filtering kernel;
typedef EK Exact kernel;
typedef CM Method tag;
typedef CM Construction traits method tag;
typedef FM Filtering traits method tag;
typedef EM Exact traits method tag;
Segment Delaunay graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM>:: Construction
traits

A type for the segment Delaunay graph traits, where the ker-
nel is CK.

Segment Delaunay graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM>:: Filtering traits

A type for the segment Delaunay graph traits, where the ker-
nel is FK.

Segment Delaunay graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM>:: Exact traits

A type for the segment Delaunay graph traits, where the ker-
nel is EK.

See Also

Kernel
SegmentDelaunayGraphTraits 2
CGAL::Euclidean ring tag
CGAL::Field with sqrt tag
CGAL::Segment Delaunay graph 2<Gt,DS>
CGAL::Segment Delaunay graph hierarchy 2<Gt,STag,DS>
CGAL::Segment Delaunay graph traits 2<K,MTag>
CGAL::Segment Delaunay graph traits without intersections 2<K,MTag>
CGAL::Segment Delaunay graph filtered traits 2<CK,CM,EK,EM,FK,FM>
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CGAL::Segment Delaunay graph hierarchy 2<Gt,STag,DS>

Definition

We provide an alternative to the class Segment Delaunay graph 2<Gt,DS> for the incremental construction
of the segment Delaunay graph. The Segment Delaunay graph hierarchy 2<Gt,STag,DS> class maintains a
hierarchy of Delaunay graphs. There are two possibilities as to how this hierarchy is constructed.

In the first case the bottom-most level of the hierarchy contains the full segment Delaunay graph. The upper
levels of the hierarchy contain only points that are either point sites or endpoints of segment sites in the bottom-
most Delaunay graph. A point that is in level i (either as an individdual point or as the endpoint of a segment), is
inserted in level i+1 with probability 1/α where α > 1 is some constant. In the second case the upper levels of
the hierarchy contains not only points but also segments. A site that is in level i, is in level i+1 with probability
1/β where β > 1 is some constant.

The difference between the Segment Delaunay graph 2<Gt,DS> class and the Segment Delaunay graph
hierarchy 2<Gt,STag,DS> class (both versions of it) is on how the nearest neighbor location is done. Given
a point p the location is done as follows: at the top most level we find the nearest neighbor of p as in the
Segment Delaunay graph 2<Gt,DS> class. At every subsequent level i we use the nearest neighbor found at
level i+1 to find the nearest neighbor at level i. This is a variant of the corresponding hierarchy for points found
in [Dev02]. The details are described in [Kar04].

The class has three template parameters. The first and third have essentially the same semantics as
in the Segment Delaunay graph 2<Gt,DS> class. The first template parameter must be a model of
the SegmentDelaunayGraphTraits 2 concept. The third template parameter must be a model of the
SegmentDelaunayGraphDataStructure 2 concept. However, the vertex base class that is to be used in the
segment Delaunay graph data structure must be a model of the SegmentDelaunayGraphHierarchyVertexBase 2
concept. The third template parameter defaults to Triangulation data structure 2< Segment Delaunay graph
hierarchy vertex base 2< Segment Delaunay graph vertex base 2<Gt> >, Triangulation face base 2<Gt> >.
The second template parameter controls whether or not segments are added in the upper levels of the hierar-
chy. It’s possible values are CGAL::Tag true and CGAL::Tag false. If it is set to CGAL::Tag true, segments
are also inserted in the upper levels of the hierarchy. The value CGAL::Tag false indicates that only points
are to be inserted in the upper levels of the hierarchy. The default value for the second template parameter is
CGAL::Tag false.

The Segment Delaunay graph hierarchy 2<Gt,STag,DS> class derives publicly from the Segment Delaunay
graph 2<Gt,DS> class. The interface is the same with its base class. In the sequel only additional types and
methods defined are documented.

#include <CGAL/Segment Delaunay graph hierarchy 2.h>

Is Model for the Concepts

DefaultConstructible
CopyConstructible
Assignable

Inherits From

CGAL::Segment Delaunay graph 2<Gt,DS>
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Types

Segment Delaunay graph hierarchy 2<Gt,STag,DS> introduces the following types in addition to those intro-
duced by its base class Segment Delaunay graph 2<Gt,DS>.

typedef STag Segments in hierarchy tag;

A type for the STag template parameter.

typedef CGAL::Segment Delaunay graph 2<Gt,DS> Base; A type for the base class.

Creation

In addition to the default and copy constructors, the following constructors are defined:

Segment Delaunay graph hierarchy 2<Gt,STag,DS> sdgh( Gt gt=Gt());

Creates a hierarchy of segment Delaunay graphs using gt as geometric
traits.

template< class Input iterator >
Segment Delaunay graph hierarchy 2<Gt,STag,DS> sdgh( Input iterator first,

Input iterator beyond,
Gt gt=Gt())

Creates a segment Delaunay graph hierarchy using gt as geometric
traits and inserts all sites in the range [first, beyond). Input iterator
must be a model of InputIterator. The value type of Input iterator
must be either Point 2 or Site 2.

I/O

std::ostream& std::ostream& os << svdh Writes the current state of the segment Delaunay graph hierar-
chy to an output stream. In particular, all sites in the diagram
are written to the stream (represented through appropriate in-
put sites), as well as the underlying combinatorial hierarchical
data structure.

std::istream& std::istream& is >> svdh Reads the state of the segment Delaunay graph hierarchy from
an input stream.

See Also

SegmentDelaunayGraphDataStructure 2
SegmentDelaunayGraphTraits 2
SegmentDelaunayGraphHierarchyVertexBase 2
CGAL::Segment Delaunay graph 2<Gt,DS>
CGAL::Triangulation data structure 2<Vb,Fb>
CGAL::Segment Delaunay graph traits 2<K,MTag>
CGAL::Segment Delaunay graph traits without intersections 2<K,MTag>
CGAL::Segment Delaunay graph filtered traits 2<CK,CM,EK,EM,FK,FM>
CGAL::Segment Delaunay graph filtered traits without intersections 2<CK,CM,EK,EM,FK,FM>
CGAL::Segment Delaunay graph hierarchy vertex base 2<Vbb>
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SegmentDelaunayGraphHierarchyVertexBase 2

Definition

The vertex of a segment Delaunay graph included in a segment Delaunay graph hierarchy has to provide some
pointers to the corresponding vertices in the graphs of the next and preceeding levels. Therefore, the concept
SegmentDelaunayGraphHierarchyVertexBase 2 refines the concept SegmentDelaunayGraphVertexBase 2, by
adding two vertex handles to the correponding vertices for the next and previous level graphs.

Refines

SegmentDelaunayGraphVertexBase 2

Types

SegmentDelaunayGraphHierarchyVertexBase 2 does not introduce any types in addition to those of
SegmentDelaunayGraphVertexBase 2.

Creation

The SegmentDelaunayGraphHierarchyVertexBase 2 concept does not introduce any constructors in addition to
those of the SegmentDelaunayGraphVertexBase 2 concept.

Operations

Vertex handle v.up() Returns a handle to the corresponding vertex of the next
level segment Delaunay graph. If such a vertex does not
exist Vertex handle() is returned.

Vertex handle v.down() Returns a handle to the corresponding vertex of the previ-
ous level segment Delaunay graph. If such a vertex does
not exist Vertex handle() is returned.

void v.set up( Vertex handle u) Sets the handle for the vertex of the next level segment De-
launay graph.

void v.set down( Vertex handle d) Sets the handle for the vertex of the previous level segment
Delaunay graph.

Has Models

CGAL::Segment Delaunay graph hierarchy vertex base 2<CGAL::Segment Delaunay graph vertex base
2<Gt,SSTag> >

See Also

SegmentDelaunayGraphDataStructure 2
SegmentDelaunayGraphVertexBase 2
CGAL::Segment Delaunay graph hierarchy 2<Gt,DS>
CGAL::Triangulation data structure 2<Vb,Fb>
CGAL::Segment Delaunay graph vertex base 2<Gt,SSTag>
CGAL::Segment Delaunay graph hierarchy vertex base 2<Vbb>
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CGAL::Segment Delaunay graph hierarchy vertex base 2<Vbb>

Definition

The class Segment Delaunay graph hierarchy vertex base 2<Vbb> provides a model for the
SegmentDelaunayGraphHierarchyVertexBase 2 concept, which is the vertex base required by the Segment
Delaunay graph hierarchy 2<Gt,DS> class. The class Segment Delaunay graph hierarchy vertex base
2<Vbb> is templated by a class Vbb which must be a model of the SegmentDelaunayGraphVertexBase 2
concept.

#include <CGAL/Segment Delaunay graph hierarchy vertex base 2.h>

Inherits From

Vbb

Is Model for the Concepts

SegmentDelaunayGraphHierarchyVertexBase 2

See Also

SegmentDelaunayGraphVertexBase 2
SegmentDelaunayGraphHierarchyVertexBase 2
SegmentDelaunayGraphDataStructure 2
CGAL::Segment Delaunay graph vertex base 2<Gt,SSTag>
CGAL::Triangulation data structure 2<Vb,Fb>
CGAL::Segment Delaunay graph hierarchy 2<Gt,STag,DS>
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Chapter 45

2D Apollonius Graphs (Delaunay Graphs
of Disks)
Menelaos Karavelas and Mariette Yvinec

Contents
45.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2919
45.2 Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2921
45.3 The Geometric Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2922
45.4 The Apollonius Graph Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2925
45.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2925

45.5.1 First Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2925
45.5.2 Second Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2926
45.5.3 Third Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2928
45.5.4 Fourth Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2929
Reference Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2931

45.6 Classified Reference Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2931
45.7 Alphabetical List of Reference Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2932

This chapter describes the two-dimensional Apollonius graph of CGAL. We start with a few definitions in Sec-
tion 45.1. The software design of the 2D Apollonius graph package is described in Section 45.2. In Section 45.3
we discuss the geometric traits of the 2D Apollonius graph package and in Section 45.4 the Apollonius graph
hierarchy, a data structure suitable for fast nearest neighbor queries, is briefly described.

45.1 Definitions

The 2D Apollonius graph class of CGAL is designed to compute the dual of the Apollonius diagram or, as
it is also known, the Additively weighted Voronoi diagram. The algorithm that has been implemented is dy-
namic, which means that we can perform insertions and deletions on line. The corresponding CGAL class is
called Apollonius graph 2<ApolloniusGraphTraits 2,ApolloniusGraphDataStructure 2> and will be discussed
in more detail in the sequel. The interested reader may want to refer to the paper by Karavelas and Yvinec
[KY02] for the general idea as well as the details of the algorithm implemented.

Before describing the details of the implementation we make a brief introduction to the theory of Apollonius
diagrams. The Apollonius diagram is defined over a set of sites Pi = (ci,wi), i = 1, . . . ,n, where ci is the point
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Figure 45.1: The Apollonius diagram (left) and its dual the Apollonius graph (right).

and wi the weight of Pi. It is a subdivision of the plane into connected regions, called cells, associated with the
sites (see Fig. 45.1(left)). The cell of a site Pi is the locus of points on the plane that are closer to Pi than any
other site Pj, j 6= i. The distance δ(x,Pi) of a point x in the plane to a site Pi is defined as:

δ(x,Pi) = ‖x− ci‖−wi,

where ‖ · ‖ denotes the Euclidean norm. It can easily be seen that it is a generalization of the Voronoi diagram
for points, which can actually be obtained if all the weights wi are equal. Unlike the case of points, however, it
is possible that a site Pi might have an empty cell. This can also happen in the case of the power diagram, whose
dual is the regular triangulation (see Section 37.6). If this is the case we call the site hidden (these are the black
circles in Fig. 45.1). A site which is not hidden will be referred to as visible.

If all weights wi are non-negative, the Apollonius diagram can be viewed as the Voronoi diagram of the set
of circles {P1, . . . ,Pn}, where ci is the center of the circle Pi and wi its radius. If the weights are allowed to be
negative, we need to go to 3D in order to explain what the Apollonius diagram means geometrically. We identify
the 2D Euclidean plane with the xy-plane in 3D. Then the Voronoi diagram of a set of points can be seen as the
vertical projection on the xy-plane of the lower envelope of a set of 3D cones defined as follows: for each point
p in the set of 2D points we have a cone Cp whose apex is the point p. The axis of Cp is a line parallel to the
z-axis passing through p, the angle of Cp is 45◦ and, finally Cp is facing in the positive z-direction (that is, Cp is
contained in the positive z-halfspace). The Apollonius diagram corresponds to shifting the apexes of these cones
in the z-direction by a quantity equal to the weight. Sites with negative weight will give rise to cones whose
apex is in the negative z-halfspace and sites with positive weight will give rise to cones whose apex is in the
positive z-halfspace. In a manner analogous to the case of points, the Apollonius diagram can then be defined
as the vertical projection on the xy-plane of the lower envelope of the set of shifted cones. Notice that when all
apexes are translated along the z-direction by the same amount, the projection of the lower envelope of the set
of cones does not change. In particular, we can translate all cones by a large enough amount so that all apexes
are in the positive z-halfspace. Algebraically, this means that the Apollonius diagram does not change if we add
to all weights the same quantity, which in particular, implies that we can assume without loss of generality that
all weights are positive. Given the observations above and in order to simplify our discussion of Apollonius
diagrams, we will, from now on, assume that all weights are positive, and we will refer to the sites as circles.

The Apollonius diagram is a planar graph, and so is its dual, the Apollonius graph. There are many ways to
embed it on the plane and one such way is shown in Fig. 45.1(right). The Apollonius graph is uniquely defined
once we have the Apollonius diagram. If the circles are in general position (see precise definition below),
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then the Apollonius graph is a graph with triangular faces away from the convex hull of the set of circles (by
triangular we mean that every face has exactly three edges). Near the convex hull we may have some spikes
(i.e., vertices of degree 1). To unify our approach and handling of the Apollonius graph we add to the set of
(finite) circles a fictitious circle at infinity, which we call the site at infinity. We can then connect all vertices
of the outer face of the Apollonius graph to the site at infinity which gives us a graph with the property that all
of its faces are now triangular. However, the Apollonius graph is not a triangulation for two main reasons: we
cannot always embed it on the plane with straight line segments that yield a triangulation and, moreover, we
may have two faces of the graph that have two edges in common, which is not allowed in a triangulation. Both
of these particularities appear when we consider the Apollonius graph of the set of circles in Fig. 45.1(right).

We would like to finish our brief introduction to the theory of Apollonius graphs by discussing the concept
of general position. We say that a set of circles is in general position if no two triplets of circles have the
same tritangent circle. This statement is rather technical and it is best understood in the context of points. The
equivalent statement for points is that we have no two triplets of points that define the same circumcircle, or
equivalently that no four points are co-circular. The statement about general position made above is a direct
generalization of the (much simpler to understand) statement about points. On the contrary, when we have
circles in degenerate position, the Apollonius graph has faces with more than three edges on their boundary.
We can get a triangulated version of the graph by simply triangulating the corresponding faces in an arbitrary
way. In fact the algorithm that has been implemented in CGAL has the property that it always returns a valid
triangulated version of the Apollonius graph. By valid we mean that it contains the actual Apollonius graph
(i.e., the actual dual of the Apollonius diagram) and whenever there are faces with more than three faces then
they are triangulated. The way that they are triangulated depends on the order of insertion and deletion of the
circles in the diagram.

One final point has to be made about hidden circles. First of all we would like to be more precise about our
definition of hidden circles: we say that a circle is hidden if its cell has empty interior. This definition allows
us to guarantee that all visible circles have cells that are two-dimensional regions. Geometrically the fact that a
circle is hidden means that it is contained in the closure of the disk of another circle (see again Fig. 45.1). Note
that a circle contained in the union of several disks, but not in the closure of any one of them, is not hidden.

Hidden circles pose an additional difficulty to our algorithm and software design. Since we allow circles to be
inserted and deleted at wish, it is possible that a circle that was hidden at some point in time, may become visible
at a later point in time; for example this can happen if we delete the circle that hides it. For this purpose we store
hidden circles and have them reappear when they become visible. We will discuss this issue in detail below.
For the time being it suffices to say that the user has the ability to control this behavior. More specifically it is
possible to discard the circles that become hidden. This choice is totally natural when for example we expect
to do only insertions, since in this case a circle that becomes hidden will never reappear. On the other hand if
deletions are expected as well, then we lose the ability to have the hidden circles reappear.

Degenerate Dimensions. The dimension of the Apollonius graph is in general 2. The exceptions to this rule
are as follows:

• The dimension is −1 if the Apollonius graph contains no circles.

• The dimension is 0 if the Apollonius graph contains exactly one visible circle.

• The dimension is 1 is the Apollonius graph contains exactly two visible circles.

45.2 Software Design

The 2D Apollonius graph class Apollonius graph 2<ApolloniusGraphTraits
2,ApolloniusGraphDataStructure 2> follows the design of the triangulation package of CGAL. It is
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parametrized by two arguments:

• the geometric traits class. It provides the basic geometric objects involved in the algorithm, such as
sites, points etc. It also provides the geometric predicates for the computation of the Apollonius graph, as
well as some basic constructions that can be used, for example, to visualize the Apollonius graph or the
Apollonius diagram. The geometric traits for the Apollonius graph will be discussed in more detail in the
next section.

• the Apollonius graph data structure. This is essentially the same as the triangulation data structure
(discussed in Chapter 38), augmented with some additional operations that are specific to Apollonius
graphs. The corresponding concept is that of ApolloniusGraphDataStructure 2, which in fact is a refine-
ment of the TriangulationDataStructure 2 concept. The class Triangulation data structure 2<Vb,Fb> is
a model of the concept ApolloniusGraphDataStructure 2. A default value for the corresponding template
parameter is provided, so the user does not need to specify it.

Storing Hidden Sites. As we have already mentioned a circle is hidden if it is contained inside some visible
circle. This creates a parent-child relationship between visible and hidden circles: the parent of a hidden circle
is the visible circle that contains it. If more than one visible circles contain a hidden circle then the hidden circle
can be assigned to any of the visible circles arbitrarily.

To store hidden circles we assign to every visible circle a list. This list comprises the hidden circles that are
contained in the visible circle. The user can access the hidden circles associated with a visible circle through an
iterator called Hidden sites iterator. This iterator is defined in the ApolloniusGraphVertexBase 2 concept and
is implemented by its model, the Apollonius graph vertex base 2<Gt,StoreHidden> class. It is also possible to
iterate through the entire set of hidden sites using an homonymous iterator defined by the Apollonius graph 2<
Gt,Agds> class.

Since storing hidden sites may not be of interest in some cases (e.g., for example this is the case if we only
perform insertions in the Apollonius graph), the user has the possibility of controlling this behavior. More
precisely, the class Apollonius graph vertex base 2<Gt,StoreHidden> has two template parameters, the second
of which is a Boolean value. This value is by default true and it indicates that hidden sites should be stored. The
user can indicate that hidden sites may be discarded by setting this value to false.

45.3 The Geometric Traits

The predicates required for the computation of the Apollonius graph are rather complicated. It is not the purpose
of this document to discuss them in detail. The interested reader may refer to the papers by Karavelas and Emiris
for the details [KE02, KE03]. However, we would like to give a brief overview of what they compute. There
are several predicates needed by this algorithm. We will discuss the most important/complicated ones. It turns
out that it is much easier to describe them in terms of the Apollonius diagram, rather than the Apollonius graph.
Whenever it is applicable we will also describe their meaning in terms of the Apollonius graph.

The first two geometric predicates are called Is hidden 2 and Oriented side of bisector 2. The first one in-
volves two circles, say P1 and P2. It determines if P1 is hidden with respect to P2; more precisely it checks
whether the circle P1 is contained in the closure of the disk defined by the circle P2. As its name indicates, it
determines if a circle is hidden or not. The second predicate involves two circles P1 and P2 and a point q. It
answers the question whether q is closer to P1 or P2. Its name stems from the fact that answering the aforemen-
tioned question is equivalent to determining the oriented side of the bisector of P1 and P2 that contains the query
point q. This predicate is used by the algorithm for closest neighbor queries for points.

The next geometric predicate is called Vertex conflict 2 and it involves four circles P1, P2, P3, and P4 (see Fig.
45.3). The first three (red circles in Fig. 45.3) define a tritangent circle (yellow circle in Fig. 45.3). What we
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want to determine is the sign of the distance of the green circle from the yellow circle. The distance between
two circles K1 = (c1,r1) and K2 = (c2,r2) is defined as the distance of their centers minus their radii:

δ(K1,K2) = ‖c1− c2‖− r1− r2.

This predicate determines if a vertex in the Apollonius diagram (the center of the yellow circle) is destroyed
when a new circle is inserted in the diagram (the green circle). In the Apollonius graph it tells us if a triangular
face of the diagram is to be destroyed or not.

Figure 45.2: The Vertex conflict 2 predicate. The left-most, bottom-most and top-most circles define the
tritangent circle in the middle. We want to determine the sign of the distance of the left-most circle from the
one in the middle. The almost horizontal curve is the bisector of the top-most and bottom-most circles. Left:
the predicate returns CGAL::NEGATIVE. Right: the predicate returns CGAL::POSITIVE.

What we essentially want to compute when we construct incrementally a Voronoi diagram, is whether the object
to be inserted destroys an edge of the Voronoi diagram or not. In the case of points this is really easy and it
amounts to the well known incircle test. In the case of circles the situation is more complicated. We can
have six possible outcomes as to what portion of an edge of the Apollonius diagram the new circle destroys
(see Fig. 45.3). The first two can be answered directly by the Vertex conflict 2 predicate evaluated for the
two endpoints of the Apollonius diagram edge. This is due to the fact that the value of the Vertex conflict 2
predicate is different for the two endpoints. If the two values are the same then we need an additional test
which determines if the interior of the Apollonius diagram edge is destroyed by the new circle. This is what the
Finite edge interior conflict 2 and Infinite edge interior conflict 2 predicates do. In essence, it is the same
predicate (same idea) applied to two different types of edges in the Apollonius diagram: a finite or an infinite
edge. An edge is infinite if its dual edge in the Apollonius graph connects the site at infinity with the vertex
corresponding to a (finite) circle; otherwise it is a finite edge.

The last predicate that we want to discuss is called Is degenerate edge 2. It tells us whether an edge in the
Apollonius diagram is degenerate, that is if its two endpoints coincide. In the Apollonius graph such an edge
corresponds to one of the additional edges that we use to triangulate the non-triangular faces.

The aforementioned predicates are part of the ApolloniusGraphTraits 2 concept of CGAL. CGAL also provides
a model for this concept, the Apollonius graph traits 2<K,Method tag> class. The first template parameter of
this class must be a model of the Kernel concept. The second template parameter is a tag that indicates what
operations are allowed in the computations that take place within the traits class. The two possible values of the
Method tag parameter are CGAL::Ring tag and CGAL::Sqrt field tag. When CGAL::Ring tag is used, only
ring operations are used during the evaluation of the predicates, whereas if CGAL::Sqrt field tag is chosen, all
four field operations, as well as square roots, are used during the predicate evaluation.
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Figure 45.3: The 6 possible outcomes of the Finite edge interior conflict 2 predicate. Top left: only a neigh-
borhood around the left-most endpoint of the edge will be destroyed. Top right: only a neighborhood around the
right-most endpoint of the edge will be destroyed. Middle left: no portion of the edge is destroyed. Middle right:
the entire edge will be destroyed. Bottom left: a neighborhood in the interior of the edge will be destroyed; the
regions near the endpoints remain unaffected. Bottom right: The neighborhood around the two endpoints will
be destroyed, but an interval in the interior of the edge will remain in the new diagram.

The Apollonius graph traits 2<K,Method tag> class provides exact predicates if the number type in the kernel
K is an exact number type. This is to be associated with the type of operations allowed for the predicate evalu-
ation. For example CGAL::MP Float as number type, with CGAL::Ring tag as tag will give exact predicates,
whereas CGAL::MP Float with CGAL::Sqrt field tag will give inexact predicates.

Since using an exact number type may be too slow, the Apollonius graph traits 2<K,Method tag> class is
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designed to support the dynamic filtering of CGAL through the CGAL::Filtered exact<CT,ET> mechanism. In
particular if CT is an inexact number type that supports the operations denoted by the tag Method tag and ET
is an exact number type for these operations, then kernel with number type CGAL::Filtered exact<CT,ET>
will yield exact predicates for the Apollonius graph traits. To give a concrete example, CGAL::Filtered exact<
double,CGAL::MP Float> with CGAL::Ring tag will produce exact predicates.

Another possibility for fast and exact predicate evaluation is to use the Apollonius graph filtered traits 2<
CK,CM,EK,EM,FK,FM> class. This class is the analog of a filtered kernel. It takes a constructions kernel CK,
a filtering kernel FK and an exact kernel EK, as well as the corresponding tags (CM, FM and EM, respectively).
It evaluates the predicates by first using the filtering kernel, and if this fails the evaluation is performed using the
exact kernel. The constructions are done using the kernel CK, which means that they are not necessarily exact.
All template parameters except CK have default values, which are explained in the reference manual.

45.4 The Apollonius Graph Hierarchy

The Apollonius graph hierarchy 2<ApolloniusGraphTraits 2,ApolloniusGraphDataStructure 2> class is
nothing but the equivalent of the Triangulation hierarchy 2 class, applied to the Apollonius graph. It consists
of a series of Apollonius graphs constructed in a manner analogous to the Delaunay hierarchy by Devillers
[Dev98]. The class Apollonius graph hierarchy 2<ApolloniusGraphTraits 2,ApolloniusGraphDataStructure
2> has exactly the same interface and functionality as the Apollonius graph 2<ApolloniusGraphTraits
2,ApolloniusGraphDataStructure 2> class. Using the Apollonius graph hierarchy involves an additional cost
in space and time for maintaining the hierarchy. Our experiments have shown that it usually pays off to use the
hierarchy for inputs consisting of more than 1,000 circles. This threshold holds for both the construction of the
Apollonius diagram itself, as well as for nearest neighbor queries.

45.5 Examples

45.5.1 First Example� �
#include <iostream>
#include <fstream>
#include <cassert>

// the number type
#include <CGAL/MP_Float.h>

// example that uses an exact number type

typedef CGAL::MP_Float NT;

// choose the kernel
#include <CGAL/Simple_cartesian.h>

typedef CGAL::Simple_cartesian<NT> Kernel;

// typedefs for the traits and the algorithm

#include <CGAL/Apollonius_graph_2.h>
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#include <CGAL/Apollonius_graph_traits_2.h>

typedef CGAL::Apollonius_graph_traits_2<Kernel> Traits;
typedef CGAL::Apollonius_graph_2<Traits> Apollonius_graph;

int main()
{

std::ifstream ifs("data/sites.cin");
assert( ifs );

Apollonius_graph ag;
Apollonius_graph::Site_2 site;

// read the sites and insert them in the Apollonius graph
while ( ifs >> site ) {

ag.insert(site);
}

// validate the Apollonius graph
assert( ag.is_valid(true, 1) );
std::cout << std::endl;

return 0;
}� �
File: examples/Apollonius_graph_2/ag2_exact_traits.cpp

45.5.2 Second Example� �
#include <CGAL/basic.h>

// standard includes
#include <iostream>
#include <fstream>
#include <cassert>

#if defined CGAL_USE_LEDA
# include <CGAL/leda_real.h>
#elif defined CGAL_USE_CORE
# include <CGAL/CORE_Expr.h>
#endif

#if defined CGAL_USE_LEDA
// If LEDA is present use leda_real as the exact number type
typedef leda_real NT;

#elif defined CGAL_USE_CORE
// Otherwise if CORE is present use CORE’s Expr as the exact number type
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typedef CORE::Expr NT;

#else

// Otherwise just use double. This may cause numerical errors but it
// is still worth doing it to show how to define correctly the traits
// class
typedef double NT;

#endif

#include <CGAL/Simple_cartesian.h>

typedef CGAL::Simple_cartesian<NT> Kernel;

// typedefs for the traits and the algorithm

#include <CGAL/Apollonius_graph_2.h>
#include <CGAL/Apollonius_graph_traits_2.h>

// the traits class is now going to assume that the operations
// +,-,*,/ and sqrt are supported exactly
typedef
CGAL::Apollonius_graph_traits_2<Kernel,CGAL::Field_with_sqrt_tag> Traits;

typedef CGAL::Apollonius_graph_2<Traits> Apollonius_graph;

int main()
{

std::ifstream ifs("data/sites.cin");
assert( ifs );

Apollonius_graph ag;
Apollonius_graph::Site_2 site;

// read the sites and insert them in the Apollonius graph
while ( ifs >> site ) {

ag.insert(site);
}

// validate the Apollonius graph
assert( ag.is_valid(true, 1) );
std::cout << std::endl;

return 0;
}� �
File: examples/Apollonius_graph_2/ag2_exact_traits_sqrt.cpp
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45.5.3 Third Example

� �
#include <iostream>
#include <fstream>
#include <cassert>

// example that uses the filtered traits

// choose the representation
#include <CGAL/Simple_cartesian.h>

typedef CGAL::Simple_cartesian<double> Rep;

#include <CGAL/Apollonius_graph_2.h>
#include <CGAL/Triangulation_data_structure_2.h>
#include <CGAL/Apollonius_graph_vertex_base_2.h>
#include <CGAL/Triangulation_face_base_2.h>
#include <CGAL/Apollonius_graph_filtered_traits_2.h>

// typedef for the traits; the filtered traits class is used
typedef CGAL::Apollonius_graph_filtered_traits_2<Rep> Traits;

// typedefs for the algorithm

// With the second template argument in the vertex base class being
// false, we indicate that there is no need to store the hidden sites.
// One case where this is indeed not needed is when we only do
// insertions, like in the main program below.
typedef CGAL::Apollonius_graph_vertex_base_2<Traits,false> Vb;
typedef CGAL::Triangulation_face_base_2<Traits> Fb;
typedef CGAL::Triangulation_data_structure_2<Vb,Fb> Agds;
typedef CGAL::Apollonius_graph_2<Traits,Agds> Apollonius_graph;

int main()
{

std::ifstream ifs("data/sites.cin");
assert( ifs );

Apollonius_graph ag;
Apollonius_graph::Site_2 site;

// read the sites and insert them in the Apollonius graph
while ( ifs >> site ) {

ag.insert(site);
}

// validate the Apollonius graph
assert( ag.is_valid(true, 1) );
std::cout << std::endl;

// now remove all sites
std::cout << "Removing all sites... " << std::flush;
while ( ag.number_of_vertices() > 0 ) {
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ag.remove( ag.finite_vertex() );
}
std::cout << "done!" << std::endl << std::endl;

return 0;
}� �
File: examples/Apollonius_graph_2/ag2_filtered_traits_no_hidden.cpp

45.5.4 Fourth Example� �
#include <iostream>
#include <fstream>
#include <cassert>

// example that uses the filtered traits

#include <CGAL/MP_Float.h>
#include <CGAL/Simple_cartesian.h>

// constructions kernel (inexact)
typedef CGAL::Simple_cartesian<double> CK;

// exact kernel
typedef CGAL::Simple_cartesian<CGAL::MP_Float> EK;

// typedefs for the traits and the algorithm

#include <CGAL/Apollonius_graph_hierarchy_2.h>
#include <CGAL/Apollonius_graph_filtered_traits_2.h>

// Type definition for the traits class.
// In this example we explicitly define the exact kernel. We also
// explicitly define what operations to use for the evaluation of the
// predicates and constructions, when the filtering and the exact
// kernels are used respectively.
// Note that the operations allowed for the filtering and the
// constructions (field operations plus square roots) are different
// from the operations allowed when the exact kernel is used (ring
// operations).
typedef CGAL::Field_with_sqrt_tag CM;
typedef CGAL::Integral_domain_without_division_tag EM;
typedef CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM> Traits;

// Now we use the Apollonius graph hierarchy.
// The hierarchy is faster for inputs consisting of about more than
// 1,000 sites
typedef CGAL::Apollonius_graph_hierarchy_2<Traits> Apollonius_graph;
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int main()
{

std::ifstream ifs("data/hierarchy.cin");
assert( ifs );

Apollonius_graph ag;
Apollonius_graph::Site_2 site;

// read the sites and insert them in the Apollonius graph
while ( ifs >> site ) {

ag.insert(site);
}

// validate the Apollonius graph
assert( ag.is_valid(true, 1) );

return 0;
}� �
File: examples/Apollonius_graph_2/ag2_hierarchy.cpp
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2D Apollonius Graphs (Delaunay Graphs
of Disks)
Reference Manual
Menelaos Karavelas and Mariette Yvinec

An Apollonius graph is the dual of the Apollonius diagram, also known as the additively weighted Voronoi
diagram. It is essentially the Voronoi diagram of a set of disks, where the distance of a point of the plane from
a disk is defined as the Euclidean distance of the point and the center of the circle, minus the radius of the disk.

CGAL provides the class CGAL::Apollonius graph 2<Gt,Agds> for computing the 2D Apollonius graph. The
two template parameters must be models of the ApolloniusGraphTraits 2 and ApolloniusGraphDataStructure
2 concepts. The first concept is related to the geometric objects and predicates associated with Apollonius
graphs, whereas the second concept refers to the data structure used to represent the Apollonius graph. The
classes Apollonius graph traits 2<K,Method tag> and Triangulation data structure 2<Vb,Fb> are models of
the aforementioned concepts.
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CGAL::Apollonius graph 2<Gt,Agds>

Definition

The class Apollonius graph 2<Gt,Agds> represents the Apollonius graph. It supports insertions and deletions
of sites. It is templated by two template arguments Gt, which must be a model of ApolloniusGraphTraits
2, and Agds, which must be a model of ApolloniusGraphDataStructure 2. The second template argu-
ment defaults to CGAL::Triangulation data structure 2< CGAL::Apollonius graph vertex base 2<Gt,true>,
CGAL::Triangulation face base 2<Gt> >.

#include <CGAL/Apollonius graph 2.h>

Is Model for the Concepts

DelaunayGraph 2

Types

typedef Agds Data structure; A type for the underlying data structure.
typedef Data structure Triangulation data structure; Same as the Data structure type. This type

has been introduced in order for the Apollonius
graph 2<Gt,Agds> class to be a model of the
DelaunayGraph 2 concept.

typedef Gt Geom traits; A type for the geometric traits.
typedef Gt::Point 2 Point 2; A type for the point defined in the geometric traits.

typedef Gt::Site 2 Site 2; A type for the Apollonius site, defined in the geo-
metric traits.

The vertices and faces of the Apollonius graph are accessed through handles, iterators and circulators. The
iterators and circulators are all bidirectional and non-mutable. The circulators and iterators are assignable to
the corresponding handle types, and they are also convertible to the corresponding handles. The edges of the
Apollonius graph can also be visited through iterators and circulators, the edge circulators and iterators are also
bidirectional and non-mutable. In the following, we call infinite any face or edge incident to the infinite vertex
and the infinite vertex itself. Any other feature (face, edge or vertex) of the Apollonius graph is said to be finite.
Some iterators (the All iterators ) allow to visit finite or infinite features while the others (the Finite iterators)
visit only finite features. Circulators visit both infinite and finite features.

typedef Data structure::Edge Edge; the edge type. The Edge(f,i) is the edge
common to faces f and f.neighbor(i). It
is also the edge joining the vertices ver-
tex(cw(i)) and vertex(ccw(i)) of f .
Precondition: i must be 0, 1 or 2.

typedef Data structure::Vertex Vertex; A type for a vertex.
typedef Data structure::Face Face; A type for a face.
typedef Data structure::Vertex handle Vertex handle; A type for a handle to a vertex.
typedef Data structure::Face handle Face handle; A type for a handle to a face.
typedef Data structure::Vertex circulator Vertex circulator; A type for a circulator over vertices in-

cident to a given vertex.
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typedef Data structure::Face circulator Face circulator; A type for a circulator over faces inci-
dent to a given vertex.

typedef Data structure::Edge circulator Edge circulator; A type for a circulator over edges inci-
dent to a given vertex.

typedef Data structure::Vertex iterator All vertices iterator; A type for an iterator over all vertices.
typedef Data structure::Face iterator All faces iterator; A type for an iterator over all faces.
typedef Data structure::Edge iterator All edges iterator; A type for an iterator over all edges.
typedef Data structure::size type size type; An unsigned integral type.

Apollonius graph 2<Gt,Agds>:: Finite vertices iterator A type for an iterator over finite vertices.
Apollonius graph 2<Gt,Agds>:: Finite faces iterator A type for an iterator over finite faces.
Apollonius graph 2<Gt,Agds>:: Finite edges iterator A type for an iterator over finite edges.

In addition to iterators and circulators for vertices and faces, iterators for sites are provided. In particular there
are iterators for the entire set of sites, the hidden sites and the visible sites of the Apollonius graph.

Apollonius graph 2<Gt,Agds>:: Sites iterator A type for an iterator over all sites.
Apollonius graph 2<Gt,Agds>:: Visible sites iterator A type for an iterator over all visible sites.
Apollonius graph 2<Gt,Agds>:: Hidden sites iterator A type for an iterator over all hidden sites.

Creation

Apollonius graph 2<Gt,Agds> ag( Gt gt=Gt()); Creates an Apollonius graph using gt as geometric traits.

template< class Input iterator >
Apollonius graph 2<Gt,Agds> ag( Input iterator first, Input iterator beyond, Gt gt=Gt());

Creates an Apollonius graph using gt as geometric traits
and inserts all sites in the range [first, beyond).
Precondition: Input iterator must be a model of InputIt-
erator. The value type of Input iterator must be Site 2.

Apollonius graph 2<Gt,Agds> ag( other); Copy constructor. All faces and vertices are duplicated.
After the construction, ag and other refer to two different
Apollonius graphs : if other is modified, ag is not.

Apollonius graph 2<Gt,Agds> ag = other Assignment. If ag and other are the same object nothing
is done. Otherwise, all the vertices and faces are dupli-
cated. After the assignment, ag and other refer to differ-
ent Apollonius graphs : if other is modified, ag is not.

Access Functions

Geom traits ag.geom traits() Returns a reference to the Apollonius graph traits object.
Data structure ag.data structure() Returns a reference to the underlying data structure.
Data structure ag.tds() Same as data structure(). This method has been added in

compliance with the DelaunayGraph 2 concept.

int ag.dimension() Returns the dimension of the Apollonius graph.
size type ag.number of vertices() Returns the number of finite vertices.
size type ag.number of visible sites() Returns the number of visible sites.
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size type ag.number of hidden sites() Returns the number of hidden sites.
size type ag.number of faces() Returns the number of faces (both finite and infinite) of the

Apollonius graph.

Face handle ag.infinite face() Returns a face incident to the infinite vertex.
Vertex handle ag.infinite vertex() Returns the infinite vertex.
Vertex handle ag.finite vertex() Returns a vertex distinct from the infinite vertex.

Precondition: The number of (visible) vertices in the Apol-
lonius graph must be at least one.

Traversal of the Apollonius graph

An Apollonius graph can be seen as a container of faces and vertices. Therefore the Apollonius graph provides
several iterators and circulators that allow to traverse it (completely or partially).

Face, Edge and Vertex Iterators

The following iterators allow respectively to visit finite faces, finite edges and finite vertices of the Apollonius
graph. These iterators are non-mutable, bidirectional and their value types are respectively Face, Edge and
Vertex. They are all invalidated by any change in the Apollonius graph.

Finite vertices iterator ag.finite vertices begin() Starts at an arbitrary finite vertex.
Finite vertices iterator ag.finite vertices end() Past-the-end iterator.

Finite edges iterator ag.finite edges begin() Starts at an arbitrary finite edge.
Finite edges iterator ag.finite edges end() Past-the-end iterator.

Finite faces iterator ag.finite faces begin() Starts at an arbitrary finite face.
Finite faces iterator ag.finite faces end() const Past-the-end iterator.

The following iterators allow respectively to visit all (both finite and infinite) faces, edges and vertices of the
Apollonius graph. These iterators are non-mutable, bidirectional and their value types are respectively Face,
Edge and Vertex. They are all invalidated by any change in the Apollonius graph.

All vertices iterator ag.all vertices begin() Starts at an arbitrary vertex.
All vertices iterator ag.all vertices end() Past-the-end iterator.

All edges iterator ag.all edges begin() Starts at an arbitrary edge.
All edges iterator ag.all edges end() Past-the-end iterator.

All faces iterator ag.all faces begin() Starts at an arbitrary face.
All faces iterator ag.all faces end() Past-the-end iterator.

Site iterators

The following iterators allow respectively to visit all sites, the visible sites and the hidden sites. These iterators
are non-mutable, bidirectional and their value type is Site 2. They are all invalidated by any change in the
Apollonius graph.

Sites iterator ag.sites begin() Starts at an arbitrary site.
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Sites iterator ag.sites end() Past-the-end iterator.

Visible sites iterator ag.visible sites begin() Starts at an arbitrary visible site.
Visible sites iterator ag.visible sites end() Past-the-end iterator.

Hidden sites iterator ag.hidden sites begin() Starts at an arbitrary hidden site.
Hidden sites iterator ag.hidden sites end() Past-the-end iterator.

Face, Edge and Vertex Circulators

The Apollonius graph also provides circulators that allow to visit respectively all faces or edges incident to
a given vertex or all vertices adjacent to a given vertex. These circulators are non-mutable and bidirectional.
The operator operator++ moves the circulator counterclockwise around the vertex while the operator-- moves
clockwise. A face circulator is invalidated by any modification of the face pointed to. An edge circulator is
invalidated by any modification in one of the two faces incident to the edge pointed to. A vertex circulator is
invalidated by any modification in any of the faces adjacent to the vertex pointed to.

Face circulator ag.incident faces( Vertex handle v)

Starts at an arbitrary face incident to v.

Face circulator ag.incident faces( Vertex handle v, Face handle f)

Starts at face f .
Precondition: Face f is incident to vertex v.

Edge circulator ag.incident edges( Vertex handle v)

Starts at an arbitrary edge incident to v.

Edge circulator ag.incident edges( Vertex handle v, Face handle f)

Starts at the first edge of f incident to v, in counterclockwise
order around v.
Precondition: Face f is incident to vertex v.

Vertex circulator ag.incident vertices( Vertex handle v)

Starts at an arbitrary vertex incident to v.

Vertex circulator ag.incident vertices( Vertex handle v, Face handle f)

Starts at the first vertex of f adjacent to v in counterclockwise
order around v.
Precondition: Face f is incident to vertex v.

Traversal of the Convex Hull

Applied on the infinite vertex the above functions allow to visit the vertices on the convex hull and the infi-
nite edges and faces. Note that a counterclockwise traversal of the vertices adjacent to the infinite vertex is a
clockwise traversal of the convex hull.

Vertex circulator ag.incident vertices( ag.infinite vertex())
Vertex circulator ag.incident vertices( ag.infinite vertex(), Face handle f)
Face circulator ag.incident faces( ag.infinite vertex())
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Face circulator ag.incident faces( ag.infinite vertex(), Face handle f)
Edge circulator ag.incident edges( ag.infinite vertex())
Edge circulator ag.incident edges( ag.infinite vertex(), Face handle f)

Predicates

The class Apollonius graph 2<Gt,Agds> provides methods to test the finite or infinite character of any feature.

bool ag.is infinite( Vertex handle v) const

true, iff v is the infinite vertex.

bool ag.is infinite( Face handle f) const true, iff face f is infinite.
bool ag.is infinite( Face handle f, int i) const

true, iff edge (f,i) is infinite.

bool ag.is infinite( Edge e) const true, iff edge e is infinite.
bool ag.is infinite( Edge circulator ec) const

true, iff edge *ec is infinite.

Insertion

template< class Input iterator >
unsigned int ag.insert( Input iterator first, Input iterator beyond)

Inserts the sites in the range [first,beyond). The number of sites in the
range [first, beyond) is returned.
Precondition: Input iterator must be a model of InputIterator and its
value type must be Site 2.

Vertex handle ag.insert( Site 2 s) Inserts the site s in the Apollonius graph. If s is visible then the vertex
handle of s is returned, otherwise Vertex handle(NULL) is returned.

Vertex handle ag.insert( Site 2 s, Vertex handle vnear)

Inserts s in the Apollonius graph using the site associated with vn-
ear as an estimate for the nearest neighbor of the center of s. If s
is visible then the vertex handle of s is returned, otherwise Vertex
handle(NULL) is returned.

Removal

void ag.remove( Vertex handle v) Removes the site associated to the vertex handle v from the Apollonius
graph.
Precondition: v must correspond to a valid finite vertex of the Apollo-
nius graph.
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Nearest neighbor location

Vertex handle ag.nearest neighbor( Point 2 p) Finds the nearest neighbor of the point p. In other words
it finds the site whose Apollonius cell contains p. Ties
are broken arbitrarily and one of the nearest neighbors
of p is returned. If there are no visible sites in the Apol-
lonius diagram Vertex handle(NULL) is returned.

Vertex handle ag.nearest neighbor( Point 2 p, Vertex handle vnear)

Finds the nearest neighbor of the point p using the site
associated with vnear as an estimate for the nearest
neighbor of p. Ties are broken arbitrarily and one of the
nearest neighbors of p is returned. If there are no visible
sites in the Apollonius diagram Vertex handle(NULL) is
returned.

Access to the dual

The Apollonius graph 2 class provides access to the duals of the faces of the graph. The dual of a face of the
Apollonius graph is a site. If the originating face is infinite, its dual is a site with center at infinity (or equivalently
with infinite weight), which means that it can be represented geometrically as a line. If the originating face is
finite, its dual is a site with finite center and weight. In the following three methods the returned object is
assignable to either Site 2 or Gt::Line 2, depending on whether the corresponding face of the Apollonius graph
is finite or infinite, respectively.

Gt::Object 2 ag.dual( Face handle f) const Returns the dual corresponding to the face handle f . The
returned object can be assignable to one of the following:
Site 2, Gt::Line 2.

Gt::Object 2 ag.dual( All faces iterator it) const

Returns the dual of the face to which it points to. The
returned object can be assignable to one of the following:
Site 2, Gt::Line 2.

Gt::Object 2 ag.dual( Finite faces iterator it) const

Returns the dual of the face to which it points to. The
returned object can be assignable to one of the following:
Site 2, Gt::Line 2.

I/O

template< class Stream >
Stream& ag.draw primal( Stream& str) Draws the Apollonius graph to the stream str.

Precondition: The following operators must be defined:
Stream& operator<<(Stream&, Gt::Segment 2),
Stream& operator<<(Stream&, Gt::Ray 2).

template < class Stream >
Stream& ag.draw dual( Stream& str) Draws the dual of the Apollonius graph, i.e., the Apollonius dia-

gram, to the stream str.
Precondition: The following operators must be defined:
Stream& operator<<(Stream&, Gt::Segment 2),
Stream& operator<<(Stream&, Gt::Ray 2),
Stream& operator<<(Stream&, Gt::Line 2).

template< class Stream >
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Stream& ag.draw primal edge( Edge e, Stream& str) Draws the edge e of the Apollonius graph to the
stream str.
Precondition: The following operators must be de-
fined:
Stream& operator<<(Stream&, Gt::Segment 2),
Stream& operator<<(Stream&, Gt::Ray 2).

template< class Stream >
Stream& ag.draw dual edge( Edge e, Stream& str) Draws the dual of the edge e to the stream str. The

dual of e is an edge of the Apollonius diagram.
Precondition: The following operators must be de-
fined:
Stream& operator<<(Stream&, Gt::Segment 2),
Stream& operator<<(Stream&, Gt::Ray 2),
Stream& operator<<(Stream&, Gt::Line 2).

void ag.file output( std::ostream& os) Writes the current state of the Apollonius graph to an
output stream. In particular, all visible and hidden sites
are written as well as the underlying combinatorial data
structure.

void ag.file input( std::istream& is) Reads the state of the Apollonius graph from an input
stream.

std::ostream& std::ostream& os << ag Writes the current state of the Apollonius graph to an
output stream.

std::istream& std::istream& is >> ag Reads the state of the Apollonius graph from an input
stream.

Validity check

bool ag.is valid( bool verbose = false, int level = 1) Checks the validity of the Apollonius graph. If ver-
bose is true a short message is sent to std::cerr. If
level is 0, only the data structure is validated. If
level is 1, then both the data structure and the Apol-
lonius graph are validated. Negative values of level
always return true, and values greater then 1 are
equivalent to level being 1.

Miscellaneous

void ag.clear() Clears all contents of the Apollonius graph.
void ag.swap( other) The Apollonius graphs other and ag are swapped. ag.swap(other) should be pre-

ferred to ag= other or to ag(other) if other is deleted afterwards.

See Also

DelaunayGraph 2
ApolloniusGraphTraits 2
ApolloniusGraphDataStructure 2
ApolloniusGraphVertexBase 2
TriangulationFaceBase 2
CGAL::Apollonius graph traits 2<K,Method tag>
CGAL::Apollonius graph filtered traits 2<CK,CM,EK,EM,FK,FM>
CGAL::Triangulation data structure 2<Vb,Fb>
CGAL::Apollonius graph vertex base 2<Gt,StoreHidden>
CGAL::Triangulation face base 2<Gt>
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ApolloniusSite 2

Definition

The concept ApolloniusSite 2 provides the requirements for an Apollonius site class.

Types

ApolloniusSite 2:: Point 2 The point type.
ApolloniusSite 2:: FT The field number type.
ApolloniusSite 2:: RT The ring number type.
ApolloniusSite 2:: Weight The weight type.

Precondition: It must be the same as FT .

Creation

ApolloniusSite 2 s( Point 2 p=Point 2(), Weight w= Weight(0));
ApolloniusSite 2 s( other); Copy constructor.

Access Functions

Point 2 s.point() const Returns the center of the Apollonius site.
Weight s.weight() const Returns the weight of the Apollonius site.

See Also

ApolloniusGraphTraits 2
CGAL::Apollonius site 2<K>
CGAL::Apollonius graph traits 2<K,Method tag>
CGAL::Apollonius graph filtered traits 2<CK,CM,EK,EM,FK,FM>
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CGAL::Apollonius site 2<K>

Definition

The class Apollonius site 2<K> is a model for the concept ApolloniusSite 2. It is parametrized by a template
parameter K which must be a model of the Kernel concept.

#include <CGAL/Apollonius site 2.h>

Is Model for the Concepts

ApolloniusSite 2

Types

The class Apollonius site 2<K> does not introduce any types in addition to the concept ApolloniusSite 2.

Creation

Apollonius site 2<K> s( Point 2 p=Point 2(), Weight w= Weight(0));
Apollonius site 2<K> s( other); Copy constructor.

I/O

The I/O operators are defined for iostream.

std::ostream& std::ostream& os << s Inserts the Apollonius site s into the stream os.
Precondition: The insert operator must be defined for Point 2 and
Weight.

std::istream& std::istream& is >> s Reads an Apollonius site from the stream is and assigns it to s.
Precondition: The extract operator must be defined for Point 2 and
Weight.

The information output in the iostream is: the point of the Apollonius site and its weight.

#include <CGAL/IO/Qt widget Apollonius site 2.h>

Qt widget& Qt widget& w << s Inserts the Apollonius site s into the Qt widget stream w.
Precondition: The insert operator must be defined for K::Circle 2.

See Also

Kernel
ApolloniusSite 2
CGAL::Qt widget
CGAL::Apollonius graph traits 2<K,Method tag>
CGAL::Apollonius graph filtered traits 2<CK,CM,EK,EM,FK,FM>
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ApolloniusGraphDataStructure 2

Definition

The concept ApolloniusGraphDataStructure 2 refines the concept TriangulationDataStructure 2. In addition
it provides two methods for the insertion and removal of a degree 2 vertex in the data structure. The insertion
method adds a new vertex to the specified edge, thus creating two new edges. Moreover, it creates two new
faces that have the two newly created edges in common (see figure below). The removal method performs the
reverse operation.

Figure 45.4: Insertion and removal of degree 2 vertices. Left to right: The edge (f,i) is replaced by two edges
by means of inserting a vertex v on the edge. The faces f1 and f2 are created. Right to left: the faces f1 and f2
are destroyed. The vertex v is deleted and its two adjacent edges are merged.

We only describe the additional requirements with respect to the TriangulationDataStructure 2 concept.

Refines

TriangulationDataStructure 2

Insertion

Vertex handle agds.insert degree 2( Face handle f, int i) Inserts a degree two vertex and two faces ad-
jacent to it that have two common edges. The
edge defined by the face handle f and the in-
teger i is duplicated. It returns a handle to the
vertex created.

2942



Removal

void agds.remove degree 2( Vertex handle v) Removes a degree 2 vertex and the two faces
adjacent to it. The two edges of the star of v
that are not incident to it are collapsed.
Precondition: The degree of v must be equal
to 2.

Has Models

CGAL::Triangulation data structure 2<Vb,Fb>

See Also

TriangulationDataStructure 2
ApolloniusGraphVertexBase 2
TriangulationFaceBase 2
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ApolloniusGraphVertexBase 2

Definition

The concept ApolloniusGraphVertexBase 2 describes the requirements for the vertex base class of the
ApolloniusGraphDataStructure 2 concept. A vertex stores an Apollonius site and provides access to one of
its incident faces through a Face handle. In addition, it maintains a container of sites. The container stores the
hidden sites related to the vertex.

Types

ApolloniusGraphVertexBase 2:: Geom traits A type for the geometric traits that defines the site
stored.
Precondition: The type Geom traits must define the
type Site 2.

ApolloniusGraphVertexBase 2:: Store hidden A Boolean that indicates if hidden sites are actually
stored or not. Its value is true if hidden sites are
stored, false otherwise.

ApolloniusGraphVertexBase 2:: Site 2 A type for the site stored.
Precondition: This type must coincide with the type
Geom traits::Site 2.

ApolloniusGraphVertexBase 2:: Apollonius graph data structure 2

A type for the Apollonius graph data structure, to
which the vertex belongs to.

ApolloniusGraphVertexBase 2:: Vertex handle A type for the vertex handle of the Apollonius graph
data structure.

ApolloniusGraphVertexBase 2:: Face handle A type for the face handle of the Apollonius graph
data structure.

ApolloniusGraphVertexBase 2:: Hidden sites iterator An iterator that iterates over the hidden sites in the
hidden sites container of the vertex.
Precondition: Must be a model of Iterator.

Creation

ApolloniusGraphVertexBase 2 v; Default constructor.
ApolloniusGraphVertexBase 2 v( Site 2 s); Constructs a vertex associated with the Apol-

lonius site s and embedded at the center of s.
ApolloniusGraphVertexBase 2 v( Site 2 s, Face handle f ); Constructs a vertex associated with the site s,

embedded at the center of s, and pointing to
the face associated with the face handle f .

Access Functions

Site 2 v.site() Returns the Apollonius site.
Face handle v.face() Returns a handle to an incident face.
unsigned int v.number of hidden sites() Returns the number of hidden sites in the hidden sites

container.
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Hidden sites iterator v.hidden sites begin() Starts at an arbitrary hidden site.
Hidden sites iterator v.hidden sites end() Past-the-end iterator.

Setting and unsetting

void v.set site( Site 2 s) Sets the Apollonius site.
void v.set face( Face handle f) Sets the incident face.
void v.add hidden site( Site 2 s) Adds a hidden site to the container of hidden sites.
void v.clear hidden sites container() Clears the container of hidden sites.

Checking

bool

v.is valid( bool verbose, int level) const

Performs any required tests on a vertex.

Has Models

CGAL::Apollonius graph vertex base 2<Gt,StoreHidden>.

See Also

ApolloniusGraphDataStructure 2
ApolloniusGraphTraits 2
CGAL::Apollonius graph vertex base 2<Gt,StoreHidden>
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CGAL::Apollonius graph vertex base 2<Gt,StoreHidden>

Definition

The class Apollonius graph vertex base 2<Gt,StoreHidden> provides a model for the
ApolloniusGraphVertexBase 2 concept which is the vertex base required by the
ApolloniusGraphDataStructure 2 concept. The class Apollonius graph vertex base 2<Gt,StoreHidden>
has two template arguments, the first being the geometric traits of the Apollonius graph and should be a model
of the concept ApolloniusGraphTraits 2. The second is a Boolean which controls whether hidden sites are
actually stored. Such a control is important if the user is not interested in hidden sites and/or if only insertions
are made, in which case no hidden site can become visible. If StoreHidden is set to true, hidden sites are stored,
otherwise they are discarded. By default StoreHidden is set to true.

#include <CGAL/Apollonius graph vertex base 2.h>

Is Model for the Concepts

ApolloniusGraphVertexBase 2

Creation

Apollonius graph vertex base 2<Gt,StoreHidden> vb; Default constructor.
Apollonius graph vertex base 2<Gt,StoreHidden> vb( Site 2 s); Constructs a vertex associated with the

site s and embedded at the center of s.
Apollonius graph vertex base 2<Gt,StoreHidden> vb( Site 2 s, Face handle f );

Constructs a vertex associated with the
site s, embedded at the center of s, and
pointing to the face associated with the
face handle f .

See Also

ApolloniusGraphVertexBase 2
ApolloniusGraphDataStructure 2
ApolloniusGraphTraits 2
CGAL::Triangulation data structure 2<Vb,Fb>
CGAL::Apollonius graph traits 2<K,Method tag>
CGAL::Apollonius graph filtered traits 2<CK,CM,EK,EM,FK,FM>
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ApolloniusGraphTraits 2

Definition

The concept ApolloniusGraphTraits 2 provides the traits requirements for the Apollonius graph 2 class. In
particular, it provides a type Site 2, which must be a model of the concept ApolloniusSite 2. It also provides
constructions for sites and several function object types for the predicates.

Types

ApolloniusGraphTraits 2:: Point 2 A type for a point.
ApolloniusGraphTraits 2:: Site 2 A type for an Apollonius site. Must be a model of the concept

ApolloniusSite 2.
ApolloniusGraphTraits 2:: Line 2 A type for a line. Only required if access to the dual of the Apollo-

nius graph is required or if the primal or dual diagram are inserted
in a stream.

ApolloniusGraphTraits 2:: Ray 2 A type for a ray. Only required if access to the dual of the Apollonius
graph is required or if the primal or dual diagram are inserted in a
stream.

ApolloniusGraphTraits 2:: Segment 2 A type for a segment. Only required if access to the dual of the
Apollonius graph is required or if the primal or dual diagram are
inserted in a stream.

ApolloniusGraphTraits 2:: Object 2 A type representing different types of objects in two dimensions,
namely: Point 2, Site 2, Line 2, Ray 2 and Segment 2.

ApolloniusGraphTraits 2:: FT A type for the field number type of sites.
ApolloniusGraphTraits 2:: RT A type for the ring number type of sites.
ApolloniusGraphTraits 2:: Assign 2 Must provide template <class T> bool operator() ( T& t, Object 2 o)

which assigns o to t if o was constructed from an object of type T .
Returns true, if the assignment was possible.

ApolloniusGraphTraits 2:: Construct object 2

Must provide template <class T> Object 2 operator()( T t) that con-
structs an object of type Object 2 that contains t and returns it.

ApolloniusGraphTraits 2:: Construct Apollonius vertex 2

A constructor for a point of the Apollonius diagram equidistant from
three sites. Must provide Point 2 operator()(Site 2 s1, Site 2 s2,
Site 2 s3), which constructs a point equidistant from the sites s1, s2
and s3.

ApolloniusGraphTraits 2:: Construct Apollonius site 2

A constructor for a dual Apollonius site (a site whose center is a
vertex of the Apollonius diagram and its weight is the common dis-
tance of its center from the three defining sites). Must provide Site 2
operator()(Site 2 s1, Site 2 s2, Site 2 s3), which constructs a dual
site whose center c is equidistant from s1, s2 and s3, and its weight
is equal to the (signed) distance of c from s1 (or s2 or s3).
Must also provide Line 2 operator()(Site 2 s1, Site 2 s2), which
constructs a line bitangent to s1 and s2. This line is the dual site
of s1, s2 and the site at infinity; it can be viewed as a dual Apollo-
nius site whose center is at infinity and its weight is infinite.
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ApolloniusGraphTraits 2:: Compare x 2

A predicate object type. Must provide Comparison result operator()(Site 2 s1,
Site 2 s2), which compares the x-coordinates of the centers of s1 and s2.

ApolloniusGraphTraits 2:: Compare y 2

A predicate object type. Must provide Comparison result operator()(Site 2 s1,
Site 2 s2), which compares the y-coordinates of the centers of s1 and s2.

ApolloniusGraphTraits 2:: Compare weight 2

A predicate object type. Must provide Comparison result operator()(Site 2 s1,
Site 2 s2), which compares the weights of s1 and s2.

ApolloniusGraphTraits 2:: Orientation 2

A predicate object type. Must provide Orientation operator()(Site 2 s1, Site 2 s2,
Site 2 s3), which performs the usual orientation test for the centers of the three
sites s1, s2 and s3.
Must also provide Orientation operator()(Site 2 s1, Site 2 s2, Site 2 s3, Site 2 p1,
Site 2 p2), which performs the usual orientation test for the Apollonius vertex of
s1, s2, s3 and the centers of p1 and p2.
Precondition: the Apollonius vertex of s1, s2 and s3 must exist.

ApolloniusGraphTraits 2:: Is hidden 2

A predicate object type. Must provide bool operator()(Site 2 s1, Site 2 s2), which
returns true if the circle corresponding to s2 is contained in the closure of the disk
corresponding to s1, false otherwise.

ApolloniusGraphTraits 2:: Oriented side of bisector 2

A predicate object type. Must provide Oriented side operator()(Site 2 s1, Site 2
s2, Point 2 p), which returns the oriented side of the bisector of s1 and s2 that
contains p. Returns ON POSITIVE SIDE if p lies in the half-space of s1 (i.e., p
is closer to s1 than s2); returns ON NEGATIVE SIDE if p lies in the half-space of
s2; returns ON ORIENTED BOUNDARY if p lies on the bisector of s1 and s2.

ApolloniusGraphTraits 2:: Vertex conflict 2

A predicate object type. Must provide Sign operator()(Site 2 s1, Site 2 s2, Site 2
s3, Site 2 q), which returns the sign of the distance of q from the dual Apollonius
site of s1, s2, s3.
Precondition: the dual Apollonius site of s1, s2, s3 must exist.
Must also provide Sign operator()(Site 2 s1, Site 2 s2, Site 2 q), which returns
the sign of the distance of q from the bitangent line of s1, s2 (a degenerate dual
Apollonius site, with its center at infinity).
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ApolloniusGraphTraits 2:: Finite edge interior conflict 2

A predicate object type. Must provide bool operator()(Site 2 s1, Site 2 s2, Site 2
s3, Site 2 s4, Site 2 q, bool b). The sites s1, s2, s3 and s4 define an Apollonius
edge that lies on the bisector of s1 and s2 and has as endpoints the Apollonius
vertices defined by the triplets s1, s2, s3 and s1, s4 and s2. The Boolean b denotes
if the two Apollonius vertices are in conflict with the site q (in which case b should
be true, otherwise false). In case that b is true, the predicate returns true if and
only if the entire Apollonius edge is in conflict with q. If b is false, the predicate
returns false if and only if q is not in conflict with the Apollonius edge.
Precondition: the Apollonius vertices of s1, s2, s3, and s1, s4, s2 must exist.
Must also provide bool operator()(Site 2 s1, Site 2 s2, Site 2 s3, Site 2 q, bool b).
The sites s1, s2, s3 and the site at infinity s∞ define an Apollonius edge that lies on
the bisector of s1 and s2 and has as endpoints the Apollonius vertices defined by
the triplets s1, s2, s3 and s1, s∞ and s2 (the second Apollonius vertex is actually at
infinity). The Boolean b denotes if the two Apollonius vertices are in conflict with
the site q (in which case b should be true, otherwise false). In case that b is true,
the predicate returns true if and only if the entire Apollonius edge is in conflict
with q. If b is false, the predicate returns false if and only if q is not in conflict
with the Apollonius edge.
Precondition: the Apollonius vertex of s1, s2, s3 must exist.
Must finally provide bool operator()(Site 2 s1, Site 2 s2, Site 2 q, bool b). The
sites s1, s2 and the site at infinity s∞ define an Apollonius edge that lies on the
bisector of s1 and s2 and has as endpoints the Apollonius vertices defined by the
triplets s1, s2, s∞ and s1, s∞ and s2 (both Apollonius vertices are actually at infin-
ity). The Boolean b denotes if the two Apollonius vertices are in conflict with the
site q (in which case b should be true, otherwise false). In case that b is true, the
predicate returns true if and only if the entire Apollonius edge is in conflict with
q. If b is false, the predicate returns false if and only if q is not in conflict with the
Apollonius edge.

ApolloniusGraphTraits 2:: Infinite edge interior conflict 2

A predicate object type. Must provide bool operator()(Site 2 s1, Site 2 s2, Site 2
s3, Site 2 q, bool b). The sites s∞, s1, s2 and s3 define an Apollonius edge that lies
on the bisector of s∞ and s1 and has as endpoints the Apollonius vertices defined
by the triplets s∞, s1, s2 and s∞, s3 and s1. The Boolean b denotes if the two
Apollonius vertices are in conflict with the site q (in which case b should be true,
otherwise false. In case that b is true, the predicate returns true if and only if the
entire Apollonius edge is in conflict with q. If b is false, the predicate returns false
if and only if q is not in conflict with the Apollonius edge.

ApolloniusGraphTraits 2:: Is degenerate edge 2

A predicate object type. Must provide bool operator()(Site 2 s1, Site 2 s2, Site 2
s3, Site 2 s4). It returns true if the Apollonius edge defined by s1, s2, s3 and s4
is degenerate, false otherwise. An Apollonius edge is called degenerate if its two
endpoints coincide.
Precondition: the Apollonius vertices of s1, s2, s3, and s1, s4, s2 must exist.

Creation

ApolloniusGraphTraits 2 gt; Default constructor.
ApolloniusGraphTraits 2 gt( other); Copy constructor.
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ApolloniusGraphTraits 2 gt = other Assignment operator.

Access to predicate objects

Compare x 2 gt.compare x 2 object()
Compare y 2 gt.compare y 2 object()
Compare weight 2 gt.compare weight 2 object()
Orientation 2 gt.orientation 2 object()
Is hidden 2 gt.is hidden 2 object()
Oriented side of bisector 2 gt.oriented side of bisector test 2 object()
Vertex conflict 2 gt.vertex conflict 2 object()
Finite edge interior conflict 2 gt.finite edge interior conflict 2 object()
Infinite edge interior conflict 2 gt.infinite edge interior conflict 2 object()
Is degenerate edge 2 gt.is degenerate edge 2 object()

Access to constructor objects

Construct object 2 gt.construct object 2 object()
Construct Apollonius vertex 2 gt.construct Apollonius vertex 2 object()
Construct Apollonius site 2 gt.construct Apollonius site 2 object()

Access to other objects

Assign 2 gt.assign 2 object()

Has Models

CGAL::Apollonius graph traits 2<K,Method tag>
CGAL::Apollonius graph filtered traits 2<CK,CM,EK,EM,FK,FM>

See Also

CGAL::Apollonius graph 2<Gt,Agds>
CGAL::Apollonius graph traits 2<K,Method tag>
CGAL::Apollonius graph filtered traits 2<CK,CM,EK,EM,FK,FM>
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CGAL::Apollonius graph traits 2<K,Method tag>

Definition

The class Apollonius graph traits 2<K,Method tag> provides a model for the ApolloniusGraphTraits 2 con-
cept. This class has two template parameters. The first template parameter must be a model of the Kernel
concept. The second template parameter corresponds to how predicates are evaluated. There are two predefined
possible values for Method tag, namely CGAL::Sqrt field tag and CGAL::Ring tag. The first one must be used
when the number type used in the representation supports the exact evaluation of signs of expressions involving
all four basic operations and square roots, whereas the second one requires the exact evaluation of signs of
ring-type expressions, i.e., expressions involving only additions, subtractions and multiplications. The default
value for Method tag is CGAL::Ring tag. The way the predicates are evaluated is discussed in [KE02, KE03].

#include <CGAL/Apollonius graph traits 2.h>

Is Model for the Concepts

ApolloniusGraphTraits 2

Creation

Apollonius graph traits 2<K,Method tag> traits; Default constructor.
Apollonius graph traits 2<K,Method tag> traits( other); Copy constructor.
Apollonius graph traits 2<K,Method tag> traits = other

Assignment operator.

See Also

Kernel
ApolloniusGraphTraits 2
CGAL::Ring tag
CGAL::Sqrt field tag
CGAL::Apollonius graph 2<Gt,Agds>
CGAL::Apollonius graph filtered traits 2<CK,CM,EK,EM,FK,FM>

2951



C
la

ss

CGAL::Apollonius graph filtered traits 2<CK,CM,EK,EM,FK,FM>

Definition

The class Apollonius graph filtered traits 2<CK,CM,EK,EM,FK,FM> provides a model for the
ApolloniusGraphTraits 2 concept.

The class Apollonius graph filtered traits 2<CK,CM,EK,EM,FK,FM> uses the filtering technique [BBP01] to
achieve traits for the Apollonius graph 2<Gt,Agds> class with efficient and exact predicates given an exact
kernel EK and a filtering kernel FK. The geometric constructions associated provided by this class are equivalent
to those provided by the traits class Apollonius graph traits 2<CK,CM>, which means that they may be inexact.

This class has six template parameters. The first, third and fifth template parameters must be a models of the
Kernel concept. The second, fourth and sixth template parameters correspond to how predicates are evaluated.
There are two predefined possible values for Method tag, namely CGAL::Sqrt field tag and CGAL::Ring tag.
The first one must be used when the number type used in the representation supports the exact evaluation of
signs of expressions involving all four basic operations and square roots, whereas the second one requires the
exact evaluation of signs of ring-type expressions, i.e., expressions involving only additions, subtractions and
multiplications. The way the predicates are evaluated is discussed in [KE02, KE03].

The default values for the template parameters are as follows: CM = CGAL::Ring tag, EK = CGAL::Simple
cartesian<CGAL::MP Float>, EM = CM, FK = CGAL::Simple cartesian<CGAL::Interval nt<false> >, FM =
CM.

#include <CGAL/Apollonius graph filtered traits 2.h>

Is Model for the Concepts

ApolloniusGraphTraits 2

Creation

Apollonius graph filtered traits 2<CK,CM,EK,EM,FK,FM> traits; Default
constructor.

Apollonius graph filtered traits 2<CK,CM,EK,EM,FK,FM> traits( other); Copy
constructor.

Apollonius graph filtered traits 2<CK,CM,EK,EM,FK,FM> traits = other Assignment
operator.

See Also

Kernel
ApolloniusGraphTraits 2
CGAL::Ring tag
CGAL::Sqrt field tag
CGAL::Apollonius graph 2<Gt,Agds>
CGAL::Apollonius graph traits 2<K,Method tag>
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CGAL::Apollonius graph hierarchy 2<Gt,Agds>

Definition

We provide an alternative to the class Apollonius graph 2<Gt,Agds> for the dynamic construction of the Apol-
lonius graph. The Apollonius graph hierarchy 2<Gt,Agds> class maintains a hierarchy of Apollonius graphs.
The bottom-most level of the hierarchy contains the full Apollonius diagram. A site that is in level i, is
in level i + 1 with probability 1/α where α > 1 is some constant. The difference between the Apollonius
graph 2<Gt,Agds> class and the Apollonius graph hierarchy 2<Gt,Agds> is on how the nearest neighbor lo-
cation is done. Given a point p the location is done as follows: at the top most level we find the near-
est neighbor of p as in the Apollonius graph 2<Gt,Agds> class. At every subsequent level i we use the
nearest neighbor found at level i + 1 to find the nearest neighbor at level i. This is a variant of the corre-
sponding hierarchy for points found in [Dev98]. The class has two template parameters which have essen-
tially the same meaning as in the Apollonius graph 2<Gt,Agds> class. The first template parameter must be
a model of the ApolloniusGraphTraits 2 concept. The second template parameter must be a model of the
ApolloniusGraphDataStructure 2 concept. However, the vertex base class that is to be used in the Apollonius
graph data structure must be a model of the ApolloniusGraphHierarchyVertexBase 2 concept. The second
template parameter defaults to Triangulation data structure 2< Apollonius graph hierarchy vertex base 2<
Apollonius graph vertex base 2<Gt,true> >, Triangulation face base 2<Gt> >.

The Apollonius graph hierarchy 2<Gt,Agds> class derives publicly from the Apollonius graph 2<Gt,Agds>
class. The interface is the same with its base class. In the sequel only the methods overridden are documented.

#include <CGAL/Apollonius graph hierarchy 2.h>

Inherits From

CGAL::Apollonius graph 2<Gt,Agds>

Types

Apollonius graph hierarchy 2<Gt,Agds> does not introduce other types than those introduced by its base class
Apollonius graph 2<Gt,Agds>.

Creation

Apollonius graph hierarchy 2<Gt,Agds> agh( Gt gt=Gt()); Creates an hierarchy of Apollonius graphs us-
ing gt as geometric traits.

template< class Input iterator >
Apollonius graph hierarchy 2<Gt,Agds> agh( Input iterator first, Input iterator beyond, Gt gt=Gt());

Creates an Apollonius graph hierarchy using
gt as geometric traits and inserts all sites in
the range [first, beyond).

Apollonius graph hierarchy 2<Gt,Agds> agh( other); Copy constructor. All faces, vertices and
inter-level pointers are duplicated. After the
construction, agh and other refer to two dif-
ferent Apollonius graph hierarchies: if other
is modified, agh is not.
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Apollonius graph hierarchy 2<Gt,Agds> agh = other Assignment. All faces, vertices and inter-
level pointers are duplicated. After the con-
struction, agh and other refer to two differ-
ent Apollonius graph hierarchies: if other is
modified, agh is not.

Insertion

template< class Input iterator >
unsigned int agh.insert( Input iterator first, Input iterator beyond)

Inserts the sites in the range [first,beyond). The number of sites in
the range [first, beyond) is returned.
Precondition: Input iterator must be a model of InputIterator and its
value type must be Site 2.

Vertex handle agh.insert( Site 2 s) Inserts the site s in the Apollonius graph hierarchy. If s is visible then
the vertex handle of s is returned, otherwise Vertex handle(NULL) is
returned.

Vertex handle agh.insert( Site 2 s, Vertex handle vnear)

Inserts s in the Apollonius graph hierarchy using the site associated
with vnear as an estimate for the nearest neighbor of the center of
s. If s is visible then the vertex handle of s is returned, otherwise
Vertex handle(NULL) is returned. A call to this method is equivalent
to agh.insert(s); and it has been added for the sake of conformity with
the interface of the Apollonius graph 2<Gt,Agds> class.

Removal

void agh.remove( Vertex handle v) Removes the site associated to the vertex handle v from the Apollo-
nius graph hierarchy.
Precondition: v must correspond to a valid finite vertex of the Apol-
lonius graph hierarchy.

Nearest neighbor location

Vertex handle agh.nearest neighbor( Point p) Finds the nearest neighbor of the point p. In other words
it finds the site whose Apollonius cell contains p. Ties are
broken arbitrarily and one of the nearest neighbors of p
is returned. If there are no visible sites in the Apollonius
diagram Vertex handle(NULL) is returned.

Vertex handle agh.nearest neighbor( Point p, Vertex handle vnear)

Finds the nearest neighbor of the point p. If there
are no visible sites in the Apollonius diagram Vertex
handle(NULL) is returned. A call to this method is
equivalent to agh.nearest neighbor(p); and it has been
added for the sake of conformity with the interface of the
Apollonius graph 2<Gt,Agds> class.
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I/O

void agh.file output( std::ostream& os) Writes the current state of the Apollonius graph hierar-
chy to an output stream. In particular, all visible and
hidden sites are written as well as the underlying com-
binatorial hierarchical data structure.

void agh.file input( std::istream& is) Reads the state of the Apollonius graph hierarchy from
an input stream.

std::ostream& std::ostream& os << agh Writes the current state of the Apollonius graph hierar-
chy to an output stream.

std::istream& std::istream& is >> agh Reads the state of the Apollonius graph hierarchy from
an input stream.

Validity check

bool agh.is valid( bool verbose = false, int level = 1) const

Checks the validity of the Apollonius graph hierarchy.
If verbose is true a short message is sent to std::cerr.
If level is 0, the data structure at all levels is validated,
as well as the inter-level pointers. If level is 1, then the
data structure at all levels is validated, the inter-level
pointers are validated and all levels of the Apollonius
graph hierarchy are also validated. Negative values of
level always return true, and values greater then 1 are
equivalent to level being 1.

Miscellaneous

void agh.clear() Clears all contents of the Apollonius graph hierarchy.
void agh.swap( other) The Apollonius graph hierarchies other and agh are swapped. agh.swap(other)

should be preferred to agh= other or to agh(other) if other is deleted afterwards.

See Also

ApolloniusGraphDataStructure 2
ApolloniusGraphTraits 2
ApolloniusGraphHierarchyVertexBase 2
CGAL::Apollonius graph 2<Gt,Agds>
CGAL::Triangulation data structure 2<Vb,Fb>
CGAL::Apollonius graph traits 2<K,Method tag>
CGAL::Apollonius graph filtered traits 2<CK,CM,EK,EM,FK,FM>
CGAL::Apollonius graph hierarchy vertex base 2<Agvb>
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ApolloniusGraphHierarchyVertexBase 2

Definition

The vertex of an Apollonius graph included in an Apollonius graph hierarchy has to provide some point-
ers to the corresponding vertices in the graphs of the next and preceding levels. Therefore, the concept
ApolloniusGraphHierarchyVertexBase 2 refines the concept ApolloniusGraphVertexBase 2, by adding two
vertex handles to the corresponding vertices for the next and previous level graphs.

Refines

ApolloniusGraphVertexBase 2

Types

ApolloniusGraphHierarchyVertexBase 2 does not introduce any types in addition to those of
ApolloniusGraphVertexBase 2.

Creation

ApolloniusGraphHierarchyVertexBase 2 v; Default constructor.
ApolloniusGraphHierarchyVertexBase 2 v( Site 2 s); Constructs a vertex associated with

the site s and embedded at the cen-
ter of s.

ApolloniusGraphHierarchyVertexBase 2 v( Site 2 s, Face handle f ); Constructs a vertex associated with
the site s, embedded at the center of
s, and pointing to face f .

Operations

Vertex handle v.up() Returns a handle to the corresponding vertex of the next
level Apollonius graph. If such a vertex does not exist
Vertex handle(NULL) is returned.

Vertex handle v.down() Returns a handle to the corresponding vertex of the previ-
ous level Apollonius graph.

void v.set up( Vertex handle u) Sets the handle for the vertex of the next level Apollonius
graph.

void v.set down( Vertex handle d) Sets the handle for the vertex of the previous level Apollo-
nius graph;

Has Models

CGAL::Apollonius graph hierarchy vertex base 2<CGAL::Apollonius graph vertex base 2<
Gt,StoreHidden> >
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See Also

ApolloniusGraphDataStructure 2
ApolloniusGraphVertexBase 2
CGAL::Apollonius graph hierarchy 2<Gt,Agds>
CGAL::Triangulation data structure 2<Vb,Fb>
CGAL::Apollonius graph vertex base 2<Gt,StoreHidden>
CGAL::Apollonius graph hierarchy vertex base 2<Agvb>
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CGAL::Apollonius graph hierarchy vertex base 2<Agvb>

Definition

The class Apollonius graph hierarchy vertex base 2<Agvb> provides a model for the
ApolloniusGraphHierarchyVertexBase 2 concept, which is the vertex base required by the Apollonius
graph hierarchy 2<Gt,Agds> class. The class Apollonius graph hierarchy vertex base 2<Agvb> is templated
by a class Agvb which must be a model of the ApolloniusGraphVertexBase 2 concept.

#include <CGAL/Apollonius graph hierarchy vertex base 2.h>

Inherits From

Agvb

Is Model for the Concepts

ApolloniusGraphHierarchyVertexBase 2

Creation

Apollonius graph hierarchy vertex base 2<Agvb> hvb; Default constructor.
Apollonius graph hierarchy vertex base 2<Agvb> hvb( Site 2 s); Constructs a vertex associated with the

site s and embedded at the center of s.
Apollonius graph hierarchy vertex base 2<Agvb> hvb( Site 2 s, Face handle f );

Constructs a vertex associated with the
site s, embedded at the center of s, and
pointing to the face associated with the
face handle f .

See Also

ApolloniusGraphVertexBase 2
ApolloniusGraphHierarchyVertexBase 2
CGAL::Apollonius graph vertex base 2<Gt,StoreHidden>
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This chapter describes an adaptor that adapts two-dimensional triangulated Delaunay graphs to the correspond-
ing Voronoi diagrams. We start with a few definitions and a description of the issues that this adaptor addresses
in Section 46.1. The software design of the Voronoi diagram adaptor package is described in Section 46.2. In
Section 46.3 we discuss the traits required for performing the adaptation, and finally in Section 46.5 we present
a few examples using this adaptor.

46.1 Introduction

A Voronoi diagram is typically defined for a set of objects, also called sites in the sequel, that lie in some space
Σ and a distance function that measures the distance of a point x in Σ from an object in the object set. In this
package we are interested in planar Voronoi diagrams, so in the sequel the space Σ will be the space R2. Let
S = {S1,S2, . . . ,Sn} be our set of sites and let δ(x,Si) denote the distance of a point x ∈ R2 from the site Si.
Given two sites Si and S j, the set Vi j of points that are closer to Si than to S j with respect to the distance function
δ(x, ·) is simply the set:

Vi j = {x ∈ R2 : δ(x,Si) < δ(x,S j)}.

We can then define the set Vi of points on the plane that are closer to Si than to any other object in S as:

Vi =
\
i6= j

Vi j.

The set Vi is said to be the Voronoi cell or Voronoi face of the site Si. The locus of points on the plane that are
equidistant from exactly two sites Si and S j is called a Voronoi bisector. A point that is equidistant to three or
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more objects in S is called a Voronoi vertex. A simply connected subset of a Voronoi bisector is called a Voronoi
edge. The collection of Voronoi faces, edges and vertices is called the Voronoi diagram of the set S with respect
to the distance function δ(x, ·), and it turns out that it is a subdivision of the plane, i.e., it is a planar graph.

We typically think of faces as 2-dimensional objects, edges as 1-dimensional objects and vertices as 0-
dimensional objects. However, this may not be the case for several combinations of sites and distance functions
(for example points in R2 under the L1 or the L∞ distance can produce 2-dimensional Voronoi edges). We call a
Voronoi diagram nice if no such artifacts exist, i.e., if all vertices edges and faces are 0-, 1- and 2-dimensional,
respectively.

Even nice Voronoi diagrams can end up being not so nice. The cell of a site can in general consist of several
disconnected components. Such a case can happen, for example, when we consider weighted points Qi =
(pi,λi), where pi ∈ R2, λi ∈ R, and the distance function is the Euclidean distance multiplied by the weight of
each site, i.e., δM(x,Qi) = λi ‖x− pi‖, where ‖ · ‖ denotes the Euclidean norm. In this package we are going to
restrict ourselves to nice Voronoi diagrams that have the property that the Voronoi cell of each site is a simply
connected region of the plane. We are going to call such Voronoi diagrams simple Voronoi diagrams. Examples
of simple Voronoi diagrams include the usual Euclidean Voronoi diagram of points, the Euclidean Voronoi
diagram of a set of disks on the plane (i.e., the Apollonius diagram), the Euclidean Voronoi diagram of a set of
disjoint convex objects on the plane, or the power or (Laguerre) diagram for a set of circles on the plane. In fact
every instance of an abstract Voronoi diagram in the sense of Klein [Kle89] is a simple Voronoi diagram in our
setting. In the sequel when we refer to Voronoi diagrams we will refer to simple Voronoi diagrams.

In many cases we are not really interested in computing the Voronoi diagram itself, but rather its dual graph,
called the Delaunay graph. In general the Delaunay graph is a planar graph, each face of which consists of
at least three edges. Under the non-degeneracy assumption that no point on the plane is equidistant, under
the distance function, to more than three sites, the Delaunay graph is a planar graph with triangular faces. In
certain cases this graph can actually be embedded with straight line segments in which case we talk about a
triangulation. This is the case, for example, for the Euclidean Voronoi diagram of points, or the power diagram
of a set of circles. The dual graphs are, respectively, the Delaunay triangulation and the regular triangulation of
the corresponding site sets. Graphs of non-constant non-uniform face complexity can be undesirable in many
applications, so typically we end up triangulating the non-triangular faces of the Delaunay graph. Intuitively
this amounts to imposing an implicit or explicit perturbation scheme during the construction of the Delaunay
graph, that perturbs the input sites in such a way so as not to have degenerate configurations.

Choosing between computing the Voronoi diagram or the (triangulated) Delaunay graph is a major decision
while implementing an algorithm. It heavily affects the design and choice of the different data structures in-
volved. Although in theory the two approaches are entirely equivalent, it is not so straightforward to go from one
representation to the other. The objective of this package is to provide a generic way of going from triangulated
Delaunay graphs to planar subdivisions represented through a DCEL data structure. The goal is to provide an
adaptor that gives the look and feel of a DCEL data structure, although internally it keeps a graph data structure
representing triangular graphs.

The adaptation might seem straightforward at a first glance, and more or less this is case; after all one graph is
the dual of the other. The situation becomes complicated whenever we want to treat artifacts of the representa-
tion used. Suppose for example that we have a set of sites that contains subsets of sites in degenerate positions.
The computed triangulated Delaunay graph has triangular faces that may be the result of an implicit or explicit
perturbation scheme. The dual of such a triangulated Delaunay graph is a Voronoi diagram that has all its ver-
tices of degree 3, and for that purpose we are going to call it a degree-3 Voronoi diagram in order to distinguish
it from the true Voronoi diagram of the input sites. A degree-3 Voronoi diagram can have degenerate features,
namely Voronoi edges of zero length, and/or Voronoi faces of zero area. Although we can potentially treat such
artifacts, they are nonetheless artifacts of the algorithm we used and do not correspond to the true geometry of
the Voronoi diagram.

The manner that we treat such issues in this package in a generic way is by defining an adaptation policy.
The adaptation policy is responsible for determining which features in the degree-3 Voronoi diagram are to be
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rejected and which not. The policy to be used can vary depending on the application or the intended usage of
the resulting Voronoi diagram. What we care about is that firstly the policy itself is consistent and, secondly,
that the adaptation is also done in a consistent manner. The latter is the responsibility of the adaptor provided
by this package, whereas the former is the responsibility of the implementor of a policy.

In this package we currently provide two types of adaptation policies. The first one is the simplest: we reject
no feature of the degree-3 Voronoi diagram; we call such a policy an identity policy since the Voronoi diagram
produced is identical to the degree-3 Voronoi diagram. The second type of policy eliminates the degenerate
features from the degree-3 Voronoi diagram yielding the true geometry of the Voronoi diagram of the input
sites; we call such policies degeneracy removal policies.

Delaunay graphs can be mutable or non-mutable. By mutable we mean that sites can be inserted or removed
at any time, in an entirely on-line fashion. By non-mutable we mean that once the Delaunay graph has been
created, no changes, with respect to the set of sites defining it, are allowed. If the Delaunay graph is a non-
mutable one, then the Voronoi diagram adaptor is a non-mutable adaptor as well.

If the Delaunay graph is mutable then the question of whether the Voronoi diagram adaptor is also mutable is
slightly more complex to answer. As long as the adaptation policy used does not maintain a state, the Voronoi
diagram adaptor is a mutable one; this is the case, for example, with our identity policy or the degeneracy
removal policies. If, however, the adaptor maintains a state, then whether it is mutable or non-mutable really
depends on whether its state can be updated after every change in the Delaunay graph. Such policies are our
caching degeneracy removal policies: some of them result in mutable adaptors others result in non-mutable
ones. In Section 46.4 we discuss the issue in more detail.

46.2 Software Design

The Voronoi diagram 2<DG,AT,AP> class is parameterized by three template parameters. The first one must
be a model of the DelaunayGraph 2 concept. It corresponds to the API required by an object representing a
Delaunay graph. All classes of CGAL that represent Delaunay diagrams are models of this concept, namely,
Delaunay triangulations, regular triangulations, Apollonius graphs and segment Delaunay graphs. The second
template parameter must be a model of the AdaptationTraits 2 concept. We discuss this concept in detail
in Section 46.3. The third template parameter must be model of the AdaptationPolicy 2 concept, which we
discuss in detail in Section 46.4.

The Voronoi diagram 2<DG,AT,AP> class has been intentionally designed to provide an API similar to the
arrangements class in CGAL: Voronoi diagrams are special cases of arrangements after all. The API of the two
classes, however, could not be identical. The reason is that arrangements in CGAL do not yet support more than
one unbounded faces, or equivalently, cannot handle unbounded curves. On the contrary, a Voronoi diagram
defined over at least two generating sites, has at least two unbounded faces.

On a more technical level, the Voronoi diagram 2<DG,AT,AP> class imitates the representation of the Voronoi
diagram (seen as a planar subdivision) by a DCEL (Doubly Connected Edge List) data structure. We have
vertices (the Voronoi vertices), halfedges (oriented versions of the Voronoi edges) and faces (the Voronoi cells).
In particular, we can basically perform every operation we can perform in a standard DCEL data structure:

• go from a halfedge to its next and previous in the face;

• go from one face to an adjacent one through a halfedge and its twin (opposite) halfedge;

• walk around the boundary of a face;

• enumerate/traverse the halfedges incident to a vertex

• from a halfedge, access the adjacent face;
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• from a face, access an adjacent halfedges;

• from a halfedges, access its source and target vertices;

• from a vertex, access an incident halfedge.

In addition to the above possibilities for traversal, we can also traverse the following features through iterators:

• the vertices of the Voronoi diagram;

• the edges or halfedges of the Voronoi diagram;

• the faces of the Voronoi diagram;

• the bounded faces of the Voronoi diagram;

• the bounded halfedges of the Voronoi diagram;

• the unbounded faces of the Voronoi diagram;

• the unbounded halfedges of the Voronoi diagram;

• the sites defining the Voronoi diagram.

Finally, depending on the adaptation traits passed to the Voronoi diagram adaptor, we can perform point location
queries, namely given a point p we can determine the feature of the Voronoi diagram (vertex, edge, face) on
which p lies.

46.3 The Adaptation Traits

The AdaptationTraits 2 concept defines the types and functors required by the adaptor in order to access ge-
ometric information in the Delaunay graph that is needed by the Voronoi diagram 2<DG,AT,AP> class. In
particular, it provides functors for accessing sites in the Delaunay graph and constructing Voronoi vertices from
their dual faces in the Delaunay graph. Finally, it defines a tag that indicates whether nearest site queries are to
be supported by the Voronoi diagram adaptor. If such queries are to be supported, a functor is required.

Given a query point, the nearest site functor should return information related to how many and which sites of
the Voronoi diagram are at equal and minimal distance from the query point. In particular, if the query point
is closest to a single site, the vertex handle of the Delaunay graph corresponding to this site is returned. If the
query point is closest to exactly two site, the edge of the Delaunay graph that is dual to the Voronoi edges on
which the query point lies is returned. If three (or more) sites are closest to the query point, then the query point
coincides with a vertex in the Voronoi diagram, and the face handle of the face in the Delaunay graph that is
dual to the Voronoi vertex is returned. This way of abstracting the point location mechanism allows for multiple
different point location strategies, which are passed to the Voronoi diagram adaptor through different models
of the AdaptationTraits 2 concept. The point location and nearest sites queries of the Voronoi diagram 2<
DG,AT,AP> class use internally this nearest site query functor.

In this package we provide four adaptation traits classes, all of which support nearest site queries:

• The Apollonius graph adaptation traits 2<AG2> class: it provides the adaptation traits for Apollonius
graphs.

• The Delaunay triangulation adaptation traits 2<DT2> class: it provides the adaptation traits for Delau-
nay triangulations.
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• The Regular triangulation adaptation traits 2<RT2> class: it provides the adaptation traits for regular
triangulations.

• The Segment Delaunay graph adaptation traits 2<SDG2> class: it provides the adaptation traits for
segment Delaunay graphs.

46.4 The Adaptation Policy

As mentioned above, when we perform the adaptation of a triangulated Delaunay graph to a Voronoi diagram,
a question that arises is whether we want to eliminate certain features of the Delaunay graph when we construct
its Voronoi diagram representation (such features could be the Voronoi edges of zero length or, for the Voronoi
diagram of a set of segments forming a polygon, all edges outside the polygon). The manner that we treat such
issues in this package in a generic way is by defining an adaptation policy. The adaptation policy is responsible
for determining which features in the degree-3 Voronoi diagram are to be rejected and which not. The policy to
be used can vary depending on the application or the intended usage of the resulting Voronoi diagram.

The concept AdaptationPolicy 2 defines the requirements on the predicate functors that determine whether a
feature of the triangulated Delaunay graph should be rejected or not. More specifically it defines an Edge
rejector and a Face rejector functor that answer the question: “should this edge (face) of the Voronoi diagram
be rejected?”. In addition to the edge and face rejectors the adaptation policy defines a tag, the Has inserter
tag. This tag is either set to CGAL::Tag true or to CGAL::Tag false. Semantically it determines if the adaptor
is allowed to insert sites in an on-line fashion (on-line removals are not yet supported). In the former case, i.e.,
when on-line site insertions are allowed, an additional functor is required, the Site inserter functor. This functor
takes a reference to a Delaunay graph and a site, and inserts the site in the Delaunay graph. Upon successful
insertion, a handle to the vertex representing the site in the Delaunay graph is returned.

We have implemented two types of policies that provide two different ways for answering the question of
which features of the Voronoi diagram to keep and which to discard. The first one is called the identity policy
and corresponds to the Identity policy 2<DG,VT> class. This policy is in some sense the simplest possible
one, since it does not reject any feature of the Delaunay graph. The Voronoi diagram provided by the adaptor
is the true dual (from the graph-theoretical point of view) of the triangulated Delaunay graph adapted. This
policy assumes that the Delaunay graph adapted allows for on-line insertions, and the Has inserter tag is set to
CGAL::Tag true. A default site inserter functor is also provided.

The second type of policy we provide is called degeneracy removal policy. If the set of sites defining the
triangulated Delaunay graph contains subsets of sites in degenerate configurations, the graph-theoretical dual
of the triangulated Delaunay graph has edges and potentially faces that are geometrically degenerate. By that
we mean that the dual of the triangulated Delaunay graph can have Voronoi edges of zero length or Voronoi
faces/cells of zero area. Such features may not be desirable and ideally we would like to eliminate them. The
degeneracy removal policies eliminate exactly these features and provide a Voronoi diagram where all edges
have non-zero length and all cells have non-zero area. More specifically, in these policies the Edge rejector and
Face rejector functors reject the edges and vertices of the Delaunay graph that correspond to dual edges and
faces that have zero length and area, respectively. In this package we provide four degeneracy removal policies,
namely:

• The Apollonius graph degeneracy removal policy 2<AG2> class: it provides an adaptation policy for
removing degeneracies when adapting an Apollonius graph to an Apollonius diagram.

• The Delaunay triangulation degeneracy removal policy 2<DT2> class: it provides an adaptation policy
for removing degeneracies when adapting a Delaunay triangulation to a point Voronoi diagram.

• The Regular triangulation degeneracy removal policy 2<RT2> class: it provides an adaptation policy
for removing degeneracies when adapting a regular triangulation to a power diagram
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• The Segment Delaunay graph degeneracy removal policy 2<SDG2> class: it provides an adaptation
policy for removing degeneracies when adapting a segment Delaunay graph to a segment Voronoi dia-
gram.

A variation of the degeneracy removal policies are the caching degeneracy removal policies. In these policies
we cache the results of the edge and face rejectors. In particular, every time we want to determine, for example,
if an edge of the Delaunay graph has, as dual edge in the Voronoi diagram, an edge of zero length, we check if
the result has already been computed. If yes, we simply return the outcome. If not, we perform the necessary
geometric tests, compute the answer, cache it and return it. Such a policy really pays off when we have a lot of
degenerate data in our input set of sites. Verifying whether a Voronoi edge is degenerate or not implies comput-
ing the outcome of a predicate in a possibly degenerate or near degenerate configuration, which is typically very
costly (compared to computing the same predicate in a generic configuration). To avoid this cost every single
time we want to check if a Voronoi edge is degenerate or not, we compute the result of the geometric predicate
the first time the adaptor asks for it, and simply lookup the answer in the future. In this package we provide
four caching degeneracy removal policies, one per degeneracy removal policy mentioned above. Intentionally,
we have not indicated the value of the Has inserter tag for the degeneracy removal and caching degeneracy
removal policies. The issue is discussed in detail in the sequel.

We raised the question above, as to whether the adaptor is a mutable or non-mutable one, in the sense of whether
we can add/remove sites in an on-line fashion. The answer to this question depends on: (1) whether the Delaunay
graph adapted allows for on-line insertions/removals and (2) whether the adaptation policies maintains a state
and whether this state is easily maintainable when we want to allow for on-line modifications.

The way we indicate if we allow on-line insertions of sites is via the Has inserter tag (as mentioned, on-line
removals are currently not supported). The Has inserter tag has two possible values, namely, CGAL::Tag
true and CGAL::Tag false. The value CGAL::Tag true indicates that the Delaunay graph allows for on-line
insertions, whereas the value CGAL::Tag false indicates the opposite. Note that these values do not indicate if
the Delaunay graph supports on-line insertions, but rather whether the Voronoi diagram adaptor should be able
to perform on-line insertions or not. This delicate point will be become clearer below.

Let us consider the various scenarios. If the Delaunay graph is non-mutable, the Voronoi diagram adaptor
cannot perform on-line insertions of sites. In this case not only degeneracy removal policies, but rather every
single adaptation policy for adapting the Delaunay graph in question should have the Has inserter tag set to
CGAL::Tag false.

If the Delaunay graph is mutable, i.e., on-line site insertions as are allowed, we can choose between two types of
adaptation policies, those that allow these on-line insertions and those that do not. In the former case the Has
inserter tag should be set to CGAL::Tag true, whereas in the latter to CGAL::Tag false. In other words, even
if the Delaunay graph is mutable, we can choose (by properly determining the value of the Has inserter tag) if
the adaptor should be mutable as well. At a first glance it may seem excessive to restrict existing functionality.
There are situations, however, where such a choice is necessary.

Consider a caching degeneracy removal policy. If we do not allow for on-line insertions then the cached quan-
tities are always valid since the Voronoi diagram never changes. If we allow for on-line insertions the Voronoi
diagram can change, which implies that the results of the edge and faces degeneracy testers that we have cached
are no longer valid or relevant. In these cases, we need to somehow update these cached results, and ideally
we would like to do this in an efficient manner. The inherent dilemma in the above discussion is whether the
Voronoi diagram adaptor should be able to perform on-line insertions of sites. The answer to this question in
this framework is given by the Has inserter tag. If the tag is set to CGAL::Tag false the adaptor cannot insert
sites on-line, whereas if the tag is set to CGAL::Tag true the adaptor can add sites on-line. In other words,
the Has inserter tag determines how the Voronoi diagram adaptor should behave, and this is enough from the
adaptor’s point of view.

From the point of a view of a policy writer the dilemma is still there: should the policy allow for on-line
insertions or not? The answer really depends on what are the consequences of such a choice. For a policy that
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has no state, such as our degeneracy removal policies, it is natural to set the Has inserter tag to CGAL::Tag
true. For our caching degeneracy removal policies, our choice was made on the grounds of whether we can
update the cached results efficiently when insertions are performed. For CGAL’s Apollonius graphs, Delaunay
triangulation and regular triangulations it is possible to ask what are the edges and faces of the Delaunay graph
that are to be destroyed when a query site is inserted. This is done via the get conflicts method provided by
these classes. Using the outcome of the get conflicts method the site inserter can first update the cached results
(i.e., indicate which are invalidated) and then perform the actual insertion. Such a method does not yet exist for
segment Delaunay graphs. We have thus chosen to support on-line insertions for all non-caching degeneracy
removal policies. The caching degeneracy removal policy for segment Delaunay graphs does not support on-line
insertions, whereas the remaining three caching degeneracy removal policies support on-line insertions.

Efficiency Considerations

One last item that merits some discussion are the different choices from the point of view of time- and space-
efficiency.

As far as the Voronoi diagram adaptor is concerned, only a copy of the adaptation traits and a copy of the
adaptation policy are stored in it. The various adaptation traits classes we provide are empty classes (i.e., they
do not store anything). The major time and space efficiency issues arise from the various implementations of the
adaptation policies. Clearly, the identity policy has no dominant effect on neither the time or space efficiency.
The costs when choosing this policy are due to the underlying Delaunay graph.

The non-caching degeneracy removal policies create a significant time overhead since every time we want to
access a feature of the Voronoi diagram, we need to perform geometric tests in order to see if this feature or one
of its neighboring ones has been rejected. Such a policy is acceptable if we know we are away from degeneracies
or for small input sizes. In the case of the segment Delaunay graph, it is also the only policy we provide that
at the same time removes degeneracies and allows for on-line insertion of sites. Caching policies seem to be
the best choice for moderate to large input sizes (1000 sites and more). They do not suffer from the problem of
dealing with degenerate configurations, but since they cache the results, they increase the space requirements
by linear additive factor. To conclude, if the user is interested in getting a Voronoi diagram without degenerate
features and knows all sites in advance, the best course of action is to insert all sites at construction time and use
a caching degeneracy removal policy. This strategy avoids the updates of the cached results after each individual
insertion, due to the features of the Voronoi diagram destroyed because of the site inserted.

46.5 Examples

In this section we present an example that shows how to perform point location queries.� �
#include <iostream>
#include <fstream>
#include <cassert>

// includes for defining the Voronoi diagram adaptor
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/Voronoi_diagram_2.h>
#include <CGAL/Delaunay_triangulation_adaptation_traits_2.h>
#include <CGAL/Delaunay_triangulation_adaptation_policies_2.h>

// typedefs for defining the adaptor
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typedef CGAL::Exact_predicates_inexact_constructions_kernel
K;

typedef CGAL::Delaunay_triangulation_2<K>
DT;

typedef CGAL::Delaunay_triangulation_adaptation_traits_2<DT>
AT;

typedef
CGAL::Delaunay_triangulation_caching_degeneracy_removal_policy_2<DT>
AP;

typedef CGAL::Voronoi_diagram_2<DT,AT,AP>
VD;

// typedef for the result type of the point location
typedef AT::Site_2 Site_2;
typedef AT::Point_2 Point_2;

typedef VD::Locate_result Locate_result;
typedef VD::Vertex_handle Vertex_handle;
typedef VD::Face_handle Face_handle;
typedef VD::Halfedge_handle Halfedge_handle;
typedef VD::Ccb_halfedge_circulator Ccb_halfedge_circulator;

void print_endpoint(Halfedge_handle e, bool is_src) {
std::cout << "\t";
if ( is_src ) {

if ( e->has_source() ) std::cout << e->source()->point() <<
std::endl;
else std::cout << "point at infinity" << std::endl;

} else {
if ( e->has_target() ) std::cout << e->target()->point() <<
std::endl;
else std::cout << "point at infinity" << std::endl;

}
}

int main()
{

std::ifstream ifs("data/data1.dt.cin");
assert( ifs );

VD vd;

Site_2 t;
while ( ifs >> t ) { vd.insert(t); }
ifs.close();

assert( vd.is_valid() );

std::ifstream ifq("data/queries1.dt.cin");
assert( ifq );

Point_2 p;
while ( ifq >> p ) {

std::cout << "Query point (" << p.x() << "," << p.y()
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<< ") lies on a Voronoi " << std::flush;

Locate_result lr = vd.locate(p);
if ( Vertex_handle* v = boost::get<Vertex_handle>(&lr) ) {

std::cout << "vertex." << std::endl;
std::cout << "The Voronoi vertex is:" << std::endl;
std::cout << "\t" << (*v)->point() << std::endl;

} else if ( Halfedge_handle* e = boost::get<Halfedge_handle>(&lr) ) {
std::cout << "edge." << std::endl;
std::cout << "The source and target vertices "

<< "of the Voronoi edge are:" << std::endl;
print_endpoint(*e, true);
print_endpoint(*e, false);

} else if ( Face_handle* f = boost::get<Face_handle>(&lr) ) {
std::cout << "face." << std::endl;
std::cout << "The vertices of the Voronoi face are"

<< " (in counterclockwise order):" << std::endl;
Ccb_halfedge_circulator ec_start = (*f)->outer_ccb();
Ccb_halfedge_circulator ec = ec_start;
do {

print_endpoint(ec, false);
} while ( ++ec != ec_start );

}
std::cout << std::endl;

}
ifq.close();

return 0;
}� �
File: examples/Voronoi_diagram_2/vd_2_point_location.cpp
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2D Voronoi Diagram Adaptor
Reference Manual
Menelaos Karavelas

CGAL provides the class CGAL::Voronoi diagram 2<DG,AT,AP> for adapting the various (triangulated) De-
launay graphs to Voronoi diagrams according to some adaptation policy. In particular, the class CGAL::Voronoi
diagram 2<DG,AT,AP> provides an API for the duals of (triangulated) Delaunay graphs, that makes them look
like planar subdivisions. The adaptation policy is responsible for deciding which edges and faces of these duals
should be eliminated. This is especially important when, for instance, we want to eliminate degenerate features
in the Voronoi diagram that are the result of the fact that Delaunay graphs are always triangulated and are due
to degenerate configurations in the generating data.

The three template parameters must be models of the DelaunayGraph 2, AdaptationTraits 2 and
AdaptationPolicy 2 concepts, respectively. The first concept is related to the Delaunay graphs that are to be
adapted, whereas the second one is responsible for manipulating/accessing in a unified way the geometry of a
specific Voronoi diagram as well as for performing nearest site queries. The third template parameter corre-
sponds to the chosen adaptation policy and provides the necessary types and functors needed for performing
this adaptation.
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CGAL::Voronoi diagram 2<DG,AT,AP>

Definition

The class Voronoi diagram 2<DG,AT,AP> provides an adaptor that enables us to view a triangulated Delaunay
graph as their dual subdivision, the Voronoi diagram. The class Voronoi diagram 2<DG,AT,AP> is designed to
provide an API that is similar to that of CGAL’s arrangements.
The first template parameter of the Voronoi diagram 2<DG,AT,AP> class corresponds to the triangulated
Delaunay graph and must be a model of the DelaunayGraph 2 concept. The second template parameter
must be a model of the AdaptationTraits 2 concept. The third template parameter must be a model of the
AdaptationPolicy 2 concept. The third template parameter defaults to CGAL::Identity policy 2<DG,AT>.

#include <CGAL/Voronoi diagram 2.h>

Refines

DefaultConstructible, CopyConstructible, Assignable

Types

typedef DG Delaunay graph; A type for the dual Delaunay graph.
typedef AT Adaptation traits; A type for the adaptation traits

needed by the Voronoi diagram
adaptor.

typedef AP Adaptation policy; A type for the adaptation policy
used.

typedef Adaptation traits::Point 2 Point 2; A type a point.
typedef Adaptation traits::Site 2 Site 2; A type for the sites of the Voronoi

diagram.

typedef Delaunay graph::size type size type; A type for sizes.
typedef Delaunay graph::Geom traits Delaunay geom traits; A type for the geometric traits of the

Delaunay graph.

typedef Delaunay graph::Vertex handle Delaunay vertex handle; A type for the vertex handles of the
Delaunay graph.

typedef Delaunay graph::Face handle Delaunay face handle; A type for the face handles of the
Delaunay graph.

typedef Delaunay graph::Edge Delaunay edge; A type for the edges of the Delaunay
graph.

Voronoi diagram 2<DG,AT,AP>:: Halfedge A type for the halfedges of the Voronoi diagram.
Voronoi diagram 2<DG,AT,AP>:: Vertex A type for the vertices of the Voronoi diagram.
Voronoi diagram 2<DG,AT,AP>:: Face A type for the faces of the Voronoi diagram.

The vertices, edges and faces of the Voronoi diagram are accessed through handles, iterators and circulators.
The iterators and circulators are all bidirectional and non-mutable. The circulators and iterators are assignable
to the corresponding handle types, and they are also convertible to the corresponding handles.

Voronoi diagram 2<DG,AT,AP>:: Halfedge handle Handle for halfedges.
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Voronoi diagram 2<DG,AT,AP>:: Vertex handle Handle for vertices.
Voronoi diagram 2<DG,AT,AP>:: Face handle Handle for faces.
Voronoi diagram 2<DG,AT,AP>:: Edge iterator A type for an iterator over Voronoi

edges. Edges are considered non-
oriented. Its value type is Halfedge.

Voronoi diagram 2<DG,AT,AP>:: Halfedge iterator A type for an iterator over Voronoi
halfedges. Halfedges are oriented and
come in pairs. Its value type is
Halfedge.

Voronoi diagram 2<DG,AT,AP>:: Face iterator A type for an iterator over Voronoi
faces. Its value type is Face.

Voronoi diagram 2<DG,AT,AP>:: Vertex iterator A type for an iterator over Voronoi ver-
tices. Its value type is Vertex.

Voronoi diagram 2<DG,AT,AP>:: Halfedge around vertex circulator

A type for a circulator over the
halfedges that have a common vertex as
their target. Its value type is Halfedge.

Voronoi diagram 2<DG,AT,AP>:: Ccb halfedge circulator A type for a circulator over the
halfedges on the boundary of a Voronoi
face. Its value type of is Halfedge.

Voronoi diagram 2<DG,AT,AP>:: Unbounded faces iterator A type for an iterator over the un-
bounded faces of the Voronoi diagram.
Its value type is Face.

Voronoi diagram 2<DG,AT,AP>:: Bounded faces iterator A type for an iterator over the bounded
faces of the Voronoi diagram. Its value
type is Face.

Voronoi diagram 2<DG,AT,AP>:: Unbounded halfedges iterator A type for an iterator over the un-
bounded halfedges of the Voronoi dia-
gram. Its value type is Halfedge.

Voronoi diagram 2<DG,AT,AP>:: Bounded halfedges iterator A type for an iterator over the bounded
halfedges of the Voronoi diagram. Its
value type is Halfedge.

Voronoi diagram 2<DG,AT,AP>:: Site iterator A type for an iterator over the sites of
the Voronoi diagram. Its value type is
Site 2.

typedef boost::variant<Face handle,Halfedge handle,Vertex handle> Locate result; The result type of
the point location
queries.

Creation

Voronoi diagram 2<DG,AT,AP> vd( Adaptation traits at = Adaptation traits(),
Adaptation policy ap = Adaptation policy(),
Delaunay geom traits gt = Delaunay geom traits())

Creates a Voronoi diagram using at as adaptation traits and ap as
adaptation policy; the underlying Delaunay graph is created using gt
as geometric traits.
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Voronoi diagram 2<DG,AT,AP> vd( Delaunay graph dg,
bool swap dg = false,
Adaptation traits at = Adaptation traits(),
Adaptation policy ap = Adaptation policy())

Creates a Voronoi diagram from the Delaunay graph dg and using at
as adaptation traits and ap as adaptation policy. The Delaunay graph
dg is fully copied if swap dg is set to false, or swapped with the one
stored internally if swap dg is set to true.

template<class Iterator>
Voronoi diagram 2<DG,AT,AP> vd( Iterator first,

Iterator beyond,
Adaptation traits at = Adaptation traits(),
Adaptation policy ap = Adaptation policy(),
Delaunay geom traits gt = Delaunay geom traits())

Creates a Voronoi diagram using as sites the sites in the iterator range
[first, beyond), at as adaptation traits and ap as adaptation policy; the
underlying Delaunay graph is created using gt as geometric traits.
Iterator must be a model of the InputIterator concept and its value
type must be Site 2.

Access Methods

Delaunay graph vd.dual() Returns a const reference to the dual graph,
i.e., the Delaunay graph.

Halfedge handle vd.dual( Delaunay edge e) Returns a handle to the halfedge in the
Voronoi diagram that is dual to the edge e
in the Delaunay graph.

Face handle vd.dual( Delaunay vertex handle v) Returns a handle to the face in the Voronoi
diagram that is dual to the vertex correspond-
ing to the vertex handle v in the Delaunay
graph.

Vertex handle vd.dual( Delaunay face handle f) Returns a handle to the vertex in the Voronoi
diagram that is dual to the face correspond-
ing to the face handle f in the Delaunay
graph.

Adaptation traits vd.adaptation traits() Returns a reference to the Voronoi traits.
Adaptation policy vd.adaptation policy() Returns a reference to the adaptation policy.
size type vd.number of vertices() Returns the number of Voronoi vertices.
size type vd.number of faces() Returns the number of Voronoi faces

(bounded and unbounded).
size type vd.number of halfedges() Returns the number of halfedges (bounded

and unbounded) in the Voronoi diagram.
This is always an even number.

size type vd.number of connected components() Returns the number of connected compo-
nents of the Voronoi skeleton.

Face handle vd.unbounded face() Returns one of the unbounded faces of the
Voronoi diagram. If no unbounded faces ex-
ist (this can happen if the number of sites is
zero) the default constructed face handle is
returned.
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Face handle vd.bounded face() Returns one of the bounded faces of the
Voronoi diagram. If no bounded faces ex-
ist the default constructed face handle is re-
turned.

Halfedge handle vd.unbounded halfedge() Returns one of the unbounded halfedges
of the Voronoi diagram. If no un-
bounded halfedges exist the default con-
structed halfedge handle is returned.

Halfedge handle vd.bounded halfedge() Returns one of the bounded halfedges of the
Voronoi diagram. If no bounded halfedges
exist the default constructed halfedge handle
is returned.

Traversal of the Voronoi diagram

A Voronoi diagram can be seen as a container of faces, vertices and halfedges. Therefore the Voronoi diagram
provides several iterators and circulators that allow to traverse it.

Iterators

The following iterators allow respectively to visit the faces (all or only the unbounded/bounded ones), edges,
halfedges (all or only the unbounded/bounded ones) and vertices of the Voronoi diagram. These iterators are
non-mutable, bidirectional and their value types are respectively Face, Halfedge, Halfedge and Vertex. All
iterators are convertible to the corresponding handles and are invalidated by any change in the Voronoi diagram.

Face iterator vd.faces begin() Starts at an arbitrary Voronoi face.
Face iterator vd.faces end() Past-the-end iterator.

Unbounded faces iterator vd.unbounded faces begin() Starts at an arbitrary unbounded
Voronoi face.

Unbounded faces iterator vd.unbounded faces end() Past-the-end iterator.

Bounded faces iterator vd.bounded faces begin() Starts at an arbitrary bounded Voronoi
face.

Bounded faces iterator vd.bounded faces end() Past-the-end iterator.

Edge iterator vd.edges begin() Starts at an arbitrary Voronoi edge.
Edge iterator vd.edges end() Past-the-end iterator.

Halfedge iterator vd.halfedges begin() Starts at an arbitrary Voronoi halfedge.

Halfedge iterator vd.halfedges end() Past-the-end iterator.

Unbounded halfedges iterator vd.unbounded halfedges begin() Starts at an arbitrary unbounded
Voronoi edge.

Unbounded halfedges iterator vd.unbounded halfedges end() Past-the-end iterator.

Bounded halfedges iterator vd.bounded halfedges begin() Starts at an arbitrary bounded Voronoi
edge.

Bounded halfedges iterator vd.bounded halfedges end() Past-the-end iterator.
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Vertex iterator vd.vertices begin() Starts at an arbitrary Voronoi vertex.
Vertex iterator vd.vertices end() Past-the-end iterator.

The following iterator provides access to the sites that define the Voronoi diagram. Its value type is Site 2. It is
invalidated by any change in the Voronoi diagram.

Site iterator vd.sites begin() Starts at an arbitrary site.
Site iterator vd.sites end() Past-the-end iterator.

Circulators

The Voronoi diagram adaptor also provides circulators that allow to visit all halfedges whose target is a given
vertex – this is the Halfedge around vertex circulator, as well as all halfedges on the boundary of a Voronoi
face – this is the Ccb halfedge circulator. These circulators are non-mutable and bidirectional. The operator
operator++ moves the former circulator counterclockwise around the vertex while the operator-- moves clock-
wise. The latter circulator is moved by the operator operator++ to the next halfedge on the boundary in the
counterclockwise sense, while operator-- moves clockwise. When the Ccb halfedge circulator is defined over
an infinite Voronoi face f , then applying operator++ to a circulator corresponding to a halfedge whose target
is not finite moves to the next infinite (or semi-infinite) halfedge of f in the counterclockwise sense. Similarly,
applying operator++ to a circulator corresponding to a halfedge whose source is not finite, moves to the pre-
vious infinite (or semi-infinite) halfedge of f in the clockwise sense. The Halfedge around vertex circulator
circulator is invalidated by any modification in the faces adjacent to the vertex over which it is defined. The
Ccb halfedge circulator is invalidated by any modification in the face over which it is defined.

Ccb halfedge circulator vd.ccb halfedges( Face handle f) Returns a circulator over the halfedges on the
boundary of f . The circulator is initialized to
an arbitrary halfedge on the boundary of the
Voronoi face f .

Ccb halfedge circulator vd.ccb halfedges( Face handle f, Halfedge handle h)

Returns a circulator over the halfedges on the
boundary of f . The circulator is initialized
with the halfedge h.
Precondition: The halfedge h must lie on the
boundary of f .

Halfedge around vertex circulator vd.incident halfedges( Vertex handle v)

Returns a circulator over the halfedges whose
target is the Voronoi vertex v. The circulator
is initialized to an arbitrary halfedge incident
to v.

Halfedge around vertex circulator vd.incident halfedges( Vertex handle v, Halfedge handle h)

Returns a circulator over the halfedges whose
target is the Voronoi vertex v. The circulator
is initialized with the halfedge h.
Precondition: The vertex v must be the target
vertex of the halfedge h.
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Insertion

Face handle vd.insert( Site 2 t) Inserts the site t in the Voronoi diagram. A handle to the face corre-
sponding to the Voronoi face of t in the Voronoi diagram is returned. If
t has an empty Voronoi cell, the default constructed face handle is re-
turned. This method is supported only if Voronoi traits::Has inserter
is set to CGAL::Tag true.

template<class Iterator>
size type vd.insert( Iterator first, Iterator beyond)

Inserts, in the Voronoi diagram, the sites in the iterator range [first, be-
yond). The value type of Iterator must be Site 2. The number of sites in
the iterator range is returned. This method is supported only if Voronoi
traits::Has inserter is set to CGAL::Tag true.

Queries

Locate result vd.locate( Point 2 p) Performs point location for the query point p. In other words, the
face, halfedge or vertex of the Voronoi diagram is found on which the
point p lies. This method is supported only if Voronoi traits::Has
nearest site 2 is set to CGAL::Tag true.
Precondition: The Voronoi diagram must contain at least one face.

I/O

void vd.file output( std::ostream& os) Writes the current state of the Voronoi diagram to the
output stream os.
The following operator must be defined:
std::ostream& operator<<(std::ostream&, Delaunay
graph)

void vd.file input( std::istream& is) Reads the current state of the Voronoi diagram from the
input stream is.
The following operator must be defined:
std::istream& operator>>(std::istream&, Delaunay
graph)

std::ostream& std::ostream& os << vd Writes the current state of the Voronoi diagram to the
output stream os.
The following operator must be defined:
std::ostream& operator<<(std::ostream&, Delaunay
graph)

std::istream& std::istream& is >> vd Reads the current state of the Voronoi diagram from the
input stream is.
The following operator must be defined:
std::istream& operator>>(std::istream&, Delaunay
graph)

Validity check

bool vd.is valid() Checks the validity of the dual Delaunay graph and the Voronoi diagram adaptor.
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Miscellaneous

void vd.clear() Clears all contents of the Voronoi diagram.
void vd.swap( other) The Voronoi diagrams other and vd are swapped. vd.swap(other) should be pre-

ferred to vd= other or to vd(other) if other is deleted afterwards.

See Also

DelaunayGraph 2
AdaptationTraits 2
AdaptationPolicy 2
CGAL::Voronoi diagram 2<DG,AT,AP>::Face
CGAL::Voronoi diagram 2<DG,AT,AP>::Halfedge
CGAL::Voronoi diagram 2<DG,AT,AP>::Vertex
CGAL::Delaunay triangulation 2<Traits,Tds>
CGAL::Regular triangulation 2<Traits,Tds>
CGAL::Triangulation hierarchy 2<Tr> provided that Tr is a model of DelaunayGraph 2
CGAL::Segment Delaunay graph 2<Gt,DS>
CGAL::Segment Delaunay graph hierarchy 2<Gt,STag,DS>
CGAL::Apollonius graph 2<Gt,Agds>
CGAL::Apollonius graph hierarchy 2<Gt,Agds>
CGAL::Apollonius graph adaptation traits 2<AG2>
CGAL::Delaunay triangulation adaptation traits 2<DT2>
CGAL::Regular triangulation adaptation traits 2<RT2>
CGAL::Segment Delaunay graph adaptation traits 2<SDG2>
CGAL::Identity policy 2<DG,AT>
CGAL::Apollonius graph degeneracy removal policy 2<AG2>
CGAL::Apollonius graph caching degeneracy removal policy 2<AG2>
CGAL::Delaunay triangulation degeneracy removal policy 2<DT2>
CGAL::Delaunay triangulation caching degeneracy removal policy 2<DT2>
CGAL::Regular triangulation degeneracy removal policy 2<RT2>
CGAL::Regular triangulation caching degeneracy removal policy 2<RT2>
CGAL::Segment Delaunay graph degeneracy removal policy 2<SDG2>
CGAL::Segment Delaunay graph caching degeneracy removal policy 2<SDG2>
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CGAL::Voronoi diagram 2<DG,AT,AP>::Halfedge

Definition

The class Halfedge is the class provided by the Voronoi diagram 2<DG,AT,AP> class for Voronoi halfedges.
Below we present its interface.

Is Model for the Concepts

DefaultConstructible, CopyConstructible, Assignable, EqualityComparable, LessThanComparable

Types

Halfedge:: Vertex A type for the vertices of the
Voronoi diagram.

Halfedge:: Face A type for the faces of the Voronoi
diagram.

Halfedge:: Vertex handle Handle for the vertices of the
Voronoi diagram.

Halfedge:: Face handle Handle for the faces of the Voronoi
diagram.

Halfedge:: Halfedge handle Handle for the halfedges of the
Voronoi diagram.

Halfedge:: Ccb halfedge circulator A type for a bidirectional cir-
culator over the halfedges of
the boundary of a Voronoi face.
The value type of the circulator
is CGAL::Voronoi diagram 2<
DG,AT,AP>::Halfedge and is
convertible to Halfedge handle.

Halfedge:: Delaunay graph A type for the Delaunay graph. It
is a model of the DelaunayGraph
2 concept.

typedef Delaunay graph::Edge Delaunay edge; A type for the dual edge in the Delau-
nay graph.

typedef Delaunay graph::Vertex handle Delaunay vertex handle; A type for vertex handles in the De-
launay graph.

Access Methods

Halfedge handle e.twin() Returns the twin halfedge.
Halfedge handle e.opposite() Same as e.twin().
Halfedge handle e.next() Returns the next halfedge in the counterclockwise sense around

the boundary of the face that e is incident to.

Halfedge handle e.previous() Returns the previous halfedge in the counterclockwise sense
around the boundary of the adjacent face.
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Face handle e.face() Returns the face that e is incident to.
Vertex handle e.source() Returns the source vertex of e.

Precondition: The source vertex must exist, i.e., has source()
must return true.

Vertex handle e.target() Returns the target vertex of e.
Precondition: The target vertex must exist, i.e., has target() must
return true.

Ccb halfedge circulator e.ccb() Returns a bidirectional circulator to traverse the halfedges on the
boundary of the Voronoi face containing e. The circulator is ini-
tialized to e. Applying operator++ (resp. operator--) to this cir-
culator returns the next halfedge on the boundary of the face con-
taining e in the counterclockwise (resp. clockwise) sense.

Delaunay edge e.dual() Returns the corresponding dual edge in the Delaunay graph.

In the four methods below we consider Voronoi halfedges to be “parallel” to the x-axis, oriented from left to
right.

Delaunay vertex handle e.up() Returns a handle to the vertex in the Delaunay graph correspond-
ing to the defining site above the Voronoi edge.

Delaunay vertex handle e.down() Returns a handle to the vertex in the Delaunay graph correspond-
ing to the defining site below the Voronoi edge.

Delaunay vertex handle e.left() Returns a handle to the vertex in the Delaunay graph correspond-
ing to the defining site to the left of the Voronoi edge.
Precondition: has source() must be true.

Delaunay vertex handle e.right() Returns a handle to the vertex in the Delaunay graph correspond-
ing to the defining site to the right of the Voronoi edge.
Precondition: has target() must be true.

Predicate Methods

bool e.has source() Returns true iff the halfedge corresponds to a bisecting segment or a bisecting
ray oriented appropriately so that its apex is its source.

bool e.has target() Returns true iff the halfedge corresponds to a bisecting segment or a bisecting
ray oriented appropriately so that its apex is its target.

bool e.is unbounded() Returns true iff the source or the target of the halfedge does not exist, i.e., if either
of has source() or has target() return false.

bool e.is bisector() Returns true iff the Voronoi edge is an entire bisector.
bool e.is segment() Returns true iff the Voronoi edge has both a source and a target Voronoi vertex.
bool e.is ray() Returns true iff the Voronoi edge has either a source or a target Voronoi vertex,

but not both; in other words it is a bisecting ray.
bool e.is valid() Returns true if the following conditions are met: the halfedge is not a rejected

edge with respect to the chosen adaptation policy; the twin edge of its twin edge is
itself; its adjacent face is not a rejected face with respect to the chosen adaptation
policy; its source and target vertices are valid (provided they exist, of course); the
previous of its next halfedge is itself and the next of its previous halfedge is itself.

See Also

CGAL::Voronoi diagram 2<DG,AT,AP>
CGAL::Voronoi diagram 2<DG,AT,AP>::Vertex
CGAL::Voronoi diagram 2<DG,AT,AP>::Face
DelaunayGraph 2
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CGAL::Voronoi diagram 2<DG,AT,AP>::Vertex

Definition

The class Vertex is the Voronoi vertex class provided by the class Voronoi diagram 2<DG,AT,AP> class. Below
we present its interface.

Is Model for the Concepts

DefaultConstructible, CopyConstructible, Assignable, EqualityComparable, LessThanComparable

Types

Vertex:: Halfedge A type for the halfedges of the Voronoi dia-
gram.

Vertex:: Face A type for the faces of the Voronoi diagram.
Vertex:: Vertex handle Handle for the vertices of the Voronoi dia-

gram.

Vertex:: Face handle Handle for the faces of the Voronoi diagram.
Vertex:: Halfedge handle Handle for the halfedges of the Voronoi dia-

gram.

Vertex:: Point 2 A type for the point represented by the vertex.

Vertex:: size type A type for sizes.
Vertex:: Halfedge around vertex circulator A type for a bidirectional circulator that

allows to traverse all incident halfedges,
i.e., all halfedges that have the vertex
as their target. The value type of the
circulator is CGAL::Voronoi diagram 2<
DG,AT,AP>::Halfedge and is convertible to
Halfedge handle.

Vertex:: Delaunay graph A type for the Delaunay graph. It is a
model of the DelaunayGraph 2 con-
cept.

typedef Delaunay graph::Face handle Delaunay face handle; A type for the handle of the dual face.

typedef Delaunay graph::Vertex handle Delaunay vertex handle; A type for the vertex handles in the
Delaunay graph.

Access Methods

Halfedge handle v.halfedge() Returns an incident halfedge that has v as its target.
size type v.degree() Returns the in-degree of the vertex, i.e. the number of

halfedges that have v as their target.

Point 2 v.point() Returns the point represented by the vertex.
Delaunay face handle v.dual() Returns a handle to the corresponding dual face in the

Delaunay graph.
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Delaunay vertex handle v.site( unsigned int i) Returns a handle to the vertex in the Delaunay graph cor-
responding to the (i+1)-th generating site of the Voronoi
vertex.
Precondition: i must be smaller or equal to 2.

Halfedge around vertex circulator v.incident halfedges() Returns a bidirectional circulator that allows
the traversal of the halfedges that have v
as their target. Applying operator++ (resp.
operator--) to this circulator returns the next
incident halfedge in the counterclockwise
(resp. clockwise) sense.

Predicate Methods

bool v.is incident edge( Halfedge handle e) Returns true if the halfedge e is incident to v.
bool v.is incident face( Face handle e) Returns true if the face f is incident to v.
bool v.is valid() Returns true if the following conditions are met: the dual

face is not an infinite face; all incident halfedges have the
vertex as their target.

See Also

CGAL::Voronoi diagram 2<DG,AT,AP>
CGAL::Voronoi diagram 2<DG,AT,AP>::Halfedge
CGAL::Voronoi diagram 2<DG,AT,AP>::Face
DelaunayGraph 2
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CGAL::Voronoi diagram 2<DG,AT,AP>::Face

Definition

The class Face is the class provided by the Voronoi diagram 2<DG,AT,AP> class for Voronoi faces. Below we
present its interface.

Is Model for the Concepts

DefaultConstructible, CopyConstructible, Assignable, EqualityComparable, LessThanComparable

Types

Face:: Vertex A type for the vertices of the Voronoi diagram.
Face:: Halfedge A type for the halfedges of the Voronoi dia-

gram.

Face:: Vertex handle Handle for the vertices of the Voronoi diagram.

Face:: Face handle Handle for the faces of the Voronoi diagram.
Face:: Halfedge handle Handle for the halfedges of the Voronoi dia-

gram.

Face:: Ccb halfedge circulator A type for a bidirectional circulator over the
halfedges on the boundary of the face. The
value type of the circulator is CGAL::Voronoi
diagram 2<DG,AT,AP>::Halfedge, and is con-
vertible to Halfedge handle.

Face:: Delaunay graph A type for the Delaunay graph. It is a model of
the DelaunayGraph 2 concept.

typedef Delaunay graph::Vertex handle Delaunay vertex handle; A type for the handle of the dual ver-
tex.

Access Methods

Halfedge handle f .halfedge() Returns an incident halfedge on the boundary of f .
Ccb halfedge circulator f .ccb() Returns a bidirectional circulator for traversing the halfedges on

the boundary of f . The halfedges are traversed in counterclockwise
order.

Delaunay vertex handle f .dual() Returns a handle to the corresponding dual vertex in the Delaunay
graph.

Predicate Methods

bool f .is unbounded() Returns true iff the face is an unbounded face in the Voronoi
diagram.

bool f .is halfedge on ccb( Halfedge e) Returns true iff e is a halfedge of the boundary of f .
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bool f .is valid() Returns true iff the following conditions are met: the face is
not rejected by the chosen adaptation policy; all its adjacent
halfedges do not have zero length; all its adjacent halfedges re-
turn the face as their adjacent face.

See Also

CGAL::Voronoi diagram 2<DG,AT,AP>
CGAL::Voronoi diagram 2<DG,AT,AP>::Vertex
CGAL::Voronoi diagram 2<DG,AT,AP>::Halfedge
DelaunayGraph 2
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DelaunayGraph 2

Definition

The concept DelaunayGraph 2 defines the requirements for the first template parameter of the Voronoi
diagram 2<DG,AT,AP> class. The DelaunayGraph 2 concept essentially defines the requirements that a class
representing a Delaunay graph must obey so that the Voronoi diagram adaptor can adapt it.

Refines

DefaultConstructible, CopyConstructible, Assignable

Types

DelaunayGraph 2:: size type A type for sizes.
DelaunayGraph 2:: Geom traits A type for the geometric traits associated with the Delau-

nay graph.
DelaunayGraph 2:: Triangulation data structure A type for the underlying triangulation data

structure. It must be a model of the concept
TriangulationDataStructure 2.

DelaunayGraph 2:: Vertex A type for the vertices of the Delaunay graph.
DelaunayGraph 2:: Face A type for the faces of the Delaunay graph.
typedef std::pair<Face handle,int> Edge; The type of the edges of the Delaunay graph.
DelaunayGraph 2:: Vertex handle Handle to the vertices of the Delaunay graph.
DelaunayGraph 2:: Face handle Handle to the faces of the Delaunay graph.

The following iterators and circulators must be defined. All iterators and circulators must be assignable and
convertible to their corresponding handles.

DelaunayGraph 2:: All edges iterator A type for an iterator over all edges of the Delaunay
graph. Its value type must be Edge.

DelaunayGraph 2:: Finite edges iterator A type for an iterator over the finite edges of the Delau-
nay graph. Its value type must be Edge.

DelaunayGraph 2:: All faces iterator A type for an iterator over all faces of the Delaunay
graph. Its value type must be Face.

DelaunayGraph 2:: Finite faces iterator A type for an iterator over the finite faces of the Delaunay
graph. Its value type must be Face.

DelaunayGraph 2:: All vertices iterator A type for an iterator over all vertices of the Delaunay
graph. Its value type must be Vertex.

DelaunayGraph 2:: Finite vertices iterator A type for an iterator over the finite vertices of the De-
launay graph. Its value type must be Vertex.

DelaunayGraph 2:: Face circulator A type for a circulator over the adjacent faces of a vertex
of the Delaunay graph. Its value type must be Face.

DelaunayGraph 2:: Vertex circulator A type for a circulator over the adjacent vertices of a ver-
tex of the Delaunay graph. Its value type must be Vertex.

DelaunayGraph 2:: Edge circulator A type for a circulator over the adjacent edges of a vertex
of the Delaunay graph. Its value type must be Edge.
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Creation

In addition to the default and copy constructors, as well as the assignment operator, the following constructors
are required.

DelaunayGraph 2 dg( Geom traits gt); Constructor that takes an instance of the geo-
metric traits.

template<class It>
DelaunayGraph 2 dg( It first, It beyond); Constructor that takes an iterator range. The

value type of the iterator must be the type of
the sites of the Delaunay graph.

template<class It>
DelaunayGraph 2 dg( It first, It beyond, Geom traits gt); Constructor that takes an iterator range and

an instance of the geometric traits. The value
type of the iterator must be the type of the
sites of the Delaunay graph.

Access methods

Triangulation data structure dg.tds() Returns a reference to the underlying triangula-
tion data structure.

Geom traits dg.geom traits() Returns a reference to the geometric traits object.

Vertex handle dg.infinite vertex() Returns a handle to the infinite vertex.
Vertex handle dg.finite vertex() Returns a handle to a finite vertex, provided there

exists one.
Face handle dg.infinite face() Returns a handle to a face incident to the infinite

vertex.
int dg.dimension() Returns the dimension of the Delaunay graph.
size type dg.number of vertices() Returns the number of finite vertices.
size type dg.number of faces() Returns the number of faces (both finite and infi-

nite).

Traversal of the Delaunay graph

A model of the DelaunayGraph 2 concept must provide several iterators and circulators that allow to traverse
it (completely or partially). All iterators and circulators must be convertible to the corresponding handles.

Face, Edge and Vertex Iterators

The following iterators must allow, respectively, to visit finite faces, finite edges and finite vertices of the De-
launay graph. These iterators must be non-mutable, bidirectional and their value types are respectively Face,
Edge and Vertex.

Finite vertices iterator dg.finite vertices begin() Starts at an arbitrary finite vertex.
Finite vertices iterator dg.finite vertices end() Past-the-end iterator.

Finite edges iterator dg.finite edges begin() Starts at an arbitrary finite edge.
Finite edges iterator dg.finite edges end() Past-the-end iterator.

Finite faces iterator dg.finite faces begin() Starts at an arbitrary finite face.
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Finite faces iterator dg.finite faces end() const Past-the-end iterator.

The following iterators must allow, respectively, to visit all (both finite and infinite) faces, edges and vertices of
the Delaunay graph. These iterators are non-mutable, bidirectional and their value types are respectively Face,
Edge and Vertex.

All vertices iterator dg.all vertices begin() Starts at an arbitrary vertex.
All vertices iterator dg.all vertices end() Past-the-end iterator.

All edges iterator dg.all edges begin() Starts at an arbitrary edge.
All edges iterator dg.all edges end() Past-the-end iterator.

All faces iterator dg.all faces begin() Starts at an arbitrary face.
All faces iterator dg.all faces end() Past-the-end iterator.

Face, Edge and Vertex Circulators

A model of the DelaunayGraph 2 concept must also provide circulators that allow to visit, respectively, all faces
or edges incident to a given vertex or all vertices adjacent to a given vertex. These circulators are non-mutable
and bidirectional. The operator operator++ must move the circulator counterclockwise around the vertex while
the operator-- must move the circulator clockwise.

Face circulator dg.incident faces( Vertex handle v) Starts at an arbitrary face incident to v.
Face circulator dg.incident faces( Vertex handle v, Face handle f)

Starts at face f .
Precondition: Face f must be incident to
vertex v.

Edge circulator dg.incident edges( Vertex handle v) Starts at an arbitrary edge incident to v.
Edge circulator dg.incident edges( Vertex handle v, Face handle f)

Starts at the first edge of f incident to v, in
counterclockwise order around v.
Precondition: Face f must be incident to
vertex v.

Vertex circulator dg.incident vertices( Vertex handle v) Starts at an arbitrary vertex incident to v.
Vertex circulator dg.incident vertices( Vertex handle v, Face handle f)

Starts at the first vertex of f adjacent to v in
counterclockwise order around v.
Precondition: Face f must be incident to
vertex v.

Predicates

A model of the DelaunayGraph 2 concept must provide methods to test the finite or infinite character of any
feature.
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bool dg.is infinite( Vertex handle v) true, iff v is the infinite vertex.
bool dg.is infinite( Face handle f) true, iff face f is infinite.
bool dg.is infinite( Face handle f, int i) true, iff edge (f,i) is infinite.
bool dg.is infinite( Edge e) true, iff edge e is infinite.
bool dg.is infinite( Edge circulator ec) true, iff edge *ec is infinite.

Validity check

bool dg.is valid( bool verbose = false) Checks the validity of the Delaunay graph. If verbose is true a
short message is sent to std::cerr.

Miscellaneous

void dg.clear() Clears all contents of the Delaunay graph.
void dg.swap( other) The Delaunay graphs other and dg are swapped. dg.swap(other) should be pre-

ferred to dg= other or to dg(other) if other is deleted afterwards.

Has Models

CGAL::Delaunay triangulation 2<Traits,Tds>
CGAL::Regular triangulation 2<Traits,Tds>
CGAL::Triangulation hierarchy 2<Tr> provided that Tr is a model of DelaunayGraph 2
CGAL::Segment Delaunay graph 2<Gt,DS>
CGAL::Segment Delaunay graph hierarchy 2<Gt,STag,DS>
CGAL::Apollonius graph 2<Gt,Agds>
CGAL::Apollonius graph hierarchy 2<Gt,Agds>

See Also

AdaptationTraits 2
AdaptationPolicy 2
CGAL::Voronoi diagram 2<DG,AT,AP>
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AdaptationTraits 2

Definition

The concept AdaptationTraits 2 defines the functors required for accessing geometric information in the De-
launay graph that is needed by the Voronoi diagram 2<DG,AT,AP> class. It optionally defines a functor for
performing nearest site queries. A tag is provided for determining whether this functor is defined or not.

Refines

DefaultConstructible, CopyConstructible, Assignable

Types

AdaptationTraits 2:: Point 2 A type for a point.
AdaptationTraits 2:: Site 2 A type for the sites of the Voronoi diagram.
AdaptationTraits 2:: Delaunay graph A type for the triangulated Delaunay graph. The type Delaunay

graph must be a model of the DelaunayGraph 2 concept.

typedef Delaunay graph::Edge Delaunay edge; The type of the edges of the Delau-
nay graph

typedef Delaunay graph::Face handle Delaunay face handle; The type of the face handles of the
Delaunay graph

typedef Delaunay graph::Vertex handle Delaunay vertex handle; The type of the vertex handles of the
Delaunay graph.

AdaptationTraits 2:: Access site 2 A type for a functor that accesses the site associated
with a vertex. The functor should be a model of
the concepts DefaultConstructible, CopyConstructible,
Assignable and AdaptableFunctor (with one argument).
The functor must provide the following operator:

result type operator()(Delaunay vertex handle v)
where the result type result type must be either Site 2 or
const Site 2&.

AdaptationTraits 2:: Construct Voronoi point 2 A type for a functor that constructs the dual point of a
(triangular) face in the Delaunay graph. This point is
the Voronoi vertex of the three sites defining the face in
the Delaunay graph. The functor must be a model of
the concepts DefaultConstructible, CopyConstructible,
Assignable, AdaptableFunctor (with one argument). It
must provide the following operator:

Point 2 operator()(Delaunay face handle f) .
The face handle f must not correspond to an infinite
face.

AdaptationTraits 2:: Has nearest site 2 A tag for determining if the adaptation traits class pro-
vides a functor for performing nearest site queries. This
tag is equal to either CGAL::Tag true (a nearest site
query functor is available) or CGAL::Tag false (a near-
est site query functor is not available).
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AdaptationTraits 2:: Nearest site 2 A type for a functor that performs nearest site queries.
Semantically, the result of the query is either a face,
edge or vertex of the Delaunay graph. It is a face if the
query point has at least three closest sites; the returned
face has closest sites as vertices. It is an edge if the
query point is equidistant to exactly two vertices of
the Delaunay graph, which are the source and target
vertices of the edge. In all other cases, the search
result is a vertex, namely, the unique vertex of the
Delaunay graph closest to the query point. The functor
must be a model of the concepts DefaultConstructible,
CopyConstructible, Assignable, AdaptableFunctor
(with two arguments). It must provide the following
operator:
result type operator()(Delaunay graph dg, Point 2 p)

where the result type result type is boost::variant<
Delaunay vertex handle,Delaunay edge,Delaunay
face handle>.
This type is required only if Has nearest site 2 is equal
to CGAL::Tag true.

Access to objects

Access site 2 at.access site 2 object()
Construct Voronoi point 2 at.construct Voronoi point 2 object()
Nearest site 2 at.nearest site 2 object() This method is required only if

Has nearest site 2 is equal to
CGAL::Tag true.

Has Models

CGAL::Apollonius graph adaptation traits 2<AG2>
CGAL::Delaunay triangulation adaptation traits 2<DT2>
CGAL::Regular triangulation adaptation traits 2<RT2>
CGAL::Segment Delaunay graph adaptation traits 2<SDG2>

See Also

DelaunayGraph 2
CGAL::Voronoi diagram 2<DG,AT,AP>
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AdaptationPolicy 2

Definition

The concept AdaptationPolicy 2 defines the requirements on the predicate functors that determine whether a
feature of the triangulated Delaunay graph should be rejected or not. It also provides a functor for inserting sites
in the Delaunay graph. The last functor is optional and a tag determines whether it is provided or not. Note that
while the first two functors do not modify the Delaunay graph they take as an argument, the last ones does.

Refines

DefaultConstructible, CopyConstructible, Assignable

Types

AdaptationPolicy 2:: Site 2 A type for the sites of the Voronoi diagram.
AdaptationPolicy 2:: Delaunay graph A type for the triangulated Delaunay graph. The type Delaunay

graph must be a model of the DelaunayGraph 2 concept.

typedef Delaunay graph::Vertex handle Delaunay vertex handle;
typedef Delaunay graph::Face handle Delaunay face handle;
typedef Delaunay graph::Edge Delaunay edge;
typedef Delaunay graph::All edges iterator All Delaunay edges iterator;
typedef Delaunay graph::Finite edges iterator Finite Delaunay edges iterator;
typedef Delaunay graph::Edge circulator Delaunay edge circulator;
AdaptationPolicy 2:: Edge rejector A type for the predicate functor that is responsible for rejecting an

edge of the Delaunay graph (or equivalently rejecting its dual edge
in the Voronoi diagram). It must be model of the concepts Default-
Constructible, CopyConstructible, Assignable, and AdaptableFunctor
(with two arguments). It must provide the following operators:

bool operator()(Delaunay graph dg, Delaunay edge e)
bool operator()(Delaunay graph dg, Delaunay face handle f, int i)
bool operator()(Delaunay graph dg, Delaunay edge circulator ec)
bool operator()(Delaunay graph dg,

All Delaunay edges iterator eit)
bool operator()(Delaunay graph dg,

Finite Delaunay edges iterator eit)
The functor returns true iff the edge is rejected.

AdaptationPolicy 2:: Face rejector A type for the predicate functor that is responsible for rejecting a
vertex of the Delaunay graph (or equivalently its dual face in the
Voronoi diagram – hence the name of the functor). It must be model
of the concepts DefaultConstructible, CopyConstructible, Assignable,
AdaptableFunctor (with two arguments). It must provide the follow-
ing operator:

bool operator()(Delaunay graph dg, Delaunay vertex handle v)
The functor returns true iff the face is rejected.

AdaptationPolicy 2:: Has inserter A tag for determining if the adaptation policy class provides a functor
for inserting sites in the Delaunay graph. This tag is equal to either
CGAL::Tag true (a site inserter functor is available) or CGAL::Tag
false (a site inserter functor is not available).
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AdaptationPolicy 2:: Site inserter A type for a functor that inserts sites in the Delaunay graph. It must
be model of the concepts DefaultConstructible, CopyConstructible,
Assignable, AdaptableFunctor (with two arguments). It must provide
the following operator

Delaunay vertex handle operator()(Delaunay graph& dg, Site 2 t)
The vertex handle returned either points to the vertex of the Delau-
nay graph corresponding to the site just inserted or is the default con-
structed vertex handle. The latter case can happen if the site inserted is
hidden, i.e., it has an empty Voronoi cell.
This type is required only if the Has inserter tag is equal to
CGAL::Tag true.

Access to objects

Edge rejector ap.edge rejector object()
Face rejector ap.face rejector object()
Site inserter ap.site inserter object() This method is required only if Has inserter is equal to

CGAL::Tag true.

Miscellaneous

The following methods are important when the adaptation policy maintains a state. This can happen if we have
a caching adaptation policy, i.e., when we cache the results of the edge and face rejectors.

void ap.clear() Clears the state of the adaptation policy.
void ap.swap( other) The adaptation policies ap and other are swapped. This method should be pre-

ferred to ap=other or ap(other) if other is deleted afterwards.
bool ap.is valid() Tests the validity of the adaptation policy.

bool ap.is valid( Delaunay graph dg)

Tests the validity of the adaptation policy using extra information from the De-
launay graph dg.

Has Models

CGAL::Identity policy 2<DG,AT>
CGAL::Apollonius graph degeneracy removal policy 2<AG2>
CGAL::Apollonius graph caching degeneracy removal policy 2<AG2>
CGAL::Delaunay triangulation degeneracy removal policy 2<DT2>
CGAL::Delaunay triangulation caching degeneracy removal policy 2<DT2>
CGAL::Regular triangulation degeneracy removal policy 2<RT2>
CGAL::Regular triangulation caching degeneracy removal policy 2<RT2>
CGAL::Segment Delaunay graph degeneracy removal policy 2<SDG2>
CGAL::Segment Delaunay graph caching degeneracy removal policy 2<SDG2>

See Also

DelaunayGraph 2
AdaptationTraits 2
CGAL::Voronoi diagram 2<DG,AT,AP>
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CGAL::Apollonius graph adaptation traits 2<AG2>

Definition

The class Apollonius graph adaptation traits 2<AG2> provides a model for the AdaptationTraits 2 concept.
The template parameter of the Apollonius graph adaptation traits 2<AG2> class must be a model of the
DelaunayGraph 2 concept, and in particular it has the semantics of a (triangulated) 2D Apollonius graph.

#include <CGAL/Apollonius graph adaptation traits 2.h>

Is Model for the Concepts

AdaptationTraits 2

Types

typedef CGAL::Tag true Has nearest site 2;

See Also

AdaptationTraits 2
DelaunayGraph 2
CGAL::Voronoi diagram 2<DG,AT,AP>
CGAL::Apollonius graph 2<Gt,Agds>
CGAL::Apollonius graph hierarchy 2<Gt,Agds>
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CGAL::Delaunay triangulation adaptation traits 2<DT2>

Definition

The class Delaunay triangulation adaptation traits 2<DT2> provides a model for the AdaptationTraits 2 con-
cept. The template parameter of the Delaunay triangulation adaptation traits 2<DT2> class must be a model
of the DelaunayGraph 2 concept, and in particular it has the semantics of a 2D Delaunay triangulation.

#include <CGAL/Delaunay triangulation adaptation traits 2.h>

Is Model for the Concepts

AdaptationTraits 2

Types

typedef CGAL::Tag true Has nearest site 2;

See Also

AdaptationTraits 2
DelaunayGraph 2
CGAL::Voronoi diagram 2<DG,AT,AP>
CGAL::Delaunay triangulation 2<Traits,Tds>
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CGAL::Regular triangulation adaptation traits 2<RT2>

Definition

The class Regular triangulation adaptation traits 2<RT2> provides a model for the AdaptationTraits 2 con-
cept. The template parameter of the Regular triangulation adaptation traits 2<RT2> class must be a model of
the DelaunayGraph 2 concept, and in particular it has the semantics of a 2D regular triangulation.

#include <CGAL/Regular triangulation adaptation traits 2.h>

Is Model for the Concepts

AdaptationTraits 2

Types

typedef CGAL::Tag true Has nearest site 2;

See Also

AdaptationTraits 2
DelaunayGraph 2
Voronoi diagram 2<DG,AT,AP>
CGAL::Regular triangulation 2<Traits,Tds>
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CGAL::Segment Delaunay graph adaptation traits 2<SDG2>

Definition

The class Segment Delaunay graph adaptation traits 2<SDG2> provides a model for the AdaptationTraits 2
concept. The template parameter of the Segment Delaunay graph adaptation traits 2<SDG2> class must be a
model of the DelaunayGraph 2 concept, and in particular it has the semantics of the 2D (triangulated) segment
Delaunay graph.

#include <CGAL/Segment Delaunay graph adaptation traits 2.h>

Is Model for the Concepts

AdaptationTraits 2

Types

typedef CGAL::Tag true Has nearest site 2;

See Also

AdaptationTraits 2
DelaunayGraph 2
CGAL::Voronoi diagram 2<DG,AT,AP>
CGAL::Segment Delaunay graph 2<Gt,DS>
CGAL::Segment Delaunay graph hierarchy 2<Gt,STag,DS>
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CGAL::Identity policy 2<DG,AT>

Definition

The class Identity policy 2<DG,AT> provides a model for the AdaptationPolicy 2 concept. The first template
parameter of the Identity policy 2<DG,AT> class must be a model of the DelaunayGraph 2 concept, whereas
as the second template parameter must be a model of the AdaptationTraits 2 concept. This policy rejects no
edge and no face of the Delaunay graph, thus giving a Voronoi diagram which is the true dual of the triangulation
Delaunay graph. The Voronoi diagram created with this adaptation policy may have degenerate features, such
as Voronoi edges of zero length, or Voronoi faces of zero area. This policy assumes that the Delaunay graph,
that is adapted, allows for site insertions through an insert method that takes as argument an object of type
AT::Site 2. The site inserter functor provided by this policy uses the aforementioned insert method.

#include <CGAL/Identity policy 2.h>

Is Model for the Concepts

AdaptationPolicy 2

Types

typedef CGAL::Tag true Has inserter;

See Also

AdaptationTraits 2
DelaunayGraph 2
CGAL::Voronoi diagram 2<DG,AT,AP>
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CGAL::Apollonius graph degeneracy removal policy 2<AG2>

Definition

The class Apollonius graph degeneracy removal policy 2<AG2> provides a model for the AdaptationPolicy 2
concept. The template parameter of the Apollonius graph degeneracy removal policy 2<AG2> class must be a
model of the DelaunayGraph 2 concept, and in particular it has the semantics of a (triangulated) 2D Apollonius
graph. This policy results in a Voronoi diagram that has no degenerate features, i.e., it has no Voronoi edges of
zero length and no Voronoi faces of zero area.

#include <CGAL/Apollonius graph adaptation policies 2.h>

Is Model for the Concepts

AdaptationPolicy 2

Types

typedef CGAL::Tag true Has inserter;

See Also

AdaptationTraits 2
DelaunayGraph 2
CGAL::Apollonius graph caching degeneracy removal policy 2<AG2>
CGAL::Voronoi diagram 2<DG,AT,AP>
CGAL::Apollonius graph 2<Gt,Agds>
CGAL::Apollonius graph hierarchy 2<Gt,Agds>
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la

ss

CGAL::Delaunay triangulation degeneracy removal policy 2<DT2>

Definition

The class Delaunay triangulation degeneracy removal policy 2<DT2> provides a model for the
AdaptationPolicy 2 concept. The template parameter of the Delaunay triangulation degeneracy removal
policy 2<DT2> class must be a model of the DelaunayGraph 2 concept, and in particular it has the semantics
of a (triangulated) 2D Delaunay triangulation. This policy results in a Voronoi diagram that has no degenerate
features, i.e., it has no Voronoi edges of zero length.

#include <CGAL/Delaunay triangulation adaptation policies 2.h>

Is Model for the Concepts

AdaptationPolicy 2

Types

typedef CGAL::Tag true Has inserter;

See Also

AdaptationTraits 2
DelaunayGraph 2
CGAL::Delaunay triangulation caching degeneracy removal policy 2<DT2>
CGAL::Voronoi diagram 2<DG,AT,AP>
CGAL::Delaunay triangulation 2<Traits,Tds>
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CGAL::Regular triangulation degeneracy removal policy 2<RT2>

Definition

The class Regular triangulation degeneracy removal policy 2<RT2> provides a model for the
AdaptationPolicy 2 concept. The template parameter of the Regular triangulation degeneracy removal
policy 2<RT2> class must be a model of the DelaunayGraph 2 concept, and in particular it has the semantics
of a (triangulated) 2D regular triangulation. This policy results in a power diagram that has no degenerate
features, i.e., it has no Voronoi edges of zero length.

#include <CGAL/Regular triangulation adaptation policies 2.h>

Is Model for the Concepts

AdaptationPolicy 2

Types

typedef CGAL::Tag true Has inserter;

See Also

AdaptationTraits 2
DelaunayGraph 2
CGAL::Regular triangulation caching degeneracy removal policy 2<RT2>
CGAL::Voronoi diagram 2<DG,AT,AP>
CGAL::Regular triangulation 2<Traits,Tds>
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CGAL::Segment Delaunay graph degeneracy removal policy 2<
SDG2>

Definition

The class Segment Delaunay graph degeneracy removal policy 2<SDG2> provides a model for the
AdaptationPolicy 2 concept. The template parameter of the Segment Delaunay graph degeneracy removal
policy 2<SDG2> class must be a model of the DelaunayGraph 2 concept, and in particular it has the semantics
of a (triangulated) 2D segment Delaunay graphs. This policy results in a Voronoi diagram that has no degenerate
features, i.e., it has no Voronoi edges of zero length and no Voronoi faces of zero area.

#include <CGAL/Segment Delaunay graph adaptation policies 2.h>

Is Model for the Concepts

AdaptationPolicy 2

Types

typedef CGAL::Tag true Has inserter;

See Also

AdaptationTraits 2
DelaunayGraph 2
CGAL::Segment Delaunay graph caching degeneracy removal policy 2<SDG2>
CGAL::Voronoi diagram 2<DG,AT,AP>
CGAL::Segment Delaunay graph 2<Gt,DS>
CGAL::Segment Delaunay graph hierarchy 2<Gt,STag,DS>
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C
la

ss

CGAL::Apollonius graph caching degeneracy removal policy 2<
AG2>

Definition

The class Apollonius graph caching degeneracy removal policy 2<AG2> provides a model for the
AdaptationPolicy 2 concept. The template parameter of the Apollonius graph caching degeneracy removal
policy 2<AG2> class must be a model of the DelaunayGraph 2 concept, and in particular it has the semantics
of a (triangulated) 2D Apollonius graph. This policy caches the results of the edge and face rejectors and results
in a Voronoi diagram that has no degenerate features, i.e., no Voronoi edges of zero length and no Voronoi faces
of zero area.

#include <CGAL/Apollonius graph adaptation policies 2.h>

Is Model for the Concepts

AdaptationPolicy 2

Types

typedef CGAL::Tag true Has inserter;

See Also

AdaptationTraits 2
DelaunayGraph 2
CGAL::Apollonius graph degeneracy removal policy 2<AG2>
CGAL::Voronoi diagram 2<DG,AT,AP>
CGAL::Apollonius graph 2<Gt,Agds>
CGAL::Apollonius graph hierarchy 2<Gt,Agds>
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C
la

ss

CGAL::Delaunay triangulation caching degeneracy removal policy
2<DT2>

Definition

The class Delaunay triangulation caching degeneracy removal policy 2<DT2> provides a model for the
AdaptationPolicy 2 concept. The template parameter of the Delaunay triangulation caching degeneracy
removal policy 2<DT2> class must be a model of the DelaunayGraph 2 concept, and in particular it has the
semantics of a (triangulated) 2D Delaunay triangulation. This policy caches the results of the edge and face
rejectors and results in a Voronoi diagram that has no degenerate features, i.e., no Voronoi edges of zero length.

#include <CGAL/Delaunay triangulation adaptation policies 2.h>

Is Model for the Concepts

AdaptationPolicy 2

Types

typedef CGAL::Tag true Has inserter;

See Also

AdaptationTraits 2
DelaunayGraph 2
CGAL::Delaunay triangulation degeneracy removal policy 2<DT2>
CGAL::Voronoi diagram 2<DG,AT,AP>
CGAL::Delaunay triangulation 2<Traits,Tds>
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la

ss

CGAL::Regular triangulation caching degeneracy removal policy 2<
RT2>

Definition

The class Regular triangulation caching degeneracy removal policy 2<RT2> provides a model for the
AdaptationPolicy 2 concept. The template parameter of the Regular triangulation caching degeneracy
removal policy 2<RT2> class must be a model of the DelaunayGraph 2 concept, and in particular it has the
semantics of a (triangulated) 2D regular triangulation. This policy caches the results of the edge and face
rejectors and results in a Voronoi diagram that has no degenerate features, i.e., no Voronoi edges of zero length.

#include <CGAL/Regular triangulation adaptation policies 2.h>

Is Model for the Concepts

AdaptationPolicy 2

Types

typedef CGAL::Tag true Has inserter;

See Also

AdaptationTraits 2
DelaunayGraph 2
CGAL::Regular triangulation degeneracy removal policy 2<RT2>
CGAL::Voronoi diagram 2<DG,AT,AP>
CGAL::Regular triangulation 2<Traits,Tds>
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ss

CGAL::Segment Delaunay graph caching degeneracy removal
policy 2<SDG2>

Definition

The class Segment Delaunay graph caching degeneracy removal policy 2<SDG2> provides a model for the
AdaptationPolicy 2 concept. The template parameter of the Segment Delaunay graph caching degeneracy
removal policy 2<SDG2> class must be a model of the DelaunayGraph 2 concept, and in particular it has the
semantics of a (triangulated) 2D segment Delaunay graph. This policy caches the results of the edge and face
rejectors and results in a Voronoi diagram that has no degenerate features, i.e., no Voronoi edges of zero length
and no Voronoi faces of zero area.

#include <CGAL/Segment Delaunay graph adaptation policies 2.h>

Is Model for the Concepts

AdaptationPolicy 2

Types

typedef CGAL::Tag false Has inserter;

See Also

AdaptationTraits 2
DelaunayGraph 2
CGAL::Segment Delaunay graph degeneracy removal policy 2<SDG2>
CGAL::Voronoi diagram 2<DG,AT,AP>
CGAL::Segment Delaunay graph 2<Gt,DS>
CGAL::Segment Delaunay graph hierarchy 2<Gt,STag,DS>
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Chapter 47

2D Conforming Triangulations and
Meshes
Laurent Rineau
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This package implements Shewchuk’s algorithm [She00] to construct conforming triangulations and 2D meshes.
Conforming triangulations will be described in Section 47.1 and meshes in Section 47.2.

47.1 Conforming Triangulations

47.1.1 Definitions

A triangulation is a Delaunay triangulation if the circumscribing circle of any facet of the triangulation contains
no vertex in its interior. A constrained Delaunay triangulation is a constrained triangulation which is as much
Delaunay as possible. The circumscribing circle of any facet of a constrained Delaunay triangulation contains
in its interior no data point visible from the facet.
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An edge is said to be a Delaunay edge if it is inscribed in an empty circle (containing no data point in its
interior). This edge is said to be a Gabriel edge if its diametrical circle is empty.

A constrained Delaunay triangulation is said to be a conforming Delaunay triangulation if every constrained
edge is a Delaunay edge. Because any edge in a constrained Delaunay triangulation is either a Delaunay edge or
a constrained edge, a conforming Delaunay triangulation is in fact a Delaunay triangulation. The only difference
is that some of the edges are marked as constrained edges.

A constrained Delaunay triangulation is said to be a conforming Gabriel triangulation if every constrained edge
is a Gabriel edge. The Gabriel property is stronger than the Delaunay property and each Gabriel edge is a
Delaunay edge. Conforming Gabriel triangulations are thus also conforming Delaunay triangulations.

Any constrained Delaunay triangulation can be refined into a conforming Delaunay triangulation or into a
conforming Gabriel triangulation by adding vertices, called Steiner vertices, on constrained edges until they are
decomposed into subconstraints small enough to be Delaunay or Gabriel edges.

47.1.2 Building Conforming Triangulations

Constrained Delaunay triangulations can be refined into conforming triangulations by the two following global
functions:
template<class CDT> void make conforming Delaunay 2 (CDT& t) and
template<class CDT> void make conforming Gabriel 2 (CDT& t).

In both cases, the template parameter CDT must be instantiated by a constrained Delaunay triangulation class.
Such a class must be a model of the concept ConstrainedDelaunayTriangulation 2.

The geometric traits of the constrained Delaunay triangulation used to instantiate the parameter CDT has to be
a model of the concept ConformingDelaunayTriangulationTraits 2.

The constrained Delaunay triangulation t is passed by reference and is refined into a conforming Delaunay
triangulation or into a conforming Gabriel triangulation by adding vertices. The user is advised to make a copy
of the input triangulation in the case where the original triangulation has to be preserved for other computations

The algorithm used by make conforming Delaunay 2 and make conforming Gabriel 2 builds internal data
structures that would be computed twice if the two functions are called consecutively on the same triangu-
lation. In order to avoid these data to be constructed twice, the advanced user can use the class Triangulation
conformer 2<CDT> to refine a constrained Delaunay triangulation into a conforming Delaunay triangulation
and then into a conforming Gabriel triangulation. For additional control of the refinement algorithm, this class
also provides separate functions to insert one Steiner point at a time.

47.1.3 Example: Making a Triangulation Conforming Delaunay and Then Conform-
ing Gabriel

This example inserts several segments into a constrained Delaunay triangulation, makes it conforming Delaunay,
and then conforming Gabriel. At each step, the number of vertices of the triangulation is printed.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Constrained_Delaunay_triangulation_2.h>
#include <CGAL/Triangulation_conformer_2.h>

#include <iostream>
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typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Constrained_Delaunay_triangulation_2<K> CDT;
typedef CDT::Point Point;
typedef CDT::Vertex_handle Vertex_handle;

int main()
{

CDT cdt;

// construct a constrained triangulation
Vertex_handle

va = cdt.insert(Point( 5., 5.)),
vb = cdt.insert(Point(-5., 5.)),
vc = cdt.insert(Point( 4., 3.)),
vd = cdt.insert(Point( 5.,-5.)),
ve = cdt.insert(Point( 6., 6.)),
vf = cdt.insert(Point(-6., 6.)),
vg = cdt.insert(Point(-6.,-6.)),
vh = cdt.insert(Point( 6.,-6.));

cdt.insert_constraint(va,vb);
cdt.insert_constraint(vb,vc);
cdt.insert_constraint(vc,vd);
cdt.insert_constraint(vd,va);
cdt.insert_constraint(ve,vf);
cdt.insert_constraint(vf,vg);
cdt.insert_constraint(vg,vh);
cdt.insert_constraint(vh,ve);

std::cout << "Number of vertices before: "
<< cdt.number_of_vertices() << std::endl;

// make it conforming Delaunay
CGAL::make_conforming_Delaunay_2(cdt);

std::cout << "Number of vertices after make_conforming_Delaunay_2: "
<< cdt.number_of_vertices() << std::endl;

// then make it conforming Gabriel
CGAL::make_conforming_Gabriel_2(cdt);

std::cout << "Number of vertices after make_conforming_Gabriel_2: "
<< cdt.number_of_vertices() << std::endl;

}� �

File: examples/Mesh_2/conforming.cpp

See figures 47.1, 47.2 and 47.3.
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Figure 47.1: Initial triangulation.

Figure 47.2: The corresponding conforming Delaunay triangulation.
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Figure 47.3: The corresponding conforming Gabriel triangulation.

47.2 Meshes

47.2.1 Definitions

A mesh is a partition of a given region into simplices whose shapes and sizes satisfy several criteria.

The domain is the region that the user wants to mesh. It has to be a bounded region of the plane. The domain is
defined by a planar straight line graph, PSLG for short, which is a set of segments such that two segments in the
set are either disjoint or share an endpoint. The segments of the PSLG are constraints that will be represented
by a union of edges in the mesh. The PSLG can also contain isolated points that will appear as vertices of the
mesh.

The segments of the PSLG are either segments of the boundary or internals constraints. The segments of the
PSLG have to cover the boundary of the domain.

The PSLG divides the plane into several connected components. By default, the domain is the union of the
bounded connected components. The user can override this default by providing a set of seed points. Either
seed points mark components to be meshed or they mark components not to be meshed (holes).

See figures 47.4 and 47.5 for an example of a domain defined without using seed points, and a possible mesh of
it. See figure 47.6 for another domain defined with the same PSLG and two seed points used to define holes. In
the corresponding mesh (figure 47.7), these two holes are triangulated but not meshed.

47.2.2 Shape and Size Criteria

The shape criterion for triangles is a lower bound B on the ratio between the circumradius and the shortest edge
length. Such a bound implies a lower bound of arcsin 1

2B on the minimum angle of the triangle and an upper
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Figure 47.4: A domain defined without seed points.

Figure 47.5: A mesh of the domain defined without seed points.

Figure 47.6: A domain with two seeds points defining holes.
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Figure 47.7: A mesh of the domain with two seeds defining holes.

bound of π−2∗arcsin 1
2B on the maximum angle. Unfortunately, the termination of the algorithm is guaranteed

only if B≥
√

2, which corresponds to a lower bound of 20.7 degrees over the angles.

The size criterion can be any criterion that tends to prefer small triangles. For example, the size criterion can be
an upper bound on the length of longest edge of triangles, or an upper bound on the radius of the circumcircle.
The size bound can vary over the domain. For example, the size criterion could impose a small size for the
triangles intersecting a given line.

Both types of criteria are defined in an object criteria passed as parameter of the meshing functions.

47.2.3 The Meshing Algorithm

The input to a meshing problem is a PSLG and a set of seeds describing the domain to be meshed, and a
set of size and shape criteria. The algorithm implemented in this package starts with a constrained Delaunay
triangulation of the input PSLG and produces a mesh using the Delaunay refinement method. This method
inserts new vertices to the triangulation, as far as possible from other vertices, and stops when the criteria are
satisfied.

If all angles between incident segments of the input PSLG are greater than 60 degrees and if the bound on the
circumradius/edge ratio is greater than

√
2, the algorithm is guaranteed to terminate with a mesh satisfying the

size and shape criteria.

If some input angles are smaller than 60 degrees, the algorithm will end up with a mesh in which some triangles
violate the criteria near small input angles. This is unavoidable since small angles formed by input segments
cannot be suppressed. Furthermore, it has been shown ([She00]), that some domains with small input angles
cannot be meshed with angles even smaller than the small input angles. Note that if the domain is a polygonal
region, the resulting mesh will satisfy size and shape criteria except for the small input angles. In addition, the
algorithm may succeed in producing meshes with a lower angle bound greater than 20.7 degrees, but there is no
such guarantee.
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47.2.4 Building Meshes

Meshes are obtained from constrained Delaunay triangulations by calling the global function
template<class CDT, class Criteria> void refine Delaunay mesh 2 (CDT &t, const Criteria& criteria).
The template parameter CDT must be instantiated by a constrained Delaunay triangulation class, which is a
model of the concept ConstrainedDelaunayTriangulation 2. In order to override the domain, a version of this
function has two more arguments that define a sequence of seed points.

The geometric traits class of CDT has to be a model of the concept DelaunayMeshTraits 2. This concept refines
the concept ConformingDelaunayTriangulationTraits 2 adding the geometric predicates and constructors. The
template parameter Criteria must be a model of MeshingCriteria 2. This concept defines criteria that the
triangles have to satisfy. CGAL provides two models for this concept:

• Delaunay mesh criteria 2<CDT>, that defines a shape criterion that bounds the minimum angle of trian-
gles,

• Delaunay mesh size criteria 2<CDT>, that adds to the previous criterion a bound on the maximum edge
length.

If the function refine Delaunay mesh 2 is called several times on the same triangulation with different criteria,
the algorithm rebuilds the internal data structure used for meshing at every call. In order to avoid rebuild the
data structure at every call, the advanced user can use the class Delaunay mesher 2<CDT>. This class provides
also step by step functions. Those functions insert one vertex at a time.

Any object of type Delaunay mesher 2<CDT> is constructed from a reference to a CDT , and has several mem-
ber functions to define the domain to be meshed and to mesh the CDT . See the example given below and the
reference manual for details. Note that the CDT should not be externally modified during the life time of the
Delaunay mesher 2<CDT> object.

Once the mesh is constructed, one can determine which faces of the triangulation are in the mesh domain using
the is in domain() member function of the face type (see the concept DelaunayMeshFaceBase 2).

47.2.5 Example Using the Global Function

The following example inserts several segments into a constrained triangulation and then meshes it using the
global function refine Delaunay mesh 2. The size and shape criteria are the default ones provided by the criteria
class Delaunay mesh criteria 2<K>. No seeds are given, meaning that the mesh domain covers the whole plane
except the unbounded component.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Constrained_Delaunay_triangulation_2.h>
#include <CGAL/Delaunay_mesher_2.h>
#include <CGAL/Delaunay_mesh_face_base_2.h>
#include <CGAL/Delaunay_mesh_size_criteria_2.h>

#include <iostream>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Triangulation_vertex_base_2<K> Vb;
typedef CGAL::Delaunay_mesh_face_base_2<K> Fb;
typedef CGAL::Triangulation_data_structure_2<Vb, Fb> Tds;
typedef CGAL::Constrained_Delaunay_triangulation_2<K, Tds> CDT;
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typedef CGAL::Delaunay_mesh_size_criteria_2<CDT> Criteria;

typedef CDT::Vertex_handle Vertex_handle;
typedef CDT::Point Point;

int main()
{

CDT cdt;

Vertex_handle va = cdt.insert(Point(-4,0));
Vertex_handle vb = cdt.insert(Point(0,-1));
Vertex_handle vc = cdt.insert(Point(4,0));
Vertex_handle vd = cdt.insert(Point(0,1));
cdt.insert(Point(2, 0.6));

cdt.insert_constraint(va, vb);
cdt.insert_constraint(vb, vc);
cdt.insert_constraint(vc, vd);
cdt.insert_constraint(vd, va);

std::cout << "Number of vertices: " << cdt.number_of_vertices() <<
std::endl;

std::cout << "Meshing the triangulation..." << std::endl;
CGAL::refine_Delaunay_mesh_2(cdt, Criteria(0.125, 0.5));

std::cout << "Number of vertices: " << cdt.number_of_vertices() <<
std::endl;

}� �
File: examples/Mesh_2/mesh_global.cpp

47.2.6 Example Using the Class Delaunay mesher 2<CDT>

This example uses the class Delaunay mesher 2<CDT> and calls the refine mesh() member function twice,
changing the size and shape criteria in between. In such a case, using twice the global function refine Delaunay
mesh 2 would be less efficient, because some internal structures needed by the algorithm would be built twice.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Constrained_Delaunay_triangulation_2.h>
#include <CGAL/Delaunay_mesher_2.h>
#include <CGAL/Delaunay_mesh_face_base_2.h>
#include <CGAL/Delaunay_mesh_size_criteria_2.h>

#include <iostream>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Triangulation_vertex_base_2<K> Vb;
typedef CGAL::Delaunay_mesh_face_base_2<K> Fb;
typedef CGAL::Triangulation_data_structure_2<Vb, Fb> Tds;
typedef CGAL::Constrained_Delaunay_triangulation_2<K, Tds> CDT;
typedef CGAL::Delaunay_mesh_size_criteria_2<CDT> Criteria;
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typedef CGAL::Delaunay_mesher_2<CDT, Criteria> Mesher;

typedef CDT::Vertex_handle Vertex_handle;
typedef CDT::Point Point;

int main()
{

CDT cdt;

Vertex_handle va = cdt.insert(Point(-4,0));
Vertex_handle vb = cdt.insert(Point(0,-1));
Vertex_handle vc = cdt.insert(Point(4,0));
Vertex_handle vd = cdt.insert(Point(0,1));
cdt.insert(Point(2, 0.6));

cdt.insert_constraint(va, vb);
cdt.insert_constraint(vb, vc);
cdt.insert_constraint(vc, vd);
cdt.insert_constraint(vd, va);

std::cout << "Number of vertices: " << cdt.number_of_vertices() <<
std::endl;

std::cout << "Meshing the triangulation with default criterias..."
<< std::endl;

Mesher mesher(cdt);
mesher.refine_mesh();

std::cout << "Number of vertices: " << cdt.number_of_vertices() <<
std::endl;

std::cout << "Meshing with new criterias..." << std::endl;
// 0.125 is the default shape bound. It corresponds to abound 20.6
degree.

// 0.5 is the upper bound on the length of the longuest edge.
// See reference manual for Delaunay_mesh_size_traits_2<K>.
mesher.set_criteria(Criteria(0.125, 0.5));
mesher.refine_mesh();

std::cout << "Number of vertices: " << cdt.number_of_vertices() <<
std::endl;

}� �
File: examples/Mesh_2/mesh_class.cpp

47.2.7 Example Using Seeds

This example uses the global function refine Delaunay mesh 2 but defines a domain by using one seed. The
size and shape criteria are the default ones provided by the criteria class Delaunay mesh criteria 2<K>.

Once the mesh is constructed, the is in domain() member function of faces is used to count them.
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� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Constrained_Delaunay_triangulation_2.h>
#include <CGAL/Delaunay_mesher_2.h>
#include <CGAL/Delaunay_mesh_face_base_2.h>
#include <CGAL/Delaunay_mesh_size_criteria_2.h>

#include <iostream>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Triangulation_vertex_base_2<K> Vb;
typedef CGAL::Delaunay_mesh_face_base_2<K> Fb;
typedef CGAL::Triangulation_data_structure_2<Vb, Fb> Tds;
typedef CGAL::Constrained_Delaunay_triangulation_2<K, Tds> CDT;
typedef CGAL::Delaunay_mesh_size_criteria_2<CDT> Criteria;

typedef CDT::Vertex_handle Vertex_handle;
typedef CDT::Point Point;

int main()
{

CDT cdt;
Vertex_handle va = cdt.insert(Point(2,0));
Vertex_handle vb = cdt.insert(Point(0,2));
Vertex_handle vc = cdt.insert(Point(-2,0));
Vertex_handle vd = cdt.insert(Point(0,-2));

cdt.insert_constraint(va, vb);
cdt.insert_constraint(vb, vc);
cdt.insert_constraint(vc, vd);
cdt.insert_constraint(vd, va);

va = cdt.insert(Point(3,3));
vb = cdt.insert(Point(-3,3));
vc = cdt.insert(Point(-3,-3));
vd = cdt.insert(Point(3,0-3));

cdt.insert_constraint(va, vb);
cdt.insert_constraint(vb, vc);
cdt.insert_constraint(vc, vd);
cdt.insert_constraint(vd, va);

std::list<Point> list_of_seeds;

list_of_seeds.push_back(Point(0, 0));

std::cout << "Number of vertices: " << cdt.number_of_vertices() <<
std::endl;

std::cout << "Meshing the domain..." << std::endl;
CGAL::refine_Delaunay_mesh_2(cdt, list_of_seeds.begin(),
list_of_seeds.end(),

Criteria());

std::cout << "Number of vertices: " << cdt.number_of_vertices() <<
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std::endl;
std::cout << "Number of finite faces: " << cdt.number_of_faces() <<
std::endl;

int mesh_faces_counter = 0;
for(CDT::Finite_faces_iterator fit = cdt.finite_faces_begin();

fit != cdt.finite_faces_end(); ++fit)
{

if(fit->is_in_domain()) ++mesh_faces_counter;
}
std::cout << "Number of faces in the mesh domain: " <<
mesh_faces_counter << std::endl;

}� �
File: examples/Mesh_2/mesh_with_seeds.cpp
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ConformingDelaunayTriangulationTraits 2

Definition

The concept ConformingDelaunayTriangulationTraits 2 refines the concept
ConstrainedDelaunayTriangulationTraits 2 by providing a numeric field type FT , a type Vector 2 and
several constructors on Vector 2, Point 2, and a predicate on angles. The field type has to be a model of the
concept SqrtFieldNumberType. This field type and the constructors are used by the conforming algorithm to
compute Steiner points on constrained edges.

Refines

DelaunayTriangulationTraits 2

Types

ConformingDelaunayTriangulationTraits 2:: FT

The field type. It must be a model of SqrtFieldNumberType,
that is must be a number type supporting the operations +,
−, ∗, /, and

√
·.

ConformingDelaunayTriangulationTraits 2:: Vector 2

The vector type.

ConformingDelaunayTriangulationTraits 2:: Construct vector 2

Constructor object. Must provide the operator Vector 2 op-
erator()(Point a, Point b) that computes the vector b−a.

ConformingDelaunayTriangulationTraits 2:: Construct scaled vector 2

Constructor object. Must provide the operator Vector 2
operator()(Vector 2 v, FT scale) that computes the vector
scale ·v.

ConformingDelaunayTriangulationTraits 2:: Construct translated point 2

Constructor object. Must provide the operator Point 2
operator()(Point 2 p, Vector 2 v) that computes the point
p+v.

ConformingDelaunayTriangulationTraits 2:: Construct midpoint 2

Constructor object. Must provide the operator Point 2
operator()(Point 2 a, Point 2 b) that computes the midpoint
of the segment ab.
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ConformingDelaunayTriangulationTraits 2:: Compute squared distance 2

Constructor object. Must provide the operator FT
operator()(Point 2 a, Point 2 b) that computes the squared
distance between a and b.

ConformingDelaunayTriangulationTraits 2:: Angle 2

Predicate object. Must provide the operator CGAL::Angle
operator()(Point 2 p, Point 2 q, Point 2 r) that returns OB-
TUSE, RIGHT or ACUTE depending on the angle formed
by the three points p, q, r (q being the vertex of the angle).

Access to predicate and constructor objects

Construct vector 2 traits.construct vector 2 object()
Construct scaled vector 2 traits.construct scaled vector 2 object()
Construct translated point 2 traits.construct translated point 2 object()
Constructor midpoint 2 traits.construct midpoint 2 object()
Compute squared distance 2 traits.compute squared distance 2 object()
Angle 2 traits.angle 2 object()

Has Models

Any model of Kernel concept. In particular, all CGAL kernels.
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DelaunayMeshFaceBase 2

Definition

The concept DelaunayMeshFaceBase 2 refines the concept TriangulationFaceBase 2. It adds two functions
giving access to a Boolean marker, that indicates if the face is in the meshing domain or not.

Refines

ConstrainedTriangulationFaceBase 2

Access Functions

bool f .is in domain() const

returns true if this face is in the domain to be refined.

void f .set in domain( const bool b)

sets if this face is in the domain.

Has Models

Delaunay mesh face base 2<Traits, Fb>
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DelaunayMeshTraits 2

Definition

The concept DelaunayMeshTraits 2 refines the concept ConformingDelaunayTriangulationTraits 2. It pro-
vides a construction object Construct circumcenter 2.

Refines

ConformingDelaunayTriangulationTraits 2

Types

DelaunayMeshTraits 2:: Construct circumcenter 2

Constructor object. Must provide an operator Point 2
operator()(Point 2 p, Point 2 q, Point 2 r); that constructs
the center of the circle passing through the points p, q, and r.
Precondition: p, q, and r are not collinear.

DelaunayMeshTraits 2:: Compute area 2 Constructor object. Must provide an operator FT
operator()(Point 2 p, Point 2 q, Point 2 r); that computes
the signed area of the triangle defined by the points p, q,
and r.

Access to predicate and constructor objects

Construct circumcenter 2 traits.construct circumcenter 2 object()

Compute area 2 traits.compute area 2 object()

Has Models

Any model of the Kernel concept. In particular, all CGAL kernels.
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CGAL::Delaunay mesher 2<CDT, Criteria>

This class implements a 2D mesh generator.

#include <CGAL/Delaunay mesher 2.h>

Parameters

The template parameter CDT should be a model of the concept ConstrainedDelaunayTriangulation 2, and type
CDT::Face should be a model of the concept MeshFaceBase 2.

The geometric traits class of the instance of CDT has to be a model of the concept DelaunayMeshTraits 2.

The template parameter Criteria should be a model of the concept MeshingCriteria 2. This traits class defines
the shape and size criteria for the triangles of the mesh. Criteria::Face handle has to be the same as CDT::Face
handle.

Using this class

The constructor of the class Delaunay mesher 2<CDT, Criteria> takes a reference to a CDT as an argument. A
call to the refinement method refine mesh() will refine the constrained Delaunay triangulation into a mesh sat-
isfying the size and shape criteria specified in the traits class. Note that if, during the life time of the Delaunay
mesher 2<CDT, Criteria> object, the triangulation is externally modified, any further call to its member meth-
ods may crash. Consider constructing a new Delaunay mesher 2<CDT, Criteria> object if the triangulation has
been modified.

Meshing domain

The domain to be mesh is defined by the constrained edges and a set of seed points. The constrained edges
divides the plane into several connected components. The mesh domain is either the union of the bounded
connected components including at least one seed, or the union of the bounded connected components that do
no contain any seed. Note that the unbounded component of the plane is never meshed.

Types

typedef CDT::Geom traits

Geom traits; the geometric traits class.

Delaunay mesher 2<CDT, Criteria>:: Seeds iterator

const iterator over defined seeds. Its value type is Geom
traits::Point 2.

Creation

Delaunay mesher 2<CDT, Criteria> mesher( CDT& t, Criteria criteria = Criteria());

Create a new mesher, working on t, with meshing criteria
criteria.
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Seeds functions

The following functions are used to define seeds.

void mesher.clear seeds() Sets seeds to the empty set. All finite connected components
of the constrained triangulation will be refined.

template<class InputIterator>
void mesher.set seeds( InputIterator begin, InputIterator end, const bool mark=false)

Sets seeds to the sequence [begin, end]. If mark=true, the
mesh domain is the union of the bounded connected compo-
nents including at least one seed. If mark=false, the domain
is the union of the bounded components including no seed.
Note that the unbounded component of the plane is never
meshed.
Requirement: The value type of begin and end is Geom
traits::Point 2.

Seeds const iterator mesher.seeds begin() const

Start of the seeds sequence.

Seeds const iterator mesher.seeds end() const

Past the end of the seeds sequence.

Meshing methods

void mesher.refine mesh() Refines the constrained Delaunay triangulation into a mesh
satisfying the criteria defined by the traits.

Criteria mesher.get criteria() Returns a const reference to the criteria traits object.

void mesher.set criteria( Criteria criteria)

Assigns criteria to the criteria traits object.

advanced

The function set criteria scans all faces to recalculate the list of bad faces, that are faces not conforming to the
meshing criteria. This function actually has an optional argument that permits to prevent this recalculation. The
filling of the list of bad faces can then be done by a call to set bad faces.

void mesher.set criteria( Criteria criteria, bool recalculate bad faces)

Assigns criteria to the criteria traits object. If recalculate
bad faces is false, the list of bad faces is let empty and the
function set bad faces should be called before refine mesh.

template <class InputIterator>
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void mesher.set bad faces( InputIterator begin, InputIterator end)

This method permits to set the list of bad triangles directly,
from the sequence [begin, end], so that the algorithm will
not scan the whole set of triangles to find bad ones. To use if
there is a non-naive way to find bad triangles.
Requirement: The value type of begin and end is Face
handle.

advanced

advanced

Step by step operations

The Delaunay mesher 2<CDT, Criteria> class allows, for debugging or demos, to play the meshing algorithm
step by step, using the following methods.

void mesher.init() This method must be called just before the first call to the
following step by step refinement method, that is when all
vertices and constrained edges have been inserted into the
constrained Delaunay triangulation. It must be called again
before any subsequent calls to the step by step refinement
method if new vertices or constrained edges have been in-
serted since the last call.

bool mesher.is refinement done()

Tests if the step by step refinement algorithm is done. If it
returns true, the following calls to step by step refine mesh
will not insert any points, until some new constrained seg-
ments or points are inserted in the triangulation and init is
called again.

bool mesher.step by step refine mesh()

Applies one step of the algorithm, by inserting one point, if
the algorithm is not done. Returns false iff no point has been
inserted because the algorithm is done.

advanced
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CGAL::Delaunay mesh criteria 2<CDT>

Definition

The class Delaunay mesh criteria 2<CDT> is a model for the MeshingCriteria 2 concept. The shape criterion
on triangles is given by a bound B such that for good triangles r

l ≤ B where l is the shortest edge length and r is
the circumradius of the triangle. By default, B =

√
2, which is the best bound one can use with the guarantee that

the refinement algorithm will terminate. The upper bound B is related to a lower bound αmin on the minimum
angle in the triangle:

sinαmin =
1

2B

so B =
√

2 corresponds to αmin ≥ 20.7 degrees.

#include <CGAL/Delaunay mesh criteria 2.h>

Is Model for the Concepts

MeshingCriteria 2

Creation

Delaunay mesh criteria 2<CDT> traits; Default constructor. B =
√

2.

Delaunay mesh criteria 2<CDT> traits( double b = 0.125);

Construct a traits class with bound B =
√

1
4b .
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CGAL::Delaunay mesh face base 2<Traits, Fb>

Definition

The class Delaunay mesh face base 2<Traits, Fb> is a model for the concept DelaunayMeshFaceBase 2.

This class can be used directly or it can serve as a base to derive other classes with some additional attributes (a
color for example) tuned to a specific application.

#include <CGAL/Delaunay mesh face base 2.h>

Parameters

• The first parameter Traits is the geometric traits class. It must be the same as the one used for the Delaunay
mesh.

• The second parameter Fb is the base class from which Delaunay mesh face base 2<Traits, Fb> derives.
It must be a model of the TriangulationFaceBase 2 concept.

Inherits From

Fb

Is Model for the Concepts

DelaunayMeshFaceBase 2
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CGAL::Delaunay mesh size criteria 2<CDT>

Definition

The class Delaunay mesh size criteria 2<CDT> is a model for the MeshingCriteria 2 concept. The shape
criterion on triangles is given by a bound B such that for good triangles r

l ≤ B where l is the shortest edge length
and r is the circumradius of the triangle. By default, B =

√
2, which is the best bound one can use with the

guarantee that the refinement algorithm will terminate. The upper bound B is related to a lower bound αmin on
the minimum angle in the triangle:

sinαmin =
1

2B

so B =
√

2 corresponds to αmin ≥ 20.7 degrees.

This traits class defines also a size criteria: all segments of all triangles must be shorter than a bound S.

#include <CGAL/Delaunay mesh size criteria 2.h>

Is Model for the Concepts

MeshingCriteria 2

Creation

Delaunay mesh size criteria 2<CDT> traits; Default constructor. B =
√

2. No bound on size

Delaunay mesh size criteria 2<CDT> traits( double b = 0.125, double S = 0);

Construct a traits class with bound B =
√

1
4b . If S 6= 0, the

size bound is S. If S = 0, there is no bound on size.

3030



E
nu

m

CGAL::Mesh 2::Face badness

#include <CGAL/Mesh 2/Face badness.h>

enum Mesh 2::Face badness { NOT BAD, BAD, IMPERATIVELY BAD};
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CGAL::make conforming Delaunay 2

#include <CGAL/Triangulation conformer 2.h>

template<class CDT>
void make conforming Delaunay 2( CDT &t)

Refines the constrained Delaunay triangulation t into a con-
forming Delaunay triangulation. After a call to this function,
all edges of t are Delaunay edges.
Requirement: The template parameter CDT should be a
model of the concept ConstrainedDelaunayTriangulation
2. The geometric traits class of into the con-
strained Delaunay triangulation must be a model of
ConformingDelaunayTriangulationTraits 2.
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CGAL::make conforming Gabriel 2

#include <CGAL/Triangulation conformer 2.h>

template<class CDT>
void make conforming Gabriel 2( CDT &t)

Refines the constrained Delaunay triangulation t into a con-
forming Gabriel triangulation. After a call to this function,
all constrained edges of t have the Gabriel property: the cir-
cle that has e as diameter does not contain any vertex from
the triangulation.
Requirement: The template parameter CDT should be a
model of the concept ConstrainedDelaunayTriangulation
2. The geometric traits class of the constrained
Delaunay triangulation must be a model of
ConformingDelaunayTriangulationTraits 2.
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MeshingCriteria 2

Definition

The concept MeshingCriteria 2 defines the meshing criteria to be used in the algorithm. It provides a predicate
Is bad that tests a triangle according to criteria. The return type of Is bad is an enum Mesh 2::Face badness.

The possible values of Mesh 2::Face badness are NOT BAD, BAD and IMPERATIVELY BAD. If the predicate
returns BAD, the triangle is marked as bad and the algorithm will try to destroy it. If the predicates returns
IMPERATIVELY BAD, the algorithm will destroy the triangle unconditionally during its execution.

The termination of the algorithm is guaranteed when criteria are shape criteria corresponding to a bound on
smallest angles not less than 20.7 degrees (this corresponds to a radius-edge ratio bound not less than

√
2). Any

size criteria that are satisfied by small enough triangle can be added to the set of criteria without compromising
the termination.

Note that, in the presence of input angles smaller than 60 degrees, some bad shaped triangles can appear in the
final mesh in the neighboring of small angles. To achieve termination and the respect of size criteria everywhere,
the Is bad predicate has to return IMPERATIVELY BAD when size criteria are not satisfied, and BAD when
shape criteria are not satisfied.

MeshingCriteria 2 also provides a type Quality designed to code a quality measure for triangles. The type
Quality must be less-than comparable as the meshing algorithm will order bad triangles by quality, to split
those with smallest quality first. The predicate Is bad computes the quality of the triangle as a by-product.

Types

MeshingCriteria 2:: Face handle Handle to a face of the triangulation.

MeshingCriteria 2:: Quality Default constructible, copy constructible, assignable, and
less-than comparable type.

MeshingCriteria 2:: Is bad Predicate object. Must provide two operators. The first
operator Mesh 2::Face badness operator()(Face handle fh,
Quality& q) returns NOT BAD if it satisfies the desired
criteria for mesh triangles, BAD if it does not, and
IMPERATIVELY BAD if it does not and should be refined
unconditionally. In addition, this operator assigns to q a value
measuring the quality of the triangle pointed by fh. The sec-
ond operator Mesh 2::Face badness operator()(Quality q)
returns NOT BAD if q is the quality of a good triangle, BAD
if the q represents a poor quality, and IMPERATIVELY BAD
if q represents the quality of a bad triangle that should be
refined unconditionally.

Access to predicate and constructor objects

Is bad traits.is bad object()
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Has Models

Delaunay mesh criteria 2<CDT>
Delaunay mesh size criteria 2<CDT>
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CGAL::refine Delaunay mesh 2

template<class CDT, class Criteria>
void refine Delaunay mesh 2( CDT &t, Criteria criteria = Criteria())

Refines the default domain defined by a constrained Delau-
nay triangulation without seeds into a mesh satisfying the cri-
teria defined by the traits criteria. The domain of the mesh
covers all the connected components of the plane defined by
the constrained edges of t, except for the unbounded compo-
nent.
Precondition: The template parameter CDT must be a model
of the concept ConstrainedDelaunayTriangulation 2. The
geometric traits class of the constrained Delaunay triangula-
tion must be a model of DelaunayMeshTraits 2.
Requirement: The face of the constrained Delau-
nay triangulation must be a model of the concept
DelaunayMeshFaceBase 2. Criteria must be a model
of the concept MeshingCriteria 2 and CDT::Face handle
must be the same as Criteria::Face handle.

template <class CDT, class Criteria, class InputIterator>
void refine Delaunay mesh 2( CDT& t,

InputIterator begin,
InputIterator end,
Criteria criteria = Criteria(),
bool mark = false)

Refines the default domain defined by a constrained Delau-
nay triangulation into a mesh satisfying the criteria defined
by the traits criteria.The sequence [begin, end] gives a set of
seeds points, that defines the domain to be meshed as fol-
lows. The constrained edges of t partition the plane into
connected components. If mark=true, the mesh domain is
the union of the bounded connected components including
at least one seed. If mark=false, the domain is the union of
the bounded components including no seed. Note that the
unbounded component of the plane is never meshed.
Requirement: The value type of begin and end is
CDT::Geom traits::Point 2.
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CGAL::Triangulation conformer 2<CDT>

The class Triangulation conformer 2<CDT> is an auxiliary class of Delaunay mesher 2<CDT>. It permits to
refine a constrained Delaunay triangulation into a conforming Delaunay or conforming Gabriel triangulation.
For standard needs, consider using the global functions make conforming Gabriel 2 and make conforming
Delaunay 2.

#include <CGAL/Triangulation conformer 2.h>

Parameters

The template parameter CDT should be a model of the concept ConstrainedDelaunayTriangulation 2.

The geometric traits class of the instance of CDT has to be a model of the concept
ConformingDelaunayTriangulationTraits 2.

Using this class

The constructor of the class Triangulation conformer 2<CDT> takes a reference to a CDT as an argument.
A call to the method make conforming Delaunay() or make conforming Gabriel() will refine this constrained
Delaunay triangulation into a conforming Delaunay or conforming Gabriel triangulation. Note that if, during the
life time of the Triangulation conformer 2<CDT> object, the triangulation is externally modified, any further
call to its member methods may lead to undefined behavior. Consider reconstructing a new Triangulation
conformer 2<CDT> object if the triangulation has been modified.

The conforming methods insert points into constrained edges, thereby splitting them into several sub-
constraints. You have access to the initial inserted constraints if you instantiate the template parameter by a
CGAL::Constrained triangulation plus 2<CDT>.

Creation

Triangulation conformer 2<CDT> m( CDT& t);

Create a new conforming maker, working on t.

Operations

Conforming methods

void m.make conforming Delaunay()

Refines the triangulation into a conforming Delaunay trian-
gulation. After a call to this method, all triangles fulfill the
Delaunay property, that is the empty circle property.
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void m.make conforming Gabriel()

Refines the triangulation into a conforming Gabriel triangu-
lation. After a call to this method, all constrained edges e
have the Gabriel property: the circle with diameter e does
not contain any vertex of the triangulation.

Checking

The following methods verify that the constrained triangulation is conforming Delaunay or conforming Gabriel.
These methods scan the whole triangulation and their complexity is proportional to the number of edges.

bool m.is conforming Delaunay()

Returns true iff all triangles fulfill the Delaunay property.

bool m.is conforming Gabriel()

Returns true iff all constrained edges have the Gabriel prop-
erty: their circumsphere is empty.

advanced

Step by step operations

The Triangulation conformer 2<CDT> class allows, for debugging or demos, to play the conforming algo-
rithm step by step, using the following methods. They exist in two versions, depending on whether you want
the triangulation to be conforming Delaunay or conforming Gabriel, respectively. Any call to a step by step
conforming XX function requires a previous call to the corresponding function init XX and Gabriel and Delau-
nay methods can not be mixed between two calls of init XX.

void m.init Delaunay() The method must be called after all points and constrained
segments are inserted and before any call to the following
methods. If some points or segments are then inserted in the
triangulation, this method must be called again.

bool m.step by step conforming Delaunay()

Applies one step of the algorithm, by inserting one point, if
the algorithm is not done. Returns false iff no point has been
inserted because the algorithm is done.

void m.init Gabriel() Analog to init Delaunay for Gabriel conforming.

bool m.step by step conforming Gabriel()

Analog to step by step conforming Delaunay() for Gabriel
conforming.
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bool m.is conforming done()

Tests if the step by step conforming algorithm is done. If it
returns true, the following calls to step by step conforming
XX will not insert any points, until some new constrained
segments or points are inserted in the triangulation and init
XX is called again.

advanced
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48.1 Introduction

This package provides a function template to compute a triangular mesh approximating a surface.

The meshing algorithm requires to know the surface to be meshed only through an oracle able to tell whether a
given segment, line or ray intersects the surface or not and to compute an intersection point if any. This feature
makes the package generic enough to be applied in a wide variety of situations. For instance, it can be used
to mesh implicit surfaces described as the zero level set of some function. It may also be used in the field of
medical imaging to mesh surfaces described as a gray level set in a three dimensional image.

The meshing algorithm is based on the notion of the restricted Delaunay triangulation. Basically the algorithm
computes a set of sample points on the surface, and extract an interpolating surface mesh from the three di-
mensional triangulation of these sample points. Points are iteratively added to the sample, as in a Delaunay
refinement process, until some size and shape criteria on the elements of the surface mesh are satisfied.

The size and shape criteria guide the behavior of the refinement process and control its termination. They also
condition the size and shape of the elements in the final mesh. Naturally, those criteria can be customized to
satisfy the user needs. The Surface mesh generation package offers a set of standard criteria that can be scaled
through three numerical values. Also the user can also plug in its own set of refinement criteria.

There is no restriction on the topology and number of components of the surface provided that the oracle (or the
user) is able to provide one initial sample point on each connected component. If the surface is smooth enough,
and if the size criteria are small enough, the algorithm guarantees that the output mesh is homeomorphic to
the surface, and is within a small bounded distance (Hausdorff or even Frechet distance) from the surface. The
algorithm can also be used for non smooth surfaces but then there is no guarantee.
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48.2 The Surface Mesh Generator Interface for Smooth Surfaces

The meshing process is launched through a call to a function template. There are two overloaded versions of
the meshing function whose signatures are the following:

template <class SurfaceMeshC2T3, class Surface, class FacetsCriteria, class Tag >
void make surface mesh(

SurfaceMeshC2T3& c2t3,
Surface surface,
FacetsCriteria criteria,
Tag)

template <class SurfaceMeshC2T3, class SurfaceMeshTraits, class FacetsCriteria, class Tag >
void make surface mesh(

SurfaceMeshC2T3& c2t3,
SurfaceMeshTraits::Surface 3 surface,
SurfaceMeshTraits traits,
FacetsCriteria criteria,
Tag)

The template parameter SurfaceMeshC2T3 stands for a data structure type that is used to store the surface mesh.
This type is required to be a model of the concept SurfaceMeshComplex 2InTriangulation 3. Such a data
structure has a pointer to a three dimensional triangulation and encodes the surface mesh as a subset of facets in
this triangulation. An argument of type SurfaceMeshC2T3 is passed by reference to the meshing function. This
argument holds the output mesh at the end of the process.

The template parameter Surface stands for the surface type. This type has to be a model of the concept Surface
3.

The knowledge on the surface, required by the surface mesh generator is encapsulated in a traits class. Actually,
the mesh generator accesses the surface to be meshed through this traits class only. The traits class is required
to be a model of the concept SurfaceMeshTraits 3. The difference between the two overloaded versions of
make surface mesh can be explained as follows

• In the first overloaded version of make surface mesh, the surface type is given as template parameter
(Surface) and the surface to be meshed is passed as parameter to the mesh generator. In that case the
surface mesh generator traits type is automatically generated from the surface type by an auxiliary class
called the Surface mesh traits generator 3.

• In the second overloaded version of make surface mesh, the surface mesh generator traits type is provided
by the template parameter SurfaceMeshTraits 3 and the surface type is obtained from this traits type. Both
a surface and a traits are passed to the mesh generator as arguments.

The first overloaded version can be used whenever the surface type either provides a nested type
Surface::Surface mesher traits 3 that is a model of SurfaceMeshTraits 3 or is a surface type for which a spe-
cialization of the traits generator Surface mesh traits generator 3<Surface> is provided. Currently, the library
provides partial specializations of Surface mesher traits generator 3<Surface> for implicit surfaces (Implicit
surface 3<Traits, Function>) and gray level images (Gray level image 3<FT, Point>).

The parameter criteria handles the description of the size and shape criteria driving the meshing process. The
template parameter FacetsCriteria has to be instantiated by a model of the concept SurfaceMeshFacetsCriteria.
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The parameter Tag is a tag whose type influences the behavior of the meshing algorithm. For instance, this
parameter can be used to enforce the manifold property of the output mesh while avoiding an over-refinement
of the mesh. Further details on this subject are given in Section 48.4.

A call to make surface mesh(c2t3,surface, criteria, tag) launches the meshing process with an initial set of
points which is the union of two subsets: the set of vertices in the initial triangulation pointed to by c2t3, and
a set of points provided by the Construct initial points() functor of the traits class. This initial set of points is
required to include at least one point on each connected component of the surface to be meshed.

48.3 Examples

48.3.1 Meshing Isosurfaces defined by Implicit Functions

The first code example meshes a sphere given as the zero level set of a function R3 −→ R. More precisely,
the surface to be meshed is created by the constructor of the class Implicit surface 3<Kernel, Function> from a
pointer to the function (sphere function) and a bounding sphere.

The default meshing criteria are determined by three numerical values:

• angular bound is a lower bound in degrees for the angles of mesh facets.

• radius bound is an upper bound on the radii of surface Delaunay balls. A surface Delaunay ball is a ball
circumscribing a mesh facet and centered on the surface.

• distance bound is an upper bound for the distance between the circumcenter of a mesh facet and the
center of a surface Delaunay ball of this facet.

Given this surface type, the surface mesh generator will use an automatically generated traits class.

The resulting mesh is shown in Figure 48.1.� �
#include <CGAL/Surface_mesh_default_triangulation_3.h>
#include <CGAL/Complex_2_in_triangulation_3.h>
#include <CGAL/make_surface_mesh.h>
#include <CGAL/Implicit_surface_3.h>

// default triangulation for Surface_mesher
typedef CGAL::Surface_mesh_default_triangulation_3 Tr;

// c2t3
typedef CGAL::Complex_2_in_triangulation_3<Tr> C2t3;

typedef Tr::Geom_traits GT;
typedef GT::Sphere_3 Sphere_3;
typedef GT::Point_3 Point_3;
typedef GT::FT FT;

typedef FT (*Function)(Point_3);

typedef CGAL::Implicit_surface_3<GT, Function> Surface_3;

FT sphere_function (Point_3 p) {
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Figure 48.1: Surface mesh of a sphere

const FT x2=p.x()*p.x(), y2=p.y()*p.y(), z2=p.z()*p.z();
return x2+y2+z2-1;

}

int main() {
Tr tr; // 3D-Delaunay triangulation
C2t3 c2t3 (tr); // 2D-complex in 3D-Delaunay triangulation

// defining the surface
Surface_3 surface(sphere_function, // pointer to function

Sphere_3(CGAL::ORIGIN, 2.)); // bounding sphere
// Note that "2." above is the *squared* radius of the bounding sphere!

// defining meshing criteria
CGAL::Surface_mesh_default_criteria_3<Tr> criteria(30., // angular
bound

0.1, // radius
bound

0.1); // distance
bound

// meshing surface
CGAL::make_surface_mesh(c2t3, surface, criteria,
CGAL::Non_manifold_tag());

std::cout << "Final number of points: " << tr.number_of_vertices() <<
"\n";
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}� �
File: examples/Surface_mesher/mesh_an_implicit_function.cpp

48.3.2 Meshing Isosurfaces Defined as Gray Levels in 3D Images

In this example the surface to be meshed is defined as the locus of points with a given gray level in a 3D image.
The code is quite similar to the previous example.

The main difference with the previous code is that the function used to define the surface is an object of type
CGAL::Gray level image 3 created from an image file and a numerical value that is the gray value of the level
one wishes to mesh.

Note that surface, which is still an object of type Implicit surface 3 is now, defined by three parameters that
are the function, the bounding sphere and a numerical value called the precision. This precision, whose value
is relative to the bounding sphere radius, is used in the intersection computation. This parameter has a default
which was used in the previous example. Also note that the center of the bounding sphere is required to be
internal a point where the function has a negative value.

The chosen iso-value of this 3D image corresponds to a head skull. The resulting mesh is shown in Figure 48.2.

Figure 48.2: Surface mesh of an iso-contour extracted from a gray level 3D image� �
#include <CGAL/Surface_mesh_default_triangulation_3.h>
#include <CGAL/Surface_mesh_default_criteria_3.h>
#include <CGAL/Complex_2_in_triangulation_3.h>
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#include <CGAL/IO/Complex_2_in_triangulation_3_file_writer.h>
#include <fstream>
#include <CGAL/make_surface_mesh.h>
#include <CGAL/Gray_level_image_3.h>
#include <CGAL/Implicit_surface_3.h>

// default triangulation for Surface_mesher
typedef CGAL::Surface_mesh_default_triangulation_3 Tr;

// c2t3
typedef CGAL::Complex_2_in_triangulation_3<Tr> C2t3;

typedef Tr::Geom_traits GT;
typedef CGAL::Gray_level_image_3<GT::FT, GT::Point_3> Gray_level_image;
typedef CGAL::Implicit_surface_3<GT, Gray_level_image> Surface_3;

int main() {
Tr tr; // 3D-Delaunay triangulation
C2t3 c2t3 (tr); // 2D-complex in 3D-Delaunay triangulation

// the ’function’ is a 3D gray level image
Gray_level_image image("data/skull_2.9.inr", 2.9f);

// Carefully choosen bounding sphere: the center must be inside the
// surface defined by ’image’ and the radius must be high enough so
that

// the sphere actually bounds the whole image.
GT::Point_3 bounding_sphere_center(122., 102., 117.);
GT::FT bounding_sphere_squared_radius = 200.*200.*2.;
GT::Sphere_3 bounding_sphere(bounding_sphere_center,

bounding_sphere_squared_radius);

// definition of the surface, with 10ˆ-5 as relative precision
Surface_3 surface(image, bounding_sphere, 1e-5);

// defining meshing criteria
CGAL::Surface_mesh_default_criteria_3<Tr> criteria(30.,

5.,
5.);

// meshing surface, with the "manifold without boundary" algorithm
CGAL::make_surface_mesh(c2t3, surface, criteria, CGAL::Manifold_tag());
std::ofstream out("out.off");
CGAL::output_surface_facets_to_off (out, c2t3);
std::cout << "Final number of points: " << tr.number_of_vertices() <<
"\n";

}� �

File: examples/Surface_mesher/mesh_a_3d_gray_image.cpp
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48.4 Meshing Criteria, Guarantees and Variations

The guarantees on the output mesh depend on the mesh criteria. Theoretical guarantees are given in [BO05].
First, the meshing algorithm is proved to terminate if the lower bound on facets angles is not bigger than
30 degrees. Furthermore, the output mesh is guaranteed to be homeomorphic to the surface, and there is a
guaranteed bound on the distance (Hausdorff and even Frechet distance) between the mesh and the surface if
the radius bound is everywhere smaller than ε times the local feature size. Here ε is a constant that has to be
less than 0.16, and the local feature size l f s(x) is defined on each point x of the surface as the distance from x to
the medial axis. Note that the radius bound need not be uniform, although it is a uniform bound in the default
criteria.

Naturally, such a theoretical guarantee can be only achieved for smooth surfaces that have a finite, non zero
reach value. (The reach of a surface is the minimum value of local feature size on this surface).

The value of the local feature size on any point of the surface or its minimum on the surface it usually unknown
although it can sometimes be guessed. Also it happens frequently that setting the meshing criteria so as to fulfill
the theoretical conditions yields an over refined mesh. On the other hand, when the size criteria are relaxed,
no homeomorphism with the input surface is guaranteed, and the output mesh is not even guaranteed to be
manifold. To remedy this problem and give a more flexible meshing algorithm, the function template make
surface mesh has a tag template parameter allowing to slightly change the behavior of the refinement process.
This feature allows, for instance, to run the meshing algorithm with a relaxed size criteria, more coherent with
the size of the mesh expected by the user, and still have a guarantee that the output mesh forms a manifold
surface. The function make surface mesh has specialized versions for the following tag types:
Manifold tag: the output mesh is guaranteed to be a manifold surface without boundary.
Manifold with boundary tag: the output mesh is guaranteed to be manifold but may have boundaries.
Non manifold tag: the algorithm relies on the given criteria and guarantees nothing else.

48.5 Output

This CGAL component also provides functions to write the reconstructed surface mesh to the Object File
Format (OFF) [Phi96] and to convert it to a polyhedron (when it is manifold):
CGAL::output surface facets to off
CGAL::output surface facets to polyhedron

48.6 Undocumented Features Available in Demos

The Polyhedron demo has a feature that allows to remesh a polyhedral surface, using the 3D Surface Mesh
Generator. That has been implemented as a special model of SurfaceMeshTraits 3, for polyhedra. That traits
class is not yet documented because its interface and code have not yet been stabilized. It will probably be
shipped with next release of CGAL.

The Surface Mesh Generator demo allows to mesh not only gray level images, but also segmented images,
when voxels are labelled with a domain index. Such images are for example the result of a segmentation of 3D
medical images. This feature is not yet ready to be documented in current release, but will probably be in next
release of CGAL.
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48.7 Design and Implementation History

The algorithm implemented in this package is mainly based on the work of Jean-Daniel Boissonnat and Steve
Oudot [BO05]. Steve Oudot implemented a first working prototype of the algorithm during his PhD thesis.

The meshing algorithm is implemented using the design of mesher levels described in [RY07].

David Rey, Steve Oudot and Andreas Fabri have participated in the development of this package.
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3D Surface Mesh Generation
Reference Manual
Laurent Rineau and Mariette Yvinec

The surface mesh generation package offers a function template which builds a triangular mesh approximating
a surface.

The meshing algorithms requires to know the surface to be meshed through an oracle that mainly can tell whether
a given segment, ray or line intersects the surface or not and can compute the compute the intersections point
if any. The oracle is represented by a traits class which can be passed to the meshing function or automatically
generated for certain types of surfaces. The current implementation provides traits classes to mesh implicit
surfaces as well as surfaces described as a gray level in a three dimensional image.

The output mesh conforms to some size and shape criteria which are customizable. The criteria are passed to
the mesher through a parameter whose type is a model of the concept SurfaceMeshFacetsCriteria 3.

The meshing algorithm is a Delaunay refinement process which is mainly guided by the criteria. The output
mesh may offer some guarantees, as being manifold, homeomorphic to the surface or within a given Hausdorff
distance. However, these guarantees depend on the quality of the input surface (smoothness, with or without
boundary, manifold or not), the type and values of the given criteria. The behavior of the refinement process can
also be influenced through a tag, which allows for instance to enforce the manifold property of the output mesh
while avoiding an over-refinement of the mesh.
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CGAL::Gray level image 3<FT, Point>

Definition

A 3D gray image is a tri-dimensional array that associates a scalar value to each triple of integer (x,y,z) in the
range of the image. A trilinear interpolation algorithm provides a map f : R3 −→ R.

The class Gray level image 3<FT, Point> is a 3D gray image loader and a model of the concept Implicit-
Function. An object of the class Gray level image 3<FT, Point> is created with a parameter iso and then its
operator() implements the function sign of (f(p) - iso), for p ∈ R3. Plugging such a function in the creation of
the Implicit surface 3 object given as parameter to make surface mesh yields a mesh approximating the level
with value iso in the input 3D gray image.

Gray level image 3<FT, Point> provides an interface with an auxiliary library called CGALimageIO. An exe-
cutable that uses Gray level image 3<FT, Point> must be linked with the CGALimageIO library. This library is
shipped with CGAL and will be linked automatically by any makefile created by the script cgal create makefile.

The library CGALimageIO and therefore Gray level image 3<FT, Point> support several types of 3D im-
ages: INRIMAGE (extension .inr[.gz]), GIS (extension .dim, of .ima[.gz]), and ANALYZE (extension .hdr,
or .img[.gz]).

#include <CGAL/Gray level image 3.h>

Is Model for the Concepts

ImplicitFunction

Types

Gray level image 3<FT, Point>:: FT the numerical type FT

Gray level image 3<FT, Point>:: FT the point type Point

Creation

Gray level image 3<FT, Point> image( const char* filename, FT iso value);

filename is the path to a file of a type supported by ImageIO.
iso value is an isovalue of f .

See Also

ImplicitFunction,
Implicit surface 3<Traits, Function>,
make surface mesh
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ImplicitFunction

Definition

The concept ImplicitFunction describes a function object whose operator() computes the values of a function
f : R3 −→ R.

Types

ImplicitFunction:: FT Number type

ImplicitFunction:: Point Point type

Operations

FT function( Point p) Returns the value f (p), where p ∈ R3.

Has Models

Gray level image function,
any pointer to a function of type FT (*)(Point).

See Also

Implicit surface 3<Traits, Function>,
make surface mesh
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CGAL::Implicit surface 3<Traits, Function>

Definition

The class Implicit surface 3<Traits, Function> implements a surface described as the zero level set of a function
f : R3 −→ R.

For this type of surface, the library provides a partial specialization of the surface mesher traits generator:
Surface mesh traits generator 3<Implicit surface 3<Traits, Function> >, that provides a traits class, model of
the concept SurfaceMeshTraits 3, to be used by the surface mesher.

The parameter Traits is a traits class that has to be implemented with a model of ImplicitSurfaceTraits 3. Actu-
ally, this traits class implements the oracle needed by the surface mesher: the types, predicates and constructors
provided in Traits are passed by the surface mesher traits generator to the generated the traits class used by the
surface mesh generator.

The template parameter Function stands for a model of the concept ImplicitFunction. The number type Func-
tion::FT has to match the type Traits::FT .

#include <CGAL/Implicit surface 3.h>

Creation

Implicit surface 3<Traits, Function> surface( Function f,
Sphere 3 bounding sphere,
FT error bound = FT(1e-3))

f is the object of type Function that represents the implicit
surface.
bounding sphere is a bounding sphere of the implicit sur-
face. The evaluation of f at the center c of this sphere must
be negative: f (c) < 0.
error bound is a relative error bound used to compute inter-
section points between the implicit surface and query seg-
ments. This bound is used in the default generated traits
class. In this traits class, the intersection points between the
surface and segments/rays/line are constructed by dichotomy.
The dichotomy is stopped when the size of the intersected
segment is less than the product of error bound by the ra-
dius of bounding sphere.

See Also

make surface mesh,
Surface 3
Surface mesh traits generator 3<Surface>,
ImplicitSurfaceTraits,
ImplicitFunction.
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ImplicitSurfaceTraits 3

Definition

The concept ImplicitSurfaceTraits 3 describes the requirements of the traits class to be plugged as Traits in
Implicit surface 3<Traits, Function>.

When make surface mesh is called with a surface of type Implicit surface 3<Traits,Function>, the surface
mesher traits generator generates automatically a traits class that is a model of SurfaceMeshTraits 3. Actu-
ally, the concept ImplicitSurfaceTraits 3 provides the types, predicates and constructors that are passed to the
generated model of SurfaceMeshTraits 3.

Types

ImplicitSurfaceTraits 3:: FT The numerical type. It must be model of SqrtFieldNumber-
Type and constructible from a double.

ImplicitSurfaceTraits 3:: Point 3 The point type. This point type must have a constructor
Point 3(FT, FT, FT).

ImplicitSurfaceTraits 3:: Line 3 The line type.
ImplicitSurfaceTraits 3:: Ray 3 The ray type.
ImplicitSurfaceTraits 3:: Segment 3 The segment type.
ImplicitSurfaceTraits 3:: Vector 3 The vector type.
ImplicitSurfaceTraits 3:: Sphere 3 The sphere type.

ImplicitSurfaceTraits 3:: Compute scalar product 3

A function object that provides the operator
FT operator()(Vector 3 v, Vector 3 w) which returns the scalar (inner) product
of the two vectors v and w.

ImplicitSurfaceTraits 3:: Compute squared distance 3

A function object that provides the operator
FT operator()(Point 3, Point 3) which returns the squared distance between
two points.

ImplicitSurfaceTraits 3:: Compute squared radius 3

A function object providing the operator
FT operator()(const Sphere 3& s) which returns the squared radius of s.

ImplicitSurfaceTraits 3:: Construct center 3

A function object providing the operator
Point 3 operator()(const Sphere 3& s) which computes the center of the
sphere s.
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ImplicitSurfaceTraits 3:: Construct midpoint 3

A function object providing the operator
Point 3 operator()(const Point 3& p, const Point 3& q) which computes the
midpoint of the segment pq.

ImplicitSurfaceTraits 3:: Construct point on 3

A function object providing the following operators:
Point 3 operator()(const Line 3& l,int i); which returns an arbitrary point on l.
It holds point(i) == point(j), iff i==j. Furthermore, is directed from point(i) to
point(j), for all i < j.
Point 3 operator()(const Ray 3& r,int i); which returns a point on r. point(0)
is the source, point(i), with i > 0, is different from the source.
Precondition: i≥ 0.
Point 3 operator()(const Segment 3& s,int i); which returns source or target
of s: point(0) returns the source of s, point(1) returns the target of s. The
parameter i is taken modulo 2, which gives easy access to the other end point.

ImplicitSurfaceTraits 3:: Construct segment 3

A function object providing the operators
Segment 3 operator()(const Point 3 &p, const Point 3 &q); which returns a
segment with source p and target q. It is directed from the source towards the
target.

ImplicitSurfaceTraits 3:: Construct scaled vector 3

A function object providing the operator
Vector 3 operator()(const Vector 3 &v, const FT& scale) which returns the
vector v scaled by a factor scale.

ImplicitSurfaceTraits 3:: Construct translated point 3

A function object providing the operator
Point 3 operator()(const Point 3& p, const Vector 3& v) which returns the
point obtained by translating p by the vector v.

ImplicitSurfaceTraits 3:: Construct vector 3

A function object providing the operator
Vector 3 operator()(const Point 3 &a, const Point 3 &b) which returns the vec-
tor b-a.

ImplicitSurfaceTraits 3:: Has on bounded side 3

A function object providing the operator
bool operator()(const Sphere 3&s, const Point 3&p); which returns true iff p
lies on the bounded side of s.
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Operations

The following functions give access to the predicate and construction objects:

Compute scalar product 3 traits.compute scalar product 3 object()

Compute squared distance 3 traits.compute squared distance 3 object()

Compute squared radius 3 traits.compute squared radius 3 object()

Construct center 3 traits.construct center 3 object()

Construct midpoint 3 traits.construct midpoint 3 object()

Construct point on 3 traits.construct point on 3 object()

Construct scaled vector 3 traits.construct scaled vector 3 object()

Construct segment 3 traits.construct segment 3 object()

Construct translated point 3 traits.construct translated point 3 object()

Construct vector 3 traits.construct vector 3 object()

Has on bounded side 3 traits.has on bounded side 3 object()

Has Models

Any CGAL Kernel.

See Also

Implicit surface 3<Traits, Function>,
make surface mesh
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CGAL::make surface mesh

#include <CGAL/make surface mesh.h>

Definition

The function make surface mesh is a surface mesh generator, that is a function to build a two dimensional mesh
approximating a surface.

The library provides two overloaded version of this function:

template <class SurfaceMeshC2T3, class Surface, class FacetsCriteria, class Tag >
void make surface mesh( SurfaceMeshC2T3& c2t3,

Surface surface,
FacetsCriteria criteria,
Tag,
int initial number of points = 20)

template <class SurfaceMeshC2T3, class SurfaceMeshTraits, class FacetsCriteria, class Tag >
void make surface mesh( SurfaceMeshC2T3& c2t3,

SurfaceMeshTraits::Surface 3 surface,
SurfaceMeshTraits traits,
FacetsCriteria criteria,
Tag,
int initial number of points = 20)

Parameters

The template parameter SurfaceMeshC2T3 is required to be a model of the concept SurfaceMeshComplex
2InTriangulation 3, a data structure able to represent a two dimensional complex embedded in a three dimen-
sional triangulation. The argument c2t3 of type SurfaceMeshC2T3, passed by reference to the surface mesh gen-
erator, is used to maintain the current approximating mesh and it stores the final mesh at the end of the procedure.
The type SurfaceMeshC2T3 is in particular required to provide a type SurfaceMeshC2T3::Triangulation 3 for
the three dimensional triangulation embedding the surface mesh. The vertex and cell base classes of the triangu-
lation SurfaceMeshC2T3::Triangulation 3 are required to be models of the concepts SurfaceMeshVertexBase 3
and SurfaceMeshCellBase 3 respectively.

The template parameter Surface stands for the surface type. This type has to be a model of the concept Surface
3.

The knowledge on the surface, required by the surface mesh generator is encapsulated in a traits class. Actually,
the mesh generator accesses the surface to be meshed through this traits class only. The traits class is required
to be a model of the concept SurfaceMeshTraits 3.

In the first version of make surface mesh the surface type is a template parameter Surface and the surface mesh
generator traits type is automatically generated form the surface type through the class Surface mesh traits
generator 3<Surface>.

The difference between the two overloaded versions of make surface mesh can be explained as follows
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• In the first overloaded version of of make surface mesh, the surface type is given as template parameter
(Surface) and the surface to be meshed is passed as parameter to the mesh generator. In that case the
surface mesh generator traits type is automatically generated form the surface type by an auxiliary class
called the Surface mesh traits generator 3.

• In the second overloaded version of make surface mesh, the surface mesh generator traits type is provided
by the template parameter SurfaceMeshTraits 3 and the surface type is obtained from this traits type. Both
the surface and the traits are passed to the mesh generator as arguments.

The first overloaded version can be used whenever the surface type either provides a nested type
Surface::Surface mesher traits 3 that is a model of SurfaceMeshTraits 3 or is a surface type for which a spe-
cialization of the traits generator Surface mesh traits generator 3<Surface> is provided. Currently, the library
provides partial specializations of Surface mesher traits generator 3<Surface> for implicit surfaces (Implicit
surface 3<Traits, Function>) and gray level images (Gray level image 3<FT, Point>).

The template parameter FacetsCriteria has to be a model of the concept SurfaceMeshFacetsCriteria 3. The
argument of type FacetsCriteria passed to the surface mesh generator specifies the size and shape requirements
on the output surface mesh.

The template parameter Tag is a tag whose type affects the behavior of the meshing algorithm. The function
make surface mesh has specialized versions for the following tag types:
- Manifold tag: the output mesh is guaranteed to be a manifold surface without boundary.
- Manifold with boundary tag: the output mesh is guaranteed to be manifold but may have boundaries.
- Non manifold tag: the algorithm relies on the given criteria and guarantees nothing else.

The Delaunay refinement process is started with an initial set of points which is the union of two sets: the set
of vertices in the initial triangulation pointed to by the c2t3 argument and a set of points provided by the traits
class. The optional parameter initial number of points allows to monitor the number of points in this second
set. (This parameter is passed to the operator() of the constructor object Construct initial points in the traits
class.) The meshing algorithm requires that the initial set of points includes at least one point on each connected
components of the surface to be meshed. one.

See Also

SurfaceMeshComplex 2InTriangulation 3
SurfaceMeshCellBase 3
SurfaceMeshVertexBase 3
Surface 3
SurfaceMeshFacetsCriteria 3
Surface mesh default triangulation 3
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CGAL::Manifold tag

Definition

The class Manifold tag is a tag class used to monitor the surface meshing algorithm. When instantiated with the
tag Manifold tag the function template make surface mesh ensures that the output mesh is a manifold surface
without boundary.

#include <CGAL/make surface mesh.h>

See Also

make surface mesh
Manifold with boundary tag
Non manifold tag
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CGAL::Manifold with boundary tag

Definition

The class Manifold with boundary tag is a tag class used to monitor the surface meshing algorithm. When
instantiated with the tag Manifold with boundary tag, the function template make surface mesh ensures that
the output mesh is a manifold surface but it may have boundaries.

#include <CGAL/make surface mesh.h>

See Also

make surface mesh
Manifold tag
Non manifold tag
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CGAL::Non manifold tag

Definition

The class Non manifold tag is a tag class used to monitor the surface meshing algorithm. When instantiated
with the tag Non manifold tag the function template make surface mesh does not ensure that the output mesh is
a manifold surface. The manifold property of output mesh may nevertheless result from the choice of appropriate
meshing criteria.

#include <CGAL/make surface mesh.h>

See Also

make surface mesh
Manifold tag
Manifold with boundary tag
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Surface 3

Definition

The concept Surface 3 describes the types of surfaces to be meshed. The surface types are required to be copy
constructible and assignable.

Types

In addition, surface types are required

• either to provide a nested type: Surface 3:: Surface mesher traits 3 a model of SurfaceMesherTraits 3

• or to be a surface type for which a specialization of the traits generator Surface mesh traits generator
3<Surface> exists.

Has Models

Implicit surface 3<Traits, Function>

See Also

make surface mesh,
SurfaceMeshTraits 3
Surface mesh traits generator 3<Surface>
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CGAL::Surface mesh cell base 3<Gt,Cb>

Definition

The class Surface mesh cell base 3<Gt,Cb> is a model of the concept SurfaceMeshCellBase 3. It is designed
to serve as vertex base class in a triangulation class Tr plugged in a Surface mesh complex 2 in triangulation
3<Tr> class.

The first template parameter is the geometric traits class.

The second template parameter is a base class. It has to be a model of the concept TriangulationCellBase 3 and
defaults to Triangulation cell base 3 <GT>.

#include <CGAL/Surface mesh cell base 3.h>

Is Model for the Concepts

SurfaceMeshCellBase 3

Inherits From

Cb

See Also

SurfaceMeshComplex 2InTriangulation 3
Surface mesh complex 2 in triangulation 3<Tr>
SurfaceMeshTriangulation 3
make surface mesh
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SurfaceMeshCellBase 3

Definition

The concept SurfaceMeshCellBase 3 describes the cell base type of the three dimensional triangulation used to
embed the surface mesh.

More precisely, the first template parameter SurfaceMeshC2T3 of the surface mesher make surface mesh is
a model of the concept SurfaceMeshComplex 2InTriangulation 3 which describes a data structure to store a
pure two dimensional complex embedded in a three dimensional triangulation. In particular, the type Sur-
faceMeshC2T3 is required to provide a three dimensional triangulation type SurfaceMeshC2T3::Triangulation
3. The concept SurfaceMeshCellBase 3 describes the cell base type required in this triangulation type.

Refines

TriangulationCellBase 3

The concept SurfaceMeshCellBase 3 adds four markers to mark the facets of the triangulation that belong to
the two dimensional complex, and four markers that are helpers used in some operations to mark for instance
the facets that have been visited.

This concept also provides storage for the center of a Delaunay surface ball. Given a surface and a 3D Delaunay
triangulation, a Delaunay surface ball is a ball circumscribed to a facet of the triangulation and centered on the
surface and empty of triangulation vertices. Such a ball does exist when the facet is part of the restriction to the
surface of a three dimensional triangulation. In the following we call surface center of a facet, the center of its
biggest Delaunay surface ball.

Types

SurfaceMeshCellBase 3:: Point The point type, required to match the point type of the three
dimensional triangulation in which the surface mesh is em-
bedded.

Creation

Operations

bool cell.is facet on surface( int i)

returns true, if facet(i) is in the 2D complex.

void cell.set facet on surface( int i, bool b)

Sets facet(i) as part of the 2D complex, if b is true, and NOT
IN COMPLEX, otherwise.

bool cell.is facet visited( int i)

Returns true, if facet(i) has been visited, false otherwise.
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void cell.set facet visited( int i, bool b)

Marks facet(i) as visited, if b is true, and non visited other-
wise.

Point cell.get facet surface center( int i)

Returns a const reference to the surface center of facet(i).

void cell.set facet surface center( int i, Point p)

Sets point p as the surface center of facet(i).

Has Models

Surface mesh cell base 3<Gt,Vb>
Surface mesh default triangulation 3::Cell

See Also

SurfaceMeshTriangulation 3
SurfaceMeshComplex 2InTriangulation 3
Surface mesh complex 2 in triangulation 3<Tr>
Surface mesh default triangulation 3
make surface mesh
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CGAL::Surface mesh complex 2 in triangulation 3<Tr, Edge info =
void>

Definition

The class Surface mesh complex 2 in triangulation 3<Tr, Edge info = void> implements a data structure to
store the restricted Delaunay triangulation used by the surface mesh generator. The restricted Delaunay trian-
gulation is stored as a two dimensional complex embedded in a three dimensional triangulation.

The class Surface mesh complex 2 in triangulation 3<Tr, Edge info = void> is a model of the concept
SurfaceMeshComplex 2InTriangulation 3 and can be plugged as the template parameter C2T3 in the function
template make surface mesh.

The template parameter Tr has to be instantiated with a model of the concept SurfaceMeshTriangulation 3.
(Any three dimensional triangulation of CGAL is a model of Triangulation 3 provided that its vertex and cell
base class be models of the concept SurfaceMeshVertexBase 3 and SurfaceMeshCellBase 3 respectively.)

#include <CGAL/Surface mesh complex 2 in triangulation 3.h>

Is Model for the Concepts

SurfaceMeshComplex 2InTriangulation 3

See Also

make surface mesh
SurfaceMeshTriangulation 3
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SurfaceMeshComplex 2InTriangulation 3

Definition

The concept SurfaceMeshComplex 2InTriangulation 3 describes a data structure designed to represent a two
dimensional pure complex embedded in a three dimensional triangulation.

A complex is a set C of faces such that:
- any subface of a face in C is a face of C
- two faces of C are disjoint or share a common subface
The complex is two dimensional, if its faces have dimension at most two. It is pure if any face in the complex is
a subface of some face of maximal dimension. Thus, a two dimensional pure complex is a set of facets together
with their edges and vertices. A two dimensional pure complex embedded in a three dimensional triangulation
is a subset of the facets of this triangulation, together with their edges and vertices.

The concept SurfaceMeshComplex 2InTriangulation 3 is particularly suited to handle surface meshes obtained
as the restriction to a surface of a three dimensional Delaunay triangulation. A model of this concept is a type
to be plugged as first template parameter in the function template make surface mesh.

Types

SurfaceMeshComplex 2InTriangulation 3 provides the following types.

SurfaceMeshComplex 2InTriangulation 3:: Triangulation

The type of the embedding 3D triangulation. Must be a
model of SurfaceMeshTriangulation 3.

typedef Triangulation::Vertex handle

Vertex handle; The type of the embedding triangulation vertex handles.
typedef Triangulation::Cell handle

Cell handle; The type of the embedding triangulation cell handles.
typedef Triangulation::Facet

Facet; The type of the embedding triangulation facets.
typedef Triangulation::Edge

Edge; The type of the embedding triangulation edges.
typedef Triangulation::size type

size type; Size type (an unsigned integral type)
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enum Face status { NOT IN COMPLEX, BOUNDARY, REGULAR, SINGULAR};

A type to describe the status of a face (facet, edge, or vertex)
with respect to the 2D pure complex. A NOT IN COMPLEX
face does not belong to the 2D complex. Facets can only
be NOT IN COMPLEX or REGULAR depending on whether
they belong to the 2D complex on not. Edges and vertices can
be NOT IN COMPLEX, BOUNDARY , REGULAR or SIN-
GULAR. An edge in the complex is BOUNDARY , REGU-
LAR, or SINGULAR, if it is incident to respectively 1, 2, or
3 or more facets in the complex. The status of a vertex is
determined by the adjacency graph of the facets of the 2D
complex incident to that vertex. The vertex of the 2D com-
plex is BOUNDARY , if this adjacency graph is a simple path,
it is REGULAR, if the adjacency graph is cyclic, and SINGU-
LAR in any other case.

SurfaceMeshComplex 2InTriangulation 3:: Facet iterator

An iterator type to visit the facets of the 2D complex.

SurfaceMeshComplex 2InTriangulation 3:: Edge iterator

An iterator type to visit the edges of the 2D complex.

SurfaceMeshComplex 2InTriangulation 3:: Vertex iterator

An iterator type to visit vertices of the 2D complex.

SurfaceMeshComplex 2InTriangulation 3:: Boundary edges iterator

An iterator type to visit the boundary edges of the 2D com-
plex.

Creation

SurfaceMeshComplex 2InTriangulation 3 c2t3( Triangulation& t3);

Builds an empty 2D complex embedded in the triangula-
tion t3

template < class FacetSelector>
SurfaceMeshComplex 2InTriangulation 3 c2t3( Triangulation& t3, FacetSelector select);

Builds a 2D complex embedded in the triangulation t3, in-
cluding in the 2D complex the facets of t3 for which the pred-
icate select returns true.
The type FacetSelector must be a function object with an op-
erator to select facets: bool operator()(Facet f);.
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Member access

Triangulation& c2t3.triangulation() Returns the reference to the triangulation.

Modifications

void c2t3.add to complex( Facet f)

Adds facet f to the 2D complex.

void c2t3.add to complex( Cell handle c, int i)

Adds facet (c,i) to the 2D complex.

void c2t3.remove from complex( Facet f)

Removes facet f from the 2D complex.

void c2t3.remove from complex( Cell handle c, int i)

Removes facet (c,i) from the 2D complex.

Queries

Queries on the status of individual face with respect to the 2D complex.

size type c2t3.number of facets() const

Returns the number of facets that belong to the 2D complex.

Face status c2t3.face status( Facet f)

Returns the status of the facet f with respect to the 2D com-
plex.

Face status c2t3.face status( Cell handle c, int i)

Returns the status of the facet (c,i) with respect to the 2D
complex.

Face status c2t3.face status( Edge e)

Returns the status of edge e in the 2D complex.

Face status c2t3.face status( Cell handle c, int i, int j)

Returns the status of edge (c,i,j) in the 2D complex.

Face status c2t3.face status( Vertex handle v)

Returns the status of vertex v in the 2D complex.

bool c2t3.is in complex( Facet f)

Returns true, if the facet f belongs to the 2D complex.
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bool c2t3.is in complex( Cell handle c, int i)

Returns true, if the facet (c,i) belongs to the 2D complex.

bool c2t3.is in complex( Edge e)

Returns true, if the edge e belongs to the 2D complex.

bool c2t3.is in complex( Cell handle c, int i, int j)

Returns true, if the edge (c,i,j) belongs to the 2D complex.

bool c2t3.is in complex( Vertex handle v)

Returns true, if the vertex v belongs to the 2D complex.

bool c2t3.is regular or boundary for vertices( Vertex handle v)

Returns true if the status of vertex v is REGULAR or
BOUNDARY .
Precondition: All the edges of the complex incident to v are
REGULAR or BOUNDARY .

Traversal of the complex

The data structure provides iterators to visit the facets, edges and vertices of the complex. All those iterators are
bidirectional and non mutable.

Facet iterator c2t3.facets begin() Returns an iterator with value type Facet to visit the facets of
the 2D complex.

Facet iterator c2t3.facets end() Returns the past the end iterator for the above iterator.

Edge iterator c2t3.edges begin() Returns an iterator with value type Edge to visit the edges of
the 2D complex which are not isolated.

Edge iterator c2t3.edges end() Returns the past the end iterator for the above iterator.
Boundary edges iterator

c2t3.boundary edges begin()

Returns an iterator with value type Edge to visit the boundary
edges of the complex.

Boundary edges iterator

c2t3.boundary edges end()

Returns the past the end iterator for the above iterator.

Vertex iterator c2t3.vertices begin() Returns an iterator with value type Vertex handle to visit the
vertices of the 2D complex.

Vertex iterator c2t3.vertices end() Returns the past the end iterator for the above iterator.

template <class OutputIterator>
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OutputIterator c2t3.incident facets( Vertex handle v, OutputIterator facets)

Copies the Facets of the complex incident to v to the output
iterator facets. Returns the resulting output iterator.
Precondition: c2t3.triangulation().dimension() = 3, v 6=
Vertex handle(), c2t3.triangulation().is vertex(v).

The following function is the basic function to walk on the 2D complex

Facet c2t3.neighbor( Facet f, int j)

Returns the facet of the complex which is the neighbor of the
facet f opposite to the vertex with index j of f . The vertices of
the facet f = (cell c, i) are numbered (0,1,2) (according to the
vertex triple index(i,j) member function of Triangulation 3)
in such a way that facet f is oriented by the outward normal
of tetraedra c. If there is no such neighbor, or if the edge is
singular the functions returns Facet().

Facet c2t3.neighbor( Cell handle c, int i, int j)

Returns the facet of the complex which is the neighbor of the
facet f opposite to the vertex with index j of f . See above.

Has Models

Surface mesh complex 2 in triangulation 3<Tr>

See Also

make surface mesh.
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SurfaceMeshFacetsCriteria 3

Definition

The Delaunay refinement process involved in the function template make surface mesh is guided by a set of
refinement criteria. The concept SurfaceMeshFacetsCriteria 3 describes the type which handles those criteria.
It corresponds to the requirements for the template parameter FacetsCriteria of the surface mesher function
make surface mesh<SurfaceMeshC2T3,Surface,FacetsCriteria,Tag> .

Typically the meshing criteria are a set of elementary criteria, each of which has to be met by the facets of the
final mesh. The meshing algorithm eliminates in turn bad facets, i.e., facets that do not meet all the criteria.

The size and quality of the final mesh depends on the order according to which bad facets are handled. Therefore,
the meshing algorithm needs to be able to quantify the facet qualities and to compare the qualities of different
faces. The concept SurfaceMeshFacetsCriteria 3 defines a type Quality designed to measure the quality of a
mesh facet. Typically this quality is a multicomponent variable. Each component corresponds to one criterion
and measures how much the facet deviates from meeting this criterion. Then, the comparison operator on
qualities is just a lexicographical comparison. The meshing algorithm handles facets with lowest quality first.
The qualities are computed by a function is bad(Facet f, Quality& q).

Types

SurfaceMeshFacetsCriteria 3:: Facet The type of facets. This type has to match the
Facet type in the triangulation type used by the mesher
function. (This triangulation type is the type Sur-
faceMeshC2T3::Triangulation provided by the model of
SurfaceMeshComplex 2InTriangulation 3 plugged as first
template parameter of make surface mesh).

SurfaceMeshFacetsCriteria 3:: Quality Default constructible, copy constructible, assignable, and
less-than comparable type.

Operations

bool criteria.is bad( Facet f, Quality& q)

Assigns the quality of the facet f to q, and returns true is f
does not meet the criteria.

Has Models

Surface mesh default criteria 3<Tr>

See Also

make surface mesh<SurfaceMeshC2T3,Surface,FacetsCriteria,Tag>
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CGAL::Surface mesh default criteria 3<Tr>

Definition

The class Surface mesh default criteria 3<Tr> implements the most commonly used combination of meshing
criteria. It involves mainly three criteria which are in order:

• a lower bound on the minimum angle in degrees of the surface mesh facets.

• an upper bound on the radius of surface Delaunay balls. A surface Delaunay ball is a ball circumscribing
a facet, centered on the surface and empty of vertices. Such a ball exists for each facet of the current
surface mesh. Indeed the current surface mesh is the Delaunay triangulation of the current sampling
restricted to the surface which is just the set of facets in the three dimensional Delaunay triangulation of
the sampling that have a Delaunay surface ball.

• an upper bound on the center-center distances of the surface mesh facets. The center-center distance of a
surface mesh facet is the distance between the facet circumcenter and the center of its surface Delaunay
ball.

#include <CGAL/Surface mesh default criteria 3.h>

Is Model for the Concepts

SurfaceMeshFacetsCriteria 3

Types

typedef Tr::FT FT; The numerical type.

Creation

Surface mesh default criteria 3<Tr> criteria( FT angle bound, FT radius bound, FT distance bound);

Returns a Surface mesh default criteria 3<Tr> with angle
bound, radius bound, distance bound as bounds for the min-
imum facet angle in degrees, the radius of the surface Delau-
nay balls and the center-center distances respectively.

See Also

make surface mesh
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CGAL::Surface mesh default triangulation 3

Definition

The class Surface mesh default triangulation 3 is a model of the concept SurfaceMeshTriangulation
3, whose vertex base and cell base classes are models of the concepts SurfaceMeshVertexBase 3 and
SurfaceMeshCellBase 3 respectively.

#include <CGAL/Surface mesh default triangulation 3.h>

Is Model for the Concepts

SurfaceMeshTriangulation 3

See Also

Surface mesh complex 2 in triangulation 3<Tr>
make surface mesh
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SurfaceMeshTraits 3

Definition

The concept SurfaceMeshTraits 3 describes the knowledge that is required on the surface to be meshed. A
model of this concept implements an oracle that is able to tell whether a segment (or a ray, or a line) intersects
the surface or not and to compute some intersection points if any. The concept SurfaceMeshTraits 3 also
includes a constructor able to provide a small set of initial points on the surface.

Types

SurfaceMeshTraits 3:: Point 3 The type of points. This type is required to match the
point type of the three dimensional embedding triangulation
C2T3::Triangulation 3.

SurfaceMeshTraits 3:: Segment 3 The type of segments.
SurfaceMeshTraits 3:: Ray 3 The type of rays.
SurfaceMeshTraits 3:: Line 3 The type of lines.
SurfaceMeshTraits 3:: Surface 3 The surface type.

SurfaceMeshTraits 3:: Intersect 3 A model of this type provides the operator
CGAL::Object operator()(Surface 3 surface, Type1 type1)
to compute the intersection of the surface with an object of
type Type1 which may be Segment 3, Ray 3 or Line 3 .

SurfaceMeshTraits 3:: Construct initial points

A model of this type provides the following operators to con-
struct initial points on the surface:
template <class OutputIteratorPoints>
OutputIteratorPoints operator()(OutputIteratorPoints pts)
which outputs a set of points on the surface,
template <class OutputIteratorPoints>
OutputIteratorPoints operator() (OutputIteratorPoints pts,
int n)
which outputs a set of n points on the surface.

Operations

The following functions give access to the construction objects:

Intersect 3 traits.intersect 3 object()
Construct initial points

traits.construct initial points object()

Has Models

Surface mesh traits generator 3<Surface>::Type
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See Also

make surface mesh
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CGAL::Surface mesh traits generator 3<Surface>

Definition

The class Surface mesh traits generator 3<Surface> provides a type Type, that is a model of the concept
SurfaceMeshTraits 3 for the surface type Surface.

The type Surface is required to be a model of the concept Surface 3, which means that it is copy constructible
and assignable. In addition, a Surface type is required

• either to provide a nested type Surface::Surface mesher traits 3 that is a model of SurfaceMeshTraits 3

• or to be a surface type for which a specialization of the traits generator Surface mesh traits generator
3<Surface> exists.

Currently, the library provides partial specializations of the traits generator for implicit surfaces (Implicit
surface 3<Traits, Function>) and gray level images (Gray level image 3<FT, Point>).

#include <CGAL/Surface mesh traits generator 3.h>

Surface mesh traits generator 3<Surface>:: Type

A model of the concept SurfaceMeshTraits 3.

See Also

SurfaceMeshTraits 3 make surface mesh

3080



C
on

ce
pt

SurfaceMeshTriangulation 3

Definition

The concept SurfaceMeshTriangulation 3 describes the triangulation type used by the surface mesher make
surface mesh to represent the three dimensional triangulation embedding the surface mesh. Thus, this concept
describes the requirements for the triangulation type SurfaceMeshC2T3::Triangulation nested in the model
of SurfaceMeshComplex2InTriangulation3 plugged as the template parameter SurfaceMeshC2T3 of make
surface mesh. It also describes the requirements for the triangulation type plugged in the class Surface mesh
complex 2 in triangulation 3<Tr>.

Types

SurfaceMeshTriangulation 3:: Point The point type. It must be DefaultConstructible, CopyCon-
structible and Assignable.

Vertices and cells of the triangulation are manipulated via handles, which support the two dereference operators
operator* and operator->.

SurfaceMeshTriangulation 3:: Vertex handle Handle to a data representing a vertex. Vertex handle must
be a model of Handle and its value type must be model of
TriangulationDataStructure 3::Vertex.

SurfaceMeshTriangulation 3:: Cell handle Handle to a data representing a cell. Cell handle must be
a model of Handle and its value type must be model of
TriangulationDataStructure 3::Cell.

typedef CGAL::Triple<Cell handle, int, int>

Edge; The edge type.
typedef std::pair<Cell handle, int>

Facet; The facet type.

The following iterators allow one to visit all finite vertices, edges and facets of the triangulation.

SurfaceMeshTriangulation 3:: Finite vertices iterator

Iterator over finite vertices

SurfaceMeshTriangulation 3:: Finite edges iterator

Iterator over finite edges

SurfaceMeshTriangulation 3:: Finite facets iterator

Iterator over finite facets

SurfaceMeshTriangulation 3:: Geom traits The geometric traits class. Must be a model of
DelaunayTriangulationTraits 3.
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Creation

SurfaceMeshTriangulation 3 t; default constructor.

SurfaceMeshTriangulation 3 t( tr); Copy constructor. All vertices and faces are duplicated.

Assignment

SurfaceMeshTriangulation 3 &

t = tr The triangulation tr is duplicated, and modifying the copy
after the duplication does not modify the original. The pre-
vious triangulation held by t is deleted.

void t.clear() Deletes all finite vertices and all cells of t.

Access Functions

int t.dimension() const Returns the dimension of the affine hull.

DelaunayTriangulationTraits 3

t.geom traits() const Returns a const reference to a model of
DelaunayTriangulationTraits 3.

Voronoi diagram

Object t.dual( Facet f) const Returns the dual of facet f , which is
in dimension 3: either a segment, if the two cells incident to
f are finite, or a ray, if one of them is infinite;
in dimension 2: a point.

Queries

A point p is said to be in conflict with a cell c in dimension 3 (resp. a facet f in dimension 2) iff t.side
of sphere(c, p) (resp. t.side of circle(f, p)) returns ON BOUNDED SIDE. The set of cells (resp. facets in
dimension 2) which are in conflict with p is connected, and it forms a hole.

template <class OutputIteratorBoundaryFacets, class OutputIteratorCells, class OutputIteratorInternalFacets>

Triple<OutputIteratorBoundaryFacets, OutputIteratorCells, OutputIteratorInternalFacets>

t.find conflicts( Point p,
Cell handle c,
OutputIteratorBoundaryFacets bfit,
OutputIteratorCells cit,
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OutputIteratorInternalFacets ifit)

Computes the conflict hole induced by p. The starting cell
(resp. facet) c must be in conflict. Then this function returns
respectively in the output iterators:
– cit: the cells (resp. facets) in conflict.
– bfit: the facets (resp. edges) on the boundary, that is, the
facets (resp. edges) (t, i) where the cell (resp. facet) t is in
conflict, but t->neighbor(i) is not.
– ifit: the facets (resp. edges) inside the hole, that is, delim-
iting two cells (resp facets) in conflict.
Returns the Triple composed of the resulting output iterators.

The following iterators allow the user to visit facets, edges and vertices of the triangulation.

Finite vertices iterator

t.finite vertices begin() const

Starts at an arbitrary finite vertex. Then ++ and -- will it-
erate over finite vertices. Returns finite vertices end() when
t.number of vertices() = 0.

Finite vertices iterator

t.finite vertices end() const

Past-the-end iterator

Finite edges iterator t.finite edges begin() const

Starts at an arbitrary finite edge. Then ++ and -- will it-
erate over finite edges. Returns finite edges end() when
t.dimension() < 1.

Finite edges iterator t.finite edges end() const

Past-the-end iterator

Finite facets iterator

t.finite facets begin() const

Starts at an arbitrary finite facet. Then ++ and -- will it-
erate over finite facets. Returns finite facets end() when
t.dimension() < 2.

Finite facets iterator

t.finite facets end() const

Past-the-end iterator

template <class OutputIterator>
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OutputIterator t.incident cells( Vertex handle v, OutputIterator cells) const

Copies the Cell handles of all cells incident to v to the output
iterator cells. If t.dimension() < 3, then do nothing. Returns
the resulting output iterator.
Precondition: v 6= Vertex handle(), t.is vertex(v).

template <class OutputIterator>
OutputIterator t.incident cells( Vertex handle v, OutputIterator cells) const

Copies the Cell handles of all cells incident to v to the output
iterator cells. If t.dimension() < 3, then do nothing. Returns
the resulting output iterator.

bool t.is vertex( Point p, Vertex handle & v) const

Tests whether p is a vertex of t by locating p in the triangula-
tion. If p is found, the associated vertex v is given.

bool t.is edge( Vertex handle u, Vertex handle v, Cell handle & c, int & i, int & j) const

Tests whether (u,v) is an edge of t. If the edge is found, it
gives a cell c having this edge and the indices i and j of the
vertices u and v in c, in this order.
Precondition: u and v are vertices of t.

bool t.is infinite( const Vertex handle v) const

true, iff vertex v is the infinite vertex.

bool t.is infinite( const Cell handle c) const

true, iff c is incident to the infinite vertex.
Precondition: t.dimension() = 3.

Facet t.mirror facet( Facet f) const

Returns the same facet viewed from the other adjacent cell.

int t.vertex triple index( const int i, const int j)

Return the indexes of the jth vertex of the facet of a cell op-
posite to vertex i.

Point location
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Cell handle t.locate( Point query, Cell handle start = Cell handle())

If the point query lies inside the convex hull of the points, the
cell that contains the query in its interior is returned. If query
lies on a facet, an edge or on a vertex, one of the cells having
query on its boundary is returned.
If the point query lies outside the convex hull of the points,
an infinite cell with vertices {p,q,r,∞} is returned such that
the tetrahedron (p,q,r,query) is positively oriented (the rest
of the triangulation lies on the other side of facet (p,q,r)).
Note that locate works even in degenerate dimensions: in
dimension 2 (resp. 1, 0) the Cell handle returned is the one
that represents the facet (resp. edge, vertex) containing the
query point.
The optional argument start is used as a starting place for the
search.

Cell handle t.locate( Point query,
Locate type & lt,
int & li,
int & lj,
Cell handle start = Cell handle())

If query lies inside the affine hull of the points, the k-face (fi-
nite or infinite) that contains query in its interior is returned,
by means of the cell returned together with lt, which is set
to the locate type of the query (VERTEX, EDGE, FACET,
CELL, or OUTSIDE CONVEX HULL if the cell is infinite
and query lies strictly in it) and two indices li and lj that spec-
ify the k-face of the cell containing query.
If the k-face is a cell, li and lj have no meaning; if it is a facet
(resp. vertex), li gives the index of the facet (resp. vertex)
and lj has no meaning; if it is and edge, li and lj give the in-
dices of its vertices.
If the point query lies outside the affine hull of the points,
which can happen in case of degenerate dimensions, lt is set
to OUTSIDE AFFINE HULL, and the cell returned has no
meaning. As a particular case, if there is no finite vertex yet
in the triangulation, lt is set to OUTSIDE AFFINE HULL
and locate returns the default constructed handle.
The optional argument start is used as a starting place for the
search.

template <class CellIt>
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Vertex handle t.insert in hole( Point p, CellIt cell begin, CellIt cell end, Cell handle begin, int i)

Creates a new vertex by starring a hole. It takes an iterator
range [cell begin; cell end[ of Cell handles which specifies
a hole: a set of connected cells (resp. facets in dimension
2) which is star-shaped wrt p. (begin, i) is a facet (resp. an
edge) on the boundary of the hole, that is, begin belongs
to the set of cells (resp. facets) previously described, and
begin->neighbor(i) does not. Then this function deletes all
the cells (resp. facets) describing the hole, creates a new
vertex v, and for each facet (resp. edge) on the boundary of
the hole, creates a new cell (resp. facet) with v as vertex.
Then v->set point(p) is called and v is returned.

Precondition: t.dimension() ≥ 2, the set of cells (resp. facets
in dimension 2) is connected, its boundary is connected, and
p lies inside the hole, which is star-shaped wrt p.

Has Models

Any 3D Delaunay triangulation class of CGAL

See Also

Triangulation 3<TriangulationTraits 3,TriangulationDataStructure 3>
Delaunay triangulation 3<DelaunayTriangulationTraits 3,TriangulationDataStructure 3>
SurfaceMeshComplex2InTriangulation3
Surface mesh complex 2 in triangulation 3<Tr>
make surface mesh
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CGAL::Surface mesh vertex base 3<Gt,Vb>

Definition

The class Surface mesh vertex base 3<Gt,Vb> is a model of the concept SurfaceMeshVertexBase 3. It is
designed to serve as vertex base class in a triangulation class Tr plugged in a Surface mesh complex 2 in
triangulation 3<Tr> class.

The first template parameter is the geometric traits class.

The second template parameter is a base class. It has to be a model of the concept TriangulationVertexBase 3
and defaults to Triangulation vertex base 3 <Gt>.

#include <CGAL/Surface mesh vertex base 3.h>

Is Model for the Concepts

SurfaceMeshVertexBase 3

Inherits From

Vb

See Also

SurfaceMeshComplex 2InTriangulation 3
Surface mesh complex 2 in triangulation 3<Tr>
SurfaceMeshTriangulation 3
make surface mesh
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SurfaceMeshVertexBase 3

Definition

The concept SurfaceMeshVertexBase 3 describes the vertex base type of the three dimensional triangulation
used to embed the surface mesh.

More precisely, the first template parameter SurfaceMeshC2T3 of the surface mesher make surface mesh is
a model of the concept SurfaceMeshComplex 2InTriangulation 3 which describes a data structure to store a
pure two dimensional complex embedded in a three dimensional triangulation. In particular, the type Sur-
faceMeshC2T3 is required to provide a three dimensional triangulation type SurfaceMeshC2T3::Triangulation
3 The concept SurfaceMeshVertexBase 3 describes the vertex base type required in this triangulation type.

Refines

TriangulationVertexBase 3

The surface mesher algorithm issues frequent queries about the status of the vertices with respect to the two
dimensional complex that represents the current surface approximation. The class SurfaceMeshVertexBase 3
offers a caching mechanism to answer more efficiently these queries. The caching mechanism includes two
cached integers, which, when they are valid, store respectively the number of complex facets incident to the
vertex and the number of connected components of the adjacency graph of those facets.

Creation

Operations

bool vb.is c2t3 cache valid()

Returns true if the cache is valid.

void vb.invalidate c2t3 cache()

Invalidates the cache.

int vb.cached number of incident facets()

Returns the cached number of facets of the complex incident
to the vertex.

int vb.cached number of components()

This method concerns the adjacency graph of the facets of
the complex incident to the vertex and returns a cached value
for the number of connected components this graph.

Has Models

Surface mesh vertex base 3<Gt,Vb>
Surface mesh default triangulation 3::Vertex
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See Also

SurfaceMesherComplex 2InTriangulation 3
Surface mesh complex 2 in triangulation 3<Tr>
Surface mesh default triangulation 3.

3089



F
un

ct
io

n

CGAL::output surface facets to polyhedron

Definition

output surface facets to polyhedron() converts a surface reconstructed by make surface mesh() to a
Polyhedron 3<Traits>.

#include <CGAL/IO/output surface facets to polyhedron.h>

template<class SurfaceMeshComplex 2InTriangulation 3, class Polyhedron>
bool output surface facets to polyhedron( SurfaceMeshComplex 2InTriangulation 3 c2t3,

Polyhedron& output polyhedron)

Gets reconstructed surface out of a SurfaceMeshComplex 2InTriangulation
3 object.
This variant exports the surface as a polyhedron. It requires the surface
to be manifold. For this purpose, you may call make surface mesh() with
Manifold tag or Manifold with boundary tag parameter.
Template Parameters:
SurfaceMeshComplex 2InTriangulation 3: model of the
SurfaceMeshComplex 2InTriangulation 3 concept. Polyhedron: an
instance of Polyhedron 3<Traits>.
Returns: true if the surface is manifold and orientable.
Parameters:
c2t3: Input surface. output polyhedron: Output polyhedron.

See Also

CGAL::output surface facets to off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
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Surface Reconstruction from Point Sets
Pierre Alliez, Laurent Saboret, Gaël Guennebaud
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49.1 Introduction

This CGAL component implements a surface reconstruction method which takes as input point sets with oriented
normals and computes an implicit function. We assume that the input points contain no outliers and little noise.
The output surface mesh is generated by extracting an isosurface of this function with the CGAL Surface Mesh
Generator [RY07] or potentially with any other surface contouring algorithm.
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Figure 49.1: Poisson surface reconstruction. Left: 17K points sampled on the statue of an elephant with a
Minolta laser scanner. Right: reconstructed surface mesh.

More specifically, the core surface reconstruction algorithm consists of computing an implicit function which is
an approximate indicator function of the inferred solid (Poisson Surface Reconstruction - referred to as Poisson).
Poisson is a two steps process: it requires solving for the implicit function before function evaluation.

49.2 Common Reconstruction Pipeline

Surface reconstruction from point sets is often a sequential process with the following steps: 1) Scanning and
scan alignment produce a set of points or points with normals; 2) Outlier removal; 3) Simplification to reduce
the number of input points; 4) Smoothing to reduce noise in the input data; 5) Normal estimation and orientation
when the normals are not already provided by the acquisition device; and 6) Surface reconstruction.
CGAL provides algorithms for all steps listed above except alignment.
Chapter Point set processing 3 58 describes algorithms to pre-process the point set before reconstruction with
functions devoted to the simplification, outlier removal, smoothing, normal estimation and normal orientation.
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Figure 49.2: Common surface reconstruction pipeline.

49.3 Poisson

Given a set of 3D points with oriented normals (denoted oriented points in the sequel) sampled on the boundary
of a 3D solid, the Poisson Surface Reconstruction method [KBH06] solves for an approximate indicator function
of the inferred solid, whose gradient best matches the input normals. The output scalar function, represented in
an adaptive octree, is then iso-contoured using an adaptive marching cubes.

CGAL implements a variant of this algorithm which solves for a piecewise linear function on a 3D Delaunay
triangulation instead of an adaptive octree. The algorithm takes as input a set of 3D oriented points. It builds
a 3D Delaunay triangulation from these points and refines it by Delaunay refinement so as to remove all badly
shaped (non isotropic) tetrahedra and to tessellate a loose bounding box of the input oriented points. The
normal of each Steiner point added during refinement is set to zero. It then solves for a scalar indicator function
f represented as a piecewise linear function over the refined triangulation. More specifically, it solves for the
Poisson equation ∆ f = div(n) at each vertex of the triangulation using a sparse linear solver. Eventually, the
CGAL surface mesh generator extracts an isosurface with function value set by default to be the median value
of f at all input points.

49.3.1 Interface

The class template declaration is:

template<
class Gt>
class Poisson reconstruction function;
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with
Gt: Geometric traits class.

Creation:

template<typename InputIterator, typename PointPMap, typename NormalPMap>
Poisson reconstruction function( InputIterator first,

InputIterator beyond,
PointPMap point pmap,
NormalPMap normal pmap)

Creates a Poisson implicit function from the [first, beyond)
range of points.
Template Parameters:
InputIterator: iterator over input points. PointPMap: is
a model of boost::ReadablePropertyMap with a value type
= Point 3. It can be omitted if InputIterator value type
is convertible to Point 3. NormalPMap: is a model of
boost::ReadablePropertyMap with a value type = Vector 3.
Parameters:
first: iterator over the first input point. beyond: past-the-end
iterator over the input points. point pmap: property map to
access the position of an input point. normal pmap: property
map to access the oriented normal of an input point.

The main operations are:

Sphere bounding sphere() const

Returns a sphere bounding the inferred surface.

bool compute implicit function()

The function compute implicit function() must be called af-
ter each insertion of oriented points. It computes the piece-
wise linear scalar function operator() by: applying Delaunay
refinement, solving for operator() at each vertex of the trian-
gulation with a sparse linear solver, and shifting and orient-
ing operator() such that it is 0 at all input points and negative
inside the inferred surface.
Returns false if the linear solver fails.
The sparse solver used for this step is a parameter of the
function. We recommend to use the class CGAL::Eigen
solver traits<T> instantiated with the iterative conjugate gra-
dient solver Eigen::ConjugateGradient for double (which is
the default when Eigen (Page 28) is available and CGAL
EIGEN3 ENABLED is defined).

FT value( Point p) const Evaluates the implicit function at a given 3D query point.

Point get inner point() const

Returns an arbitrary point located inside the inferred surface.
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See details in
CGAL::Poisson reconstruction function<GeomTraits>

49.3.2 Example

poisson reconstruction example.cpp reads a point set, creates a Poisson implicit function and reconstructs a
surface.� �
#include <CGAL/trace.h>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>
#include <CGAL/Surface_mesh_default_triangulation_3.h>
#include <CGAL/make_surface_mesh.h>
#include <CGAL/Implicit_surface_3.h>
#include <CGAL/IO/output_surface_facets_to_polyhedron.h>
#include <CGAL/Poisson_reconstruction_function.h>
#include <CGAL/Point_with_normal_3.h>
#include <CGAL/property_map.h>
#include <CGAL/IO/read_xyz_points.h>
#include <CGAL/compute_average_spacing.h>

#include <vector>
#include <fstream>

// Types
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::FT FT;
typedef Kernel::Point_3 Point;
typedef CGAL::Point_with_normal_3<Kernel> Point_with_normal;
typedef Kernel::Sphere_3 Sphere;
typedef std::vector<Point_with_normal> PointList;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
typedef CGAL::Poisson_reconstruction_function<Kernel>

Poisson_reconstruction_function;
typedef CGAL::Surface_mesh_default_triangulation_3 STr;
typedef CGAL::Surface_mesh_complex_2_in_triangulation_3<STr> C2t3;
typedef CGAL::Implicit_surface_3<Kernel, Poisson_reconstruction_function>

Surface_3;

int main(void)
{

// Poisson options
FT sm_angle = 20.0; // Min triangle angle in degrees.
FT sm_radius = 30; // Max triangle size w.r.t. point set average
spacing.
FT sm_distance = 0.375; // Surface Approximation error w.r.t. point
set average spacing.

// Reads the point set file in points[].
// Note: read_xyz_points_and_normals() requires an iterator over
points
// + property maps to access each point’s position and normal.
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// The position property map can be omitted here as we use iterators
over Point_3 elements.
PointList points;
std::ifstream stream("data/kitten.xyz");
if (!stream ||

!CGAL::read_xyz_points_and_normals(
stream,
std::back_inserter(points),

CGAL::make_normal_of_point_with_normal_pmap(std::back_inserter(points))))
{

std::cerr << "Error: cannot read file data/kitten.xyz" <<
std::endl;

return EXIT_FAILURE;
}

// Creates implicit function from the read points using the default
solver.
// Note: this method requires an iterator over points
// + property maps to access each point’s position and normal.
// The position property map can be omitted here as we use iterators
over Point_3 elements.
Poisson_reconstruction_function function(

points.begin(), points.end(),

CGAL::make_normal_of_point_with_normal_pmap(points.begin()));

// Computes the Poisson indicator function f()
// at each vertex of the triangulation.
if ( ! function.compute_implicit_function() )

return EXIT_FAILURE;

// Computes average spacing
FT average_spacing = CGAL::compute_average_spacing(points.begin(),
points.end(),

6 /* knn = 1 ring
*/);

// Gets one point inside the implicit surface
// and computes implicit function bounding sphere radius.
Point inner_point = function.get_inner_point();
Sphere bsphere = function.bounding_sphere();
FT radius = std::sqrt(bsphere.squared_radius());

// Defines the implicit surface: requires defining a
// conservative bounding sphere centered at inner point.
FT sm_sphere_radius = 5.0 * radius;
FT sm_dichotomy_error = sm_distance*average_spacing/1000.0; //
Dichotomy error must be << sm_distance
Surface_3 surface(function,

Sphere(inner_point,sm_sphere_radius*sm_sphere_radius),
sm_dichotomy_error/sm_sphere_radius);
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// Defines surface mesh generation criteria
CGAL::Surface_mesh_default_criteria_3<STr> criteria(sm_angle, // Min
triangle angle (degrees)

sm_radius*average_spacing, // Max triangle size

sm_distance*average_spacing); // Approximation error

// Generates surface mesh with manifold option
STr tr; // 3D Delaunay triangulation for surface mesh generation
C2t3 c2t3(tr); // 2D complex in 3D Delaunay triangulation
CGAL::make_surface_mesh(c2t3, //
reconstructed mesh

surface, //
implicit surface

criteria, //
meshing criteria

CGAL::Manifold_with_boundary_tag()); //
require manifold mesh

if(tr.number_of_vertices() == 0)
return EXIT_FAILURE;

// saves reconstructed surface mesh
std::ofstream out("kitten_poisson-20-30-0.375.off");
Polyhedron output_mesh;
CGAL::output_surface_facets_to_polyhedron(c2t3, output_mesh);
out << output_mesh;

return EXIT_SUCCESS;
}� �
File: examples/Surface_reconstruction_points_3/poisson_reconstruction_example.cpp

49.4 Contouring

The computed implicit functions can be iso-contoured to reconstruct a surface by using the CGAL surface mesh
generator [RY07, BO05]:
CGAL::make surface mesh

The parameter Tag affects the behavior of make surface mesh():
- Manifold tag: the output mesh is guaranteed to be a manifold surface without boundary.
- Manifold with boundary tag: the output mesh is guaranteed to be manifold and may have boundaries.
- Non manifold tag: the output mesh has no guarantee and hence is outputted as a polygon soup.

49.5 Output

The surface reconstructed by make surface mesh() is required to be a model of the concept
SurfaceMeshComplex 2InTriangulation 3, a data structure devised to represent a two dimensional complex
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embedded into a three dimensional triangulation.

SurfaceMeshComplex 2InTriangulation 3 defines the methods to traverse the reconstructed surface, and e.g.
convert it to a triangle soup.

Other CGAL components provide functions to write the reconstructed surface mesh to the Object File Format
(OFF) [Phi96] and to convert it to a polyhedron (when it is manifold):
CGAL::output surface facets to off
CGAL::output surface facets to polyhedron

See poisson reconstruction example.cpp example above.

49.6 Case Studies

The surface reconstruction problem being inherently ill-posed, the proposed algorithm does not pretend to
reconstruct all kinds of surfaces with arbitrary sampling conditions. This section provides the user with some
hints about the ideal sampling and contouring conditions, and depicts some failure cases when these conditions
are not matched.

49.6.1 Ideal Conditions

The user must keep in mind that the poisson surface reconstruction algorithm comprises two phases (computing
the implicit function from the input point set and contouring an iso-surface of this function). Both require some
care in terms of sampling conditions and parameter tuning.

Point Set

Ideally the current implementation of the Poisson surface reconstruction method expects a dense 3D oriented
point set (typically matching the epsilon-sampling condition [BO05]) and sampled over a closed, smooth sur-
face. Oriented herein means that all 3D points must come with consistently oriented normals to the inferred
surface. Figures 49.3 and 49.4 illustrate cases where these ideal conditions are met.
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Figure 49.3: Poisson reconstruction. Left: 120K points sampled on a statue (Minolta laser scanner). Right:
reconstructed surface mesh.

Figure 49.4: Left: 120K points sampled on a statue (Minolta laser scanner). Right: reconstructed surface mesh.

3099



The algorithm is fairly robust to anisotropic sampling and to noise. It is also robust to missing data through
filling the corresponding holes as the algorithm is designed to reconstruct the indicator function of an inferred
solid (see Figure 49.5).

Figure 49.5: Top left: 65K points sampled on a hand (Kreon laser scanner). Bottom left: the point set is highly
anisotropic due to the scanning technology. Right: reconstructed surface mesh and closeup. The holes are
properly closed.

The algorithm is in general not robust to outliers, although a few outliers do not always create a failure, see
Figure 49.6.
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Figure 49.6: Left: 70K points sampled on an elephant with few outliers emphasized with disks. Right: recon-
structed surface mesh.

The algorithm works well even when the inferred surface is composed of several connected components, pro-
vided that both all normals are properly estimated and oriented (the current CGAL normal orienter algorithm
may fail in some cases, see CGAL::mst orient normals()), and that the final contouring algorithm is properly
seeded for each component. When the inferred surface is composed of several nested connected components
care should be taken to orient the normals of each component in alternation (inward/outward) so that the final
contouring stage picks a proper contouring value.

Contouring Parameters

Our implementation of the Poisson surface reconstruction algorithm computes an implicit function represented
as a piecewise linear function over the tetrahedra of a 3D Delaunay triangulation constructed from the input
points then refined through Delaunay refinement. For this reason, any iso-surface is also piecewise linear and
hence may contain sharp creases. As the contouring algorithm CGAL::make surface mesh() expects a smooth
implicit function these sharp creases may create spurious clusters of vertices in the final reconstructed surface
mesh when setting a small mesh sizing or surface approximation error parameter (see Figure 49.7).
One way to avoid these spurious clusters consists of adjusting the mesh sizing and surface approximation pa-
rameters large enough compared to the average sampling density (obtained through CGAL::compute average
spacing()) so that the contouring algorithm “perceives” a smooth iso-surface. We recommend to use the follow-
ing contouring parameters:

• Max triangle radius: at least 100 times the average spacing.

• Approximation distance: at least 0.25 times the average spacing.
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Figure 49.7: Left: surface reconstructed with approximation distance = 0.25 * average spacing. Right: surface
reconstructed with approximation distance = 0.15 * average spacing. Notice the spurious cluster on the chick.

49.6.2 Degraded Conditions

The conditions listed above are rather restrictive and in practice not all of them are met in the applications. We
now illustrates the behavior of the algorithm when the conditions are not met in terms of sampling, wrongly
oriented normals, noise and sharp creases.

Sparse Sampling

The reconstruction algorithm expects a sufficiently dense point set. Although there is no formal proof of correct-
ness of the algorithm under certain density conditions due to its variational nature, our experiments show that
the algorithm reconstructs well all thin features when the local spacing is at most one tenth of the local feature
size (the distance to the medial axis, which captures altogether curvature, thickness and separation). When this
condition is not met the reconstruction does not reconstruct the thin undersampled features (see Figure 49.8).
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Figure 49.8: Left: 50K points sampled on the Neptune trident. The reconstruction (not shown) is successful in
this case. Right: point set simplified to 1K points then reconstructed (all input points are depicted with normals).
The thin feature is not reconstructed.

Large Holes

The reconstruction is devised to solve for an implicit function which is an approximate indicator function of an
inferred solid. For this reason the contouring algorithm always extracts a closed surface mesh and hence is able
to fill the small holes where data are missing due, e.g., to occlusions during acquisition. In case of large holes
the algorithm still closes them all but sometimes in an unexpected manner. In addition the resulting piecewise
linear implicit function may exhibit large triangle patches and sharp creases as the 3D Delaunay triangulation
used for solving is very coarse where the holes are filled (see Figure 49.9).

Figure 49.9: Left: 65K points sampled on a hand with no data captured at the wrist base. Right: reconstructed
surface mesh. The surface is properly closed on the fingers and also closed at the wrist but in a less plausible
manner.
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Wrongly Oriented Normals

The Poisson surface reconstruction approaches solves for an implicit function whose gradient best matches a set
of input normals. Because it solves this problem in the least squares sense, it is robust to few isolated wrongly
oriented (flipped) normals. Nevertheless a cluster of wrongly oriented normals leads to an incorrect implicit
function and hence to spurious geometric or even topological distortion (see Figure 49.10).

Figure 49.10: Left: points sampled on a sphere with a cluster of wrongly oriented normals. Right: reconstructed
surface mesh with a spurious bump.

Noise and Outliers

A large amount of noise inevitably impacts on the reconstruction (see Figure 49.11, top) and the current imple-
mentation does not provide any mean to trade data fitting for smoothness. Nevertheless if the signal-to-noise
ratio is sufficiently high and/or the surface approximation and sizing parameters set for contouring the iso-
surface is large with respect to the noise level the output surface mesh will appear smooth (not shown). If the
user wants to produce a smooth and detailed output surface mesh, we recommend to apply smoothing through
CGAL::jet smooth point set() ((see Figure 49.11, bottom).
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Figure 49.11: Top-left: points sampled on a sphere and corrupted with a lot of noise. Top-right: reconstructed
surface mesh. Bottom-left: smoothed point set. Bottom-right: reconstructed surface mesh.

For a large number of outliers the failure cases (not shown) translate into spurious small connected compo-
nents and massive distortion near the inferred surface. In this case the outliers must be removed through
CGAL::remove outliers().

Sharp Creases

The current reconstruction algorithm is not able to recover the sharp creases and corners present in the inferred
surface. This translates into smoothed sharp creases.
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Figure 49.12: Left: 5K points sampled on a mechanical piece with sharp features (creases, darts and corners).
Right: reconstructed surface mesh with smoothed creases.
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Surface Reconstruction from Point Sets
Reference Manual
Pierre Alliez, Laurent Saboret, Gael Guennebaud

This CGAL component implements a state-of-the-art surface reconstruction method: Poisson Surface Recon-
struction. The input is an unorganized point set, possibly with attributes such as unoriented or oriented normals.
The output is either an implicit function (ready for evaluation by any contouring algorithm), or a surface mesh
generated by the CGAL surface mesh generator.

Note that since reconstruction methods often require pre-processing a point set (through reduction, smoothing,
outlier removal, normal estimation, normal orientation), we provide components devoted to these tasks in the
Point Set Processing component.

49.7 Classified Reference Pages

49.7.1 Classes

CGAL::Poisson reconstruction function<GeomTraits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3108

49.8 Alphabetical List of Reference Pages

Poisson reconstruction function<GeomTraits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3108
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CGAL::Poisson reconstruction function<GeomTraits>

Definition

Given a set of 3D points with oriented normals sampled on the boundary of a 3D solid, the Poisson Surface
Reconstruction method [KBH06] solves for an approximate indicator function of the inferred solid, whose
gradient best matches the input normals. The output scalar function, represented in an adaptive octree, is then
iso-contoured using an adaptive marching cubes.

Poisson reconstruction function implements a variant of this algorithm which solves for a piecewise linear
function on a 3D Delaunay triangulation instead of an adaptive octree.

#include <CGAL/Poisson reconstruction function.h>

Parameters

template<class Gt>
class Poisson reconstruction function;

Parameters:
Gt: Geometric traits class.

Is Model for the Concepts

Model of the ImplicitFunction concept.

Types

Poisson reconstruction function<GeomTraits>:: Geom traits

Geometric traits class.

Poisson reconstruction function<GeomTraits>:: FT typedef to Geom traits::FT
Poisson reconstruction function<GeomTraits>:: Point typedef to Geom traits::Point 3
Poisson reconstruction function<GeomTraits>:: Vector typedef to Geom traits::Vector 3
Poisson reconstruction function<GeomTraits>:: Sphere typedef to Geom traits::Sphere 3

Creation

template<typename InputIterator, typename PointPMap, typename NormalPMap>
Poisson reconstruction function<GeomTraits> fct( InputIterator first,

InputIterator beyond,
PointPMap point pmap,
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NormalPMap normal pmap)

Creates a Poisson implicit function from the [first, beyond) range of points.
Template Parameters:
InputIterator: iterator over input points. PointPMap: is a model of
boost::ReadablePropertyMap with a value type = Point 3. It can be omitted
if InputIterator value type is convertible to Point 3. NormalPMap: is a model
of boost::ReadablePropertyMap with a value type = Vector 3.
Parameters:
first: iterator over the first input point. beyond: past-the-end iterator over the
input points. point pmap: property map to access the position of an input point.
normal pmap: property map to access the oriented normal of an input point.

Operations

Sphere fct.bounding sphere() const Returns a sphere bounding the inferred surface.
template<class SparseLinearAlgebraTraits d>
bool fct.compute implicit function( SparseLinearAlgebraTraits d solver =
SparseLinearAlgebraTraits d())

The function compute implicit function() must be called after
the insertion of oriented points. It computes the piecewise lin-
ear scalar function operator() by: applying Delaunay refine-
ment, solving for operator() at each vertex of the triangulation
with a sparse linear solver, and shifting and orienting opera-
tor() such that it is 0 at all input points and negative inside the
inferred surface.
Template parameters:
SparseLinearAlgebraTraits d: Symmetric definite positive
sparse linear solver. If EIGEN 3.1 (or greater) is available
and CGAL EIGEN3 ENABLED is defined, the default solver
is Eigen::ConjugateGradient.
Returns: false if the linear solver fails.
Parameters:
solver: sparse linear solver.

FT fct.operator()( const Point& p) const

ImplicitFunction interface: evaluates the implicit function at a
given 3D query point. The function compute implicit function
must be called before the first call to operator().

Point fct.get inner point() const Returns an arbitray point located inside the inferred surface.

Example

See Surface reconstruction points 3/poisson reconstruction example.cpp.
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Figure 50.1: Left: Convex combinations of two weighted points (the two dashed circles). Right: The skin curve
of the weighted points. The smaller circles form a subset of the weighted points whose boundary is the skin
curve.

50.1 Introduction

Skin surfaces, introduced by Edelsbrunner in [Ede99], have a rich and simple combinatorial and geometric
structure that makes them suitable for modeling large molecules in biological computing. Meshing such surfaces
is often required for further processing of their geometry, like in numerical simulation and visualization.

A skin surface is defined by a set of weighted points (input balls) and a scalar called the shrink factor. If the
shrink factor is equal to one, the surface is just the boundary of the union of the input balls. For a shrink factor
smaller than one, the skin surface becomes tangent continuous, due to the appearance of patches of spheres and
hyperboloids connecting the balls.

This package constructs a mesh isotopic to the skin surface defined by a set of balls and a shrink factor using
the algorithm described in [KV05].

An optimized algorithm is implemented for meshing the union of a set of balls.

50.2 Definition of a Skin Surface

This section first briefly reviews skin surfaces. For a more thorough introduction to skin surfaces, we refer to
[Ede99] where they were originally introduced.

A skin surface is defined in terms of a finite set of weighted points P and a shrink factor s, with 0 ≤ s ≤ 1. A
weighted point p = (p,wp) ∈ R3×R corresponds to a ball with center p and radius √wp. A weighted point
with zero weight is called an unweighted point.

A pseudo distance between a weighted point p = (p,wP) and an unweighted point x is defined as

π(p,x) = ‖ p− x‖2−wp,

where ‖ p− x‖ is the Euclidean distance between p and x. The ball corresponding to a weighted point p is the
zero set of π(p, ·). Note that if wp < 0 the radius of the ball is imaginary and the zero-set is empty.

We can take convex combinations of weighted points by taking convex combinations of their distance functions.
Figure 50.1 (left) shows weighted points that are obtained as convex combinations of the dashed circles. For
further reading on the space of circles and spheres we refer to [Ped70].

Starting from a weighted point p = (p,wP), the shrunk weighted point ps is obtained by taking a convex com-
bination with the unweighted point centered at p, formally ps = sp + (1− s)p′, with p′ = (p,0). A simple
calculation shows that, ps = (p,s ·wp). The set Ps is the set obtained by shrinking every weighted point of P by
a factor s: Ps = {ps | p ∈ P}. The shrunk weighted points of Figure 50.1 (left) are shown in Figure 50.1 (right).
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We now define the skin surface skns(P) associated with a set of weighted points P. Consider the set of weighted
points obtained by taking the convex hull of the input weighted points. A calculation shows that every weighted
point lies within the union of the input balls. Next, we shrink each weighted point in the convex hull with the
shrink factor s. Hence, we multiply the radius of the corresponding (real) input circles with a factor

√
s. The

skin surface is the boundary of the union of this set of weighted points:

skns(P) = ∂
[
{ps | p ∈ conv(P)}. (50.1)

Here conv(P) ⊂ R3×R is the convex hull of a set of weighted points P, whereas ∂ denotes the boundary – in
R3 – of the union of the corresponding set of balls.

Recall that each weighted point in the convex hull of the input weighted points is contained in the union of the
input weighted points. Hence, for a shrink factor equal to one, the skin surface is the boundary of the union of
the input weighted points.

By definition of a skin surface, the weights of the input balls (their radius-squared) are shrunk with a factor of
s and the skin surface wraps around the shrunk input balls. In order to make the skin surface wrap around the
(unshrunk) input balls, we can first increase the weights of the input balls by multiplying them with a factor 1/s
and then compute the skin surface.

50.3 The Interface

The interface to the skin surface package consists of one main function, taking a set of weighted points and
a shrink factor and outputting the meshed surface. Further, it defines classes and functions and classed used
to perform the main steps of the algorithm. There are two global classes Skin surface 3 and Union of balls 3
both of which are models of the concept SkinSurface 3 and there are two functions to extract a mesh of the skin
surface (union of balls) from the objects of the aforementioned classes. A final function takes a mesh and the
Skin surface 3 (Union of balls 3) object it is constructed from and refines the mesh. This section describes
these classes and functions in more detail.

The main function of the skin surface package takes an iterator range of weighted points, a shrink factor and the
number of subdivision steps and outputs a mesh in a CGAL::Polyhedron 3:

template <class WP iterator, class Polyhedron 3>
void make skin surface mesh 3( Polyhedron 3 &p,

WP iterator begin,
WP iterator end,
FT shrink factor=.5,
int nSubdiv=0,
bool grow balls = true)

Where, FT is the number type used by the Weighted points.

To obtain more control over the algorithm, the different steps can also be performed separately. First, a Skin
surface 3 object is created from an iterator range of weighted points and a shrink factor. Optional arguments are
a boolean telling whether the input weighted points should be grown in such a way that the skin surface wraps
around the input balls instead of the shrunk input balls.

template <class SkinSurfaceTraits 3>
Skin surface 3( WP iterator begin, WP iterator end, FT shrink factor, bool grow balls = true)
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The template parameter should implement the SkinSurfaceTraits 3 concept. The type WP iterator, is an iterator
over weighted points as defined by SkinSurfaceTraits 3 and FT is the number type used by the weighted points.

For a shrink factor equal to one the skin surface is the boundary of the union of the input balls. In this case
the algorithm used for meshing the skin surface greatly simplifies. These optimizations are implemented in the
class Union of balls 3. The constructor for the union of balls class is similar, except for the missing shrink
factor:

template <class SkinSurfaceTraits 3>
Union of balls 3( WP iterator begin, WP iterator end, bool grow balls = true)

With a model of the concept SkinSurface 3 it is possible to generate a coarse mesh isotopic to the skin surface.
Using the function mesh skin surface 3 with signature:

template <class SkinSurface 3, class Polyhedron>
void mesh skin surface 3( SkinSurface 3 skin surface, Polyhedron &p)

The last function takes the (coarse) mesh and subdivides it in-situ by applying a given number of 1-4 split
operations (each triangle is split into four sub-triangles) and moving the new vertices towards the skin surface.
If the number of iterations is not specified, one subdivision step is done. The object of the SkinSurface 3 concept
used to construct the coarse mesh is needed to move new points on the skin surface.

template <class SkinSurface 3, class Polyhedron >
void subdivide skin surface mesh 3( SkinSurface 3 skinsurface, Polyhedron &p, int iterations=1)

50.4 Timings

The timings of the construction of the coarse mesh and the first subdivision are given in seconds and were done
on a Pentium 4, 3.5 GHz, with 1 Gb of memory.

Data set Number of weighted points Coarse mesh first subdivision step
Caffeine 23 0.2 sec. 0.05 sec.
Gramicidin A 318 5 sec. 2 sec.

50.5 Example Programs

50.5.1 Meshing a Skin Surface

The following example shows the construction of a coarse mesh of the skin surface using the function make
skin surface mesh 3. The output is a CGAL::Polyhedron.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/make_skin_surface_mesh_3.h>
#include <list>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_3 Bare_point;
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typedef CGAL::Weighted_point<Bare_point,K::RT>
Weighted_point;

typedef CGAL::Polyhedron_3<K> Polyhedron;

int main() {
std::list<Weighted_point> l;
double shrinkfactor = 0.5;

l.push_front(Weighted_point(Bare_point( 1,-1,-1), 1.25));
l.push_front(Weighted_point(Bare_point( 1, 1, 1), 1.25));
l.push_front(Weighted_point(Bare_point(-1, 1,-1), 1.25));
l.push_front(Weighted_point(Bare_point(-1,-1, 1), 1.25));

Polyhedron p;

CGAL::make_skin_surface_mesh_3(p, l.begin(), l.end(), shrinkfactor);

return 0;
}� �
File: examples/Skin_surface_3/skin_surface_simple.cpp

50.5.2 Meshing and Subdividing a Skin Surface

The following example shows the construction of mesh of the skin surface by explicitly performing different
steps of the algorithm. It first constructs a Skin surface 3 object from an iterator range of weighted points and
a shrink factor. From this object, the coarse mesh isotopic to the skin surface is extracted using the function
CGAL::mesh skin surface 3

Next, the coarse mesh is refined to obtain a better approximation. The use of CGAL::Skin surface polyhedral
items 3<Skin surface 3> in the CGAL::Polyhedron is not necessary, but gives the subdivision a significant
speedup.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Skin_surface_3.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/mesh_skin_surface_3.h>
#include <CGAL/subdivide_skin_surface_mesh_3.h>
#include "skin_surface_writer.h"
#include <list>
#include <fstream>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Skin_surface_traits_3<K> Traits;
typedef CGAL::Skin_surface_3<Traits>

Skin_surface_3;
typedef Skin_surface_3::FT FT;
typedef Skin_surface_3::Weighted_point

Weighted_point;
typedef Weighted_point::Point Bare_point;
typedef CGAL::Polyhedron_3<K,

CGAL::Skin_surface_polyhedral_items_3<Skin_surface_3> > Polyhedron;
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int main() {
std::list<Weighted_point> l;
FT shrinkfactor = 0.5;

l.push_front(Weighted_point(Bare_point( 1,-1,-1), 1.25));
l.push_front(Weighted_point(Bare_point( 1, 1, 1), 1.25));
l.push_front(Weighted_point(Bare_point(-1, 1,-1), 1.25));
l.push_front(Weighted_point(Bare_point(-1,-1, 1), 1.25));

Polyhedron p;

Skin_surface_3 skin_surface(l.begin(), l.end(), shrinkfactor);
CGAL::mesh_skin_surface_3(skin_surface, p);

CGAL::subdivide_skin_surface_mesh_3(skin_surface, p);

std::ofstream out("mesh.off");
out << p;

return 0;
}� �
File: examples/Skin_surface_3/skin_surface_subdiv.cpp
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3D Skin Surface Meshing
Reference Manual
Nico Kruithof

Skin surfaces form a class of tangent continuous surfaces defined by a set of balls and a scalar called the shrink
factor. The skin surface package constructs an triangular mesh isotopic to the skin surface, using the algorithm
described in [KV05]. The mesh is stored in a CGAL::Polyhedron 3.
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SkinSurface 3

Definition

The concept SkinSurface 3 defines a skin surface and provides an interface for the dedicated skin surface
mesher. The concept requires a constructor from an iterator range of weighted points and a shrink factor.
By default the input balls are grown in such that the skin surface wraps around the input balls.

Has Models

CGAL::Skin surface 3<SkinSurfaceTraits 3>
CGAL::Union of balls 3<SkinSurfaceTraits 3>

Types

SkinSurface 3:: Geometric traits The geometric traits used for the construction of the regular
triangulation.

SkinSurface 3:: Weighted point The Weighted point type defined by the Geometric traits.
SkinSurface 3:: Bare point The Bare point type defined by the Geometric traits.
SkinSurface 3:: FT The FT type defined by the Geometric traits. This is the

number type used by the weighted points.

Creation

SkinSurface 3 skin( WP iterator begin, WP iterator end, RT shrink factor);

The mandatory arguments to the constructor are an iterator
range [begin,end) of weighted points and a shrink factor be-
tween 0 and 1.

Operations

template <class Polyhedron 3>
void skin.mesh skin surface 3( Polyhedron 3 &p)

Constructs a coarse mesh in p.
Precondition: Polyhedron 3::HDS can be used as the tem-
plate argument of the Polyhedron incremental builder 3<
HDS>.

template <class Polyhedron 3>
void skin.subdivide skin surface mesh 3( Polyhedron 3 &p, int nSubdiv = 1)

Subdivides the skin surface using nSubdiv 1-4 split opera-
tions (each triangle is split into four sub-triangles) and the
new vertices are moved towards the skin surface.
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SkinSurfaceTraits 3

Required types and member functions for the SkinSurfaceTraits 3 concept. This geometric traits concept is
used for the construction of a polyhedral mesh approximating a skin surface CGAL::skin surface 3<Traits>.

Refines

RegularTriangulationTraits 3

Types

SkinSurfaceTraits 3:: RT The number type.

SkinSurfaceTraits 3:: Construct anchor point 3

A constructor object which provides the following function operator:
Point operator()(const Point &center del, const Point &center vor);
Constructs the anchor point in between the Delaunay and Voronoi centers,
i.e., the point (1− s)·center del + s·center vor, where s is the shrink factor.

Creation

SkinSurfaceTraits 3 traits( RT s=.5);

constructor that takes the shrink factor as argument. For meshing the bound-
ary of the union of a set of balls, the shrink factor is discarded.

Has Models

CGAL::Skin surface traits 3<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3123

Operations

The following functions give access to the constructor objects:

Regular RT traits.shrink factor() const

Returns the shrink factor.

Construct anchor point 3 traits.construct anchor point 3 object() const

returns a Construct anchor point 3 object.

See Also

CGAL::Skin surface 3<SkinSurfaceTraits 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3121
CGAL::Skin surface traits 3<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3123
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CGAL::Skin surface 3<SkinSurfaceTraits 3>

Definition

The Skin surface 3<SkinSurfaceTraits 3> is the main class in the Skin surface 3 package. It is a model of the
concept SkinSurface 3.

The template argument is required to be a model of the concept SkinSurfaceTraits 3, which means that it
provides predicates to construct a regular triangulation of the weighted points and for point location in the
mixed complex.

#include <CGAL/Skin surface 3.h>

Is Model for the Concepts

SkinSurface 3
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CGAL::Union of balls 3<SkinSurfaceTraits 3>

Definition

The Union of balls 3<SkinSurfaceTraits 3> is used to represent a skin surface with shrink factor equal to one,
which is the boundary of the union of the input balls. This case is handled separately since the mixed complex
is equal to the power diagram, which has a much simpler structure.

The template argument must be a model of the concept SkinSurfaceTraits 3, which means that it provides the
predicates to construct a regular triangulation of the weighted points.

#include <CGAL/Union of balls 3.h>

Is Model for the Concepts

SkinSurface 3
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CGAL::Skin surface traits 3<K>

Definition

The class Skin surface traits 3<K> is designed as a default traits class for the class Skin surface 3<
SkinSurfaceTraits 3>. It is a model of the SkinSurfaceTraits 3.

The template argument K must be a model of the Kernel concept.

#include <CGAL/Skin surface traits 3.h>

Is Model for the Concepts

SkinSurfaceTraits 3
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CGAL::make skin surface mesh 3<Polyhedron 3>

Definition

The function make skin surface mesh 3<Polyhedron 3> constructs a mesh isotopic to the skin surface based
on the algorithm in [KV05]. It takes as input a range of weighted points and a shrink factor and outputs the
mesh in a Polyhedron 3 object. A number of subdivision steps might be applied to refine the mesh.

#include <CGAL/make skin surface mesh 3.h>

void mesh skin surface 3<Polyhedron 3>( Polyhedron 3 &p,
WP iterator begin,
WP iterator end,
double shrink factor=.5,
int nSubdivisions=0,
bool grow balls=true)

Constructs a mesh of the skin surface defined by the weighted points and the shrink factor.
Precondition: Polyhedron 3::HDS can be used as the template argument of the Polyhedron
incremental builder 3<HDS>.
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CGAL::mesh skin surface 3<SkinSurface 3, Polyhedron 3>

Definition

The function mesh skin surface 3<SkinSurface 3, Polyhedron 3> constructs a mesh isotopic to the skin surface
based on the algorithm in [KV05]. It takes as input a SkinSurface 3 object, which is a model of the SkinSurface
3 concept and outputs the mesh in a Polyhedron 3 object.

#include <CGAL/mesh skin surface 3.h>

void make skin surface mesh 3<SkinSurface 3,Polyhedron 3>( SkinSurface 3 skin surface,
Polyhedron 3 &p)

Constructs a mesh of the skin surface in p.
Precondition: SkinSurface 3 is a model of the concept SkinSurface 3 and Polyhedron 3::HDS can
be used as the template argument of the Polyhedron incremental builder 3<HDS>.
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CGAL::subdivide skin surface mesh 3<SkinSurface 3, Polyhedron 3>

Definition

The function subdivide skin surface mesh 3<SkinSurface 3, Polyhedron 3> subdivides a skin surface mesh
constructed by the function mesh skin surface 3<SkinSurface 3, Polyhedron 3>.

#include <CGAL/subdivide skin surface mesh 3.h>

void subdivide skin surface mesh 3<SkinSurface 3,Polyhedron 3>( SkinSurface 3 skin surface,
Polyhedron 3 &p,
int nSubdiv = 1)

Subdivides the skin surface using nSubdiv 1-4 split operations (each triangle is split into four sub-
triangles) and the new vertices are moved towards the skin surface.
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51.1 Introduction

This package is devoted to the generation of isotropic simplicial meshes discretizing 3D domains. The domain
to be meshed is a region of 3D space that has to be bounded. The region may be connected or composed of
multiple components and/or subdivided in several subdomains.

Boundary and subdivision surfaces are either smooth or piecewise smooth surfaces, formed with planar or
curved surface patches. Surfaces may exhibit 1-dimensional features (e.g. crease edges) and 0-dimensional
features (e.g. singular points as corners tips, cusps or darts), that have to be fairly approximated in the mesh.

The output mesh is a 3-dimensional triangulation, including subcomplexes that approximate each input domain
feature: subdomain, boundary surface patch or input domain feature with dimension 0 or 1. Thus, the output
mesh includes a 3D submesh covering each subdomain, a surface mesh approximating each boundary or sub-
dividing surface patch, a polyline approximation for each 1-dimensional feature and of course a vertex on each
corner.
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Figure 51.1: Cut-view of a multi-domain 3D mesh generated from a segmented image.

The main entry points of the package are two global functions that respectively generate and refine such meshes.
The mesh generator is customized to output a mesh that fits as much as possible the user needs, for instance in
terms of sizing field or with respect to some user customized quality criteria.

The meshing engine used in this mesh generator is based on Delaunay refinement [Che93, Rup95, She98b]. It
uses the notion of restricted Delaunay triangulation to approximate 1-dimensional curve segments and surface
patches [BO05]. Before the refinement, a mechanism of protecting balls is set up on 1-dimensional features,
if any, to ensure a fair representation of those features in the mesh, and also to guarantee the termination of
the refinement process, whatever may be the input geometry, in particular whatever small angles the boundary
and subdivision surface patches may form [CDL07, CDR07]. The Delaunay refinement is followed by a mesh
optimization phase to remove slivers and provide a good quality mesh.

Input domain

The domain to be meshed is assumed to be bounded and representable as a pure 3D complex. A 3D complex is
a set of faces with dimension 0, 1, 2 and 3 such that all faces are pairwise interior disjoint, and the boundary of
each face of the complex is the union of faces of the complex. The 3D complex is pure, meaning that each face
is included in a face of dimension 3, so that the complex is entirely described by the set of its 3D faces and their
subfaces. However the 3D complex needs not be connected. The set of faces with dimension lower or equal
than 2 forms a 2D subcomplex which needs not be manifold, neither pure, nor connected: some 3D faces may
have dangling 2D or 1D faces in their boundary faces.

In the rest of the documentation, we will refer to the input 3D complex as the input domain. The faces of the
input domain with dimension 0, 1, 2 and 3 are called respectively corners, curve segments, surface patches and
subdomains to clearly distinguish them from the faces of the mesh that are called vertices, edges, facets and
cells.
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Note that the input complex faces are not required to be linear nor smooth. Surface patches, for instance, may
be smooth surface patches, or portions of surface meshes with boundaries. Curve segments may be for instance
straight segments, curved segments or polylines. Each of those features will be accurately represented in the
final mesh.

The 0 and 1-dimensional features of the input domain are usually singular points of the subdomain boundaries,
however this is not required. Furthermore those features are not required to cover all the subdomains boundaries
singularities but only those that need to be accurately represented in the final mesh. In the following, we say
that a domain has features when it has 0 and 1-dimensional features that need to be accurately represented in the
mesh, and we call those features exposed features. Therefore, a domain may be without features either because
all boundary surface patches are smooth closed surfaces, or simply because the curves joining different surface
patches and the singularities of those patches need not be accurately approximated in the final mesh.

Note also that input complex faces are not required to be connected. Faces of the input domain are identified by
indexes. If a subdomain is not connected, its different components receive the same index. Likewise different
surface patches, segment curves or corners may share the same index. Each connected component of a feature
will be accurately represented in the final mesh. Note however that the occurrence of multiply connected faces
in the input complex may affect the relevance of internal topological checks performed by the mesh generator.
Also the mesh generator will not be able to apply different meshing criteria, e.g. different sizing field, for the
different connected components of a single feature.

The domain is input to the mesh generation function, as a domain class, often called the oracle, that provides
predicates and constructors related to the domain, the subdomains, the boundary surface patches and also the
0 and 1-dimensional exposed features, if any. Mainly, the oracle provides a predicate to test if a given query
point belongs to the domain or not and to find in which subdomain it lies in the affirmative case. The domain
class also provides predicates and constructors to test the intersection of a query line segment with the boundary
surface patches and to build some intersection points if any. Lastly, if the input domain includes 1-dimensional
exposed features, the domain class provides a way to construct sample points on these features.

The current implementation provides classes to represent domains bounded by isosurfaces of implicit functions,
polyhedral domains and domains defined through 3D labeled images. Currently, 1-dimensional features may be
defined as segments and polyline segments.

Output mesh

The resulting mesh is output as a subcomplex of a 3D Delaunay triangulation, in a class providing various
iterators on mesh elements.

The 3D triangulation provides approximations of the subdomains, surface patches and curve segments and cor-
ners, according to the restricted Delaunay triangulation paradigm. This means that each subdomain is approxi-
mated by the union of the tetrahedral cells whose circumcenters are located inside the domain (or subdomain).
Each surface patch is approximated by the union of the Delaunay mesh facets whose dual Voronoi edges inter-
sect the surface patch. Such mesh facets are called surface facets in the following. The 1-dimensional exposed
features are approximated by sequences of mesh edges and the 0-dimensional exposed features are represented
by mesh vertices.

Delaunay Refinement

The mesh generation algorithm is mainly a Delaunay refinement process. The Delaunay refinement is preceded
by a protecting phase to ensure an accurate representation of 1-dimensional features if any, and followed by an
optimization phase to achieve a good quality mesh.
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The Delaunay refinement process is driven by criteria concerning either the size and shape of mesh cells and
surface facets. The refinement process terminates when there are no more mesh cells or surface facets violating
the criteria.

The criteria are designed to achieve a nice spread of the mesh vertices while ensuring the termination of the
refinement process. Those criteria may be somehow tuned to the user needs to achieve for instance the respect
of a sizing field by mesh elements, some topological conditions on the representation of boundary surfaces in the
mesh, and/or some error bound for the approximation of boundary surfaces. To some extend, the user may tune
the Delaunay refinement to a prescribed trade-off between mesh quality and mesh density. The mesh density
refers to the number of mesh vertices and cells, i.e. to the complexity of the mesh. The mesh quality referred
to here is measured by the radius edge ratio of surface facets end mesh cells, where the radius edge ratio of a
simplex (triangle or tetrahedron) is the the ratio between its circumradius and its shortest edge.

Protection of 0- and 1-dimensional exposed features

If the domain description includes 0 dimensional features, the corresponding points are inserted into the Delau-
nay triangulation from the start.

If the domain has 1-dimensional exposed features, the method of protecting balls [CDR07, CDL07] is used to
achieve an accurate representation of those features in the mesh and to guarantee that the refinement process
terminates whatever may be the dihedral angles formed by input surface patches incident to a given 1-feature or
the angles formed by two 1-features incident to a 0-feature.

According to this method, the 1-dimensional features are sampled with points and covered by protecting balls
centered on the sample points, in such a way that :
-no three balls intersect
-no pair of balls centered on different 1-features intersect.

The triangulation embedding the mesh is in fact a weighted Delaunay triangulation, and the triangulation is
initialized by the insertion of all the protecting balls, regarded as weighted points. The Delaunay refinement
process is then launched as before except that refinement points are no longer circumcenters but are weighted
circumcenters. All Steiner vertices inserted by the refinement process are given a zero weight.

The method guarantees:
1) that each segment joining two successive centers on a 1-dimensional feature will stay in the triangulation,
thus ensuring an accurate approximation of the 1-dimensional features.
2) that the refinement process will never try to insert a refinement point in the union of the protecting balls,
which ensures the termination of the refinement process.

Optimization phase

Any tetrahedron that is quasi degenerate has a big radius edge ratio except those belonging to the family of
slivers. A sliver is easily obtained as the convex hull of 4 points close to the equatorial circle of a 3D ball and
roughly equally spread along this circle. The Delaunay refinement tracks tetrahedra with big radius edge ratio
and therefore eliminates all kinds of badly shaped tetrahedra except slivers.

Therefore, at the end of the refinement process, some sliver shaped tetrahedra may occur in the mesh. The
optimization phase aims at eliminating slivers.

The optimization phase is a succession of optimization processes, including possibly a Lloyd smoothing, an
odt-smoothing, a perturber and an exuder.
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The Lloyd and odt-smoother are global optimizers moving the mesh vertices to minimize a mesh energy. Those
optimizers are described respectively in [DFG99, DW02] and in [Che04, ACSYD05]. In both cases the mesh
energy is the L1 error resulting from the interpolation of the function f (x) = x2 by a piecewise linear function.
In the case of the Lloyd smoother, the interpolation is linear in each Voronoi cell of the set of mesh vertices. In
the case of the odt-smoother, the interpolation is linear in each cell of the Delaunay triangulation of the mesh
vertices, hence the name odt which is an abbreviation for “optimal Delaunay triangulation”.

Figure 51.2: The one dimensional illustration of the mesh energy minimized by Lloyd (right) and ODT (left)
smoothers.

The Lloyd optimizer is known to be blind to the occurrence of slivers in the mesh while the odt-smoother tends
to chase them out. Both of them are global optimizers, meaning that they try to improve the whole mesh rather
than focusing on the worst elements. However, both are empirically known to be very efficient as a preliminary
step of optimization, as they tend to enhance the efficiency of the perturber and/or exuder applied next, see
Figure 51.3

The perturber and the exuder focus on improving the worst mesh elements. The perturber [TSA09] improves
the meshes by local changes in the vertices positions aiming to make sliver disappear. The exuder [CDE+00]
chases the remaining slivers by re-weighting mesh vertices with optimal weights.

Each optimization process can be activated or not, and tuned according to the user requirements and the available
time. By default, only the perturber and the exuder are activated.

Optimization processes are designed to improve mesh quality. However, beware that such an improvement is
obtained by perturbing mesh vertices and modifying the mesh connectivity which has an impact on the strict
compliance to the refinement criteria. Though a strict compliance to mesh criteria is granted at the end of the
Delaunay refinement, this may no longer be true after some optimization processes. Also beware that the default
behavior does involve some optimization processes.

51.2 Interface

The global functions

A 3D mesh generation process is launched through a call to one of the two following functions:

template <class C3T3, class MeshDomain 3, class MeshCriteria>
C3T3 make mesh 3( MeshDomain 3 domain,
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Figure 51.3: Compared effect of a global optimizer and the perturber. The left part shows the distribution of
dihedral angles of mesh cells, right after Delaunay refinement (top), after some ODT smoothing (middle) and
after perturbation (bottom). The numbers under the histograms give the measure in degrees of the smallest and
biggest dihedral angles in the mesh.

MeshCriteria criteria,
parameters::internal::Features options features = parame-

ters::features(domain),
parameters::internal::Lloyd options lloyd = parameters::no lloyd(),
parameters::internal::Odt options odt = parameters::no odt(),
parameters::internal::Perturb options perturb = parame-

ters::perturb(),
parameters::internal::Exude options exude = parameters::exude())

template <class C3T3, class MeshDomain 3, class MeshCriteria>
void refine mesh 3( C3T3& c3t3,

MeshDomain 3 domain,
MeshCriteria criteria,
parameters::internal::Lloyd options lloyd = parameters::no lloyd(),
parameters::internal::Odt options odt = parameters::no odt(),
parameters::internal::Perturb options perturb = parame-

ters::perturb(),
parameters::internal::Exude options exude = parameters::exude())

The function make mesh 3 generates from scratch a mesh of the input domain, while the function refine mesh
3 refines an existing mesh of the input domain. Note that as the protection of 0- and 1-dimensional features does
not rely on Delaunay refinement, the function refine mesh 3 has no parameter to preserve features.
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The data structure

The template parameter C3T3 is required to be a model of the concept MeshComplex 3InTriangulation 3,
a data structure devised to represent a three dimensional complex embedded in a 3D triangulation. In both
functions, an instance of type C3T3 is used to maintain the current approximating simplicial mesh and to rep-
resent the final 3D mesh at the end of the procedure. The type C3T3 is required to provide a nested type
C3T3::Triangulation 3 for the 3D triangulation embedding the mesh. This triangulation is required to be a
CGAL::Regular triangulation 3. with vertex and cell base classes that are respectively models of the concepts
MeshVertexBase 3 and MeshCellBase 3.

The domain oracle and the features parameter

The template parameter MeshDomain 3 is required to be a model of the concept MeshDomain 3. The argument
domain of type MeshDomain 3 is the sole link through which the domain to be discretized is known by the
mesh generation algorithm.

This concept provides, among others, member functions to test whether or not a query segment intersects bound-
ary surfaces, and to compute an intersection point in the affirmative. The MeshDomain 3 concept adds member
functions which given a query point tell whether the point lies inside or outside the domain and in which sub-
domain the point lies if inside.

If the domain description includes 0 and 1-dimensional features that have to be accurately represented in
the final mesh, the template parameter MeshDomain 3 is required to be of a model of the refined concept
MeshDomainWithFeatures 3. Mainly the concept MeshDomainWithFeatures 3 provides the incidence graph
of 0, 1 and 2-dimensional features, and a member function to construct sample points on curve segments.

Using the parameter of type Features, the user whose domain is a model of MeshDomainWithFeatures 3 can
choose to have the corners and curve segments of the domain represented in the mesh or not. The type Features
of this parameter is an internal undescribed type. The library provides functions to construct appropriate values
of that type.

• parameters::features(domain) sets features according to the domain, i.e. 0 and 1-dimensional features
are taken into account if domain is a MeshDomainWithFeatures 3

• parameters::no features() prevents the representation of 0 and 1-dimensional features in the mesh. This
is useful to get a smooth and rough approximation of a domain with features.

The meshing criteria

The template parameter MeshCriteria must be a model of the concept MeshCriteria 3, or a model of the refined
concept MeshCriteriaWithFeatures 3 if the domain has exposed features. The argument of type MeshCriteria
passed to the mesh generator specifies the size and shape requirements for the tetrahedra in the mesh and for
the triangles in the boundary surface mesh. These criteria condition the rules that drive the refinement process.
At the end of the refinement process, mesh elements satisfy the criteria. This may not be strictly true anymore
after the optimization phase, but this last phase is devised to only improve the mesh quality.

The criteria for surface facets are governed by the four following parameters:

• facet angle. This parameter controls the shape of surface facets. Actually, it is a lower bound for the
angle (in degree) of surface facets. When boundary surfaces are smooth, the termination of the meshing
process is guaranteed if the angular bound is at most 30 degrees.
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• facet size. This parameter controls the size of surface facets. Actually, each surface facet has a surface
Delaunay ball which is a ball circumscribing the surface facet and centered on the surface patch. The
parameter facet size is either a constant or a spatially variable scalar field, providing an upper bound for
the radii of surface Delaunay balls.

• facet distance. This parameter controls the approximation error of boundary and subdivision surfaces.
Actually, it is either a constant or a spatially variable scalar field. It provides an upper bound for the
distance between the circumcenter of a surface facet and the center of a surface Delaunay ball of this
facet.

• facet topology. This parameters controls the set of topological constraints which have to be verified by
each surface facet. By default, each vertex of a surface facet has to be located on a surface patch, on a
curve segment, or on a corner. It can also be set to check whether the three vertices of a surface facet
belongs to the same surface patch. This has to be done cautiously, as such a criteria needs that each
surface patches intersection is an input 1-dimensional feature.

The criteria for mesh cells are governed by two parameters:

• cell radius edge ratio. This parameter controls the shape of mesh cells (but can’t filter slivers, as we
discussed earlier). Actually, it is an upper bound for the ratio between the circumradius of a mesh tetra-
hedron and its shortest edge. There is a theoretical bound for this parameter: the Delaunay refinement
process is guaranteed to terminate for values of cell radius edge ratio bigger than 2.

• cell size. This parameter controls the size of mesh tetrahedra. It is either a scalar or a spatially variable
scalar field. It provides an upper bound on the circumradii of the mesh tetrahedra.

Figure 51.4 shows how the mesh generation process behaves with respect to these parameters.

If the domain has 1-dimensional exposed features, the criteria includes a sizing field to guide the sampling of
1-dimensional features with protecting balls centers.

• edge size. This constant or variable scalar field is used as an upper bound for the distance between two
protecting ball centers that are consecutive on a 1-feature.

The optimization parameters

The four additional parameters are optimization parameters. They control which optimization processes are
performed and allow the user to tune the parameters of the activated optimization processes. These parameters
have internal types which are not described but the library provides global functions to generate appropriate
values of these types:

• parameters::lloyd() and parameters::no lloyd() activate and deactivate the Lloyd smoother.

• parameters::odt() and parameters::no odt() activate and deactivate the odt-smoother.

• parameters::perturb() and parameters::no perturb() activate and deactivate the perturber.

• parameters::exude() and parameters::no exude() activate and deactivate the exuder.

These parameters are optional and can be passed in any order. If one parameter is not passed the default value
is used. By default, only the perturber and the exuder are activated. Note that whatever may be the optimization
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Figure 51.4: Top : the mesh is obtained using the parameters (25,0.15,0.05) for the angular bound, radius
bound and distance bound of surface facets and (4,0.2) for the radius-edge bound and radius bound of mesh
cells. The result is a uniform mesh which contains tetrahedra of about the same size. Bottom left : the mesh is
obtained by relaxing the size bound of tetrahedra and facets. The result is a small coarse mesh. Bottom middle
: the mesh is obtained from the previous one by tightening the distance bound of surface facets to 0.01. The
result is then a graded 3D mesh with a dense surface mesh achieving a precise approximation. Bottom right :
the mesh is obtained from the previous one by fixing radius bound of surface facets to 0.01. The surface mesh
is then denser to achieve the size bound.

processes activated by make mesh 3 or refine mesh 3, they are always launched in the order that is a suborder
of the following: odt smoother, Lloyd smoother, perturber and exuder.

The package also provides four global functions to launch each optimization process independently. These
functions are useful for advanced experimentation on the efficiency of each optimization method. Note however
that the exuder adds on mesh vertices weights that are conditioned by vertices positions. Therefore an exudation
process should never be run before a smoother or a perturber. For a maximum efficiency, whatever may be the
optimization processes activated, they should be launched in the order that is a suborder of the following: odt-
smoother, Lloyd-smoother, perturber, exuder.

template< class C3T3, class MeshDomain 3 >
Mesh optimization return code lloyd optimize mesh 3( C3T3& c3t3, MeshDomain 3 domain)

template< class C3T3, class MeshDomain 3 >
Mesh optimization return code odt optimize mesh 3( C3T3& c3t3, MeshDomain 3 domain)

template< class C3T3, class MeshDomain 3 >
Mesh optimization return code perturb mesh 3( C3T3& c3t3, MeshDomain 3 domain)
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template< class C3T3 >
Mesh optimization return code exude mesh 3( C3T3& c3t3)

Note that the global functions activating the optimization processes or launching those processes have them-
selves parameters (see details in reference pages) to tune the optimization process.

51.3 Examples

51.3.1 3D Domains Bounded by Isosurfaces

The following code produces a 3D mesh for a domain whose boundary surface is an isosurface defined by an
implicit function. Figure 51.5 shows a cut view of the resulting mesh.

Note the use of named parameters (from Boost library) in the constructor of the Mesh criteria instance.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

#include <CGAL/Mesh_triangulation_3.h>
#include <CGAL/Mesh_complex_3_in_triangulation_3.h>
#include <CGAL/Mesh_criteria_3.h>

#include <CGAL/Implicit_mesh_domain_3.h>
#include <CGAL/make_mesh_3.h>

// Domain
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::FT FT;
typedef K::Point_3 Point;
typedef FT (Function)(const Point&);
typedef CGAL::Implicit_mesh_domain_3<Function,K> Mesh_domain;

// Triangulation
typedef CGAL::Mesh_triangulation_3<Mesh_domain>::type Tr;
typedef CGAL::Mesh_complex_3_in_triangulation_3<Tr> C3t3;

// Criteria
typedef CGAL::Mesh_criteria_3<Tr> Mesh_criteria;

// To avoid verbose function and named parameters call
using namespace CGAL::parameters;

// Function
FT sphere_function (const Point& p)
{ return CGAL::squared_distance(p, Point(CGAL::ORIGIN))-1; }

int main()
{

// Domain (Warning: Sphere_3 constructor uses squared radius !)
Mesh_domain domain(sphere_function, K::Sphere_3(CGAL::ORIGIN, 2.));

// Mesh criteria
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Mesh_criteria criteria(facet_angle=30, facet_size=0.1,
facet_distance=0.025,

cell_radius_edge_ratio=2, cell_size=0.1);

// Mesh generation
C3t3 c3t3 = CGAL::make_mesh_3<C3t3>(domain, criteria);

// Output
std::ofstream medit_file("out.mesh");
c3t3.output_to_medit(medit_file);

return 0;
}� �
File: examples/Mesh_3/mesh_implicit_sphere.cpp

Figure 51.5: Cut view of a 3D mesh produced from an implicit domain

51.3.2 3D Polyhedral Domains

The following code produces a 3D mesh for a domain defined by polyhedral surfaces. Figure 51.6 shows the
resulting mesh.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

#include <CGAL/Mesh_triangulation_3.h>
#include <CGAL/Mesh_complex_3_in_triangulation_3.h>
#include <CGAL/Mesh_criteria_3.h>

#include <CGAL/Polyhedral_mesh_domain_3.h>
#include <CGAL/make_mesh_3.h>
#include <CGAL/refine_mesh_3.h>

// IO
#include <CGAL/IO/Polyhedron_iostream.h>
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// Domain
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Polyhedron_3<K> Polyhedron;
typedef CGAL::Polyhedral_mesh_domain_3<Polyhedron, K> Mesh_domain;

// Triangulation
typedef CGAL::Mesh_triangulation_3<Mesh_domain>::type Tr;
typedef CGAL::Mesh_complex_3_in_triangulation_3<Tr> C3t3;

// Criteria
typedef CGAL::Mesh_criteria_3<Tr> Mesh_criteria;

// To avoid verbose function and named parameters call
using namespace CGAL::parameters;

int main()
{

// Create input polyhedron
Polyhedron polyhedron;
std::ifstream input("data/elephant.off");
input >> polyhedron;

// Create domain
Mesh_domain domain(polyhedron);

// Mesh criteria (no cell_size set)
Mesh_criteria criteria(facet_angle=25, facet_size=0.15,
facet_distance=0.008,

cell_radius_edge_ratio=3);

// Mesh generation
C3t3 c3t3 = CGAL::make_mesh_3<C3t3>(domain, criteria, no_perturb(),
no_exude());

// Output
std::ofstream medit_file("out_1.mesh");
c3t3.output_to_medit(medit_file);
medit_file.close();

// Set tetrahedron size (keep cell_radius_edge_ratio), ignore facets
Mesh_criteria new_criteria(cell_radius_edge_ratio=3, cell_size=0.03);

// Mesh refinement
CGAL::refine_mesh_3(c3t3, domain, new_criteria);

// Output
medit_file.open("out_2.mesh");
c3t3.output_to_medit(medit_file);

return 0;
}� �
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File: examples/Mesh_3/mesh_polyhedral_domain.cpp

Figure 51.6: View of 3D meshes produced from a polyhedral domain. (i) is a view of file out 1.mesh and (ii) is
a view of file out 2.mesh. Code from subsection 51.3.2 generates these files.

51.3.3 Domains From Segmented 3D Images

The following code produces a 3D mesh from a 3D image. The image is a segmented medical image in which
each voxel is associated a label in accordance with the tissue the voxel belongs to. The domain is therefore a
multi-domain where each subdomain corresponds to a specific tissue.

In the following example, the image is read from the file liner.inr.gz which is encoded in the format of the
library Inrimage http://inrimage.gforge.inria.fr/ . The resulting mesh is shown in Figure 51.7.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

#include <CGAL/Mesh_triangulation_3.h>
#include <CGAL/Mesh_complex_3_in_triangulation_3.h>
#include <CGAL/Mesh_criteria_3.h>

#include <CGAL/Labeled_image_mesh_domain_3.h>
#include <CGAL/make_mesh_3.h>
#include <CGAL/Image_3.h>

// Domain
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Labeled_image_mesh_domain_3<CGAL::Image_3,K> Mesh_domain;

// Triangulation
typedef CGAL::Mesh_triangulation_3<Mesh_domain>::type Tr;
typedef CGAL::Mesh_complex_3_in_triangulation_3<Tr> C3t3;

// Criteria
typedef CGAL::Mesh_criteria_3<Tr> Mesh_criteria;
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// To avoid verbose function and named parameters call
using namespace CGAL::parameters;

int main()
{

// Loads image
CGAL::Image_3 image;
image.read("data/liver.inr.gz");

// Domain
Mesh_domain domain(image);

// Mesh criteria
Mesh_criteria criteria(facet_angle=30, facet_size=6, facet_distance=4,

cell_radius_edge_ratio=3, cell_size=8);

// Meshing
C3t3 c3t3 = CGAL::make_mesh_3<C3t3>(domain, criteria);

// Output
std::ofstream medit_file("out.mesh");
c3t3.output_to_medit(medit_file);

return 0;
}� �
File: examples/Mesh_3/mesh_3D_image.cpp

Figure 51.7: Cut view of a 3D mesh produced from a segmented liver image. Code from subsection 51.3.3
generates this file.
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51.3.4 Using Variable Sizing Field

Sizing field as an analytical function

The following example shows how to use an analytical function as sizing field.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

#include <CGAL/Mesh_triangulation_3.h>
#include <CGAL/Mesh_complex_3_in_triangulation_3.h>
#include <CGAL/Mesh_criteria_3.h>

#include <CGAL/Implicit_mesh_domain_3.h>
#include <CGAL/make_mesh_3.h>

// Domain
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::FT FT;
typedef K::Point_3 Point;
typedef FT (Function)(const Point&);
typedef CGAL::Implicit_mesh_domain_3<Function,K> Mesh_domain;

// Triangulation
typedef CGAL::Mesh_triangulation_3<Mesh_domain>::type Tr;
typedef CGAL::Mesh_complex_3_in_triangulation_3<Tr> C3t3;

// Criteria
typedef CGAL::Mesh_criteria_3<Tr> Mesh_criteria;

// Sizing field
struct Spherical_sizing_field
{

typedef ::FT FT;
typedef Point Point_3;
typedef Mesh_domain::Index Index;

FT operator()(const Point_3& p, const int, const Index&) const
{

FT sq_d_to_origin = CGAL::squared_distance(p, Point(CGAL::ORIGIN));
return CGAL::abs( CGAL::sqrt(sq_d_to_origin)-0.5 ) / 5. + 0.025;

}
};

// To avoid verbose function and named parameters call
using namespace CGAL::parameters;

// Function
FT sphere_function (const Point& p)
{ return CGAL::squared_distance(p, Point(CGAL::ORIGIN))-1; }

int main()
{

// Domain (Warning: Sphere_3 constructor uses squared radius !)
Mesh_domain domain(sphere_function, K::Sphere_3(CGAL::ORIGIN, 2.));
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// Mesh criteria
Spherical_sizing_field size;
Mesh_criteria criteria(facet_angle=30, facet_size=0.1,
facet_distance=0.025,

cell_radius_edge_ratio=2, cell_size=size);

// Mesh generation
C3t3 c3t3 = CGAL::make_mesh_3<C3t3>(domain, criteria, no_exude(),
no_perturb());

// Output
std::ofstream medit_file("out.mesh");
c3t3.output_to_medit(medit_file);

return 0;
}� �
File: examples/Mesh_3/mesh_implicit_sphere_variable_size.cpp

Figure 51.8: Cut view of a 3D mesh produced from an implicit sphere with non-constant sizing field. Code
from subsection 51.3.4 generates this file.

Different Sizing Field for Different Subdomains

The following example shows how to use different size for different organs in a 3D medical image.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

#include <CGAL/Mesh_triangulation_3.h>
#include <CGAL/Mesh_complex_3_in_triangulation_3.h>
#include <CGAL/Mesh_criteria_3.h>
#include <CGAL/Mesh_constant_domain_field_3.h>
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#include <CGAL/Labeled_image_mesh_domain_3.h>
#include <CGAL/make_mesh_3.h>
#include <CGAL/Image_3.h>

// Domain
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Labeled_image_mesh_domain_3<CGAL::Image_3,K> Mesh_domain;

// Triangulation
typedef CGAL::Mesh_triangulation_3<Mesh_domain>::type Tr;
typedef CGAL::Mesh_complex_3_in_triangulation_3<Tr> C3t3;

// Criteria
typedef CGAL::Mesh_criteria_3<Tr> Mesh_criteria;
typedef CGAL::Mesh_constant_domain_field_3<Mesh_domain::R,

Mesh_domain::Index>
Sizing_field;

// To avoid verbose function and named parameters call
using namespace CGAL::parameters;

int main()
{

// Loads image
CGAL::Image_3 image;
image.read("data/liver.inr.gz");

// Domain
Mesh_domain domain(image);

// Sizing field: set global size to 8 and kidney size (label 127) to 3
double kidney_size = 3.;
int volume_dimension = 3;
Sizing_field size(8);
size.set_size(kidney_size, volume_dimension,

domain.index_from_subdomain_index(127));

// Mesh criteria
Mesh_criteria criteria(facet_angle=30, facet_size=6, facet_distance=2,

cell_radius_edge_ratio=3, cell_size=size);

// Meshing
C3t3 c3t3 = CGAL::make_mesh_3<C3t3>(domain, criteria);

// Output
std::ofstream medit_file("out.mesh");
c3t3.output_to_medit(medit_file);

return 0;
}� �
File: examples/Mesh_3/mesh_3D_image_variable_size.cpp
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Figure 51.9: View of a 3D mesh produced from a 3D image with different size for different organs. Code from
subsection 51.3.4 generates this file.

51.3.5 Meshing Domains with Sharp Features

3D polyhedral domain with edges

The following example shows how to generate a mesh from a polyhedral surface. The output mesh conforms to
the sharp features of the input surface.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

#include <CGAL/Mesh_triangulation_3.h>
#include <CGAL/Mesh_complex_3_in_triangulation_3.h>
#include <CGAL/Mesh_criteria_3.h>

#include <CGAL/Polyhedral_mesh_domain_with_features_3.h>
#include <CGAL/make_mesh_3.h>

// Domain
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Polyhedral_mesh_domain_with_features_3<K> Mesh_domain;

// Triangulation
typedef CGAL::Mesh_triangulation_3<Mesh_domain>::type Tr;
typedef CGAL::Mesh_complex_3_in_triangulation_3<

Tr,Mesh_domain::Corner_index,Mesh_domain::Curve_segment_index> C3t3;

// Criteria
typedef CGAL::Mesh_criteria_3<Tr> Mesh_criteria;

// To avoid verbose function and named parameters call
using namespace CGAL::parameters;

int main()
{
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// Create domain
Mesh_domain domain("data/fandisk.off");

// Get sharp features
domain.detect_features();

// Mesh criteria
Mesh_criteria criteria(edge_size = 0.025,

facet_angle = 25, facet_size = 0.05,
facet_distance = 0.005,

cell_radius_edge_ratio = 3, cell_size = 0.05);

// Mesh generation
C3t3 c3t3 = CGAL::make_mesh_3<C3t3>(domain, criteria);

// Output
std::ofstream medit_file("out.mesh");
c3t3.output_to_medit(medit_file);

}� �
File: examples/Mesh_3/mesh_polyhedral_domain_with_features.cpp

Figure 51.10: View of a 3D mesh with sharp features. Code from subsection 51.3.5 generates this mesh.

Implicit domain with 1D features

The following example shows how to generate a mesh from an implicit domain. We add by hand the intersection
of the spheres as a sharp feature.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

#include <CGAL/Mesh_triangulation_3.h>
#include <CGAL/Mesh_complex_3_in_triangulation_3.h>
#include <CGAL/Mesh_criteria_3.h>
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#include <CGAL/Implicit_mesh_domain_3.h>
#include <CGAL/Mesh_domain_with_polyline_features_3.h>
#include <CGAL/make_mesh_3.h>

// Kernel
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

// Domain
typedef K::FT FT;
typedef K::Point_3 Point;
typedef FT (Function)(const Point&);
typedef CGAL::Mesh_domain_with_polyline_features_3<

CGAL::Implicit_mesh_domain_3<Function,K> > Mesh_domain;

// Polyline
typedef std::vector<Point> Polyline_3;
typedef std::list<Polyline_3> Polylines;

// Triangulation
typedef CGAL::Mesh_triangulation_3<Mesh_domain>::type Tr;
typedef CGAL::Mesh_complex_3_in_triangulation_3<

Tr,Mesh_domain::Corner_index,Mesh_domain::Curve_segment_index> C3t3;

// Criteria
typedef CGAL::Mesh_criteria_3<Tr> Mesh_criteria;

// To avoid verbose function and named parameters call
using namespace CGAL::parameters;

// Function
FT sphere_function1 (const Point& p)
{ return CGAL::squared_distance(p, Point(CGAL::ORIGIN))-2; }

FT sphere_function2 (const Point& p)
{ return CGAL::squared_distance(p, Point(2, 0, 0))-2; }

FT sphere_function (const Point& p)
{

if(sphere_function1(p) < 0 || sphere_function2(p) < 0)
return -1;

else
return 1;

}

#include <cmath>

int main()
{

// Domain (Warning: Sphere_3 constructor uses squared radius !)
Mesh_domain domain(sphere_function, K::Sphere_3(Point(1, 0, 0), 6.));

// Mesh criteria
Mesh_criteria criteria(edge_size = 0.15,
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facet_angle = 25, facet_size = 0.15,
cell_radius_edge_ratio = 2, cell_size = 0.15);

// Create edge that we want to preserve
Polylines polylines (1);
Polyline_3& polyline = polylines.front();

for(int i = 0; i < 360; ++i)
{

Point p (1, std::cos(i*CGAL_PI/180), std::sin(i*CGAL_PI/180));
polyline.push_back(p);

}
polyline.push_back(polyline.front()); // close the line

// Insert edge in domain
domain.add_features(polylines.begin(), polylines.end());

// Mesh generation without feature preservation
C3t3 c3t3 = CGAL::make_mesh_3<C3t3>(domain, criteria,

CGAL::parameters::no_features());

std::ofstream medit_file("out-no-protection.mesh");
c3t3.output_to_medit(medit_file);
medit_file.close();
c3t3.clear();

// Mesh generation with feature preservation
c3t3 = CGAL::make_mesh_3<C3t3>(domain, criteria);

// Output
medit_file.open("out-with-protection.mesh");
c3t3.output_to_medit(medit_file);
medit_file.close();

return 0;
}� �
File: examples/Mesh_3/mesh_two_implicit_spheres_with_balls.cpp

51.3.6 Tuning Mesh Optimization

In the previous examples, the mesh generation is launched through a call make mesh 3(domain,criteria) with a
minimal number of parameters. In such cases, the default optimization strategy is applied: after the Delaunay
refinement process two optimization steps are performed, a perturbation and a sliver exudation. The following
examples show how to disable default optimization steps and how to tune the parameters of optimization steps.

Disabling exudation and tuning perturbation

In this first example, we show how to disable the exudation step. The optimization phase after the refinement
includes only a perturbation phase which is launched with no time bound and an objective of 10 degrees for the
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Figure 51.11: View of a 3D mesh with sharp features generated from two intersected implicit spheres. On the
left, one can see the mesh without feature preservation, and on the right the mesh with feature preservation.

minimum dihedral angle of the mesh. The example shows two ways of achieving the same result. The first way
issues a single call to make mesh 3 with the required optimization process activated and tuned. In the second
way, make mesh 3 is first called without any optimization process and the resulting mesh is next optimized
through a call to perturb mesh 3 with tuned parameters.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

#include <CGAL/Mesh_triangulation_3.h>
#include <CGAL/Mesh_complex_3_in_triangulation_3.h>
#include <CGAL/Mesh_criteria_3.h>

#include <CGAL/Labeled_image_mesh_domain_3.h>
#include <CGAL/make_mesh_3.h>
#include <CGAL/Image_3.h>

// Domain
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Labeled_image_mesh_domain_3<CGAL::Image_3,K> Mesh_domain;

// Triangulation
typedef CGAL::Mesh_triangulation_3<Mesh_domain>::type Tr;
typedef CGAL::Mesh_complex_3_in_triangulation_3<Tr> C3t3;

// Mesh Criteria
typedef CGAL::Mesh_criteria_3<Tr> Mesh_criteria;

// To avoid verbose function and named parameters call
using namespace CGAL::parameters;

int main()
{

// Domain
CGAL::Image_3 image;
image.read("data/liver.inr.gz");
Mesh_domain domain(image);
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// Mesh criteria
Mesh_criteria criteria(facet_angle=30, facet_size=5,
facet_distance=1.5,

cell_radius_edge_ratio=2, cell_size=7);

// Mesh generation and optimization in one call (sliver_bound is the
// targeted dihedral angle in degree)
C3t3 c3t3 = CGAL::make_mesh_3<C3t3>(domain, criteria,

no_exude(),
perturb(sliver_bound=10,

time_limit=15));

// Mesh generation and optimization in several call
C3t3 c3t3_bis = CGAL::make_mesh_3<C3t3>(domain, criteria,

no_perturb(), no_exude());

CGAL::perturb_mesh_3(c3t3_bis, domain, time_limit=15);

// Output
std::ofstream medit_file("out.mesh");
c3t3.output_to_medit(medit_file);

std::ofstream medit_file_bis("out_bis.mesh");
c3t3_bis.output_to_medit(medit_file_bis);

return 0;
}� �
File: examples/Mesh_3/mesh_optimization_example.cpp

Using Lloyd global optimization

In this second example, we show how to call the Lloyd optimization on the mesh, followed by a call to exudation.
We set a time bound of 30s for the Lloyd optimization. We set a time bound of 10s and a sliver bound of 10
degrees for the exuder.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

#include <CGAL/Mesh_triangulation_3.h>
#include <CGAL/Mesh_complex_3_in_triangulation_3.h>
#include <CGAL/Mesh_criteria_3.h>

#include <CGAL/Labeled_image_mesh_domain_3.h>
#include <CGAL/make_mesh_3.h>
#include <CGAL/Image_3.h>

// Domain
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Labeled_image_mesh_domain_3<CGAL::Image_3,K> Mesh_domain;

// Triangulation
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typedef CGAL::Mesh_triangulation_3<Mesh_domain>::type Tr;
typedef CGAL::Mesh_complex_3_in_triangulation_3<Tr> C3t3;

// Mesh Criteria
typedef CGAL::Mesh_criteria_3<Tr> Mesh_criteria;

// To avoid verbose function and named parameters call
using namespace CGAL::parameters;

int main()
{

// Domain
CGAL::Image_3 image;
image.read("data/liver.inr.gz");
Mesh_domain domain(image);

// Mesh criteria
Mesh_criteria criteria(facet_angle=30, facet_distance=1.2,

cell_radius_edge_ratio=2);

// Mesh generation and optimization in one call
C3t3 c3t3 = CGAL::make_mesh_3<C3t3>(domain, criteria,

lloyd(time_limit=30),
no_perturb(),
exude(time_limit=10,

sliver_bound=10));

// Mesh generation and optimization in several call
C3t3 c3t3_bis = CGAL::make_mesh_3<C3t3>(domain, criteria,

no_perturb(), no_exude());

CGAL::lloyd_optimize_mesh_3(c3t3_bis, domain, time_limit=30);
CGAL::exude_mesh_3(c3t3_bis, sliver_bound=10, time_limit=10);

// Output
std::ofstream medit_file("out.mesh");
c3t3.output_to_medit(medit_file);

std::ofstream medit_file_bis("out_bis.mesh");
c3t3_bis.output_to_medit(medit_file_bis);

return 0;
}� �
File: examples/Mesh_3/mesh_optimization_lloyd_example.cpp

51.4 Performances

We provide here some benchmarks of the performances of the mesh generation engine. The machine used is a
PC running Linux64 with two Intel Xeon CPU X5450 clocked at 3.00 GHz with 32GB of RAM. The program
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has been compiled with g++ v4.3.2 with the -O3 option. Note that our implementation does not take advantage
of multi-core architectures.

Those benchmarks have been done using CGAL v3.8.

51.4.1 Delaunay refinement

We study the refinement part of the mesh generation engine in this section. We give the CPU time (measured
by CGAL::Timer) using the 3 provided oracles. In all experiments, we produce well shaped elements: we set
the facet angle bound and the radius edge bound to their theoretical limit (resp. 30 degrees and 2). We also use
the same uniform sizing field for facets and cells.

Implicit function

We mesh an analytical sphere of radius 1.

Size bound vertices nb facets nb tetrahedra nb CPU Time (s) vertices/second
0.2 499 488 2,299 0.0240 20,800
0.1 3,480 2,046 18,756 0.146 23,800
0.05 25,556 8,274 149,703 1.50 17,000
0.025 195,506 33,212 1,194,727 17.4 11,200
0.0125 1,528,636 134,810 9,547,772 179 8,530

Polyhedral domain

We mesh a volume bounded by a closed triangulated surface made of about 50,000 vertices and 100,000 trian-
gles. Picture 51.12 shows the mesh obtained when size is set to 0.005.

Size bound vertices nb facets nb tetrahedra nb CPU Time (s) vertices/second
0.04 423 717 1,332 0.488 866
0.02 2,638 3,414 10,957 2.64 998
0.01 18,168 15,576 90,338 13.9 1,310
0.005 129,442 64,645 722,018 66.7 1,940
0.0025 967,402 263,720 5,756,491 348 2,780

3D image

We mesh image number 2 from the 3D-IRCADb-011 public database. The size of this image is 512x512x172
voxels (about 45M voxels). The size of the voxels is 0.78mm x 0.78mm x 1.6mm. Picture 51.13 shows the
mesh obtained for size set to 4.

Size bound (mm) vertices nb facets nb tetrahedra nb CPU Time (s) vertices/second
16 3,898 4,099 20,692 0.344 11,300
8 34,117 27,792 199,864 3.09 11,000
4 206,566 86,180 1,253,694 22.4 9,230
2 1,546,196 329,758 9,617,278 199 7,780

1available at http://www.ircad.fr/softwares/3Dircadb/3Dircadb1/index.php
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Figure 51.12: View of polyhedral mesh generation result (size = 0.005).

51.5 Design and Implementation History

Theoretical foundations

The CGAL mesh generation package implements a meshing engine based on the method of Delaunay refinement
introduced by Chew [Che93] and Ruppert [Rup95] and pioneered in 3D by Shewchuk [She98b]. It uses the
notion of restricted Delaunay triangulation to approximate 1-dimensional curved features and curved surface
patches and rely on the work of Boissonnat and Oudot [BO05] and Oudot et al. [ORY05] to achieve accurate
representation of boundary and subdividing surfaces in the mesh. The mechanism of protecting balls, used
to ensure a fair representation of 1-dimensional features, if any, and the termination of the refinement process
whatever may be the input geometry, in particular whatever small dihedral angles may form the boundary and
subdivision surface patches, was pioneered by Cheng et al. [CDR07] and further experimented by Dey, Levine
et al. [CDL07]. The optimization phase involves global optimization processes, a perturbation process and
a sliver exudation process. The global optimizers are based on Lloyd smoothing [DFG99, DW02] and odt
smoothing [Che04, ACSYD05], where odt means optimal Delaunay triangulation. The perturbation process is
mainly based on the work of Tournois [Tou09] and Tournois et al. [TWAD09], while the exudation process is,
the now famous, optimization by weighting described in Edelsbrunner et al. [CDE+00].
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Figure 51.13: View of 3d image mesh generation result (size = 4).

Implementation history

Work on the package Mesh 3 started during the PhD thesis of Laurent Rineau advised by Mariette Yvinec. A
code prototype, together with a first version of design and specifications [RY07] came out of their collaboration.

From the beginning of 2009, most of the work has been performed by Stéphane Tayeb, in collaboration with
Mariette Yvinec, Laurent Rineau, Pierre Alliez and Jane Tournois. First, Stéphane released the first public
version of the package, implementing the specifications written by Laurent and Mariette.

The optimization processes are heavily based on the work of Jane Tournois and Pierre Alliez during the PhD
of Jane advised by Pierre. The optimization phase was imported in the mesh generation package by Stéphane
Tayeb and appeared first in release 3.6 of CGAL.

In collaboration with Laurent Rineau, Stéphane also added demos and examples. After some experiments
on medical imaging data performed by Dobrina Boltcheva et al. [BYB09b, BYB09a], the handling of 1-
dimensional features was worked out by Laurent Rineau, Stéphane Tayeb and Mariette Yvinec. It appeared
first in the release 3.8 of CGAL.
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MeshComplex 3InTriangulation 3

Definition

The concept MeshComplex 3InTriangulation 3 describes a data structure to represent and maintain a 3D com-
plex embedded in a 3D triangulation. More precisely, the concept MeshComplex 3InTriangulation 3 is a min-
imal version designed to represent 3D complexes that have only faces with dimension 2 and 3. Embedded 3D
complexes with faces of dimension 0, 1, 2 and 3, are more conveniently represented by the refined concept
MeshComplexWithFeatures 3InTriangulation 3.

The data structure includes a 3D triangulation which is itself a 3D complex. To distinguish the faces of the
embedded 3D complex from the faces of the triangulation, we call the faces of the embedded complex respec-
tively subdomains, for 3D faces and surface patches, for 2D faces, while the triangulations faces are called
respectively cells, facets, edges and vertices.

Each subdomain of the embedded 3D complex is a union of triangulation cells. Cells that belong to some
subdomain are said to belong to the embedded complex. Each surface patch is a union of triangulation facets.
Triangulation facets that belong to some surface patch are called surface facets. The concept MeshComplex
3InTriangulation 3 handles the marking and retrieval of the cells of the triangulation belonging to the sub-
domains and of the facets of the triangulation belonging to the surface patches. The concept MeshComplex
3InTriangulation 3 also includes an index type for vertices of the triangulation and attaches an integer, called
the dimension to each vertex. When used by the meshing algorithm, the index and the dimension of each vertex
are used to store respectively the lowest dimensional face of the input complex including the vertex and the
dimension of this face.

In the 3D mesh generator, the concept MeshComplex 3InTriangulation 3 is used when the domain to be meshed
has no feature with dimension 0 and 1. Such a data structure is used internally by the mesh generator to maintain
the current approximation of each subdomain and each boundary surface patch. The data structure encodes the
final mesh at the end of the meshing process.

Types

MeshComplex 3InTriangulation 3:: Triangulation

Type of the embedding 3D triangulation. This type must be
a 3D regular triangulation of CGAL when used for 3D mesh
generation.

typedef Triangulation::Vertex handle

Vertex handle; Type Vertex handle type of the triangulation.
typedef Triangulation::Cell handle

Cell handle; The Cell handle type of the triangulation.
typedef Triangulation::Facet

Facet; The Facet type of the triangulation.
typedef Triangulation::Edge

Edge; The Edge type of the triangulation.
typedef Triangulation::size type

size type; Size type (unsigned integral type).
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MeshComplex 3InTriangulation 3:: Subdomain index

A type for indices of subdomains. This type must match the
type MeshDomain 3::Subdomain index when the concept is
used for mesh generation.

MeshComplex 3InTriangulation 3:: Surface patch index

A type for indices of surface patches. This type must
match the type MeshDomain 3::Surface patch index when
the concept is used for mesh generation.

MeshComplex 3InTriangulation 3:: Index A type for indexing vertices that belong to some surface
patches or subdomains. This type must match the type
MeshDomain 3::Index when the concept is used for mesh
generation.

MeshComplex 3InTriangulation 3:: Cells in complex iterator

An iterator type to visit the cells of the triangulation belong-
ing to the 3D complex.

MeshComplex 3InTriangulation 3:: Facets in complex iterator

An iterator type to visit the surface facets.

Creation

MeshComplex 3InTriangulation 3 c3t3; Builds an empty 3D complex.
MeshComplex 3InTriangulation 3 c3t3( rhs); Copy constructor. Embedded triangulation is duplicated.

MeshComplex 3InTriangulation 3&

c3t3 = rhs Assignment operator. Embedded triangulation is duplicated,
and the former triangulation of c3t3 is deleted.

void c3t3.swap( & rhs) Swaps c3t3 and rhs.

Access Functions

Triangulation c3t3.triangulation() const

Returns a const reference to the triangulation.

advanced

Non const access

The responsibility of keeping a valid C3T3 belongs to the user when using advanced operations allowing a
direct manipulation of the triangulation.

Triangulation& c3t3.triangulation() Returns a reference to the triangulation.

advanced
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Modifiers

void c3t3.add to complex( Cell handle c, Subdomain index index)

Sets the cell c as a cell of the subdomain index.

void c3t3.add to complex( Facet f, Surface patch index index)

Adds the facet f as a facet of the surface patch index.)

void c3t3.add to complex( Cell handle c, int i, Surface patch index index)

Same as above with f=(c,i).

void c3t3.remove from complex( Cell handle c)

Removes cell c from the embedded complex.

void c3t3.remove from complex( Facet f)

Removes facet f from the embedded complex.

void c3t3.remove from complex( Cell handle c, int i)

Same as above with f=(c,i).

void c3t3.set dimension( Vertex handle v, int dimension)

Sets the “dimension” of vertex v. The dimension is an integer
attached to the vertex. When the concept MeshComplex
3InTriangulation 3 is used for mesh generation this integer
is used to store the dimension of the lowest dimensional face
of the input complex including the vertex.

void c3t3.set index( Vertex handle v, Index index)

Sets the index of a vertex.

Queries

Queries on the faces of the embedded complex.

size type c3t3.number of cells()

Returns the number of cells that belong to the embedded
complex.

size type c3t3.number of cells( Subdomain index index)

Returns the number of cells that belong to the subdomain of
the embedded complex with index index.

size type c3t3.number of facets()

Returns the number of facets that are surface facets, i. e.
belong to some surface patch of the embedded complex.

3160



size type c3t3.number of facets( Surface patch index index)

Returns the number of facets that belong to the surface patch
of the embedded complex with index index.

bool c3t3.is in complex( Cell handle c)

Returns true iff the cell c belongs to the 3D complex.

bool c3t3.is in complex( Facet f)

Returns true iff the facet f belongs to the boundary 2D com-
plex.

bool c3t3.is in complex( Cell handle c, int i)

Same as above with f=(c,i).

Queries on the identifier of the face complex including triangulation cells, facets and vertices.

Subdomain index c3t3.subdomain index( Cell handle c)

Returns the index of the subdomain containing the cell c. The
default subdomain index is returned if the cell c does not
belong to the embedded complex.

Surface patch index c3t3.surface patch index( Facet f)

For a surface facet, returns the index of the surface patch
containing the facet. The default Surface patch index value
is returned if the facet is not a surface facet.

Surface patch index c3t3.surface patch index( Cell handle c, int i)

Same as above with f=(c,i).

int c3t3.in dimension( Vertex handle v) const

Returns the dimension of the vertex v.

Index c3t3.index( Vertex handle v) const

Returns the index of the vertex v.

Traversal of the complex

The data structure provides iterators to visit the cells and facets of the complex. All those iterators are bidirec-
tional and non mutable.
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Cells in complex iterator

c3t3.cells in complex begin()

Returns a Cell in complex iterator to visit the cells of the
triangulation contained in the embedded complex.

Cells in complex iterator

c3t3.cells in complex end()

Returns the past-the-end iterator for the above iterator.

Cells in complex iterator

c3t3.cells in complex begin( Subdomain index index)

Returns a Cell in complex iterator to visit the cells of the
triangulation which belong to the approximation of subdo-
main of index index.

Cells in complex iterator

c3t3.cells in complex end( Subdomain index index)

Returns the past-the-end iterator for the above iterator.

Facets in complex iterator

c3t3.facets in complex begin()

Returns a Facet in complex iterator to visit the facets in the
surface patches of the embedded complexes.

Facets in complex iterator

c3t3.facets in complex end()

Returns the past-the-end iterator for the above iterator.

Facets in complex iterator

c3t3.facets in complex begin( Surface patch index index)

Returns a Facet in complex iterator to visit the facets of the
triangulation which which belong to the approximation of
surface patch of index index.

Facets in complex iterator

c3t3.facets in complex end( Surface patch index index)

Returns the past-the-end iterator for the above iterator.

Has Models

CGAL::Mesh complex 3 in triangulation 3<Tr,CornerIndex,CurveSegmentIndex>
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See Also

MeshDomain 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3168
MeshComplexWithFeatures 3InTriangulation 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3164
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
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MeshComplexWithFeatures 3InTriangulation 3

Definition

The concept MeshComplexWithFeatures 3InTriangulation 3 describes a data structure to represent and main-
tain a 3D complex embedded in a 3D triangulation. The concept MeshComplexWithFeatures 3InTriangulation
3 refines the minimal concept MeshComplex 3InTriangulation 3, designed to represent 3D complexes having
only faces with dimension 2 and 3. Therefore, the concept MeshComplexWithFeatures 3InTriangulation 3
may represent embedded complexes including features, i.e. faces with dimension 0 and 1.

The data structure includes a 3D triangulation which is itself a 3D complex. To distinguish the faces of the
embedded 3D complex from the faces of the triangulation, we call respectively subdomains, surface patches
curve segments and corners the faces of the complex with respective dimensions 3, 2, 1 and 0. The triangulations
faces are called respectively cells, facets, edges and vertices.

Each subdomain of the embedded 3D complex is a union of triangulation cells. Likewise, each surface patch
is a union of triangulation facets and each curve segment is a union of triangulation edges. The corners form
a subset of the triangulation vertices. Note that subdomains, surface patches and and curved segments are not
necessarily connected. Likewise each corner may be related to several mesh vertices. Triangulation facets that
belong to some surface patch are called surface facets.

The concept MeshComplexWithFeatures 3InTriangulation 3 allows us to mark and retrieve the cells of the
triangulation belonging to the subdomains, the facets of the triangulation belonging to surface patches, the
edges belonging to curve segments and the vertices that are corners of the embedded complex.

Within the mesh generation functions, the concept MeshComplexWithFeatures 3InTriangulation 3 is the con-
cept describing the data structure used to maintain the current approximation of the input domain. At the end
of the meshing process, the data structure encodes the resulting mesh. In particular, each subdomain (resp. sur-
face patch) of the input domain is then approximated by a subdomain (resp. a surface patch) of the embedded
complex while the curve segments and corners represent the 1 and 0-dimensional features of the input complex.

Refines

MeshComplex 3InTriangulation 3

Types

MeshComplexWithFeatures 3InTriangulation 3:: Curve segment index

A type for indexes of curve segment. The type
must match the type MeshDomainWithFeatures 3::Curve
segment index when the concept is used for mesh generation.

MeshComplexWithFeatures 3InTriangulation 3:: Corner index

A type for indexes of corners. The type must match the type
MeshDomainWithFeatures 3::Corner index when the con-
cept is used for mesh generation.
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MeshComplexWithFeatures 3InTriangulation 3:: Edges in complex iterator

An iterator type to visit the edges of the triangulation belong-
ing to curve segments.

MeshComplexWithFeatures 3InTriangulation 3:: Vertices in complex iterator

An iterator type to visit the vertices of the triangulation that
are corners of the embedded complex.

Modifiers

void c3t3.add to complex( Edge e, Curve segment index index)

Adds edge e as an element of the curve segment with index
index.

void c3t3.add to complex( Vertex handle v1,
Vertex handle v2,
Curve segment index index)

Same as above with e=(v1,v2).

void c3t3.add to complex( Vertex handle v, Corner index index)

Marks vertex v as a corner with index index.

void c3t3.remove from complex( Edge e)

Removes edge e from the embedded complex.

void c3t3.remove from complex( Vertex handle v1, Vertex handle v2)

Same as above with e=(v1,v2).

void c3t3.remove from complex( Vertex handle v)

Removes vertex v from the embedded complex.

Queries

Queries on the 1D complex and 0D complex.

size type c3t3.number of edges() const

Returns the number of edges which belong to curve seg-
ments.

size type c3t3.number of edges( Curve segment index index) const

Returns the number of edges which belong to curve segment
with index index.
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size type c3t3.number of corners() const

Returns the number of vertices which are corners of the com-
plex.

size type c3t3.number of corners( Corner index index) const

Returns the number of vertices which are corners of the com-
plex with index index.

bool c3t3.is in complex( Edge e) const

Returns true iff edge e belongs to some curve segment.

bool c3t3.is in complex( Vertex handle v1, Vertex handle v2) const

Same as above with e=(v1,v2).

bool c3t3.is in complex( Vertex handle v) const

Returns true if vertex v is a corner.

Curve segment index

c3t3.curve segment index( Edge e)

Returns Curve segment index of edge e. The default Curve
segment index value is returned if edge e does not belong to
any curve segment.

Curve segment index

c3t3.curve segment index( Vertex handle v1, Vertex handle v2)

Same as above with e=(v1,v2).

Corner index c3t3.corner index( Vertex handle v)

Returns Corner index of vertex v. The default Corner index
value is returned if vertex v is not a corner of the complex.

Traversal of the complex

Edges in complex iterator

c3t3.edges in complex begin() const

Returns an Edges in complex iterator to visit the edges of
the triangulation belonging to curve segments.

Edge in complex iterator

c3t3.edges in complex end() const

Returns the past-the-end iterator for the above iterator.
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Edges in complex iterator

c3t3.edges in complex begin( Curve segment index index) const

Returns an Edges in complex iterator to visit the edges of
the triangulation belonging to curve segments of index index.

Edge in complex iterator

c3t3.edges in complex end( Curve segment index index) const

Returns the past-the-end iterator for the above iterator.

template <typename OutputIterator>
OutputIterator c3t3.adjacent vertices in complex( Vertex handle v, OutputIterator out) const

Fills out with the vertices of the triangulation that are adja-
cent to vertex v through an edge belonging to some curve
segment. The value type of out must be std::pair<Vertex
handle,Curve segment index>.
Precondition: c3t3.in dimension(v) < 2

Vertices in complex iterator

c3t3.vertices in complex begin() const

Returns a Vertices in complex iterator to visit the vertices
of the triangulation that are corners.

Vertices in complex iterator

c3t3.vertices in complex end() const

Returns the past-the-end iterator for the above iterator.

Vertices in complex iterator

c3t3.vertices in complex begin( Corner index index) const

Returns a Vertices in complex iterator to visit the vertices
of the triangulation that are corners of index index.

Vertices in complex iterator

c3t3.vertices in complex end( Corner index index) const

Returns the past-the-end iterator for the above iterator.

Has Models

Mesh complex 3 in triangulation 3<Tr,CornerIndex,CurveSegmentIndex>

See Also

MeshComplex 3InTriangulation 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3158
MeshDomainWithFeatures 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3171
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MeshDomain 3

Definition

The concept MeshDomain 3 describes the knowledge required on the object to be discretized. The concept
MeshDomain 3 is the concept to be used when the input domain does not have 0 or 1-dimensional features that
need to be accurately approximated by the mesh. In such a case, the queries issued by the meshing process
concern only the faces of the input domain with dimension 3 and 2, that are respectively called subdomains and
surface patches.

More specifically the concept MeshDomain 3 provides a method to localize a point with respect to the input
domain and its subdomains. Moreover, as the concept SurfaceMeshTraits 3, it also provides predicates to test
whether a query segment (or a ray, or a line) intersects the boundary of the domain or of the subdomains, and
constructors to compute some intersection point if any. It also includes a method able to provide a small set of
initial points on the boundary.

In the following we consider only proper intersection with the domain and subdomain boundaries. A segment,
ray or line is said to intersect properly the domain boundary (resp. a subdomain boundary) if it includes points
which are strictly inside and strictly outside the domain (resp. the subdomain).

Types

MeshDomain 3:: R Geometric traits class. This type is defined to ensure com-
patibility with CGAL::Kernel traits<T>.

MeshDomain 3:: Point 3 Point type.
MeshDomain 3:: Segment 3 Segment type.
MeshDomain 3:: Ray 3 Ray type.
MeshDomain 3:: Line 3 Line type.

typedef CGAL::Tag false

Has features; A type to distinguish MeshDomain 3 models from
MeshDomainWithFeatures 3 models.

MeshDomain 3:: Subdomain index Type of indices for subdomains of the input domain. Must
be a model of CopyConstructible, Assignable, DefaultCon-
structible and EqualityComparable. The default constructed
value must match the label of the exterior of the domain
(which contains at least the unbounded component).

MeshDomain 3:: Surface patch index Type of indices for surface patches (boundaries and inter-
faces) of the input domain. Must be a model of Copy-
Constructible, Assignable, DefaultConstructible and Equal-
ityComparable. The default constructed value must be the
index value assigned to a non surface facet.

MeshDomain 3:: Index Type of indices to be stored at mesh vertices to character-
ize the lowest dimensional face of the input complex on
which the vertex lies. Must be a model of CopyConstructible,
Assignable, DefaultConstructible and EqualityComparable.
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typedef CGAL::cpp0x::tuple<Point 3, Index, int>

Intersection; Return type of Construct intersection queries. int represents
the dimension of the lower dimensional face of the input
complex on which the intersection point lies and Index is the
index of this face.

MeshDomain 3:: Construct initial points A function object to construct a set of initial points on the
surface of the domain. Provides the following operators:
template<typename OutputIterator>
OutputIterator operator()(OutputIterator pts)
template<typename OutputIterator>
OutputIterator operator()(int n, OutputIterator pts)
Those two operators output a set of (n) surface points to the
output iterator pts, as objects of type std::pair<Point 3, In-
dex>. If n is not given, the functor must provide enough
points to initialize the mesh generation process.

MeshDomain 3:: Is in domain A function object to query whether a point is in the input
domain or not. In the positive case, it outputs the subdomain
which includes the query point. Provides the operator:
boost::optional<Subdomain index> operator()(Point 3 p)

MeshDomain 3:: Do intersect surface A function object which answers intersection queries be-
tween the surface patches of the domain and objects of type
Segment 3, Ray 3 or Line 3. Provides the operators:
boost::optional<Surface patch index> operator()(Segment
3 s)
boost::optional<Surface patch index> operator()(Ray 3 r)
boost::optional<Surface patch index> operator()(Line 3 l)
The return type of the operators tell whether or not the query
intersects a surface patch. In the positive case, it provides
(through operator*()) the Surface patch index of one of the
intersected surface patches.

MeshDomain 3:: Construct intersection A function object to construct the intersection between an
object of type Segment 3, Ray 3 or Line 3 and an interface.
Provides the operators:
Intersection operator()(Segment 3 s)
Intersection operator()(Ray 3 r)
Intersection operator()(Line 3 l)
Precondition: do intersect surface(s/r/l) == true

Operations

The following functions give access to the function objects:

Construct initial points

domain.construct initial points object()
Is in domain domain.is in domain object()
Do intersect surface domain.do intersect surface object()
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Construct intersection

domain.construct intersection object()

These methods are designed to convert indices:

Index domain.index from surface patch index( Surface patch index surface patch index)

Returns the index to be stored at a vertex lying on the surface
patch identified by surface patch index.

Index domain.index from subdomain index( Subdomain index subdomain index)

Returns the index to be stored at a vertex lying in the subdo-
main identified by subdomain index.

Surface patch index domain.surface patch index( Index index)

Returns the Surface patch index of the surface patch where
lies a vertex with dimension 2 and index index.

Subdomain index domain.subdomain index( Index index)

Returns the index of the subdomain containing a vertex with
dimension 3 and index index.

Has Models

Polyhedral mesh domain 3<Polyhedron,IGT,TriangleAccessor>
Implicit mesh domain 3<Function,BGT>
Labeled image mesh domain 3<Image,BGT>

See Also

MeshVertexBase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3189
MeshCellBase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3187
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220
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MeshDomainWithFeatures 3

Definition

The concept MeshDomainWithFeatures 3 refines the concept MeshDomain 3. While the concept
MeshDomain 3 only exposes the 2-dimensional and 3-dimensional features of the domain through different
queries, the concept MeshDomainWithFeatures 3 also exposes 0 and 1-dimensional features. The exposed fea-
tures of the domain are respectively called subdomains, surface patches, curve segments and corners according
to their respective dimensions 3,2,1 and 0.

Refines

MeshDomain 3

Types

typedef CGAL::Tag true

Has features; A type to distinguish MeshDomain 3 models from
MeshDomainWithFeatures 3 models.

MeshDomainWithFeatures 3:: FT Numerical type.

MeshDomainWithFeatures 3:: Curve segment index

Type of indices for curve segments (1-dimensional features)
of the input domain. Must be a model of CopyConstructible,
Assignable, DefaultConstructible and LessThanComparable.
The default constructed value must be the value of an edge
which does not approximate a 1-dimensional feature of the
input domain.

MeshDomainWithFeatures 3:: Corner index Type of indices for corners (i.e. 0-dimensional features) of
the input domain. Must be a model of CopyConstructible,
Assignable, DefaultConstructible and LessThanComparable.

Operations

Each connected component of a curve segment is assumed to be oriented. The orientation is defined by the
ordering of the two incident corners at the origin and endpoint. Therefore it is possible to defined the signed
geodesic distance between two ordered points on the same connected component of a curve segment. A cycle
is a connected component of a curve segment incident to 0 or 1 corner.

Point 3 md.construct point on curve segment( Point 3 p,
Curve segment index ci,
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FT d) const

Returns a point on the curve segment with index ci at signed
geodesic distance d from point p.
Precondition: Point p is supposed to be on curve segment
ci. If d > 0, the signed geodesic distance from p to the end-
point of the connected component of ci including p, should
be greater than d. If d < 0, the signed geodesic distance from
p to the origin of the connected component should be less
than d from the origin of the connected component.

Note that construct point on curve segment is assumed to return a uniquely defined point. Therefore it is not
possible to handle as a single curve segment, a singular curve with several branches incident to the same point.

Queries

FT md.geodesic distance( Point 3 p, Point 3 q, Curve segment index ci) const

Returns the signed geodesic distance between points p and q
along the input curve segment with index ci.
Precondition: Points p and q belong to the same connected
component of the curve segment with index ci.

CGAL::Sign md.distance sign along cycle( Point 3 p,
Point 3 q,
Point 3 r,
Curve segment index ci) const

Returns CGAL::POSITIVE if the signed geodesic distance
from p to q on the way through r along cycle with index ci is
positive, CGAL::NEGATIVE if the distance is negative, and
CGAL::ZERO if (p = q = r).
Precondition: Points p, q and r belongs to the same con-
nected component of curve segment ci and this component is
a cycle.

bool md.is cycle( Point 3 p, Curve segment index ci) const

Returns true if the connected component of curve segment ci
including point p is a cycle.

Retrieval of the input features and their incidences

template <typename OutputIterator>
OutputIterator md.get corners( OutputIterator corners) const

Fills corners with the corners of the input domain. corners
value type must be std::pair<Corner index,Point 3>.

template <typename OutputIterator>
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OutputIterator md.get curve segments( OutputIterator curves) const

Fills curves with the curve segments of the input domain.
curves value type must be CGAL::cpp0x::tuple<Curve
segment index,std::pair<Point 3,Index>,std::pair<Point
3,Index> >. If the curve segment corresponding to an entry
in curves is not a cycle, the pair of associated points should
belong to two corners incident on the curve segment. If it
is a cycle, then the same Point 3 should be given twice and
must be any point on the cycle. The Index values associated
to the points are their indices w.r.t. their dimension.

bool md.are incident surface patch curve segment( Surface patch index spi,
Curve segment index csi)

Returns true if the curve segment with index csi is incident
to the surface patch with index spi.

bool md.are incident surface patch corner( Surface patch index spi, Corner index ci)

Returns true if the corner with index ci is incident to the sur-
face patch with index spi.

Indices converters

Index md.index from curve segment index( Curve segment index curve segment index)
const

Returns the index to be stored at a vertex lying on the curve
segment identified by curve segment index.

Curve segment index

md.curve segment index( Index index) const

Returns the Curve segment index of the curve segment
where lies a vertex with dimension 1 and index index.

Index md.index from corner index( Corner index corner index) const

Returns the index to be stored at a vertex lying on the corner
identified by corner index.

Corner index md.corner index( Index index) const

Returns the Corner index of the corner where lies a vertex
with dimension 0 and index index.

Has Models

Mesh domain with polyline features 3<MeshDomain 3>
Polyhedral mesh domain with features 3<IGT>
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See Also

MeshDomain 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3168
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MeshCriteria 3

Definition

The Delaunay refinement process involved in the template functions make mesh 3 and refine mesh 3 is guided
by a set of elementary refinement criteria that concern either mesh tetrahedra or surface facets. The refinement
criteria for tetrahedra are described through the concept MeshCellCriteria 3 while the refinement criteria for
surface facets are described by the concept MeshFacetCriteria 3. The concept MeshCriteria 3 encapsulates
these concepts.

Types

MeshCriteria 3:: Facet criteria Functor that describes the criteria for surface facets. This
type must be a model of the concept MeshFacetCriteria 3.

MeshCriteria 3:: Cell criteria Functor that describes the criteria for mesh tetrahedra. This
type must be a model of the concept MeshCellCriteria 3.

Access Functions

Facet criteria criteria.facet criteria object()

Returns the facet criteria.

Cell criteria criteria.cell criteria object()

Returns the cell criteria.

Has Models

Mesh criteria 3<Tr>

See Also

MeshFacetCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3178
MeshCellCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3177
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220
MeshCriteriaWithFeatures 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3176
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MeshCriteriaWithFeatures 3

Definition

The concept MeshCriteriaWithFeatures 3 refines the concept MeshCriteria 3. The concept MeshCriteria 3
encapsulates the concepts MeshCellCriteria 3 and MeshFacetCriteria 3 describing the refinement criteria for,
respectively, mesh cells and surface facets. For domains with features, the concept MeshCriteriaWithFeatures 3
additionnally encapsulates the concept MeshEdgeCriteria 3, that describes the requirements, in terms of sizing,
for the discretization of the domain 1-dimensional features.

Refines

MeshDomain 3

Types

MeshCriteriaWithFeatures 3:: Edge criteria Functor that describes the criteria for the mesh edges that
discretize the input domain 1-dimensional features. This type
must be a model of the concept MeshEdgeCriteria 3.

Access Functions

Edge criteria criteria.edge criteria object()

Returns the edge criteria.

Has Models

Mesh criteria 3<Tr>

See Also

MeshCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . page 3175 MeshEdgeCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . page 3180
MeshFacetCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3178
MeshCellCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3177
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220
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MeshCellCriteria 3

Definition

The Delaunay refinement process involved in the template functions make mesh 3 and refine mesh 3 is guided
by a set of elementary refinement criteria that concern either mesh tetrahedra or surface facets. The concept
MeshCellCriteria 3 describes the types that handle the refinement criteria for mesh tetrahedra.

Types

MeshCellCriteria 3:: Cell handle Handle type for the cells of the triangulation. Must match the
Cell handle type in the triangulation type used by the mesh
generation function.

MeshCellCriteria 3:: Cell quality Type representing the quality of a cell. Must be a model of
CopyConstructible and LessThanComparable. Between two
cells, the one which has the lower quality must have the lower
Cell quality.

MeshCellCriteria 3:: Is cell bad Type representing if a cell is bad or not. Must be convertible
to bool. If it converts to true then the cell is bad, otherwise
the cell is good with regard to the criteria.
In addition, an object of this type must contain an object of
type Cell quality if it represents a bad cell. Cell quality must
be accessible by operator*(). Note that boost::optional<
Cell quality> is a natural model of this concept.

Operations

Is cell bad cell criteria( Cell handle c)

Returns Is cell bad value of cell c.

Has Models

Mesh cell criteria 3<Tr>

See Also

MeshEdgeCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3180
MeshFacetCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3178
MeshCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3175
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220
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MeshFacetCriteria 3

Definition

The Delaunay refinement process involved in the template functions make mesh 3 and refine mesh 3 is guided
by a set of elementary refinement criteria that concern either mesh tetrahedra or surface facets. The concept
MeshFacetCriteria 3 describes the types that handle the refinement criteria for surface facets.

Types

MeshFacetCriteria 3:: Facet Type for the facets of the triangulation. Must match the Facet
type in the triangulation type used by the mesh generation
function.

MeshFacetCriteria 3:: Cell handle Handle type for the cells of the triangulation. Must match the
Cell handle type in the triangulation type used by the mesh
generation function.

MeshFacetCriteria 3:: Facet quality Type representing the quality of a facet. Must be a model of
CopyConstructible and LessThanComparable. Between two
facets, the one which has the lower quality must have the
lower Facet quality.

MeshFacetCriteria 3:: Is facet bad Type representing if a facet is bad or not. This type must be
convertible to bool. If it converts to true then the facet is bad,
otherwise the facet is good with regard to the criteria.
In addition, an object of this type must contain an ob-
ject of type Facet quality if it represents a bad facet.
Facet quality must be accessible by operator*(). Note that
boost::optional<Facet quality> is a natural model of this
concept

Operations

Is facet bad facet criteria( Facet f)

Returns Is facet bad value of facet f .

Is facet bad facet criteria( Cell handle c, int i)

Same as above with f=(c,i).

Has Models

Mesh facet criteria 3<Tr>
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See Also

MeshCellCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3177
MeshEdgeCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3180
MeshCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3175
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220
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MeshEdgeCriteria 3

Definition

The function object concept MeshEdgeCriteria 3 is designed to drive the process which samples the 1-
dimensional features of the domain. It provides an upper bound for the distance between two protecting ball
centers that are consecutive on a 1-feature.

Types

MeshEdgeCriteria 3:: Point 3 Point type. Must match the Point 3 type in the triangulation
type used by the mesh generation function.

MeshEdgeCriteria 3:: Edge Type for edges of the triangulation. Must match the Edge
type in the triangulation type used by the mesh generation
function.

MeshEdgeCriteria 3:: FT Numerical type.

Operations

bool edge criteria( Edge e)

Returns true if edge e does not fulfill the criteria.

FT edge criteria.sizing field( Point 3 p)

Returns the value of the sizing field (i.e. the maximum edge
length) at point p.

Has Models

Mesh edge criteria 3<Tr>

See Also

MeshCellCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3177
MeshFacetCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3178
MeshCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3175
MeshCriteriaWithFeatures 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3176
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BisectionGeometricTraits 3

Definition

The concept BisectionGeometricTraits 3 describes a geometric traits class that provides the basic types and
operations to implement a model of MeshDomain 3 based solely on intersection detections. Points in the non-
empty intersections are herein computed by bisection.

Such traits class is relevant when intersection detections can be performed efficiently. For instance, when
bounding surfaces are implicitly described by a function (such as an isosurface of a 3D function from R3 to R),
the do-intersect predicate with a segment is computed by evaluations of the function values at both end points
of the segment.

Types

BisectionGeometricTraits 3:: FT Numerical type. Must be a model of SqrtFieldNumberType
and constructible from a double.

BisectionGeometricTraits 3:: Point 3 The point type. Must have a constructor Point 3(FT, FT,
FT).

BisectionGeometricTraits 3:: Segment 3 Segment type.
BisectionGeometricTraits 3:: Ray 3 Ray type.
BisectionGeometricTraits 3:: Line 3 Line type.
BisectionGeometricTraits 3:: Vector 3 Vector type.
BisectionGeometricTraits 3:: Sphere 3 Sphere type.

BisectionGeometricTraits 3:: Compute scalar product 3

Function object providing the operator
FT operator()(Vector 3 v, Vector 3 w) which returns the scalar (inner) product
of the two vectors v and w.

BisectionGeometricTraits 3:: Compute squared distance 3

Function object providing the operator
FT operator()(Point 3, Point 3) which returns the squared distance between
two points.

BisectionGeometricTraits 3:: Compute squared radius 3

Function object providing the operator
FT operator()(Sphere 3 s) which returns the squared radius of s.

BisectionGeometricTraits 3:: Construct center 3

Function object providing the operator
Point 3 operator()(Sphere 3 s) which returns the center of the sphere s.
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BisectionGeometricTraits 3:: Construct midpoint 3

Function object providing the operator
Point 3 operator()(Point 3 p, Point 3 q) which computes the midpoint of the
segment pq.

BisectionGeometricTraits 3:: Construct point on 3

Function object providing the following operators:
Point 3 operator()(Line 3 l,int i); which returns an arbitrary point on l. It
holds point(i) == point(j), iff i==j. Furthermore, is directed from point(i) to
point(j), for all i < j.
Point 3 operator()(Ray 3 r,int i); which returns a point on r. point(0) is the
source, point(i), with i > 0, is different from the source.
Precondition: i≥ 0.
Point 3 operator()(Segment 3 s,int i); which returns either source or target of
s: point(0) returns the source of s, point(1) returns the target of s. Parameter i
is taken modulo 2, which gives easy access to the other end point.

BisectionGeometricTraits 3:: Construct segment 3

Function object providing the operator
Segment 3 operator()(Point 3 p, Point 3 q); which returns a segment with
source p and target q, directed from the source to the target.

BisectionGeometricTraits 3:: Construct scaled vector 3

Function object providing the operator
Vector 3 operator()(Vector 3 v, FT scale) which returns the vector v scaled by
a factor scale.

BisectionGeometricTraits 3:: Construct translated point 3

Function object providing the operator
Point 3 operator()(Point 3 p, Vector 3 v) which returns the point obtained by
translating p by the vector v.

BisectionGeometricTraits 3:: Construct vector 3

Function object providing the operator
Vector 3 operator()(Point 3 a, Point 3 b) which returns the vector b-a.

BisectionGeometricTraits 3:: Has on bounded side 3

Function object providing the operator
bool operator()(Sphere 3 s, Point 3 p); which returns true iff p lies on the
bounded side of s.
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Operations

The following functions give access to the predicate and construction objects:

Compute scalar product 3 traits.compute scalar product 3 object()

Compute squared distance 3 traits.compute squared distance 3 object()

Compute squared radius 3 traits.compute squared radius 3 object()

Construct center 3 traits.construct center 3 object()

Construct midpoint 3 traits.construct midpoint 3 object()

Construct point on 3 traits.construct point on 3 object()

Construct scaled vector 3 traits.construct scaled vector 3 object()

Construct segment 3 traits.construct segment 3 object()

Construct translated point 3 traits.construct translated point 3 object()

Construct vector 3 traits.construct vector 3 object()

Has on bounded side 3 traits.has on bounded side 3 object()

Has Models

Any CGAL Kernel.

See Also

ImplicitSurfaceTraits 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3057
IntersectionGeometricTraits 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3184
CGAL::Implicit mesh domain 3<Function,BGT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3207
CGAL::Labeled image mesh domain 3<Image,BGT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3212
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IntersectionGeometricTraits 3

Definition

The concept IntersectionGeometricTraits 3 provides types and functors required to implement a model of
MeshDomain 3, when the domain is described by a simplicial surface mesh forming its boundary. The con-
cept IntersectionGeometricTraits 3 mainly provides the detection and construction of intersections between
segments and triangles.

Types

IntersectionGeometricTraits 3:: Point 3 Point type.
IntersectionGeometricTraits 3:: Segment 3 Segment type.
IntersectionGeometricTraits 3:: Triangle 3 Triangle type.

IntersectionGeometricTraits 3:: Do intersect 3

Function object that detects an intersection between a 3D
segment and a 3D triangle. Provides the operators:
bool operator()(Segment 3 seg, Triangle 3 tr)
bool operator()(Triangle 3 tr, Segment 3 seg)
which return true, iff the triangle and the segment have a non
empty intersection.

IntersectionGeometricTraits 3:: Intersect 3 Function object that constructs the intersection between a 3D
segment and a 3D triangle. Provides the operators:
CGAL::Object operator()(Segment 3 seg, Triangle 3 tr)
CGAL::Object operator()(Triangle 3 tr, Segment 3 seg)
which computes as a CGAL::Object the intersection between
the triangle and the segment. CGAL::Object is either a point,
a segment or an empty object.

Operations

Do intersect 3 traits.do intersect 3 object()

Returns the intersection detection functor.

Intersect 3 traits.intersect 3 object()

Returns the intersection constructor.

Has Models

Any instantiation of CGAL::Kernel is a model of this traits concept.
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See Also

BisectionGeometricTraits 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3181
CGAL::Polyhedral mesh domain 3<Polyhedron,IGT,TriangleAccessor> . . . . . . . . . . . . . . . . . . . . . . . . page 3209
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LabeledImage 3

Definition

The concept LabeledImage 3 describes the requirements for the second template parameter of the class Labeled
image mesh domain 3<Image,BGT> which represents mesh domains defined by 3D labeled images. A 3D
labeled image is a 3D array of elements of an integral type Type. Type can be bool, char, short, int, or long
(signed or not). Such an array is associated to a 3D axis-aligned regular grid, in R3. A cell of this grid is denoted
by voxel. A voxel is an iso-cuboid of size vx(), vy(), and vz().

Types

LabeledImage 3:: Type Type of voxel data. Must be an integral type.

LabeledImage 3:: RT Ring number type.

Operations

int image.xdim() First dimension of the 3D array, i.e., the number of voxels
along the x coordinate axis.

int image.ydim() Second dimension of the 3D array.

int image.zdim() Third dimension of the 3D array.

RT image.vx() Size of each voxel along x coordinate axis.

RT image.vy() Size of each voxel along y coordinate axis.

RT image.vz() Size of each voxel along z coordinate axis.

const Type* image.data() Pointer to the first element of the 3D image. The size of the
array must be xdim()×ydim()×zdim().

Has Models

CGAL::Image 3<Kernel, T>, for any CGAL kernel K and any integral type T .
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MeshCellBase 3

Definition

The concept MeshCellBase 3 describes the requirements for the Cell type of the triangulation used in the 3D
mesh generation process. The type MeshCellBase 3 refines the concept RegularTriangulationCellBase 3. The
concept MeshCellBase 3 includes a way to store and retrieve if a given cell of the triangulation is inside the
domain or not and which subdomain it belongs to in case of a multi-domain.

Moreover, this concept adds four markers per cell to mark the facets of the triangulation that are surface facets,
and four additional helper markers used in some operations to mark for instance the facets that have been visited.

This concept also provides storage for the centers of Delaunay surface balls. Each surface facet has a Delaunay
surface ball, i. e. a circumscribing ball, centered on an input complex surface patch, and empty of triangulation
vertices. In the following we call surface center of a surface facet, the center of its biggest Delaunay surface
ball.

Refines

RegularTriangulationCellBase 3

Types

MeshCellBase 3:: Point Point type, required to match the point type of the 3D trian-
gulation in which the mesh is embedded.

MeshCellBase 3:: Subdomain index; Type of indices for cells of the input complex. Must match
the type MeshDomain 3::Subdomain index.

MeshCellBase 3:: Surface patch index; Type of indices for surface patches of the input complex.
Must match the type MeshDomain 3::Surface patch index.

Operations

Subdomain index cell.subdomain index()

Returns the index of the input subdomain that contains the
cell cell of the triangulation.

void cell.set subdomain index( Subdomain index index)

Sets the subdomain index of the cell.

bool cell.is facet on surface( int i)

returns true iff facet(i) is a surface facet.
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Surface patch index cell.surface patch index( int i)

returns Surface patch index of facet i.

void cell.set surface patch index( int i, Surface patch index index)

sets Surface patch index of facet i to index.

bool cell.is facet visited( int i)

Returns true iff facet(i) has been visited.

void cell.set facet visited( int i, bool b)

Marks facet(i) as visited if b is true and non-visited other-
wise.

Point cell.facet surface center( int i)

Returns a const reference to the surface center of facet(i).

void cell.set facet surface center( int i, Point p)

Sets point p as the surface center of facet(i).

Has Models

Mesh cell base 3<MD,Gt,Cb>

See Also

CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
MeshDomain 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3168
Complex 3InTriangulation 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page ??
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MeshVertexBase 3

Definition

The concept MeshVertexBase 3 describes the requirements for the Vertex type of the triangulation
used by a 3D mesh generation process. The type MeshVertexBase 3 refines both the concept
RegularTriangulationVertexBase 3 and the concept SurfaceMeshVertexBase 3. It provides additional members
to store and retrieve information about the location of the vertex with respect to the input domain describing the
domain to be discretized. More specifically, the concept MeshVertexBase 3 provides read-write access to an
integer representing the dimension of the lowest dimensional face of the input 3D complex on which the vertex
lies, and to an index characteristic of this face.

Refines

RegularTriangulationVertexBase 3
SurfaceMeshVertexBase 3

Types

MeshVertexBase 3:: Index; Index type. Must match the type MeshDomain 3::Index.

MeshVertexBase 3:: FT; Numerical type.

Operations

int vertex.in dimension() const

Returns the dimension of the lowest dimensional face of the
input 3D complex that contains the vertex.

void vertex.set dimension( int)

Sets the dimension of the lowest dimensional face of the in-
put 3D complex that contains the vertex.

Index vertex.index() Returns the index of the lowest dimensional face of the input
3D complex that contains the vertex.

void vertex.set index( Index)

Sets the index of the lowest dimensional face of the input 3D
complex that contains the vertex.

Internal

FT vertex.meshing info() const
void vertex.set meshing info( FT)
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These functions are used internally by mesh optimizers. The user is not encouraged to use them directly as they
may change in the future.

Has Models

Mesh vertex base 3<MD,Gt,Vb>

See Also

CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220
MeshDomain 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3168
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MeshDomainField 3

Definition

The concept MeshDomainField 3 describes a scalar field which could be queried at any point of the space.

Types

MeshDomainField 3:: FT Numerical type.

MeshDomainField 3:: Point 3 Point type.

MeshDomainField 3:: Index Index type for points. Must match the type MeshDomain
3::Index.

Operations

The operator() returns the field value at a query point. The field value may depend on the query point location
and/or on the input feature including the query point.

FT msf ( Point 3 p, int dimension, Index index)

returns the value of the sizing field at the point p, assumed
to be included in the input complex feature with dimension
dimension and mesh vertex index index.

Has Models

Mesh constant field 3<Gt,Index>

See Also

MeshDomain 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3168
MeshDomainWithFeatures 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3171
CGAL::Mesh edge criteria 3<Tr> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3205
CGAL::Mesh facet criteria 3<Tr> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3203
CGAL::Mesh cell criteria 3<Tr> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3202
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MeshPolyline 3

Definition

The concept MeshPolyline 3 implements a container of points designed to represent a polyline (i.e. a sequence
of points). Types and functions provided in this concept are such as standard template library containers are
natural models of this concept.

Types

MeshPolyline 3:: value type Point type. Must match the type MeshDomain 3::Point 3.

MeshPolyline 3:: const iterator A constant iterator on points. Must be a model of Bidirec-
tional iterator and have value type as value type.

Operations

const iterator polyline.begin() Returns an iterator on the first point of the polyline.

const iterator polyline.end() Returns the past-the-end iterator for the above iterator.

Has Models

std::vector<Kernel::Point 3> for any Kernel of CGAL is a natural model of this concept.

See Also

CGAL::Mesh domain with polyline features 3<MeshDomain> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
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TriangleAccessor 3

Definition

The concept TriangleAccessor 3 represents an accessor to a triangulated polyhedral surface, intersection free
and without boundaries.

Types

TriangleAccessor 3:: Triangle 3 Triangle type. Must be a model of DefaultConstructible and
CopyConstructible.

TriangleAccessor 3:: Triangle iterator Triangle iterator type. Must be a model of InputIterator.
TriangleAccessor 3:: Triangle handle Handle to a Triangle 3. Must be constructible from

Triangle iterator. It may be Triangle Iterator itself.

TriangleAccessor 3:: Polyhedron Polyhedron type.

Operations

Triangle iterator ta.triangles begin( Polyhedron p)

Returns a Triangle iterator to visit the triangles of polyhe-
dron p.

Triangle iterator ta.triangles end( Polyhedron p)

Returns the past-the-end iterator for the above iterator.

Triangle 3 ta.triangle( Triangle handle h)

Returns a Triangle 3 object from handle h.

Has Models

Triangle accessor 3<Polyhedron 3<K>,K>

See Also

CGAL::Polyhedral mesh domain 3<Polyhedron,IGT,TriangleAccessor> . . . . . . . . . . . . . . . . . . . . . . . . page 3209
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
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CGAL::Mesh complex 3 in triangulation 3<Tr,CornerIndex,CurveSegmentIndex>

Definition

The class Mesh complex 3 in triangulation 3<Tr,CornerIndex,CurveSegmentIndex> implements a data struc-
ture to store the 3D restricted Delaunay triangulation used by a mesh generation process.

This class is a model of the concept MeshComplexWithFeatures 3InTriangulation 3.

Parameters

The template parameter Tr can be instantiated with any 3D regular triangulation of CGAL provided that its
vertex and cell base class are models of the concepts MeshVertexBase 3 and MeshCellBase 3, respectively.

The template parameter CornerIndex is the type of the indices for corners and the template parameter CurveSeg-
mentIndex is the type of the indices for curves segments. They must match the Corner index and Curve
segment index types of the model of the MeshDomainWithFeatures 3 concept used for mesh generation.

Those two last template parameters defaults to int, so that they can be ignored if the domain used for mesh
generation does not include 0 and 1-dimensionnal features (i.e is a model of the concept MeshDomain 3).

#include <CGAL/Mesh complex 3 in triangulation 3.h>

Is Model for the Concepts

MeshComplexWithFeatures 3InTriangulation 3

Types

typedef Tr::Vertex::Index

Index; Index type.

typedef Tr::Cell::Surface patch index

Surface patch index; Surface index type.

typedef Tr::Cell::Subdomain index

Subdomain index; Subdomain index type.

typedef CornerIndex Corner index; Corner index type.

typedef CurveSegmentIndex

Curve segment index;

Curve segment index type.
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Operations

void c3t3.output to medit( std::ofstream& os)

Outputs the mesh to os in medit format.

See Also

CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220
MeshComplex 3InTriangulation 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3158
MeshComplexWithFeatures 3InTriangulation 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3164
MeshCellBase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3187,
MeshVertexBase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3189
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CGAL::Mesh triangulation 3<MD,Gt>

Definition

The class Mesh triangulation 3<MD,Gt> provides a default triangulation to be used as the 3D triangulation of
a mesh generation process.

#include <CGAL/Mesh triangulation 3.h>

Parameters

Template parameter MD stands for a model of MeshDomain 3.

Template parameter Gt stands for a model of RegularTriangulationTraits 3 and defaults to Kernel traits<MD>
::Kernel.

Types

Mesh triangulation 3<MD,Gt>:: type CGAL::Regular triangulation 3 type whose vertex and cell
classes are respectively Mesh vertex base 3<MD,Gt> and
Mesh cell base 3<MD,Gt>.

See Also

CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::Mesh complex 3 in triangulation 3<Tr,CornerIndex,CurveSegmentIndex> . . . . . . . . . . . . . . . page 3194
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CGAL::Mesh vertex base 3<MD,Gt,Vb>

Definition

The class Mesh vertex base 3<MD,Gt,Vb> is a model of the concept MeshVertexBase 3. It is designed to serve
as vertex base class for the 3D triangulation used in a 3D mesh generation process.

Parameters

The template parameter MD provides the types of indices used to identify the faces of the input complex. It
must be a model of the concept MeshDomain 3.

The template parameter Gt is the geometric traits class. It must be a model of the concept
RegularTriangulationTraits 3.

The third parameter Vb is the vertex base class. It has to be a model of the concept TriangulationVertexBase 3
and defaults to Triangulation vertex base 3<Gt>.

#include <CGAL/Mesh vertex base 3.h>

Is Model for the Concepts

MeshVertexBase 3

Inherits From

Vb

See Also

MeshVertexBase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3189
CGAL::Mesh complex 3 in triangulation 3<Tr,CornerIndex,CurveSegmentIndex> . . . . . . . . . . . . . . . page 3194
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CGAL::Mesh cell base 3<MD,Gt,Cb>

Definition

The class Mesh cell base 3<MD,Gt,Cb> is a model of the concept MeshCellBase 3. It is designed to serve as
cell base class for the 3D triangulation used in the 3D mesh generation process.

Parameters

The template parameter MD provides the types of indices used to identify the faces of the input complex. It has
to be a model of the concept MeshDomain 3.

The template parameter Gt is the geometric traits class. It has to be a model of the concept
RegularTriangulationTraits 3.

The third parameter Cb is the cell base class. It has to be a model of the concept RegularTriangulationCellBase
3 and defaults to Regular triangulation cell base 3<Gt>.

#include <CGAL/Mesh cell base 3.h>

Is Model for the Concepts

MeshCellBase 3

Inherits From

Cb

See Also

MeshCellBase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3187
CGAL::Mesh complex 3 in triangulation 3<Tr,CornerIndex,CurveSegmentIndex> . . . . . . . . . . . . . . .page 3194
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CGAL::Mesh criteria 3<Tr>

Definition

The class Mesh criteria 3<Tr> is a model of both concepts MeshCriteria 3 and MeshCriteriaWithFeatures 3.
It gathers the refinement criteria for mesh tetrahedra and surface facets where surface facets are facets in the
mesh approximating the domain surface patches. In addition, for domain with exposed 1-dimensional features,
the class Mesh criteria 3<Tr> handles the definition of a sizing field to guide the discretization of 1-dimensional
features.

#include <CGAL/Mesh criteria 3.h>

Parameters

The parameter Tr has to be instantiated with the type used for C3T3::Triangulation, where C3T3 is the model
of MeshComplex 3InTriangulation 3 used in the mesh generation process, and C3T3::Triangulation its nested
triangulation type.

Is Model for the Concepts

MeshCriteria 3

Types

typedef Mesh edge criteria 3<Tr>

Edge criteria; The criteria for edges.
typedef Mesh facet criteria 3<Tr>

Facet criteria; The criteria for facets.
typedef Mesh cell criteria 3<Tr>

Cell criteria; The criteria for cells.

Creation

Mesh criteria 3<Tr> mc( Facet criteria facet criteria, Cell criteria cell criteria);

Construction from facet and cell criteria. The edge criteria
are ignored in this case.

Mesh criteria 3<Tr> mc( Edge criteria edge criteria,
Facet criteria facet criteria,
Cell criteria cell criteria)

Construction from edge, facet and cell criteria.
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template<typename FT, typename ...Fieldi>
Mesh criteria 3<Tr> mc( Field1 parameters::edge size = ignored,

FT parameters::facet angle = ignored,
Field2 parameters::facet size = ignored,
Field3 parameters::facet distance = ignored,
Mesh facet topology parameters::facet topology = CGAL::FACET VERTICES

ON SURFACE,
FT parameters::cell radius edge ratio = ignored,
Field4 parameters::cell size = ignored)

Construction from criteria parameters. This constructor uses
named parameters (from Boost.Parameter) for convenient
criteria construction. See a complete description of these pa-
rameters below.

The template parameter FT should be a model of concept FieldType. The template parameters Fieldi (i∈{1..4})
should be either a model of the concept FieldType or a model of the concept MeshDomainField 3.

The parameters are named parameters and can be passed in any order provided their name is given (see ex-
ample below). The name of each parameter is the one that is written in the description of the function (e.g.
parameters::facet size).

The description of each parameter is as follows:

-edge size: a scalar field (resp. a constant) providing a space varying (resp. a uniform) upper bound for the
lengths of curve segment edges.

-facet angle: a lower bound for the angles (in degrees) of the surface mesh facets.
-facet size: a scalar field (resp. a constant) describing a space varying (resp. a uniform) upper-bound or for the
radii of the surface Delaunay balls.
-facet distance: a scalar field (resp. a constant) describing a space varying (resp. a uniform) upper bound for
the same distance.
-facet topology: the set of topological constraints which have to be verified by each surface facet. The default
value is CGAL::FACET VERTICES ON SURFACE. See Mesh facet topology manual page to get all possible
values.

-cell radius edge ratio: an upper bound for the radius-edge ratio of the mesh tetrahedra.
-cell size: a scalar field (resp. a constant) describing a space varying (resp. a uniform) upper-bound for the
circumradii of the mesh tetrahedra.

Note that each size or distance parameter can be specified using two ways: either as scalar field or as a numerical
value when the field is uniform.

Each parameter has a special default value ignored which means that the corresponding criteria will be ignored.
Numerical sizing or distance values, as well as scalar fields should be given in the unit used for coordinates of
points in the mesh domain class of the mesh generation process.

Example� �
// Create a Mesh_criteria_3<Tr> object with all cell and facet parameters

set
Mesh_criteria_3<Tr> criteria (parameters::facet_angle=30,

parameters::facet_size=1,
parameters::facet_distance=0.1,
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parameters::cell_radius_edge_ratio=2,
parameters::cell_size=1.5);

// Create a Mesh_criteria_3<Tr> object with size ignored (note that the
order changed)

Mesh_criteria_3<Tr> criteria (parameters::cell_radius_edge_ratio=2,
parameters::facet_angle=30,
parameters::facet_distance=0.1);� �

See Also

MeshCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3175
MeshCriteriaWithFeatures 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3176
MeshCellCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3177
MeshEdgeCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3180
MeshFacetCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3178
MeshDomainField 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3191
CGAL::Mesh cell criteria 3<Tr> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3202
CGAL::Mesh edge criteria 3<Tr> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3205
CGAL::Mesh facet criteria 3<Tr> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3203
CGAL::Mesh facet topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3242
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CGAL::Mesh cell criteria 3<Tr>

Definition

The class Mesh cell criteria 3<Tr> is a model of MeshCellCriteria 3. It provides, for the mesh tetrahedra, a
uniform shape criteria and a sizing field which may be a uniform or variable field.

#include <CGAL/Mesh cell criteria 3.h>

Parameters

The parameter Tr must be identical to the nested type Triangulation of the instance used as model of
MeshComplex 3InTriangulation 3.

Is Model for the Concepts

MeshCellCriteria 3

Types

typedef Tr::FT FT; Numerical type

Creation

Mesh cell criteria 3<Tr> mcc( FT radius edge bound, FT radius bound);

Returns an object to serve as default criteria for cells. The ar-
gument radius edge bound is the upper bound for the radius-
edge ratio of the tetrahedra. The argument radius bound is
a uniform upper bound for the circumradii of the tetrahedra
in the mesh. See section 51.1 for further details. Note that
if one parameter is set to 0, then its corresponding criteria is
ignored.

template<class SizingField>
Mesh cell criteria 3<Tr> mcc( FT radius edge bound, SizingField radius bound);

Returns an object to serve as default criteria for facets.
The type SizingField must be a model of the concept
MeshDomainField 3. The behavior and semantic of the ar-
guments are the same as above, except that the radius bound
parameter is a functional instead of a constant.

See Also

MeshCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3175
MeshCellCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3177
Mesh criteria 3<Tr> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217

3202



C
la

ss
F

un
ct

or

CGAL::Mesh facet criteria 3<Tr>

Definition

The class Mesh facet criteria 3<Tr> is a model of MeshFacetCriteria 3. It provides a uniform bound for the
shape criterion, a uniform or variable sizing field for the size criterion and/or a uniform or variable distance field
for the approximation error criterion.

#include <CGAL/Mesh facet criteria 3.h>

Parameters

The parameter Tr must be identical to the nested type Triangulation of the instance used as model of
MeshComplex 3InTriangulation 3.

Is Model for the Concepts

MeshFacetCriteria 3

Types

typedef Tr::Geom traits::FT

FT; Numerical type

Creation

Mesh facet criteria 3<Tr> mfc( FT angle bound,
FT radius bound,
FT distance bound,
Mesh facet topology topology = FACET VERTICES ON SURFACE)

Returns an object to serve as criteria for facets. The argument
angle bound is the lower bound for the angle in degrees of
the surface mesh facets. The argument radius bound is a
uniform upper bound for the radius of the surface Delaunay
balls. The argument distance bound is an upper bound for
the center-center distances of the surface mesh facets. topol-
ogy is the set of topological constraints which have to be veri-
fied by each surface facet. See section 51.1 for further details.
Note that if one parameter is set to 0, then its corresponding
criteria is ignored.

template <class SizingField, class DistanceField>
Mesh facet criteria 3<Tr> mfc( FT angle bound,

SizingField radius bound,
DistanceField distance bound,
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Mesh facet topology topology = FACET VERTICES ON SURFACE)

Returns an object to serve as criteria for facets. The types
SizingField and DistanceField must be models of the concept
MeshDomainField 3. The behavior and semantic of the ar-
guments are the same as above, except that the radius and dis-
tance bound parameters are functionals instead of constants.

See Also

CGAL::Mesh facet topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3242
MeshCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3175
MeshFacetCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3178
Mesh criteria 3<Tr> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
MeshDomainField 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3191
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
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CGAL::Mesh edge criteria 3<Tr>

Definition

The function object class Mesh edge criteria 3<Tr> is a model of MeshEdgeCriteria 3. It provides a bound
for the size criterion.

#include <CGAL/Mesh edge criteria 3.h>

Is Model for the Concepts

MeshEdgeCriteria 3

Types

typedef Tr::Geom traits::FT

FT; Numerical type.

Creation

Mesh edge criteria 3<Tr> mec( FT length bound);

Returns an object to serve as criteria for edges. The argument
length bound is an upper bound for the length of the edges
which are used to discretize the curve segments. Note that
if one parameter is set to 0, then its corresponding criteria is
ignored.

template <class SizingField>
Mesh edge criteria 3<Tr> mec( SizingField length bound);

Returns an object to serve as criteria for edges. The type
SizingField must be a model of concept MeshDomainField
3. The behavior and semantic of the argument are the same as
above, except that the length parameter is a functional instead
of a constant.

See Also

MeshEdgeCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3180
MeshCriteria 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3175
Mesh criteria 3<Tr> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
MeshDomainField 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3191
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CGAL::Mesh constant domain field 3<Gt,Index>

Definition

The class Mesh constant domain field 3<Gt,Index> is a model of concept MeshDomainField 3. It provides a
constant field accessible using queries on 3D-points.

The class Mesh constant domain field 3<Gt,Index> can also be customized through set size() operations to
become a piecewise constant field, i.e. a sizing field with a constant size on each subpart of the domain.

#include <CGAL/Mesh constant domain field 3.h>

Parameters

The parameter Gt is the geometric traits class. It must match the type Triangulation::Geom traits, where
Triangulation is the nested type of the model of MeshComplex 3InTriangulation 3 used in the meshing process.

The parameter Index is the type of index of the vertices of the triangulation. It must match the type Index of the
model of MeshDomain 3 used in the meshing process.

Is Model for the Concepts

MeshDomainField 3

Types

typedef Gt::FT FT; Numerical type.
typedef Gt::Point 3 Point 3; Point type.

typedef Index Index; Type of index of the vertices of the triangulation.

Creation

Mesh constant domain field 3<Gt,Index> mcf ( FT size);

Builds a constant domain field with size size.

Operations

void mcf .set size( FT size, int dimension, Index index)

Sets the size such as operator() will return size size at any
query point of dimension dimension and index index.

See Also

MeshDomainField 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3191
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CGAL::Implicit mesh domain 3<Function,BGT>

Definition

The class Implicit mesh domain 3<Function,BGT> implements a domain whose bounding surface is described
implicitly as the zero level set of a function. The domain to be discretized is assumed to be the domain where
the function has negative values. This class is a model of the concept MeshDomain 3.

Parameters

Parameter BGT is a geometric traits which provides the basic operations to implement intersection tests and
computations through a bisection method. This parameter must be instantiated with a model of the concept
BisectionGeometricTraits 3.

Parameter Function provides the definition of the function. This parameter stands for a model of the concept Im-
plicitFunction described in the surface mesh generation package. The number types Function::FT and BGT::FT
are required to match.

The constructor of Implicit mesh domain 3<Function,BGT> takes as argument a bounding sphere which is
required to circumscribe the surface and to have its center inside the domain. This domain constructs intersection
points between the surface and segments/rays/lines by bisection. It needs an error bound such that the bisection
process is stopped when the query segment is smaller than the error bound. The error bound passed as argument
to the domain constructor is a relative error bound expressed as a ratio to the bounding sphere radius.

#include <CGAL/Implicit mesh domain 3.h>

Is Model for the Concepts

MeshDomain 3

Creation

Implicit mesh domain 3<Function,BGT> domain( Function f,
BGT::Sphere 3 bounding sphere,
BGT::FT error bound = FT(1e-3))

f is the object of type Function that represents the implicit
surface.
bounding sphere is a bounding sphere of the implicit sur-
face. The value of f at the sphere center c must be negative:
f (c) < 0.
error bound is the relative error bound used to compute in-
tersection points between the implicit surface and query seg-
ments. The bisection is stopped when the length of the in-
tersected segment is less than the product of error bound by
the radius of bounding sphere.
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See Also

MeshDomain 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3168
BisectionGeometricTraits 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3181
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217.
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CGAL::Polyhedral mesh domain 3<Polyhedron,IGT,TriangleAccessor>

Definition

The class Polyhedral mesh domain 3<Polyhedron,IGT,TriangleAccessor> implements a domain whose
boundary is a simplicial polyhedral surface. This surface must be closed and free of intersection. This class is a
model of the concept MeshDomain 3.

Parameters

The parameter Polyhedron stands for the type of the input polyhedral surface. The only requirements for this
type is that the triangles of the surfaces must be accessible through an object of the class TriangleAccessor.

The parameter IGT stands for a geometric traits class providing the types and functors required to implement
the intersection tests and intersection computations for polyhedral boundary surfaces. This parameter has to be
instantiated with a model of the concept IntersectionGeometricTraits 3.

The parameter TriangleAccessor provides access to the triangles of the input polyhedral surface. It must be
a model of the concept TriangleAccessor 3. It defaults to Triangle accessor 3<Polyhedron,IGT>. The type
IGT::Triangle 3 must be identical to the type TriangleAccessor::Triangle 3.

#include <CGAL/Polyhedral mesh domain 3.h>

Is Model for the Concepts

MeshDomain 3

Creation

Polyhedral mesh domain 3<Polyhedron,IGT,TriangleAccessor> domain( Polyhedron polyhedron);

Construction from a polyhedral surface.

See Also

MeshDomain 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3168
TriangleAccessor 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3193
IntersectionGeometricTraits 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3184
CGAL::Triangle accessor 3<Polyhedron 3<K>,K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217.
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CGAL::Polyhedral mesh domain with features 3<IGT>

Definition

The class Polyhedral mesh domain with features 3<IGT> implements a domain whose boundary is a simpli-
cial polyhedral surface. This surface must be closed and free of intersection. It is a model of the concept
MeshDomainWithFeatures 3. It also provides a member function to automatically detect sharp features from
the input polyhedral surface.

Parameters

The parameter IGT stands for a geometric traits class providing the types and functors required to implement
the intersection tests and intersection computations for polyhedral boundary surfaces. This parameter has to be
instantiated with a model of the concept IntersectionGeometricTraits 3.

#include <CGAL/Polyhedral mesh domain with features 3.h>

Is Model for the Concepts

MeshDomainWithFeatures 3

Inherits From

CGAL::Mesh domain with polyline features 3<CGAL::Polyhedral mesh domain 3<CGAL::Mesh
polyhedron 3<IGT>::type,IGT> >

Types

Polyhedral mesh domain with features 3<IGT>:: FT

Numerical type.

Creation

template <typename Polyhedron>
Polyhedral mesh domain with features 3<IGT> md( Polyhedron p);

Constructs a Polyhedral mesh domain with features 3
from a Polyhedron. The only requirement on type Polyhe-
dron is that CGAL::Mesh polyhedron 3<IGT>::type should
be constructible from Polyhedron. No feature detection is
done at this level. Note that a copy of p will be done.

Polyhedral mesh domain with features 3<IGT> md( std::string filename);

Constructs a Polyhedral mesh domain with features 3
from an off file. No feature detection is done at this level.
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Operations

void md.detect features( FT angle bound=120)

Detects sharp features of the internal polyhedron and inserts
them in as features of the domain. angle bound gives the
maximum dihedral angle (in degrees) between two triangles
of the internal polyhedron which is used to consider that the
edge between those triangles is a feature edge.

See Also

MeshDomainWithFeatures 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3171
CGAL::Mesh domain with polyline features 3<MeshDomain> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
CGAL::Polyhedral mesh domain 3<Polyhedron,IGT,TriangleAccessor> . . . . . . . . . . . . . . . . . . . . . . . . page 3209
CGAL::Mesh polyhedron 3<IGT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3215
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CGAL::Labeled image mesh domain 3<Image,BGT>

Definition

The class Labeled image mesh domain 3<Image,BGT> implements a domain described by a 3D labeled image.
A 3D labeled image is a grid of voxels, where each voxel is associated with an index (a subdomain index)
characterizing the subdomain in which the voxel lies. This class is a model of the concept MeshDomain 3.
The domain to be discretized is the union of voxels that have an non-default index (different from the default
constructed value of the type Image::Type).

This class includes a member function that provides, by interpolation, the subdomain index of any query point.
An intersection between a segment and bounding surfaces is detected when both segment endpoints are associ-
ated with different values of subdomain indices. The intersection is then constructed by bisection. The bisection
stops when the query segment is shorter than a given error bound e. This error bound is given by e=d×bound
where d is the length of the diagonal of the bounding box (in world coordinates) and bound is the argument
passed to the constructor of Labeled image mesh domain 3<Image,BGT>.

Parameters

Parameter Image is the type of the input image. This parameter must be a model of the concept LabeledImage 3.

Parameter BGT is a geometric traits class which provides the basic operations to implement intersection tests
and intersection computations through a bisection method. This parameter must be instantiated with a model of
the concept BisectionGeometricTraits 3.

#include <CGAL/Labeled image mesh domain 3.h>

Is Model for the Concepts

MeshDomain 3

Creation

Labeled image mesh domain 3<Image,BGT> domain( Image image, BGT::FT error bound = FT(1e-3));

Construction from an image. The parameter error bound is
relative to the size of the image.

See Also

MeshDomain 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3168
BisectionGeometricTraits 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3181
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217.
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CGAL::Mesh domain with polyline features 3<MeshDomain 3>

Definition

The class Mesh domain with polyline features 3<MeshDomain 3> is designed to allow the user to add some
0- and 1-dimensional features into any model of the MeshDomain 3 concept. The 1-dimensional features are
described as polylines whose endpoints are the added corners.

Parameters

The template parameter MeshDomain 3 is the type of the domain which should be extended. It has to be a
model of the MeshDomain 3 concept.

#include <CGAL/Mesh domain with polyline features 3.h>

Is Model for the Concepts

MeshDomainWithFeatures 3

Inherits From

MeshDomain 3

Types

typedef int Corner index; Corner index type.

typedef int Curve segment index;

Curve segment index type.

Creation

template <typename ...T>
Mesh domain with polyline features 3<MeshDomain 3> md( T ...t);

Constructor. Forwards the arguments to the constructor of
the base class.

Operations

template <typename InputIterator>
void md.add features( InputIterator begin, InputIterator beyond)

Add 1-dimensional features in the domain. InputIterator
value type must be a model of the concept MeshPolyline 3.
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template <typename InputIterator>
void md.add features and incidences( InputIterator begin, InputIterator beyond)

Add 1-dimensional features in the domain with their inci-
dences with 2-dimensional features of the domain. The In-
putIterator value type must be std::pair<Polyline, std::pair<
InputSurfacePatchIndexIterator, InputSurfacePatchIndexIt-
erator> > where Polyline must be a model of the concept
MeshPolyline 3 and the internal pair gives a range on sur-
face patches indices which are incident to the polyline.

See Also

MeshDomain 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3168
MeshDomainWithFeatures 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3171
MeshPolyline 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3192
CGAL::Implicit mesh domain 3<Function,BGT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3207
CGAL::Polyhedral mesh domain 3<Polyhedron,IGT,TriangleAccessor> . . . . . . . . . . . . . . . . . . . . . . . . page 3209
CGAL::Labeled image mesh domain 3<Image,BGT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3212
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CGAL::Mesh polyhedron 3<IGT>

Definition

The class Mesh polyhedron 3<IGT> provides a customized CGAL::Polyhedron 3 type. This type uses as
PolyhedronItems 3 a customized type which adds data to the Vertex, Face and Halfedge class. Those data
are required to use our sharp features detection algorithm.

#include <CGAL/Mesh polyhedron 3.h>

Parameters

Template parameter IGT stands for the geometric traits associated to the meshing process. It should be a model
of the two concepts PolyhedronTraits 3 and IntersectionGeometricTraits 3.

Types

Mesh polyhedron 3<IGT>:: type CGAL::Polyhedron 3<IGT> type with customized
PolyhedronItems 3 designed to handle sharp feature
detection.

See Also

CGAL::Polyhedron 3<Gt> . . . page ?? CGAL::Polyhedral mesh domain with features 3<IGT> . . . page 3210
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CGAL::Triangle accessor 3<CGAL::Polyhedron 3<K>,K>

Definition

The class Triangle accessor 3<CGAL::Polyhedron 3<K>,K> is a model for the concept TriangleAccessor 3.
It is designed to serve as accessor for objects of type CGAL::Polyhedron 3<K>.

advanced

Actually, the class Triangle accessor 3<CGAL::Polyhedron 3<K>,K> is a partial specialization of the class
template template<typename Polyhedron, typename K> Triangle accessor 3<Polyhedron, K>. One may give
another partial specialization of this class to handle one’s own polyhedron data structure.

advanced

#include <CGAL/Triangle accessor 3.h>

Parameters

The template parameter K is the geometric traits class.

Is Model for the Concepts

TriangleAccessor 3

Types

typedef Polyhedron 3<K>::Facet const iterator

Triangle iterator; Triangle iterator.
typedef Polyhedron 3<K>::Facet const handle

Triangle handle; Triangle handle.
typedef K::Triangle 3

Triangle 3; Triangle type.

See Also

TriangleAccessor 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3193
CGAL::Polyhedral mesh domain 3<Polyhedron,IGT,TriangleAccessor> . . . . . . . . . . . . . . . . . . . . . . . . page 3209

3216



F
un

ct
io

n

CGAL::make mesh 3

Definition

The function make mesh 3 is a 3D mesh generator. It produces simplicial meshes which discretize 3D domains.

The mesh generation algorithm is a Delaunay refinement process followed by an optimization phase. The
criteria driving the Delaunay refinement process may be tuned to achieve the user needs with respect to the size
of mesh elements, the accuracy of boundaries approximation, etc.

The optimization phase is a sequence of optimization processes, including possibly a Lloyd smoothing, an odt-
smoothing, a perturber and an exuder. Each optimization process can be activated or not, according to the user
requirements and available time. By default, only the perturber and the exuder are activated. Note that the
benefits of the exuder will be lost if the mesh is further refined afterward.

The function outputs the mesh to an object which provides iterators to traverse the resulting mesh data structure
or can be written to a file (see 51.3).

template <class C3T3, class MeshDomain 3, class MeshCriteria>
C3T3 make mesh 3( MeshDomain 3 domain,

MeshCriteria criteria,
parameters::internal::Features options features = parame-

ters::features(domain),
parameters::internal::Lloyd options lloyd = parameters::no lloyd(),
parameters::internal::Odt options odt = parameters::no odt(),
parameters::internal::Perturb options perturb = parame-

ters::perturb(),
parameters::internal::Exude options exude = parameters::exude())

Parameters

Parameter C3T3 is required to be a model of the concept MeshComplex 3InTriangulation 3. This is the return
type.

The type C3T3 is in particular required to provide a nested type C3T3::Triangulation for the 3D triangulation
embedding the mesh. The vertex and cell base classes of the triangulation C3T3::Triangulation are required to
be models of the concepts MeshVertexBase 3 and MeshCellBase 3 respectively.

Template parameter MeshDomain 3 is required to be a model of the concept MeshDomain 3, or of the refined
concept MeshDomainWithFeatures 3 if the domain has corners and curve segments that need to be accurately
represented in the mesh. The argument domain is the sole link through which the domain to be discretized is
known by the mesh generation algorithm.

The parameter features allows the user to specify if 0 and 1-dimensional features actually have to be taken
into account or not when the domain is a model of MeshDomainWithFeatures 3. The type Features of this
parameter is an internal undescribed type. The library provides functions to construct appropriate values of that
type.

• parameters::features(domain) sets features according to the domain, i.e. 0 and1-dimensional features are
taken into account if domain is a MeshDomainWithFeatures 3. This is the default behavior if parameter
features is not specified.
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• parameters::no features() prevents the representation of 0 and 1-dimensional features in the mesh.

The template parameter MeshCriteria has to be a model of the concept MeshCriteria 3, or a model of the
refined concept MeshCriteriaWithFeatures 3 if the domain has exposed features. The argument criteria of type
MeshCriteria specifies the size and shape requirements for mesh tetrahedra and surface facets. These criteria
form the rules which drive the refinement process. All mesh elements satisfy those criteria at the end of the
refinement process. In addition, if the domain has features, the argument criteria provides a sizing field to guide
the discretization of 1-dimensional exposed features.

The four additional parameters are optimization parameters. They control which optimization processes are
performed and allow the user to tune the parameters of the optimization processes. We do not describe the
types of optimization parameters as they are internal types. The package defines two global functions for each
optimization parameter to generate appropriate value of this parameter.

• parameters::lloyd() and parameters::no lloyd() are designed to trigger or not a call to lloyd optimize
mesh 3 function and to set the parameters of this optimizer. If one parameter is not set, the default value
of lloyd optimize mesh 3 is used for this parameter.

• parameters::odt() and parameters::no odt() are designed to trigger or not a call to odt optimize mesh
3 function and to set the parameters of this optimizer If one parameter is not set, the default value of
odt optimize mesh 3 is used for this parameter.

• parameters::perturb() and parameters::no perturb() are designed to trigger or not a call to perturb mesh
3 function and to set the parameters of this optimizer. If one parameter is not set, the default value of
perturb mesh 3 is used for this parameter, except for the time bound which is set to be equal to the
refinement CPU time.

• parameters::exude() and parameters::no exude() are designed to trigger or not a call to exude mesh 3
function and to override to set the parameters of this optimizer. If one parameter is not set, the default
value of exude mesh 3 is used for this parameter, except for the time bound which is set to be equal to
the refinement CPU time.

The optimization parameters can be passed in random order. If one parameter is not passed, its default value is
used. The default values are no lloyd(), no odt(), perturb() and exude().

Note that whatever may be the optimization processes activated, they are always launched in the order that is a
suborder of the following (see user manual for further details): lloyd, odt, perturb, exude.

Also beware, that optimization of the mesh is obtained by perturbing mesh vertices and modifying the mesh
connectivity and that this has an impact on the strict compliance to the refinement criteria. Though a strict
compliance to mesh criteria is granted at the end of the Delaunay refinement, this may no longer be true after
some optimization processes. Also beware that the default behavior does involve some optimization processes.

See Also

refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
parameters::features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
parameters::no features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
exude mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
perturb mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
lloyd optimize mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
odt optimize mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
parameters::exude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
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parameters::no exude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
parameters::perturb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page ??
parameters::no perturb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
parameters::lloyd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
parameters::no lloyd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page ??
parameters::odt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
parameters::no odt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
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CGAL::refine mesh 3

Definition

The function refine mesh 3 is a 3D mesh generator. It produces simplicial meshes which discretize 3D domains.

The mesh generation algorithm is a Delaunay refinement process followed by an optimization phase. The
criteria driving the Delaunay refinement process may be tuned to achieve the user needs with respect to the size
of mesh elements, the accuracy of boundaries approximation, etc.

The optimization phase is a succession of optimization processes, including possibly a Lloyd smoothing, an
odt-smoothing, a perturber and an exuder. Each optimization process can be activated or not, according to the
user requirements and available time. By default, only the perturber and the exuder are activated. Note that the
benefits of the exuder will be lost if the mesh is further refined afterward.

template <class C3T3, class MeshDomain 3, class MeshCriteria>
void refine mesh 3( C3T3& c3t3,

MeshDomain 3 mesh domain,
MeshCriteria mesh criteria,
parameters::internal::Lloyd options lloyd = parameters::no lloyd(),
parameters::internal::Odt options odt = parameters::no odt(),
parameters::internal::Perturb options perturb = parame-

ters::perturb(),
parameters::internal::Exude options exude = parameters::exude())

advanced

The function template refine mesh 3 may be used to refine a previously computed mesh, e.g.:

C3T3 c3t3 = CGAL::make mesh 3<C3T3>(domain,criteria);
CGAL::refine mesh 3(c3t3, domain, new criteria);

Please note that we guarantee the result if and only if the domain does not change from one refinement to the
next one.

advanced

Parameters

Parameter C3T3 is required to be a model of the concept MeshComplex 3InTriangulation 3. The argument c3t3
is passed by reference as this object is modified by the refinement process. As the refinement process only adds
points to the triangulation, all vertices of the triangulation of c3t3 remain in the mesh during the refinement
process. Object c3t3 can be used to insert specific points in the domain to ensure that they will be contained in
the final triangulation.

The type C3T3 is in particular required to provide a nested type C3T3::Triangulation for the 3D triangulation
embedding the mesh. The vertex and cell base classes of the triangulation C3T3::Triangulation are required to
be models of the concepts MeshVertexBase 3 and MeshCellBase 3 respectively.

Template parameter MeshDomain 3 is required to be a model of the concept MeshDomain 3 or of the refined
concept MeshDomainWithFeatures 3 if 0 and 1-dimensional features of the input complex have to be accurately
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represented in the mesh. The argument domain is the sole link through which the domain to be discretized is
known by the mesh generation algorithm.

The template parameter MeshCriteria has to be a model of the concept MeshCriteria 3, or a model of the
refined concept MeshCriteriaWithFeatures 3 if the domain has exposed features. The argument criteria of type
MeshCriteria specifies the size and shape requirements for mesh tetrahedra and surface facets. These criteria
form the rules which drive the refinement process. All mesh elements satisfy those criteria at the end of the
refinement process. In addition, if the domain has features, the argument criteria provides a sizing field to guide
the discretization of 1-dimensional exposed features.

The four additional parameters are optimization parameters. They control which optimization processes are
performed and allow the user to tune the parameters of the optimization processes. We do not describe the
types of optimization parameters as they are internal types. The package defines two global functions for each
optimization parameter to generate appropriate value of this parameter.

• parameters::lloyd() and parameters::no lloyd() are designed to trigger or not a call to lloyd optimize
mesh 3 function and to set the parameters of this optimizer. If one parameter is not set, the default value
of lloyd optimize mesh 3 is used for this parameter.

• parameters::odt() and parameters::no odt() are designed to trigger or not a call to odt optimize mesh
3 function and to set the parameters of this optimizer If one parameter is not set, the default value of
odt optimize mesh 3 is used for this parameter.

• parameters::perturb() and parameters::no perturb() are designed to trigger or not a call to perturb mesh
3 function and to set the parameters of this optimizer. If one parameter is not set, the default value of
perturb mesh 3 is used for this parameter, except for the time bound which is set to be equal to the
refinement CPU time.

• parameters::exude() and parameters::no exude() are designed to trigger or not a call to exude mesh 3
function and to override to set the parameters of this optimizer. If one parameter is not set, the default
value of exude mesh 3 is used for this parameter, except for the time bound which is set to be equal to
the refinement CPU time.

The optimization parameters can be passed in random order. If one parameter is not passed, its default value
is used. The default values are no lloyd(), no odt(), perturb() and exude(). Note that whatever may be the
optimization processes activated, they are always launched in the order that is a suborder of the following (see
user manual for further details): lloyd, odt, perturb, exude.

Beware that optimization of the mesh is obtained by perturbing mesh vertices and modifying the mesh connec-
tivity and that this has an impact on the strict compliance to the refinement criteria. Though a strict compliance
to mesh criteria is granted at the end of the Delaunay refinement, this may no longer be true after some opti-
mization processes. Also beware that the default behavior does involve some optimization processes.

See Also

CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::exude mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3223
CGAL::perturb mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3225
CGAL::lloyd optimize mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3227
CGAL::odt optimize mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3229
CGAL::parameters::exude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3233
CGAL::parameters::no exude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3234
CGAL::parameters::perturb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3235
CGAL::parameters::no perturb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3236
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CGAL::parameters::no lloyd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3238
CGAL::parameters::odt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3239
CGAL::parameters::no odt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3240

3222



F
un

ct
io

n

CGAL::exude mesh 3

Definition

The function exude mesh 3 performs a sliver exudation process on a Delaunay mesh.

The sliver exudation process consists in turning the Delaunay triangulation into a weighted Delaunay triangu-
lation and optimizing the weights of vertices in such a way that slivers disappear and the quality of the mesh
improves.

#include <CGAL/exude mesh 3.h>

template<typename C3T3>
Mesh optimization return code

exude mesh 3( C3T3& c3t3,
double parameters::time limit=0,
double parameters::sliver bound=0)

Precondition: time limit ≥ 0 and 0 ≤ sliver bound ≤ 180

Parameters

Parameter C3T3 is required to be a model of the concept MeshComplex 3InTriangulation 3. The argument
c3t3, passed by reference, provides the initial mesh and is modified by the algorithm to represent the final
optimized mesh.

The function has two optional parameters which are named parameters (we use the Boost.Parameter library).
Therefore, when calling the function, the parameters can be provided in any order provided that the names of
the parameters are used (see example at the bottom of this page).

• Parameter time limit, whose name is parameters::time limit, is used to set up, in seconds, a CPU time
limit after which the optimization process is stopped. This time is measured using the CGAL::Timer
class. The default value is 0 and means that there is no time limit.

• Parameter sliver bound, whose name is parameters::sliver bound, is designed to give, in degree, a tar-
geted lower bound on dihedral angles of mesh cells. The exudation process considers in turn all the
mesh cells that have a smallest dihedral angle less than sliver bound and tries to make them disappear by
weighting their vertices. The optimization process stops when every cell in the mesh achieves this quality.
The default value is 0 and means that there is no targeted bound : the exuder then runs as long as it can
improve the smallest dihedral angles of the set of cells incident to some vertices.

Return Values

The function exude mesh 3 returns a value of type Mesh optimization return code which is:

• BOUND REACHED when the targeted bound for the smallest dihedral angle in the mesh is reached.
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• TIME LIMIT REACHED when the time limit is reached.

• CANT IMPROVE ANYMORE when exudation process stops because it can no longer improve the small-
est dihedral angle of the set of cells incident to some vertex in the mesh.

Example� �
// Exude without sliver_bound, using at most 10s CPU time
exude_mesh_3(c3t3, parameters::time_limit=10);� �
See Also

CGAL::Mesh optimization return code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3241
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220
CGAL::perturb mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3225
CGAL::lloyd optimize mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3227
CGAL::odt optimize mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3229
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CGAL::perturb mesh 3

Definition

The function perturb mesh 3 is a mesh optimizer that improves the quality of a Delaunay mesh by changing
the mesh vertices positions.

The perturber tries to improve the dihedral angles of the worst cells in the mesh degree by degree: the step
number n is considered as successful if after this step the worst tetrahedron of the mesh has a minimal dihedral
angle larger than n degrees. The perturber exits if this is not the case.

#include <CGAL/perturb mesh 3.h>

template<typename C3T3, typename MeshDomain 3>
Mesh optimization return code

perturb mesh 3( C3T3& c3t3,
MeshDomain 3 domain,
double parameters::time limit=0,
double parameters::sliver bound=0)

Precondition: time limit ≥ 0 and 0 ≤ sliver bound ≤ 180

Parameters

Parameter C3T3 is required to be a model of the concept MeshComplex 3InTriangulation 3. The argument
c3t3, passed by reference, provides the initial mesh and is modified by the algorithm to represent the final
optimized mesh.

Parameter MeshDomain 3 is required to be a model of the concept MeshDomain 3. The argument domain must
be the MeshDomain 3 object used to create the c3t3 parameter.

The function has two optional parameters which are named parameters (we use the Boost.Parameter library).
Therefore, when calling the function, the parameters can be provided in any order provided that the names of
the parameters are used (see example at the bottom of this page).

• Parameter time limit whose name is parameters::time limit, is used to set up, in seconds, a CPU time
limit after which the optimization process is stopped. This time is measured using CGAL::Timer. The
default value is 0 and means that there is no time limit.

• Parameter sliver bound, whose name is parameters::sliver bound, is designed to give, in degree, a tar-
geted lower bound on dihedral angles of mesh cells. The function perturb mesh 3 runs as long as steps
are successful and step number sliver bound (after which the worst tetrahedron in the mesh has a smallest
angle larger than sliver bound degrees) has not been reached. The default value is 0 and means that there
is no targeted bound: the perturber then runs as long as steps are successful.

Return Values

The function perturb mesh 3 returns a value of type Mesh optimization return code which is:
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• BOUND REACHED when the targeted bound for the smallest dihedral angle in the mesh is reached.

• TIME LIMIT REACHED when the time limit is reached.

• CANT IMPROVE ANYMORE when the perturbation process stops because the last step is unsuccessful.

Example� �
// Perturb until every dihedral angle of the mesh is >= 10 degrees
// No time bound is set
perturb_mesh_3(c3t3, domain, parameters::sliver_bound=10);� �
See Also

CGAL::Mesh optimization return code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3241
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220
CGAL::exude mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3223
CGAL::lloyd optimize mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3227
CGAL::odt optimize mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3229

3226



F
un

ct
io

n

CGAL::lloyd optimize mesh 3

Definition

The function lloyd optimize mesh 3 is a mesh optimization process based on the minimization of a global
energy function.

In lloyd optimize mesh 3, the minimized global energy may be interpreted as the L1-norm of the error achieved
when the function x2 is interpolated on the mesh domain using a piecewise linear function which is linear in
each cell of the Voronoi diagram of the mesh vertices.

The optimizer lloyd optimize mesh 3 works in iterative steps. At each iteration, mesh vertices are moved into
positions that bring to zero the energy gradient and the Delaunay triangulation is updated. Vertices on the mesh
boundaries are handled in a special way so as to preserve an accurate representation of the domain boundaries.

#include <CGAL/lloyd optimize mesh 3.h>

template<typename C3T3, typename MeshDomain 3>
Mesh optimization return code

lloyd optimize mesh 3( C3T3& c3t3,
MeshDomain 3 domain,
double parameters::time limit=0,
std::size t parameters::max iteration number=0,
double parameters::convergence=0.02,
double parameters::freeze bound = 0.01)

Precondition: time limit ≥ 0 and 0 ≤ convergence ≤ 1 and 0 ≤ freeze bound ≤ 1

Parameters

Parameter C3T3 is required to be a model of the concept MeshComplex 3InTriangulation 3. The argument
c3t3, passed by reference, provides the initial mesh and is modified by the algorithm to represent the final
optimized mesh.

Parameter MeshDomain 3 is required to be a model of the concept MeshDomain 3. The argument domain must
be the MeshDomain 3 object used to create the c3t3 parameter.

The function has four optional parameters which are named parameters (we use the Boost.Parameter library).
Therefore, when calling the function, the parameters can be provided in any order provided that the names of
the parameters are used (see example at the bottom of this page).

• Parameter time limit, whose name is parameters::time limit, is used to set up, in seconds, a CPU time
limit after which the optimization process is stopped. This time is measured using CGAL::Timer. The
default value is 0 and means that there is no time limit.

• Parameter max iteration number, whose name is parameters::max iteration number, sets a limit on the
number of performed iterations. The default value of 0 means that there is no limit on the number of
performed iterations.
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• Parameter convergence, whose name is parameters::convergence, is a stopping criterion based on con-
vergence: the optimization process is stopped, when at the last iteration, the displacement of any vertex
is less than a given percentage of the length of the shortest edge incident to that vertex. The parameter
convergence gives the threshold ratio.

• Parameter freeze bound, whose name is parameters::freeze bound, is designed to reduce running time
of each optimization iteration. Any vertex that has a displacement less than a given percentage of the
length of its shortest incident edge, is frozen (i.e. is not relocated). The parameter freeze bound gives the
threshold ratio. At each iteration, any vertex that moves, unfreezes all its incident vertices.

Return Values

The function lloyd optimize mesh 3 returns a value of type Mesh optimization return code which is:

• TIME LIMIT REACHED when the time limit is reached.

• MAX ITERATION NUMBER REACHED when lloyd optimize mesh 3 stops because it has performed
max iteration number iterations.

• CONVERGENCE REACHED when lloyd optimize mesh 3 stops because the convergence criterion is
achieved.

Example� �
// Lloyd-smoothing until convergence reaches 0.01, freezing vertices

which
// move less than 0.001*shortest_incident_edge_length
lloyd_optimize_mesh_3(c3t3, domain, parameters::convergence=0.01,

parameters::freeze_bound=0.001);� �
See Also

CGAL::Mesh optimization return code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3241
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220
CGAL::exude mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3223
CGAL::perturb mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3225
CGAL::odt optimize mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3229
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CGAL::odt optimize mesh 3

Definition

The function odt optimize mesh 3 is a mesh optimization process based on the minimization of a global energy
function.

In odt optimize mesh 3, the minimized global energy may be interpreted as the L1-norm of the error achieved
when the function x2 is interpolated on the mesh domain using a piecewise linear function which is linear in
each mesh cell.

The optimizer odt optimize mesh 3 works in iterative steps. At each iteration, mesh vertices are moved into
positions that bring to zero the energy gradient and the Delaunay triangulation is updated. Vertices on the mesh
boundaries are handled in a special way so as to preserve an accurate representation of the domain boundaries.

#include <CGAL/odt optimize mesh 3.h>

template<typename C3T3, typename MeshDomain 3>
Mesh optimization return code

odt optimize mesh 3( C3T3& c3t3,
MeshDomain 3 domain,
double parameters::time limit=0,
std::size t parameters::max iteration number=0,
double parameters::convergence=0.02,
double parameters::freeze bound = 0.01)

Precondition: time limit ≥ 0 and 0 ≤ convergence ≤ 1 and 0 ≤ freeze bound ≤ 1

Parameters

Parameter C3T3 is required to be a model of the concept MeshComplex 3InTriangulation 3. The argument
c3t3, passed by reference, provides the initial mesh and is modified by the algorithm to represent the final
optimized mesh.

Parameter MeshDomain 3 is required to be a model of the concept MeshDomain 3. The argument domain must
be the MeshDomain 3 object used to create the c3t3 parameter.

The function has four optional parameters which are named parameters (we use the Boost.Parameter library).
Therefore, when calling the function, the parameters can be provided in any order provided that the names of
the parameters are used (see example at the bottom of this page).

• Parameter time limit, whose name is parameters::time limit, is used to set up, in seconds, a CPU time
limit after which the optimization process is stopped. This time is measured using CGAL::Timer. The
default value is 0 and means that there is no time limit.

• Parameter max iteration number, whose name is parameters::max iteration number, sets a limit on the
number of performed iterations. The default value of 0 means that there is no limit on the number of
performed iterations.
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• Parameter convergence, whose name is parameters::convergence, is a stopping criterion based on con-
vergence: the optimization process is stopped, when at the last iteration, the displacement of any vertex
is less than a given percentage of the length the shortest edge incident to that vertex. The parameter
convergence gives the threshold ratio.

• Parameter freeze bound, whose name is parameters::freeze bound, is designed to reduce running time
of each optimization iteration. Any vertex that has a displacement less than a given percentage of the
length of its shortest incident edge, is frozen (i.e. is not relocated). The parameter freeze bound gives the
threshold ratio. At each iteration, any vertex that moves, unfreezes the neighboring vertices.

Return Values

The function odt optimize mesh 3 returns a value of type Mesh optimization return code which is:

• TIME LIMIT REACHED when the time limit is reached.

• MAX ITERATION NUMBER REACHED when odt optimize mesh 3 stops because it has performed
max iteration number iterations.

• CONVERGENCE REACHED when odt optimize mesh 3 stops because the convergence criterion is
achieved.

Example� �
// 100 iterations of Odt-smoothing
odt_optimize_mesh_3(c3t3, domain, parameters::max_iteration_number=100,

parameters::convergence=0);� �
See Also

CGAL::Mesh optimization return code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3241
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220
CGAL::exude mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3223
CGAL::perturb mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3225
CGAL::lloyd optimize mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3227
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CGAL::parameters::features

Definition

The function parameters::features provides a value of internal type Features to specify if 0 and 1-dimensional
features have to be taken into account. The provided value is a default value that triggers the representation of
corners and curve segments in the mesh when the domain is a model of MeshDomainWithFeatures 3.

#include <CGAL/refine mesh 3.h>

% parameters::internal::Features options

parameters::features()

Provides a Features options value such that 0 and 1-dimensional input features are taken into account if domain
is a model of the refined concept MeshDomainWithFeatures 3.

See Also

CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217,
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220,
CGAL::parameters::no features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3232.
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CGAL::parameters::no features

Definition

The function parameters::no features allows the user to prevent the handling of 0 and 1 dimensional features.
This is useful when the domain is a model of MeshDomainWithFeatures 3 and the user does not want corners
and curve segments to be accurately represented in the mesh.

#include <CGAL/refine mesh 3.h>

parameters::internal::Features options

parameters::no features()

Return a Features options value that prevents the mesh generator to take into account 0 and 1-dimensional input
features.

See Also

CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217,
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220,
CGAL::parameters::features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3231.
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CGAL::parameters::exude

Definition

The function parameters::exude allows the user to trigger a call to exude mesh 3 in the make mesh 3 and
refine mesh 3 mesh generation functions. It also allows the user to pass parameters to the optimization function
exude mesh 3 through these mesh generation functions.

#include <CGAL/refine mesh 3.h>

parameters::internal::Exude options

parameters::exude( double parameters::time limit = 0,
double parameters::sliver bound = 0)

Parameters

The parameters are named parameters. They are the same (i.e. they have the same name and the same default
values) as the parameters of exude mesh 3 function. See its manual page for further details.

Example� �
// Mesh generation with an exudation step
C3t3 c3t3 = make_mesh_3<c3t3>(domain, criteria, parameters::exude());
refine_mesh_3(c3t3, domain, criteria,

parameters::exude(parameters::time_limit=10));� �
See Also

CGAL::no exude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
CGAL::exude mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3223
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220
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CGAL::parameters::no exude

Definition

The function parameters::no exude allows the user to tell the mesh generation functions make mesh 3 and
refine mesh 3 that no exudation must be done.

#include <CGAL/refine mesh 3.h>

parameters::internal::Exude options

parameters::no exude()

Example� �
// Mesh generation without exudation
C3t3 c3t3 = make_mesh_3<c3t3>(domain, criteria, parameters::no_exude());� �
See Also

CGAL::parameters::exude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3233
CGAL::exude mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3223
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220
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CGAL::parameters::perturb

Definition

The function parameters::perturb allows the user to trigger a call to perturb mesh 3 in make mesh 3 and refine
mesh 3 mesh generation functions. It also allows the user to pass parameters to the optimization function
perturb mesh 3 through these mesh generation functions.

#include <CGAL/refine mesh 3.h>

parameters::internal::Perturb options

parameters::perturb( double parameters::time limit = 0,
double parameters::sliver bound = 0)

Parameters

The parameters are named parameters. They are the same (i.e. they have the same name and the same default
values) as the parameters of perturb mesh 3 function. See its manual page for further details.

Example� �
// Mesh generation with a perturbation step
C3t3 c3t3 = make_mesh_3<c3t3>(domain, criteria, parameters::perturb());
refine_mesh_3(c3t3, domain, criteria,

parameters::perturb(parameters::time_limit=10));� �
See Also

CGAL::no perturb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
CGAL::perturb mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3225
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220

3235



F
un

ct
io

n

CGAL::parameters::no perturb

Definition

The function parameters::no perturb allows the user to tell mesh generation global functions make mesh 3 and
refine mesh 3 that no perturbation must be done.

#include <CGAL/refine mesh 3.h>

parameters::internal::Perturb options

parameters::no perturb()

Parameters

This function takes no parameter.

Example� �
// Mesh generation without perturbation
C3t3 c3t3 = make_mesh_3<c3t3>(domain, criteria,

parameters::no_perturb());� �
See Also

CGAL::parameters::perturb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3235
CGAL::perturb mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3225
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220
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CGAL::parameters::lloyd

Definition

The function parameters::lloyd allows the user to trigger a call of lloyd optimize mesh 3 in the mesh genera-
tion functions make mesh 3 and refine mesh 3. It also allows the user to pass parameters to the optimization
function lloyd optimize mesh 3 through these mesh generation functions.

#include <CGAL/refine mesh 3.h>

parameters::internal::Lloyd options

parameters::lloyd( double parameters::time limit = 0,
std::size t parameters::max iteration number = 0,
double parameters::convergence = 0.02,
double parameters::freeze bound = 0.01)

Parameters

The parameters are named parameters. They are the same (i.e. they have the same name and the same default
values) as the parameters of the lloyd optimize mesh 3 function. See its manual page for further details.

Example� �
// Mesh generation with lloyd optimization step
C3t3 c3t3 = make_mesh_3<c3t3>(domain, criteria, parameters::lloyd());
refine_mesh_3(c3t3, domain, criteria,

parameters::lloyd(parameters::time_limit=10));� �
See Also

CGAL::no lloyd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
CGAL::lloyd optimize mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3227
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220
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CGAL::parameters::no lloyd

Definition

The function parameters::no lloyd allows the user to tell the mesh generation functions make mesh 3 and
refine mesh 3 that no lloyd optimization must be done.

#include <CGAL/refine mesh 3.h>

parameters::internal::Lloyd options

parameters::no lloyd()

Example� �
// Mesh generation without lloyd optimization
C3t3 c3t3 = make_mesh_3<c3t3>(domain, criteria, parameters::no_lloyd());� �
See Also

CGAL::parameters::lloyd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3237
CGAL::lloyd optimize mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3227
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220
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CGAL::parameters::odt

Definition

The function parameters::odt allows the user to trigger a call to odt optimize mesh 3 in make mesh 3 and
refine mesh 3 mesh optimization functions. It also allows the user to pass parameters to the optimization
function odt optimize mesh 3 through these mesh generation functions.

#include <CGAL/refine mesh 3.h>

parameters::internal::Odt options

parameters::odt( double parameters::time limit = 0,
std::size t parameters::max iteration number = 0,
double parameters::convergence = 0.02,
double parameters::freeze bound = 0.01)

Parameters

The parameters are named parameters. They are the same (i.e. they have the same name and the same default
values) as the parameters of odt optimize mesh 3 function. See its manual page for further details.

Example� �
// Mesh generation with odt optimization step
C3t3 c3t3 = make_mesh_3<c3t3>(domain, criteria, parameters::odt());
refine_mesh_3(c3t3, domain, criteria,

parameters::odt(parameters::time_limit=10));� �
See Also

CGAL::no odt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
CGAL::odt optimize mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3229
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220
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CGAL::parameters::no odt

Definition

The function parameters::no odt allows the user to tell the mesh generation functions make mesh 3 and refine
mesh 3 that no odt optimization must be done.

#include <CGAL/refine mesh 3.h>

parameters::internal::Odt options

parameters::no odt()

Example� �
// Mesh generation without odt optimization
C3t3 c3t3 = make_mesh_3<c3t3>(domain, criteria, parameters::no_odt());� �
See Also

CGAL::parameters::odt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3239
CGAL::odt optimize mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3229
CGAL::make mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3217
CGAL::refine mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3220
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CGAL::Mesh optimization return code

Definition

The enum Mesh optimization return code is the output of the global mesh optimization functions. This output
corresponds to mesh optimization process termination reasons. Note that depending on what parameters have
been set to the optimizer, each return value may represent a failure or a success.

#include <CGAL/Mesh optimization return code.h>

enum Mesh optimization return code { BOUND REACHED = 0,
TIME LIMIT REACHED,
CANT IMPROVE ANYMORE,
CONVERGENCE REACHED,
MAX ITERATION NUMBER REACHED}

Values

The following values are defined:

• BOUND REACHED: The given lower bound on mesh quality is reached.

• TIME LIMIT REACHED: The given time limit is reached.

• CANT IMPROVE ANYMORE: Mesh could not be improved anymore.

• CONVERGENCE REACHED: The given convergence bound is reached.

• MAX ITERATION NUMBER REACHED: The given maximum iteration number is reached.

See Also

CGAL::exude mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3223
CGAL::perturb mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3225
CGAL::lloyd optimize mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3227
CGAL::odt optimize mesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3229
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CGAL::Mesh facet topology

Definition

The enum Mesh facet topology is designed to tell which constraints have to be checked on each surface facet
during the mesh refinement process.

#include <CGAL/Mesh facet topology.h>

enum Mesh facet topology { FACET VERTICES ON SURFACE = 1,
FACET VERTICES ON SAME SURFACE PATCH,
FACET VERTICES ON SAME SURFACE PATCH WITH ADJACENCY

CHECK}

Values

The following values are defined:

• FACET VERTICES ON SURFACE: Each vertex of the facet have to be on the surface, on a curve seg-
ment, or on a corner.

• FACET VERTICES ON SAME SURFACE PATCH: The three vertices of a facet belonging to a surface
patch s have to be on the same surface patch s, on a curve segment or on a corner.

• FACET VERTICES ON SAME SURFACE PATCH WITH ADJACENCY CHECK: The three vertices
of a facet belonging to a surface patch s have to be on the same surface patch s, or on a curve segment
incident to the surface patch s or on a corner incident to the surface patch s.

See Also

CGAL::Mesh criteria 3<Tr> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3199,
CGAL::Mesh facet criteria 3<Tr> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3203.
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Chapter 52

3D Surface Subdivision Methods
Le-Jeng Andy Shiue
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52.1 Introduction

Subdivision methods are simple yet powerful ways to generate smooth surfaces from arbitrary polyhedral
meshes. Unlike spline-based surfaces (e.g NURBS) or other numeric-based modeling techniques, users of
subdivision methods do not need the mathematical knowledge of the subdivision methods. The natural intuition
of the geometry suffices to control the subdivision methods.

Subdivision method 3, designed to work on the class Polyhedron 3, aims to be easy to use and to extend.
Subdivision method 3 is not a class, but a namespace which contains four popular subdivision methods and
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their refinement functions. These include Catmull-Clark, Loop, Doo-Sabin and
√

3 subdivisions. Variations of
these methods can be easily extended by substituting the geometry computation of the refinement host.

52.2 Subdivision Method

In this chapter, we explain some fundamentals of subdivision methods. We focus only on the topics that help
you to understand the design of the package. [WW02] has details on subdivision methods. Some terminology
introduced in this section will be used again in later sections. If you are only interested in using a specific
subdivision method, Section 52.3 gives a quick tutorial on Catmull-Clark subdivision.

A subdivision method recursively refines a coarse mesh and generates an ever closer approximation to a smooth
surface. The coarse mesh can have arbitrary shape, but it has to be a 2-manifold. In a 2-manifold, every interior
point has a neighborhood homeomorphic to a 2D disk. Subdivision methods on non-manifolds have been
developed, but are not considered in Subdivision method 3. The chapter teaser shows the steps of Catmull-
Clark subdivision on a CAD model. The coarse mesh is repeatedly refined by a quadrisection pattern, and new
points are generated to approximate a smooth surface.

Many refinement patterns are used in practice. Subdivision method 3 supports the four most popular patterns,
and each of them is used by Catmull-Clark[CC78], Loop, Doo-Sabin and

√
3 subdivision (left to right in the fig-

ure). We name these patterns by their topological characteristics instead of the associated subdivision methods.
PQQ indicates the Primal Quadtrateral Quadrisection. PTQ indicates the Primal Triangle Quadrisection. DQQ
indicates the Dual Quadtrateral Quadrisection.

√
3 indicates the converging speed of the triangulation toward

the subdivision surface.

DQQ Sqrt3PQQ PTQ

The figure demonstrates these four refinement patterns on the 1-disk of a valence-5 vertex/facet. Refined meshes
are shown below the source meshes. Points on the refined mesh are generated by averaging neighbor points on
the source mesh. A graph, called stencil, determines the source neighborhood whose points contribute to the
position of a refined point. A refinement pattern usually defines more than one stencil. For example, the PQQ
refinement has a vertex-node stencil, which defines the 1-ring of an input vertex; an edge-node stencil, which
defines the 1-ring of an input edge; and a facet-node stencil, which defines an input facet. The stencils of
the PQQ refinement are shown in the following figure. The blue neighborhoods in the top row indicate the
corresponding stencils of the refined nodes in red.

3246



Vertex−nodeEdge−nodeFacet−node

Stencils with weights are called geometry masks. A subdivision method defines a geometry mask for each
stencil, and generates new points by averaging source points weighted by the mask. Geometry masks are
carefully chosen to meet requirements of certain surface smoothness and shape quality. The geometry masks of
Catmull-Clark subdivision are shown below.
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The weights shown here are unnormalized, and n is the valence of the vertex. The generated point, in red, is
computed by a summation of the weighted points. For example, a Catmull-Clark facet-node is computed by the
summation of 1/4 of each point on its stencil.

A stencil can have an unlimited number of geometry masks. For example, a facet-node of PQQ refinement may
be computed by the summation of 1/5 of each stencil node instead of 1/4. Although it is legal in Subdivision
method 3 to have any kind of geometry mask, the result surfaces may be odd, not smooth, or not even exist.
[WW02] explains the details on designing masks for a quality subdivision surface.

52.3 A Quick Example: Catmull-Clark Subdivision

Assuming you are familiar with Polyhedron 3, you can integrate Subdivision method 3 into your program
without much effort.� �
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Subdivision_method_3.h>
#include <iostream>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>

typedef CGAL::Simple_cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;

using namespace std;
using namespace CGAL;
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int main(int argc, char** argv) {
if (argc != 2) {

cout << "Usage: CatmullClark_subdivision d < filename" << endl;
cout << " d: the depth of the subdivision (0 < d < 10)" <<
endl;
cout << " filename: the input mesh (.off)" << endl;
return 0;

}

int d = argv[1][0] - ’0’;

Polyhedron P;
cin >> P; // read the .off

Subdivision_method_3::CatmullClark_subdivision(P,d);

cout << P; // write the .off

return 0;
}� �
File: examples/Subdivision_method_3/CatmullClark_subdivision.cpp

This example demonstrates the use of the Catmull-Clark subdivision method on a Polyhedron 3. The polyhe-
dron is restricted in the Cartesian space, where most subdivision applications are designed to work. There is
only one line deserving a detailed explanation:� �
Subdivision_method_3::CatmullClark_subdivision(P,d);� �
Subdivision method 3 specifies the namespace of our subdivision functions. CatmullClark subdivision(P,d)
computes the Catmull-Clark subdivision surface of the polyhedron P after d iterations of the refinements. The
polyhedron P is passed by reference, and is modified (i.e. subdivided) by the subdivision function.

This example shows how to subdivide a simple Polyhedron 3 with Subdivision method 3. An application-
defined polyhedron might use a specialized kernel and/or a specialized internal container. There are two major
restrictions on the application-defined polyhedron to work with Subdivision method 3.

• Point 3 is type-defined by the kernel. Without Point 3 and the associated operations being defined,
Subdivision method 3 can not know how to compute and store the new vertex points.

• The primitives (such as vertices, halfedges and facets) in the internal container are sequentially ordered
(e.g. std::vector and std::list). This implies that the iterators traverse the primitives in the order of their
creations/insertions.

Section 52.5 gives detailed explanations on those two restrictions.

52.4 Catmull-Clark Subdivision

Subdivision method 3 is designed to allow customization of the subdivision methods. This section explains
the implementation of the Catmull-Clark subdivision function in Subdivision method 3. The implementation
demonstrates the customization of the PQQ refinement to Catmull-Clark subdivision.
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When a subdivision method is developed, a refinement pattern is chosen, and then a set of geometry masks are
developed to position the new points. There are three key components to implement a subdivision method:

• a mesh data structure that can represent arbitrary 2-manifolds,

• a process that refines the mesh data structure,

• and the geometry masks that compute the new points.

E. Catmull and J. Clark picked the PQQ refinement for their subdivision method, and developed a set of ge-
ometry masks to generate (or more precisely, to approximate) the B-spline surface from the control mesh.
Subdivision method 3 provides a function that glues all three components of the Catmull-Clark subdivision
method.� �
template <class Polyhedron_3, template <typename> class Mask>
void PQQ(Polyhedron_3& p, Mask<Polyhedron_3> mask, int depth)� �
Polyhedron 3 is a generic mesh data structure for arbitrary 2-manifolds. PQQ(), which refines the control mesh
p, is a refinement host that uses a policy class Mask<Polyhedron 3> as part of it geometry computation. During
the refinement, PQQ() computes and assigns new points by cooperating with the mask. To implement Catmull-
Clark subdivision, Mask, the geometry policy, has to realize the geometry masks of Catmull-Clark subdivision.
depth specifies the iterations of the refinement on the control mesh.

To implement the geometry masks, we need to know how a refinement host communicates with its geometry
masks. The PQQ refinement defines three stencils, and hence three geometry masks are required for Catmull-
Clark subdivision. The following class defines the interfaces of the stencils for the PQQ refinement.� �
template <class Polyhedron_3>
class PQQ_stencil_3 {

void facet_node(Facet_handle facet, Point_3& pt);
void edge_node(Halfedge_handle edge, Point_3& pt);
void vertex_node(Vertex_handle vertex, Point_3& pt);

};� �
Each class function in PQQ stencil 3 computes a new point based on the neighborhood of the primitive handle,
and assigns the new point to Point 3& pt.

We realize each class function with the geometry masks of Catmull-Clark subdivision.� �
template <class Polyhedron_3>
class CatmullClark_mask_3 {

void facet_node(Facet_handle facet, Point_3& pt) {
Halfedge_around_facet_circulator hcir = facet->facet_begin();
int n = 0;
Point_3 p(0,0,0);
do {

p = p + (hcir->vertex()->point() - ORIGIN);
++n;

} while (++hcir != facet->facet_begin());
pt = ORIGIN + (p - ORIGIN)/FT(n);

}
void edge_node(Halfedge_handle edge, Point_3& pt) {

Point_3 p1 = edge->vertex()->point();
Point_3 p2 = edge->opposite()->vertex()->point();
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Point_3 f1, f2;
facet_node(edge->facet(), f1);
facet_node(edge->opposite()->facet(), f2);
pt = Point_3((p1[0]+p2[0]+f1[0]+f2[0])/4,

(p1[1]+p2[1]+f1[1]+f2[1])/4,
(p1[2]+p2[2]+f1[2]+f2[2])/4 );

}
void vertex_node(Vertex_handle vertex, Point_3& pt) {

Halfedge_around_vertex_circulator vcir = vertex->vertex_begin();
int n = circulator_size(vcir);

FT Q[] = {0.0, 0.0, 0.0}, R[] = {0.0, 0.0, 0.0};
Point_3& S = vertex->point();

Point_3 q;
for (int i = 0; i < n; i++, ++vcir) {

Point_3& p2 = vcir->opposite()->vertex()->point();
R[0] += (S[0]+p2[0])/2;
R[1] += (S[1]+p2[1])/2;
R[2] += (S[2]+p2[2])/2;
facet_node(vcir->facet(), q);
Q[0] += q[0];
Q[1] += q[1];
Q[2] += q[2];

}
R[0] /= n; R[1] /= n; R[2] /= n;
Q[0] /= n; Q[1] /= n; Q[2] /= n;

pt = Point_3((Q[0] + 2*R[0] + S[0]*(n-3))/n,
(Q[1] + 2*R[1] + S[1]*(n-3))/n,
(Q[2] + 2*R[2] + S[2]*(n-3))/n );

}
};� �
This example shows the default implementation of Catmull-Clark masks in Subdivision method 3. This de-
fault implementation assumes the types (such as Point 3 and Facet handle) are defined within Polyhedron 3.
CatmullClark mask 3 is designed to work on a Polyhedron 3 with the Cartesian kernel. You may need to
rewrite the geometry computation to match the kernel geometry of your application.

To invoke the Catmull-Clark subdivision method, we call PQQ() with the Catmull-Clark masks we just defined.� �
PQQ(p, CatmullClark_mask_3<Polyhedron_3>(), depth);� �
Loop, Doo-Sabin and

√
3 subdivisions are implemented in the similar process: pick a refinement host and

implement the geometry policy. The key of developing your own subdivision method is implementing the right
combination of the refinement host and the geometry policy. It is explained in the next two sections.

52.5 Refinement Host

A refinement host is a template function of a polyhedron class and a geometry mask class. It refines the input
polyhedron, and computes new points through the geometry masks. Subdivision method 3 supports four refine-
ment hosts: primal quadrilateral quadrisection (PQQ), primal triangle quadrisection (PTQ), dual quadrilateral
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quadrisection (DQQ) and
√

3 triangulation. Respectively, they are used by Catmull-Clark, Loop, Doo-Sabin
and
√

3 subdivision.

DQQ Sqrt3PQQ PTQ

� �
namespace Subdivision_method_3 {

template <class Polyhedron_3, template <typename> class Mask>
void PQQ(Polyhedron_3& p, Mask<Polyhedron_3> mask, int step);

template <class Polyhedron_3, template <typename> class Mask>
void PTQ(Polyhedron_3& p, Mask<Polyhedron_3> mask, int step);

template <class Polyhedron_3, template <typename> class Mask>
void DQQ(Polyhedron_3& p, Mask<Polyhedron_3> mask, int step)

template <class Polyhedron_3, template <typename> class Mask>
void Sqrt3(Polyhedron_3& p, Mask<Polyhedron_3> mask, int step)

}� �
The polyhedron class is a specialization of Polyhedron 3, and the mask is a policy class realizing the geometry
masks of the subdivision method.

A refinement host refines the input polyhedron, maintains the stencils (i.e., the mapping between the control
mesh and the refined mesh), and calls the geometry masks to compute the new points. In Subdivision method
3, refinements are implemented as a sequence of connectivity operations (mainly Euler operations). The order
of the connectivity operations plays a key role when maintaining stencils. By matching the order of the source
submeshes to the refined vertices, no flag in the primitives is required to register the stencils. It avoids the data
dependency of the refinement host on the polyhedron class. To make the ordering trick work, the polyhedron
class must have a sequential container, such as a vector or a linked-list, as the internal storage. A sequential
container guarantees that the iterators of the polyhedron always traverse the primitives in the order of their
insertions. Non-sequential structures such as trees or maps do not provide the required ordering, and hence can
not be used with Subdivision method 3.

Although Subdivision method 3 does not require flags to support the refinements and the stencils, it still needs
to know how to compute and store the geometry data (i.e. the points). Subdivision method 3 expects that the
typename Point 3 is defined in the geometry kernel of the polyhedron (i.e. the Polyhedron 3::Traits::Kernel).
A point of the type Point 3 is returned by the geometry policy and is then assigned to the new vertex. The
geometry policy is explained in next section.

Refinement hosts PQQ and DQQ work on a general polyhedron, and PTQ and Sqrt3 work on a triangulated
polyhedron. The result of PTQ and Sqrt3 on a non-triangulated polyhedron is undefined. Subdivision method 3
does not verify the precondition of the mesh characteristics before the refinement.

For details of the refinement implementation, interested users should refer to [SP05].
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52.6 Geometry Policy

A geometry policy defines a set of geometry masks. Each geometry mask is realized as a member function that
computes new points of the subdivision surface.

Each geometry mask receives a primitive handle (e.g. Halfedge handle) of the control mesh, and returns a
Point 3 to the subdivided vertex. The function collects the vertex neighbors of the primitive handle (i.e. nodes
on the stencil), and computes the new point based on the neighbors and the mask (i.e. the stencil weights).
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This figure shows the geometry masks of Catmull-Clark subdivision. The weights shown here are unnormalized,
and n is the valence of the vertex. The new points are computed by the summation of the weighted points on
their stencils. Following codes show an implementation of the geometry mask of the facet-node. The complete
listing of a Catmull-Clark geometry policy is in the Section 52.4.� �
template <class Polyhedron_3>
class CatmullClark_mask_3 {

void facet_node(Facet_handle facet, Point_3& pt) {
Halfedge_around_facet_circulator hcir = facet->facet_begin();
int n = 0;
Point_3 p(0,0,0);
do {

p = p + (hcir->vertex()->point() - ORIGIN);
++n;

} while (++hcir != facet->facet_begin());
pt = ORIGIN + (p - ORIGIN)/FT(n);

}
}� �
In this example, the computation is based on the assumption that the Point 3 is the CGAL::Point 3. It is an
assumption, but not a restriction. You are allowed to use any point class as long as it is defined as the Point 3 in
your polyhedron. You may need to modify the geometry policy to support the computation and the assignment
of the specialized point. This extension is not unusual in graphics applications. For example, you might want to
subdivide the texture coordinates for your subdivision surface.

The refinement host of Catmull-Clark subdivision requires three geometry masks for polyhedrons without open
boundaries: a vertex-node mask, an edge-node mask, and a facet-node mask. To support polyhedrons with
boundaries, a border-node mask is also required. The border-node mask for Catmull-Clark subdivision is listed
below, where ept returns the new point splitting edge and vpt returns the new point on the vertex pointed by
edge.� �

void border_node(Halfedge_handle edge, Point_3& ept, Point_3& vpt) {
Point_3& ep1 = edge->vertex()->point();
Point_3& ep2 = edge->opposite()->vertex()->point();
ept = Point_3((ep1[0]+ep2[0])/2, (ep1[1]+ep2[1])/2,
(ep1[2]+ep2[2])/2);
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Halfedge_around_vertex_circulator vcir = edge->vertex_begin();
Point_3& vp1 = vcir->opposite()->vertex()->point();
Point_3& vp0 = vcir->vertex()->point();
Point_3& vp_1 = (--vcir)->opposite()->vertex()->point();
vpt = Point_3((vp_1[0] + 6*vp0[0] + vp1[0])/8,

(vp_1[1] + 6*vp0[1] + vp1[1])/8,
(vp_1[2] + 6*vp0[2] + vp1[2])/8 );

}� �
The mask interfaces of all four refinement hosts are listed below. DQQ stencil 3 and Sqrt3 stencil 3 do not
have the border-node stencil because the refinement hosts of DQQ and

√
3 refinements do not support global

boundaries in the current release. This might be changed in the future releases.� �
template <class Polyhedron_3>
class PQQ_stencil_3 {

void facet_node(Facet_handle, Point_3&);
void edge_node(Halfedge_handle, Point_3&);
void vertex_node(Vertex_handle, Point_3&);

void border_node(Halfedge_handle, Point_3&, Point_3&);
};

template <class Polyhedron_3>
class PTQ_stencil_3 {

void edge_node(Halfedge_handle, Point_3&);
void vertex_node(Vertex_handle, Point_3&);

void border_node(Halfedge_handle, Point_3&, Point_&);
};

template <class Polyhedron_3>
class DQQ_stencil_3 {
public:

void corner_node(Halfedge_handle edge, Point_3& pt);
};

template <class Polyhedron_3>
class Sqrt3_stencil_3 {
public:

void vertex_node(Vertex_handle vertex, Point_3& pt);
};� �
The source codes of CatmullClark mask 3, Loop mask 3, DooSabin mask 3, and Sqrt3 mask 3 are the best
sources of learning these stencil interfaces.

52.7 The Four Subdivision Methods

Subdivision method 3 supports Catmull-Clark, Loop, Doo-Sabin and
√

3 subdivisions by specializing their re-
spective refinement hosts. They are designed to work on a Polyhedron 3. If your application uses a polyhedron
with a specialized geometry kernel, you need to specialize the refinement host with a geometry policy based on
that kernel.
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� �
namespace Subdivision_method_3 {

template <class Polyhedron_3>
void CatmullClark_subdivision(Polyhedron_3& p, int step = 1) {

PQQ(p, CatmullClark_mask_3<Polyhedron_3>(), step);
}

template <class Polyhedron_3>
void Loop_subdivision(Polyhedron_3& p, int step = 1) {

PTQ(p, Loop_mask_3<Polyhedron_3>() , step);
}

template <class Polyhedron_3>
void DooSabin_subdivision(Polyhedron_3& p, int step = 1) {

DQQ(p, DooSabin_mask_3<Polyhedron_3>(), step);
}

template <class Polyhedron_3>
void Sqrt3_subdivision(Polyhedron_3& p, int step = 1) {

Sqrt3(p, Sqrt3_mask_3<Polyhedron_3>(), step);
}

}� �
The following example demonstrates the use of Doo-Sabin subdivision on a polyhedral mesh.� �
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Subdivision_method_3.h>

#include <iostream>

#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>

typedef CGAL::Simple_cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;

using namespace std;
using namespace CGAL;

int main(int argc, char **argv) {
if (argc != 2) {

cout << "Usage: DooSabin_subdivision d < filename" << endl;
cout << " d: the depth of the subdivision (0 < d < 10)" <<
endl;
cout << " filename: the input mesh (.off)" << endl;
return 0;

}

int d = argv[1][0] - ’0’;

Polyhedron P;
cin >> P; // read the .off

Subdivision_method_3::DooSabin_subdivision(P,d);
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cout << P; // write the .off

return 0;
}� �
File: examples/Subdivision_method_3/DooSabin_subdivision.cpp

52.8 Other Subdivision Methods

Subdivision method 3 supports four practical subdivision methods on a Cartesian Polyhedron 3. More subdi-
vision methods can be supported through the specialization of refinement hosts with custom geometry masks.
The following example develops a subdivision method generating an improved Loop subdivision surface.� �
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Subdivision_method_3.h>

#include <cstdio>
#include <iostream>

#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>

typedef CGAL::Simple_cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;

using namespace std;
using namespace CGAL;

// ======================================================================
template <class Poly>
class WLoop_mask_3 {

typedef Poly Polyhedron;

typedef typename Polyhedron::Vertex_iterator Vertex_iterator;
typedef typename Polyhedron::Halfedge_iterator Halfedge_iterator;
typedef typename Polyhedron::Facet_iterator Facet_iterator;

typedef typename Polyhedron::Halfedge_around_facet_circulator

Halfedge_around_facet_circulator;
typedef typename Polyhedron::Halfedge_around_vertex_circulator

Halfedge_around_vertex_circulator;

typedef typename Polyhedron::Traits Traits;
typedef typename Traits::Kernel Kernel;

typedef typename Kernel::FT FT;
typedef typename Kernel::Point_3 Point;
typedef typename Kernel::Vector_3 Vector;
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public:
void edge_node(Halfedge_iterator eitr, Point& pt) {

Point& p1 = eitr->vertex()->point();
Point& p2 = eitr->opposite()->vertex()->point();
Point& f1 = eitr->next()->vertex()->point();
Point& f2 = eitr->opposite()->next()->vertex()->point();

pt = Point((3*(p1[0]+p2[0])+f1[0]+f2[0])/8,
(3*(p1[1]+p2[1])+f1[1]+f2[1])/8,
(3*(p1[2]+p2[2])+f1[2]+f2[2])/8 );

}
void vertex_node(Vertex_iterator vitr, Point& pt) {

double R[] = {0.0, 0.0, 0.0};
Point& S = vitr->point();

Halfedge_around_vertex_circulator vcir = vitr->vertex_begin();
std::size_t n = circulator_size(vcir);
for (std::size_t i = 0; i < n; i++, ++vcir) {

Point& p = vcir->opposite()->vertex()->point();
R[0] += p[0]; R[1] += p[1]; R[2] += p[2];

}
if (n == 6) {

pt = Point((10*S[0]+R[0])/16, (10*S[1]+R[1])/16,
(10*S[2]+R[2])/16);
} else if (n == 3) {

double B = (5.0/8.0 - std::sqrt(3+2*std::cos(6.283/n))/64.0)/n;
double A = 1-n*B;
pt = Point((A*S[0]+B*R[0]), (A*S[1]+B*R[1]), (A*S[2]+B*R[2]));

} else {
double B = 3.0/8.0/n;
double A = 1-n*B;
pt = Point((A*S[0]+B*R[0]), (A*S[1]+B*R[1]), (A*S[2]+B*R[2]));

}
}
void border_node(Halfedge_iterator eitr, Point& ept, Point& vpt) {

Point& ep1 = eitr->vertex()->point();
Point& ep2 = eitr->opposite()->vertex()->point();
ept = Point((ep1[0]+ep2[0])/2, (ep1[1]+ep2[1])/2, (ep1[2]+ep2[2])/2);

Halfedge_around_vertex_circulator vcir = eitr->vertex_begin();
Point& vp1 = vcir->opposite()->vertex()->point();
Point& vp0 = vcir->vertex()->point();
Point& vp_1 = (--vcir)->opposite()->vertex()->point();
vpt = Point((vp_1[0] + 6*vp0[0] + vp1[0])/8,

(vp_1[1] + 6*vp0[1] + vp1[1])/8,
(vp_1[2] + 6*vp0[2] + vp1[2])/8 );

}
};

int main(int argc, char **argv) {
if (argc != 2) {

cout << "Usage: Customized_subdivision d < filename" << endl;
cout << " d: the depth of the subdivision (0 < d < 10)" <<
endl;
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cout << " filename: the input mesh (.off)" << endl;
return 0;

}

int d = argv[1][0] - ’0’;

Polyhedron P;
cin >> P; // read the .off

Subdivision_method_3::PTQ(P, WLoop_mask_3<Polyhedron>(), d);

cout << P; // write the .off

return 0;
}� �
File: examples/Subdivision_method_3/Customized_subdivision.cpp

The points generated by the geometry mask are semantically required to converge to a smooth surface. This is
the requirement imposed by the theory of the subdivision surface. Subdivision method 3 does not enforce this
requirement, nor will it verify the smoothness of the subdivided mesh. Subdivision method 3 guarantees the
topological properties of the subdivided mesh. A genus-n 2-manifold is assured to be subdivided into a genus-n
2-manifold. But when specialized with ill-designed geometry masks, Subdivision method 3 may generate a
surface that is odd, not smooth, or not even exist.
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3D Surface Subdivision Methods
Reference Manual
Le-Jeng Andy Shiue

Subdivision methods recursively refine the control mesh (i.e. the input mesh) and generate points approximating
the limit surface. Designed to work on the class Polyhedron 3, Subdivision method 3 aims to be easy to use
and to extend. Subdivision method 3 is not a class, but a namespace which consists of four popular subdivision
methods and their refinement hosts. Supported subdivision methods include Catmull-Clark, Loop, Doo-Sabin
and
√

3 subdivisions. Their respective refinement hosts are PQQ, PTQ, DQQ and
√

3 refinements. Variations
of those methods can be easily extended by substituting the geometry computation of the refinement host.
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CGAL::Subdivision method 3

Definition

A subdivision method recursively refines a coarse mesh and generates an ever closer approximation to a smooth
surface. Subdivision method 3 consists of four subdivision methods and their refinement hosts. Each refinement
host is a template function of a polyhedron class and a geometry policy class. It refines the connectivity of the
control mesh and computes the geometry of the refined mesh. The geometry computation is dedicated to the
custom geometry policy. A geometry policy consists of functions that compute the new point based on the
subdivision stencil. A stencil defines the footprint (a submesh of the control mesh) of a new point.

The four supported refinement hosts are the primal quadrilateral quadrisection (PQQ), the primal triangle quadri-
section (PTQ), the dual quadrilateral quadrisection (DQQ), and the

√
3 triangulation. These refinements are

respectively used in Catmull-Clark, Loop, Doo-Sabin and
√

3 subdivision.

#include <CGAL/Subdivision method 3.h>

Refinement Host

A refinement host is a template function of a polyhedron class and a geometry mask class. It refines the in-
put polyhedron, and computes new points through the geometry masks. Subdivision method 3 supports four
refinement hosts: PQQ, PTQ, DQQ and Sqrt3.

DQQ Sqrt3PQQ PTQ

template <class Polyhedron 3, template <typename> class Mask>
void PQQ( Polyhedron 3& p, Mask<Polyhedron 3> mask, int step = 1)

applies the PQQ refinement on the control mesh p step times. The geometry of the refined
mesh is computed by the geometry policy mask. This function overwrites the control mesh p
with the refined mesh.

template <class Polyhedron 3, template <typename> class Mask>
void PTQ( Polyhedron 3& p, Mask<Polyhedron 3> mask, int step = 1)

applies the PTQ refinement on the control mesh p step times, where p contains only triangle
facets. The geometry of the refined mesh is computed by the geometry policy mask. This
function overwrites the control mesh p with the refined mesh. The result of a non-triangle
mesh p is undefined.
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template <class Polyhedron 3, template <typename> class Mask>
void DQQ( Polyhedron 3& p, Mask<Polyhedron 3> mask, int step = 1)

applies the DQQ refinement on the control mesh p step times. The geometry of the refined
mesh is computed by the geometry policy mask. This function overwrites the control mesh p
with the refined mesh.

template <class Polyhedron 3, template <typename> class Mask>
void Sqrt3( Polyhedron 3& p, Mask<Polyhedron 3> mask, int step = 1)

applies the
√

3 triangulation on the control mesh p step times, where p contains only triangle
facets. The geometry of the refined mesh is computed by the geometry policy mask. This
function overwrites the control mesh p with the refined mesh. The result of a non-triangle
mesh p is undefined.

Subdivision Method

template <class Polyhedron 3>
void CatmullClark subdivision( Polyhedron 3& p, int step = 1)

applies Catmull-Clark subdivision step times on the control mesh p. This function overwrites the
control mesh p with the subdivided mesh.

template <class Polyhedron 3>
void Loop subdivision( Polyhedron 3& p, int step = 1)

applies Loop subdivision step times on the control mesh p. This function overwrites the control
mesh p with the subdivided mesh.

template <class Polyhedron 3>
void DooSabin subdivision( Polyhedron 3& p, int step = 1)

applies Doo-Sabin subdivision step times on the control mesh p. This function overwrites the
control mesh p with the subdivided mesh.

template <class Polyhedron 3>
void Sqrt3 subdivision( Polyhedron 3& p, int step = 1)

applies
√

3 subdivision step times on the control mesh p. This function overwrites the control
mesh p with the subdivided mesh.

See Also

CGAL::CatmullClark mask 3<Polyhedron 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3268
CGAL::Loop mask 3<Polyhedron 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3270
CGAL::Sqrt3 mask 3<Polyhedron 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3272
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Example

This example program subdivides a polyhedral mesh with Catmull-Clark subdivision.� �
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Subdivision_method_3.h>
#include <iostream>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>

typedef CGAL::Simple_cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;

using namespace std;
using namespace CGAL;

int main(int argc, char** argv) {
if (argc != 2) {

cout << "Usage: CatmullClark_subdivision d < filename" << endl;
cout << " d: the depth of the subdivision (0 < d < 10)" <<
endl;
cout << " filename: the input mesh (.off)" << endl;
return 0;

}

int d = argv[1][0] - ’0’;

Polyhedron P;
cin >> P; // read the .off

Subdivision_method_3::CatmullClark_subdivision(P,d);

cout << P; // write the .off

return 0;
}� �
File: examples/Subdivision_method_3/CatmullClark_subdivision.cpp
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PQQMask 3

Required member functions for the PQQMask 3 concept. This policy concept of geometric computations is
used in CGAL::Subdivision method 3::PQQ<Polyhedron 3, Mask>.

Operations

void mask.facet node( Facet handle facet, Point 3& pt)

computes the facet-point pt based on the neighborhood of the
facet f .

void mask.edge node( Edge handle e, Point 3& pt)

computes the edge-point pt based on the neighborhood of the
edge e.

void mask.vertex node( Vertex handle v, Point 3& pt)

computes the vertex-point pt based on the neighborhood of
the vertex v.

void mask.border node( Halfedge handle e, Point 3& ept, Point 3& vpt)

computes the edge-point ept and the vertex-point vpt based
on the neighborhood of the border edge e.

ept

PQQ

e vpt

Has Models

CGAL::CatmullClark mask 3<Polyhedron 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3268

See Also

CGAL::Subdivision method 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3261
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PTQMask 3

Required member functions for the PTQMask 3 concept. This policy concept of geometric computations is
used in CGAL::Subdivision method 3::PTQ<Polyhedron 3, Mask>.

Operations

void mask.edge node( Edge handle e, Point 3& pt)

computes the edge-point pt based on the neighborhood of the
edge e.

void mask.vertex node( Vertex handle v, Point 3& pt)

computes the vertex-point pt based on the neighborhood of
the vertex v.

void mask.border node( Halfedge handle e, Point 3& ept, Point 3& vpt)

computes the edge-point ept and the vertex-point vpt based
on the neighborhood of the border edge e.

vpt

PTQ

e ept

Has Models

CGAL::Loop mask 3<Polyhedron 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3270

See Also

CGAL::Subdivision method 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3261
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DQQMask 3

Required member functions for the DQQMask 3 concept. This policy concept of geometric computations is
used in CGAL::Subdivision method 3::DQQ<Polyhedron 3, Mask>.

Operations

void mask.corner node( Halfedge handle he, Point 3& pt)

computes the subdivided point pt based on the neighborhood
of the vertex pointed by the halfedge he.

DQQ
he pt

Has Models

CGAL::DooSabin mask 3<Polyhedron 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3271

See Also

CGAL::Subdivision method 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3261
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Sqrt3Mask 3

Required member functions for the Sqrt3Mask 3 concept. This policy concept of geometric computations is
used in CGAL::Subdivision method 3::Sqrt3<Polyhedron 3, Mask>.

Operations

void mask.facet node( Facet handle f, Point 3& pt)

computes the subdivided point pt based on the neighborhood
of the facet f .

void mask.vertex node( Vertex handle v, Point& pt)

computes the subdivided point pt based on the neighborhood
of the vertex v.

Has Models

CGAL::Sqrt3 mask 3<Polyhedron 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3272

See Also

CGAL::Subdivision method 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3261
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CGAL::CatmullClark mask 3<Polyhedron 3>

Definition

A stencil determines a source neighborhood whose points contribute to the position of a refined point. The
geometry mask of a stencil specifies the computation on the nodes of the stencil. CatmullClark mask 3<
Polyhedron 3> implements the geometry masks of Catmull-Clark subdivision on a Polyhedron 3<Cartesian>.

#include <CGAL/Subdivision mask 3.h>

Parameters

The full template declaration of CatmullClark mask 3<Polyhedron 3> states one template parameter:

template < class Polyhedron 3> class CatmullClark mask 3;

The only parameter requires a Polyhedron 3 as the argument. The Polyhedron 3 should be specialized with the
Cartesian kernel, which defines the Point 3 for the vertices.

Creation

CatmullClark mask 3<Polyhedron 3> CC; default constructor.

Stencil functions

void CC.facet node( Facet handle f, Point 3& pt)

computes the Catmull-Clark facet-point pt of the facet f .

void CC.edge node( Edge handle e, Point 3& pt)

computes the Catmull-Clark edge-point pt of the edge e.

void CC.vertex node( Vertex handle v, Point 3& pt)

computes the Catmull-Clark vertex-point pt of the vertex v.

void CC.border node( Halfedge handle e, Point 3& ept, Point 3& vpt)

computes the Catmull-Clark edge-point ept and the Catmull-Clark vertex-point vpt of the
border edge e.
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ept

PQQ

e vpt

See Also

CGAL::Subdivision method 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3261
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CGAL::Loop mask 3<Polyhedron 3>

Definition

A stencil determines a source neighborhood whose points contribute to the position of a refined point. The
geometry mask of a stencil specifies the computation on the nodes of the stencil. Loop mask 3<Polyhedron 3>
implements the geometry masks of Loop subdivision on a triangulated Polyhedron 3<Cartesian>.

#include <CGAL/Subdivision mask 3.h>

Parameters

The full template declaration of Loop mask 3<Polyhedron 3> states one template parameter:

template < class Polyhedron 3> class Loop mask 3;

The only parameter requires a Polyhedron 3 as the argument. The Polyhedron 3 should be specialized with the
Cartesian kernel, which defines the Point 3 for the vertices.

Creation

Loop mask 3<Polyhedron 3> L; default constructor.

Stencil functions

void L.edge node( Edge handle e, Point 3& pt)

computes the Loop edge-point pt of the edge e.

void L.vertex node( Vertex handle v, Point 3& pt)

computes the Loop vertex-point pt of the vertex v.

void L.border node( Halfedge handle e, Point 3& ept, Point 3& vpt)

computes the Loop edge-point ept and the Loop vertex-point vpt of the border edge e.

vpt

PTQ

e ept

See Also

CGAL::Subdivision method 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3261
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CGAL::DooSabin mask 3<Polyhedron 3>

Definition

A stencil determines a source neighborhood whose points contribute to the position of a refined point. The ge-
ometry mask of a stencil specifies the computation on the nodes of the stencil. DooSabin mask 3<Polyhedron
3> implements the geometry masks of Doo-Sabin subdivision on a Polyhedron 3<Cartesian>.

#include <CGAL/Subdivision mask 3.h>

Parameters

The full template declaration of DooSabin mask 3<Polyhedron 3> states one template parameter:

template < class Polyhedron 3> class DooSabin mask 3;

The only parameter requires a Polyhedron 3 as the argument. The Polyhedron 3 should be specialized with the
Cartesian kernel, which defines the Point 3 for the vertices.

Creation

DooSabin mask 3<Polyhedron 3> DS; default constructor.

Stencil functions

void DS.corner node( Halfedge handle he, Point 3& pt)

computes the Doo-Sabin point pt of the vertex pointed by the halfedge he.

DQQ
he pt

See Also

CGAL::Subdivision method 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3261
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CGAL::Sqrt3 mask 3<Polyhedron 3>

Definition

A stencil determines a source neighborhood whose points contribute to the position of a refined point. The
geometry mask of a stencil specifies the computation on the nodes of the stencil. Sqrt3 mask 3<Polyhedron 3>
implements the geometry masks of

√
3 subdivision on a triangulated Polyhedron 3<Cartesian>.

#include <CGAL/Subdivision mask 3.h>

Parameters

The full template declaration of Sqrt3 mask 3<Polyhedron 3> states one template parameter:

template < class Polyhedron 3> class Sqrt3 mask 3;

The only parameter requires a Polyhedron 3 as the argument. The Polyhedron 3 should be specialized with the
Cartesian kernel, which defines the Point 3 for the vertices.

Creation

Sqrt3 mask 3<Polyhedron 3> S; default constructor.

Stencil functions

void S.facet node( Facet handle f, Point 3& pt)

computes the
√

3 facet-point pt of the facet f .

void S.vertex node( Vertex handle v, Point& pt)

computes the
√

3 vertex-point pt of the vertex v.

See Also

CGAL::Subdivision method 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3261
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Chapter 53

Triangulated Surface Mesh Simplification
Fernando Cacciola
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53.1 Introduction

Surface mesh simplification is the process of reducing the number of faces used in the surface while keeping
the overall shape, volume and boundaries preserved as much as possible. It is the opposite of subdivision.

The algorithm presented here can simplify any oriented 2-manifold surface, with any number of connected
components, with or without boundaries (border or holes) and handles (arbitrary genus), using a method known
as edge collapse. Roughly speaking, the method consists of iteratively replacing an edge with a single vertex,
removing 2 triangles per collapse.

Edges are collapsed according to a priority given by a user-supplied cost function, and the coordinates of the
replacing vertex are determined by another user-supplied placement function. The algorithm terminates when a
user-supplied stop predicate is met, such as reaching the desired number of edges.

The algorithm implemented here is generic in the sense that it does not require the surface to be of a particular
type. Instead, it defines the concept of a EdgeCollapsableMesh, which presents the surface as being a halfedge
data structure, and any surface that is a model of that concept can be simplified. The concept is defined not in
terms of a monolithic class, but in terms of a set of functions and traits, making it easy to adapt any concrete
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surface type, even if it is not a halfedge data structure at all. In particular, the concept definition follows the
design of the Boost Graph Library (BGL) [SLL02].

The design is policy-based (http://en.wikipedia.org/wiki/Policy-based_design), meaning that you
can customize some aspects of the process by passing a set of policy objects. Each policy object specifies a
particular aspect of the algorithm, such as how edges are selected and where the replacement vertex is placed.
All policies have a sensible default. Furthermore, the API uses the so-called named-parameters technique
which allows you to pass only the relevant parameters, in any order, omitting those parameters whose default is
appropriate.

53.2 Overview of the Simplification Process

The free function that implements the simplification algorithm takes not only the surface and the desired stop
predicate but a number of additional parameters which control and monitor the simplification process. This
section briefly describes the process in order to set the background for the discussion of the parameters to the
algorithm.

There are two slightly different ”edge” collapse operations. One is known as edge-collapse while the other is
known as halfedge-collapse. Given an edge ’e’ joining vertices ’w’ and ’v’, the edge-collapse operation replaces
’e’,’w’ and ’v’ for a new vertex ’r’, while the halfedge-collapse operation pulls ’v’ into ’w’, dissapearing ’e’ and
leaving ’w’ in place. In both cases the operation removes the edge ’e’ along with the 2 triangles adjacent to it.

This package uses the halfedge-collapse operation, which is implemented by removing, additionally, 1 vertex
(’v’) and 2 edges, one per adjacent triangle. It optionally moves the remaining vertex (’w’) into a new position,
called placement, in which case the net effect is the same as in the edge-collapse operation.

Naturally, the surface that results from an edge collapse deviates from the initial surface by some amount, and
since the goal of simplification is to reduce the number of triangles while retaining the overall look of the surface
as much as possible, it is necessary to measure such a deviation. Some methods attempt to measure the total
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deviation from the initial surface to the completely simplified surface, for example, by tracking an accumulated
error while keeping a history of the simplification changes. Other methods, like the one implemented in this
package, attempt to measure only the cost of each individual edge collapse (the local deviation introduced by a
single simplification step) and plan the entire process as a sequence of steps of increasing cost.

Global error tracking methods produce highly accurate simplifications but take up a lot of additional space.
Cost-driven methods, like the one in this package, produce slightly less accurate simplifications but take up
much less additional space, even none in some cases.

The cost-driven method implemented in this package is mainly based on [LT98, LT99], with contributions from
[HDD+93], [GH97] and [DEGN99].

The algorithm proceeds in two stages. In the first stage, called collection stage, an initial collapse cost is
assigned to each and every edge in the surface. Then in the second stage, called collapsing stage, edges are
processed in order of increasing cost. Some processed edges are collapsed while some are just discarded.
Collapsed edges are replaced by a vertex and the collapse cost of all the edges now incident on the replacement
vertex is recalculated, affecting the order of the remaining unprocessed edges.

Not all edges selected for processing are collapsed. A processed edge can be discarded right away, without
being collapsed, if it doesn’t satisfy certain topological and geometric conditions.

The algorithm presented in [GH97] contracts (collapses) arbitrary vertex pairs and not only edges by consider-
ing certain vertex pairs as forming a pseudo-edge and proceeding to collapse both edges and pseudo-edges in
the same way as in [LT98, LT99] ( which is the algorithm implemented here). However, contracting an arbitrary
vertex-pair may result in a non-manifold surface, but the current state of this package can only deal with man-
ifold surfaces, thus, it can only collapse edges. That is, this package cannot be used as a framework for vertex
contraction.

53.3 Cost Strategy

The specific way in which the collapse cost and vertex placement is calculated is called the cost strategy. The
user can choose different strategies in the form of policies and related parameters, passed to the algorithm.

The current version of the package provides a set of policies implementing two strategies: the Lindstrom-
Turk strategy, which is the default, and a strategy consisting of an edge-length cost with an optional midpoint
placement (much faster but less accurate).

53.3.1 Lindstrom-Turk Cost and Placement Strategy

The main characteristic of the strategy presented in [LT98, LT99] is that the simplified surface is not compared at
each step with the original surface (or the surface at a previous step) so there is no need to keep extra information,
such as the original surface or a history of the local changes. Hence the name memoryless simplification.

At each step, all remaining edges are potential candidates for collapsing and the one with the lowest cost is
selected.

The cost of collapsing an edge is given by the position chosen for the vertex that replaces it.

The replacement vertex position is computed as the solution to a system of 3 linearly-independent linear equality
constraints. Each constraint is obtained by minimizing a quadratic objective function subject to the previously
computed constraints.
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There are several possible candidate constraints and each is considered in order of importance. A candidate
constraint might be incompatible with the previously accepted constraints, in which case it is rejected and the
next constraint is considered.
Once 3 constraints have been accepted, the system is solved for the vertex position.

The first constraints considered preserves the shape of the surface boundaries (in case the edge profile has
boundary edges). The next constraints preserve the total volume of the surface. The next constraints, if needed,
optimize the local changes in volume and boundary shape. Lastly, if a constraint is still needed (because the
ones previously computed were incompatible), a third (and last) constraint is added to favor equilateral triangles
over elongated triangles.

The cost is then a weighted sum of the shape, volume and boundary optimization terms, where the user specifies
the unit weighting unit factor for each term.

The local changes are computed independently for each edge using only the triangles currently adjacent to it at
the time when the edge is about to be collapsed, that is, after all previous collapses. Thus, the transitive path of
minimal local changes yields at the end a global change reasonably close to the absolute minimum.

53.3.2 Cost Strategy Policies

The cost strategy used by the algorithm is selected by means of two policies: GetPlacement and GetCost.

The GetPlacement policy is called to compute the new position for the remaining vertex after the halfedge-
collapse. It returns an optional value, which can be absent, in which case the remaining vertex is kept in its
place.

The GetCost policy is called to compute the cost of collapsing an edge. This policy uses the placement to
compute the cost (which is an error measure) and determines the ordering of the edges.

The algorithm maintains an internal data structure (a mutable priority queue) which allows each edge to be
processed in increasing cost order. Such a data structure requires some per-edge additional information, such
as the edge’s cost. If the record of per-edge additional information occupies N bytes of storage, simplifying
a surface of 1 million edges (a normal size) requires 1 million times N bytes of additional storage. Thus, to
minimize the amount of additional memory required to simplify a surface only the cost is attached to each edge
and nothing else.

But this is a tradeoff: the cost of a collapse is a function of the placement (the new position chosen for the
remaining vertex) so before GetCost is called for each and every edge, GetPlacement must also be called to
obtain the placement parameter to the cost function. But that placement, which is a 3D Point, is not attached to
each and every edge since that would easily triple the additional storage requirement.

On the one hand, this dramatically saves on memory but on the other hand is a processing waste because when
an edge is effectively collapsed, GetPlacement must be called again to know were to move the remaining vertex.

Earlier prototypes shown that attaching the placement to the edge, thus avoiding one redundant call to the
placement function after the edge collapsed, has little impact on the total running time. This is because the
cost of an each edge is not just computed once but changes several times during the process so the placement
function must be called several times just as well. Caching the placement can only avoid the very last call, when
the edge is collapsed, but not all the previous calls which are needed because the placement (and cost) changes.
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53.4 API

53.4.1 API Overview

Since the algorithm is free from robustness issues there is no need for exact predicates nor constructions and
Simple cartesian<double> can be used safely. 1

The simplification algorithm is implemented as the free template function CGAL::Surface mesh
simplification::edge collapse. The function has two mandatory and several optional parameters.

Mandatory Parameters

There are two main parameters to the algorithm: the surface to be simplified (in-place) and the stop predicate.

The surface to simplify must be a model of the EdgeCollapsableMesh concept. Many concrete surface types,
such as CGAL::Polyhedron 3 with only triangular faces, become models of that concept via a technique known
as external adaptation, which is described in [SLL02] and this BGL web page: http://www.boost.org/libs/
graph/doc/leda_conversion.html

External adaptation is a way to add an interface to an object without coercing the type of the object (which
happens when you adapt it by means of a wrapper). That is, the formal parameter to the edge collapse func-
tion that implements the simplification is the concrete surface object itself, not an adaptor which delegates the
functionality to the concrete type.

The stop predicate is called after each edge is selected for processing, before it is classified as collapsible or not
(thus before it is collapsed). If the stop predicate returns true the algorithm terminates.

Optional Named Parameters

The notion of named parameters was also introduced in the BGL. You can read about it in [SLL02] or the
following site: http://www.boost.org/libs/graph/doc/bgl_named_params.html. Named parameters al-
low the user to specify only those parameters which are really needed, by name, making the parameter ordering
unimportant.

Say there is a function f() that takes 3 parameters called name, age and gender, and you have variables n,a and g
to pass as parameters to that function. Without named parameters, you would call it like this: f(n,a,g), but with
named parameters, you call it like this: f(name(n).age(a).gender(g)).

That is, you give each parameter a name by wrapping it into a function whose name matches that of the param-
eter. The entire list of named parameters is really a composition of function calls separated by a dot (.). Thus, if
the function takes a mix of mandatory and named parameters, you use a comma to separate the last non-named
parameter from the first named parameters, like this:

f(non named par0, non named pa1, name(n).age(a).gender(g))

When you use named parameters, the ordering is irrelevant, so this: f(name(n).age(a).gender(g)) is equivalent
to this: f(age(a).gender(g).name(n)), and you can just omit any named parameter that has a default value.

1In the current version, 3.3, the LindstromTurk policies are not implemented for homogeneous coordinates, so a cartesian kernel must
be used.
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Sample Call� �
/*
surface : the surface to simplify
stop_predicate : policy indicating when the simplification must

finish
vertex_index_map(vimap) : property-map giving each vertex a unique

integer index
edge_index_map(eimap) : property-map giving each edge a unique integer

index
edge_is_border_map(ebmap): property-map specifying whether an edge is a

border edge or not
get_cost(cf) : function object computing the cost of a

collapse
get_placement(pf) : function object computing the placement for

the remaining vertex
visitor(vis) : function object tracking the simplification

process
*/
int r = edge_collapse(surface

,stop_predicate
,vertex_index_map(vimap)

.edge_index_map(eimap)

.edge_is_border_map(ebmap)

.get_cost(cf)

.get_placement(pf)

.visitor(vis)
);� �

53.4.2 Examples

Example Using a Default Polyhedron

The following example illustrates the simplest of the cases. It uses an ordinary polyhedron and only one of the
optional parameters. The unspecified cost strategy defaults to Lindstrom-Turk.� �
#include <iostream>
#include <fstream>

#include <CGAL/Simple_cartesian.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>

// Adaptor for Polyhedron_3
#include <CGAL/Surface_mesh_simplification/HalfedgeGraph_Polyhedron_3.h>

// Simplification function
#include <CGAL/Surface_mesh_simplification/edge_collapse.h>

// Stop-condition policy
#include

<CGAL/Surface_mesh_simplification/Policies/Edge_collapse/Count_stop_predicate.h>
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typedef CGAL::Simple_cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel> Surface;

namespace SMS = CGAL::Surface_mesh_simplification ;

int main( int argc, char** argv )
{

Surface surface;

std::ifstream is(argv[1]) ; is >> surface ;

// This is a stop predicate (defines when the algorithm terminates).
// In this example, the simplification stops when the number of
undirected edges

// left in the surface drops below the specified number (1000)
SMS::Count_stop_predicate<Surface> stop(1000);

// This the actual call to the simplification algorithm.
// The surface and stop conditions are mandatory arguments.
// The index maps are needed because the vertices and edges
// of this surface lack an "id()" field.
int r = SMS::edge_collapse

(surface
,stop

,CGAL::vertex_index_map(boost::get(CGAL::vertex_external_index,surface))
.edge_index_map (boost::get(CGAL::edge_external_index

,surface))
);

std::cout << "\nFinished...\n" << r << " edges removed.\n"
<< (surface.size_of_halfedges()/2) << " final edges.\n" ;

std::ofstream os( argc > 2 ? argv[2] : "out.off" ) ; os << surface ;

return 0 ;
}

// EOF //� �
File: examples/Surface_mesh_simplification/edge_collapse_polyhedron.cpp

Example Using an Enriched Polyhedron

The following example is equivalent to the previous example but using an enriched polyhedron whose halfedges
support an id field to store the edge index needed by the algorithm. It also shows how to explicitly specify a
cost strategy (other than the default) and how to use a visitor object to track the simplification process.� �
#include <iostream>
#include <fstream>
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#include <CGAL/Simple_cartesian.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>

// Adaptor for Polyhedron_3
#include <CGAL/Surface_mesh_simplification/HalfedgeGraph_Polyhedron_3.h>

// Simplification function
#include <CGAL/Surface_mesh_simplification/edge_collapse.h>

// Visitor base
#include <CGAL/Surface_mesh_simplification/Edge_collapse_visitor_base.h>

// Extended polyhedron items which include an id() field
#include <CGAL/Polyhedron_items_with_id_3.h>

// Stop-condition policy
#include

<CGAL/Surface_mesh_simplification/Policies/Edge_collapse/Count_ratio_stop_predicate.h>

// Non-default cost and placement policies
#include

<CGAL/Surface_mesh_simplification/Policies/Edge_collapse/Midpoint_and_length.h>

typedef CGAL::Simple_cartesian<double> Kernel;

typedef Kernel::Point_3 Point ;

//
// Setup an enriched polyhedron type which stores an id() field in the

items
//
typedef CGAL::Polyhedron_3<Kernel,CGAL::Polyhedron_items_with_id_3>

Surface;

typedef Surface::Halfedge_handle Halfedge_handle ;
typedef Surface::Vertex_handle Vertex_handle ;

namespace SMS = CGAL::Surface_mesh_simplification ;

typedef SMS::Edge_profile<Surface> Profile ;

// The following is a Visitor that keeps track of the simplification
process.

// In this example the progress is printed real-time and a few statistics
are

// recorded (and printed in the end).
//
struct Stats
{

Stats()
: collected(0)
, processed(0)
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, collapsed(0)
, non_collapsable(0)
, cost_uncomputable(0)
, placement_uncomputable(0)

{}

std::size_t collected ;
std::size_t processed ;
std::size_t collapsed ;
std::size_t non_collapsable ;
std::size_t cost_uncomputable ;
std::size_t placement_uncomputable ;

} ;

struct My_visitor : SMS::Edge_collapse_visitor_base<Surface>
{

My_visitor( Stats* s) : stats(s){}

// Called during the collecting phase for each edge collected.
void OnCollected( Profile const&, boost::optional<double> const& )
{

++ stats->collected ;
std::cerr << "\rEdges collected: " << stats->collected << std::flush
;

}

// Called during the processing phase for each edge selected.
// If cost is absent the edge won’t be collapsed.
void OnSelected(Profile const&

,boost::optional<double> cost
,std::size_t initial
,std::size_t current
)

{
++ stats->processed ;
if ( !cost )

++ stats->cost_uncomputable ;

if ( current == initial )
std::cerr << "\n" << std::flush ;

std::cerr << "\r" << current << std::flush ;
}

// Called during the processing phase for each edge being collapsed.
// If placement is absent the edge is left uncollapsed.
void OnCollapsing(Profile const&

,boost::optional<Point> placement
)

{
if ( !placement )

++ stats->placement_uncomputable ;
}

// Called for each edge which failed the so called link-condition,
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// that is, which cannot be collapsed because doing so would
// turn the surface into a non-manifold.
void OnNonCollapsable( Profile const& )
{

++ stats->non_collapsable;
}

// Called AFTER each edge has been collapsed
void OnCollapsed( Profile const&, Vertex_handle hv )
{

++ stats->collapsed;
}

Stats* stats ;
} ;

int main( int argc, char** argv )
{

Surface surface;

std::ifstream is(argv[1]) ; is >> surface ;

// The items in this polyhedron have an "id()" field
// which the default index maps used in the algorithm
// need to get the index of a vertex/edge.
// However, the Polyhedron_3 class doesn’t assign any value to
// this id(), so we must do it here:
int index = 0 ;

for( Surface::Halfedge_iterator eb = surface.halfedges_begin()
, ee = surface.halfedges_end()
; eb != ee
; ++ eb
)
eb->id() = index++;

index = 0 ;
for( Surface::Vertex_iterator vb = surface.vertices_begin()

, ve = surface.vertices_end()
; vb != ve
; ++ vb
)
vb->id() = index++;

// In this example, the simplification stops when the number of
undirected edges

// drops below 10% of the initial count
SMS::Count_ratio_stop_predicate<Surface> stop(0.1);

Stats stats ;

My_visitor vis(&stats) ;
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// The index maps are not explicitelty passed as in the previous
// example because the surface items have a proper id() field.
// On the other hand, we pass here explicit cost and placement
// function which differ from the default policies, ommited in
// the previous example.
int r = SMS::edge_collapse

(surface
,stop
,CGAL::get_cost (SMS::Edge_length_cost <Surface>())

.get_placement(SMS::Midpoint_placement<Surface>())

.visitor (vis)
);

std::cout << "\nEdges collected: " << stats.collected
<< "\nEdges proccessed: " << stats.processed
<< "\nEdges collapsed: " << stats.collapsed
<< std::endl
<< "\nEdges not collapsed due to topological constrians: "

<< stats.non_collapsable
<< "\nEdge not collapsed due to cost computation constrians:

" << stats.cost_uncomputable
<< "\nEdge not collapsed due to placement computation

constrians: " << stats.placement_uncomputable
<< std::endl ;

std::cout << "\nFinished...\n" << r << " edges removed.\n"
<< (surface.size_of_halfedges()/2) << " final edges.\n" ;

std::ofstream os( argc > 2 ? argv[2] : "out.off" ) ; os << surface ;

return 0 ;
}

// EOF //� �
File: examples/Surface_mesh_simplification/edge_collapse_enriched_polyhedron.cpp

Example with edges marked as non-removable

The following example shows how to use the optional named parameter edge is border map to prevent edges
from being removed even if they are not really borders.� �
#include <iostream>
#include <fstream>

#include <CGAL/Simple_cartesian.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>

// Adaptor for Polyhedron_3
#include <CGAL/Surface_mesh_simplification/HalfedgeGraph_Polyhedron_3.h>
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// Simplification function
#include <CGAL/Surface_mesh_simplification/edge_collapse.h>

// Stop-condition policy
#include

<CGAL/Surface_mesh_simplification/Policies/Edge_collapse/Count_stop_predicate.h>

// Map used to mark edges as fixed
#include <CGAL/Unique_hash_map.h>

typedef CGAL::Simple_cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel> Surface;

namespace SMS = CGAL::Surface_mesh_simplification ;

//
// BGL property map which indicates whether an edge is border OR is

marked as non-removable
//
class Constrains_map : public boost::put_get_helper<bool,Constrains_map>
{
public:

typedef boost::readable_property_map_tag category;
typedef bool value_type;
typedef bool reference;
typedef boost::graph_traits<Surface const>::edge_descriptor key_type;

Constrains_map() : mConstrains(false) {}

reference operator[](key_type const& e) const { return e->is_border()
|| is_constrained(e) ; }

void set_is_constrained ( key_type const& e, bool is ) {
mConstrains[e]=is; }

bool is_constrained( key_type const& e ) const { return
mConstrains.is_defined(e) ? mConstrains[e] : false ; }

private:

CGAL::Unique_hash_map<key_type,bool> mConstrains ;

};

int main( int argc, char** argv )
{

Surface surface;

std::ifstream is(argv[1]) ; is >> surface ;

// This is a stop predicate (defines when the algorithm terminates).
// In this example, the simplification stops when the number of
undirected edges
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// left in the surface drops below the specified number (1000)
SMS::Count_stop_predicate<Surface> stop(10);

Constrains_map constrains_map ;

// This example marks ALL edges as non-removable, but a real world
application would mark only selected ones.

for( Surface::Halfedge_iterator eb = surface.halfedges_begin(), ee =
surface.halfedges_end() ; eb != ee ; ++ eb )
constrains_map.set_is_constrained(eb,true);

// This the actual call to the simplification algorithm.
// The surface and stop conditions are mandatory arguments.
// The index maps are needed because the vertices and edges
// of this surface lack an "id()" field.
int r = SMS::edge_collapse

(surface
,stop

,CGAL::vertex_index_map(boost::get(CGAL::vertex_external_index,surface))
.edge_index_map (boost::get(CGAL::edge_external_index

,surface))
.edge_is_border_map(constrains_map)

);

std::cout << "\nFinished...\n" << r << " edges removed.\n"
<< (surface.size_of_halfedges()/2) << " final edges.\n" ;

std::ofstream os( argc > 2 ? argv[2] : "out.off" ) ; os << surface ;

return 0 ;
}� �
File: examples/Surface_mesh_simplification/edge_collapse_constrained_polyhedron.cpp
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Triangulated Surface Mesh Simplification

Reference Manual

This chapter introduces the concepts and classes of the triangulated surface mesh simplification package.
The packages provides a policy-based algorithm for the simplification of triangulated surface meshes by iterative
edge-collapsing.
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EdgeCollapsableMesh

Definition

The concept EdgeCollapsableMesh describes the requirements for the type of triangulated surface mesh that
can be passed to the simplification algorithm.

The surface must be structurally equivalent to a polyhedral surface having only triangular faces. It can have any
number of connected components, boundaries (borders and holes) and handles (arbitrary genus).

Refines

HalfedgeGraph

Valid Expressions

The mesh simplification algorithm requires the free function collapse triangulation edge.

template<class EdgeCollapsableMesh>
typename boost::graph traits<EdgeCollapsableMesh>::vertex descriptor

halfedge collapse( typename boost::graph traits<EdgeCollapsableMesh>::edge descriptor const& ue,
EdgeCollapsableMesh& mesh)

Collapses the undirected edge (v0v1,v1v0) replacing it with v0 or v1, as described in the
following paragraph.
Precondition: This function requires mesh to be an oriented 2-manifold with or without
boundaries. Furthermore, the undirected edge (v0v1,v1v0) must satisfy the link condition
[DEGN99], which guarantees that the surface is also 2-manifold after the edge collapse.

Let v0 be the source and v1 be the target vertices of v0v1.

For e ∈ { v0v1,v1v0 }, let en and ep be the next and previous edges, that is en = next edge(e, mesh), ep =
prev edge(e,mesh), and let eno and epo be their opposite edges, that is eno = opposite edge(en, mesh) and epo
= opposite edge(ep,mesh).

Then, after the collapse of (v0v1,v1v0) the following holds:

• The edge e is no longer in mesh.

• One of {v0,v1} is no longer in mesh while the other remains. 2 Let vgone be the removed vertex and
vkept be the remaining vertex.

• If e was a border edge, that is get(is border, e, mesh) == true, then next edge(ep) == en, and prev
edge(en) == ep.

• If e was not a border edge, that is get(is border, e, mesh) == false, then ep and epo are no longer in mesh
while en and eno are kept in mesh.

2Even though it would appear that v0 can always be the vertex being removed, there is a case when removing the edge e requires v1 to
be removed as well. See figure 53.5.

3289



• For all edges ie in in edges(vgone,mesh), target(ie,mesh) == vkept and source(opposite edge(ie),mesh)
== vkept.

• No other incidence information has changed in mesh.

The function returns vertex vkept (which can be either v0 or v1).
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Figure 53.1: General case. The following mesh elements are removed: triangles (v0,v1,vL) and (v1,v0,vR),
edges (e,e′), (ep,epo) and (ep′,epo′), and vertex v0.
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Figure 53.2: When the collapsing edge is not itself a border, but is incident upon a border edge that is removed,
the operation is the same as in the general case.

Has Models

CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795
(If it has only triangular faces, and via External Adaptation, which is described in [SLL02] and this BGL web
page: http://www.boost.org/libs/graph/doc/leda_conversion.html).

See Also

boost::graph traits< CGAL::Polyhedron 3<Traits> > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4282
CGAL::halfedge graph traits< CGAL::Polyhedron 3<Traits> > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4286
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Figure 53.3: When the collapsing edge is not itself a border, but is incident upon a border edge that is not
removed, the operation is still the same as in the general case.

v0 v1

vLvx0

vx1

vx2 vy0

vy1

vy2

v1

vLvx0

vx1

vx2 vy0

vy1

vy2

e

e’

en
eno

ep
epo

en’
eno’

ep’
epo’

en
eno

en’

eno’
ep’

epo’

Figure 53.4: When the collapsing edge is itself a border, only 1 triangle is removed. Thus, even if (ep′,epo′)
exists, it’s not removed.
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Figure 53.5: This figure illustrates the single exceptional case when removing (v0,v1) neccesarily implies
removing (v1), thus (v0) remains.
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EdgeProfile

Definition

The concept EdgeProfile describes the requirements for a data structure that caches the local topology and
geometry in the surroundings of an undirected edge.

This profile is used by the stop, cost and placement policies.

Types

EdgeProfile:: ECM The type of the surface to simplify. Must be a model of the
EdgeCollapsableMesh concept.

typename boost::graph traits<ECM>::vertex descriptor

vertex descriptor; A BGL vertex descriptor representing a vertex of the surface.

typename boost::graph traits<ECM>::edge descriptor

edge descriptor; A BGL edge descriptor representing an edge of the surface.
typename CGAL::halfedge graph traits<ECM>::Point

Point; The point type for the surface vertex. Must be a model of
Point 3.

Access Functions

vertex descriptor ep.v0() const One of vertices of the edge to be collapsed.
vertex descriptor ep.v1() const The other vertex of the edge to be collapsed.
edge descriptor ep.v0 v1() const One of the directed edges corresponding to the undirected

edge being collapsed.

edge descriptor ep.v1 v0() const The other directed edge corresponding to the undirected edge
being collapsed.

Point ep.p0() const The point of vertex v0.
Point ep.p1() const The point of vertex v1.
vertex descriptor ep.vL() const If v0v1 belongs to a finite face (is not a border edge) the third

vertex of that triangular face, a null descriptor otherwise.

edge descriptor ep.v 1vL() const If v0v1 belongs to a finite face (is not a border edge) the di-
rected edge from v1 to vL, a null descriptor otherwise.

edge descriptor ep.vL v0() const If v0v1 belongs to a finite face (is not a border edge) the di-
rected edge from vL to v0, a null descriptor otherwise.

vertex descriptor ep.vR() const If v1v0 belongs to a finite face (is not a border edge) the third
vertex of that triangular face, a null descriptor otherwise.

edge descriptor ep.v0 vR() const If v1v0 belongs to a finite face (is not a border edge) the di-
rected edge from v0 to vR, a null descriptor otherwise.

edge descriptor ep.vR v1() const If v1v0 belongs to a finite face (is not a border edge) the di-
rected edge from vR to v1, a null descriptor otherwise.
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std::vector<vertex descriptor>

ep.link() const The unique sequence of the vertices around v0v1 in topolog-
ical order (ccw or ccw depending on the relative ordering of
v0 and v1 in the profile).

std::vector<edge descriptor>

ep.border edges() const

The unique collection of the border directed edges incident
upon v0 and v1.

bool ep.left face exits() const

Indicates if v0v1 belongs to a finite face of the mesh (i.e, v0v1
is not a border edge).

bool ep.right face exits() const

Indicates if v0v1 belongs to a finite face of the mesh (i.e, v1v0
is not a border edge).

Has Models

CGAL::Surface mesh simplification::Edge profile<ECM> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3304
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StopPredicate

Definition

The concept StopPredicate describes the requirements for the predicate which indicates if the simplification
process must finish.

Types

StopPredicate:: ECM The type of the surface to simplify. Must be a model of the
EdgeCollapsableMesh concept.

StopPredicate:: FT A field type representing the collapse cost
StopPredicate:: size type An integer type representing the number of edges
StopPredicate:: Profile The type of the edge profile cache. Must be a model of the

EdgeProfile concept.

Operations

bool sp.operator()( FT const& current cost,
Profile const& profile,
size type initial count,
size type current count) const

This predicate is called each time an edge is selected for
processing, before it is collapsed.
current cost is the cost of the selected edge.
initial count and current count are the number of initial and
current edges.

If the return value is true the simplification terminates
before processing the edge, otherwise it continues normally.

Has Models

CGAL::Surface mesh simplification::Count stop predicate<ECM> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3305
CGAL::Surface mesh simplification::Count ratio stop predicate<ECM> . . . . . . . . . . . . . . . . . . . . . . . . page 3306
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GetCost

Definition

The concept GetCost describes the requirements for the policy function object which gets the collapse cost of
an edge.

The cost returned is a boost::optional value (i.e. it can be absent). An absent cost indicates that the edge
should not be collapsed. This could be the result of a computational limitation (such as overflow), or can be
intentionally returned to prevent the edge from being collapsed.

Refines

DefaultConstructible
CopyConstructible

Types

GetCost:: Profile The type of the edge profile cache. Must be a model of the
EdgeProfile concept.

GetCost:: FT A field type representing the collapse cost
typename CGAL::halfedge graph traits<ECM>::Point

Point; The point type for the surface vertex. Must be a model of
Point 3.

boost::optional<FT> result type; The type of the result (an optional cost value).

Operations

result type gc.operator()( Profile const& edge profile,
boost::optional<Point> const& placement) const

Computes and returns the cost of collapsing the edge (repre-
sented by its profile), using the calculated placement.

Has Models

CGAL::Surface mesh simplification::Edge length cost<ECM> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3307
CGAL::Surface mesh simplification::LindstromTurk cost<ECM> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3309
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GetPlacement

Definition

The concept GetPlacement describes the requirements for the policy function object which gets the collapse
placement of an edge, that is, the new position of the vertex that remains after a halfedge-collapse operation.

The placement returned is a boost::optional value (i.e., it can be absent). An absent result indicates that the
remaining vertex must be kept in place, not moved to a new position.

Refines

DefaultConstructible
CopyConstructible

Types

GetPlacement:: Profile The type of the edge profile cache. Must be a model of the
EdgeProfile concept.

typename CGAL::halfedge graph traits<ECM>::Point

Point; The point type for the surface vertex. Must be a model of
Point 3.

boost::optional<Point>

result type; The type of the result (an optional point).

Operations

result type gp.operator()( Profile const& edge profile) const

Computes and returns the placement, that is, the position of
the vertex which replaces the collapsing edge (represented by
its profile).

Has Models

CGAL::Surface mesh simplification::Midpoint placement<ECM> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3308
CGAL::Surface mesh simplification::LindstromTurk placement<ECM> . . . . . . . . . . . . . . . . . . . . . . . . . page 3310
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EdgeCollapseSimplificationVisitor

Definition

The concept EdgeCollapseSimplificationVisitor describes the requirements for the visitor object which is used
to track the edge collapse simplification algorithm.

The several callbacks given as member functions in the visitor are called from certain places in the algorithm
implementation.

Types

EdgeCollapseSimplificationVisitor:: ECM The type of the surface to simplify. Must be a model of the
EdgeCollapsableMesh concept.

EdgeCollapseSimplificationVisitor:: FT A field type representing the collapse cost
EdgeCollapseSimplificationVisitor:: Profile The type of the edge profile cache. Must be a model of the

EdgeProfile concept.

typename CGAL::halfedge graph traits<ECM>::Point

Point; The point type for the surface vertex. Must be a model of
Point 3.

EdgeCollapseSimplificationVisitor:: size type An integer type representing the number of edges

Operations

void v.OnStarted( ECM& surface)

Called before the algorithm starts.

void v.OnFinished( ECM& surface)

Called after the algorithm finishes.

void v.OnStopConditionReached( ECM& surface)

Called when the StopPredicate returned true (but not if the
algorithm terminates because the surface could not be sim-
plified any further).

void v.OnCollected( Profile profile, boost::optional<FT> cost)

Called during the collecting phase (when a cost is assigned
to the edges), for each edge collected.
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void v.OnSelected( Profile profile,
boost::optional<FT> cost,
size type initial count,
size type current count)

Called during the processing phase (when edges are col-
lapsed), for each edge that is selected.
This method is called before the algorithm checks if the edge
is collapsable.
cost indicates the current collapse cost for the edge. If absent
(meaning that it could not be computed) the edge will not be
collapsed.
initial count and current count refer to the number of edges.

void v.OnCollapsing( Profile profile, boost::optional<Point> placement)

Called when an edge is about to be collapsed and replaced
by a vertex whose position is *placement.
If placement is absent (meaning that it could not be com-
puted) the edge will not be collapsed.

void v.OnNonCollapsable( Profile profile)

Called for each selected edge which cannot be collapsed be-
cause doing so would change the topological type of the sur-
face (turn it into a non-manifold for instance).
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CGAL::Surface mesh simplification::edge collapse

Definition

The function Surface mesh simplification::edge collapse simplifies in-place a triangulated surface mesh by
iteratively collapsing edges.

#include <CGAL/Surface mesh simplification/edge collapse.h>

template<class EdgeCollapsableMesh,class StopPredicate, class P, class T, class R>
int edge collapse( EdgeCollapsableMesh& surface,

StopPredicate should stop,
sms named params<P,T,R> named parameters)

Simplifies surface in-place by collapsing edges, and returns
the number of edges effectively removed.

Non-named parameters

surface is the surface to simplify. It must be a model of the EdgeCollapsableMesh concept.

should stop is the stop-condition policy. It must be a model of the StopPredicate concept.

Named parameters

named parameters holds the list of all the additional parameters used by the edge collapse function (including
default parameters).

The named parameters list is a composition of function calls separated by a dot (.) where the name of each
function matches the name of an argument and wraps the actual parameter.

This is an example with 2 arguments:

vertex index map(the actual vertex index map).edge index map(the actual edge index map)

the actual vertex index map and the actual edge index map are the actual parameters, while vertex index
map() and edge index map() are wrapper functions used to designate each formal argument.

All named parameters have default values so you only need to compose those for which the default is inappro-
priate. Furthermore, since each actual parameter is wrapped in a function whose name designates the formal
argument, the order of named parameters in the list is totally irrelevant.

In the following subsections, each named parameter is documented as a helper function. The argument to each
helper function is the actual parameter to edge collapse(), while the name of the helper function designates
which formal argument it is.

vertex index map(VertexIndexMap vpm)

Maps each vertex in the surface into an unsigned integer number in the range [0,num vertices(surface)).

3300



VertexIndexMap must be a ReadablePropertyMap whose key type is boost::graph traits<
EdgeCollapsableMesh const>::vertex descriptor and whose value type is boost::graph traits<
EdgeCollapsableMesh>::size type,

Default: the property map obtained by calling get(vertex index,surface), which requires the surface vertices to
have an id() member properly initialized to the required value.
If the vertices don’t have such an id(), you must pass some property map explicitly. An external property map
can be easily obtained by calling get(vertex external index,surface). This constructs on the fly, and returns, a
property map which non-intrusively associates a proper id with each vertex.

edge index map(EdgeIndexMap eim)

Maps each directed edge in the surface into an unsigned integer number in the range [0,num edges(surface)).

EdgeIndexMap must be a ReadablePropertyMap whose key type is boost::graph traits<EdgeCollapsableMesh
const>::edge descriptor and whose value type is boost::graph traits<EdgeCollapsableMesh>::size type

Default: the property map obtained by calling get(edge index,surface), which requires the surface edges to
have an id() member properly initialized to the require value.
If the edges don’t have such an id(), you must pass some property map explicitly. An external property map
can be easily obtained by calling get(edge external index,surface). This constructs on the fly, and returns, a
property map which non-intrusively associates a proper id with each edge.

edge is border map(EdgeIsBorderMap ebm)

Maps each directed edge in the surface into a Boolean value which indicates if the edge belongs to the boundary
of the surface (facing the outside). EdgeIsBorderMap must be a ReadablePropertyMap whose key type is
boost::graph traits<EdgeCollapsableMesh const>::edge descriptor and whose value type is bool.

Default: the property map obtained by calling get(edge is border,surface).

get cost(GetCost gc)

The policy which returns the collapse cost for an edge.
The type of gc must be a model of the GetCost concept.

Default: CGAL::Surface mesh simplification::LindstromTurk cost<EdgeCollapsableMesh>.

get placement(GetPlacement gp)

The policy which returns the placement (position of the replacemet vertex) for an edge.
The type of gp must be a model of the GetPlacement concept.

Default: CGAL::Surface mesh simplification::LindstromTurk placement<EdgeCollapsableMesh>
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visitor(EdgeCollapseSimplificationVisitor v)

The visitor that is called by the edge collapse function in certain points to allow the user to track the simplifi-
cation process.
The type of v must be a model of the EdgeCollapseSimplificationVisitor concept.

Default: an implementation-defined dummy visitor.

If you wish to provide your own visitor, you can derive from: CGAL::Surface mesh simplification::Edge
collapse visitor base<EdgeCollapsableMesh> and override only the callbacks you are interested in.

All these functions naming parameters are defined in namespace CGAL. Being non-member functions, they
could clash with equally named functions in some other namespace. If that happens, simply qualify the first 3

named parameter with CGAL::, as shown in the examples in the user manual.

Semantics

The simplification process continues until the should stop policy returns true or the surface cannot be simplified
any further due to topological constraints.

get cost and get placement are the policies which control the cost-strategy, that is, the order in which edges are
collapsed and the remaining vertex is re-positioned.

visitor is used to keep track of the simplification process. It has several member functions which are called at
certain points in the simplification code.

3The second and subsequent named parameters shall not be qualified as they are member functions
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CGAL::Surface mesh simplification::Edge collapse visitor base<
ECM>

Definition

The class Surface mesh simplification::Edge collapse visitor base<ECM> provides a base class for models
of the EdgeCollapseSimplificationVisitor concept. It has one template argument: the type of surface being
simplified, which must be a model of the EdgeCollapsableMesh concept.

This base class implements all of the visitor’s callbacks. This way, users need only override the callbacks they
are interested in. The callbacks are not virtual because this is not a dynamically polymorphic base class and the
derived visitor will never be used polymorphically at runtime (is perfectly fine to override and hide a non-virtual
method in the context of the static polymorphism used in the simplification algorithm).

#include <CGAL/Surface mesh simplification/Edge collapse visitor base.h>

Is Model for the Concepts

EdgeCollapseSimplificationVisitor
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CGAL::Surface mesh simplification::Edge profile<ECM>

Definition

The class Surface mesh simplification::Edge profile<ECM> provides a model for the EdgeProfile concept. It
has one template argument: the type of surface being simplified, which must be a model of the EdgeCol-
lapsableMesh concept.

#include <CGAL/Surface mesh simplification/Policies/Edge collapse/Edge profile.h>

Is Model for the Concepts

EdgeProfile

See Also

GetCost
GetPlacement

3304



C
la

ss
F

un
ct

or

CGAL::Surface mesh simplification::Count stop predicate<ECM>

Definition

The class Surface mesh simplification::Count stop predicate<ECM> provides a model for the StopPredicate
concept. It has one template argument: the type of surface being simplified, which must be a model of the
EdgeCollapsableMesh concept. It returns true when the number of current edges drops below a certain thresh-
old.

#include <CGAL/Surface mesh simplification/Policies/Edge collapse/Count stop predicate.h>

Is Model for the Concepts

StopPredicate

Creation

Surface mesh simplification::Count stop predicate<ECM> sp( size type threshold);

Initializes the predicate establishing the threshold value.

Operations

bool sp.operator()( FT const& current cost,
Profile const& edge profile,
size type initial count,
size type current count) const

Returns (current count < threshold). All other parameters
are ignored (but exist since this is a generic policy).

See Also

CGAL::Surface mesh simplification::Count ratio stop predicate<ECM>
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CGAL::Surface mesh simplification::Count ratio stop predicate<
ECM>

Definition

The class Surface mesh simplification::Count ratio stop predicate<ECM> provides a model for the StopPred-
icate concept. It has one template argument: the type of surface being simplified, which must be a model of
the EdgeCollapsableMesh concept. It returns true when the relation between the initial and current number of
edges drops below a certain ratio.

#include <CGAL/Surface mesh simplification/Policies/Edge collapse/Count ratio stop predicate.h>

Is Model for the Concepts

StopPredicate

Creation

Surface mesh simplification::Count ratio stop predicate<ECM> sp( double ratio);

Initializes the predicate establishing the ratio.

Operations

bool sp.operator()( FT const& current cost,
Profile const& edge profile,
size type initial count,
size type current count) const

Returns (((double)current count/(double)initial count) <
ratio). All other parameters are ignored (but exist since this
is a generic policy).

See Also

CGAL::Surface mesh simplification::Count stop predicate<ECM>
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CGAL::Surface mesh simplification::Edge length cost<ECM>

Definition

The class Surface mesh simplification::Edge length cost<ECM> provides a model for the GetCost concept.
It has one template argument: the type of surface being simplified, which must be a model of the EdgeCol-
lapsableMesh concept. It computes the collapse cost as the squared length of the edge.

#include <CGAL/Surface mesh simplification/Policies/Edge collapse/Edge length cost.h>

Is Model for the Concepts

GetCost

Creation

Surface mesh simplification::Edge length cost<ECM> gc;

Default constructor

Operations

result type gc.operator()( Profile const& profile, boost::optional<Point> const& placement) const

Returns the collapse cost as the squared distance between the
points of the source and target vertices (that is, profile.p0()
and profile.p1().
The placement argument is ignored.
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CGAL::Surface mesh simplification::Midpoint placement<ECM>

Definition

The class Surface mesh simplification::Midpoint placement<ECM> provides a model for the GetPlacement
concept. It computes the placement as the midpoint position along the edge.

The class Surface mesh simplification::Midpoint placement<ECM> has one template arguments: the type of
surface being simplified. It be a model of the EdgeCollapsableMesh concept.

#include <CGAL/Surface mesh simplification/Policies/Edge collapse/Midpoint placement.h>

Is Model for the Concepts

GetPlacement

Creation

Surface mesh simplification::Midpoint placement<ECM> gp;

Default constructor

Operations

result type gp.operator()( Profile const& edge profile) const

Returns the placement (vertex position) as the midpoint be-
tween the points of the source and target vertices (profile.p0()
and profile.p1())
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CGAL::Surface mesh simplification::LindstromTurk cost<ECM>

Definition

The class Surface mesh simplification::LindstromTurk cost<ECM> provides a model for the GetCost concept.
It computes the collapse cost following the Lindstrom-Turk strategy (Section 53.3.1)

The class Surface mesh simplification::LindstromTurk cost<ECM> has one template argument: the type of
surface being simplified. It must be a model of the EdgeCollapsableMesh concept.

#include <CGAL/Surface mesh simplification/Policies/Edge collapse/LindstromTurk cost.h>

Is Model for the Concepts

GetCost

Creation

Surface mesh simplification::LindstromTurk cost<ECM> gc( FT factor = FT(0.5));

Initializes the policy with the given weighting unit factor.
See 53.3.1 for details on the meaning of this factor.

Operations

result type gc.operator()( Profile const& profile, boost::optional<Point> const& placement) const

Returns the cost of collapsing the edge (represented by its
profile) considering the new placement computed for it.

See Also

CGAL::Surface mesh simplification::LindstromTurk placement<ECM>
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CGAL::Surface mesh simplification::LindstromTurk placement<
ECM>

Definition

The class Surface mesh simplification::LindstromTurk placement<ECM> provides a model for the GetPlace-
ment concept. It computes the placement, that is, the new position for the remaining vertex after a halfedge-
collapse, following the Lindstrom-Turk strategy (Section 53.3.1).

The class Surface mesh simplification::LindstromTurk placement<ECM> has one template argument: the type
of surface being simplified. It must be a model of the EdgeCollapsableMesh concept.

#include <CGAL/Surface mesh simplification/Policies/Edge collapse/LindstromTurk placement.h>

Is Model for the Concepts

GetPlacement

Creation

Surface mesh simplification::LindstromTurk placement<ECM> gp( FT factor = FT(0.5));

Initializes the policy with the given weighting unit factor.
See 53.3.1 for details on the meaning of this factor.

Operations

result type gp.operator()( Profile const& edge profile) const

Returns the new position for the remaining vertex after col-
lapsing the edge (represented by its profile).

See Also

CGAL::Surface mesh simplification::LindstromTurk cost<ECM>
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54.1 Introduction

Parameterizing a surface amounts to finding a one-to-one mapping from a suitable domain to the surface. A good
mapping is the one which minimizes either angle distortions (conformal parameterization) or area distortions
(equiareal parameterization) in some sense. In this package, we focus on parameterizing triangulated surfaces
which are homeomorphic to a disk, and on piecewise linear mappings onto a planar domain.

Although the main motivation behind the first parameterization methods was the application to texture mapping,
it is now frequently used for mapping more sophisticated modulation signals (such as normal, transparency,
reflection or light modulation maps), fitting scattered data, re-parameterizing spline surfaces, repairing CAD
models, approximating surfaces and remeshing.

This CGAL package implements some of the state-of-the-art surface parameterization methods, such as least
squares conformal maps, discrete conformal map, discrete authalic parameterization, Floater mean value co-
ordinates or Tutte barycentric mapping. These methods mainly distinguish by the distortion they minimize
(angles vs. areas), by the constrained border onto the planar domain (convex polygon vs. free border) and by
the guarantees provided in terms of bijective mapping.

The package proposes currently an interface with CGAL::Polyhedron 3<Traits> data structure.

Since parameterizing meshes require efficient representation of sparse matrices and efficient iterative or direct
linear solvers, we provide a unified interface to a linear solver library (EIGEN), and propose a separate package
devoted to OpenNL sparse linear solver.

Note that linear solvers commonly use double precision floating point numbers. Therefore, this package is
intended to be used with a CGAL Cartesian kernel with doubles.

The intended audience of this package is researchers, developers or students developing algorithms around
parameterization of triangle meshes for geometry processing as well as for signal mapping on triangulated
surfaces.
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Figure 54.1: Texture mapping via Least Squares Conformal Maps parameterization. Top: original mesh and
texture. Bottom: parameterized mesh (left: parameter space, right: textured mesh).

3313



54.2 Basics

54.2.1 Default Surface Parameterization

From the user point of view, the simplest entry point to this package is the following function:

Parameterizer traits 3<ParameterizationMesh 3>::Error code

parameterize( ParameterizationMesh 3 & mesh)

Compute a one-to-one mapping from a 3D triangle surface
mesh to a 2D circle, using Floater Mean Value Coordinates
algorithm. A one-to-one piecewise linear mapping is guar-
anteed. The result is a pair of (u,v) parameter coordinates for
each vertex of the input mesh.
Preconditions: mesh must be a triangle mesh surface with
one connected component.

The function CGAL::parameterize() applies a default surface parameterization method: Floater Mean
Value Coordinates [Flo03a], with an arc-length circular border parameterization, and using OpenNL
sparse linear solver [Lev05]. The ParameterizationMesh 3 concept defines the input meshes handled by
CGAL::parameterize(). See Section 54.2.2. The result is stored into the (u,v) fields of the mesh halfedges.

Note: CGAL::Parameterizer traits 3<ParameterizationMesh 3> is the (pure virtual) superclass of all surface
parameterizations and defines the error codes.

54.2.2 Input Mesh for parameterize()

The input meshes handled directly by CGAL::parameterize() must be models of ParameterizationMesh 3, tri-
angulated, 2-manifold, oriented, and homeomorphic to discs (possibly with holes).

Note: ParameterizationMesh 3 is a general concept to access a polyhedral mesh. It is optimized for the Surface
mesh parameterization package only in the sense that it defines the accessors to fields specific to the parame-
terization domain (index, u, v, is parameterized). The extra constraints needed by the surface parameterization
methods (triangulated, 2-manifold, homeomorphic to a disc) are not part of the concept and are checked at
runtime.

This package provides a model of the ParameterizationMesh 3 concept to access CGAL::Polyhedron 3<Traits>
:
CGAL::Parameterization polyhedron adaptor 3<Polyhedron 3 >

We will see later that CGAL::parameterize() can support indirectly meshes that are not topological disks.

54.2.3 Default Parameterization Example

Simple parameterization.cpp applies the default parameterization to a CGAL::Polyhedron 3<Traits> mesh
(must be a topological disk). Eventually, it extracts the result from halfedges and prints it.� �
#include <CGAL/Cartesian.h>
#include <CGAL/Polyhedron_3.h>
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#include <CGAL/IO/Polyhedron_iostream.h>
#include <CGAL/Parameterization_polyhedron_adaptor_3.h>
#include <CGAL/parameterize.h>

#include <iostream>
#include <fstream>

//
----------------------------------------------------------------------------

// Private types
//

----------------------------------------------------------------------------

typedef CGAL::Cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;

//
----------------------------------------------------------------------------

// main()
//

----------------------------------------------------------------------------

int main(int argc, char * argv[])
{

std::cerr << "PARAMETERIZATION" << std::endl;
std::cerr << " Floater parameterization" << std::endl;
std::cerr << " Circle border" << std::endl;
std::cerr << " OpenNL solver" << std::endl;

//***************************************
// decode parameters
//***************************************

if (argc-1 != 1)
{

std::cerr << "Usage: " << argv[0] << " input_file.off" <<
std::endl;

return(EXIT_FAILURE);
}

// File name is:
const char* input_filename = argv[1];

//***************************************
// Read the mesh
//***************************************

// Read the mesh
std::ifstream stream(input_filename);
Polyhedron mesh;
stream >> mesh;
if(!stream || !mesh.is_valid() || mesh.empty())
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{
std::cerr << "Error: cannot read OFF file " << input_filename <<

std::endl;
return EXIT_FAILURE;

}

//***************************************
// Create Polyhedron adaptor
// Note: no cutting => we support only
// meshes that are topological disks
//***************************************

typedef CGAL::Parameterization_polyhedron_adaptor_3<Polyhedron>

Parameterization_polyhedron_adaptor;
Parameterization_polyhedron_adaptor mesh_adaptor(mesh);

//***************************************
// Floater Mean Value Coordinates parameterization
// (defaults are circular border and OpenNL solver)
//***************************************

typedef
CGAL::Parameterizer_traits_3<Parameterization_polyhedron_adaptor>

Parameterizer; // Type that
defines the error codes

Parameterizer::Error_code err = CGAL::parameterize(mesh_adaptor);
switch(err) {
case Parameterizer::OK: // Success

break;
case Parameterizer::ERROR_EMPTY_MESH: // Input mesh not supported
case Parameterizer::ERROR_NON_TRIANGULAR_MESH:
case Parameterizer::ERROR_NO_TOPOLOGICAL_DISC:
case Parameterizer::ERROR_BORDER_TOO_SHORT:

std::cerr << "Input mesh not supported: " <<
Parameterizer::get_error_message(err) << std::endl;

return EXIT_FAILURE;
break;

default: // Error
std::cerr << "Error: " << Parameterizer::get_error_message(err)

<< std::endl;
return EXIT_FAILURE;
break;

};

//***************************************
// Output
//***************************************

// Raw output: dump (u,v) pairs
Polyhedron::Vertex_const_iterator pVertex;
for (pVertex = mesh.vertices_begin();

pVertex != mesh.vertices_end();
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pVertex++)
{

// (u,v) pair is stored in any halfedge
double u = mesh_adaptor.info(pVertex->halfedge())->uv().x();
double v = mesh_adaptor.info(pVertex->halfedge())->uv().y();
std::cout << "(u,v) = (" << u << "," << v << ")" << std::endl;

}

return EXIT_SUCCESS;
}� �
File: examples/Surface_mesh_parameterization/Simple_parameterization.cpp

54.2.4 Enhanced parameterize() function

This package provides a second CGAL::parameterize() entry point where the user can specify a parameteriza-
tion method:

Parameterizer traits 3<ParameterizationMesh 3>::Error code

parameterize( ParameterizationMesh 3 & mesh,
ParameterizerTraits 3 parameterizer)

Compute a one-to-one mapping from a 3D triangle surface
’mesh’ to a simple 2D domain. The mapping is piecewise
linear on the triangle mesh. The result is a pair (u,v) of pa-
rameter coordinates for each vertex of the input mesh. One-
to-one mapping may be guaranteed or not, depending on the
chosen ParametizerTraits 3 algorithm.
Preconditions: ’mesh’ must be a triangle surface mesh with
one connected component, and the mesh border must be
mapped onto a convex polygon (for fixed border parameteri-
zations).

54.2.5 Introduction to the Package Concepts

The ParameterizerTraits 3 concept

This CGAL package implements some of the state-of-the-art surface parameterization methods, such as Least
Squares Conformal Maps, Discrete Conformal Map, Discrete Authalic Parameterization, Floater Mean Value
Coordinates or Tutte Barycentric Mapping. These methods are provided as models of the ParameterizerTraits 3
concept. See Section 54.3.

Each of these surface parameterization methods is templated by the input mesh type, a border parameterization
and a solver:
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Figure 54.2: A parameterizer UML class diagram (simplified).

The BorderParameterizer 3 concept

Parameterization methods for borders are used as traits classes modifying the behavior of ParameterizerTraits 3
models. They are provided as models of the BorderParameterizer 3 concept. See Sections 54.3.1 and 54.3.2.

The SparseLinearAlgebraTraits d concept

This package solves sparse linear systems using solvers which are models of SparseLinearAlgebraTraits d. See
Section 54.4.

The ParameterizationMesh 3 and ParameterizationPatchableMesh 3 Concepts

As described in Section 54.2.2 the input meshes handled by CGAL::parameterize() must be models of the
ParameterizationMesh 3 concept. The surface parameterization methods provided by this package only support
surfaces which are homeomorphic to disks, possibly with holes. Nevertheless meshed with arbitrary topology
and number of connected components can be parameterized, provided that the user specifies a cut graph (an
oriented list of vertices) which is the border of a topological disc. If no cut graph is specified as input, the
longest border of the input mesh is taken by default, the others being considered as holes.

For this purpose, the CGAL::Parameterization mesh patch 3<ParameterizationPatchableMesh 3> class is re-
sponsible for virtually cutting a patch into a ParameterizationPatchableMesh 3 mesh. The resulting patch is a
topological disk (if the input cutting path is correct) and provides a ParameterizationMesh 3 interface. It can
be used as parameter for the function CGAL::parameterize().

ParameterizationPatchableMesh 3 inherits from ParameterizationMesh 3, thus is a concept for a 3D surface
mesh. ParameterizationPatchableMesh 3 adds the ability to support patches and virtual seams. Patches are a
subset of a 3D mesh. Virtual seams behave as if the surface was cut along a cut graph. More information is
provided in Section 54.5.
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54.3 Surface Parameterization Methods

This CGAL package implements some of the state-of-the-art surface parameterization methods, such as Least
Squares Conformal Maps, Discrete Conformal Map, Discrete Authalic Parameterization, Floater Mean Value
Coordinates or Tutte Barycentric Mapping. These methods are provided as models of the ParameterizerTraits 3
concept.

54.3.1 Fixed Border Surface Parameterizations

Fixed Border Surface Parameterizations need a set of constraints: two (u,v) coordinates for each vertex along
the border. Such border parameterizations are described in Section 54.3.1.

Tutte Barycentric Mapping

CGAL::Barycentric mapping parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d>

The Barycentric Mapping parameterization method has been introduced by Tutte [Tut63]. In parameter space,
each vertex is placed at the barycenter of its neighbors to achieve the so-called convex combination condition.
This algorithm amounts to solve one sparse linear solver for each set of parameter coordinates, with a #vertices
x #vertices sparse and symmetric positive definite matrix (if the border vertices are eliminated from the linear
system). A coefficient (i, j) of the matrix is set to 1 for an edge linking the vertex vi to the vertex v j, to minus the
degree of the vertex vi for a diagonal element, and to 0 for any other matrix entry. Although a bijective mapping
is guaranteed when the border is convex, this method does not minimize angles nor areas distortion.

Figure 54.3: Left: Tutte barycentric mapping parameterization (the red line depicts the cut graph). Right:
parameter space.
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Discrete Conformal Map

CGAL::Discrete conformal map parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d>

Discrete conformal map parameterization has been introduced by Eck et al. to the graphics commu-
nity [EDD+95]. It attempts to lower angle deformation by minimizing a discrete version of the Dirichlet energy
as derived by Pinkall and Polthier [PP93]. A one-to-one mapping is guaranteed only when the two following
conditions are fulfilled: the barycentric mapping condition (each vertex in parameter space is a convex combi-
nation if its neighboring vertices), and the border is convex. This method solves two #vertices x #vertices sparse
linear systems. The matrix (the same for both systems) is sparse and symmetric definite positive (if the border
vertices are eliminated from the linear system and if the mesh contains no hole), thus can be efficiently solved
using dedicated linear solvers.

Figure 54.4: Left: discrete conformal map. Right: parameter space.

Floater Mean Value Coordinates

CGAL::Mean value coordinates parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d>

The mean value coordinates parameterization method has been introduced by Floater [Flo03a]. Each vertex
in parameter space is optimized so as to be a convex combination of its neighboring vertices. The barycentric
coordinates are this time unconditionally positive, by deriving an application of the mean theorem for harmonic
functions. This method is in essence an approximation of the discrete conformal maps, with a guaranteed one-
to-one mapping when the border is convex. This method solves two #vertices x #vertices sparse linear systems.
The matrix (the same for both systems) is asymmetric.

3320



Figure 54.5: Floater Mean Value Coordinates

Discrete Authalic parameterization

CGAL::Discrete authalic parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d>

The discrete authalic parameterization method has been introduced by Desbrun et al. [DMA02]. It corresponds
to a weak formulation of an area-preserving method, and in essence locally minimizes the area distortion. A
one-to-one mapping is guaranteed only if the convex combination condition is fulfilled and the border is convex.
This method solves two #vertices x #vertices sparse linear systems. The matrix (the same for both systems) is
asymmetric.

Figure 54.6: Discrete Authalic Parameterization
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Border Parameterizations for Fixed Methods

Parameterization methods for borders are used as traits classes modifying the behavior of ParameterizerTraits
3 models. They are provided as models of the BorderParameterizer 3 concept. Border parameterizations for
fixed border surface parameterizations are a family of methods to define a set of constraints, namely two u,v
coordinates for each vertex along the border.

• The user can select a border parameterization among two commonly used methods: uniform or arc-length
parameterization.

Usage:

Uniform border parameterization is more stable, although it gives poor visual results. The arc-length
border parameterization is used by default.

• One convex shape specified by one shape among two standard ones: a circle or a square.

Usage:

The circular border parameterization is used by default as it corresponds to the simplest convex shape.
The square border parameterization is commonly used for texture mapping.

CGAL::Circular border arc length parameterizer 3<ParameterizationMesh 3>
CGAL::Circular border uniform parameterizer 3<ParameterizationMesh 3>
CGAL::Square border arc length parameterizer 3<ParameterizationMesh 3>
CGAL::Square border uniform parameterizer 3<ParameterizationMesh 3>

Figure 54.7: Left: Julius Cesar mask parameterization with Authalic/circular border. Right: Julius Cesar mask’s
image with Floater/square border.
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54.3.2 Free Border Surface Parameterizations

Least Squares Conformal Maps

CGAL::LSCM parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d>

The Least Squares Conformal Maps (LSCM) parameterization method has been introduced by Lévy et
al. [LPRM02]. It corresponds to a conformal method with a free border (at least two vertices have to be
constrained to obtain a unique solution), which allows further lowering of the angle distortion. A one-to-one
mapping is not guaranteed by this method. It solves a (2 × #triangles) × #vertices sparse linear system in the
least squares sense, which implies solving a symmetric matrix.

Figure 54.8: Least squares conformal maps.

Border Parameterizations for Free Methods

Parameterization methods for borders are used as traits classes modifying the behavior of ParameterizerTraits
3 models. They are provided as models of the BorderParameterizer 3 concept. The border parameterizations
associated to free border surface parameterization methods define only two constraints: the pinned vertices.

• CGAL::Two vertices parameterizer 3<ParameterizationMesh 3>

Usage:

CGAL::Two vertices parameterizer 3<ParameterizationMesh 3> is the default free border parameteri-
zation, and is the only one available in the current version of this package.
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54.3.3 Discrete Authalic Parameterization Example

Authalic parameterization.cpp computes a Discrete Authalic parameterization over a CGAL::Polyhedron 3<
Traits> mesh. Specifying a specific surface parameterization instead of the default one means using the second
parameter of CGAL::parameterize(). The differences with the first example Simple parameterization.cpp are:� �
#include <CGAL/Discrete_authalic_parameterizer_3.h>

...

//***************************************
// Discrete Authalic Parameterization
//***************************************

typedef
CGAL::Discrete_authalic_parameterizer_3<Parameterization_polyhedron_adaptor>

Parameterizer;

Parameterizer::Error_code err = CGAL::parameterize(mesh_adaptor,
Parameterizer());

...� �
54.3.4 Square Border Arc Length Parameterization Example

Square border parameterization.cpp computes a Floater mean value coordinates parameterization with a
square border arc length parameterization. Specifying a specific border parameterization instead of
the default one means using the second parameter of CGAL::Mean value coordinates parameterizer 3<
ParameterizationMesh 3, BorderParameterizer 3, SparseLinearAlgebraTraits d>. The differences with the
first example Simple parameterization.cpp are:� �
#include <CGAL/Square_border_parameterizer_3.h>

...

//***************************************
// Floater Mean Value Coordinates parameterization
// with square border
//***************************************

// Square border parameterizer
typedef

CGAL::Square_border_arc_length_parameterizer_3<Parameterization_polyhedron_adaptor>

Border_parameterizer;

// Floater Mean Value Coordinates parameterizer with square border
typedef

CGAL::Mean_value_coordinates_parameterizer_3<Parameterization_polyhedron_adaptor,

Border_parameterizer>
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Parameterizer;

Parameterizer::Error_code err = CGAL::parameterize(mesh_adaptor,
Parameterizer());

...� �
54.4 Sparse Linear Algebra

Parameterizing triangle meshes requires both efficient representation of sparse matrices and efficient iterative
or direct linear solvers. We provide links to EIGEN library and include a separate package devoted to OpenNL
sparse linear solver.

54.4.1 List of Solvers

We provide an interface to several sparse linear solvers, as models of the SparseLinearAlgebraTraits d concept:

• An interface to sparse solvers from the OPENNL library [Lev05] is provided through
classes OpenNL::DefaultLinearSolverTraits<COEFFTYPE, MATRIX, VECTOR, SOLVER> and
OpenNL::SymmetricLinearSolverTraits<COEFFTYPE, MATRIX, VECTOR, SOLVER>. The OpenNL
library version shipped with CGAL is a lightweight default sparse linear solver. It does not support large
systems, but it is portable and supports exact number types.

• An interface to all sparse solvers from the Eigen (Page 28) library is provided through the class
CGAL::Eigen solver traits<T>. This solver traits class can be used for an iterative or a direct, symmetric
or general sparse solvers. The EIGEN solver to be used must be given as template parameter.

54.4.2 EIGEN Solver Example

The example examples/Surface mesh parameterization/Eigen parameterization.cpp computes the default pa-
rameterization method (Floater mean value coordinates with a circular border), but specifically instantiates an
EIGEN solver. Specifying a specific solver instead of the default one (OpenNL) means using the third param-
eter of CGAL::Mean value coordinates parameterizer 3<ParameterizationMesh 3, BorderParameterizer
3, SparseLinearAlgebraTraits d>. The differences with the first example examples/Surface mesh
parameterization/Simple parameterization.cpp are:� �
#include <CGAL/Eigen_solver_traits.h>

...

//***************************************
// Floater Mean Value Coordinates parameterization
// (circular border) with Eigen solver
//***************************************

// Circular border parameterizer (the default)

3325



typedef
CGAL::Circular_border_arc_length_parameterizer_3<Parameterization_polyhedron_adaptor>

Border_parameterizer;
// Eigen solver
typedef CGAL::Eigen_solver_traits<> Solver;

// Floater Mean Value Coordinates parameterization
// (circular border) with Eigen solver
typedef

CGAL::Mean_value_coordinates_parameterizer_3<Parameterization_polyhedron_adaptor,

Border_parameterizer,
Solver>

Parameterizer;

Parameterizer::Error_code err = CGAL::parameterize(mesh_adaptor,
Parameterizer());

...� �
54.5 Cutting a Mesh

54.5.1 Computing a Cut Graph

All surface parameterization methods proposed in this package only deal with meshes which are homeomorphic
(topologically equivalent) to discs. Nevertheless meshes with arbitrary topology and number of connected
components car be parameterized, provided that the user specifies a cut graph (an oriented list of vertices),
which is the border of a topological disc. If no cut graph is provided as input, the longest border already in the
input mesh is taken as default border, all other borders being considered as holes. Note that only the inside part
(i.e., one connected component) of the given border is parameterized.

Figure 54.9: Cut Graph
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This package does not provide any algorithm to transform an arbitrary mesh into a topological disk, the
user being responsible for generating such a cut graph. Nevertheless, we provide in polyhedron ex
parameterization.cpp a simple cutting algorithm for the sake of completeness.

54.5.2 Applying a Cut

The surface parameterization classes in this package only directly support surfaces which are homeomorphic
to disks (models of ParameterizationMesh 3). This software design simplifies the implementation of all new
parameterization methods.

The CGAL::Parameterization mesh patch 3<ParameterizationPatchableMesh 3> class is responsible for vir-
tually cutting a patch in a ParameterizationPatchableMesh 3 mesh. The resulting patch is a topological disk
(if the cut graph is correct) and provides a ParameterizationMesh 3 interface. It can be used as parameter of
CGAL::parameterize().

ParameterizationPatchableMesh 3 inherits from concept ParameterizationMesh 3, thus is a concept for a 3D
surface mesh. ParameterizationPatchableMesh 3 adds the ability to support patches and virtual seams. Patches
are a subset of a 3D mesh. Virtual seams behave exactly as if the surface was cut along a certain graph.

The ParameterizationMesh 3 interface with the Polyhedron is both a model of ParameterizationMesh 3 and
ParameterizationPatchableMesh 3:
CGAL::Parameterization polyhedron adaptor 3<Polyhedron 3 >

Note that this class is a decorator which adds on the fly the necessary fields to unmodified CGAL data structures
(using STL maps). For better performances, it is recommended to use CGAL data structures enriched with the
proper fields. See Polyhedron ex class in polyhedron ex parameterization.cpp example.

54.5.3 Cutting a Mesh Example

Mesh cutting parameterization.cpp virtually cuts a CGAL::Polyhedron 3<Traits> mesh to make it a topologi-
cal disk, then applies the default parameterization:� �
#include <CGAL/Cartesian.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>
#include <CGAL/Parameterization_polyhedron_adaptor_3.h>
#include <CGAL/parameterize.h>
#include <CGAL/Parameterization_mesh_patch_3.h>

#include <iostream>
#include <fstream>

//
----------------------------------------------------------------------------

// Private types
//

----------------------------------------------------------------------------

typedef CGAL::Cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;
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// Polyhedron adaptor
typedef CGAL::Parameterization_polyhedron_adaptor_3<Polyhedron>

Parameterization_polyhedron_adaptor;

// Type describing a border or seam as a vertex list
typedef std::list<Parameterization_polyhedron_adaptor::Vertex_handle>

Seam;

//
----------------------------------------------------------------------------

// Private functions
//

----------------------------------------------------------------------------

// If the mesh is a topological disk, extract its longest border,
// else compute a very simple cut to make it homeomorphic to a disk.
// Return the border of this region (empty on error)
//
// CAUTION: this cutting algorithm is very naive. Write your own!
static Seam cut_mesh(Parameterization_polyhedron_adaptor& mesh_adaptor)
{

// Helper class to compute genus or extract borders
typedef
CGAL::Parameterization_mesh_feature_extractor<Parameterization_polyhedron_adaptor>

Mesh_feature_extractor;

Seam seam; // returned list

// Get reference to Polyhedron_3 mesh
Polyhedron& mesh = mesh_adaptor.get_adapted_mesh();

// Extract mesh borders and compute genus
Mesh_feature_extractor feature_extractor(mesh_adaptor);
int nb_borders = feature_extractor.get_nb_borders();
int genus = feature_extractor.get_genus();

// If mesh is a topological disk
if (genus == 0 && nb_borders > 0)
{

// Pick the longest border
seam = feature_extractor.get_longest_border();

}
else // if mesh is *not* a topological disk, create a virtual cut
{

const int CUT_LENGTH = 6;

// Build consecutive halfedges array
Polyhedron::Halfedge_handle seam_halfedges[CUT_LENGTH];
seam_halfedges[0] = mesh.halfedges_begin();
if (seam_halfedges[0] == NULL)

return seam; // return empty list
int i;
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for (i=1; i<CUT_LENGTH; i++)
{

seam_halfedges[i] =
seam_halfedges[i-1]->next()->opposite()->next();

if (seam_halfedges[i] == NULL)
return seam; // return empty list

}

// Convert halfedges array to two-ways vertices list
for (i=0; i<CUT_LENGTH; i++)

seam.push_back(seam_halfedges[i]->vertex());
for (i=CUT_LENGTH-1; i>=0; i--)

seam.push_back(seam_halfedges[i]->opposite()->vertex());
}

return seam;
}

//
----------------------------------------------------------------------------

// main()
//

----------------------------------------------------------------------------

int main(int argc, char * argv[])
{

std::cerr << "PARAMETERIZATION" << std::endl;
std::cerr << " Floater parameterization" << std::endl;
std::cerr << " Circle border" << std::endl;
std::cerr << " OpenNL solver" << std::endl;
std::cerr << " Very simple cut if model is not a topological disk"
<< std::endl;

//***************************************
// decode parameters
//***************************************

if (argc-1 != 1)
{

std::cerr << "Usage: " << argv[0] << " input_file.off" <<
std::endl;

return(EXIT_FAILURE);
}

// File name is:
const char* input_filename = argv[1];

//***************************************
// Read the mesh
//***************************************

// Read the mesh
std::ifstream stream(input_filename);
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Polyhedron mesh;
stream >> mesh;
if(!stream || !mesh.is_valid() || mesh.empty())
{

std::cerr << "Error: cannot read OFF file " << input_filename <<
std::endl;

return EXIT_FAILURE;
}

//***************************************
// Create Polyhedron adaptor
//***************************************

Parameterization_polyhedron_adaptor mesh_adaptor(mesh);

//***************************************
// Virtually cut mesh
//***************************************

// The parameterization methods support only meshes that
// are topological disks => we need to compute a "cutting" of the
mesh
// that makes it homeomorphic to a disk
Seam seam = cut_mesh(mesh_adaptor);
if (seam.empty())
{

std::cerr << "Input mesh not supported: the example cutting
algorithm is too simple to cut this shape" << std::endl;

return EXIT_FAILURE;
}

// Create a second adaptor that virtually "cuts" the mesh following
the ’seam’ path
typedef
CGAL::Parameterization_mesh_patch_3<Parameterization_polyhedron_adaptor>

Mesh_patch_polyhedron;
Mesh_patch_polyhedron mesh_patch(mesh_adaptor, seam.begin(),
seam.end());
if (!mesh_patch.is_valid())
{

std::cerr << "Input mesh not supported: non manifold shape or
invalid cutting" << std::endl;

return EXIT_FAILURE;
}

//***************************************
// Floater Mean Value Coordinates parameterization
//***************************************

typedef CGAL::Parameterizer_traits_3<Mesh_patch_polyhedron>
Parameterizer; // Type that

defines the error codes

Parameterizer::Error_code err = CGAL::parameterize(mesh_patch);
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switch(err) {
case Parameterizer::OK: // Success

break;
case Parameterizer::ERROR_EMPTY_MESH: // Input mesh not supported
case Parameterizer::ERROR_NON_TRIANGULAR_MESH:
case Parameterizer::ERROR_NO_TOPOLOGICAL_DISC:
case Parameterizer::ERROR_BORDER_TOO_SHORT:

std::cerr << "Input mesh not supported: " <<
Parameterizer::get_error_message(err) << std::endl;

return EXIT_FAILURE;
break;

default: // Error
std::cerr << "Error: " << Parameterizer::get_error_message(err)

<< std::endl;
return EXIT_FAILURE;
break;

};

//***************************************
// Output
//***************************************

// Raw output: dump (u,v) pairs
Polyhedron::Vertex_const_iterator pVertex;
for (pVertex = mesh.vertices_begin();

pVertex != mesh.vertices_end();
pVertex++)

{
// (u,v) pair is stored in any halfedge
double u = mesh_adaptor.info(pVertex->halfedge())->uv().x();
double v = mesh_adaptor.info(pVertex->halfedge())->uv().y();
std::cout << "(u,v) = (" << u << "," << v << ")" << std::endl;

}

return EXIT_SUCCESS;
}� �
File: examples/Surface_mesh_parameterization/Mesh_cutting_parameterization.cpp

54.6 Output

Parameterization methods compute (u,v) fields for each vertex of the input mesh, with the seam vertices being
virtually duplicated (thanks to CGAL::Parameterization mesh patch 3<ParameterizationPatchableMesh 3>).
To support this duplication, CGAL::Parameterization polyhedron adaptor 3<Polyhedron 3 > stores the result
in the (u,v) fields of the input mesh halfedges. A (u,v) pair is computed for each inner vertex (i.e. its halfedges
share the same (u,v) pair), while a (u,v) pair is computed for each border halfedge. The user has to iterate over
the mesh halfedges to get the result. Note that (u,v) fields do not exist in CGAL::Polyhedron 3<Traits>, thus
the output traversal is specific to the way the (u,v) fields are implemented by the adaptor.

3331



54.6.1 EPS Output Example

Complete parameterization example.cpp is a complete parameterization example which outputs the result-
ing parameterization to a EPS file. It gets the (u,v) fields computed by a parameterization method over a
CGAL::Polyhedron 3<Traits> mesh with a CGAL::Parameterization polyhedron adaptor 3<Polyhedron 3 >
adaptor:� �
#include <CGAL/basic.h> // include basic.h before testing #defines

#include <CGAL/Cartesian.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>
#include <CGAL/Parameterization_polyhedron_adaptor_3.h>
#include <CGAL/parameterize.h>
#include <CGAL/Discrete_authalic_parameterizer_3.h>
#include <CGAL/Square_border_parameterizer_3.h>
#include <CGAL/Parameterization_mesh_patch_3.h>

#include <CGAL/Eigen_solver_traits.h>

#include <iostream>
#include <fstream>
#include <cstdlib>

//
----------------------------------------------------------------------------

// Private types
//

----------------------------------------------------------------------------

typedef CGAL::Cartesian<double> Kernel;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;

// Polyhedron adaptor
typedef CGAL::Parameterization_polyhedron_adaptor_3<Polyhedron>

Parameterization_polyhedron_adaptor;

// Type describing a border or seam as a vertex list
typedef std::list<Parameterization_polyhedron_adaptor::Vertex_handle>

Seam;

//
----------------------------------------------------------------------------

// Private functions
//

----------------------------------------------------------------------------

// If the mesh is a topological disk, extract its longest border,
// else compute a very simple cut to make it homeomorphic to a disk.
// Return the border of this region (empty on error)
//
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// CAUTION: this cutting algorithm is very naive. Write your own!
static Seam cut_mesh(Parameterization_polyhedron_adaptor& mesh_adaptor)
{

// Helper class to compute genus or extract borders
typedef
CGAL::Parameterization_mesh_feature_extractor<Parameterization_polyhedron_adaptor>

Mesh_feature_extractor;

Seam seam; // returned list

// Get reference to Polyhedron_3 mesh
Polyhedron& mesh = mesh_adaptor.get_adapted_mesh();

// Extract mesh borders and compute genus
Mesh_feature_extractor feature_extractor(mesh_adaptor);
int nb_borders = feature_extractor.get_nb_borders();
int genus = feature_extractor.get_genus();

// If mesh is a topological disk
if (genus == 0 && nb_borders > 0)
{

// Pick the longest border
seam = feature_extractor.get_longest_border();

}
else // if mesh is *not* a topological disk, create a virtual cut
{

const int CUT_LENGTH = 6;

// Build consecutive halfedges array
Polyhedron::Halfedge_handle seam_halfedges[CUT_LENGTH];
seam_halfedges[0] = mesh.halfedges_begin();
if (seam_halfedges[0] == NULL)

return seam; // return empty list
int i;
for (i=1; i<CUT_LENGTH; i++)
{

seam_halfedges[i] =
seam_halfedges[i-1]->next()->opposite()->next();

if (seam_halfedges[i] == NULL)
return seam; // return empty list

}

// Convert halfedges array to two-ways vertices list
for (i=0; i<CUT_LENGTH; i++)

seam.push_back(seam_halfedges[i]->vertex());
for (i=CUT_LENGTH-1; i>=0; i--)

seam.push_back(seam_halfedges[i]->opposite()->vertex());
}

return seam;
}

// Dump parameterized mesh to an eps file
static bool write_file_eps(const Parameterization_polyhedron_adaptor&
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mesh_adaptor,
const char *pFilename,
double scale = 500.0)

{
const Polyhedron& mesh = mesh_adaptor.get_adapted_mesh();

std::ofstream out(pFilename);
if(!out)

return false;
CGAL::set_ascii_mode(out);

// compute bounding box
double xmin,xmax,ymin,ymax;
xmin = ymin = xmax = ymax = 0;
Polyhedron::Halfedge_const_iterator pHalfedge;
for (pHalfedge = mesh.halfedges_begin();

pHalfedge != mesh.halfedges_end();
pHalfedge++)

{
double x1 = scale *

mesh_adaptor.info(pHalfedge->prev())->uv().x();
double y1 = scale *

mesh_adaptor.info(pHalfedge->prev())->uv().y();
double x2 = scale * mesh_adaptor.info(pHalfedge)->uv().x();
double y2 = scale * mesh_adaptor.info(pHalfedge)->uv().y();
xmin = (std::min)(xmin,x1);
xmin = (std::min)(xmin,x2);
xmax = (std::max)(xmax,x1);
xmax = (std::max)(xmax,x2);
ymax = (std::max)(ymax,y1);
ymax = (std::max)(ymax,y2);
ymin = (std::min)(ymin,y1);
ymin = (std::min)(ymin,y2);

}

out << "%!PS-Adobe-2.0 EPSF-2.0" << std::endl;
out << "%%BoundingBox: " << int(xmin+0.5) << " "

<< int(ymin+0.5) << " "
<< int(xmax+0.5) << " "
<< int(ymax+0.5) << std::endl;

out << "%%HiResBoundingBox: " << xmin << " "
<< ymin << " "
<< xmax << " "
<< ymax << std::endl;

out << "%%EndComments" << std::endl;
out << "gsave" << std::endl;
out << "0.1 setlinewidth" << std::endl;

// color macros
out << std::endl;
out << "% RGB color command - r g b C" << std::endl;
out << "/C { setrgbcolor } bind def" << std::endl;
out << "/white { 1 1 1 C } bind def" << std::endl;
out << "/black { 0 0 0 C } bind def" << std::endl;
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// edge macro -> E
out << std::endl;
out << "% Black stroke - x1 y1 x2 y2 E" << std::endl;
out << "/E {moveto lineto stroke} bind def" << std::endl;
out << "black" << std::endl << std::endl;

// for each halfedge
for (pHalfedge = mesh.halfedges_begin();

pHalfedge != mesh.halfedges_end();
pHalfedge++)

{
double x1 = scale *

mesh_adaptor.info(pHalfedge->prev())->uv().x();
double y1 = scale *

mesh_adaptor.info(pHalfedge->prev())->uv().y();
double x2 = scale * mesh_adaptor.info(pHalfedge)->uv().x();
double y2 = scale * mesh_adaptor.info(pHalfedge)->uv().y();
out << x1 << " " << y1 << " " << x2 << " " << y2 << " E" <<

std::endl;
}

/* Emit EPS trailer. */
out << "grestore" << std::endl;
out << std::endl;
out << "showpage" << std::endl;

return true;
}

//
----------------------------------------------------------------------------

// main()
//

----------------------------------------------------------------------------

int main(int argc, char * argv[])
{

std::cerr << "PARAMETERIZATION" << std::endl;
std::cerr << " Discrete Authalic Parameterization" << std::endl;
std::cerr << " Square border" << std::endl;
std::cerr << " Eigen solver" << std::endl;
std::cerr << " Very simple cut if model is not a topological disk"
<< std::endl;
std::cerr << " Output: EPS" << std::endl;

//***************************************
// decode parameters
//***************************************

if (argc-1 != 2)
{

std::cerr << "Usage: " << argv[0] << " input_file.off
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output_file.eps" << std::endl;
return(EXIT_FAILURE);

}

// File names are:
const char* input_filename = argv[1];
const char* output_filename = argv[2];

//***************************************
// Read the mesh
//***************************************

// Read the mesh
std::ifstream stream(input_filename);
Polyhedron mesh;
stream >> mesh;
if(!stream || !mesh.is_valid() || mesh.empty())
{

std::cerr << "Error: cannot read OFF file " << input_filename <<
std::endl;

return EXIT_FAILURE;
}

//***************************************
// Create Polyhedron adaptor
//***************************************

Parameterization_polyhedron_adaptor mesh_adaptor(mesh);

//***************************************
// Virtually cut mesh
//***************************************

// The parameterization methods support only meshes that
// are topological disks => we need to compute a "cutting" of the
mesh
// that makes it homeomorphic to a disk
Seam seam = cut_mesh(mesh_adaptor);
if (seam.empty())
{

std::cerr << "Input mesh not supported: the example cutting
algorithm is too simple to cut this shape" << std::endl;

return EXIT_FAILURE;
}

// Create a second adaptor that virtually "cuts" the mesh following
the ’seam’ path
typedef
CGAL::Parameterization_mesh_patch_3<Parameterization_polyhedron_adaptor>

Mesh_patch_polyhedron;
Mesh_patch_polyhedron mesh_patch(mesh_adaptor, seam.begin(),
seam.end());
if (!mesh_patch.is_valid())
{
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std::cerr << "Input mesh not supported: non manifold shape or
invalid cutting" << std::endl;

return EXIT_FAILURE;
}

//***************************************
// Discrete Authalic Parameterization (square border)
// with Eigen solver
//***************************************

// Border parameterizer
typedef
CGAL::Square_border_arc_length_parameterizer_3<Mesh_patch_polyhedron>

Border_parameterizer;
// Eigen solver
typedef CGAL::Eigen_solver_traits<> Solver;

// Discrete Authalic Parameterization (square border)
// with Eigen solver
typedef
CGAL::Discrete_authalic_parameterizer_3<Mesh_patch_polyhedron,

Border_parameterizer,
Solver>

Parameterizer;

Parameterizer::Error_code err = CGAL::parameterize(mesh_patch,
Parameterizer());
switch(err) {
case Parameterizer::OK: // Success

break;
case Parameterizer::ERROR_EMPTY_MESH: // Input mesh not supported
case Parameterizer::ERROR_NON_TRIANGULAR_MESH:
case Parameterizer::ERROR_NO_TOPOLOGICAL_DISC:
case Parameterizer::ERROR_BORDER_TOO_SHORT:

std::cerr << "Input mesh not supported: " <<
Parameterizer::get_error_message(err) << std::endl;

return EXIT_FAILURE;
break;

default: // Error
std::cerr << "Error: " << Parameterizer::get_error_message(err)

<< std::endl;
return EXIT_FAILURE;
break;

};

//***************************************
// Output
//***************************************

// Write Postscript file
if ( ! write_file_eps(mesh_adaptor, output_filename) )
{

std::cerr << "Error: cannot write file " << output_filename <<
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std::endl;
return EXIT_FAILURE;

}

return EXIT_SUCCESS;
}� �
File: examples/Surface_mesh_parameterization/Complete_parameterization_example.cpp

54.7 Complexity and Guarantees

54.7.1 Parameterization Methods and Guarantees

• Fixed boundaries

– One-to-one mapping
Tutte’s theorem guarantees a one-to-one mapping provided that the weights are all positive and the
border convex. It is the case for Tutte barycentric mapping and Floater mean value coordinates. It is
not always the case for discrete conformal map (cotangents) and discrete authalic parameterization.

– Non-singularity of the matrix
Geshorgin’s theorem guarantees the convergence of the solver if the matrix is diagonal dominant.
This is the case with positive weights (Tutte barycentric mapping and Floater mean value coordi-
nates).

• Free boundaries

– One-to-one mapping
No guarantee is provided by LSCM (both global overlaps and triangle flips can occur).

– Non-singularity of the matrix
For LSCM, the matrix of the system is the Gram matrix of a matrix with maximal rank, and is
therefore non-singular (Gram theorem).

54.7.2 Precision

Two algorithms of this package construct the sparse linear system(s) using trigonometric functions, and are this
incompatible with exact arithmetic:

• Floater mean value coordinates

• Circular border parameterization

On the other hand, linear solvers commonly use double precision floating point numbers.
OpenNL’s BICGSTAB solver (accessible through the OpenNL::DefaultLinearSolverTraits<COEFFTYPE, MA-
TRIX, VECTOR, SOLVER> interface) is the only solver supported by this package which computes exact results,
when used with an exact arithmetic. This package is intended to be used mainly with a CGAL Cartesian kernel
with doubles.
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OpenNL’s BICGSTAB Solver with an Exact Arithmetic

The BICGSTAB conjugate gradient is in disguise a direct solver. In a nutshell, it computes a vector basis
orthogonal with respect to the matrix, and the coordinates of the solution in this vector basis. Each iteration
computes one component of the basis and one coordinate, therefore the algorithm converges to the solution in n
iterations, where n is the dimension of the matrix. More precisely, it is shown to converge in k iteration, where
k is the number of distinct eigenvalues of the matrix.

Solvers with a Floating Point Arithmetic

OpenNL’s BICGSTAB example:

When inexact numerical types are used (e.g. doubles), accumulated errors slow down convergence (in practice, it
requires approximately 5k iterations to converge). The required number of iterations depends on the eigenvalues
of the matrix, and these eigenvalues depend on the shape of the triangles. The optimum is when the triangles
are equilateral (then the solver converges in less than 10 iterations). The worst case is obtained when the mesh
has a large number of skinny triangles (near-singular Jacobian matrix of the triangle). In this case, the spectrum
of the matrix is wide (many different eigenvalues), and the solver requires nearly 5n iterations to converge.

54.7.3 Algorithmic Complexity

In this package, we focus on piecewise linear mappings onto a planar domain. All surface parameterization
methods are based on solving one (or two) sparse linear system(s). The algorithmic complexity is dominated by
the resolution of the sparse linear system(s).

OpenNL’s BICGSTAB example:

At each iteration, the operation of highest complexity is the product between the sparse-matrix and a vector.
The sparse matrix has a fixed number of non-zero coefficients per row, therefore the matrix / vector product
has O(n) complexity. Since convergence is reached after k iterations, the complexity is O(k.n) (where k is the
number of distinct eigenvalues of the matrix). Therefore, best case complexity is O(n) (equilateral triangles),
and worst case complexity is O(n2) (skinny triangles).

54.8 Software Design

54.8.1 Global Function parameterize()

This package’s entry point is:� �
// Compute a one-to-one mapping from a 3D triangle surface ’mesh’ to a
// 2D circle, using Floater Mean Value Coordinates algorithm.
// A one-to-one mapping is guaranteed.
template <class ParameterizationMesh_3>
typename Parameterizer_traits_3<ParameterizationMesh_3>::Error_code
parameterize(ParameterizationMesh_3& mesh) // 3D mesh, model of

ParameterizationMesh_3 concept
{
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Mean_value_coordinates_parameterizer_3<ParameterizationMesh_3>
parameterizer;
return parameterizer.parameterize(mesh);

}

// Compute a one-to-one mapping from a 3D triangle surface ’mesh’ to a
// simple 2D domain.
// One-to-one mapping may be guaranteed or not,
// depending on the chosen ParametizerTraits_3 algorithm.
template <class ParameterizationMesh_3, class ParameterizerTraits_3>
typename Parameterizer_traits_3<ParameterizationMesh_3>::Error_code
parameterize(ParameterizationMesh_3& mesh, // 3D mesh, model of

ParameterizationMesh_3
ParameterizerTraits_3 parameterizer) // Parameterization

method for ’mesh’
{

return parameterizer.parameterize(mesh);
}� �
You may notice that these global functions simply call the parameterize() method of a ParameterizerTraits 3
object. The purpose of these global functions is:

• to be consistent with other CGAL algorithms that are also provided as global functions, e.g.
CGAL::convex hull 2(),

• to provide a default parameterization method (Floater Mean Value Coordinates), which wouldn’t be pos-
sible with a direct call to an object’s method.

You may also wonder why there is not just one CGAL::parameterize() function with a de-
fault ParameterizerTraits 3 argument equal to CGAL::Mean value coordinates parameterizer 3<
ParameterizationMesh 3>. The reason is simply that this is not allowed by the C++ standard (see [C++98],
paragraph 14.1/9).

54.8.2 No Common Parameterization Algorithm

ParameterizerTraits 3 models modify the behavior of the global function CGAL::parameterize() - hence the
Traits in the name. On the other hand, ParameterizerTraits 3 models do not modify the behavior of a common
parameterization algorithm - as you might expect.

In this package, we focus on triangulated surfaces that are homeomorphic to a disk and on piecewise linear
mappings onto planar domains. A consequence is that the skeleton of all parameterization methods of this
package is the same:

• Allocate a sparse linear system A.X = B

• Parameterize the mesh border and initialize B

• Parameterize the inner points of the mesh and set A coefficients

• Solve the system

It is tempting to make the parameterization method a traits class that modifies the behavior of a common pa-
rameterization algorithm. On the other hand, there are several differences among methods:
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• Fixed border methods need to parameterize all border vertices, while free border methods parameterize
only two vertices.

• Some methods create symmetric definite positive systems, which may be solved more efficiently than
general systems.

• Most parameterization methods use two #vertices x #vertices systems, where Least Squares Conformal
Maps uses one (2 * #triangles) x #vertices system.

• Most parameterization methods invert the A matrix, when Least Squares Conformal Maps solves the
system in the least squares sense.

Therefore, the software design chosen is:

• Each ParameterizerTraits 3 model implements its own version of the parameterization algorithm as a
parameterize() method.

• Each ParameterizerTraits 3 model has template arguments defining the border parameterization and
sparse linear solver to use, with default values adapted to the method.

• Code factorization is achieved using a class hierarchy and (few) virtual methods.

Figure 54.10: A parameterizer UML class diagram (main types and methods only)
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Figure 54.11: Surface parameterizer classes hierarchy

Note: CGAL::Parameterizer traits 3<ParameterizationMesh 3> is the (pure virtual) superclass of all surface
parameterization classes.

54.8.3 Fixed border parameterizer 3 Class

Linear fixed border parameterization algorithms are very close. They mainly differ by the energy that
they try to minimize, i.e. by the value of the wi j coefficient of the A matrix, for vi and v j neighbor
vertices of the mesh [FH05]. One consequence is that most of the code of the fixed border methods
is factorized in the CGAL::Fixed border parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> class.

Subclasses:

• must provide BorderParameterizer 3 and SparseLinearAlgebraTraits d default template parameters that
make sense,

• must implement compute w ij() to compute wi j = (i, j) coefficient of matrix A for v j neighbor vertex of
vi,

• may implement an optimized version of is one to one mapping().

See CGAL::Barycentric mapping parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> class as an example.

54.8.4 Border Parameterizations

Border Parameterizations are models of the BorderParameterizer 3 concept. To simplify the implementation,
BorderParameterizer 3 models know only the ParameterizationMesh 3 mesh class. They do not know the
parameterization algorithm or the sparse linear solver used.

54.8.5 ParameterizationMesh 3 and ParameterizationPatchableMesh 3 Concepts

All parameterization methods are templated by the kind of mesh they are applied on. The mesh type must be a
model of ParameterizationMesh 3.
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The purpose of such a model is to:

1. Support several kind of meshes.

2. Hide the implementation of extra fields specific to the parameterization domain (index, u, v, is
parameterized).

3. Handle in the mesh type the complexity of virtually cutting a mesh to make it homeomorphic to a disk
(instead of duplicating this code in each parameterization method).

Two options are possible for 1) and 2):

• Pass to all classes and methods a mesh pointer, a traits class to manipulate it, and accessors to the extra
field arrays. This is the choice of the Boost Graph Library with boost::graph traits<> and the property
maps.

• Pass to all classes and methods an object that points to the actual mesh and knows how to access to its
fields. This is the Adaptor concept [GHJV95].

The current design of this package uses the second option, which is simpler. Of course, we may decide at some
point to switch to the first one to reach a deeper integration of CGAL with Boost.

Point 3) is solved by class CGAL::Parameterization mesh patch 3<ParameterizationPatchableMesh 3>,
which takes care of virtually cutting a patch in a ParameterizationPatchableMesh 3 mesh, to make it appear as
a topological disk with a ParameterizationMesh 3 interface. ParameterizationPatchableMesh 3 inherits from
concept ParameterizationMesh 3 and adds the ability to support patches and virtual seams.

This mainly means that:

• vertices can be tagged as inside or outside the patch to parameterize,

• the fields specific to parameterizations (index, u, v, is parameterized) can be set per corner (which is a
more general way of saying per half-edge).

54.8.6 SparseLinearAlgebraTraits d Concept

This package solves sparse linear systems using solvers which are models of SparseLinearAlgebraTraits d.

SparseLinearAlgebraTraits d is a sub-concept of the LinearAlgebraTraits d concept in Kernel d. The goal is
to adapt easily code written for dense matrices to sparse ones, and vice-versa.

54.8.7 Cutting a Mesh

In this package, we focus on triangulated surfaces that are homeomorphic to a disk.

Computing a cutting path that transforms a closed mesh of arbitrary genus into a topological disk is a research
topic on its own. This package does not intend to cover this topic at the moment.
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54.9 Extending the Package and Reusing Code

54.9.1 Reusing Mesh Adaptors

ParameterizationMesh 3 defines a concept to access to a general polyhedral mesh. It is optimized for the
Surface mesh parameterization package only in the sense that it defines the accessors to fields specific to the
parameterization domain (index, u, v, is parameterized).

It may be easily generalized.

54.9.2 Reusing Sparse Linear Algebra

The SparseLinearAlgebraTraits d concept and the traits classes for EIGEN and OpenNL are independent of the
rest of the Surface mesh parameterization package, and may be reused by CGAL developers for other purposes.

54.9.3 Adding New Parameterization Methods

Implementing a new fixed border linear parameterization is easy. Most of the code of the fixed border methods
is factorized in the CGAL::Fixed border parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> class. Subclasses must mainly implement a compute w ij() method which com-
putes each wi j = (i, j) coefficient of the matrix A for v j neighboring vertices of vi.

Although implementing a new free border linear parameterization method is more challenging, the Least
Squares Conformal Maps parameterization method provides a good starting point.

Implementing non linear parameterizations is a natural extension to this package, although only the mesh adap-
tors can be reused.

54.9.4 Adding New Border Parameterization Methods

Implementing a new border parameterization method is easy. Square, circular and two-points border parame-
terizations are good starting points.

54.9.5 Mesh Cutting

Obviously, this package would benefit of having robust algorithms which transform arbitrary meshes into topo-
logical disks.
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Planar Parameterization of Triangulated
Surface Meshes
Reference Manual
Laurent Saboret, Pierre Alliez and Bruno Lévy

Parameterizing a surface amounts to finding a one-to-one mapping from a suitable domain to the surface. A
good mapping is the one which minimizes either angle or area distortions in some sense. In this package, we
focus on triangulated surfaces that are homeomorphic to a disk and on piecewise linear mappings into a planar
domain.

54.10 Classified Reference Pages

Main Function

CGAL::parameterize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3398

Concepts

ParameterizerTraits 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3396
BorderParameterizer 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3352
ParameterizationMesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3371
ParameterizationPatchableMesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3383
SparseLinearAlgebraTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3400
PolyhedronTraitsWithKernel 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3385

Surface Parameterization Methods

This CGAL package implements some of the state-of-the-art parameterization methods:

• Fixed border:

– Tutte Barycentric Mapping [Tut63]. One-to-one mapping is guaranteed for convex border.

– Floater Mean Value Coordinates [Flo03a]. One-to-one mapping is guaranteed for convex border.
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– Discrete Conformal Map [EDD+95]. Conditionally guaranteed if all weights are positive and border
is convex.

– Discrete Authalic parameterization [DMA02]. Conditionally guaranteed if all weights are positive
and border is convex.

• Free border:

– Least Squares Conformal Maps [LPRM02].

CGAL::Parameterizer traits 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3393
CGAL::Fixed border parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3362
CGAL::Barycentric mapping parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3350
CGAL::Discrete authalic parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3358
CGAL::Discrete conformal map parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3360
CGAL::LSCM parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3365
CGAL::Mean value coordinates parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3369

Border Parameterization Methods

Border parameterization methods define a set of constraints (a constraint specifies two (u,v) coordinates for each
instance of a vertex along the border).

This package implements all common border parameterization methods:

• For fixed border methods:

– the user can select a border parameterization among two common methods: uniform or arc-length
parameterizations.

– one convex shape specified by:

∗ one shape among a set of standard ones (circle, square).

• For free border methods: at least two constraints (the pinned vertices).

CGAL::Circular border arc length parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . page 3353
CGAL::Circular border uniform parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . page 3357
CGAL::Square border arc length parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . page 3401
CGAL::Square border uniform parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . page 3405
CGAL::Two vertices parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3412

Mesh

The general definition of input meshes handled directly by CGAL::parameterize() is:
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• Model of ParameterizationMesh 3.

• Triangulated.

• 2-manifold.

• Oriented.

• Homeomorphic to a disc (may have holes).

This package provides a model of the ParameterizationMesh 3 concept to access CGAL::Polyhedron 3<Traits>
:
CGAL::Parameterization polyhedron adaptor 3<Polyhedron 3 >

The meshes supported indirectly by the package can be of any genus and have any number of connected compo-
nents. If it is not a topological disc, the input mesh has to come with a description of a cutting path (an oriented
list of vertices) which is the border of a topological disc. If no cutting path is given as input, we assume that the
surface border is the longest border already in the input mesh (the other borders will be considered as holes).

The CGAL::Parameterization mesh patch 3<ParameterizationPatchableMesh 3> class is responsible for vir-
tually cutting a patch in a ParameterizationPatchableMesh 3 mesh. The resulting patch is a topological disk (if
the input cutting path is correct) and provides a ParameterizationMesh 3 interface. It can be used as parameter
of CGAL::parameterize().

Note that this way the user is responsible for cutting a closed mesh of arbitrary genus (even a topological disc
with an intricate seam cut), as long as this condition is fulfilled.

The package provides an interface with CGAL::Polyhedron 3<Traits>:
CGAL::Parameterization polyhedron adaptor 3<Polyhedron 3 > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3386

Output

A (u,v) pair is computed for each inner vertex (i.e. its halfedges share the same (u,v) pair), while a (u,v) pair
is computed for each border halfedge. The user must iterate over the mesh halfedges to get the result.

Sparse Linear Algebra

Since parameterizing meshes requires efficient representation of sparse matrices and efficient iterative or direct
linear solvers, we provide an interface to several sparse linear solvers:

• EIGEN 3.1 (or greater) is the library recommended by CGALfor solving sparse systems.

• OpenNL (authored by Bruno Lévy) is shipped with CGALand is the default solver.

OpenNL::DefaultLinearSolverTraits<COEFFTYPE, MATRIX, VECTOR, SOLVER> in OpenNL package
OpenNL::SymmetricLinearSolverTraits<COEFFTYPE, MATRIX, VECTOR, SOLVER> in OpenNL package
CGAL::Eigen solver traits<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3410

Helper Classes

CGAL::Parameterization mesh feature extractor<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . page 3375
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Checks and Assertions

The package performs the next checks:

For fixed border parameterizations:

• Preconditions:

– check that the border is mapped onto a convex polygon.

– check that the input mesh is triangular.

– check that the input mesh is a surface with one connected component.

• Postconditions:

– check one-to-one mapping.

For free border parameterizations:

• Preconditions:

– check that the input mesh is triangular.

– check that the input mesh is a surface with one connected component.

• Postconditions:

– check one-to-one mapping.

Assertions are optional checks. The assertion flags for the package use SURFACE MESH
PARAMETERIZATION in their names (e.g., CGAL SURFACE MESH PARAMETERIZATION NO
ASSERTIONS).

54.11 Alphabetical List of Reference Pages

Barycentric mapping parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3350
BorderParameterizer 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3352
Circular border arc length parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . . . . page 3353
Circular border parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3355
Circular border uniform parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3357
Discrete authalic parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3358
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CGAL::Barycentric mapping parameterizer 3<ParameterizationMesh
3, BorderParameterizer 3, SparseLinearAlgebraTraits d>

Definition

The class Barycentric mapping parameterizer 3 implements Tutte Barycentric Mapping algorithm [Tut63].
This algorithm is also called Tutte Uniform Weights by other authors.

One-to-one mapping is guaranteed if the surface’s border is mapped to a convex polygon.

This class is a Strategy [GHJV95] called by the main parameterization algorithm Fixed border parameterizer
3::parameterize(). It provides default BorderParameterizer 3 and SparseLinearAlgebraTraits d template pa-
rameters that make sense. It implements compute w ij() to compute w ij = (i, j) coefficient of matrix A for
j neighbor vertex of i based on Tutte Barycentric Mapping method. It implements an optimized version of
is one to one mapping().

#include <CGAL/Barycentric mapping parameterizer 3.h>

Inherits From

Fixed border parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d>

Is Model for the Concepts

Model of the ParameterizerTraits 3 concept.

Design Pattern

Barycentric mapping parameterizer 3 class is a Strategy [GHJV95]: it implements a strategy of surface pa-
rameterization for models of ParameterizationMesh 3.

Parameters

The full template declaration is:

template<class ParameterizationMesh 3, class BorderParameterizer 3 = Circular border
arc length parameterizer 3<ParameterizationMesh 3>, class SparseLinearAlgebraTraits d =
OpenNL::DefaultLinearSolverTraits<typename ParameterizationMesh 3::NT>>
class Barycentric mapping parameterizer 3;

Parameters:
ParameterizationMesh 3: 3D surface mesh. BorderParameterizer 3: Strategy to parameterize the surface bor-
der. SparseLinearAlgebraTraits d: Traits class to solve a sparse linear system. Note: the system is not sym-
metric because Fixed border parameterizer 3 does not remove (yet) border vertices from the system.
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Creation

Barycentric mapping parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> param( Border param border param = Border param(),

Sparse
LA sparse la = Sparse LA())

Constructor.
Parameters:
border param: Object that maps the surface’s border to 2D
space. sparse la: Traits object to access a sparse linear sys-
tem.

Operations

virtual NT param.compute w ij( Adaptor,
Vertex const handle,
Vertex around vertex const circulator) [protected, virtual]

Compute w ij = (i, j) coefficient of matrix A for j neighbor
vertex of i.
Tutte Barycentric Mapping algorithm is the most simple one:
w ij = 1 for j neighbor vertex of i.

virtual bool param.is one to one mapping( Adaptor, Matrix, Vector, Vector) [protected, virtual]

Check if 3D -> 2D mapping is one-to-one.
Theorem: one-to-one mapping is guaranteed if all w ij coef-
ficients are > 0 (for j vertex neighbor of i) and if the surface
border is mapped onto a 2D convex polygon. All w ij co-
efficients = 1 (for j vertex neighbor of i), thus mapping is
guaranteed if the surface border is mapped onto a 2D convex
polygon.

See Also

CGAL::Parameterizer traits 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3393
CGAL::Fixed border parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3362
CGAL::Discrete authalic parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3358
CGAL::Discrete conformal map parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3360
CGAL::LSCM parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3365
CGAL::Mean value coordinates parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3369
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BorderParameterizer 3

Definition

BorderParameterizer 3 is a concept of class that parameterizes a given type of mesh, Adaptor, which is a model
of the ParameterizationMesh 3 concept.

Implementation note: To simplify the implementation, BorderParameterizer 3 models know only the
ParameterizationMesh 3 class. They do not know the parameterization algorithm requirements or the kind
of sparse linear system used.

Design Pattern

BorderParameterizer 3 models are Strategies [GHJV95]: they implement a strategy of border parameterization
for models of ParameterizationMesh 3.

Types

BorderParameterizer 3:: Adaptor Export ParameterizationMesh 3 template parameter.
BorderParameterizer 3:: Error code The various errors detected by this package.

Creation

Construction and destruction are undefined.

Operations

Error code bp.parameterize border( Adaptor& mesh)

Assign to mesh’s border vertices a 2D position (i.e. a (u, v)
pair) on border’s shape. Mark them as parameterized. Return
false on error.

bool bp.is border convex()

Indicate if border’s shape is convex.

Has Models

CGAL::Circular border arc length parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . page 3353
CGAL::Circular border uniform parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . page 3357
CGAL::Square border arc length parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . page 3401
CGAL::Square border uniform parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . page 3405
CGAL::Two vertices parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3412

See Also

ParameterizerTraits 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3396
ParameterizationMesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3371
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CGAL::Circular border arc length parameterizer 3<
ParameterizationMesh 3>

Definition

Circular border arc length parameterizer 3 is the default border parameterizer for fixed border parameteriza-
tion methods.

This class parameterizes the border of a 3D surface onto a circle, with an arc-length parameterization: (u, v)
values are proportional to the length of border edges. Circular border parameterizer 3 implements most of the
border parameterization algorithm. This class implements only compute edge length() to compute a segment’s
length.

#include <CGAL/Circular border parameterizer 3.h>

Inherits From

Circular border parameterizer 3<ParameterizationMesh 3>

Is Model for the Concepts

Model of the BorderParameterizer 3 concept.

Design Pattern

BorderParameterizer 3 models are Strategies [GHJV95]: they implement a strategy of border parameterization
for models of ParameterizationMesh 3

Parameters

The full template declaration is:

template<class ParameterizationMesh 3>
class Circular border arc length parameterizer 3;

Creation

Operations

virtual double bp.compute edge length( Adaptor mesh,
Vertex const handle source,
Vertex const handle target) [protected, virtual]

Compute the length of an edge.
Arc-length border parameterization: (u, v) values are propor-
tional to the length of border edges.
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See Also

CGAL::Circular border uniform parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . page 3357
CGAL::Square border arc length parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . page 3401
CGAL::Square border uniform parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . page 3405
CGAL::Two vertices parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3412

Example

See Eigen parameterization.cpp example.
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CGAL::Circular border parameterizer 3<ParameterizationMesh 3>

Definition

This is the base class of strategies that parameterize the border of a 3D surface onto a circle. Circular border
parameterizer 3 is a pure virtual class, thus cannot be instantiated. It implements most of the algorithm. Sub-
classes just have to implement compute edge length() to compute a segment’s length.

Implementation note: To simplify the implementation, BorderParameterizer 3 models know only the
ParameterizationMesh 3 class. They do not know the parameterization algorithm requirements or the kind
of sparse linear system used.

#include <CGAL/Circular border parameterizer 3.h>

Is Model for the Concepts

Model of the BorderParameterizer 3 concept (although you cannot instantiate this class).

Design Pattern

BorderParameterizer 3 models are Strategies [GHJV95]: they implement a strategy of border parameterization
for models of ParameterizationMesh 3.

Parameters

The full template declaration is:

template<class ParameterizationMesh 3>
class Circular border parameterizer 3;

Types

Circular border parameterizer 3<ParameterizationMesh 3>:: Adaptor

Export ParameterizationMesh 3 template parameter.

Creation

Operations

Parameterizer traits 3<Adaptor>::Error code

bp.parameterize border( Adaptor& mesh)

Assign to mesh’s border vertices a 2D position (i.e. a (u, v)
pair) on border’s shape. Mark them as parameterized.
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bool bp.is border convex()

Indicate if border’s shape is convex.

virtual double bp.compute edge length( Adaptor mesh,
Vertex const handle source,
Vertex const handle target) [protected, pure virtual]

Compute the length of an edge.

See Also

CGAL::Circular border arc length parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . page 3353
CGAL::Circular border uniform parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . page 3357
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CGAL::Circular border uniform parameterizer 3<
ParameterizationMesh 3>

Definition

This class parameterizes the border of a 3D surface onto a circle in a uniform manner: points are equally
spaced. Circular border parameterizer 3 implements most of the border parameterization algorithm. This
class implements only compute edge length() to compute a segment’s length.

#include <CGAL/Circular border parameterizer 3.h>

Inherits From

Circular border parameterizer 3<ParameterizationMesh 3>

Is Model for the Concepts

Model of the BorderParameterizer 3 concept.

Design Pattern

BorderParameterizer 3 models are Strategies [GHJV95]: they implement a strategy of border parameterization
for models of ParameterizationMesh 3

Parameters

The full template declaration is:

template<class ParameterizationMesh 3>
class Circular border uniform parameterizer 3;

Creation

Operations

virtual double bp.compute edge length( Adaptor,
Vertex const handle,
Vertex const handle) [protected, virtual]

Compute the length of an edge.
Uniform border parameterization: points are equally spaced.

See Also

CGAL::Circular border arc length parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . page 3353
CGAL::Square border arc length parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . page 3401
CGAL::Square border uniform parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . page 3405
CGAL::Two vertices parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3412
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CGAL::Discrete authalic parameterizer 3<ParameterizationMesh 3,
BorderParameterizer 3, SparseLinearAlgebraTraits d>

Definition

The class Discrete authalic parameterizer 3 implements the Discrete Authalic Parameterization algorithm
[DMA02]. This method is sometimes called DAP or just Authalic parameterization.

DAP is a weak area-preserving parameterization. It is a compromise between area-preserving and angle-
preserving.

One-to-one mapping is guaranteed if surface’s border is mapped onto a convex polygon.

This class is a Strategy [GHJV95] called by the main parameterization algorithm Fixed border parameterizer
3::parameterize(). Discrete authalic parameterizer 3: It provides default BorderParameterizer 3 and
SparseLinearAlgebraTraits d template parameters that make sense. It implements compute w ij() to com-
pute w ij = (i, j) coefficient of matrix A for j neighbor vertex of i based on Discrete Authalic Parameterization
algorithm.

#include <CGAL/Discrete authalic parameterizer 3.h>

Inherits From

Fixed border parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d>

Is Model for the Concepts

Model of the ParameterizerTraits 3 concept.

Design Pattern

Discrete authalic parameterizer 3 class is a Strategy [GHJV95]: it implements a strategy of surface parame-
terization for models of ParameterizationMesh 3.

Parameters

The full template declaration is:

template<class ParameterizationMesh 3, class BorderParameterizer 3 = Circular border
arc length parameterizer 3<ParameterizationMesh 3>, class SparseLinearAlgebraTraits d =
OpenNL::DefaultLinearSolverTraits<typename ParameterizationMesh 3::NT>>
class Discrete authalic parameterizer 3;

3358



Creation

Discrete authalic parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> param( Border param border param = Border param(),

Sparse
LA sparse la = Sparse LA())

Constructor.
Parameters:
border param: Object that maps the surface’s border to 2D
space. sparse la: Traits object to access a sparse linear sys-
tem.

Operations

virtual NT param.compute w ij( Adaptor mesh,
Vertex const handle main vertex v i,
Vertex around vertex const circulator neighbor vertex v j)

[protected, virtual]

Compute w ij = (i, j) coefficient of matrix A for j neighbor
vertex of i.

See Also

CGAL::Parameterizer traits 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3393
CGAL::Fixed border parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3362
CGAL::Barycentric mapping parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3350
CGAL::Discrete conformal map parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3360
CGAL::LSCM parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3365
CGAL::Mean value coordinates parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3369

Example

See Authalic parameterization.cpp example.
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CGAL::Discrete conformal map parameterizer 3<
ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d>

Definition

The class Discrete conformal map parameterizer 3 implements the Discrete Conformal Map (DCM) param-
eterization [EDD+95]. This algorithm is also called Discrete Conformal Parameterization (DCP), Discrete
Harmonic Map or Fixed Conformal Parameterization by other authors.

This is a conformal parameterization, i.e. it attempts to preserve angles.

One-to-one mapping is guaranteed if surface’s border is mapped onto a convex polygon.

This class is a Strategy [GHJV95] called by the main parameterization algorithm Fixed border parameterizer
3::parameterize(). It provides default BorderParameterizer 3 and SparseLinearAlgebraTraits d template pa-
rameters that make sense. It implements compute w ij() to compute w ij = (i, j) coefficient of matrix A for j
neighbor vertex of i based on Discrete Conformal Map method.

#include <CGAL/Discrete conformal map parameterizer 3.h>

Inherits From

Fixed border parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d>

Is Model for the Concepts

Model of the ParameterizerTraits 3 concept.

Design Pattern

Discrete conformal map parameterizer 3 class is a Strategy [GHJV95]: it implements a strategy of surface
parameterization for models of ParameterizationMesh 3.

Parameters

The full template declaration is:

template<class ParameterizationMesh 3, class BorderParameterizer 3 = Circular border
arc length parameterizer 3<ParameterizationMesh 3>, class SparseLinearAlgebraTraits d =
OpenNL::DefaultLinearSolverTraits<typename ParameterizationMesh 3::NT>>
class Discrete conformal map parameterizer 3;

Parameters:
ParameterizationMesh 3: 3D surface mesh. BorderParameterizer 3: Strategy to parameterize the surface bor-
der. SparseLinearAlgebraTraits d: Traits class to solve a sparse linear system. Note: the system is not sym-
metric because Fixed border parameterizer 3 does not remove (yet) border vertices from the system.
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Creation

Discrete conformal map parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> param( Border param border param = Border param(),

Sparse
LA sparse la = Sparse LA())

Constructor.
Parameters:
border param: Object that maps the surface’s border to 2D
space. sparse la: Traits object to access a sparse linear sys-
tem.

Operations

virtual NT param.compute w ij( Adaptor mesh,
Vertex const handle main vertex v i,
Vertex around vertex const circulator neighbor vertex v j)

[protected, virtual]

Compute w ij = (i, j) coefficient of matrix A for j neighbor
vertex of i.

See Also

CGAL::Parameterizer traits 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3393
CGAL::Fixed border parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3362
CGAL::Barycentric mapping parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3350
CGAL::Discrete authalic parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3358
CGAL::LSCM parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3365
CGAL::Mean value coordinates parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3369
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CGAL::Fixed border parameterizer 3<ParameterizationMesh 3,
BorderParameterizer 3, SparseLinearAlgebraTraits d>

Definition

The class Fixed border parameterizer 3 is the base class of fixed border parameterization methods (Tutte,
Floater, ...).

One-to-one mapping is guaranteed if surface’s border is mapped onto a convex polygon.

This class is a pure virtual class, thus cannot be instantiated. Anyway, it implements most of the parameteriza-
tion algorithm parameterize(). Subclasses are Strategies [GHJV95] that modify the behavior of this algorithm:
They provide BorderParameterizer 3 and SparseLinearAlgebraTraits d template parameters that make sense.
They implement compute w ij() to compute w ij = (i, j) coefficient of matrix A for j neighbor vertex of i. They
may implement an optimized version of is one to one mapping().

#include <CGAL/Fixed border parameterizer 3.h>

Inherits From

Parameterizer traits 3<ParameterizationMesh 3>

Is Model for the Concepts

Model of the ParameterizerTraits 3 concept (although you cannot instantiate this class).

Design Pattern

Fixed border parameterizer 3 class is a Strategy [GHJV95]: it implements (part of) a strategy of surface pa-
rameterization for models of ParameterizationMesh 3.

Parameters

The full template declaration is:

template<class ParameterizationMesh 3, class BorderParameterizer 3 = Circular border
arc length parameterizer 3<ParameterizationMesh 3>, class SparseLinearAlgebraTraits d =
OpenNL::DefaultLinearSolverTraits<typename ParameterizationMesh 3::NT>>
class Fixed border parameterizer 3;

Types

Fixed border parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d>:: Border param

Export BorderParameterizer 3 template parameter.
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Fixed border parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d>:: Sparse LA

Export SparseLinearAlgebraTraits d template parameter.

Creation

Fixed border parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> param( Border param border param = Border param(),

Sparse
LA sparse la = Sparse LA())

Constructor.
Parameters:
border param: Object that maps the surface’s border to 2D
space. sparse la: Traits object to access a sparse linear sys-
tem.

Operations

Error code param.parameterize( Adaptor& mesh)

Compute a one-to-one mapping from a triangular 3D surface
mesh to a piece of the 2D space. The mapping is linear by
pieces (linear in each triangle). The result is the (u, v) pair
image of each vertex of the 3D surface.
Preconditions:
mesh must be a surface with one connected component. mesh
must be a triangular mesh. The mesh border must be mapped
onto a convex polygon.

Error code param.check parameterize preconditions( Adaptor& mesh) [protected, virtual]

Check parameterize() preconditions: mesh must be a surface
with one connected component. mesh must be a triangular
mesh. The mesh border must be mapped onto a convex poly-
gon.

void param.initialize system from mesh border( Matrix& A,
Vector& Bu,
Vector& Bv,
Adaptor mesh)

Initialize A, Bu and Bv after border parameterization. Fill
the border vertices’ lines in both linear systems: u = constant
and v = constant.
Preconditions:
Vertices must be indexed. A, Bu and Bv must be allocated.
Border vertices must be parameterized.

virtual NT param.compute w ij( Adaptor mesh,
Vertex const handle main vertex v i,
Vertex around vertex const circulator neighbor vertex v j)

[protected, pure virtual]

Compute w ij = (i, j) coefficient of matrix A for j neighbor
vertex of i. Implementation note: Subclasses must at least
implement compute w ij().
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Error code param.setup inner vertex relations( Matrix& A,
Vector& Bu,
Vector& Bv,
Adaptor mesh,
Vertex const handle vertex) [protected, virtual]

Compute the line i of matrix A for i inner vertex: call
compute w ij() to compute the A coefficient w ij for each
neighbor v j. compute w ii = - sum of w ijs.
Preconditions:
Vertices must be indexed. Vertex i musn’t be already param-
eterized. Line i of A must contain only zeros.

void param.set mesh uv from system( Adaptor& mesh, Vector Xu, Vector Xv)

Copy Xu and Xv coordinates into the (u, v) pair of each sur-
face vertex.

Error code param.check parameterize postconditions( Adaptor mesh,
Matrix A,
Vector Bu,
Vector Bv) [protected, virtual]

Check parameterize() postconditions: 3D -> 2D mapping is
one-to-one.

bool param.is one to one mapping( Adaptor mesh,
Matrix A,
Vector Bu,
Vector Bv) [protected, virtual]

Check if 3D -> 2D mapping is one-to-one. The default im-
plementation checks each normal.

Border param& param.get border parameterizer()

Get the object that maps the surface’s border onto a 2D space.

Sparse LA& param.get linear algebra traits()

Get the sparse linear algebra (traits object to access the linear
system).

See Also

CGAL::Parameterizer traits 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3393
CGAL::Barycentric mapping parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3350
CGAL::Discrete authalic parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3358
CGAL::Discrete conformal map parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3360
CGAL::LSCM parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3365
CGAL::Mean value coordinates parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3369
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CGAL::LSCM parameterizer 3<ParameterizationMesh 3,
BorderParameterizer 3, SparseLinearAlgebraTraits d>

Definition

The class LSCM parameterizer 3 implements the Least Squares Conformal Maps (LSCM) parameterization
[LPRM02].

This is a conformal parameterization, i.e. it attempts to preserve angles.

This is a free border parameterization. No need to map the surface’s border onto a convex polygon (only two
pinned vertices are needed to ensure a unique solution), but one-to-one mapping is not guaranteed.

#include <CGAL/LSCM parameterizer 3.h>

Inherits From

Parameterizer traits 3<ParameterizationMesh 3>

Is Model for the Concepts

Model of the ParameterizerTraits 3 concept.

Design Pattern

LSCM parameterizer 3 class is a Strategy [GHJV95]: it implements a strategy of surface parameterization for
models of ParameterizationMesh 3.

Parameters

The full template declaration is:

template<class ParameterizationMesh 3, class BorderParameterizer 3 = Two vertices parameterizer 3<
ParameterizationMesh 3>, class SparseLinearAlgebraTraits d = OpenNL::SymmetricLinearSolverTraits<
typename ParameterizationMesh 3::NT>>
class LSCM parameterizer 3;

Types

LSCM parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3, SparseLinearAlgebraTraits d>::
Border param

Export BorderParameterizer 3 template parameter.

LSCM parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3, SparseLinearAlgebraTraits d>::
Sparse LA

Export SparseLinearAlgebraTraits d template parameter.
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Creation

LSCM parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3, SparseLinearAlgebraTraits d>
param( Border param border param = Border param(),

Sparse
LA sparse la = Sparse LA())

Constructor.
Parameters:
border param: Object that maps the surface’s border to 2D
space. sparse la: Traits object to access a sparse linear sys-
tem.

Operations

Error code param.parameterize( Adaptor& mesh)

Compute a one-to-one mapping from a triangular 3D surface
mesh to a piece of the 2D space. The mapping is linear by
pieces (linear in each triangle). The result is the (u, v) pair
image of each vertex of the 3D surface.
Preconditions:
mesh must be a surface with one connected component. mesh
must be a triangular mesh.

See Also

CGAL::Parameterizer traits 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3393
CGAL::Fixed border parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3362
CGAL::Barycentric mapping parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3350
CGAL::Discrete authalic parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3358
CGAL::Discrete conformal map parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3360
CGAL::Mean value coordinates parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3369
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SparseLinearAlgebraTraits d::Matrix

Definition

SparseLinearAlgebraTraits d::Matrix is a concept of a sparse matrix class.

Refines

LinearAlgebraTraits d::Matrix

Types

Matrix:: NT

Creation

Matrix M( int dimension); Create a square matrix initialized with zeros.
Matrix M( int rows, int columns); Create a rectangular matrix initialized with zeros.

Operations

int M.row dimension() const

Return the matrix number of rows.

int M.column dimension() const

Return the matrix number of columns.

NT M.get coef( int row, int column) const

Read access to a matrix coefficient.
Preconditions:
0 <= row < row dimension(). 0 <= column < column
dimension().

void M.add coef( int row, int column, NT value)

Write access to a matrix coefficient: a ij <- a ij + val.
Preconditions:
0 <= row < row dimension(). 0 <= column < column
dimension().

void M.set coef( int row, int column, NT value, bool new coef = false)

Write access to a matrix coefficient: a ij <- val.
Optimization: Caller can optimize this call by setting new
coef to true if the coefficient does not already exist in the
matrix.
Preconditions:
0 <= i < row dimension(). 0 <= j < column dimension().
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Has Models

Eigen sparse matrix<T>
Eigen sparse symmetric matrix<T>
OpenNL::SparseMatrix<T> in OpenNL package

See Also

SparseLinearAlgebraTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3400
SparseLinearAlgebraTraits d::Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3414
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CGAL::Mean value coordinates parameterizer 3<
ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d>

Definition

The class Mean value coordinates parameterizer 3 implements Floater Mean Value Coordinates parameteri-
zation [Flo03a]. This method is sometimes called simply Floater parameterization.

This is a conformal parameterization, i.e. it attempts to preserve angles.

One-to-one mapping is guaranteed if the surface’s border is mapped to a convex polygon.

This class is a Strategy [GHJV95] called by the main parameterization algorithm Fixed border parameterizer
3::parameterize(). It provides default BorderParameterizer 3 and SparseLinearAlgebraTraits d template pa-
rameters that make sense. It implements compute w ij() to compute w ij = (i, j) coefficient of matrix A for j
neighbor vertex of i based on Floater Mean Value Coordinates parameterization. It implements an optimized
version of is one to one mapping().

#include <CGAL/Mean value coordinates parameterizer 3.h>

Inherits From

Fixed border parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d>

Is Model for the Concepts

Model of the ParameterizerTraits 3 concept.

Design Pattern

Mean value coordinates parameterizer 3 class is a Strategy [GHJV95]: it implements a strategy of surface
parameterization for models of ParameterizationMesh 3.

Parameters

The full template declaration is:

template<class ParameterizationMesh 3, class BorderParameterizer 3 = Circular border
arc length parameterizer 3<ParameterizationMesh 3>, class SparseLinearAlgebraTraits d =
OpenNL::DefaultLinearSolverTraits<typename ParameterizationMesh 3::NT>>
class Mean value coordinates parameterizer 3;
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Creation

Mean value coordinates parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> param( Border param border param = Border param(),

Sparse
LA sparse la = Sparse LA())

Constructor.
Parameters:
border param: Object that maps the surface’s border to 2D
space. sparse la: Traits object to access a sparse linear sys-
tem.

Operations

virtual NT param.compute w ij( Adaptor mesh,
Vertex const handle main vertex v i,
Vertex around vertex const circulator neighbor vertex v j)

[protected, virtual]

Compute w ij = (i, j) coefficient of matrix A for j neighbor
vertex of i.

virtual bool param.is one to one mapping( Adaptor, Matrix, Vector, Vector) [protected, virtual]

Check if 3D -> 2D mapping is one-to-one.
Theorem: one-to-one mapping is guaranteed if all w ij coef-
ficients are > 0 (for j vertex neighbor of i) and if the surface
border is mapped onto a 2D convex polygon. Floater formula
above implies that w ij > 0 (for j vertex neighbor of i), thus
mapping is guaranteed if the surface border is mapped onto
a 2D convex polygon.

See Also

CGAL::Parameterizer traits 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3393
CGAL::Fixed border parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3362
CGAL::Barycentric mapping parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3350
CGAL::Discrete authalic parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3358
CGAL::Discrete conformal map parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3360
CGAL::LSCM parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3365

Example

See Simple parameterization.cpp example.
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ParameterizationMesh 3

Definition

ParameterizationMesh 3 is a concept for a 3D surface mesh. Its main purpose is to allow the parameterization
methods to access meshes in a uniform manner.

A ParameterizationMesh 3 surface consists of vertices, facets and an incidence relation on them. No notion of
edge is requested. Vertices represent points in 3d-space. Facets are planar polygons without holes defined by
the circular sequence of vertices along their border. The surface itself can have holes. The vertices along the
border of a hole are called border vertices. A surface is closed if it contains no border vertices.

The surface must be an oriented 2-manifold with border vertices, i.e. the neighborhood of each point on the
surface is either homeomorphic to a disc or to a half disc, except for vertices where many holes and surfaces
with border can join.

ParameterizationMesh 3 defines the types, data and methods that a mesh must implement to allow surface
parameterization. Among other things, this concept defines accessors to fields specific to parameterizations
methods: index, u, v, is parameterized.

ParameterizationMesh 3 meshes can have any genus, arity or number of components. On the other hand,
as parameterization methods deal only with topological disks, ParameterizationMesh 3 defines an interface
oriented towards topological disks.

Design Pattern

ParameterizationMesh 3 is an Adaptor [GHJV95]: it changes the interface of a 3D mesh to match the interface
expected by the parameterization methods.

Types

The following mutable handles, iterators, and circulators have appropriate non-mutable counterparts, i.e. const
handle, const iterator, and const circulator. The mutable types are assignable to their non-mutable counter-
parts. Both circulators are assignable to the Vertex iterator. The iterators are assignable to the respective handle
types. Wherever the handles appear in function parameter lists, the corresponding iterators can be used as well.

ParameterizationMesh 3:: NT Number type to represent coordinates.
ParameterizationMesh 3:: Point 2 2D point that represents (u, v) coordinates computed by pa-

rameterization methods. Must provide X() and Y() methods.

ParameterizationMesh 3:: Point 3 3D point that represents vertices coordinates. Must provide
X() and Y() methods.

ParameterizationMesh 3:: Vector 2 2D vector. Must provide X() and Y() methods.
ParameterizationMesh 3:: Vector 3 3D vector. Must provide X() and Y() methods.
ParameterizationMesh 3:: Facet Opaque type representing a facet of the 3D mesh. No meth-

ods are expected.

ParameterizationMesh 3:: Facet handle Handle to a facet. Model of the Handle concept.
ParameterizationMesh 3:: Facet const handle
ParameterizationMesh 3:: Facet iterator Iterator over all mesh facets. Model of the ForwardIterator

concept.
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ParameterizationMesh 3:: Facet const iterator
ParameterizationMesh 3:: Vertex Opaque type representing a vertex of the 3D mesh. No meth-

ods are expected.

ParameterizationMesh 3:: Vertex handle Handle to a vertex. Model of the Handle concept.
ParameterizationMesh 3:: Vertex const handle
ParameterizationMesh 3:: Vertex iterator Iterator over all vertices of a mesh. Model of the ForwardIt-

erator concept.

ParameterizationMesh 3:: Vertex const iterator
ParameterizationMesh 3:: Border vertex iterator

Iterator over vertices of the mesh main border. Model of the
ForwardIterator concept.

ParameterizationMesh 3:: Border vertex const iterator
ParameterizationMesh 3:: Vertex around facet circulator

Counter-clockwise circulator over a facet’s vertices. Model
of the BidirectionalCirculator concept.

ParameterizationMesh 3:: Vertex around facet const circulator
ParameterizationMesh 3:: Vertex around vertex circulator

Clockwise circulator over the vertices incident to a vertex.
Model of the BidirectionalCirculator concept.

ParameterizationMesh 3:: Vertex around vertex const circulator

Creation

Construction and destruction are undefined.

Operations

The following mutable methods returning a handle, iterator, or circulator have appropriate non-mutable coun-
terpart methods, i.e. const, returning a const handle, const iterator, or const circulator.

bool mesh.is valid() const Indicate if the mesh matches the ParameterizationMesh 3
concept.

Vertex iterator mesh.mesh vertices begin()

Get iterator over first vertex of mesh.

Vertex const iterator

mesh.mesh vertices begin() const
Vertex iterator mesh.mesh vertices end()

Get iterator over past-the-end vertex of mesh.

Vertex const iterator

mesh.mesh vertices end() const
int mesh.count mesh vertices() const

Count the number of vertices of the mesh.
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void mesh.index mesh vertices()

Index vertices of the mesh from 0 to count mesh vertices()-
1.

Border vertex iterator

mesh.mesh main border vertices begin()

Get iterator over first vertex of mesh’s main border.

Border vertex const iterator

mesh.mesh main border vertices begin() const
Border vertex iterator

mesh.mesh main border vertices end()

Get iterator over past-the-end vertex of mesh’s main border.

Border vertex const iterator

mesh.mesh main border vertices end() const
std::list<Vertex handle>

mesh.get border( Vertex handle seed vertex)

Return the border containing seed vertex. Return an empty
list if not found.

Facet iterator mesh.mesh facets begin()

Get iterator over first facet of mesh.

Facet const iterator mesh.mesh facets begin() const
Facet iterator mesh.mesh facets end()

Get iterator over past-the-end facet of mesh.

Facet const iterator mesh.mesh facets end() const
int mesh.count mesh facets() const

Count the number of facets of the mesh.

bool mesh.is mesh triangular() const

Return true of all mesh’s facets are triangles.

int mesh.count mesh halfedges() const

Count the number of halfedges of the mesh.

Vertex around facet circulator

mesh.facet vertices begin( Facet handle facet)

Get circulator over facet’s vertices.

Vertex around facet const circulator

mesh.facet vertices begin( Facet const handle facet) const
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int mesh.count facet vertices( Facet const handle facet) const

Count the number of vertices of a facet.

Point 3 mesh.get vertex position( Vertex const handle vertex) const

Get the 3D position of a vertex.

Point 2 mesh.get vertex uv( Vertex const handle vertex) const

Get/set the 2D position (u/v pair) of a vertex. Default value
is undefined.

void mesh.set vertex uv( Vertex handle vertex, Point 2 uv)
bool mesh.is vertex parameterized( Vertex const handle vertex) const

Get/set is parameterized field of vertex. Default value is un-
defined.

void mesh.set vertex parameterized( Vertex handle vertex, bool parameterized)
int mesh.get vertex index( Vertex const handle vertex) const

Get/set vertex index. Default value is undefined.

void mesh.set vertex index( Vertex handle vertex, int index)
int mesh.get vertex tag( Vertex const handle vertex) const

Get/set vertex’ all purpose tag. Default value is undefined.

void mesh.set vertex tag( Vertex handle vertex, int tag)
bool mesh.is vertex on border( Vertex const handle vertex) const

Return true if a vertex belongs to ANY mesh’s border.

bool mesh.is vertex on main border( Vertex const handle vertex) const

Return true if a vertex belongs to the UNIQUE mesh’s main
border.

Vertex around vertex circulator

mesh.vertices around vertex begin( Vertex handle vertex,
Vertex handle start position = Vertex handle())

Get circulator over the vertices incident to vertex. start
position defines the optional initial position of the circulator.

Vertex around vertex const circulator

mesh.vertices around vertex begin( Vertex const handle vertex,
Vertex const handle start position = Vertex

const handle())

Has Models

We provide 2 models of this concept:

Parameterization polyhedron adaptor 3<Polyhedron 3 >
Parameterization mesh patch 3<ParameterizationPatchableMesh 3>

See Also

ParameterizationPatchableMesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3383
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CGAL::Parameterization mesh feature extractor<
ParameterizationMesh 3>

Definition

The class Parameterization mesh feature extractor computes features (genus, borders, ...) of a 3D surface,
model of the ParameterizationMesh 3 concept.

#include <CGAL/Parameterization mesh feature extractor.h>

Parameters

The full template declaration is:

template<class ParameterizationMesh 3>
class Parameterization mesh feature extractor;

Types

Parameterization mesh feature extractor<ParameterizationMesh 3>:: Adaptor

Export ParameterizationMesh 3 template parameter.

Parameterization mesh feature extractor<ParameterizationMesh 3>:: Border

Type representing a border = STL container of vertex han-
dles.

Parameterization mesh feature extractor<ParameterizationMesh 3>:: Skeleton

Type representing the list of all borders of the mesh = STL
container of Border elements.

Creation

Parameterization mesh feature extractor<ParameterizationMesh 3> extractor( Adaptor& mesh);

Constructor.
CAUTION: This class caches the result of feature extrac-
tions => The caller must not modify mesh during the
Parameterization mesh feature extractor life cycle.

Operations

int extractor.get nb borders()

Get number of borders.

Skeleton extractor.get borders()

Get extracted borders. The longest border is the first one.
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Border extractor.get longest border()

Get longest border.

int extractor.get nb connex components()

Get # of connected components.

int extractor.get genus() Get the genus.

See Also

ParameterizationMesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3371

Example

See Mesh cutting parameterization.cpp example.
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CGAL::Parameterization mesh patch 3<ParameterizationPatchableMesh
3>

Definition

Parameterization mesh patch 3 is a Decorator class to virtually cut a patch in a
ParameterizationPatchableMesh 3 3D surface. Only the patch is exported, making the 3D surface look
like a topological disk.

The input mesh can be of any genus, but it has to come with a seam that describes the border of a topological
disc. This border may be an actual border of the mesh or a virtual border.

#include <CGAL/Parameterization mesh patch 3.h>

Is Model for the Concepts

Model of ParameterizationMesh 3 concept, whose purpose is to allow the Surface mesh parameterization
package to access meshes in a uniform manner.

Design Pattern

Parameterization mesh patch 3 is a Decorator [GHJV95]: it changes the behavior of a
ParameterizationPatchableMesh 3 3D surface while keeping its ParameterizationMesh 3 interface.

Parameters

The full template declaration is:

template<class ParameterizationPatchableMesh 3>
class Parameterization mesh patch 3;

Parameters:
ParameterizationPatchableMesh 3: 3D surface mesh.

Types

The following mutable handles, iterators, and circulators have appropriate non-mutable counterparts, i.e. const
handle, const iterator, and const circulator. The mutable types are assignable to their non-mutable counter-
parts. Both circulators are assignable to the Vertex iterator. The iterators are assignable to the respective handle
types. Wherever the handles appear in function parameter lists, the corresponding iterators can be used as well.

Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Adaptor

Export template parameter.
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Types implementing the ParameterizationMesh 3 interface

Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: NT

Number type to represent coordinates.

Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Point 2

2D point that represents (u, v) coordinates computed by pa-
rameterization methods. Must provide X() and Y() methods.

Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Point 3

3D point that represents vertices coordinates. Must provide
X() and Y() methods.

Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Vector 2

2D vector. Must provide X() and Y() methods.

Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Vector 3

3D vector. Must provide X() and Y() methods.

Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Facet

Opaque type representing a facet of the 3D mesh. No meth-
ods are expected.

Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Facet handle

Handle to a facet. Model of the Handle concept.

Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Facet const handle
Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Facet iterator

Iterator over all mesh facets. Model of the ForwardIterator
concept.

Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Facet const iterator
Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Vertex

Opaque type representing a vertex of the 3D mesh. No meth-
ods are expected.

Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Vertex handle

Handle to a vertex. Model of the Handle concept.

Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Vertex const handle
Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Vertex iterator

Iterator over all vertices of a mesh. Model of the ForwardIt-
erator concept.

Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Vertex const iterator
Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Border vertex iterator

Iterator over vertices of the mesh main border. Model of the
ForwardIterator concept.

Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Border vertex const iterator
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Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Vertex around facet circulator

Counter-clockwise circulator over a facet’s vertices. Model
of the BidirectionalCirculator concept.

Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Vertex around facet const circulator
Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Vertex around vertex circulator

Clockwise circulator over the vertices incident to a vertex.
Model of the BidirectionalCirculator concept.

Parameterization mesh patch 3<ParameterizationPatchableMesh 3>:: Vertex around vertex const
circulator

Variables

Adaptor& m mesh adaptor; The decorated mesh.

Creation

template<class InputIterator>
Parameterization mesh patch 3<ParameterizationPatchableMesh 3> mesh( Adaptor& mesh,

InputIterator first seam vertex,
InputIterator end seam vertex)

Create a Decorator for an existing
ParameterizationPatchableMesh 3 mesh. The input
mesh can be of any genus, but it has to come with a seam
that describes the border of a topological disc. This border
may be an actual border of the mesh or a virtual border.
Preconditions:
first seam vertex -> end seam vertex defines the outer
seam, i.e. Parameterization mesh patch 3 will export the
right of the seam. The seam is given as a container of
Adaptor::Vertex handle elements. The seam is implicitely
a loop. The first vertex should not be duplicated at the end.

Operations

The following methods returning a mutable handle, iterator, or circulator have appropriate non-mutable coun-
terpart methods, i.e. const, returning a const handle, const iterator, or const circulator.

Adaptor& mesh.get decorated mesh()

Returns: the decorated mesh.

Adaptor mesh.get decorated mesh() const

Methods implementing the ParameterizationMesh 3 interface

bool mesh.is valid() const Indicate if the mesh matches the ParameterizationMesh 3
concept.

Vertex iterator mesh.mesh vertices begin()

Get iterator over first vertex of mesh.
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Vertex const iterator

mesh.mesh vertices begin() const
Vertex iterator mesh.mesh vertices end()

Get iterator over past-the-end vertex of mesh.

Vertex const iterator

mesh.mesh vertices end() const
int mesh.count mesh vertices() const

Count the number of vertices of the mesh.

void mesh.index mesh vertices()

Index vertices of the mesh from 0 to count mesh vertices()-
1.

Border vertex iterator

mesh.mesh main border vertices begin()

Get iterator over first vertex of mesh’s main border (aka
seam).

Border vertex const iterator

mesh.mesh main border vertices begin() const
Border vertex iterator

mesh.mesh main border vertices end()

Get iterator over past-the-end vertex of mesh’s main border
(aka seam).

Border vertex const iterator

mesh.mesh main border vertices end() const
std::list<Vertex handle>

mesh.get border( Vertex handle seed vertex)

Returns: the border containing seed vertex (or an empty list
if not found).
Parameters:
seed vertex: a border vertex.

Facet iterator mesh.mesh facets begin()

Get iterator over first facet of mesh.

Facet const iterator mesh.mesh facets begin() const
Facet iterator mesh.mesh facets end()

Get iterator over past-the-end facet of mesh.

Facet const iterator mesh.mesh facets end() const
int mesh.count mesh facets() const

Count the number of facets of the mesh.
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bool mesh.is mesh triangular() const

Return true of all mesh’s facets are triangles.

int mesh.count mesh halfedges() const

Count the number of halfedges of the mesh.

Vertex around facet circulator

mesh.facet vertices begin( Facet handle facet)

Get circulator over facet’s vertices.

Vertex around facet const circulator

mesh.facet vertices begin( Facet const handle facet) const
int mesh.count facet vertices( Facet const handle facet) const

Count the number of vertices of a facet.

Point 3 mesh.get vertex position( Vertex const handle vertex) const

Get the 3D position of a vertex.

Point 2 mesh.get vertex uv( Vertex const handle vertex) const

Get/set the 2D position (u/v pair) of a vertex. Default value
is undefined.

void mesh.set vertex uv( Vertex handle vertex, Point 2 uv)
bool mesh.is vertex parameterized( Vertex const handle vertex) const

Get/set is parameterized field of vertex. Default value is un-
defined.

void mesh.set vertex parameterized( Vertex handle vertex, bool parameterized)
int mesh.get vertex index( Vertex const handle vertex) const

Get/set vertex index. Default value is undefined.

void mesh.set vertex index( Vertex handle vertex, int index)
int mesh.get vertex tag( Vertex const handle vertex) const

Get/set vertex’ all purpose tag. Default value is undefined.

void mesh.set vertex tag( Vertex handle vertex, int tag)
bool mesh.is vertex on border( Vertex const handle vertex) const

Return true if a vertex belongs to ANY mesh’s border.

bool mesh.is vertex on main border( Vertex const handle vertex) const

Return true if a vertex belongs to the UNIQUE mesh’s main
border set by the constructor.

Vertex around vertex circulator

mesh.vertices around vertex begin( Vertex handle vertex,
Vertex handle start position = Vertex handle())

Get circulator over the vertices incident to vertex. start
position defines the optional initial position of the circulator.
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Vertex around vertex const circulator

mesh.vertices around vertex begin( Vertex const handle vertex,
Vertex const handle start position = Vertex

const handle())

See Also

CGAL::Parameterization polyhedron adaptor 3<Polyhedron 3 > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3386

Example

See Mesh cutting parameterization.cpp example.
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ParameterizationPatchableMesh 3

Definition

ParameterizationPatchableMesh 3 inherits from concept ParameterizationMesh 3, thus is a concept of a 3D
surface mesh.

ParameterizationPatchableMesh 3 adds the ability to support patches and virtual seams. Patches are a subset
of a 3D mesh. Virtual seams are the ability to behave exactly as if the surface was cut following a certain path.

This mainly means that: vertices can be tagged as inside or outside the patch to parameterize. the fields specific
to parameterizations (index, u, v, is parameterized) can be set per corner (aka half-edge).

The main purpose of this feature is to allow the Surface mesh parameterization package to parameterize any
3D surface by decomposing it as a list of topological disks.

Design Pattern

ParameterizationPatchableMesh 3 is an Adaptor [GHJV95]: it changes the interface of a 3D mesh to match
the interface expected by class Parameterization mesh patch 3.

Refines

ParameterizationMesh 3

In addition to the requirements described in the concept ParameterizationMesh 3,
ParameterizationPatchableMesh 3 provides the following:

Creation

Construction and destruction are undefined.

Operations

int mesh.get vertex seaming( Vertex const handle vertex) const

Get/set vertex seaming flag. Default value is undefined.

void mesh.set vertex seaming( Vertex handle vertex, int seaming)
int mesh.get halfedge seaming( Vertex const handle source,

Vertex const handle target) const

Get/set oriented edge’s seaming flag, i.e. position of the ori-
ented edge w.r.t. to the UNIQUE main border.

void mesh.set halfedge seaming( Vertex handle source,
Vertex handle target,
int seaming)
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Point 2 mesh.get corners uv( Vertex const handle vertex,
Vertex const handle prev vertex,
Vertex const handle next vertex) const

Get/set the 2D position (= (u, v) pair) of corners at the right
of the prev vertex -> vertex -> next vertex line. Default
value is undefined.

void mesh.set corners uv( Vertex handle vertex,
Vertex const handle prev vertex,
Vertex const handle next vertex,
Point 2 uv)

bool mesh.are corners parameterized( Vertex const handle vertex,
Vertex const handle prev vertex,
Vertex const handle next vertex) const

Get/set is parameterized field of corners at the right of the
prev vertex -> vertex -> next vertex line. Default value is
undefined.

void mesh.set corners parameterized( Vertex handle vertex,
Vertex const handle prev vertex,
Vertex const handle next vertex,
bool parameterized)

int mesh.get corners index( Vertex const handle vertex,
Vertex const handle prev vertex,
Vertex const handle next vertex) const

Get/set index of corners at the right of the prev vertex ->
vertex -> next vertex line. Default value is undefined.

void mesh.set corners index( Vertex handle vertex,
Vertex const handle prev vertex,
Vertex const handle next vertex,
int index)

int mesh.get corners tag( Vertex const handle vertex,
Vertex const handle prev vertex,
Vertex const handle next vertex) const

Get/set all purpose tag of corners at the right of the prev
vertex -> vertex -> next vertex line. Default value is unde-
fined.

void mesh.set corners tag( Vertex handle vertex,
Vertex const handle prev vertex,
Vertex const handle next vertex,
int tag)

Has Models

Adaptator for Polyhedron 3 is provided.

CGAL::Parameterization polyhedron adaptor 3<Polyhedron 3 > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3386

See Also

ParameterizationMesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3371
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PolyhedronTraitsWithKernel 3

Required types for the PolyhedronTraitsWithKernel 3 concept. This geometric traits concept is used in the
polyhedral surface data structure CGAL::Polyhedron 3<Traits>. This concept provides additional require-
ments to the PolyhedronTraits 3 concept required by CGAL::Polyhedron 3<Traits> used within the class
Parameterization polyhedron adaptor 3<Polyhedron 3 >.

Refines

PolyhedronTraits 3.

Types

PolyhedronTraitsWithKernel 3:: Kernel a kernel type providing: a field type FT; 2D and 3D point
types Point 2 and Point 3; 2D and 3D vector types Vector 2
and Vector 3.

Has Models

CGAL::Polyhedron traits 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1824
CGAL::Polyhedron traits with normals 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1826
All models of the CGAL::Kernel concept, e.g., Simple cartesian<FieldNumberType>.

See Also

CGAL::Parameterization polyhedron adaptor 3<Polyhedron 3 > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3386
CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795
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CGAL::Parameterization polyhedron adaptor 3<Polyhedron 3 >

Definition

Parameterization polyhedron adaptor 3 is an adaptor class to access to a Polyhedron 3D mesh using the
ParameterizationPatchableMesh 3 interface. Among other things, this concept defines the accessor to the (u,
v) values computed by parameterizations methods.

Note that these interfaces are decorators that add on the fly the necessary fields to unmodified CGAL data
structures (using STL maps). For performance reasons, it is recommended to use CGAL data structures enriched
with the proper fields.

A ParameterizationMesh 3 surface consists of vertices, facets and an incidence relation on them. No notion of
edge is requested.

ParameterizationMesh 3 meshes can have any genus, arity or number of components.

It can have have any number of borders. Its main border will be the mesh’s longest border (if there is at least
one border).

It has also the ability to support patches and virtual seams. Patches are a subset of a 3D mesh. Virtual seams are
the ability to behave exactly as if the surface was cut following a certain path.

#include <CGAL/Parameterization polyhedron adaptor 3.h>

Is Model for the Concepts

Model of ParameterizationPatchableMesh 3 concept, whose purpose is to allow the Surface mesh
parameterization package to access meshes in a uniform manner.

Design Pattern

Parameterization polyhedron adaptor 3 is an Adaptor [GHJV95]: it changes the Polyhedron interface to match
the ParameterizationPatchableMesh 3 concept.

Parameters

The full template declaration is:

template<class Polyhedron 3 >
class Parameterization polyhedron adaptor 3;

Polyhedron 3 must be of type CGAL::Polyhedron<Traits> and Traits must be a model of the concept
PolyhedronTraitsWithKernel 3.

Types

The following mutable handles, iterators, and circulators have appropriate non-mutable counterparts, i.e. const
handle, const iterator, and const circulator. The mutable types are assignable to their non-mutable counter-
parts. Both circulators are assignable to the Vertex iterator. The iterators are assignable to the respective handle
types. Wherever the handles appear in function parameter lists, the corresponding iterators can be used as well.
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Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Polyhedron

Export template parameter.

Parameterization polyhedron adaptor 3<Polyhedron 3 >:: NT

Number type to represent coordinates.

Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Point 2

2D point that represents (u, v) coordinates computed by pa-
rameterization methods. Must provide X() and Y() methods.

Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Point 3

3D point that represents vertices coordinates. Must provide
X() and Y() methods.

Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Vector 2

2D vector. Must provide X() and Y() methods.

Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Vector 3

3D vector. Must provide X() and Y() methods.

Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Facet

Opaque type representing a facet of the 3D mesh. No meth-
ods are expected.

Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Facet handle

Handle to a facet. Model of the Handle concept.

Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Facet const handle
Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Facet iterator

Iterator over all mesh facets. Model of the ForwardIterator
concept.

Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Facet const iterator
Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Vertex

Opaque type representing a vertex of the 3D mesh. No meth-
ods are expected.

Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Vertex handle

Handle to a vertex. Model of the Handle concept.

Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Vertex const handle
Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Vertex iterator

Iterator over all vertices of a mesh. Model of the ForwardIt-
erator concept.

Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Vertex const iterator
Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Border vertex iterator

Iterator over vertices of the mesh main border. Model of the
ForwardIterator concept.

Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Border vertex const iterator
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Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Vertex around facet circulator

Counter-clockwise circulator over a facet’s vertices. Model
of the BidirectionalCirculator concept.

Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Vertex around facet const circulator
Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Vertex around vertex circulator

Clockwise circulator over the vertices incident to a vertex.
Model of the BidirectionalCirculator concept.

Parameterization polyhedron adaptor 3<Polyhedron 3 >:: Vertex around vertex const circulator

Creation

Parameterization polyhedron adaptor 3<Polyhedron 3 > mesh( Polyhedron& mesh);

Create an adaptator for an existing Polyhedron 3 mesh. The
input mesh can be of any genus. It can have have any number
of borders. Its main border will be the mesh’s longest border
(if there is at least one border).

Operations

The following methods returning a mutable handle, iterator, or circulator have appropriate non-mutable coun-
terpart methods, i.e. const, returning a const handle, const iterator, or const circulator.

Polyhedron& mesh.get adapted mesh()

Get the adapted mesh.

Polyhedron mesh.get adapted mesh() const
Polyhedron::Halfedge const handle

mesh.get halfedge( Vertex const handle source, Vertex const handle target) const

Get halfedge from source and target vertices. Will assert if
such a halfedge doesn’t exist.

Polyhedron::Halfedge handle

mesh.get halfedge( Vertex handle source, Vertex handle target)
const Halfedge info* mesh.info( Halfedge const handle halfedge) const

Access to additional info attached to halfedges.

Halfedge info* mesh.info( Halfedge const handle halfedge)
const Vertex info* mesh.info( Vertex const handle vertex) const

Access to additional info attached to vertices.

Vertex info* mesh.info( Vertex const handle vertex)
bool mesh.is valid() const Indicate if the mesh matches the ParameterizationMesh 3

concept.

Vertex iterator mesh.mesh vertices begin()

Get iterator over first vertex of mesh.

Vertex const iterator

mesh.mesh vertices begin() const
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Vertex iterator mesh.mesh vertices end()

Get iterator over past-the-end vertex of mesh.

Vertex const iterator

mesh.mesh vertices end() const
int mesh.count mesh vertices() const

Count the number of vertices of the mesh.

void mesh.index mesh vertices()
Border vertex iterator

mesh.mesh main border vertices begin()

Get iterator over first vertex of mesh’s main border.

Border vertex const iterator

mesh.mesh main border vertices begin() const
Border vertex iterator

mesh.mesh main border vertices end()

Get iterator over past-the-end vertex of mesh’s main border.

Border vertex const iterator

mesh.mesh main border vertices end() const
std::list<Vertex handle>

mesh.get border( Vertex handle seed vertex)

Return the border containing seed vertex. Return an empty
list if not found.

Facet iterator mesh.mesh facets begin()

Get iterator over first facet of mesh.

Facet const iterator mesh.mesh facets begin() const
Facet iterator mesh.mesh facets end()

Get iterator over past-the-end facet of mesh.

Facet const iterator mesh.mesh facets end() const
int mesh.count mesh facets() const

Count the number of facets of the mesh.

bool mesh.is mesh triangular() const

Return true of all mesh’s facets are triangles.

int mesh.count mesh halfedges() const

Count the number of halfedges of the mesh.

Vertex around facet circulator

mesh.facet vertices begin( Facet handle facet)

Get circulator over facet’s vertices.
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Vertex around facet const circulator

mesh.facet vertices begin( Facet const handle facet) const
int mesh.count facet vertices( Facet const handle facet) const

Count the number of vertices of a facet.

Point 3 mesh.get vertex position( Vertex const handle vertex) const

Get the 3D position of a vertex.

Point 2 mesh.get vertex uv( Vertex const handle vertex) const

Get/set the 2D position (u/v pair) of a vertex. Default value
is undefined. (stored in halfedges sharing the same vertex).

void mesh.set vertex uv( Vertex handle vertex, Point 2 uv)
bool mesh.is vertex parameterized( Vertex const handle vertex) const

Get/set is parameterized field of vertex. Default value is un-
defined. (stored in halfedges sharing the same vertex).

void mesh.set vertex parameterized( Vertex handle vertex, bool parameterized)
int mesh.get vertex index( Vertex const handle vertex) const

Get/set vertex index. Default value is undefined. (stored in
Polyhedron vertex for debugging purpose).

void mesh.set vertex index( Vertex handle vertex, int index)
int mesh.get vertex tag( Vertex const handle vertex) const

Get/set vertex’ all purpose tag. Default value is undefined.
(stored in halfedges sharing the same vertex).

void mesh.set vertex tag( Vertex handle vertex, int tag)
bool mesh.is vertex on border( Vertex const handle vertex) const

Return true if a vertex belongs to ANY mesh’s border.

bool mesh.is vertex on main border( Vertex const handle vertex) const

Return true if a vertex belongs to the UNIQUE mesh’s main
border, i.e. the mesh’s LONGEST border.

Vertex around vertex circulator

mesh.vertices around vertex begin( Vertex handle vertex,
Vertex handle start position = Vertex handle())

Get circulator over the vertices incident to vertex. start
position defines the optional initial position of the circulator.

Vertex around vertex const circulator

mesh.vertices around vertex begin( Vertex const handle vertex,
Vertex const handle start position = Vertex

const handle())

int mesh.get vertex seaming( Vertex const handle vertex) const

Get/set vertex seaming flag. Default value is undefined.

void mesh.set vertex seaming( Vertex handle vertex, int seaming)
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int mesh.get halfedge seaming( Vertex const handle source,
Vertex const handle target) const

Get/set oriented edge’s seaming flag, i.e. position of the ori-
ented edge w.r.t. to the UNIQUE main border.

void mesh.set halfedge seaming( Vertex handle source,
Vertex handle target,
int seaming)

Point 2 mesh.get corners uv( Vertex const handle vertex,
Vertex const handle prev vertex,
Vertex const handle next vertex) const

Get/set the 2D position (= (u, v) pair) of corners at the right
of the prev vertex -> vertex -> next vertex line. Default
value is undefined. (stored in incident halfedges).

void mesh.set corners uv( Vertex handle vertex,
Vertex const handle prev vertex,
Vertex const handle next vertex,
Point 2 uv)

bool mesh.are corners parameterized( Vertex const handle vertex,
Vertex const handle prev vertex,
Vertex const handle next vertex) const

Get/set is parameterized field of corners at the right of the
prev vertex -> vertex -> next vertex line. Default value is
undefined. (stored in incident halfedges).

void mesh.set corners parameterized( Vertex handle vertex,
Vertex const handle prev vertex,
Vertex const handle next vertex,
bool parameterized)

int mesh.get corners index( Vertex const handle vertex,
Vertex const handle prev vertex,
Vertex const handle next vertex) const

Get/set index of corners at the right of the prev vertex -> ver-
tex -> next vertex line. Default value is undefined. (stored
in incident halfedges).

void mesh.set corners index( Vertex handle vertex,
Vertex const handle prev vertex,
Vertex const handle next vertex,
int index)

int mesh.get corners tag( Vertex const handle vertex,
Vertex const handle prev vertex,
Vertex const handle next vertex) const

Get/set all purpose tag of corners at the right of the prev
vertex -> vertex -> next vertex line. Default value is unde-
fined. (stored in incident halfedges).

void mesh.set corners tag( Vertex handle vertex,
Vertex const handle prev vertex,
Vertex const handle next vertex,
int tag)
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See Also

CGAL::Parameterization mesh patch 3<ParameterizationPatchableMesh 3> . . . . . . . . . . . . . . . . . . . . page 3377

Example

See Simple parameterization.cpp example.
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CGAL::Parameterizer traits 3<ParameterizationMesh 3>

Definition

The class Parameterizer traits 3 is the base class of all parameterization methods. This class is a pure virtual
class, thus cannot be instantiated.

This class doesn’t do much. Its main goal is to ensure that subclasses will be proper models of the
ParameterizerTraits 3 concept: Parameterizer traits 3 defines the Error code list of errors detected by this
package. Parameterizer traits 3 declares a pure virtual method parameterize().

#include <CGAL/Parameterizer traits 3.h>

Is Model for the Concepts

Model of the ParameterizerTraits 3 concept (although you cannot instantiate this class).

Design Pattern

ParameterizerTraits 3 models are Strategies [GHJV95]: they implement a strategy of surface parameterization
for models of ParameterizationMesh 3.

Parameters

The full template declaration is:

template<class ParameterizationMesh 3>
class Parameterizer traits 3;

Types

Parameterizer traits 3<ParameterizationMesh 3>:: Adaptor

Export ParameterizationMesh 3 template parameter.

Parameterizer traits 3<ParameterizationMesh 3>:: NT
Parameterizer traits 3<ParameterizationMesh 3>:: Point 2
Parameterizer traits 3<ParameterizationMesh 3>:: Point 3
Parameterizer traits 3<ParameterizationMesh 3>:: Vector 2
Parameterizer traits 3<ParameterizationMesh 3>:: Vector 3
Parameterizer traits 3<ParameterizationMesh 3>:: Facet
Parameterizer traits 3<ParameterizationMesh 3>:: Facet handle
Parameterizer traits 3<ParameterizationMesh 3>:: Facet const handle
Parameterizer traits 3<ParameterizationMesh 3>:: Facet iterator
Parameterizer traits 3<ParameterizationMesh 3>:: Facet const iterator
Parameterizer traits 3<ParameterizationMesh 3>:: Vertex
Parameterizer traits 3<ParameterizationMesh 3>:: Vertex handle
Parameterizer traits 3<ParameterizationMesh 3>:: Vertex const handle
Parameterizer traits 3<ParameterizationMesh 3>:: Vertex iterator
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Parameterizer traits 3<ParameterizationMesh 3>:: Vertex const iterator
Parameterizer traits 3<ParameterizationMesh 3>:: Border vertex iterator
Parameterizer traits 3<ParameterizationMesh 3>:: Border vertex const iterator
Parameterizer traits 3<ParameterizationMesh 3>:: Vertex around facet circulator
Parameterizer traits 3<ParameterizationMesh 3>:: Vertex around facet const circulator
Parameterizer traits 3<ParameterizationMesh 3>:: Vertex around vertex circulator
Parameterizer traits 3<ParameterizationMesh 3>:: Vertex around vertex const circulator

Constants

enum Error code { OK,
ERROR EMPTY MESH,
ERROR NON TRIANGULAR MESH,
ERROR NO TOPOLOGICAL DISC,
ERROR BORDER TOO SHORT,
ERROR NON CONVEX BORDER,
ERROR CANNOT SOLVE LINEAR SYSTEM,
ERROR NO 1 TO 1 MAPPING,
ERROR OUT OF MEMORY,
ERROR WRONG PARAMETER}

List of errors detected by this package.
Values:
OK: Success. ERROR EMPTY MESH: Input mesh is
empty. ERROR NON TRIANGULAR MESH: Input mesh is
not triangular. ERROR NO TOPOLOGICAL DISC: Input
mesh is not a topological disc. ERROR BORDER TOO
SHORT: This border parameterization requires a longer
border. ERROR NON CONVEX BORDER: This param-
eterization method requires a convex border. ERROR
CANNOT SOLVE LINEAR SYSTEM: Cannot solve linear
system. ERROR NO 1 TO 1 MAPPING: Parameteriza-
tion failed: no one-to-one mapping. ERROR OUT
OF MEMORY: Not enough memory. ERROR WRONG
PARAMETER: A method received an unexpected parameter.

Creation

Operations

virtual Error code param.parameterize( Adaptor& mesh)

Compute a one-to-one mapping from a 3D surface mesh to
a piece of the 2D space. The mapping is linear by pieces
(linear in each triangle). The result is the (u, v) pair image of
each vertex of the 3D surface.
Preconditions:
mesh must be a surface with one connected component. mesh
must be a triangular mesh.

static const char* param.get error message( int error code)

Get message (in English) corresponding to an error code
Parameters:
error code: The code returned by parameterize().
Returns: The string describing the error code
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See Also

CGAL::Fixed border parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3362
CGAL::Barycentric mapping parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3350
CGAL::Discrete authalic parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3358
CGAL::Discrete conformal map parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3360
CGAL::LSCM parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3365
CGAL::Mean value coordinates parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3369
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ParameterizerTraits 3

Definition

ParameterizerTraits 3 is a concept of parameterization object for a given type of mesh, Adaptor, which is a
model of the ParameterizationMesh 3 concept.

Design Pattern

ParameterizerTraits 3 models are Strategies [GHJV95]: they implement a strategy of surface parameterization
for models of ParameterizationMesh 3.

Types

ParameterizerTraits 3:: Adaptor Export the type of mesh to parameterize.

Constants

enum Error code { OK,
ERROR EMPTY MESH,
ERROR NON TRIANGULAR MESH,
ERROR NO TOPOLOGICAL DISC,
ERROR BORDER TOO SHORT,
ERROR NON CONVEX BORDER,
ERROR CANNOT SOLVE LINEAR SYSTEM,
ERROR NO 1 TO 1 MAPPING,
ERROR OUT OF MEMORY,
ERROR WRONG PARAMETER}

List of errors detected by this package.
Values:
OK: Success. ERROR EMPTY MESH: Input mesh is
empty. ERROR NON TRIANGULAR MESH: Input mesh is
not triangular. ERROR NO TOPOLOGICAL DISC: Input
mesh is not a topological disc. ERROR BORDER TOO
SHORT: This border parameterization requires a longer
border. ERROR NON CONVEX BORDER: This param-
eterization method requires a convex border. ERROR
CANNOT SOLVE LINEAR SYSTEM: Cannot solve linear
system. ERROR NO 1 TO 1 MAPPING: Parameteriza-
tion failed: no one-to-one mapping. ERROR OUT
OF MEMORY: Not enough memory. ERROR WRONG
PARAMETER: A method received an unexpected parameter.

Creation

Construction and destruction are undefined.
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Operations

Error code param.parameterize( Adaptor& mesh)

Compute a one-to-one mapping from a triangular 3D surface
mesh to a piece of the 2D space. The mapping is linear by
pieces (linear in each triangle). The result is the (u, v) pair
image of each vertex of the 3D surface.
Preconditions:
mesh must be a surface with one connected component and
no hole. mesh must be a triangular mesh.

Has Models

CGAL::Parameterizer traits 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3393
CGAL::Fixed border parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3362
CGAL::Barycentric mapping parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3350
CGAL::Discrete authalic parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3358
CGAL::Discrete conformal map parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3360
CGAL::LSCM parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3365
CGAL::Mean value coordinates parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3369

See Also

ParameterizationMesh 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3371
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CGAL::parameterize

Definition

CGAL::parameterize() is the main entry-point of the Surface mesh parameterization package.

It computes a one-to-one mapping from a 3D triangle surface ’mesh’ to a simple 2D domain. The mapping
is piecewise linear on the triangle mesh. The result is a pair (u,v) of parameter coordinates for each vertex of
the input mesh. One-to-one mapping may be guaranteed or not, depending on the chosen ParametizerTraits
algorithm.

The CGAL::parameterize() function exists in two flavors, to provide a default parameterization algorithm of
Floater Mean Value Coordinates.

#include <CGAL/parameterize.h>

template<class ParameterizationMesh 3>
Parameterizer traits 3<ParameterizationMesh 3>::Error code

parameterize( ParameterizationMesh 3& mesh)

Compute a one-to-one mapping from a 3D triangle surface mesh to a 2D cir-
cle, using Floater Mean Value Coordinates algorithm. A one-to-one mapping
is guaranteed.
The mapping is piecewise linear on the input mesh triangles. The result is a
(u, v) pair of parameter coordinates for each vertex of the input mesh.
Preconditions:
mesh must be a surface with one connected component. mesh must be a
triangular mesh.
Parameters:
mesh: 3D mesh, model of ParameterizationMesh 3 concept.

template<class ParameterizationMesh 3, class ParameterizerTraits 3>
Parameterizer traits 3<ParameterizationMesh 3>::Error code

parameterize( ParameterizationMesh 3& mesh, ParameterizerTraits 3 parameterizer)

Compute a one-to-one mapping from a 3D triangle surface mesh to a simple
2D domain. The mapping is piecewise linear on the triangle mesh. The result
is a pair (u, v) of parameter coordinates for each vertex of the input mesh.
One-to-one mapping may be guaranteed or not, depending on the chosen
ParametizerTraits 3 algorithm.
Preconditions:
mesh must be a surface with one connected component. mesh must be a
triangular mesh. The mesh border must be mapped onto a convex polygon
(for fixed border parameterizations).
Parameters:
mesh: 3D mesh, model of ParameterizationMesh 3. parameterizer: Param-
eterization method for mesh.

See Also

CGAL::Barycentric mapping parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3350
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CGAL::Discrete authalic parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3358
CGAL::Discrete conformal map parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3360
CGAL::LSCM parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3365
CGAL::Mean value coordinates parameterizer 3<ParameterizationMesh 3, BorderParameterizer 3,
SparseLinearAlgebraTraits d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3369

Example

See Simple parameterization.cpp example.

Implementation

This function simply calls the parameterize() method of the parameterization algorithm chosen.
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SparseLinearAlgebraTraits d

Definition

The concept SparseLinearAlgebraTraits d is used to solve sparse linear systems A∗X = B.

Refines

LinearAlgebraTraits d

Types

SparseLinearAlgebraTraits d:: Matrix
SparseLinearAlgebraTraits d:: Vector
SparseLinearAlgebraTraits d:: NT

Creation

SparseLinearAlgebraTraits d sparse LA; Default constructor.

Operations

bool sparse LA.linear solver( Matrix A, Vector B, Vector& X, NT& D)

Solve the sparse linear system A∗X = B. Return true on suc-
cess. The solution is then (1/D) ∗ X.
Preconditions:
A.row dimension() == B.dimension(). A.column
dimension() == X.dimension().

Has Models

CGAL::Eigen solver traits<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3410
OpenNL::DefaultLinearSolverTraits<COEFFTYPE, MATRIX, VECTOR, SOLVER> in OpenNL package
OpenNL::SymmetricLinearSolverTraits<COEFFTYPE, MATRIX, VECTOR, SOLVER> in OpenNL package

See Also

SparseLinearAlgebraTraits d::Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3367
SparseLinearAlgebraTraits d::Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3414
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CGAL::Square border arc length parameterizer 3<
ParameterizationMesh 3>

Definition

This class parameterizes the border of a 3D surface onto a square, with an arc-length parameterization: (u, v)
values are proportional to the length of border edges.

Square border parameterizer 3 implements most of the border parameterization algorithm. This class imple-
ments only compute edge length() to compute a segment’s length.

#include <CGAL/Square border parameterizer 3.h>

Inherits From

Square border parameterizer 3<ParameterizationMesh 3>

Is Model for the Concepts

Model of the BorderParameterizer 3 concept.

Design Pattern

BorderParameterizer 3 models are Strategies [GHJV95]: they implement a strategy of border parameterization
for models of ParameterizationMesh 3

Parameters

The full template declaration is:

template<class ParameterizationMesh 3>
class Square border arc length parameterizer 3;

Creation

Operations

virtual double bp.compute edge length( Adaptor mesh,
Vertex const handle source,
Vertex const handle target) [protected, virtual]

Compute the length of an edge.
Arc-length border parameterization: (u, v) values are propor-
tional to the length of border edges.
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See Also

CGAL::Circular border arc length parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . page 3353
CGAL::Circular border uniform parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . page 3357
CGAL::Square border uniform parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . page 3405
CGAL::Two vertices parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3412

Example

See Square border parameterization.cpp example.
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CGAL::Square border parameterizer 3<ParameterizationMesh 3>

Definition

This is the base class of strategies that parameterize the border of a 3D surface onto a square. Square border
parameterizer 3 is a pure virtual class, thus cannot be instantiated.

It implements most of the algorithm. Subclasses just have to implement compute edge length() to compute a
segment’s length.

Implementation note: To simplify the implementation, BorderParameterizer 3 models know only the
ParameterizationMesh 3 class. They do not know the parameterization algorithm requirements or the kind
of sparse linear system used.

#include <CGAL/Square border parameterizer 3.h>

Is Model for the Concepts

Model of the BorderParameterizer 3 concept (although you cannot instantiate this class).

Design Pattern

BorderParameterizer 3 models are Strategies [GHJV95]: they implement a strategy of border parameterization
for models of ParameterizationMesh 3.

Parameters

The full template declaration is:

template<class ParameterizationMesh 3>
class Square border parameterizer 3;

Types

Square border parameterizer 3<ParameterizationMesh 3>:: Adaptor

Export ParameterizationMesh 3 template parameter.

Creation

Operations

Parameterizer traits 3<Adaptor>::Error code

bp.parameterize border( Adaptor& mesh)

Assign to mesh’s border vertices a 2D position (i.e. a (u, v)
pair) on border’s shape. Mark them as parameterized.
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bool bp.is border convex()

Indicate if border’s shape is convex.

virtual double bp.compute edge length( Adaptor mesh,
Vertex const handle source,
Vertex const handle target) [protected, pure virtual]

Compute the length of an edge.

See Also

CGAL::Square border arc length parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . page 3401
CGAL::Square border uniform parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . page 3405
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CGAL::Square border uniform parameterizer 3<
ParameterizationMesh 3>

Definition

This class parameterizes the border of a 3D surface onto a square in a uniform manner: points are equally
spaced.

Square border parameterizer 3 implements most of the border parameterization algorithm. This class imple-
ments only compute edge length() to compute a segment’s length.

#include <CGAL/Square border parameterizer 3.h>

Inherits From

Square border parameterizer 3<ParameterizationMesh 3>

Is Model for the Concepts

Model of the BorderParameterizer 3 concept.

Design Pattern

BorderParameterizer 3 models are Strategies [GHJV95]: they implement a strategy of border parameterization
for models of ParameterizationMesh 3.

Parameters

The full template declaration is:

template<class ParameterizationMesh 3>
class Square border uniform parameterizer 3;

Creation

Operations

virtual double bp.compute edge length( Adaptor,
Vertex const handle,
Vertex const handle) [protected, virtual]

Compute the length of an edge.
Uniform border parameterization: points are equally spaced.
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See Also

CGAL::Circular border arc length parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . page 3353
CGAL::Circular border uniform parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . page 3357
CGAL::Square border arc length parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . page 3401
CGAL::Two vertices parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3412
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CGAL::Eigen sparse matrix<T>

Definition

The class Eigen sparse matrix is a C++ wrapper around Eigen’s matrix type Eigen::SparseMatrix that repre-
sents general matrices, be they symmetric or not. The version 3.1 (or greater) of EIGEN must be available on
the system.

#include <CGAL/Eigen matrix.h>

Is Model for the Concepts

Model of the SparseLinearAlgebraTraits d::Matrix concept.

Parameters

T: Number type.

Types

Eigen sparse matrix<T>:: EigenType The internal matrix type from EIGEN.

See Also

CGAL::Eigen solver traits<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3410
CGAL::Eigen sparse symmetric matrix<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3408
CGAL::Eigen vector<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3409
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CGAL::Eigen sparse symmetric matrix<T>

Definition

The class Eigen sparse symmetric matrix is a C++ wrapper around EIGEN’s matrix type Eigen::SparseMatrix.

As the matrix is symmetric only the lower triangle part is stored.

#include <CGAL/Eigen matrix.h>

Is Model for the Concepts

Model of the SparseLinearAlgebraTraits d::Matrix concept.

Parameters

T: Number type.

Types

Eigen sparse symmetric matrix<T>:: EigenType

The internal matrix type from EIGEN.

See Also

CGAL::Eigen solver traits<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3410
CGAL::Eigen sparse symmetric matrix<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3408
CGAL::Eigen vector<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3409
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CGAL::Eigen vector<T>

Definition

The class Eigen vector is a C++ wrapper around EIGEN’s vector, which is a simple array of numbers. The
version 3.1 (or greater) of EIGEN must be available on the system.

#include <CGAL/Eigen vector.h>

Is Model for the Concepts

SparseLinearAlgebraTraits d::Vector.

Parameters

T: Number type.

Types

Eigen vector<T>:: EigenType The internal vector type from EIGEN.

See Also

CGAL::Eigen solver traits<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3410
CGAL::Eigen sparse matrix<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3407
CGAL::Eigen sparse symmetric matrix<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3408
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CGAL::Eigen solver traits<T>

Definition

The class Eigen solver traits provides an interface to the sparse solvers of EIGEN. The version 3.1 (or greater)
of EIGEN must be available on the system.

#include <CGAL/Eigen solver traits.h>

Is Model for the Concepts

SparseLinearAlgebraTraits d.

Parameters

T: a sparse solver of EIGEN. The default solver is the iterative bi-congugate gradient stabilized solver
Eigen::BiCGSTAB for double.

Types

typedef typename T::Scalar

NT;

typedef CGAL::Eigen vector<NT>

Vector;

Eigen solver traits<T>:: Matrix If T is Eigen::ConjugateGradient<M> or
Eigen::SimplicialCholesky<M>, Matrix is CGAL::Eigen
sparse symmetric matrix<T> and CGAL::Eigen sparse
matrix<T> otherwise.

Operations

T& st.solver() Returns a reference to the internal EIGEN solver. This func-
tion can be used for example to set specific parameters of the
solver.

See Also

CGAL::Eigen sparse matrix<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3407
CGAL::Eigen sparse symmetric matrix<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3408
CGAL::Eigen vector<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3409
http://eigen.tuxfamily.org

3410



Example

The instantiation of this class assumes an EIGEN sparse solver is provided. Here are few examples:� �
typedef CGAL::Eigen_sparse_matrix<double>::EigenType EigenMatrix;

//iterative general solver
typedef CGAL::Eigen_solver_traits< Eigen::BiCGSTAB<EigenMatrix> >

Iterative_general_solver;

//iterative symmetric solver
typedef CGAL::Eigen_solver_traits< Eigen::ConjugateGradient<EigenMatrix>

> Iterative_symmetric_solver;

//direct symmetric solver
typedef CGAL::Eigen_solver_traits< Eigen::SimplicialCholesky<EigenMatrix>

> Direct_symmetric_solver;� �
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CGAL::Two vertices parameterizer 3<ParameterizationMesh 3>

Definition

Two vertices parameterizer 3 is the default border parameterizer for Least Squares Conformal Maps parame-
terization.

The class Two vertices parameterizer 3 parameterizes two extreme vertices of a 3D surface. This kind of
border parameterization is used by free border parameterizations.

Implementation note: To simplify the implementation, BorderParameterizer 3 models know only the
ParameterizationMesh 3 class. They do not know the parameterization algorithm requirements or the kind
of sparse linear system used.

#include <CGAL/Two vertices parameterizer 3.h>

Is Model for the Concepts

Model of the BorderParameterizer 3 concept.

Design Pattern

BorderParameterizer 3 models are Strategies [GHJV95]: they implement a strategy of border parameterization
for models of ParameterizationMesh 3.

Parameters

The full template declaration is:

template<class ParameterizationMesh 3>
class Two vertices parameterizer 3;

Types

Two vertices parameterizer 3<ParameterizationMesh 3>:: Adaptor

Export ParameterizationMesh 3 template parameter.

Creation

Operations

Parameterizer traits 3<Adaptor>::Error code

bp.parameterize border( Adaptor& mesh)

Map two extreme vertices of the 3D mesh and mark them as
parameterized.
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bool bp.is border convex()

Indicate if border’s shape is convex. Meaningless for free
border parameterization algorithms.

See Also

CGAL::Circular border arc length parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . page 3353
CGAL::Circular border uniform parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . page 3357
CGAL::Square border arc length parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . page 3401
CGAL::Square border uniform parameterizer 3<ParameterizationMesh 3> . . . . . . . . . . . . . . . . . . . . . page 3405
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SparseLinearAlgebraTraits d::Vector

Definition

SparseLinearAlgebraTraits d::Vector is a concept of a vector that can be multiplied by a sparse matrix.

Refines

LinearAlgebraTraits d::Vector

Types

Vector:: NT

Creation

Vector v( int rows); Create a vector initialized with zeros.
Vector v( Vector toCopy); Copy constructor.

Operations

int v.dimension() const Return the vector’s number of coefficients.
NT v[ int row] Read/write access to a vector coefficient.

Precondition: 0 <= row < dimension().

NT& v[ int row]

Has Models

Eigen vector<T>
OpenNL::FullVector<T> in OpenNL package

See Also

SparseLinearAlgebraTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3400
SparseLinearAlgebraTraits d::Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3367
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This chapter describes the CGAL 2D streamline placement package. Basic definitions and notions are given
in Section 55.1. Section 55.2 gives a description of the integration process. Section 55.3 provides a brief
description of the algorithm. Section 55.4 presents the implementation of the package, and Section 55.5 details
two example placements.

Figure 55.1: The core idea of the algorithm is to integrate the streamlines from the center of the biggest empty
cavities in the domain (left). A Delaunay triangulation of all the sample points is used to model the streamlines
and the spaces within the domain (middle). A final result is shown (right).
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55.1 Definitions

In physics, a field is an assignment of a quantity to every point in space. For example, a gravitational field
assigns a gravitational potential to each point in space.

Vector and direction fields are commonly used for modeling physical phenomena, where a direction and
magnitude, namely a vector is assigned to each point inside a domain (such as the magnitude and direction of
the force at each point in a magnetic field).

Streamlines are important tools for visualizing flow fields. A streamline is a curve everywhere tangent to
the field. In practice, a streamline is often represented as a polyline (series of points) iteratively elongated
by bidirectional numerical integration started from a seed point, until it comes close to another streamline
(according to a specified distance called the separating distance), hits the domain boundary, reaches a critical
point or generates a closed path.

A valid placement of streamlines consists of saturating the domain with a set of tangential streamlines in accor-
dance with a specified density, determined by the separating distance between the streamlines.

55.2 Fundamental Notions

A streamline can be considered as the path traced by an imaginary massless particle dropped into a steady fluid
flow described by the field. The construction of this path consists in the solving an ordinary differential equation
for successive time intervals. In this way, we obtain a series of points pk,0 < k < n which allow visualizing the
streamline. The differential equation is defined as follows :

d p
dt

= v(p(t)), p(0) = p0

where p(t) is the position of the particle at time t, v is a function which assigns a vector value at each point in
the domain (possibly by interpolation), and p0 is the initial position. The position after a given interval ∆t is
given by :

p(t +∆t) = p(t)+
Z t+∆t

t
v(p(t))dt

. Several numeric methods have been proposed to solve this equation. In this package, the Euler, and the Second
Order Runge-Kutta algorithm are implemented.

55.2.1 Euler Integrator

This algorithm approximates the point computation by this formula

pk+1 = pk +hv(pk)

where h specifies the integration step (see Figure 55.2). The integration can be done forward (resp. backward)
by specifying a positive (resp. negative) integration step h. The streamline is then constructed by successive
integration from a seed point both forward and backward.
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pk+2

pk

pk+1

Figure 55.2: Euler integrator.

p‘k pk+1

pk

Figure 55.3: Runge-Kutta second order integrator (The empty circle represents the intermediate point, and the
gray disk represents the Euler integrated point).

55.2.2 Second Order Runge-Kutta Integrator

This method introduces an intermediate point p′k between pk and pk+1 to increase the precision of the computa-
tion (see Figure 55.3), where:

p′k = pk + 1
2 hv(pk)

pk+1 = pk + hv(p′k)

See [PTVF02] for further details about numerical integration.

55.3 Farthest Point Seeding Strategy

The algorithm implemented in this package [MAD05] consists of placing one streamline at a time by numerical
integration starting farthest away from all previously placed streamlines.

The input of our algorithm is given by (i) a flow field, (ii) a density specified either globally, by the inverse
of the ideal spacing distance, or locally by a density field, and (iii) a saturation ratio over the desired spacing
required to trigger the seeding of a new streamline.

The input flow field is given by a discrete set of vectors or directions sampled within a domain, associated with
an interpolation scheme (e.g. bilinear interpolation over a regular grid, or natural neighbor interpolation over
an irregular point set to allow for an evaluation at each point coordinate within the domain).
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The output is a streamline placement, represented as a list of streamlines. The core idea of our algorithm
consists of placing one streamline at a time by numerical integration seeded at the farthest point from all
previously placed streamlines.

The streamlines are approximated by polylines, whose points are inserted to a 2D Delaunay triangula-
tion (see figure 55). The empty circumscribed circles of the Delaunay triangles provide us with a good
approximation of the cavities in the domain.

After each streamline integration, all incident triangles whose circumcircle diameter is larger (within the satu-
ration ratio) than the desired spacing distance are pushed to a priority queue sorted by the triangle circumcircle
diameter. To start each new streamline integration, the triangle with largest circumcircle diameter (and hence
the biggest cavity) is popped out of the queue. We first test if it is still a valid triangle of the triangulation, since
it could have been destroyed by a streamline previously added to the triangulation. If it is not, we pop another
triangle out of the queue. If it is, we use the center of its circumcircle as seed point to integrate a new streamline.

Our algorithm terminates when the priority queue is empty. The size of the biggest cavity being monotonically
decreasing, our algorithm guarantees the domain saturation.

55.4 Implementation

Streamlines are represented as polylines, and are obtained by iterative integration from the seed point. A
polyline is represented as a range of points. The computation is processed via a list of Delaunay triangulation
vertices.

To implement the triangular grid, the CGAL Delaunay triangulation 2 class is used. The priority queue used to
store candidate seed points is taken from the Standard Template Library [Sil97].

55.5 Examples

The first example illustrates the generation of a 2D streamline placement from a vector field defined on a regular
grid.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Stream_lines_2.h>
#include <CGAL/Runge_kutta_integrator_2.h>
#include <CGAL/Regular_grid_2.h>
#include <CGAL/Triangular_field_2.h>

#include <iostream>
#include <fstream>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Regular_grid_2<K> Field;
typedef CGAL::Runge_kutta_integrator_2<Field> Runge_kutta_integrator;
typedef CGAL::Stream_lines_2<Field, Runge_kutta_integrator> Strl;
typedef Strl::Point_iterator_2 Point_iterator;
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typedef Strl::Stream_line_iterator_2 Strl_iterator;
typedef Strl::Point_2 Point_2;
typedef Strl::Vector_2 Vector_2;

int main()
{

Runge_kutta_integrator runge_kutta_integrator;

/*data.vec.cin is an ASCII file containing the vector field values*/
std::ifstream infile("data/vnoise.vec.cin", std::ios::in);
double iXSize, iYSize;
unsigned int x_samples, y_samples;
iXSize = iYSize = 512;
infile >> x_samples;
infile >> y_samples;
Field regular_grid_2(x_samples, y_samples, iXSize, iYSize);
/*fill the grid with the appropreate values*/
for (unsigned int i=0;i<x_samples;i++)

for (unsigned int j=0;j<y_samples;j++)
{

double xval, yval;
infile >> xval;
infile >> yval;
regular_grid_2.set_field(i, j, Vector_2(xval, yval));

}
infile.close();

/* the placement of streamlines */
std::cout << "processing...\n";
double dSep = 3.5;
double dRat = 1.6;
Strl Stream_lines(regular_grid_2, runge_kutta_integrator,dSep,dRat);
std::cout << "placement generated\n";

/*writing streamlines to streamlines_on_regular_grid_1.stl */
std::ofstream fw("streamlines_on_regular_grid_1.stl",std::ios::out);
fw << Stream_lines.number_of_lines() << "\n";
for(Strl_iterator sit = Stream_lines.begin(); sit !=
Stream_lines.end(); sit++)
{

fw << "\n";
for(Point_iterator pit = sit->first; pit != sit->second; pit++){

Point_2 p = *pit;
fw << p.x() << " " << p.y() << "\n";

}
}

fw.close();

}� �
File: examples/Stream_lines_2/stl_regular_field.cpp
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The second example depicts the generation of a streamline placement from a vector field defined on a triangular
grid.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Stream_lines_2.h>
#include <CGAL/Runge_kutta_integrator_2.h>
#include <CGAL/Triangular_field_2.h>

#include <iostream>
#include <fstream>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_2

Point;
typedef K::Vector_2

Vector;
typedef CGAL::Triangular_field_2<K>

Field;
typedef CGAL::Runge_kutta_integrator_2<Field>

Runge_kutta_integrator;
typedef CGAL::Stream_lines_2<Field, Runge_kutta_integrator> Strl;
typedef Strl::Stream_line_iterator_2

stl_iterator;

int main()
{

Runge_kutta_integrator runge_kutta_integrator(1);

/*datap.tri.cin and datav.tri.cin are ascii files where are stored the
vector velues*/

std::ifstream inp("data/datap.tri.cin");
std::ifstream inv("data/datav.tri.cin");
std::istream_iterator<Point> beginp(inp);
std::istream_iterator<Vector> beginv(inv);
std::istream_iterator<Point> endp;

Field triangular_field(beginp, endp, beginv);

/* the placement of streamlines */
std::cout << "processing...\n";
double dSep = 30.0;
double dRat = 1.6;
Strl Stream_lines(triangular_field, runge_kutta_integrator,dSep,dRat);
std::cout << "placement generated\n";

/*writing streamlines to streamlines.stl */
std::cout << "streamlines.stl\n";
std::ofstream fw("streamlines.stl",std::ios::out);
Stream_lines.print_stream_lines(fw);

}� �
File: examples/Stream_lines_2/stl_triangular_field.cpp
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2D Placement of Streamlines
Reference Manual
Abdelkrim Mebarki

Vector and direction fields are commonly used for modeling physical phenomena, where a direction and
magnitude, namely a vector is assigned to each point inside a domain.

A streamline is a curve everywhere tangent to the field. It can be considered as the path traced by an imaginary
massless particle dropped into a steady fluid flow described by the field.

A streamline is represented as a polyline iteratively elongated by bidirectional numerical integration started
from a seed point, until it comes close to another streamline, hits the domain boundary, or reaches a critical point.

The Stream lines 2 class consists of saturating the domain with a set of tangential streamlines in accordance
with a specified density.

Streamlines are represented as containers of points, manipulated by an iterator range of points, and the whole
placement is accessible via an iterator range of streamlines.

The main class in this package, the Stream lines 2 class of CGAL depends on two template parameters. The first
template parameter stands for a class which represents both the vector field and the visualization domain with
operations on them, and should be instantiated by a model of the concept VectorField 2. The second template
parameter stands for a function object that ensures the numerical integration used to construct the streamlines,
and should be instantiated by a model of the concept Integrator 2.

55.6 Classified Reference Pages

Concepts

StreamLinesTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3428
Integrator 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3424
VectorField 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3432
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Classes

CGAL::Stream lines 2<VectorField 2,Integrator 2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3429
CGAL::Euler integrator 2<VectorField 2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3423
CGAL::Runge kutta integrator 2<VectorField 2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3427
CGAL::Regular grid 2<StreamLinesTraits 2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3425
CGAL::Triangular field 2<StreamLinesTraits 2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3431

55.7 Alphabetical List of Reference Pages

Euler integrator 2<VectorField 2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3423
Integrator 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3424
Regular grid 2<StreamLinesTraits 2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3425
Runge kutta integrator 2<VectorField 2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3427
StreamLinesTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3428
Stream lines 2<VectorField 2,Integrator 2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3429
Triangular field 2<StreamLinesTraits 2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3431
VectorField 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3432
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CGAL::Euler integrator 2<VectorField 2>

Definition

This class implements the first order Euler integrator. The template parameter VectorField 2 has to be instanti-
ated by a model of the concept VectorField 2.

Creation

Euler integrator 2<VectorField 2> einteg( FT integration step);

Creates an Euler integrator class einteg with integration step
as integration step.

Is Model for the Concepts

Integrator 2

See Also

Runge kutta integrator 2<VectorField 2>
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Integrator 2

Definition

The concept Integrator 2 describes the set of requirements to be fulfilled by any function object used to in-
stantiate the second template parameter of the class Stream lines 2<VectorField 2,Integrator 2>. This concept
provides the operation that integrates a new point from a given point with a predefined step, and according to a
specified vector.

Types

Integrator 2:: FT The scalar type.
Integrator 2:: Point 2 The point type.
Integrator 2:: Vector 2 The vector type.
Integrator 2:: Vector field 2 The vector field type.

Creation

Integrator 2 integ; only a default constructor is needed.

Operations

The following operations return the newly integrated point.

Point 2 integ( Point 2 p, Vector field 2 vector field 2)

returns the new position from the actual position defined by
p, according to the vector given by vector field 2 at p.
Precondition: vector field 2.is in domain(p) must be true.

Point 2 integ( Point 2 p, Vector field 2 vector field 2, FT integration step)

As above. The integration step is defined by integration step.
Precondition: vector field 2.is in domain(p) must be true.

Point 2 integ( Point 2 p, Vector field 2 vector field 2, FT integration step, bool direction)

As above. In addition, this function integrates forward if di-
rection is true, and backward if it is false.
Precondition: vector field 2.is in domain(p) must be true.

Has Models

CGAL::Euler integrator 2<VectorField 2>
CGAL::Runge kutta integrator 2<VectorField 2>
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CGAL::Regular grid 2<StreamLinesTraits 2>

Definition

The template parameter StreamLinesTraits 2 has to be instantiated by a model of the concept
StreamLinesTraits 2.
This class provides a 2D vector field specified by a set of sample points defined on a regular grid, with a bilinear
interpolation scheme over its cells (i.e. for each point p in a cell c, the vector value is interpolated from the
vertices of c).

Types

typedef StreamLinesTraits 2::FT FT; the scalar type.
typedef StreamLinesTraits 2::Point 2 Point 2; the point type.
typedef StreamLinesTraits 2::Vector 2 Vector 2; the vector type.

Creation

Regular grid 2<StreamLinesTraits 2> rgrid( int x samples, int y samples, FT x size, FT y size);

Generate a regular grid rgrid
whose size is x size by y size,
while x samples and y samples
specify the number of samples
on x and y.

Modifiers

In addition to the minimum interface required by the concept definition, the class Regular grid 2<
StreamLinesTraits 2> provides the following function to fill the vector field with the user data.

void rgrid.set xy( int i, int j, Vector 2 v)

Attribute the vector v to the po-
sition (i,j) on the regular grid.

Access Functions

std::pair<int, int> rgrid.get dimension() returns the dimension of the
grid.

std::pair<FT, FT> rgrid.get size() returns the size of the grid.
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Is Model for the Concepts

VectorField 2

See Also

Triangular field 2<StreamLinesTraits 2>
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CGAL::Runge kutta integrator 2<VectorField 2>

Definition

The template parameter VectorField 2 has to be instantiated by a model of the concept VectorField 2. This
class implements the second order Runge-Kutta integrator.

Creation

Runge kutta integrator 2<VectorField 2> rkinteg( FT integration step);

Creates a Runge-Kutta second order integrator class rkinteg
with integration step as integration step.

Is Model for the Concepts

Integrator 2

See Also

Euler integrator 2<VectorField 2>
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StreamLinesTraits 2

Definition

The concept StreamLinesTraits 2 describes the set of requirements to be fulfilled by any class used to instantiate
the template parameter of the class Regular grid 2<StreamLinesTraits 2>. This concept provides the types
handled by the Stream lines 2<VectorField 2, Integrator 2> class.

Types

StreamLinesTraits 2:: FT The scalar type.
StreamLinesTraits 2:: Point 2 The point type.
StreamLinesTraits 2:: Vector 2 The vector type.

Has Models

The kernels of CGAL are models for this traits class.
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CGAL::Stream lines 2<VectorField 2,Integrator 2>

Definition

The class Stream lines 2<VectorField 2,Integrator 2> is designed to handle a placement of streamlines in a
2D domain according to a bidimensional vector field.

The class Stream lines 2<VectorField 2,Integrator 2> creates a placement of streamlines according to a spec-
ified density and gives access to those streamlines via two iterators over a container of iterators that provide
access to the streamline points.

Parameters

The class Stream lines 2<VectorField 2,Integrator 2> has two template parameters. The first parameter
VectorField 2 has to be instantiated by a model of the concept VectorField 2. The second parameter is the
function object Integrator 2, and has to be instantiated by a model of the concept Integrator 2.

Types

typedef VectorField 2::Geom traits Geom traits; the traits class.
typedef VectorField 2::FT FT; the scalar type.
typedef VectorField 2::Point 2 Point 2; the point type.
typedef VectorField 2::Vector 2 Vector 2; the vector type.

The class Stream lines 2<VectorField 2,Integrator 2> provides also two types for handling streamlines:

Stream lines 2<VectorField 2,Integrator 2>:: Point iterator 2

iterator of points with value type Point 2.

Stream lines 2<VectorField 2,Integrator 2>:: Stream line iterator 2

an iterator to visit the streamlines with value type std::pair<
Point iterator 2, Point iterator 2>.

Creation

Stream lines 2<VectorField 2,Integrator 2> stl( VectorField 2 vector field 2,
Integrator 2 integrator 2,
FT separating distance,
FT saturation ratio)

Generates a streamline placement stl.

Modifiers

void stl.set separating distance( FT new value)

Modify the separating distance.
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void stl.set saturation ratio( FT new value)

Modify the saturation ratio.

void stl.update() Update the placement after changing the separating dis-
tance or the saturation ratio.

Access Functions

void stl.get separating distance() returns the separating distance.
void stl.get saturation ratio() returns the saturation ratio.
void stl.print stream lines( std::ofstream & fw)

prints the streamlines to an ASCII file : line by line, and
point by point.

Streamline iterators

The following iterators allow to visit all the streamlines generated by the constructor or the update function.

Stream line iterator stl.begin() const Starts at the first streamline
Stream line iterator stl.end() const Past-the-end iterator
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CGAL::Triangular field 2<StreamLinesTraits 2>

Definition

The template parameter StreamLinesTraits 2 has to be instantiated by a model of the concept
StreamLinesTraits 2.

This class provides a vector field specified by a set of sample points defined on a triangulated domain. All
sample points are inserted to a Delaunay triangulation, and for each point p in the domain located in a face f ,
its vector value is interpolated from the vertices of the face f .

Types

typedef StreamLinesTraits 2::FT FT; the scalar type.
typedef StreamLinesTraits 2::Point 2 Point 2; the point type.
typedef StreamLinesTraits 2::Vector 2 Vector 2; the vector type.

Creation

Triangular field 2<StreamLinesTraits 2> tfield 2( InputIterator1 first point,
InputIterator1 last point,
InputIterator2 first vector)

Defines the points in the
range [ first point, last
point ) as the sample points
of the grid, with the cor-
responding number of vec-
tors started at first vector.
Precondition: The value
type of InputIterator1 is
Point.
Precondition: The value
type of InputIterator2 is
Vector.

Is Model for the Concepts

VectorField 2

See Also

Regular grid 2<StreamLinesTraits 2>
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VectorField 2

Definition

The concept VectorField 2 describes the set of requirements to be fulfilled by any class used to instantiate
the first template parameter of the class Stream lines 2<VectorField 2,Integrator 2>. This concept provides
the types of the geometric primitives used in the placement of streamlines and some functions for answering
different queries.

Types

VectorField 2:: Geom traits The traits class.
VectorField 2:: FT The scalar type.
VectorField 2:: Point 2 The point type.
VectorField 2:: Vector 2 The vector type.

Creation

VectorField 2 vfield; Any constructor has to allow the user to fill the vector values
(i.e. assign a vector to each position within the domain).

Query Functions

Geom traits::Iso rectangle 2

vfield.bbox() returns the bounding box of the whole domain.
std::pair<Vector 2,FT>

vfield.get field( Point 2 p)

returns the vector field value and the local density.
Precondition: is in domain(p) must be true.

bool vfield.is in domain( Point 2 p)

returns true if the point p is inside the domain boundaries,
false otherwise.

FT vfield.get integration step( Point 2 p)

returns the integration step at the point p (i.e. the distance
between p and the next point in the polyline.).
Precondition: is in domain(p) must be true.

Has Models

CGAL::Regular grid 2<StreamLinesTraits 2>
CGAL::Triangular field 2<StreamLinesTraits 2>
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Chapter 56

Approximation of Ridges and Umbilics
on Triangulated Surface Meshes
Marc Pouget and Frédéric Cazals
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This chapter describes the CGAL package for the approximating the ridges and umbilics of a smooth surface
discretized by a triangle mesh. Given a smooth surface, a ridge is a curve along which one of the principal
curvatures has an extremum along its curvature line. An umbilic is a point at which both principal curvatures are
equal. Ridges define a singular curve, i.e., a self-intersecting curve, and umbilics are special points on this curve.
Ridges are curves of extremal curvature and therefore encode important informations used in segmentation,
registration, matching and surface analysis. Based on the results of the article [CP05c], we propose algorithms
to identify and extract different parts of this singular ridge curve as well as umbilics on a surface given as a
triangulated surface mesh. Differential quantities associated to the mesh vertices are assumed to be given for
these algorithms; such quantities may be computed by the package Estimation of Local Differential Properties
of Sampled Surfaces via Polynomial Fitting.

Note that this package needs the third party library Eigen (Page 28)for linear algebra operations.
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Figure 56.1: Crest ridges on the David, model provided by the Digital Michelangelo Project.

56.0.1 Overview

Section 56.1 presents the basics of the theory of ridges and umbilics on smooth surfaces. Sections 56.2 and
56.3 present algorithms for approximating the ridges and umbilics (of a smooth surface) from a triangle mesh.
Section 56.4 gives the package specifications, while example calls to functions of the package are provided in
Section 56.5.

56.1 Ridges and Umbilics of a Smooth Surface

For a detailed introduction to ridges and related topics, the reader may consult [HGY+99, Por01], as well as
the following survey article [CP05b]. In the sequel, we just introduce the basic notions so as to explain our
algorithms. Consider a smooth embedded surface, and denote k1 and k2 the principal curvatures, with k1 ≥ k2.
Umbilics are the points where k1 = k2. For any non umbilical point, the corresponding principal directions
of curvature are well defined, and we denote them d1 and d2. In local coordinates, we denote 〈,〉 the inner
product induced by the ambient Euclidean space, and dk1, dk2 the gradients of the principal curvatures. Ridges,
illustrated in Figure 56.2 for the standard ellipsoid, are defined by:

Definition. 1 A non umbilical point is called

• a max ridge point, if the extremality coefficient b0 = 〈dk1,d1〉 vanishes, i.e. b0 = 0.

• a min ridge point, if the extremality coefficient b3 = 〈dk2,d2〉 vanishes, i.e. b3 = 0 1.

The previous characterization of ridges involves third-order differential properties. Using fourth-order differen-
tial quantities, a ridge point can further be qualified as elliptic if it corresponds to a maximum of k1 or a minimum
of k2, or hyperbolic otherwise. Hence we end up with four types of ridges, namely: MAX ELLIPTIC RIDGE,

1Notations b0,b3 comes from Equation 57.2
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MAX HYPERBOLIC RIDGE, MIN ELLIPTIC RIDGE, MIN HYPERBOLIC RIDGE, which are illustrated in
Figure 56.2. Also of interest are the crest lines, a crest line being an elliptic ridge which is a maximum of
max(|k1|, |k2|). Crest lines form a subset of elliptic ridges, and can be seen as the visually most salient curves
on a surface. Hence we provide the two additional ridge types MAX CREST RIDGE and MIN CREST RIDGE,
which are illustrated in Figure 56.

Figure 56.2: Ridges on the ellipsoid, normals pointing outward. Color coding: MAX ELLIPTIC RIDGE
are blue, MAX HYPERBOLIC RIDGE are green, MIN ELLIPTIC RIDGE are red and MIN HYPERBOLIC
RIDGE are yellow. The red line is also the MIN CREST RIDGE and this is the only crest ridge of the ellipsoid.

At any point of the surface which is not an umbilic, principal directions d1,d2 are well defined, and these (non
oriented) directions together with the normal vector n define two direct orthonormal frames. If v1 is a unit vector
of direction d1 then there exists a unique unit vector v2 so that (v1,v2,n) is direct, that is has the same orientation
as the canonical basis of the ambient 3d space (and the other possible frame is (−v1,−v2,n)). In the coordinate
systems (v1,v2,n), the surface has the following canonical form, known as the Monge form :

z(x,y) = 1
2 (k1x2 + k2y2)+ 1

6 (b0x3 +3b1x2y+3b2xy2 +b3y3) (56.1)

+ 1
24 (c0x4 +4c1x3y+6c2x2y2 +4c3xy3 + c4y4)+h.o.t (56.2)

The Taylor expansion of k1 (resp. k2) along the max (resp. min) curvature line going through the origin and
parameterized by x (resp. y) are:

k1(x) = k1 +b0x+
P1

2(k1− k2)
x2 +h.o.t, P1 = 3b2

1 +(k1− k2)(c0−3k3
1). (56.3)

k2(y) = k2 +b3y+
P2

2(k2− k1)
y2 +h.o.t, P2 = 3b2

2 +(k2− k1)(c4−3k3
2). (56.4)

Notice also that switching from one to the other of the two afore-mentioned coordinate systems reverts the sign
of all the odd coefficients on the Monge form of the surface.

Hence ridge types are characterized by

• max ridge if b0 = 0

• MAX ELLIPTIC RIDGE if b0 = 0 and P1 < 0

• MAX HYPERBOLIC RIDGE if b0 = 0 and P1 > 0
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• min ridge if b3 = 0

• MIN ELLIPTIC RIDGE if b3 = 0 and P2 < 0

• MIN HYPERBOLIC RIDGE if b3 = 0 and P2 > 0

• MAX CREST RIDGE if b0 = 0 and P1 < 0 and |k1|> |k2|

• MIN CREST RIDGE if b3 = 0 and P2 < 0 and |k2|> |k1|

As illustrated in Figures 56.3 and 56.4, the patterns made by curvature lines around an umbilic can be charac-
terized using the notion of an index associated to the principal directions — see also [CP05b]. As depicted in
Figure 56.3, consider a small circuit C around the umbilic, and a point p∈C. Starting from an initial orientation
u of a tangent vector to the curvature line through point p, propagate by continuity this orientation around the
circuit. The index is defined by the angle swept by u around this revolution, normalized by 2π. In our example,
the index is thus 1/2.

If the index of the principal direction field is 1/2 then it is called a ELLIPTIC UMBILIC, if it is−1/2 it is called
a HYPERBOLIC UMBILIC. Otherwise the umbilic is qualified NON GENERIC UMBILIC.

Figure 56.3: Index 1/2 umbilic or elliptic umbilic.

56.2 Approximating Ridges on Triangulated Surface Meshes

Our method aims at reporting ridges as polygonal lines living on the mesh. It assumes differential quantities are
available for each vertex of the mesh (principal curvatures and directions together with third order quantities
b0,b3 and optionally fourth order quantities P1,P2). These differential quantities may be computed for the
smooth surface the mesh is inscribed in (analytically or using approximation methods), or may be estimated for
a mesh given without reference to an underlying smooth surface. Although the ridge approximation algorithm
is the same in both cases, one cannot ambition to ask for the same certificates. This distinction calls for the
notion of compliant mesh.

Compliant meshes. Ridges of a smooth surface are points with prescribed differential properties, and report-
ing them from a mesh inscribed in the surface requires delicate hypothesis on the geometry of that mesh so as
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Figure 56.4: Elliptic and hyperbolic umbilics.

to get a certified result. In this paragraph, we assume the mesh provided complies with a number of hypothe-
sis, which guarantee the topology of the ridges reported matches that of the ridges on the smooth surface. To
summarize things, a compliant mesh is a mesh dense enough so that (i) umbilics are properly isolated (ii) ridges
running next to one another are also properly separated. See [CP05c] for a detailed discussion of compliant
meshes.

As 0-level set of the extremality coefficients b0 and b3, ridges are extracted by a marching triangles algorithm.2

As the signs of these extremality coefficients depend on the orientation of the principal directions, we expect
both extremalities and vectors orienting the principal direction to be given at each point vertex of the mesh. Ex-
cept in the neighborhood of umbilics, if the mesh is dense enough, a coherent orientation of principal directions
at both endpoints of an edge is chosen such that the angle between the two vectors is acute. This rule, the acute
rule, is precisely analyzed in [CP05c]. Moreover, we only seek ridges in triangles for which one can find an
orientation of its three vertices such that the three edges are coherently oriented by the acute rule. Such triangles
are called regular. This said, two remarks are in order.

—Regular triangles and ridge segments. A regular triangle has 0 or 2 edges crossed by a max (resp. min) ridge,
which is tantamount to a sign change of b0 (resp. b3) along the corresponding edges. In the latter case, we
say that the triangle contains a ridge segment. Two methods are provided to compute its type, be it elliptic or
hyperbolic. First, if fourth order differential quantities are provided, one can use the P1 (P2) values of Equations
56.3 (56.4) for a max (min) ridge. The value of Pi for a ridge segment is defined as the mean value of the Pi
values of the two crossing points on edges (while the value at a crossing point on an edge is the bi-weighted
mean value of the values at endpoints). Alternatively, if third order differential quantities only are available, one
may use the geometric method developed in [CP05c].

Using the notion of ridge segment, a Ridge line is defined as a maximal connected sequence of ridge segments
of the same type and connected together. Notice that the topology of a Ridge line is either that of an interval or
a circle.

—Non-regular triangles. In the neighborhood of umbilics, triangle are less likely to be regular and the detec-

2A marching triangles algorithm is similar to a 2d marching cubes algorithm (or marching rectangles algorithm), except that a one-
manifold is reported on a two-manifold tessellated by triangles.
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tion of ridges cannot be relevant by this method. This is why we propose another method to detect umbilics
independently.

Non compliant meshes: filtering ridges on strength and sharpness. For real world applications dealing with
coarse meshes, or meshes featuring degenerate regions or sharp features, or meshes conveying some amount of
noise, the compliance hypothesis [CP05c] cannot be met. In that case, it still makes sense to seek loci of
points featuring extremality of estimated principal curvatures, but the ridges reported may require filtering. For
example, if the principal curvatures are constant —which is the case on a plane or a cylinder, then all points
are ridge points. In this context, an appealing notion is that of sharp ridge or prominent ridge. Since ridges
are witnessed by zero crossings of b0 and b3, one can expect erroneous detections as long as these coefficients
remain small. In order to select the most prominent ridge points, we focus on points where the variation of the
curvature is fast along the curvature line. One can observe that, at a ridge point, according to Equation 56.3,
the second derivative of k1 along its curvature line satisfies k

′′
1(0) = P1/(k1− k2). Using this observation, one

can define the sharpness of a ridge as the integral of the absolute value of P1/(k1− k2) along the ridge. As
the second derivative of the curvature is homogeneous to the inverse of the cube of a length, the sharpness is
homogeneous to the inverse of the square of a length. Multiplying the sharpness by the square of the model
size gives a threshold and an associated sharpness-filter which are scale independent. Another filtering is also
available with the strength which is the integral of the curvature along the ridge line [OBS04].

56.3 Approximating Umbilics on Triangulated Surface Meshes

The method aims at identifying some vertices of a mesh as umbilics. It assumes principal curvatures and
directions are given at each vertex on the mesh.

Algorithm. Assume each vertex v of the mesh comes with a patch (a topological disk) around it. Checking
whether vertex v is an umbilic is a two stages process, which are respectively concerned with the variation of
the function k1− k2 over the patch, and the index of the vertex computed from the boundary of the patch. More
precisely, vertex v is declared to be an umbilic if the following two conditions are met:

• the function k1− k2 has its minimum at v amongst all the vertices of the patch;

• the deviation δ of any principal direction along the patch boundary, traversed counter-clock-wise (CCW),
has prescribed properties:

– δ ∈]π/2,3π/2[, then the umbilic is called elliptic,
– δ ∈]−3π/2,−π/2[, then the umbilic is called a hyperbolic,
– otherwise the umbilic is called non-generic.

Finding patches around vertices. Given a vertex v and a parameter t, we aim at defining a collection of
triangles around v so that (i) this collection defines a topological disk on the triangulation T and (ii) its size
depends on t. First we collect the 1-ring triangles. We define the size s of this 1-ring patch as the (Euclidean)
distance from v to its farthest 1-ring vertex neighbor. We then collect recursively adjacent triangles so that the
patch remains a topological disk and such that these triangles are at distance less than s× t. Parameter t is the
only parameter of the algorithm.

Umbilical patches versus ridges. On a generic surface, generic umbilics are traversed by one or three ridges.
For compliant meshes, an umbilic can thus be connected to the ridge points located on the boundary of its patch.
This functionality is not provided, and the interested reader is referred to [CP05c] for more details.
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56.4 Software Design

All classes of this package are templated by the parameter TriangulatedSurfaceMesh, which defines the type of
the mesh to which the approximation algorithms operate.

The differential quantities are provided at vertices of this mesh via property maps, a concept commonly used in
the Boost library. Scalar data (curvatures and their derivatives) are provided via Vertex2FTPropertyMap con-
cepts, while 3d vector data (principal directions of curvatures) are provided via Vertex2VectorPropertyMap con-
cepts. The rationale for introducing these concepts is that properties are used independently from the way they
are stored. This enables the user to store them internally in extended vertices or externally with maps. We pro-
vide a class Vertex2Data Property Map with std map to adapt std::map with a boost::associative property
map to model these concepts.

Output of ridges or umbilics are provided via output iterator.

Approximation of ridges and umbilics are performed by two independent classes, which we now further de-
scribe.

56.4.1 Ridge Approximation

The main class is Ridge approximation<TriangulatedSurfaceMesh,Vertex2FTPropertyMap,Vertex2VectorPropertyMap>
. Its construction requires the mesh and the property maps defining the differential quantities for principal
curvatures k1 and k2, the third order extremalities b0 and b3, the principal directions of curvature d1 and d2, and
the fourth order quantities P1 and P2 if the tagging of ridges as elliptic or hyperbolic is to be done using the
polynomials P1 and P2.

Three functions (provided as members and also as global functions) enable the computation of different types
of ridges :

• compute max ridges (resp. compute min ridges) outputs ridges of types MAX ELLIPTIC RIDGE and
MAX HYPERBOLIC RIDGE (resp. MIN ELLIPTIC RIDGE and MIN HYPERBOLIC RIDGE).

• compute crest ridges outputs ridges of types MAX CREST RIDGE and MIN CREST RIDGE.

These functions allows the user to specify how the elliptic/hyperbolic tagging is carried out. Notice the rationale
for the choice of these three functions is simple: each computation needs a single pass over the triangles of the
mesh. This should be clear for the min and max ridges. For crests, just notice max and min crests cannot
intersect over a triangle.

The ridge lines are stored in Ridge line objects and output through an iterator. Each ridge line is represented
as a list of halfedges of the mesh it crosses with a scalar defining the barycentric coordinate of the crossing
point with respect to the half-egde endpoints. Each ridge line comes with its type Ridge type, its strength and
sharpness.

If one chooses to use only third order quantities, the quantities Pi do not have to be defined. Then the sharpness
will not be defined.

56.4.2 Umbilic Approximation

The main class is Umbilic approximation<TriangulatedSurfaceMesh,Vertex2FTPropertyMap,Vertex2VectorPropertyMap>
. Its construction requires the mesh and the property maps defining the differential quantities for principal
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curvatures k1 and k2, and the principal directions of curvature d1 and d2. The member function compute (or the
global function compute umbilics) has a parameter to define the size of the neighborhood of the umbilic.

Umbilics are stored in Umbilic objects, they come with their type : ELLIPTIC UMBILIC, HYPERBOLIC
UMBILIC or NON GENERIC UMBILIC; the vertex of the mesh they are associated to and the list of half-edges
representing the contour of the neighborhood.

56.4.3 Models for the Property Map Concepts

The class Vertex2Data Property Map with std map<TriangulatedSurfaceMesh> enables the definition of
models for the concepts Vertex2FTPropertyMap and Vertex2VectorPropertyMap using std::maps and
boost::associative property map.

56.5 Examples

56.5.1 Example program

The following program computes ridges and umbilics from an off file.3 It uses the Jet fitting package to estimate
the differential quantities. The default output file gives rough data for visualization purpose, a verbose output
file may also be asked for. Parameters are

• d, the degree of the jet for the Monge via jet fitting class, d must be greater or equal to 3 which is the
default value;

• m, the degree of the Monge representation for the Monge via jet fitting class, m must be 3 (the default
value) or 4 and smaller than d;

• a, the number of rings of neighbors collected for the Monge via jet fitting class, in addition the number
of vertices collected must be greater than Nd := (d +1)(d +2)/2 to make the approximation possible. a
may be an integer greater than 1, the value 0 (which is the default) means that the minimum number of
rings is collected to make the approximation possible. (Alternatively option p allows the specification of
a constant number of neighbors);

• t, the CGAL::Ridge order for the distinction between elliptic and hyperbolic ridges, t is 3 (default) or 4;

• u, the parameter for umbilic patch size, u≥ 1 (default is 1).� �
#include <CGAL/Ridges.h>
#include <CGAL/Umbilics.h>

//this is an enriched Polyhedron with facets’ normal
#include "PolyhedralSurf.h"

typedef PolyhedralSurf::Traits Kernel;
typedef Kernel::FT FT;
typedef Kernel::Point_3 Point_3;
typedef Kernel::Vector_3 Vector_3;

3Model data may be downloaded via ftp://ftp.mpi-sb.mpg.de/pub/outgoing/CGAL/Ridges 3 datafiles.tgz . The mechanical part model
has been provided courtesy of Dassault System to produce Figure 56.6, due to copyright issues the available model is not the same, it is
provided by the AIM@SHAPE Shape Repository.
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typedef PolyhedralSurf::Vertex_const_handle Vertex_const_handle;
typedef PolyhedralSurf::Vertex_const_iterator Vertex_const_iterator;

typedef CGAL::Vertex2Data_Property_Map_with_std_map<PolyhedralSurf>
Vertex2Data_Property_Map_with_std_map;

typedef Vertex2Data_Property_Map_with_std_map::Vertex2FT_map
Vertex2FT_map;

typedef Vertex2Data_Property_Map_with_std_map::Vertex2Vector_map
Vertex2Vector_map;

typedef Vertex2Data_Property_Map_with_std_map::Vertex2FT_property_map
Vertex2FT_property_map;

typedef Vertex2Data_Property_Map_with_std_map::Vertex2Vector_property_map
Vertex2Vector_property_map;

//RIDGES
typedef CGAL::Ridge_line<PolyhedralSurf> Ridge_line;
typedef CGAL::Ridge_approximation < PolyhedralSurf,

back_insert_iterator<
std::vector<Ridge_line*> >,

Vertex2FT_property_map,
Vertex2Vector_property_map >

Ridge_approximation;
//UMBILICS
typedef CGAL::Umbilic<PolyhedralSurf> Umbilic;
typedef CGAL::Umbilic_approximation < PolyhedralSurf,

back_insert_iterator<
std::vector<Umbilic*> >,

Vertex2FT_property_map,
Vertex2Vector_property_map >

Umbilic_approximation;

//create property maps
Vertex2FT_map vertex2k1_map, vertex2k2_map,

vertex2b0_map, vertex2b3_map,
vertex2P1_map, vertex2P2_map;

Vertex2Vector_map vertex2d1_map, vertex2d2_map;

Vertex2FT_property_map vertex2k1_pm(vertex2k1_map),
vertex2k2_pm(vertex2k2_map),

vertex2b0_pm(vertex2b0_map), vertex2b3_pm(vertex2b3_map),
vertex2P1_pm(vertex2P1_map), vertex2P2_pm(vertex2P2_map);

Vertex2Vector_property_map vertex2d1_pm(vertex2d1_map),
vertex2d2_pm(vertex2d2_map);

int main(int argc, char *argv[])
{

//compute differential quantities with the jet fitting package
...

//initialize the property maps
...

//---------------------------------------------------------------------------
//Ridges
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//--------------------------------------------------------------------------
Ridge_approximation ridge_approximation(P,

vertex2k1_pm, vertex2k2_pm,
vertex2b0_pm, vertex2b3_pm,
vertex2P1_pm, vertex2P2_pm,
vertex2d1_pm, vertex2d2_pm);

std::vector<Ridge_line*> ridge_lines;
back_insert_iterator<std::vector<Ridge_line*> > ii(ridge_lines);

//Find MAX_RIDGE, MIN_RIDGE, CREST or all ridges
ridge_approximation.compute_max_ridges(ii, tag_order);
ridge_approximation.compute_min_ridges(ii, tag_order);
ridge_approximation.compute_crest_ridges(ii, tag_order);

//---------------------------------------------------------------------------
// UMBILICS

//--------------------------------------------------------------------------
Umbilic_approximation umbilic_approximation(P,

vertex2k1_pm, vertex2k2_pm,
vertex2d1_pm,

vertex2d2_pm);
std::vector<Umbilic*> umbilics;
back_insert_iterator<std::vector<Umbilic*> > umb_it(umbilics);
umbilic_approximation.compute(umb_it, umb_size);

}� �
56.5.2 Example: Ridges and Umbilics on an Ellipsoid

For Figure56.5, the data have been computed as follows:� �
./Compute_Ridges_Umbilics -f data/ellipsoid_u_0.02.off -d 4 -m 4 -a 3 -t

3� �
In addition, the four elliptic umbilics are detected, the standard output being� �
nb of umbilics 4
Umbilic at location (-0.80899 0.00426003 0.293896) of type elliptic
Umbilic at location (-0.811197 0.0122098 -0.292259) of type elliptic
Umbilic at location (0.808372 -0.00551307 -0.29431) of type elliptic
Umbilic at location (0.81413 0.0018689 0.290339) of type elliptic� �
56.5.3 Example: Filtering of Crest Ridges on a Mechanical Par

Figure 56.6 illustrates the filtering of crest ridges on a mechanical model, and has been computed as follows:� �
./Compute_Ridges_Umbilics -f data/mecanic.off -d 4 -m 4 -a 4 -t 4� �
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Figure 56.5: Ridges on the ellipsoid, normals pointing outward. Color coding : MAX ELLIPTIC RIDGE
are blue, MAX HYPERBOLIC RIDGE are green, MIN ELLIPTIC RIDGE are red and MIN HYPERBOLIC
RIDGE are yellow.

Figure 56.6: Mechanical part (37k pts): (a) All crest lines, (b) crests filtered with the strength threshold 1 and
(c) crests filtered with the sharpness threshold 100 000. Notice that any point on a flat or cylindrical part lies on
two ridges, so that the noise observed on the top two Figs. is unavoidable. It is however easily filtered out with
the sharpness on the bottom figure.
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CGAL::compute crest ridges

Definition

The function compute crest ridges is a short cut to the method of the same name of the class Ridge
approximation.

#include <CGAL/Ridges.h>

template < class TriangulatedSurfaceMesh, class Vertex2FTPropertyMap, class Vertex2VectorPropertyMap,
class OutputIterator>
OutputIterator compute crest ridges( TriangulatedSurfaceMesh P,

Vertex2FTPropertyMap vertex2k1 pm,
Vertex2FTPropertyMap vertex2k2 pm,
Vertex2FTPropertyMap vertex2b0 pm,
Vertex2FTPropertyMap vertex2b3 pm,
Vertex2VectorPropertyMap vertex2d1 pm,
Vertex2VectorPropertyMap vertex2d2 pm,
Vertex2FTPropertyMap vertex2P1 pm,
Vertex2FTPropertyMap vertex2P2 pm,
OutputIterator it,
CGAL::Ridge order order = CGAL::Ridge order 3)

See Also

Ridge approximation
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CGAL::compute max ridges

Definition

The function compute max ridges is a short cut to the method of the same name of the class Ridge
approximation.

#include <CGAL/Ridges.h>

template < class TriangulatedSurfaceMesh, class Vertex2FTPropertyMap, class Vertex2VectorPropertyMap,
class OutputIterator>
OutputIterator compute max ridges( TriangulatedSurfaceMesh P,

Vertex2FTPropertyMap vertex2k1 pm,
Vertex2FTPropertyMap vertex2k2 pm,
Vertex2FTPropertyMap vertex2b0 pm,
Vertex2FTPropertyMap vertex2b3 pm,
Vertex2VectorPropertyMap vertex2d1 pm,
Vertex2VectorPropertyMap vertex2d2 pm,
Vertex2FTPropertyMap vertex2P1 pm,
Vertex2FTPropertyMap vertex2P2 pm,
OutputIterator it,
CGAL::Ridge order order = CGAL::Ridge order 3)

See Also

Ridge approximation
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CGAL::compute min ridges

Definition

The function compute min ridges is a short cut to the method of the same name of the class Ridge
approximation.

#include <CGAL/Ridges.h>

template < class TriangulatedSurfaceMesh, class Vertex2FTPropertyMap, class Vertex2VectorPropertyMap,
class OutputIterator>
OutputIterator compute min ridges( TriangulatedSurfaceMesh P,

Vertex2FTPropertyMap vertex2k1 pm,
Vertex2FTPropertyMap vertex2k2 pm,
Vertex2FTPropertyMap vertex2b0 pm,
Vertex2FTPropertyMap vertex2b3 pm,
Vertex2VectorPropertyMap vertex2d1 pm,
Vertex2VectorPropertyMap vertex2d2 pm,
Vertex2FTPropertyMap vertex2P1 pm,
Vertex2FTPropertyMap vertex2P2 pm,
OutputIterator it,
CGAL::Ridge order order = CGAL::Ridge order 3)

See Also

Ridge approximation
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CGAL::compute umbilics

Definition

The function compute umbilics is a short cut to the method compute of the class Umbilic approximation.

#include <CGAL/Umbilics.h>

template < class TriangulatedSurfaceMesh, class Vertex2FTPropertyMap, class Vertex2VectorPropertyMap,
class OutputIterator>
OutputIterator compute umbilics( TriangulatedSurfaceMesh P,

Vertex2FTPropertyMap vertex2k1 pm,
Vertex2FTPropertyMap vertex2k2 pm,
Vertex2VectorPropertyMap vertex2d1 pm,
Vertex2VectorPropertyMap vertex2d2 pm,
OutputIterator it,
double size)

See Also

Umbilic approximation
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CGAL::Ridge approximation<TriangulatedSurfaceMesh,Vertex2FTPropertyMap,Vertex2VectorPropertyMap>

Definition

The class Ridge approximation<TriangulatedSurfaceMesh,Vertex2FTPropertyMap,Vertex2VectorPropertyMap>
computes the approximation of ridges of a triangular polyhedral surface.

#include <CGAL/Ridges.h>

Parameters

The class Ridge approximation<TriangulatedSurfaceMesh,Vertex2FTPropertyMap,Vertex2VectorPropertyMap>
has three template parameters. TriangulatedSurfaceMesh provides the surface. Parameters Ver-
tex2FTPropertyMap and Vertex2VectorPropertyMap provide the differential properties of the surface
associated to its vertices.

Requirements (checked at compile time) : the types TriangulatedSurfaceMesh::Traits::FT and
Vertex2FTPropertyMap::value type must coincide; the types TriangulatedSurfaceMesh::Traits::Vector 3 and
Vertex2VectorPropertyMap::value type must coincide; the types TriangulatedSurfaceMesh::Vertex handle,
Vertex2FTPropertyMap::key type and Vertex2VectorPropertyMap::key type must coincide;

Types

enum Tag order { Tag 3, Tag 4}; Order of differential quantities used to distinguish elliptic
and hyperbolic ridges. Third (Tag 3) or fourth (Tag 4) or-
der quantities may be used as explained in section 56.2 of
the user manual.

Creation

Ridge approximation<TriangulatedSurfaceMesh,Vertex2FTPropertyMap,Vertex2VectorPropertyMap> ridge
approximation( TriangulatedSurfaceMesh P,

Ver-
tex2FTPropertyMap vertex2k1 pm,

Ver-
tex2FTPropertyMap vertex2k2 pm,

Ver-
tex2FTPropertyMap vertex2b0 pm,

Ver-
tex2FTPropertyMap vertex2b3 pm,

Ver-
tex2VectorPropertyMap vertex2d1 pm,

Ver-
tex2VectorPropertyMap vertex2d2 pm,

Ver-
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tex2FTPropertyMap vertex2P1 pm,
Ver-

tex2FTPropertyMap vertex2P2 pm)

The two last property maps may not be used if computations
are performed with the parameter Tag 3, in which case these
property maps shall be initialized with their default construc-
tors.

template <class OutputIterator>
OutputIterator ridge approximation.compute max ridges( OutputIterator it,

Tag order ord = Tag 3)

Outputs ridges of types MAX ELLIPTIC RIDGE and MAX
HYPERBOLIC RIDGE. Parameter it is a STL output iterator
whose value type is Ridge line*.

template <class OutputIterator>
OutputIterator ridge approximation.compute min ridges( OutputIterator it,

Tag order ord = Tag 3)

Outputs ridges of types MIN ELLIPTIC RIDGE and MIN
HYPERBOLIC RIDGE. Parameter it is a STL output iterator
whose value type is Ridge line*.

template <class OutputIterator>
OutputIterator ridge approximation.compute crest ridges( OutputIterator it,

Tag order ord = Tag 3)

Outputs ridges of types MAX CREST RIDGE and MIN
CREST RIDGE. Parameter it is a STL output iterator whose
value type is Ridge line*.

See Also

Ridge line
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CGAL::Ridge line<TriangulatedSurfaceMesh>

Definition

The class Ridge line<TriangulatedSurfaceMesh> stores the description of a ridge line. The list of halfedges
defines a connected sequence of edges (but not as oriented halfedges). The scalar b paired with a halfedge pq is
the barycentric coordinate of the crossing point r with the ridge : r = b× p+(1−b)×q.

#include <CGAL/Ridges.h>

Types

typedef typename TriangulatedSurfaceMesh::Traits::FT

FT;
typedef typename TriangulatedSurfaceMesh::Halfedge handle

Halfedge handle;
typedef std::pair< Halfedge handle, FT>

Ridge halfhedge; A halfedge crossed by a ridge is paired with the barycentric
coordinate of the crossing point.

Creation

Ridge line<TriangulatedSurfaceMesh> ridge line;

default constructor.

Access Functions

const Ridge type ridge line.line type()
const FT ridge line.strength()
const FT ridge line.sharpness()
const std::list<Ridge halfhedge>*

ridge line.line()
The opertor << is overloaded for this class and returns the line type, strength, sharpness and coordinates of the
points of the polyline.

See Also

Ridge approximation,
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CGAL::Ridge order

Definition

The enum Ridge order describes the order of differential quantities used to distinguish elliptic and hyperbolic
ridges. Third or fourth order quantities may be used as explained in section 56.2 of the user manual.

#include <CGAL/Ridges.h>

enum Ridge order { Ridge order 3 = 3, Ridge order 4};

See Also

Ridge approximation
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CGAL::Ridge type

Definition

The enum Ridge type describes the types for the class Ridge line.

#include <CGAL/Ridges.h>

enum Ridge type { MAX ELLIPTIC RIDGE = 1,
MAX HYPERBOLIC RIDGE,
MAX CREST RIDGE,
MIN ELLIPTIC RIDGE,
MIN HYPERBOLIC RIDGE,
MIN CREST RIDGE}

See Also

Ridge line
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TriangulatedSurfaceMesh

Definition

The concept TriangulatedSurfaceMesh describes an oriented surface (possibly with boundary) embedded in the
3 space. It is combinatorially based on a halfedge data structure with triangular faces, geometrically 3d points
associated to the vertices define the embedding.

Types

TriangulatedSurfaceMesh:: Traits geometric Traits, this is a CGAL::Kernel concept.
TriangulatedSurfaceMesh:: Facet Opaque type representing a facet of the TriangulatedSur-

faceMesh .
TriangulatedSurfaceMesh:: Facet handle Handle to a facet. Model of the Handle concept.
TriangulatedSurfaceMesh:: Facet const handle
TriangulatedSurfaceMesh:: Facet iterator Iterator over all mesh facets. Model of the ForwardIterator

concept.

TriangulatedSurfaceMesh:: Facet const iterator
TriangulatedSurfaceMesh:: Vertex Opaque type representing a vertex of the TriangulatedSur-

faceMesh .
TriangulatedSurfaceMesh:: Vertex handle Handle to a vertex. Model of the Handle concept.
TriangulatedSurfaceMesh:: Vertex const handle
TriangulatedSurfaceMesh:: Vertex iterator Iterator over all vertices of a mesh. Model of the ForwardIt-

erator concept.

TriangulatedSurfaceMesh:: Vertex const iterator
TriangulatedSurfaceMesh:: Halfedge Opaque type representing a halfedge of the TriangulatedSur-

faceMesh .
TriangulatedSurfaceMesh:: Halfedge handle Handle to a halfedge. Model of the Handle concept.
TriangulatedSurfaceMesh:: Halfedge const handle
TriangulatedSurfaceMesh:: Halfedge iterator Iterator over all halfedges of a TriangulatedSurfaceMesh .

Model of the ForwardIterator concept.

TriangulatedSurfaceMesh:: Halfedge const iterator
TriangulatedSurfaceMesh:: Point iterator Iterator over all points of a TriangulatedSurfaceMesh , its

value type is Traits::Point 3. Model of the ForwardIterator
concept.

TriangulatedSurfaceMesh:: Point const iterator

Creation

Construction and destruction are undefined.

Operations

Facet const iterator mesh.facets begin() iterator over all facets (excluding holes).
Facet const iterator mesh.facets end() past-the-end iterator.

Point iterator mesh.points begin() iterator over all points.
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Point iterator mesh.points end() past-the-end iterator.

Methods for the Vertex :

Traits::Point 3& vertex.point() The point associated to the vertex

Methods for the Halfedge :

Halfedge const handle

halfedge.opposite() const

the opposite halfedge.

Halfedge const handle

halfedge.next() const the next halfedge around the facet.

Halfedge const handle

halfedge.prev() const the previous halfedge around the facet.
bool halfedge.is border edge() const

is true if halfedge or halfedge.opposite() is a border halfedge.

Vertex const handle halfedge.vertex() const

the incident vertex of halfedge.

Facet const handle halfedge.facet() const the incident facet of halfedge. If halfedge is a border halfedge
the result is default construction of the handle.

Methods for the Facet :

Halfedge const handle

facet.halfedge() const an incident halfedge that points to facet.

Has Models

CGAL::Polyhedron 3 with the restriction that faces are triangular.
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CGAL::Umbilic<TriangulatedSurfaceMesh>

Definition

The class Umbilic<TriangulatedSurfaceMesh> stores the description of an umbilic.

#include <CGAL/Umbilics.h>

Types

typedef typename TriangulatedSurfaceMesh::Vertex handle

Vertex handle;
typedef typename TriangulatedSurfaceMesh::Halfedge handle

Halfedge handle;

Creation

Access Functions

const Vertex handle umbilic.vertex()

const Umbilic type umbilic.umbilic type()

std::list<Halfedge handle>

umbilic.contour list()

Operations

The usual insert operator (<<) is overloaded for Umbilic, it gives the location (3d coordinates of the vertex)
and the type.

See Also

Umbilic approximation
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CGAL::Umbilic approximation<TriangulatedSurfaceMesh,Vertex2FTPropertyMap,Vertex2VectorPropertyMap>

Definition

The class Umbilic approximation<TriangulatedSurfaceMesh,Vertex2FTPropertyMap,Vertex2VectorPropertyMap>
computes the approximation of umbilics on a triangular polyhedral surface.

#include <CGAL/Umbilics.h>

Parameters

The class Umbilic approximation<TriangulatedSurfaceMesh,Vertex2FTPropertyMap,Vertex2VectorPropertyMap>
has three template parameters. TriangulatedSurfaceMesh provides the surface. Parameters Ver-
tex2FTPropertyMap and Vertex2VectorPropertyMap provide the differential properties of the surface
associated to its vertices.

Requirements (checked at compile time) : the types TriangulatedSurfaceMesh::Traits::FT and
Vertex2FTPropertyMap::value type must coincide; the types TriangulatedSurfaceMesh::Traits::Vector 3 and
Vertex2VectorPropertyMap::value type must coincide; the types TriangulatedSurfaceMesh::Vertex handle,
Vertex2FTPropertyMap::key type and Vertex2VectorPropertyMap::key type must coincide;

Types

typedef typename TriangulatedSurfaceMesh::Traits::FT

FT;

Creation

Umbilic approximation<TriangulatedSurfaceMesh,Vertex2FTPropertyMap,Vertex2VectorPropertyMap>
umbilic approximation( TriangulatedSurfaceMesh P,

Ver-
tex2FTPropertyMap vertex2k1 pm,

Ver-
tex2FTPropertyMap vertex2k2 pm,

Ver-
tex2VectorPropertyMap vertex2d1 pm,

Ver-
tex2VectorPropertyMap vertex2d2 pm)

default constructor.

Operations

template <class OutputIterator>
3459



OutputIterator umbilic approximation.compute( OutputIterator it, FT size)

Performs the approximation, size determines the size of the
patches around vertices, taken as size times the size of the 1-
ring. Umbilics are output through the OutputIterator which
is a concept of output iterator of the STL with value type
Umbilic*.

See Also

Umbilic TriangulatedSurfaceMesh Vertex2FTPropertyMap Vertex2VectorPropertyMap
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CGAL::Umbilic type

Definition

The enum Umbilic type describes the types for the class Umbilic.

#include <CGAL/Umbilics.h>

enum Umbilic type { NON GENERIC UMBILIC, ELLIPTIC UMBILIC, HYPERBOLIC UMBILIC};

See Also

Umbilic.
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CGAL::Vertex2Data Property Map with std map<
TriangulatedSurfaceMesh>

Definition

The class Vertex2Data Property Map with std map<TriangulatedSurfaceMesh> provides models for the con-
cepts Vertex2FTPropertyMap and Vertex2VectorPropertyMap to be used for Ridge approximation. The prop-
erty maps are created with the boost::associative property map adaptor from std::map.

#include <CGAL/Ridges.h>

Types

typedef typename TriangulatedSurfaceMesh::Traits::FT

FT;
typedef typename TriangulatedSurfaceMesh::Traits::Vector 3

Vector 3;
typedef typename TriangulatedSurfaceMesh::Vertex handle

Vertex handle;

struct Vertex cmp { bool operator();};

typedef std::map<Vertex handle, FT, Vertex cmp>

Vertex2FT map;
typedef boost::associative property map< Vertex2FT map >

Vertex2FT property map;

typedef std::map<Vertex handle, Vector 3, Vertex cmp>

Vertex2Vector map;
typedef boost::associative property map< Vertex2Vector map >

Vertex2Vector property map;

Is Model for the Concepts

Vertex2FT property map is model of Vertex2FTPropertyMap.

Vertex2Vector property map is model of Vertex2VectorPropertyMap.

See Also

Ridge approximation
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Vertex2FTPropertyMap

Definition

The concept Vertex2FTPropertyMap specializes the concept of LvaluePropertyMap of the Boost library.
It is intended to be used in combination with the concept TriangulatedSurfaceMesh in the class Ridge
approximation. It associates a field type value TriangulatedSurfaceMesh::Traits::FT to keys which are
TriangulatedSurfaceMesh::Vertex handle.

Has Models

Vertex2Data Property Map with std map::Vertex2FT property map,

See Also

TriangulatedSurfaceMesh.
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Vertex2VectorPropertyMap

Definition

The concept Vertex2VectorPropertyMap specializes the concept of LvaluePropertyMap of the Boost library.
It is intended to be used in combination with the concept TriangulatedSurfaceMesh in the class Ridge
approximation. It associates a three dimensional vector TriangulatedSurfaceMesh::Traits::Vector 3 to keys
which are TriangulatedSurfaceMesh::Vertex handle.

Has Models

Vertex2Data Property Map with std map::Vertex2Vector property map,

See Also

TriangulatedSurfaceMesh.
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Estimation of Local Differential
Properties of Point-Sampled Surfaces
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This package allows the estimation of local differential quantities of a surface from a point sample, given either
as a mesh or as point cloud.

Note that this package needs the third party library Eigen (Page 28) to be installed to compile the example code.
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Figure 57.1: Principal directions associated with kmax scaled by kmin.

57.1 Introduction

57.1.1 Overview

Consider a sampled smooth surface, and assume we are given a collection of points P about a given sample p.
We aim at estimating the differential properties up to any fixed order of the surface at point p from the point
set P+ = P∪{p} — we denote N =| P+ |. More precisely, first order properties correspond to the normal or
the tangent plane; second order properties provide the principal curvatures and directions, third order properties
provide the directional derivatives of the principal curvatures along the curvature lines, etc. Most of the time,
estimating first and second order differential quantities is sufficient. However, some applications involving shape
analysis require estimating third and fourth order differential quantities. Many different estimators have been
proposed in the vast literature of applied geometry [Pet01] (section 3, page 7), and all of them need to define a
neighborhood around the point at which the estimation is computed. Our method relies on smooth differential
geometry calculations, carried out on smooth objects fitted from the sample points. Datasets amenable to such a
processing are naturally unstructured point clouds, as well as meshes —whose topological information may be
discarded.

Estimating differential properties from discrete date always raises a philosophical issue. On one hand, esti-
mating differential quantities subsumes a smooth surface does exist. In this spirit one wishes to recover its
differential properties, so that any estimation method must come with an asymptotic convergence analysis of
the results returned. For the method developed in this CGAL package, the interested will find such an analysis
in [CP05a], (Theorem 3)— it should be stressed the error bounds proved therein are optimal.

On the other hand, any estimation method may be applied to arbitrarily data —surface unknown, surface piece-
wise smooth etc. In such a case, no analysis can be carried out, and it is up to the users to check the results
match their needs.

Unlike most of the CGAL packages, this package uses approximation methods and is not intended to provide
an exact canonical result in any sense. This is why internal computations are performed with a number type
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possibly different from that of the input data, even if for convenience the results are returned with this original
number type. A reasonable choice for this internal number type is for example the double type.

57.1.2 Smooth Surfaces, d-Jets and the Monge Form

To present the method, we shall need the following notions. Consider a smooth surface. About one of its points,
consider a coordinate system whose z-axis does not belong to the tangent space. In such a frame, the surface
can locally be written as the graph of a bivariate function. Letting h.o.t. stand for higher order terms, one has :

z(x,y) = JB,d(x,y)+h.o.t. ; JB,d(x,y) =
d

∑
k=0

(
i

∑
i=0

Bk−i,ixk−iyi

i!(k− i)!
). (57.1)

The degree d polynomial JB,d is the Taylor expansion of the function z, and is called its d-jet. Notice that a d-jet
contains Nd = (d +1)(d +2)/2 coefficients.

Recall that an umbilical point of a surface — or umbilic for short, is a point where both principal curvatures
are identical. At any point of the surface which is not an umbilic, principal directions d1,d2 are well defined,
and these (non oriented) directions together with the normal vector n define two direct orthonormal frames. If
v1 is a unit vector of direction d1, there exists a unique unit vector v2 so that (v1,v2,n) is direct; and the other
possible frame is (−v1,−v2,n). Both these coordinate systems are known as the Monge coordinate systems. In
both these systems, the surface is said to be given in the Monge form and its jet has the following canonical
form :

z(x,y) = 1
2 (k1x2 + k2y2)+ 1

6 (b0x3 +3b1x2y+3b2xy2 +b3y3) (57.2)

+ 1
24 (c0x4 +4c1x3y+6c2x2y2 +4c3xy3 + c4y4)+h.o.t. (57.3)

The coefficients k1,k2 are the principal curvatures, b0,b3 are the directional derivatives of k1,k2 along their
respective curvature line, while b1,b2 are the directional derivatives of k1,k2 along the other curvature lines.

The Monge coordinate system can be computed from any d-jet (d ≥ 2), and so are the Monge coefficients.
These informations characterize the local geometry of the surface in a canonical way, and are the quantities
returned by our algorithm.

57.1.3 Algorithm

Based on the above concepts, the algorithm consists of 4 steps.

1. We perform a Principal Component Analysis (PCA) on P+. This analysis outputs three orthonormal
eigenvectors and the associated eigenvalues. The fitting basis consists of these three vectors so that the
vector associated to the smallest eigenvalue is the last vector of the basis. (Indeed, if the surface is well
sampled, one expects the PCA to provide one small and two large eigenvalues, the eigenvector associated
to the small one approximating the normal vector.)

2. We perform a change of coordinates to move the samples into the coordinate system of the fitting basis
and with origin the point p at which the estimation is sought. We then resort to polynomial fitting, so
as to either interpolate or approximate the d-jet of the surface in this coordinate system. This bivariate
polynomial approximation reduces to linear algebra operations.

3. From the fitted d-jet, we compute the Monge basis (d1,d2,n).
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4. Finally, we compute the Monge coefficients : ki,bi,ci.

Further details can be found in section 57.4 and in [CP05a] (section 6).

57.1.4 Degenerate Cases

As usual, the fitting procedure may run into (almost) degenerate cases:

• Due to poor sampling, the PCA used to determine a rough normal vector may not be good. The nearer
this direction to the tangent plane the worse the estimation.

• As observed in [CP05a] (section 3.1), the interpolating problem is not poised if the points project, into
the fitting frame, onto an algebraic curve of degree d. More generally, the problem is ill poised if the
condition number is too large.

In these cases, even if a result is provided, the estimation may not be relevant. To inform the user of these issues,
we provide the PCA results and the condition number of the fitting. In any case, it is up to the user to judge if
the result meets its need.

57.2 Software Design

57.2.1 Options and Interface Specifications

The fitting strategy performed by the class Monge via jet fitting requires the following parameters:

• the degree d of the fitted polynomial (d ≥ 1),

• the degree d′ of the Monge coefficients sought, with 1≤ d′ ≤min(d,4),

• a range of N input points on the surface, with the precondition that N ≥ Nd = (d +1)(d +2)/2. Note that
if N = Nd , interpolation is performed; and if N > Nd , approximation is used.

57.2.2 Output

As explained in Section 57.1, the output consists of a coordinate system, the Monge basis, together with the
Monge coefficients which are stored in the Monge form class. In addition, more information on the computa-
tional issues are stored in the Monge via jet fitting class.

The Monge form class provides the following information.

• Origin. This is the point on the fitted polynomial surface where the differential quantities have been
computed. In the approximation case, it differs from the input point p : it is the projection of p onto the
fitted surface following the z-direction of the fitting basis.
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• Monge Basis. The Monge basis (d1,d2,n) is orthonormal direct, and the maximal, minimal curvatures
are defined wrt this basis. If the user has a predefined normal n0 (e.g. the sample points come from an
oriented mesh) then if n0.n > 0 then max-min is correct; if not, i.e. n0.n < 0, the user should switch to the
orthonormal direct basis (d′1,d

′
2,n
′) = (d2,d1,−n) with the maximal curvature k′1 =−k2 and the minimal

curvature k′2 = −k1. If n0.n = 0 or is small, the orientation of the surface is clearly ill-defined, and the
user may proof-check the samples used to comply with its predefined normal.

• Monge Coefficients. The coefficient of the Monge form is (k1,k2(≤ k1),b0,b1,b2,b3,c0,c1,c2,c3,c4) for
d′ = 4.

In addition, the class Monge via jet fitting stores

• the condition number of the fitting system,

• the coordinate system of the PCA (in which the fitting is performed).

57.2.3 Template Parameters

Template parameter DataKernel

This concept provides the types for the input sample points, together with 3d vectors and a number type. It is
used as template for the class Monge via jet fitting<DataKernel, LocalKernel, SvdTraits> . Typically, one can
use CGAL::Cartesian<double>.

Template parameter LocalKernel

This is a parameter of the class Monge via jet fitting<DataKernel, LocalKernel, SvdTraits>. This concept
defines the vector and number types used for local computations and to store the PCA basis data.

Input points of type DataKernel::Point 3 are converted to LocalKernel::Point 3. For output of the Monge form
class, these types are converted back to Data Kernel ones. Typically, one can use CGAL::Cartesian<double>
which is the default.

Template parameter SvdTraits

This concept provides the number, vector and matrix types for algebra operations required by the fitting method
in Monge via jet fitting<DataKernel, LocalKernel, SvdTraits> . The main method is a linear solver using a
singular value decomposition.

Compatibility requirements

To solve the fitting problem, the sample points are first converted from the DataKernel to the LocalKernel (this is
done using the CGAL::Cartesian converter). Then change of coordinate systems and linear algebra operations
are performed with this kernel. This implies that the number types LocalKernel::FT and SvdTraits::FT must
be identical. Second the Monge basis and coefficients, computed with the LocalKernel, are converted back to
the DataKernel (this is done using the CGAL::Cartesian converter and the CGAL::NT converter).
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57.3 Examples

57.3.1 Single Estimation about a Point of a Point Cloud

The first example illustrates the computation of the local differential quantities from a set of points given in a
text file as input. The first point of the list is the one at which the computation is performed. The user has to
specify a file for the input points and the degrees d and d′.� �
#include <CGAL/Cartesian.h>

#include <fstream>
#include <vector>

#include <CGAL/Monge_via_jet_fitting.h>
typedef double DFT;
typedef CGAL::Cartesian<DFT> Data_Kernel;
typedef Data_Kernel::Point_3 DPoint;
typedef CGAL::Monge_via_jet_fitting<Data_Kernel>

My_Monge_via_jet_fitting;
typedef My_Monge_via_jet_fitting::Monge_form My_Monge_form;

int main(int argc, char *argv[])
{

size_t d_fitting = 4;
size_t d_monge = 4;
const char* name_file_in = "data/in_points_d4.txt";
//check command line
if (argc<4)

{
std::cout << " Usage : " << argv[0]

<< " <inputPoints.txt> <d_fitting> <d_monge>" <<
std::endl

<< "test with default arguments" << std::endl;
}

else {
name_file_in = argv[1];
d_fitting = std::atoi(argv[2]);
d_monge = std::atoi(argv[3]);

}

//open the input file
std::ifstream inFile(name_file_in);
if ( !inFile )

{
std::cerr << "cannot open file for input\n";
exit(-1);

}

//initalize the in_points container
double x, y, z;
std::vector<DPoint> in_points;
while (inFile >> x) {
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inFile >> y >> z;
DPoint p(x,y,z);
in_points.push_back(p);

}
inFile.close();
// fct parameters

My_Monge_form monge_form;
My_Monge_via_jet_fitting monge_fit;
monge_form = monge_fit(in_points.begin(), in_points.end(), d_fitting,
d_monge);

//OUTPUT on std::cout
CGAL::set_pretty_mode(std::cout);
std::cout << "vertex : " << in_points[0] << std::endl

<< "number of points used : " << in_points.size() <<
std::endl

<< monge_form;
std::cout << "condition_number : " << monge_fit.condition_number() <<
std::endl

<< "pca_eigen_vals and associated pca_eigen_vecs :" <<
std::endl;

for (int i=0; i<3; i++)
std::cout << monge_fit.pca_basis(i).first << std::endl

<< monge_fit.pca_basis(i).second << std::endl;
return 0;

}� �
File: examples/Jet_fitting_3/Single_estimation.cpp

57.3.2 On a Mesh

The second example (cf Mesh estimation.cpp in the example directory) illustrates the computation of local
differential quantities for all vertices of a given mesh. The neighborhood of a given vertex is computed using
rings on the triangulation. Results are twofold:

• a human readable text file featuring the Monge form and numerical informations on the computation :
condition number and the PCA basis;

• another text file that records raw data (better for a vizualization post-processing).

Figs. 57.1 and 57.2 provide illustrations of principal directions of curvature.

advanced

57.4 Mathematical and Algorithmic Details

In this Section, we detail the mathematics involved, in order to justify the design choices made. To begin with,
observe the fitting problem involves three relevant direct orthonormal basis: the world-basis (wx,wy,wz), the
fitting-basis ( fx, fy, fz), the Monge basis (d1,d2,n).
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Figure 57.2: Principal directions of curvature and normals at vertices of a mesh of the graph of the function
f (x,y) = 2x2 + y2.

Fitting basis

Monge basis

Sampled curve

Fitted curve

p

World basis

Samples

Monge origin

Figure 57.3: The three bases involved in the estimation.

57.4.1 Computing a Basis for the Fitting

Input : samples
Output : fitting-basis

Performing a PCA requires diagonalizing a symmetric matrix. This analysis gives an orthonormal basis whose
z-axis is provided by the eigenvector associated to the smallest eigenvalue.1 Note one may have to swap the
orientation of a vector to get a direct basis.

Let us denote PW→F the matrix that changes coordinates from the world-basis (wx,wy,wz) to the fitting-basis
( fx, fy, fz). The rows of PW→F are the coordinates of the vectors ( fx, fy, fz) in the world-basis. This matrix
represents a orthogonal transformation hence its inverse is its transpose. To obtain the coordinates of a point in
the fitting-basis from the coordinates in the world-basis, one has to multiply by PW→F .

As mentioned above, the eigenvalues are returned, from which the sampling quality can be assessed. For a good
sampling, the eigenvector associated to the smallest eigenvalue should roughly give the normal direction.

1Another possibility is to choose as z-axis the axis of the world-basis with the least angle with the axis determined with the PCA. Then
the change of basis reduces to a permutation of axis.

3472



57.4.2 Solving the Interpolation / Approximation Problem

Input : samples, fitting-basis
Output : coefficients Ai, j of the bivariate fitted polynomial in the fitting-basis

Computations are done in the fitting-basis and the origin is the point p. First, one has to transform coordinates
of sample points with a translation (−p) and multiplication by PW→F .

The fitting process consists of finding the coefficients Ai, j of the degree d polynomial

JA,d =
d

∑
k=0

(
k

∑
i=0

Ak−i,ixk−iyi

i!(k− i)!
). (57.4)

Denote pi = (xi,yi,zi), i = 1, . . . ,N the coordinates of the sample points of P+. For interpolation the linear
equations to solve are A(xi,yi) = zi i = 1, . . . ,N, and for approximation one has to minimize ∑

N
i=1(A(xi,yi)−zi)2.

The linear algebra formulation of the problem is given by

A = (A0,0,A1,0,A0,1, . . . ,A0,d)T (57.5)
Z = (z1,z2, . . . ,zN)T (57.6)

M = (1,xi, yi,
x2

i
2 , . . . ,

xiyd−1
i

(d−1)! ,
yd

i
d! )i=1,...,N (57.7)

(57.8)

The equations for interpolation become MA = Z. For approximation, the system MA = Z is solved in the least
square sense, i.e. one seeks the vector A such that A = argminA ||MA−Z||2.

In any case, there is a preconditioning of the matrix M so as to improve the condition number. Assuming
the {xi}, {yi} are of order h, the pre-conditioning consists of performing a column scaling by dividing each
monomial xk

i yl
i by hk+l — refer to Eq. (57.5). Practically, the parameter h is chosen as the mean value of

the {xi} and {yi}. In other words, the new system is M′Y = (MD−1)(DA) = Z with D the diagonal matrix
D = (1,h,h,h2, . . . ,hd ,hd), so that the solution A of the original system is A = D−1Y .

There is always a single solution since for under constrained systems we also minimize ||A||2. The method uses
a singular value decomposition of the N×Nd matrix M = USV T , where U is a N×N orthogonal matrix, V is
a Nd ×Nd orthogonal matrix and S is a N×Nd matrix with the singular values on its diagonal. Denote r the

rank of M, we can decompose S =
(

Dr 0r, Nd−r
0N−r, r 0N−r, Nd−r

)
. The number r, which is the number of non zero

singular values, is strictly lower than Nd if the system is under constrained. In any case, the unique solution
which minimize ||A||2 is given by :

A = V
(

D−1
r 0Nd−r, r

0r, N−r 0Nd−r, N−r

)
UT Z. (57.9)

One can provide the condition number of the matrix M (after preconditioning) which is the ratio of the maximal
and the minimal singular values. It is infinite if the system is under constrained, that is the smallest singular
value is zero.

Implementation details. We assume a solve function is provided by the traits SvdTraits. This function solves
the system MX=B (in the least square sense if M is not square) using a Singular Value Decomposition and gives
the condition number of M.

Remark: as an alternative, other methods may be used to solve the system. A QR decomposition can be
substituted to the SV D. One can also use the normal equation MT MX = MT B and apply methods for square
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systems such as LU , QR or Cholesky since MT M is symmetric definite positive when M has full rank. The
advantages of the SV D is that it works directly on the rectangular system and gives the condition number of the
system. For more on these alternatives, see [GvL83] (Chap. 5).

57.4.3 Principal Curvature / Directions

Input : coefficients of the fit Ai, j, fitting-basis
Output : Monge basis wrt fitting-basis and world-basis

In the fitting basis, we have determined a height function expressed by Eq. (57.4). Computations are done
in the fitting-basis. The partial derivatives, evaluated at (x,y) = (0,0), of the fitted polynomial JA,d(x,y) are

Ai, j = ∂i+ jJA,d
∂ix∂ jy Expanding Eq. (57.4) yields:

JA,d(x,y) = A0,0 +A1,0x+A0,1y+ 1
2 (A2,0x2 +2A1,1xy+A0,2y2)+ 1

6 (A3,0x3 +3A2,1x2y+ . . .)+ . . .(57.10)

• The origin, that is the point of the fitted surface where the estimation is performed, is (0,0,A0,0).

• The normal is n = (−A1,0,−A0,1,1)/
√

A2
1,0 +A2

0,1 +1.

• Curvature related properties are retrieved resorting to standard differential calculus [dC76] (Chap. 3).
More precisely, the Weingarten operator W = −I−1II is first computed in the basis of the tangent plane
{(1,0,A1,0),(0,1,A0,1)}. We compute an orthonormal basis of the tangent plane using the Gram-Schmidt
algorithm, and then we compute Weingarten in this basis (applying a change of basis with the matrix W ′=
P−1WP). In this orthonormal basis, the matrix of the Weingarten map is symmetric and we diagonalize
it. One finally gets the principal curvatures which are the eigenvalues of W , and the associated principal
directions. This gives an orthonormal direct basis (d1,d2,n). Let us denote PF→M the matrix to change
coordinates from the fitting-basis to the Monge basis. Its rows are the coordinates of the vectors (d1,d2,n)
in the fitting-basis. It is an orthogonal matrix P−1

F→M = PT
F→M . The Monge basis expressed in the world-

basis is obtained by multiplying the coordinates of (d1,d2,n) in the fitting-basis by P−1
W→F , (the same holds

for the origin point which has in addition to be translated by p, i.e. the coordinates of the origin point are
P−1

W→F(0,0,A0,0)+ p.

57.4.4 Computing Higher Order Monge Coefficients

Input : coefficients of the fit, Monge basis wrt fitting-basis (PF→M)
Output : third and fourth order coefficients of Monge

We use explicit formula. The implicit equation of the fitted polynomial surface in the fitting-basis with origin
the point (0,0,A0,0) is Q = 0 with

Q =−w−A0,0 +∑
i, j

Ai, juiv j

i! j!
. (57.11)

The equation in the Monge basis is obtained by substituting (u,v,w) by PT
F→M(x,y,z). Denote f (x,y,z) = 0 this

implicit equation. By definition of the Monge basis, we have locally (at (0,0,0))

f (x,y,z) = 0⇔ z = g(x,y) (57.12)

and the Taylor expansion of g at (0,0) are the Monge coefficients sought. Let us denote the partial derivatives
evaluated at the origin of f and g by fi, j,k = ∂i+ j+k f

∂ix∂ jy∂kz and gi, j = ∂i+ jg
∂ix∂ jy . One has f1,0,0 = f0,1,0 = f1,1,0 = 0,

g0,0 = g1,0 = g0,1 = g1,1 = 0 and g2,0 = k1, g0,2 = k2. The partial derivative of order n of f depends on the
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matrix PF→M and the partial derivatives of order at most n of JA,d . The third and fourth order coefficients of are
computed with the implicit function theorem. For instance :

b0 = g3,0 =− f3,0,0 f0,0,1−3 f1,0,1 f2,0,0
f 2
0,0,1

b1 = g2,1 =−− f0,1,1 f2,0,0+ f2,1,0 f0,0,1
f 2
0,0,1

....

advanced
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DataKernel

Definition

The concept DataKernel describes the set of requirements to be fulfilled by any class used to instantiate first
template parameter of the class Monge via jet fitting<DataKernel,LocalKernel,SvdTraits>.

Types

DataKernel:: FT The scalar type.
DataKernel:: Point 3 The point type.
DataKernel:: Vector 3 The vector type.

Operations

Only constructors (from 3 scalars and copy constructors) and access methods to coordinates x(), y(), z() are
needed.

Has Models

CGAL::Cartesian<FieldNumberType>

See Also

The LocalKernel concept.
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CGAL::Eigen svd

Definition

The class Eigen svd provides an algorithm to solve in the least square sense a linear system with a singular
value decomposition using Eigen (Page 28). The field type is double.

#include <CGAL/Eigen svd.h>

Is Model for the Concepts

SvdTraits
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LocalKernel

Definition

The concept LocalKernel describes the set of requirements to be fulfilled by any class used to instantiate the
second template parameter of the class Monge via jet fitting<DataKernel,LocalKernel,SvdTraits>.

This concept provides the geometric primitives used for the computations in the class Monge via jet fitting.

Requirements

In the class Monge via jet fitting the scalar type, LocalKernel::FT , must be the same as that of the SvdTraits
concept : SvdTraits::FT .

The type LocalKernel::FT is a model of the FieldWithSqrt concept.

Types

LocalKernel:: FT The scalar type.
LocalKernel:: Point 3 The point type.
LocalKernel:: Vector 3 The vector type.

Operations

The scalar type LocalKernel::FT must be a field type with a square root.

Only constructors (from 3 scalars and copy constructors) and access methods to coordinates x(), y(), z() are
needed for the point and vector types.

Has Models

CGAL::Cartesian<FieldNumberType>

See Also

The DataKernel and SvdTraits concepts.
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CGAL::Monge via jet fitting< DataKernel, LocalKernel, SvdTraits>
::Monge form

Definition

The class Monge form stores the Monge representation, i.e., the Monge coordinate system and the coefficients
of the Monge form in this system.

#include <CGAL/Monge via jet fitting.h>

Types

typedef typename DataKernel::FT

FT;
typedef typename DataKernel::Point 3

Point 3;
typedef typename DataKernel::Vector 3

Vector 3;

Creation

Monge form monge form; default constructor.

Access Functions

Point 3 monge form.origin() Point on the fitted surface where differential quantities are
computed.

The Monge basis is given by:

Vector 3 monge form.maximal principal direction()
Vector 3 monge form.minimal principal direction()
Vector 3 monge form.normal direction()

The Monge coefficients are given by:

FT monge form.principal curvatures( size t i)

i = 0 for the maximum and i = 1 for the minimum.

FT monge form.third order coefficients( size t i)

0≤ i≤ 3

FT monge form.fourth order coefficients( size t i)

0≤ i≤ 4
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Operations

void monge form.comply wrt given normal( const Vector 3 given normal)

change principal basis and Monge coefficients so that the
given normal and the Monge normal make an acute angle.
If given normal.monge normal < 0 then change the orien-
tation: if z = g(x,y) in the basis (d1,d2,n) then in the basis
(d2,d1,-n) z = h(x,y) =−g(y,x).

The usual insert operator (operator<<) is overloaded for Monge form, it gives the Monge coordinate system
(the origin and an orthonormal basis) and the coefficients of the Monge form in this system.

See Also

Monge via jet fitting
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CGAL::Monge via jet fitting<DataKernel, LocalKernel, SvdTraits>

Definition

The class Monge via jet fitting<DataKernel, LocalKernel, SvdTraits> is designed to perform the estimation of
the local differential quantities at a given point. The point range is given by a pair of input iterators, and it is
assumed that the point where the calculation is carried out is the point that the begin iterator refers to. The
results are stored in an instance of the nested class Monge form, the particular information returned depending
on the degrees specified for the polynomial fitting and for the Monge form.

The default for the template LocalKernel is Cartesian<double> and the default for SvdTraits is Eigen svd if
CGAL EIGEN3 ENABLED is defined.

#include <CGAL/Monge via jet fitting.h>

Parameters

The class Monge via jet fitting<DataKernel, LocalKernel, SvdTraits> has three template parameters. Parame-
ter DataKernel provides the geometric classes and tools corresponding to the input points, and also members
of the Monge form class. Parameter LocalKernel provides the geometric classes and tools required by local
computations. Parameter SvdTraits features the linear algebra algorithm required by the fitting method.

Types

typedef DataKernel Data kernel;
typedef LocalKernel Local kernel;
typedef typename Local kernel::FT

FT;
typedef typename Local kernel::Vector 3

Vector 3;

Monge via jet fitting<DataKernel, LocalKernel, SvdTraits>:: Monge form

see the section below.

Creation

Monge via jet fitting<DataKernel, LocalKernel, SvdTraits> monge fitting;

default constructor

Operations

template <class InputIterator>
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Monge form monge fitting( InputIterator begin, InputIterator end, size t d, size t d’)

This operator performs all the computations. The N input
points are given by the InputIterator parameters which value-
type are Data kernel::Point 3, d is the degree of the fitted
polynomial, d’ is the degree of the expected Monge coeffi-
cients.
Precondition: N ≥ Nd := (d + 1)(d + 2)/2, 1 ≤ d′ ≤
min(d,4).

FT monge fitting.condition number()

condition number of the linear fitting system.

std::pair<FT, Vector 3>

monge fitting.pca basis( size t i)

pca eigenvalues and eigenvectors, the pca basis has always 3
such pairs. Precondition : i ranges from 0 to 2.

See Also

Eigen svd, Monge form
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SvdTraits

Definition

The concept SvdTraits describes the set of requirements to be fulfilled by any class used to instantiate the third
template parameter of the class Monge via jet fitting<DataKernel,LocalKernel,SvdTraits>.

It describes the linear algebra types and algorithms needed by the class Monge via jet fitting.

Requirements

The scalar type, SvdTraits::FT , must be the same as that of the LocalKernel concept : LocalKernel::FT .

Types

SvdTraits:: FT The scalar type.
SvdTraits:: Vector The vector type.
SvdTraits:: Matrix The matrix type.

Operations

SvdTraits vector( size t n); initialize all the elements of the vector to zero.

The type Vector has the access methods

size t vector.size()
FT vector( size t i) return the ith entry, i from 0 to size()−1.
void vector.set( size t i, const FT value)

set the ith entry to value.

FT* vector.vector() return the vector as an array.

The type Matrix has the access methods

SvdTraits matrix( size t n1, size t n2); initialize all the entries of the matrix to zero.

size t matrix.number of rows()
size t matrix.number of columns()
FT matrix( size t i, size t j)

return the entry at row i and column j, i from 0 to number
of rows - 1, j from 0 to number of columns - 1.

void matrix.set( size t i, size t j, const FT value)

set the entry at row i and column j to value.

The concept SvdTraits has a linear solver using a singular value decomposition algorithm.
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FT traits.solve( Matrix& M, Vector& B)

Solves the system MX = B (in the least square sense if M is
not square) using a singular value decomposition and returns
the condition number of M. The solution is stored in B.

Has Models

Eigen svd,

See Also

LocalKernel

3487



3488



Chapter 58

Point Set Processing
Pierre Alliez, Laurent Saboret, Nader Salman
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58.1 Introduction

This CGAL component implements methods to analyze and process unorganized 3D point sets. The input
is an unorganized 3D point set, possibly with normal attributes (unoriented or oriented). This point set can
be analyzed to measure geometric properties such as average spacing between the points and their K nearest
neighbors. It can be processed with functions devoted to the simplification, outlier removal, smoothing, normal
estimation and normal orientation. The processing of point sets is often needed in applications dealing with
measurement data, such as surface reconstruction from laser scanned data (see Figure 58.1).
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Figure 58.1: Point set processing. Left: 275K points sampled on the statue of an elephant with a Minolta laser
scanner. Right: point set after clean-up and simplification to 17K points.

In the context of surface reconstruction we can position the elements of this component along the common sur-
face reconstruction pipeline (Figure 58.2) which involves the following steps: 1) Scanning and scan alignment
to produce a set of points or points with normals (alignment is not yet covered in CGAL); 2) Outlier removal; 3)
Simplification to reduce the number of input points; 4) Smoothing to reduce noise in the input data; 5) Normal
estimation and orientation when the normals are not already provided by the acquisition device; and 6) Surface
reconstruction. Chapter Surface reconstruction points 3 49 deals with surface reconstruction from point sets
with normal attributes.

3490



Figure 58.2: Point set processing pipeline for surface reconstruction. The algorithms listed in gray are available
from other CGAL components (bounding volumes and principal component analysis).

58.2 Input/Output

58.2.1 Property Maps

The algorithms of this component take as input parameters iterator ranges of 3D points, or of 3D points
with normals. The property maps are used to access the point or normal information from the input data,
so as to let the user decide upon the implementation of a point with normal. The latter can be represented
as, e.g., a class derived from the CGAL 3D point, or as a std::pair<Point 3<K>, Vector 3<K> >, or as a
boost::tuple<..,Point 3<K>, ..., Vector 3<K> >.

The following classes described in Chapter 75 provide property maps for the implementations of points
with normals listed above:
CGAL::Dereference property map<T>
CGAL::First of pair property map<Pair> and CGAL::Second of pair property map<Pair>
CGAL::Nth of tuple property map<N, Tuple>

Dereference property map<Point 3> is the default value of the position property map expected by all
functions in this component.
See below examples using pair and tuple property maps.
Users of this package may use other types to represent positions and normals if they implement the
corresponding property maps.
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58.2.2 Streams

We provide functions to read and write sets of points or sets of points with normals from the following ASCII
file formats: XYZ (three point coordinates x y z per line or three point coordinates and three normal vector
coordinates x y z nx ny nz per line), and OFF (Object File Format) [Phi96].

CGAL::read xyz points
CGAL::read off points
CGAL::write off points
CGAL::write xyz points

58.2.3 Example

The following example reads a point set from an input file and writes it to a file, both in the XYZ format.
Positions and normals are stored in pairs and accessed through property maps.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/property_map.h>
#include <CGAL/IO/read_xyz_points.h>
#include <CGAL/IO/write_xyz_points.h>

#include <utility> // defines std::pair
#include <vector>
#include <fstream>

// types
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;

// Point with normal vector stored as a std::pair.
typedef std::pair<Point, Vector> Pwn;

int main(void)
{

// Reads a .xyz point set file in points[].
// Note: read_xyz_points_and_normals() requires an output iterator
// over points and as well as property maps to access each
// point position and normal.
std::vector<Pwn> points;
std::ifstream in("data/oni.xyz");
if (!in ||

!CGAL::read_xyz_points_and_normals(
in,std::back_inserter(points),
CGAL::First_of_pair_property_map<Pwn>(),
CGAL::Second_of_pair_property_map<Pwn>()))

{
std::cerr << "Error: cannot read file data/oni.xyz" << std::endl;
return EXIT_FAILURE;

}

// Saves point set.
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// Note: write_xyz_points_and_normals() requires an output iterator
// over points as well as property maps to access each
// point position and normal.
std::ofstream out("oni_copy.xyz");
if (!out ||

!CGAL::write_xyz_points_and_normals(
out, points.begin(), points.end(),
CGAL::First_of_pair_property_map<Pwn>(),
CGAL::Second_of_pair_property_map<Pwn>()))

{
return EXIT_FAILURE;

}

return EXIT_SUCCESS;
}� �
File: examples/Point_set_processing_3/read_write_xyz_point_set_example.cpp

58.3 Analysis

Function CGAL::compute average spacing() computes the average spacing of all input points to their k nearest
neighbor points, k being specified by the user. As it provides an order of a point set density, this function is used
downstream the surface reconstruction pipeline to automatically determine some parameters such as output
mesh sizing for surface reconstruction.

Example

The following example reads a point set in the xyz format and computes the average spacing. Index, position
and color are stored in a tuple and accessed through property maps.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/compute_average_spacing.h>
#include <CGAL/IO/read_xyz_points.h>

#include <vector>
#include <fstream>
#include <boost/tuple/tuple.hpp>

// Types
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::FT FT;
typedef Kernel::Point_3 Point;

// Data type := index, followed by the point, followed by three integers
that

// define the Red Green Blue color of the point.
typedef boost::tuple<int, Point, int, int, int>

IndexedPointWithColorTuple;
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int main(void)
{

// Reads a .xyz point set file in points.
// As the point is the second element of the tuple (that is with
index 1)
// we use a property map that accesses the 1st element of the tuple.
std::vector<IndexedPointWithColorTuple> points;
std::ifstream stream("data/sphere_20k.xyz");
if (!stream ||

!CGAL::read_xyz_points(
stream, std::back_inserter(points),

CGAL::Nth_of_tuple_property_map<1,IndexedPointWithColorTuple>()))
{

std::cerr << "Error: cannot read file data/sphere_20k.xyz" <<
std::endl;

return EXIT_FAILURE;
}

// Initialize index and RGB color fields in tuple.
// As the index and RGB color are respectively the first and
third-fifth elements
// of the tuple we use a get function from the property map that
accesses the 0
// and 2-4th elements of the tuple.
for(unsigned int i = 0; i < points.size(); i++)
{

points[i].get<0>() = i; // set index value of tuple to i

points[i].get<2>() = 0; // set RGB color to black
points[i].get<3>() = 0;
points[i].get<4>() = 0;

}

// Computes average spacing.
const unsigned int nb_neighbors = 6; // 1 ring
FT average_spacing = CGAL::compute_average_spacing(

points.begin(), points.end(),

CGAL::Nth_of_tuple_property_map<1,IndexedPointWithColorTuple>(),
nb_neighbors);

std::cout << "Average spacing: " << average_spacing << std::endl;

return EXIT_SUCCESS;
}� �
File: examples/Point_set_processing_3/average_spacing_example.cpp

Note that other functions such as centroid or bounding volumes are found in other CGAL components:
CGAL::centroid
CGAL::bounding box
Min sphere of spheres d<Traits>
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58.4 Outlier Removal

Function CGAL::remove outliers() deletes a user-specified fraction of outliers from an input point set. More
specifically, it sorts the input points in increasing order of average squared distances to their k nearest neighbors
and deletes the points with largest value.

Example

The following example reads a point set and removes 5% of the points. It uses the CGAL::Dereference
property map<Point 3> property map (optional as it is the default position property map of all functions in
this component.)� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/property_map.h>
#include <CGAL/remove_outliers.h>
#include <CGAL/IO/read_xyz_points.h>

#include <vector>
#include <fstream>

// types
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point;

int main(void)
{

// Reads a .xyz point set file in points[].
// The Dereference_property_map property map can be omitted here as it
is the default value.

std::vector<Point> points;
std::ifstream stream("data/oni.xyz");
if (!stream ||

!CGAL::read_xyz_points(stream, std::back_inserter(points),
CGAL::Dereference_property_map<Point>()))

{
std::cerr << "Error: cannot read file data/oni.xyz" << std::endl;
return EXIT_FAILURE;

}

// Removes outliers using erase-remove idiom.
// The Dereference_property_map property map can be omitted here as it
is the default value.

const double removed_percentage = 5.0; // percentage of points to
remove

const int nb_neighbors = 24; // considers 24 nearest neighbor points
points.erase(CGAL::remove_outliers(points.begin(), points.end(),

CGAL::Dereference_property_map<Point>(),
nb_neighbors, removed_percentage),

points.end());

// Optional: after erase(), use Scott Meyer’s "swap trick" to trim
excess capacity
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std::vector<Point>(points).swap(points);

return EXIT_SUCCESS;
}� �
File: examples/Point_set_processing_3/remove_outliers_example.cpp

58.5 Simplification

Two simplification functions are devised to reduce an input point set, either randomly or using a grid-based
clustering approach.

Function CGAL::random simplify point set() randomly deletes a user-specified fraction of points from the in-
put point set. This algorithm is fast.

Function CGAL::grid simplify point set() considers a regular grid covering the bounding box of the input point
set, and clusters all points sharing the same cell of the grid by picking as representant one arbitrarily chosen
point. This algorithm is slower than CGAL::random simplify point set().

Example

The following example reads a point set and simplifies it by clustering.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/grid_simplify_point_set.h>
#include <CGAL/IO/read_xyz_points.h>

#include <vector>
#include <fstream>

// types
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point;

int main(void)
{

// Reads a .xyz point set file in points[].
std::vector<Point> points;
std::ifstream stream("data/oni.xyz");
if (!stream ||

!CGAL::read_xyz_points(stream, std::back_inserter(points)))
{

std::cerr << "Error: cannot read file data/oni.xyz" << std::endl;
return EXIT_FAILURE;

}

// simplification by clustering using erase-remove idiom
double cell_size = 0.001;
points.erase(CGAL::grid_simplify_point_set(points.begin(),
points.end(), cell_size),
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points.end());

// Optional: after erase(), use Scott Meyer’s "swap trick" to trim
excess capacity

std::vector<Point>(points).swap(points);

return EXIT_SUCCESS;
}� �

File: examples/Point_set_processing_3/grid_simplification_example.cpp

Figure 58.3: Point set simplification through grid-based clustering. Removed points are depicted in red. Notice
how low-density areas (in green) are not simplified.
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58.6 Smoothing

Function CGAL::jet smooth point set smooths the input point set by projecting each point onto a smooth
parametric surface patch (so-called jet surface) fitted over its k nearest neighbors.

Example

The following example generates a set of 9 points close to the xy plane and smooths them using 8 nearest
neighbors:� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/jet_smooth_point_set.h>
#include <vector>

// types
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point;

int main(void)
{

// generate point set
std::vector<Point> points;
points.push_back(Point( 0.0, 0.0, 0.001));
points.push_back(Point(-0.1,-0.1, 0.002));
points.push_back(Point(-0.1,-0.2, 0.001));
points.push_back(Point(-0.1, 0.1, 0.002));
points.push_back(Point( 0.1,-0.1, 0.000));
points.push_back(Point( 0.1, 0.2, 0.001));
points.push_back(Point( 0.2, 0.0, 0.002));
points.push_back(Point( 0.2, 0.1, 0.000));
points.push_back(Point( 0.0,-0.1, 0.001));

// Smoothing.
const unsigned int nb_neighbors = 8; // default is 24 for real-life
point sets

CGAL::jet_smooth_point_set(points.begin(), points.end(), nb_neighbors);

return EXIT_SUCCESS;
}� �
File: examples/Point_set_processing_3/jet_smoothing_example.cpp

58.7 Normal Estimation

Assuming a point set sampled over an inferred surface S, two functions provide an estimate of the normal to S
at each point. The result is an unoriented normal vector for each input point.

Function CGAL::jet estimate normals() estimates the normal direction at each point from the input set by fitting
a jet surface over its k nearest neighbors. The default jet is a quadric surface. This algorithm is well suited to
point sets scattered over curved surfaces.
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Function CGAL::pca estimate normals() estimates the normal direction at each point from the set by linear
least squares fitting of a plane over its k nearest neighbors. This algorithm is simpler and faster than CGAL::jet
estimate normals().

58.8 Normal Orientation

Function CGAL::mst orient normals() orients the normals of a set of points with unoriented normals using the
method described by Hoppe et al. in Surface reconstruction from unorganized points [HDD+92]. More specif-
ically, this method constructs a Riemannian graph over the input points (the graph of the K nearest neighbor
points) and propagates a seed normal orientation within a minimum spanning tree computed over this graph.
The result is an oriented normal vector for each input unoriented normal, except for the normals which could
not be successfully oriented.

Figure 58.4: Normal orientation of a sampled cube surface. Left: unoriented normals. Right: orientation of
right face normals is propagated to bottom face.

Example

The following example reads a point set from a file, estimates the normals through PCA over the 6 nearest
neighbors and orients the normals:� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/pca_estimate_normals.h>
#include <CGAL/mst_orient_normals.h>
#include <CGAL/property_map.h>
#include <CGAL/IO/read_xyz_points.h>

#include <utility> // defines std::pair
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#include <list>
#include <fstream>

// Types
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;

// Point with normal vector stored in a std::pair.
typedef std::pair<Point, Vector> PointVectorPair;

int main(void)
{

// Reads a .xyz point set file in points[].
std::list<PointVectorPair> points;
std::ifstream stream("data/sphere_20k.xyz");
if (!stream ||

!CGAL::read_xyz_points(stream,
std::back_inserter(points),

CGAL::First_of_pair_property_map<PointVectorPair>()))
{

std::cerr << "Error: cannot read file data/sphere_20k.xyz" <<
std::endl;

return EXIT_FAILURE;
}

// Estimates normals direction.
// Note: pca_estimate_normals() requires an iterator over points
// as well as property maps to access each point’s position and
normal.
const int nb_neighbors = 18; // K-nearest neighbors = 3 rings
CGAL::pca_estimate_normals(points.begin(), points.end(),

CGAL::First_of_pair_property_map<PointVectorPair>(),

CGAL::Second_of_pair_property_map<PointVectorPair>(),
nb_neighbors);

// Orients normals.
// Note: mst_orient_normals() requires an iterator over points
// as well as property maps to access each point’s position and
normal.
std::list<PointVectorPair>::iterator unoriented_points_begin =

CGAL::mst_orient_normals(points.begin(), points.end(),

CGAL::First_of_pair_property_map<PointVectorPair>(),

CGAL::Second_of_pair_property_map<PointVectorPair>(),
nb_neighbors);

// Optional: delete points with an unoriented normal
// if you plan to call a reconstruction algorithm that expects
oriented normals.
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points.erase(unoriented_points_begin, points.end());

// Optional: after erase(), use Scott Meyer’s "swap trick" to trim
excess capacity
std::list<PointVectorPair>(points).swap(points);

return EXIT_SUCCESS;
}� �
File: examples/Point_set_processing_3/normals_example.cpp
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CGAL::compute average spacing

Definition

CGAL::compute average spacing() computes the average spacing of all points from the input set to their k
nearest neighbors. This value depends on the k parameter which can be set to 6 for isotropically sampled
surfaces.

#include <CGAL/compute average spacing.h>

template<typename InputIterator, typename PointPMap, typename Kernel>
Kernel::FT compute average spacing( InputIterator first,

InputIterator beyond,
PointPMap point pmap,
unsigned int k,
Kernel kernel)

Computes average spacing from k nearest neighbors.
Precondition: k >= 2.
Template Parameters:
InputIterator: iterator over input points. PointPMap: is a model of
boost::ReadablePropertyMap with a value type = Point 3<Kernel>. It can
be omitted if InputIterator value type is convertible to Point 3<Kernel>.
Kernel: Geometric traits class. It can be omitted and deduced automatically
from PointPMap value type.
Returns: average spacing (scalar).
Parameters:
first: iterator over the first input point. beyond: past-the-end iterator over the
input points. point pmap: property map InputIterator -> Point 3. k: number
of neighbors. kernel: geometric traits.

Example

See average spacing example.cpp.
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CGAL::grid simplify point set

Definition

Function CGAL::grid simplify point set() considers a regular grid covering the bounding box of the input point
set, and clusters all points sharing the same cell of the grid by picking as representant one arbitrarily chosen
point.

This method modifies the order of input points so as to pack all remaining points first, and returns an iterator over
the first point to remove (see erase-remove idiom). For this reason it should not be called on sorted containers.

#include <CGAL/grid simplify point set.h>

template<typename ForwardIterator, typename PointPMap, typename Kernel>
ForwardIterator grid simplify point set( ForwardIterator first,

ForwardIterator beyond,
PointPMap point pmap,
double epsilon,
Kernel kernel)

Merges points which belong to the same cell of a grid of cell size = epsilon.
This method modifies the order of input points so as to pack all remaining
points first, and returns an iterator over the first point to remove (see erase-
remove idiom). For this reason it should not be called on sorted containers.
Precondition: epsilon > 0.
Template Parameters:
ForwardIterator: iterator over input points. PointPMap: is a model of
boost::ReadablePropertyMap with a value type = Point 3<Kernel>. It can
be omitted if ForwardIterator value type is convertible to Point 3<Kernel>.
Kernel: Geometric traits class. It can be omitted and deduced automatically
from PointPMap value type.
Returns: iterator over the first point to remove.
Parameters:
first: iterator over the first input point. beyond: past-the-end iterator over
the input points. point pmap: property map ForwardIterator -> Point 3.
epsilon: tolerance value when merging 3D points. kernel: geometric traits.

See Also

CGAL::random simplify point set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3512

Example

See grid simplification example.cpp.

3506



F
un

ct
io

n

CGAL::jet estimate normals

Definition

CGAL::jet estimate normals() estimates normal directions of all points from the input set by fitting jet surfaces
over the k nearest neighbors. The default jet surface is a quadric, and the result is an unoriented normal vector
for each input point.

The output of the normal estimation algorithm highly depends on the k parameter. The number of neighbors
controls the size of the point subset considered for jet fitting at each input point. As this parameter is application-
specific we do not provide any default value. Larger values lead to smoother normal fields and are more time
consuming. For point sets with limited noise this value can be set to small number such as 18. For noisy point
sets this value must be increased.

#include <CGAL/jet estimate normals.h>

template<typename InputIterator, typename PointPMap, typename NormalPMap, typename Kernel>
void jet estimate normals( InputIterator first,

InputIterator beyond,
PointPMap point pmap,
NormalPMap normal pmap,
unsigned int k,
Kernel kernel,
unsigned int degree fitting = 2)

Estimates normal directions of the [first, beyond) range of points using jet
fitting on the k nearest neighbors. The output normals are randomly oriented.
Precondition: k >= 2.
Template Parameters:
InputIterator: iterator over input points. PointPMap: is a model of
boost::ReadablePropertyMap with a value type = Point 3<Kernel>. It can
be omitted if InputIterator value type is convertible to Point 3<Kernel>.
NormalPMap: is a model of boost::WritablePropertyMap with a value type
= Vector 3<Kernel>. Kernel: Geometric traits class. It can be omitted and
deduced automatically from PointPMap value type.
Parameters:
first: iterator over the first input point. beyond: past-the-end iterator over the
input points. point pmap: property map InputIterator -> Point 3. normal
pmap: property map InputIterator -> Vector 3. k: number of neighbors.
kernel: geometric traits.

See Also

CGAL::pca estimate normals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3511
CGAL::mst orient normals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3509

Example

See normal estimation.cpp example.
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CGAL::jet smooth point set

Definition

CGAL::jet smooth point set() smooths a point set by fitting for each point a jet surface and projecting it onto
the jet. The default jet surface is a quadric.

The output of the smoothing algorithm highly depends on the k parameter. The number of neighbors controls
the size of the point subset considered for jet fitting at each input point. As this parameter is application-specific
we do not provide any default value. Larger values lead to smoother point sets and are more time consuming.
For point sets with limited noise this value can be set to small number such as 24. For noisy point sets this value
must be increased.

#include <CGAL/jet smooth point set.h>

template<typename InputIterator, typename PointPMap, typename Kernel>
void jet smooth point set( InputIterator first,

InputIterator beyond,
PointPMap point pmap,
unsigned int k,
Kernel kernel,
unsigned int degree fitting = 2,
unsigned int degree monge = 2)

Smoothes the [first, beyond) range of points using jet fitting on the k nearest
neighbors and reprojection onto the jet. As this method relocates the points,
it should not be called on containers sorted w.r.t. point locations.
Precondition: k >= 2.
Template Parameters:
InputIterator: iterator over input points. PointPMap: is a model of
boost::ReadablePropertyMap with a value type = Point 3<Kernel>. It can
be omitted if InputIterator value type is convertible to Point 3<Kernel>.
Kernel: Geometric traits class. It can be omitted and deduced automatically
from PointPMap value type.
Parameters:
first: iterator over the first input point. beyond: past-the-end iterator over the
input points. point pmap: property map InputIterator -> Point 3. k: number
of neighbors. kernel: geometric traits.

Example

See jet smoothing example.cpp.
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CGAL::mst orient normals

Definition

CGAL::mst orient normals() orients the normals of a point set using the propagation of a seed orientation
through a minimum spanning tree computed over the Riemannian graph [HDD+92].

The seed is chosen as the top point of the point set. Its normal is oriented towards +Z axis. The success of the
orientation algorithm depends on the k parameter. The number of neighbors controls the number of candidates
to propagate the orientation to around each input point. In general the value 18 works well. With smaller values
the propagation may be blocked by large gaps in sparse point sets as the graph may be disconnected. Large
values cause problems with points scattered over thin objects as the algorithm may incorrectly propagate the
orientation from one side of the object to the other. In presence of disconnected clusters of points the algorithm
may fail propagating the orientation from one cluster to the others and may only orient the top cluster.

This method modifies the order of the input points so as to pack all successfully oriented normals first, and
returns an iterator over the first point with an unoriented normal (see erase-remove idiom). For this reason it
should not be called on sorted containers.

#include <CGAL/mst orient normals.h>

template<typename ForwardIterator, typename PointPMap, typename NormalPMap, typename Kernel>
ForwardIterator mst orient normals( ForwardIterator first,

ForwardIterator beyond,
PointPMap point pmap,
NormalPMap normal pmap,
unsigned int k,
Kernel kernel)

Orients the normals of the [first, beyond) range of points using the propaga-
tion of a seed orientation through a minimum spanning tree of the Rieman-
nian graph [HDD+92].
This method modifies the order of input points so as to pack all sucessfully
oriented points first, and returns an iterator over the first point with an un-
oriented normal (see erase-remove idiom). For this reason it should not be
called on sorted containers.
Preconditions:
Normals must be unit vectors. k >= 2.
Template Parameters:
ForwardIterator: iterator over input points. PointPMap: is a model of
boost::ReadablePropertyMap with a value type = Point 3<Kernel>. It can
be omitted if ForwardIterator value type is convertible to Point 3<Kernel>.
NormalPMap: is a model of boost::ReadWritePropertyMap with a value
type = Vector 3<Kernel>. Kernel: Geometric traits class. It can be omitted
and deduced automatically from PointPMap value type.
Returns: iterator over the first point with an unoriented normal.
Parameters:
first: iterator over the first input point. beyond: past-the-end iterator over
the input points. point pmap: property map ForwardIterator -> Point 3.
normal pmap: property map ForwardIterator -> Vector 3. k: number of
neighbors. kernel: geometric traits.
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See Also

CGAL::pca estimate normals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3511
CGAL::jet estimate normals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3507

Example

See pca estimate normals example.cpp.
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CGAL::pca estimate normals

Definition

CGAL::pca estimate normals() estimates normal directions at all points of an input point set by linear least
squares fitting of a plane over their k nearest neighbors. The result is an unoriented normal for each input point.

The output of the normal estimation algorithm highly depends on the k parameter. The number of neigh-
bors controls the size of the point subset considered for plane fitting at each input point. As this parameter is
application-specific we do not provide any default value. For noise-free point sets this value can be set to a small
number, e.g., 18. Larger values (e.g., 30 or more) lead to smoother normal fields and are more time consuming.
We thus recommend using them only for noisy data sets.

#include <CGAL/pca estimate normals.h>

template<typename InputIterator, typename PointPMap, typename NormalPMap, typename Kernel>
void pca estimate normals( InputIterator first,

InputIterator beyond,
PointPMap point pmap,
NormalPMap normal pmap,
unsigned int k,
Kernel kernel)

Estimates normal directions of the [first, beyond) range of points by linear
least squares fitting of a plane over the k nearest neighbors. The output nor-
mals are randomly oriented.
Precondition: k >= 2.
Template Parameters:
InputIterator: iterator over input points. PointPMap: is a model of
boost::ReadablePropertyMap with a value type = Point 3<Kernel>. It can
be omitted if InputIterator value type is convertible to Point 3<Kernel>.
NormalPMap: is a model of boost::WritablePropertyMap with a value type
= Vector 3<Kernel>. Kernel: Geometric traits class. It can be omitted and
deduced automatically from PointPMap value type.
Parameters:
first: iterator over the first input point. beyond: past-the-end iterator over the
input points. point pmap: property map InputIterator -> Point 3. normal
pmap: property map InputIterator -> Vector 3. k: number of neighbors.
kernel: geometric traits.

See Also

CGAL::jet estimate normals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3507
CGAL::mst orient normals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3509

Example

See normals example.cpp.
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CGAL::random simplify point set

Definition

CGAL::random simplify point set() randomly deletes a user-specified fraction of the input points. This method
modifies the order of input points so as to pack all remaining points first, and returns an iterator over the first
point to remove (see erase-remove idiom). For this reason it should not be called on sorted containers.

#include <CGAL/random simplify point set.h>

template<typename ForwardIterator, typename PointPMap, typename Kernel>
ForwardIterator random simplify point set( ForwardIterator first,

ForwardIterator beyond,
PointPMap point pmap,
double removed percentage,
Kernel kernel)

Randomly deletes a user-specified fraction of the input points.
This method modifies the order of input points so as to pack all remaining
points first, and returns an iterator over the first point to remove (see erase-
remove idiom). For this reason it should not be called on sorted containers.
Template Parameters:
ForwardIterator: iterator over input points. PointPMap: is a model of
boost::ReadablePropertyMap with a value type = Point 3<Kernel>. It can
be omitted if ForwardIterator value type is convertible to Point 3<Kernel>.
Kernel: Geometric traits class. It can be omitted and deduced automatically
from PointPMap value type.
Returns: iterator over the first point to remove.
Parameters:
first: iterator over the first input point. beyond: past-the-end iterator over
the input points. point pmap: property map ForwardIterator -> Point 3.
removed percentage: percentage of points to remove. kernel: geometric
traits.

See Also

CGAL::grid simplify point set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3506

Example

See random simplification example.cpp.
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CGAL::read off points

Definition

CGAL::read off points() reads the point from a .off ASCII stream. More specifically, it reads only the point
locations and ignores all point attributes available from the stream. CGAL::read off points and normals()
reads the points as well as the normals (if available) from a .off ASCII stream. In both cases the other primitives
(segments, faces) are ignored.

#include <CGAL/IO/read off points.h>

template<typename OutputIterator, typename PointPMap, typename Kernel>
bool read off points( std::istream& stream,

OutputIterator output,
PointPMap point pmap,
Kernel kernel)

Reads points (position only) from a .off ASCII stream. The function expects
for each point a line with the x y z position. If the position is followed by the
nx ny nz normal, then the normal will be ignored. Faces are ignored.
Template Parameters:
OutputIterator: iterator over output points. PointPMap: is a model of
boost::WritablePropertyMap with a value type = Point 3<Kernel>. It can
be omitted if OutputIterator value type is convertible to Point 3<Kernel>.
Kernel: Geometric traits class. It can be omitted and deduced automatically
from PointPMap value type.
Returns: true on success.
Parameters:
stream: input stream. output: output iterator over points. point pmap: prop-
erty map OutputIterator -> Point 3. kernel: geometric traits.

template<typename OutputIterator, typename PointPMap, typename NormalPMap, typename Kernel>
bool read off points and normals( std::istream& stream,

OutputIterator output,
PointPMap point pmap,
NormalPMap normal pmap,
Kernel kernel)

Reads points (positions + normals, if available) from a .off ASCII stream.
The function expects for each point a line with the x y z position, optionally
followed by the nx ny nz normal. Faces are ignored.
Template Parameters:
OutputIterator: iterator over output points. PointPMap: is a model of
boost::WritablePropertyMap with a value type = Point 3<Kernel>. It can
be omitted if OutputIterator value type is convertible to Point 3<Kernel>.
NormalPMap: is a model of boost::WritablePropertyMap with a value type
= Vector 3<Kernel>. Kernel: Geometric traits class. It can be omitted and
deduced automatically from PointPMap value type.
Returns: true on success.
Parameters:
stream: input stream. output: output iterator over points. point pmap: prop-
erty map OutputIterator -> Point 3. normal pmap: property map OutputIt-
erator -> Vector 3. kernel: geometric traits.
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See Also

CGAL::read xyz points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3515
CGAL::write xyz points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3520
CGAL::write off points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3518

Example

See read write xyz point set example.cpp.
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CGAL::read xyz points

Definition

CGAL::read xyz points() reads the point locations from a .xyz ASCII stream. CGAL::read xyz points and
normals() reads the points as well as the normals (if available) from a .xyz ASCII stream.

#include <CGAL/IO/read xyz points.h>

template<typename OutputIterator, typename PointPMap, typename Kernel>
bool read xyz points( std::istream& stream,

OutputIterator output,
PointPMap point pmap,
Kernel kernel)

Reads points (positions only) from a .xyz ASCII stream. The function ex-
pects for each point a line with the x y z position. If the position is followed
by the nx ny nz normal, then the normal will be ignored. The first line may
contain the number of points in the file. Empty lines and comments starting
by # character are allowed.
Template Parameters:
OutputIterator: iterator over output points. PointPMap: is a model of
boost::WritablePropertyMap with a value type = Point 3<Kernel>. It can
be omitted if OutputIterator value type is convertible to Point 3<Kernel>.
Kernel: Geometric traits class. It can be omitted and deduced automatically
from PointPMap value type.
Returns: true on success.
Parameters:
stream: input stream. output: output iterator over points. point pmap: prop-
erty map OutputIterator -> Point 3. kernel: geometric traits.

template<typename OutputIterator, typename PointPMap, typename NormalPMap, typename Kernel>
bool read xyz points and normals( std::istream& stream,

OutputIterator output,
PointPMap point pmap,
NormalPMap normal pmap,
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Kernel kernel)

Reads points (positions + normals, if available) from a .xyz ASCII stream.
The function expects for each point a line with the x y z position, optionally
followed by the nx ny nz normal. The first line may contain the number
of points in the file. Empty lines and comments starting by # character are
allowed.
Template Parameters:
OutputIterator: iterator over output points. PointPMap: is a model of
boost::WritablePropertyMap with a value type = Point 3<Kernel>. It can
be omitted if OutputIterator value type is convertible to Point 3<Kernel>.
NormalPMap: is a model of boost::WritablePropertyMap with a value type
= Vector 3<Kernel>. Kernel: Geometric traits class. It can be omitted and
deduced automatically from PointPMap value type.
Returns: true on success.
Parameters:
stream: input stream. output: output iterator over points. point pmap: prop-
erty map OutputIterator -> Point 3. normal pmap: property map OutputIt-
erator -> Vector 3. kernel: geometric traits.

See Also

CGAL::write xyz points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3520
CGAL::read off points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3513
CGAL::write off points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3518

Example

See read write xyz point set example.cpp.
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CGAL::remove outliers

Definition

CGAL::remove outliers() deletes a user-specified fraction of outliers from the input point set. More specifically,
it sorts the input points in increasing order of average squared distances to the k nearest neighbors and computes
the points with largest value.

The outliers detection depends on the k parameter, specifically the detection of clusters of outliers. The number
of neighbors should be higher than the size of clusters of outliers in the point set. For datasets with no cluster of
outliers, this value can be set to a few rings, e.g. 24. Larger value leads to longer computation times. For these
reasons, we do not provide any default value for this parameter.

This method modifies the order of input points so as to pack all remaining points first, and returns and returns
an iterator over the first point to remove (see erase-remove idiom). For this reason it should not be called on
sorted containers.

#include <CGAL/remove outliers.h>

template<typename InputIterator, typename PointPMap, typename Kernel>
InputIterator remove outliers( InputIterator first,

InputIterator beyond,
PointPMap point pmap,
unsigned int k,
double threshold percent,
Kernel kernel)

Removes outliers: computes average squared distance to the K nearest neigh-
bors, and sorts the points in increasing order of average distance.
This method modifies the order of input points so as to pack all remaining
points first, and returns an iterator over the first point to remove (see erase-
remove idiom). For this reason it should not be called on sorted containers.
Precondition: k >= 2.
Template Parameters:
InputIterator: iterator over input points. PointPMap: is a model of
boost::ReadablePropertyMap with a value type = Point 3<Kernel>. It can
be omitted if InputIterator value type is convertible to Point 3<Kernel>.
Kernel: Geometric traits class. It can be omitted and deduced automatically
from PointPMap value type.
Returns: iterator over the first point to remove.
Parameters:
first: iterator over the first input point. beyond: past-the-end iterator over
the input points. point pmap: property map InputIterator -> Point 3. k:
number of neighbors. threshold percent: percentage of points to remove.
kernel: geometric traits.

Example

See remove outliers example.cpp.
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CGAL::write off points

Definition

CGAL::write off points() saves the points of an iterator range to a .off ASCII stream. More specifically, it saves
only the point locations and ignores all other attributes. CGAL::write off points and normals() saves the points
as well the normals of an iterator range to a .off ASCII stream.

#include <CGAL/IO/write off points.h>

template<typename ForwardIterator, typename PointPMap, typename Kernel>
bool write off points( std::ostream& stream,

ForwardIterator first,
ForwardIterator beyond,
PointPMap point pmap,
Kernel kernel)

Saves the [first, beyond) range of points (positions only) to a .off ASCII
stream. The function writes for each point a line with the x y z position.
Template Parameters:
ForwardIterator: iterator over input points. PointPMap: is a model of
boost::ReadablePropertyMap with a value type = Point 3<Kernel>. It can
be omitted if ForwardIterator value type is convertible to Point 3<Kernel>.
Kernel: Geometric traits class. It can be omitted and deduced automatically
from PointPMap value type.
Returns: true on success.
Parameters:
stream: output stream. first: iterator over the first input point. beyond: past-
the-end iterator over the input points. point pmap: property map ForwardIt-
erator -> Point 3. kernel: geometric traits.

template<typename ForwardIterator, typename PointPMap, typename NormalPMap, typename Kernel>
bool write off points and normals( std::ostream& stream,

ForwardIterator first,
ForwardIterator beyond,
PointPMap point pmap,
NormalPMap normal pmap,
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Kernel kernel)

Saves the [first, beyond) range of points (positions + normals) to a .off ASCII
stream. The function writes for each point a line with the x y z position
followed by the nx ny nz normal.
Precondition: normals must be unit vectors.
Template Parameters:
ForwardIterator: iterator over input points. PointPMap: is a model of
boost::ReadablePropertyMap with a value type = Point 3<Kernel>. It can
be omitted if ForwardIterator value type is convertible to Point 3<Kernel>.
NormalPMap: is a model of boost::WritablePropertyMap with a value type
= Vector 3<Kernel>. Kernel: Geometric traits class. It can be omitted and
deduced automatically from PointPMap value type.
Returns: true on success.
Parameters:
stream: output stream. first: iterator over the first input point. beyond: past-
the-end iterator over the input points. point pmap: property map ForwardIt-
erator -> Point 3. normal pmap: property map ForwardIterator -> Vector
3. kernel: geometric traits.

See Also

CGAL::read xyz points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3515
CGAL::write xyz points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3520
CGAL::read off points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3513

Example

See read write xyz point set example.cpp.
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CGAL::write xyz points

Definition

CGAL::write xyz points() saves points (positions only) to a .xyz ASCII stream. CGAL::write xyz points and
normals() saves points (positions + normals) to a .xyz ASCII stream.

#include <CGAL/IO/write xyz points.h>

template<typename ForwardIterator, typename PointPMap, typename Kernel>
bool write xyz points( std::ostream& stream,

ForwardIterator first,
ForwardIterator beyond,
PointPMap point pmap,
Kernel kernel)

Saves the [first, beyond) range of points (positions only) to a .xyz ASCII
stream. The function writes for each point a line with the x y z position.
Template Parameters:
ForwardIterator: iterator over input points. PointPMap: is a model of
boost::ReadablePropertyMap with a value type = Point 3<Kernel>. It can
be omitted if ForwardIterator value type is convertible to Point 3<Kernel>.
Kernel: Geometric traits class. It can be omitted and deduced automatically
from PointPMap value type.
Returns: true on success.
Parameters:
stream: output stream. first: iterator over the first input point. beyond: past-
the-end iterator over the input points. point pmap: property map ForwardIt-
erator -> Point 3. kernel: geometric traits.

template<typename ForwardIterator, typename PointPMap, typename NormalPMap, typename Kernel>
bool write xyz points and normals( std::ostream& stream,

ForwardIterator first,
ForwardIterator beyond,
PointPMap point pmap,
NormalPMap normal pmap,
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Kernel kernel)

Saves the [first, beyond) range of points (positions + normals) to a .xyz ASCII
stream. The function writes for each point a line with the x y z position
followed by the nx ny nz normal.
Precondition: normals must be unit vectors.
Template Parameters:
ForwardIterator: iterator over input points. PointPMap: is a model of
boost::ReadablePropertyMap with a value type = Point 3<Kernel>. It can
be omitted if ForwardIterator value type is convertible to Point 3<Kernel>.
NormalPMap: is a model of boost::WritablePropertyMap with a value type
= Vector 3<Kernel>. Kernel: Geometric traits class. It can be omitted and
deduced automatically from PointPMap value type.
Returns: true on success.
Parameters:
stream: output stream. first: iterator over the first input point. beyond: past-
the-end iterator over the input points. point pmap: property map ForwardIt-
erator -> Point 3. normal pmap: property map ForwardIterator -> Vector
3. kernel: geometric traits.

See Also

CGAL::read xyz points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3515
CGAL::read off points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3513
CGAL::write off points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3518

Example

See read write xyz point set example.cpp.
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Part XIII

Spatial Searching and Sorting
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Chapter 59

2D Range and Neighbor Search
Matthias Bäsken
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59.1 Introduction

Geometric queries are fundamental to many applications in computational geometry. The task is to maintain
a dynamic set of geometric objects in such a way that certain queries can be performed efficiently. Typical
examples of queries are: find out whether a given object is contained in the set, find all objects of the set lying
in a given area (e.g. rectangle), find the object closest to a given point or find the pair of objects in the set lying
closest to each other. Furthermore, the set should be dynamic in the sense that deletions and insertions of objects
can be performed efficiently.

In computational geometry literature one can find many different data structures for maintaining sets of geo-
metric objects. Most of them are data structures that have been developed to support a single very special kind
of query operation. Examples are Voronoi diagrams for answering nearest neighbor searches, range trees for
orthogonal range queries, partition trees for more general range queries, hierarchical triangulations for point
location and segment trees for intersection queries . . . .

In many applications, different types of queries have to be performed on the same set of objects. A naive
approach to this problem would use a collection of the above mentioned data structures to represent the set
of objects and delegate every query operation to the corresponding structure. However, this is completely
impractical since it uses too much memory and requires the maintenance of all these data structures in the
presence of update operations.

Data structures that are non-optimal in theory seem to perform quite well in practice for many of these queries.
For example, the Delaunay diagram turns out to be a very powerful data structure for storing dynamic sets
of points under range and nearest neighbor queries. A first implementation and computational study of using
Delaunay diagrams for geometric queries is described by Mehlhorn and Näher in [MN00].
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In this section we present a generic variant of a two dimensional point set data type supporting various geometric
queries.

The CGAL::Point set 2 class in this section is inherited from the two-dimensional CGAL Delaunay Triangula-
tion data type.

The CGAL::Point set 2 class depends on two template parameters T1 and T2. They are used as template
parameters for the CGAL::Delaunay triangulation 2 class CGAL::Point set 2 is inherited from. T1 is a model
for the geometric traits and T2 is a model for the triangulation data structure that the Delaunay triangulation
expects.

The CGAL::Point set 2 class supports the following kinds of queries:

• circular range search

• triangular range search

• isorectangular range search

• (k) nearest neighbor(s)

For details about the running times see [MN00].

59.2 Example: Range Search

The following example program demonstrates the various range search operations of the two dimensional point
set. First we construct a two dimensional point set PSet and initialize it with a few points. Then we perform
circular, triangular and isorectangular range search operations on the point set.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Point_set_2.h>
#include <list>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Point_set_2<K>::Vertex_handle Vertex_handle;
typedef K::Point_2 Point_2;

int main()
{

CGAL::Point_set_2<K> PSet;
std::list<Point_2> Lr;

Point_2 p1(12,14);
Point_2 p2(-12,14);
Point_2 p3(2,11);
Point_2 p4(5,6);
Point_2 p5(6.7,3.8);
Point_2 p6(11,20);
Point_2 p7(-5,6);
Point_2 p8(12,0);
Point_2 p9(4,31);
Point_2 p10(-10,-10);
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Lr.push_back(p1); Lr.push_back(p2); Lr.push_back(p3);
Lr.push_back(p4); Lr.push_back(p5); Lr.push_back(p6);
Lr.push_back(p7); Lr.push_back(p8); Lr.push_back(p9);
Lr.push_back(p10);

PSet.insert(Lr.begin(),Lr.end());

std::cout << "circular range search !\n";
CGAL::Circle_2<K> rc(p5,p6);

std::list<Vertex_handle> LV;
PSet.range_search(rc, std::back_inserter(LV));

std::list<Vertex_handle>::const_iterator it;
for (it=LV.begin();it != LV.end(); it++)

std::cout << (*it)->point() << "\n";

std::cout << "triangular range search !\n";

LV.clear();
PSet.range_search(p1,p2,p3, std::back_inserter(LV));
for (it=LV.begin();it != LV.end(); it++)

std::cout << (*it)->point() << "\n";
LV.clear();

std::cout << "isorectangular range search !\n";
Point_2 pt1=p10;
Point_2 pt3=p3;
Point_2 pt2 = Point_2(pt3.x(),pt1.y());
Point_2 pt4 = Point_2(pt1.x(),pt3.y());

PSet.range_search(pt1,pt2,pt3,pt4, std::back_inserter(LV));
for (it=LV.begin();it != LV.end(); it++)

std::cout << (*it)->point() << "\n";
return 0;

}� �
File: examples/Point_set_2/range_search.cpp
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2D Range and Neighbor Search
Reference Manual
Matthias Bäsken

The two dimensional point set is a class for geometric queries. It supports circular, triangular and iso rectangular
range searches and nearest neighbor searches. The point set is inherited from the CGAL Delaunay triangulation
data type. That means that it is a dynamic data structure supporting the insertion and deletion of points.

This package also provides function template versions of the range search and nearest neighbor query opera-
tions. They all have to be templated by the type of a CGAL Delaunay triangulation and provide functionality
similar to the corresponding member functions of the point set class.

59.3 Classified Reference Pages

Concepts

PointSetTraits

Classes

CGAL::Point set 2

Functions

CGAL::nearest neighbor
CGAL::nearest neighbors
CGAL::range search

59.4 Alphabetical List of Reference Pages

nearest neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3536
nearest neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3535
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CGAL::Point set 2<Gt,Tds>

Definition

#include <CGAL/Point set 2.h>

An instance PS of the data type Point set 2<Gt,Tds> is a Delaunay Triangulation of its vertex set. The class
Point set 2<Gt,Tds> is inherited from the CGAL Delaunay triangulation, and provides additional nearest neigh-
bor query operations and range searching operations.

The Point set 2<Gt,Tds> class of CGAL depends on template parameters standing for the geometric traits
classes used by the point set and by the Delaunay triangulation (Gt) and for the triangulation data structure
(Tds).

Types

typedef Gt::Point 2 Point; the point type

typedef Gt::Segment 2 Segment; the segment type

typedef Gt::Circle 2 Circle; the circle type

typedef Gt::FT Numb type; the representation field number type.

Point set 2<Gt,Tds>:: Triangulation the underlying triangulation type.

Point set 2<Gt,Tds>:: Triangulation::size type

the size type of the underlying triangulation.

Point set 2<Gt,Tds>:: Triangulation::Vertex

the vertex type of the underlying triangulation.

Point set 2<Gt,Tds>:: Triangulation::Edge

the edge type of the underlying triangulation.

Point set 2<Gt,Tds>:: Triangulation::Vertex handle

handles to vertices.
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Creation

Point set 2<Gt,Tds> PS; creates an empty Point set 2<Gt,Tds> .

template<class InputIterator>
Point set 2<Gt,Tds> PS( InputIterator first, InputIterator last);

creates a Point set 2<Gt,Tds> PS of the points in the range
[ f irst,last).

Operations

Vertex handle PS.lookup( Point p)

if PS contains a Vertex v with |pos(v)|= p the result is a handle
to v otherwise the result is NULL.

Vertex handle PS.nearest neighbor( Point p)

computes a handle to a vertex v of PS that is closest to p. If PS
is empty, NULL is returned.

Vertex handle PS.nearest neighbor( Vertex handle v)

computes a handle to a vertex w of PS that is closest to v. If v is
the only vertex in PS , NULL is returned.

template<class OutputIterator>
OutputIterator PS.nearest neighbors( Point p, size type k, OutputIterator res)

computes the k nearest neighbors of p in PS, and places the han-
dles to the corresponding vertices as a sequence of objects of
type Vertex handle in a container of value type of res which
points to the first object in the sequence. The function returns
an output iterator pointing to the position beyond the end of the
sequence.

template<class OutputIterator>
OutputIterator PS.nearest neighbors( Vertex handle v, size type k, OutputIterator res)

computes the k nearest neighbors of v, and places them as a se-
quence of objects of type Vertex handle in a container of value
type of res which points to the first object in the sequence. The
function returns an output iterator pointing to the position be-
yond the end of the sequence.

template<class OutputIterator>
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OutputIterator PS.range search( Circle C, OutputIterator res)

computes handles to all vertices contained in the closure of disk
C. The computed vertex handles will be placed as a sequence
of objects in a container of value type of res which points to
the first object in the sequence. The function returns an output
iterator pointing to the position beyond the end of the sequence.

template<class OutputIterator>
OutputIterator PS.range search( Point a, Point b, Point c, OutputIterator res)

computes handles to all vertices contained in the closure of the
triangle (a,b,c).

Precondition: a, b, and c must not be collinear. The computed
vertex handles will be placed as a sequence of objects in a con-
tainer of value type of res which points to the first object in the
sequence. The function returns an output iterator pointing to the
position beyond the end of the sequence.

template<class OutputIterator>
OutputIterator PS.range search( Point a1, Point b1, Point c1, Point d1, OutputIterator res)

computes handles to all vertices contained in the closure of the
iso-rectangle (a1,b1,c1,d1).

Precondition: a1 is the upper left point, b1 the lower left, c1 the
lower right and d1 the upper right point of the iso rectangle. The
computed vertex handles will be placed as a sequence of objects
in a container of value type of res which points to the first object
in the sequence. The function returns an output iterator pointing
to the position beyond the end of the sequence.
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PointSetTraits

A point set traits class has to provide some primitives that are used by the point set class. The following catalog
lists the involved primitives. For details about these types see the Kernel traits documentation.

Types

PointSetTraits:: Point 2

PointSetTraits:: Circle 2

PointSetTraits:: Segment 2

PointSetTraits:: FT

PointSetTraits:: Orientation 2

PointSetTraits:: Side of oriented circle 2

PointSetTraits:: Construct circle 2

PointSetTraits:: Compute squared distance 2

PointSetTraits:: Bounded side 2

PointSetTraits:: Compare distance 2

PointSetTraits:: Construct center 2
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CGAL::nearest neighbor

Definition

The function nearest neighbor is the function template version of the nearest neighbor search on Delaunay
triangulations.

#include <CGAL/nearest neighbor delaunay 2.h>

template<class Dt>
Dt::Vertex handle nearest neighbor( Dt delau, Dt::Vertex handle v)

computes a handle to a vertex w of delau that is closest to v.
If v is the only vertex in delau , NULL is returned.

Requirements

Dt is a CGAL Delaunay triangulation and contains the following subset of types from the concept PointSetTraits
and from the Delaunay triangulation data type:

• Dt::Geom traits

• Dt::Point

• Dt::Vertex circulator

• Dt::Vertex handle

• Dt::Geom traits::Compare distance 2
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CGAL::nearest neighbors

Definition

The function nearest neighbors is the function template version of the k nearest neighbors search on Delaunay
triangulations. There are two versions of this function, one taking a point of the Delaunay triangulation and the
other taking a vertex handle.

#include <CGAL/nearest neighbor delaunay 2.h>

template<class Dt, class OutputIterator>
OutputIterator nearest neighbors( Dt& delau, Dt::Point p, Dt::size type k, OutputIterator res)

computes the k nearest neighbors of p in delau, and places
the handles to the corresponding vertices as a sequence of
objects of type Vertex handle in a container of value type
of res which points to the first object in the sequence. The
function returns an output iterator pointing to the position
beyond the end of the sequence.

Requirements

Dt is a CGAL Delaunay triangulation and contains the following subset of types from the concept PointSetTraits
and from the Delaunay triangulation data type:

• Dt::Geom traits

• Dt::Vertex handle

• Dt::Vertex iterator

• Dt::Vertex circulator

• Dt::Vertex

• Dt::Face

• Dt::Face handle

• Dt::Locate type

• Dt::Point

• Dt::Geom traits::FT

• Dt::Geom traits::Compute squared distance 2

template<class Dt, class OutputIterator>
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OutputIterator nearest neighbors( Dt& delau,
Dt::Vertex handle v,
Dt::size type k,
OutputIterator res)

computes the k nearest neighbors of v (including v) in delau,
and places them as a sequence of objects of type Ver-
tex handle in a container of value type of res which points
to the first object in the sequence. The function returns an
output iterator pointing to the position beyond the end of the
sequence.

Requirements

Dt is a CGAL Delaunay triangulation and contains the following subset of types from the concept PointSetTraits
and from the Delaunay triangulation data type:

• Dt::Geom traits

• Dt::Vertex handle

• Dt::Vertex iterator

• Dt::Vertex circulator

• Dt::Vertex

• Dt::Point

• Dt::Geom traits::FT

• Dt::Geom traits::Compute squared distance 2
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CGAL::range search

Definition

There are six versions of the function template range search that perform range searches on Delaunay triangu-
lations. The first performs circular range searches, the second triangular range searches and the third performs
iso-rectangular range searches. The other three range search function templates perform enhanced variants of
the three aforementioned operations.
They get a user-defined object that has to control the range search operation. This way one can for instance stop
the search, when n points were found.

#include <CGAL/range search delaunay 2.h>

template<class Dt, class Circle, class OutputIterator>
OutputIterator range search( Dt& delau, Circle C, OutputIterator res)

computes handles to all vertices contained in the closure of
disk C. The computed vertex handles will be placed as a
sequence of objects in a container of value type of res which
points to the first object in the sequence. The function returns
an output iterator pointing to the position beyond the end of
the sequence. delau is the CGAL Delaunay triangulation on
which we perform the range search operation.

Requirements

• Dt is a CGAL Delaunay triangulation and contains the following subset of types from the concept PointSet-
Traits and from the Delaunay triangulation data type:

– Dt::Geom traits

– Dt::Vertex handle

– Dt::Vertex

– Dt::Vertex circulator

– Dt::Vertex iterator

– Dt::Point

– Dt::Geom traits::Bounded side 2

– Dt::Geom traits::Construct center 2

• the template parameter Circle corresponds to Dt::Geom traits::Cricle 2

template<class Dt, class OutputIterator>
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OutputIterator range search( Dt& delau, Dt::Point a, Dt::Point b, Dt::Point c, OutputIterator res)

computes handles to all vertices contained in the closure of
the triangle (a,b,c).

Precondition: a, b, and c must not be collinear. The com-
puted vertex handles will be placed as a sequence of objects
in a container of value type of res which points to the first
object in the sequence. The function returns an output itera-
tor pointing to the position beyond the end of the sequence.
delau is the CGAL Delaunay triangulation on which we per-
form the range search operation.

Requirements

Dt is a CGAL Delaunay triangulation and contains the following subset of types from the concept PointSetTraits
and from the Delaunay triangulation data type:

• Dt::Geom traits

• Dt::Vertex handle

• Dt::Vertex

• Dt::Vertex circulator

• Dt::Vertex iterator

• Dt::Point

• Dt::Geom traits::Circle 2

• Dt::Geom traits::Bounded side 2

• Dt::Geom traits::Construct center 2

• Dt::Geom traits::Orientation 2

• Dt::Geom traits::Construct circle 2

template<class Dt, class OutputIterator>
OutputIterator range search( Dt& delau,

Dt::Point a,
Dt::Point b,
Dt::Point c,
Dt::Point d,
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OutputIterator res)

computes handles to all vertices contained in the closure of
the iso-rectangle (a,b,c,d).

Precondition: a is the upper left point, b the lower left, c the
lower right and d the upper right point of the iso rectangle.
The computed vertex handles will be placed as a sequence of
objects in a container of value type of res which points to the
first object in the sequence. The function returns an output
iterator pointing to the position beyond the end of the se-
quence. delau is the CGAL Delaunay triangulation on which
we perform the range search operation.

Requirements

Dt is a CGAL Delaunay triangulation and contains the following subset of types from the concept PointSetTraits
and from the Delaunay triangulation data type:

• Dt::Geom traits

• Dt::Vertex handle

• Dt::Vertex

• Dt::Vertex circulator

• Dt::Vertex iterator

• Dt::Point

• Dt::Geom traits::Circle 2

• Dt::Geom traits::Bounded side 2

• Dt::Geom traits::Construct center 2

• Dt::Geom traits::Orientation 2

• Dt::Geom traits::Construct circle 2

template<class Dt, class Circle, class OutputIterator, class Pred>
OutputIterator range search( Dt& delau,

Circle C,
OutputIterator res,
Pred& pred,
bool return if succeded)

computes handles to all vertices contained in the closure of
disk C. The computed vertex handles will be placed as a
sequence of objects in a container of value type of res which
points to the first object in the sequence. The function returns
an output iterator pointing to the position beyond the end of
the sequence. delau is the CGAL Delaunay triangulation on
that we perform the range search operation. pred controls the
search operation. If return i f succeded is true, we will end
the search after the first success of the predicate, otherwise
we will continue till the search is finished.
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Requirements

For the requirements of Dt see the description for the non-predicate version.
Requirements of Pred:

• void set result(bool);

• bool operator()(const Point&);

The operator() is used for testing the current point in the search operation. If this operator returns true and
return i f succeded is true, the range search will stop. Otherwise the range search operation will continue.
Member function set result can be used to store the result of the range search in the function object. The result
will be true if the last call to the operator() of the predicate returned true, f alse otherwise.

template<class Dt, class OutputIterator, class Pred>
OutputIterator range search( Dt& delau,

Dt::Point a,
Dt::Point b,
Dt::Point c,
OutputIterator res,
Pred& pred,
bool return if succeded)

computes handles to all vertices contained in the closure of
the triangle (a,b,c).

Precondition: a, b, and c must not be collinear. The com-
puted vertex handles will be placed as a sequence of objects
in a container of value type of res which points to the first
object in the sequence. The function returns an output itera-
tor pointing to the position beyond the end of the sequence.
delau is the CGAL Delaunay triangulation on which we per-
form the range search operation. pred controls the search
operation. If return i f succeded is true, we will end the
search after the first success of the predicate, otherwise we
will continue till the search is finished.

Requirements

For the requirements of Dt see the description for the non-predicate version.
For the requirements of Pred see the description above.

template<class Dt, class OutputIterator, class Pred>
OutputIterator range search( Dt& delau,

Dt::Point a,
Dt::Point b,
Dt::Point c,
Dt::Point d,
OutputIterator res,
Pred& pred,

3541



bool return if succeded)

computes handles to all vertices contained in the closure of
the iso-rectangle (a,b,c,d).

Precondition: a is the upper left point, b the lower left, c the
lower right and d the upper right point of the iso rectangle.
The computed vertex handles will be placed as a sequence of
objects in a container of value type of res which points to the
first object in the sequence. The function returns an output
iterator pointing to the position beyond the end of the se-
quence. delau is the CGAL Delaunay triangulation on which
we perform the range search operation. pred controls the
search operation. If return i f succeded is true, we will end
the search after the first success of the predicate, otherwise
we will continue till the search is finished.

Requirements

For the requirements of Dt see the description for the non-predicate version.
For the requirements of Pred see the description above.
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Chapter 60

Interval Skip List
Andreas Fabri
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60.1 Definition

An interval skip list is a data structure for finding all intervals that contain a point, and for stabbing queries, that
is for answering the question whether a given point is contained in an interval or not. The implementation we
provide is dynamic, that is the user can freely mix calls to the methods insert(..), remove(..), find intervals(..),
and is contained(..)

The interval skip list class is parameterized with an interval class.

The data structure was introduced by Hanson [Han91], and it is called interval skip list, because it is an extension
of the randomized list structure known as skip list [Pug90].

60.2 Example Programs

We give two examples. The first one uses a basic interval class. In the second example we create an interval
skip list for the z-ranges of the faces of a terrain, allowing to answer level queries.
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60.2.1 First Example with Simple Interval

The first example reads two numbers n and d from std::cin. It creates n intervals of length d with the left
endpoint at n. It then reads out the intervals for the 1-dimensional points with coordinates 0...n+d.

The interval skip list class has as template argument an interval class. In this example we use the class Interval
skip list interval.
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#include <CGAL/Interval_skip_list.h>
#include <CGAL/Interval_skip_list_interval.h>
#include <vector>
#include <list>
#include <iostream>

typedef CGAL::Interval_skip_list_interval<double> Interval;
typedef CGAL::Interval_skip_list<Interval> Interval_skip_list;

int main()
{

Interval_skip_list isl;
int i, n, d;

n = 10;
d = 3;
//std::cin >> n >> d;
std::vector<Interval> intervals(n);
for(i = 0; i < n; i++) {

intervals[i] = Interval(i, i+d);
}
std::random_shuffle(intervals.begin(), intervals.end());

isl.insert(intervals.begin(), intervals.end());

for(i = 0; i < n+d; i++) {
std::list<Interval> L;
isl.find_intervals(i, std::back_inserter(L));
for(std::list<Interval>::iterator it = L.begin(); it != L.end();
it++){

std::cout << *it;
}
std::cout << std::endl;

}

for(i = 0; i < n; i++) {
isl.remove(intervals[i]);

}
return 0;

}� �
File: examples/Interval_skip_list/intervals.cpp

60.2.2 Example with Faces of a Triangulated Terrain

The second example creates an interval skip list that allows to find all the faces of a terrain intersected by an
horizontal plane at a given height. The data points for the terrain are read from a file.

As model for the interval concept, we use a class that is a wrapper around a face handle of a triangulated terrain.
Lower and upper bound of the interval are smallest and largest z-coordinate of the face.
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#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/Projection_traits_xy_3.h>
#include <CGAL/Interval_skip_list.h>
#include <CGAL/Level_interval.h>
#include <iostream>
#include <fstream>

typedef CGAL::Exact_predicates_inexact_constructions_kernel EIK;
typedef EIK::Point_3 Point_3;
typedef CGAL::Projection_traits_xy_3<EIK> K;
typedef CGAL::Delaunay_triangulation_2<K> Delaunay;
typedef Delaunay::Face_handle Face_handle;
typedef Delaunay::Finite_faces_iterator

Finite_faces_iterator;
typedef CGAL::Level_interval<Face_handle> Interval;
typedef CGAL::Interval_skip_list<Interval>

Interval_skip_list;

int main()
{

std::ifstream fin("terrain.pts"); // elevation ranges from 0 to 100
Delaunay dt;

dt.insert(std::istream_iterator<Point_3>(fin),
std::istream_iterator<Point_3>());

Interval_skip_list isl;
for(Finite_faces_iterator fh = dt.finite_faces_begin();

fh != dt.finite_faces_end();
++fh){

isl.insert(Interval(fh));
}
std::list<Interval> level;
isl.find_intervals(50, std::back_inserter(level));
for(std::list<Interval>::iterator it = level.begin();

it != level.end();
++it){

std::cout << dt.triangle(it->face_handle()) << std::endl;
}
return 0;

}� �
File: examples/Interval_skip_list/isl_terrain.cpp
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Interval Skip List
Reference Manual
Andreas Fabri

This chapter presents the interval skip list introduced by Hanson [Han91], and derived from the skip list data
structure [Pug90].

The data structure stores intervals and allows to perform stabbing queries, that is to test whether a point is
covered by any of the intervals. It further allows to find all intervals that contain a point.

The interval skip list is, as far as its functionality is concerned, related to the Segment tree. Both allow to do
stabbing queries and both allow to find all intervals that contain a given point. The implementation of segment
trees in CGAL works in higher dimensions, whereas the interval skip list is limited to the 1D case. However, this
interval skip list implementation is fully dynamic, whereas the segment tree implementation in CGAL is static,
that is all intervals must be known in advance.

This package has one concept, namely for the interval with which the interval skip list class is parameterized.

60.3 Classified Reference Pages

Concepts

Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3551

Classes

CGAL::Interval skip list<Interval> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3549
CGAL::Interval skip list interval<Value> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3552
CGAL::Level interval<FaceHandle> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3553

60.4 Alphabetical List of Reference Pages

Interval skip list<Interval> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3549
Interval skip list interval<Value> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3552
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CGAL::Interval skip list<Interval>

Definition

The class Interval skip list<Interval> is a dynamic data structure that allows to find all members of a set of
intervals that overlap a point.

#include <CGAL/Interval skip list.h>

Types

typedef Interval::Value Value; the type of inf and sup of the interval.

Interval skip list<Interval>:: const iterator

An iterator over all intervals.

Creation

Interval skip list<Interval> isl; Default constructor.

template < class InputIterator >
Interval skip list<Interval> isl( InputIterator first, InputIterator last);

Constructor that inserts the iterator range [first, last) in the interval skip
list.
Precondition: The value type of first and last is Interval.

Operations

template < class InputIterator >
int isl.insert( InputIterator first, InputIterator last)

Inserts the iterator range [first, last) in the interval skip list, and returns
the number of inserted intervals.
Precondition: The value type of first and last is Interval.

void isl.insert( Interval i)

inserts interval i in the interval skip list.

bool isl.remove( Interval i)

removes interval i from the interval skip list. Returns true iff removal
was successful.
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bool isl.is contained( Value v)

Returns true iff there is an interval that contains v.

template < class OutputIterator >
OutputIterator isl.find intervals( Value v, OutputIterator out)

Writes the intervals i with i.inf() ≤ v ≤ i.sup to the output iterator out.
Precondition: The value type of out is Interval.

void isl.clear()

Removes all intervals from the interval skip list.

const iterator isl.begin() const

Returns an iterator over all intervals.

const iterator isl.end() const

Returns the past the end iterator.

I/O

ostream& ostream& os << isl

Inserts the interval skip list isl into the stream os.
Precondition: The output operator must be defined for Interval.

Implementation

The insertion and deletion of a segment in the interval skip list takes expected time O(log2 n), if the segment
endpoints are chosen from a continuous distribution. A stabbing query takes expected time O(logn), and finding
all intervals that contain a point takes expected time O(logn+ k), where k is the number of intervals.

The implementation is based on the code developed by Eric N. Hansen, which can be found at
http://www-pub.cise.ufl.edu/˜hanson/IS-lists/. Attention, this code has memory leaks.
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Interval

Definition

The concept Interval describes the requirements for the template argument Interval of a Interval skip list<
Interval>.

The concept does not specify, whether the interval is open or closed. It is up to the implementer of a model for
this concept to define that.

Creation

Interval in; default constructor.

Types

Interval:: Value The type of the lower and upper bound of the interval.

Access Functions

Value in.inf() const returns the lower bound.
Value in.sup() const returns the upper bound.

bool in.contains( Value v) const

returns true, iff in contains v.

bool in.contains interval( Value i, Value s) const

returns true, iff in contains (i,s).

bool in == I Equality test.

bool in != I Unequality test.

Has Models

CGAL::Interval skip list interval<Value>
CGAL::Face interval

See Also

Interval skip list
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CGAL::Interval skip list interval<Value>

Definition

The class Interval skip list interval<Value> represents intervals with lower and upper bound of type Value.
These intervals can be opened or closed at each endpoint.

#include <CGAL/Interval skip list interval.h>

Creation

Interval skip list interval<Value> i;

Default constructor.

Interval skip list interval<Value> i( Value i, Value s, bool ic = true, bool uc = true);

Constructs the interval with infimum i and supremum s. The arguments
ic and uc have value true, iff the interval is closed at the lower and upper
bound, respectively.

Operations

bool i.inf closed() const

returns true, iff the interval is closed at the lower bound.

bool i.sup closed() const

returns true, iff the interval is closed at the upper bound.

I/O

The output operator is defined for std::ostream.

ostream& ostream& os << Interval skip list interval<V> i

Inserts the interval i into the stream os.

Precondition: The output operator for Value is defined.

Is Model for the Concepts

Interval
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CGAL::Level interval<FaceHandle>

Definition

The class Level interval<FaceHandle> represents intervals for the minimum and maximum value of the z-
coordinate of a face of a triangulation.

#include <CGAL/Level interval.h>

Requirements

The value type of FaceHandle must be Face, which must have a nested type Vertex, which must have a nested
type Point, whose Kernel traits<Point>Kernel must have a nested type FT . These requirements are fulfilled, if
one uses a CGAL triangulation and a CGAL kernel.

Types

typedef FT Value; The type of the z-coordinate of points stored in vertices of faces.

Creation

Level interval<FaceHandle> i; Default constructor.

Level interval<FaceHandle> i( FaceHandle fh);

Constructs the interval with smallest and largest z coordinate of the
points stored in the vertices of the face fh points to.

Operations

FaceHandle i.face handle() returns the face handle.

I/O

ostream& ostream& os << i Inserts the interval i into the stream os.
Precondition: The output operator for *Face handle is defined.

Is Model for the Concepts

Interval
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dD Spatial Searching
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61.1 Introduction

The spatial searching package implements exact and approximate distance browsing by providing implementa-
tions of algorithms supporting

• both nearest and furthest neighbor searching

• both exact and approximate searching

• (approximate) range searching

• (approximate) k-nearest and k-furthest neighbor searching
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• (approximate) incremental nearest and incremental furthest neighbor searching

• query items representing points and spatial objects.

In these searching problems a set P of data points in d-dimensional space is given. The points can be represented
by Cartesian coordinates or homogeneous coordinates. These points are preprocessed into a tree data structure,
so that given any query item q the points of P can be browsed efficiently. The approximate spatial searching
package is designed for data sets that are small enough to store the search structure in main memory (in contrast
to approaches from databases that assume that the data reside in secondary storage).

61.1.1 Neighbor Searching

Spatial searching supports browsing through a collection of d-dimensional spatial objects stored in a spatial data
structure on the basis of their distances to a query object. The query object may be a point or an arbitrary spatial
object, e.g, a d-dimensional sphere. The objects in the spatial data structure are d-dimensional points.

Often the number of the neighbors to be computed is not know beforehand, e.g., because the number may
depend on some properties of the neighbors (for example when querying for the nearest city to Paris with
population greater than a million) or the distance to the query point. The conventional approach is k-nearest
neighbor searching that makes use of a k-nearest neighbor algorithm, where k is known prior to the invocation
of the algorithm. Hence, the number of nearest neighbors has to be guessed. If the guess is too large redundant
computations are performed. If the number is too small the computation has to be re-invoked for a larger number
of neighbors, thereby performing redundant computations. Therefore, Hjaltason and Samet [HS95] introduced
incremental nearest neighbor searching in the sense that having obtained the k nearest neighbors, the k + 1st

neighbor can be obtained without having to calculate the k + 1 nearest neighbor from scratch.

Spatial searching typically consists of a preprocessing phase and a searching phase. In the preprocessing phase
one builds a search structure and in the searching phase one makes the queries. In the preprocessing phase the
user builds a tree data structure storing the spatial data. In the searching phase the user invokes a searching
method to browse the spatial data.

With relatively minor modifications, nearest neighbor searching algorithms can be used to find the furthest
object from the query object. Therefore, furthest neighbor searching is also supported by the spatial searching
package.

The execution time for exact neighbor searching can be reduced by relaxing the requirement that the neighbors
should be computed exactly. If the distances of two objects to the query object are approximately the same,
instead of computing the nearest/furthest neighbor exactly, one of these objects may be returned as the approx-
imate nearest/furthest neighbor. I.e., given some non-negative constant ε the distance of an object returned as
an approximate k-nearest neighbor must not be larger than (1+ ε)r, where r denotes the distance to the real kth

nearest neighbor. Similar the distance of an approximate k-furthest neighbor must not be smaller than r/(1+ε).
Obviously, for ε = 0 we get the exact result, and the larger ε is, the less exact the result.

Neighbor searching is implemented by the following four classes.

The class CGAL::Orthogonal k neighbor search<Traits, OrthogonalDistance, Splitter, SpatialTree> imple-
ments the standard search strategy for orthogonal distances like the weighted Minkowski distance. It requires
the use of extended nodes in the spatial tree and supports only k neighbor searching for point queries.

The class CGAL::K neighbor search<Traits, GeneralDistance, Splitter, SpatialTree> implements the standard
search strategy for general distances like the Manhattan distance for iso-rectangles. It does not require the use
of extended nodes in the spatial tree and supports only k neighbor searching for queries defined by points or
spatial objects.
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The class Orthogonal incremental neighbor search<Traits, GeneralDistance, Splitter, SpatialTree> imple-
ments the incremental search strategy for general distances like the weighted Minkowski distance. It requires
the use of extended nodes in the spatial tree and supports incremental neighbor searching and distance browsing
for point queries.

The class CGAL::Incremental neighbor search<Traits, GeneralDistance, Splitter, SpatialTree> implements the
incremental search strategy for general distances like the Manhattan distance for iso-rectangles. It does not re-
quire the use of extended nodes in the spatial tree and supports incremental neighbor searching and distance
browsing for queries defined by points or spatial objects.

61.1.2 Range Searching

Exact range searching and approximate range searching is supported using exact or fuzzy d-dimensional objects
enclosing a region. The fuzziness of the query object is specified by a parameter ε denoting a maximal allowed
distance to the boundary of a query object. If the distance to the boundary is at least ε, points inside the object
are always reported and points outside the object are never reported. Points within distance ε to the boundary
may be or may be not reported. For exact range searching the fuzziness parameter ε is set to zero.

The class Kd tree implements range searching in the method search, which is a template method with an output
iterator and a model of the concept FuzzyQueryItem as CGAL::Fuzzy iso box d or CGAL::Fuzzy sphere d.
For range searching of large data sets the user may set the parameter bucket size used in building the k-d tree to
a large value (e.g. 100), because in general the query time will be less then using the default value.

61.2 Splitting Rules

Instead of using the default splitting rule Sliding midpoint described below, a user may, depending upon the
data, select one from the following splitting rules, which determine how a separating hyperplane is computed:

Midpoint of rectangle This splitting rule cuts a rectangle through its midpoint orthogonal to the longest side.

Midpoint of max spread This splitting rule cuts a rectangle through (Mind + Maxd)/2 orthogonal to the di-
mension with the maximum point spread [Mind,Maxd].

Sliding midpoint This is a modification of the midpoint of rectangle splitting rule. It first attempts to perform
a midpoint of rectangle split as described above. If data points lie on both sides of the separating plane
the sliding midpoint rule computes the same separator as the midpoint of rectangle rule. If the data points
lie only on one side it avoids this by sliding the separator, computed by the midpoint of rectangle rule, to
the nearest data point.

Median of rectangle The splitting dimension is the dimension of the longest side of the rectangle. The splitting
value is defined by the median of the coordinates of the data points along this dimension.

Median of max spread The splitting dimension is the dimension of the longest side of the rectangle. The
splitting value is defined by the median of the coordinates of the data points along this dimension.

Fair This splitting rule is a compromise between the median of rectangle splitting rule and the midpoint of
rectangle splitting rule. This splitting rule maintains an upper bound on the maximal allowed ratio of the
longest and shortest side of a rectangle (the value of this upper bound is set in the constructor of the fair
splitting rule). Among the splits that satisfy this bound, it selects the one in which the points have the
largest spread. It then splits the points in the most even manner possible, subject to maintaining the bound
on the ratio of the resulting rectangles.
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Sliding fair This splitting rule is a compromise between the fair splitting rule and the sliding midpoint rule.
Sliding fair-split is based on the theory that there are two types of splits that are good: balanced splits that
produce fat rectangles, and unbalanced splits provided the rectangle with fewer points is fat.

Also, this splitting rule maintains an upper bound on the maximal allowed ratio of the longest and shortest
side of a rectangle (the value of this upper bound is set in the constructor of the fair splitting rule). Among
the splits that satisfy this bound, it selects the one one in which the points have the largest spread. It then
considers the most extreme cuts that would be allowed by the aspect ratio bound. This is done by dividing
the longest side of the rectangle by the aspect ratio bound. If the median cut lies between these extreme
cuts, then we use the median cut. If not, then consider the extreme cut that is closer to the median. If all
the points lie to one side of this cut, then we slide the cut until it hits the first point. This may violate the
aspect ratio bound, but will never generate empty cells.

61.3 Example Programs

We give six examples. The first example illustrates k nearest neighbor searching, and the second example
incremental neighbor searching. The third is an example of approximate furthest neighbor searching using a d-
dimensional iso-rectangle as an query object. Approximate range searching is illustrated by the fourth example.
The fifth example illustrates k neighbor searching for a user defined point class. The last example shows how to
choose another splitting rule in the k-d tree that is used as search tree.
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61.3.1 Example for K Neighbor Searching

The first example illustrates k neighbor searching with an Euclidean distance and 2-dimensional points. The
generated random data points are inserted in a search tree. We then initialize the k neighbor search object with
the origin as query. Finally, we obtain the result of the computation in the form of an iterator range. The value of
the iterator is a pair of a point and its square distance to the query point. We use square distances, or transformed
distances for other distance classes, as they are computationally cheaper.� �
#include <CGAL/Simple_cartesian.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/Orthogonal_k_neighbor_search.h>
#include <CGAL/Search_traits_2.h>
#include <list>
#include <cmath>

typedef CGAL::Simple_cartesian<double> K;
typedef K::Point_2 Point_d;
typedef CGAL::Search_traits_2<K> TreeTraits;
typedef CGAL::Orthogonal_k_neighbor_search<TreeTraits> Neighbor_search;
typedef Neighbor_search::Tree Tree;

int main() {
const unsigned int N = 1;

std::list<Point_d> points;
points.push_back(Point_d(0,0));

Tree tree(points.begin(), points.end());

Point_d query(0,0);

// Initialize the search structure, and search all N points

Neighbor_search search(tree, query, N);

// report the N nearest neighbors and their distance
// This should sort all N points by increasing distance from origin
for(Neighbor_search::iterator it = search.begin(); it != search.end();
++it){
std::cout << it->first << " "<< std::sqrt(it->second) << std::endl;

}

return 0;
}� �
File: examples/Spatial_searching/nearest_neighbor_searching.cpp
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61.3.2 Example for Incremental Searching

This example program illustrates incremental searching for the closest point with a positive first coordinate. We
can use the orthogonal incremental neighbor search class, as the query is also a point and as the distance is the
Euclidean distance.

As for the k neighbor search, we first initialize the search tree with the data. We then create the search object,
and finally obtain the iterator with the begin() method. Note that the iterator is of the input iterator category,
that is one can make only one pass over the data.� �
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Orthogonal_incremental_neighbor_search.h>
#include <CGAL/Search_traits_2.h>

typedef CGAL::Simple_cartesian<double> K;
typedef K::Point_2 Point_d;
typedef CGAL::Search_traits_2<K> TreeTraits;
typedef CGAL::Orthogonal_incremental_neighbor_search<TreeTraits>

NN_incremental_search;
typedef NN_incremental_search::iterator NN_iterator;
typedef NN_incremental_search::Tree Tree;

// A functor that returns true, iff the x-coordinate of a dD point is not
positive

struct X_not_positive {
bool operator()(const NN_iterator& it) { return ((*it).first)[0]<0; }

};

// An iterator that only enumerates dD points with positive x-coordinate
typedef CGAL::Filter_iterator<NN_iterator, X_not_positive>

NN_positive_x_iterator;

int main() {

Tree tree;
tree.insert(Point_d(0,0));
tree.insert(Point_d(1,1));
tree.insert(Point_d(0,1));
tree.insert(Point_d(10,110));
tree.insert(Point_d(45,0));
tree.insert(Point_d(0,2340));
tree.insert(Point_d(0,30));

Point_d query(0,0);

NN_incremental_search NN(tree, query);
NN_positive_x_iterator it(NN.end(), X_not_positive(), NN.begin()),
end(NN.end(), X_not_positive());

std::cout << "The first 5 nearest neighbours with positive x-coord
are: " << std::endl;

for (int j=0; (j < 5)&&(it!=end); ++j,++it)
std::cout << (*it).first << " at squared distance = " <<
(*it).second << std::endl;
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return 0;
}� �
File: examples/Spatial_searching/distance_browsing.cpp
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61.3.3 Example for General Neighbor Searching

This example program illustrates approximate nearest and furthest neighbor searching using 4-dimensional
Cartesian coordinates. Five approximate nearest neighbors of the query rectangle [0.1,0.2]4 are computed.
Because the query object is a rectangle we cannot use the Orthogonal neighbor search. As in the previous
examples we first initialize a search tree, create the search object with the query, and obtain the result of the
search as iterator range.� �
#include <CGAL/Cartesian_d.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/Manhattan_distance_iso_box_point.h>
#include <CGAL/K_neighbor_search.h>
#include <CGAL/Search_traits_2.h>

typedef CGAL::Cartesian_d<double> K;
typedef K::Point_d Point_d;
typedef CGAL::Random_points_in_square_2<Point_d> Random_points_iterator;
typedef K::Iso_box_d Iso_box_d;
typedef K TreeTraits;
typedef CGAL::Manhattan_distance_iso_box_point<TreeTraits> Distance;
typedef CGAL::K_neighbor_search<TreeTraits, Distance> Neighbor_search;
typedef Neighbor_search::Tree Tree;

int main() {
const int N = 1000;
const unsigned int K = 10;

Tree tree;
Random_points_iterator rpg;
for(int i = 0; i < N; i++){

tree.insert(*rpg++);
}
Point_d pp(0.1,0.1);
Point_d qq(0.2,0.2);
Iso_box_d query(pp,qq);

Distance tr_dist;
Neighbor_search N1(tree, query, K, 0.0, false); // eps=10.0,
nearest=false

std::cout << "For query rectange = [0.1,0.2]ˆ2 " << std::endl
<< "The " << K << " approximate furthest neighbors are: " <<

std::endl;
for (Neighbor_search::iterator it = N1.begin();it != N1.end();it++) {

std::cout << " Point " << it->first << " at distance = " <<
tr_dist.inverse_of_transformed_distance(it->second) << std::endl;

}
return 0;

}� �
File: examples/Spatial_searching/general_neighbor_searching.cpp
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61.3.4 Example for a Range Query

This example program illustrates approximate range querying for 4-dimensional fuzzy iso-rectangles and
spheres using homogeneous coordinates. The range queries are member functions of the k-d tree class.� �
#include <CGAL/Cartesian_d.h>
#include <CGAL/point_generators_d.h>
#include <CGAL/Kd_tree.h>
#include <CGAL/Fuzzy_sphere.h>
#include <CGAL/Fuzzy_iso_box.h>
#include <CGAL/Search_traits_d.h>

typedef CGAL::Cartesian_d<double> K;
typedef K::Point_d Point_d;
typedef CGAL::Search_traits_d<K> Traits;
typedef CGAL::Random_points_in_cube_d<Point_d>

Random_points_iterator;
typedef CGAL::Counting_iterator<Random_points_iterator>

N_Random_points_iterator;
typedef CGAL::Kd_tree<Traits> Tree;
typedef CGAL::Fuzzy_sphere<Traits> Fuzzy_sphere;
typedef CGAL::Fuzzy_iso_box<Traits> Fuzzy_iso_box;

int main() {
const int D = 4;
const int N = 1000;
// generator for random data points in the square ( (-1000,-1000),
(1000,1000) )

Random_points_iterator rpit(4, 1000.0);

// Insert N points in the tree
Tree tree(N_Random_points_iterator(rpit,0),

N_Random_points_iterator(rpit,N));

// define range query objects
double pcoord[D] = { 300, 300, 300, 300 };
double qcoord[D] = { 900.0, 900.0, 900.0, 900.0 };
Point_d p(D, pcoord, pcoord+D);
Point_d q(D, qcoord, qcoord+D);
Fuzzy_sphere fs(p, 700.0, 100.0);
Fuzzy_iso_box fib(p, q, 100.0);

std::cout << "points approximately in fuzzy range query" << std::endl;
std::cout << "with center (300.0, 300.0, 300.0, 300.0)" << std::endl;
std::cout << "and fuzzy radius <200.0,400.0> are:" << std::endl;
tree.search(std::ostream_iterator<Point_d>(std::cout, "\n"), fs);

std::cout << "points approximately in fuzzy range query ";
std::cout << "[<200,4000>,<800,1000>]]ˆ4 are:" << std::endl;

tree.search(std::ostream_iterator<Point_d>(std::cout, "\n"), fib);
return 0;

}� �
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File: examples/Spatial_searching/fuzzy_range_query.cpp
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61.3.5 Example for User Defined Point and Distance Class

The neighbor searching works with all CGAL kernels, as well as with user defined points and distance classes.
In this example we assume that the user provides the following 3-dimensional points class.� �
struct Point {

double vec[3];

Point() { vec[0]= vec[1] = vec[2] = 0; }
Point (double x, double y, double z) { vec[0]=x; vec[1]=y; vec[2]=z; }

double x() const { return vec[ 0 ]; }
double y() const { return vec[ 1 ]; }
double z() const { return vec[ 2 ]; }

double& x() { return vec[ 0 ]; }
double& y() { return vec[ 1 ]; }
double& z() { return vec[ 2 ]; }

bool operator==(const Point& p) const
{

return (x() == p.x()) && (y() == p.y()) && (z() == p.z()) ;
}

bool operator!=(const Point& p) const { return ! (*this == p); }
}; //end of class

namespace CGAL {

template <>
struct Kernel_traits<Point> {

struct Kernel {
typedef double FT;
typedef double RT;

};
};

}

struct Construct_coord_iterator {
typedef const double* result_type;
const double* operator()(const Point& p) const
{ return static_cast<const double*>(p.vec); }

const double* operator()(const Point& p, int) const
{ return static_cast<const double*>(p.vec+3); }

};� �
File: examples/Spatial_searching/Point.h
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We have put the glue layer in this file as well, that is a class that allows to iterate over the Cartesian coordinates
of the point, and a class to construct such an iterator for a point. We next need a distance class
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� �
struct Distance {

typedef Point Query_item;
typedef double FT;

double transformed_distance(const Point& p1, const Point& p2) const {
double distx= p1.x()-p2.x();
double disty= p1.y()-p2.y();
double distz= p1.z()-p2.z();
return distx*distx+disty*disty+distz*distz;

}

template <class TreeTraits>
double min_distance_to_rectangle(const Point& p,

const
CGAL::Kd_tree_rectangle<TreeTraits>& b) const {
double distance(0.0), h = p.x();
if (h < b.min_coord(0)) distance +=
(b.min_coord(0)-h)*(b.min_coord(0)-h);
if (h > b.max_coord(0)) distance +=
(h-b.max_coord(0))*(h-b.max_coord(0));
h=p.y();
if (h < b.min_coord(1)) distance +=
(b.min_coord(1)-h)*(b.min_coord(1)-h);
if (h > b.max_coord(1)) distance +=
(h-b.max_coord(1))*(h-b.min_coord(1));
h=p.z();
if (h < b.min_coord(2)) distance +=
(b.min_coord(2)-h)*(b.min_coord(2)-h);
if (h > b.max_coord(2)) distance +=
(h-b.max_coord(2))*(h-b.max_coord(2));
return distance;

}

template <class TreeTraits>
double max_distance_to_rectangle(const Point& p,

const
CGAL::Kd_tree_rectangle<TreeTraits>& b) const {
double h = p.x();

double d0 = (h >= (b.min_coord(0)+b.max_coord(0))/2.0) ?
(h-b.min_coord(0))*(h-b.min_coord(0)) :

(b.max_coord(0)-h)*(b.max_coord(0)-h);

h=p.y();
double d1 = (h >= (b.min_coord(1)+b.max_coord(1))/2.0) ?

(h-b.min_coord(1))*(h-b.min_coord(1)) :
(b.max_coord(1)-h)*(b.max_coord(1)-h);
h=p.z();
double d2 = (h >= (b.min_coord(2)+b.max_coord(2))/2.0) ?

(h-b.min_coord(2))*(h-b.min_coord(2)) :
(b.max_coord(2)-h)*(b.max_coord(2)-h);
return d0 + d1 + d2;

}
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double new_distance(double& dist, double old_off, double new_off,
int /* cutting_dimension */) const {

return dist + new_off*new_off - old_off*old_off;
}

double transformed_distance(double d) const { return d*d; }

double inverse_of_transformed_distance(double d) { return std::sqrt(d);
}

}; // end of struct Distance� �
File: examples/Spatial_searching/Distance.h
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We are ready to put the pieces together. The class Search traits<..> which you see in the next file is then a mere
wrapper for all these types. The searching itself works exactly as for CGAL kernels.� �
#include <CGAL/basic.h>
#include <CGAL/Search_traits.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/Orthogonal_k_neighbor_search.h>
#include "Point.h" // defines types Point, Construct_coord_iterator
#include "Distance.h"

typedef CGAL::Random_points_in_cube_3<Point> Random_points_iterator;
typedef CGAL::Counting_iterator<Random_points_iterator>

N_Random_points_iterator;
typedef CGAL::Search_traits<double, Point, const double*,

Construct_coord_iterator> Traits;
typedef CGAL::Orthogonal_k_neighbor_search<Traits, Distance>

K_neighbor_search;
typedef K_neighbor_search::Tree Tree;

int main() {
const int N = 1000;
const unsigned int K = 5;
// generator for random data points in the cube ( (-1,-1,-1), (1,1,1) )
Random_points_iterator rpit( 1.0);

// Insert number_of_data_points in the tree
Tree tree(N_Random_points_iterator(rpit,0),

N_Random_points_iterator(N));

Point query(0.0, 0.0, 0.0);
Distance tr_dist;

// search K nearest neighbours
K_neighbor_search search(tree, query, K);
for(K_neighbor_search::iterator it = search.begin(); it !=
search.end(); it++){
std::cout << " d(q, nearest neighbor)= "

<< tr_dist.inverse_of_transformed_distance(it->second) <<
std::endl;

}
// search K furthest neighbour searching, with eps=0,
search_nearest=false

K_neighbor_search search2(tree, query, K, 0.0, false);

for(K_neighbor_search::iterator it = search2.begin(); it !=
search2.end(); it++){
std::cout << " d(q, furthest neighbor)= "

<< tr_dist.inverse_of_transformed_distance(it->second) <<
std::endl;

}
return 0;

}� �
File: examples/Spatial_searching/user_defined_point_and_distance.cpp
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61.3.6 Examples for Using an Arbitrary Point Type with Point Property Maps

The following three example programs illustrate how to use the classes Search traits adapter<
Key,PointPropertyMap,BaseTraits> and Distance for point adapter<Key,PointPropertyMap,Base distance>
to store in the kd-tree objects of an arbitrary key type. Points are accessed through a point property map.
This is really convenient to associate information to a point or to reduce the size of the search structure.

Using a Point and an Integer as Key Type

In this example program, the search tree stores tuples of point and integer. The value type of the iterator of the
neighbor searching algorithm is this tuple type.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/basic.h>
#include <CGAL/Search_traits_3.h>
#include <CGAL/Search_traits_adapter.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/Orthogonal_k_neighbor_search.h>
#include <boost/iterator/zip_iterator.hpp>
#include <utility>

typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point_3;
typedef boost::tuple<Point_3,int> Point_and_int;

//definition of the property map
struct My_point_property_map{

typedef Point_3 value_type;
typedef const value_type& reference;
typedef const Point_and_int& key_type;
typedef boost::readable_property_map_tag category;

};

//get function for the property map
My_point_property_map::reference
get(My_point_property_map,My_point_property_map::key_type p)
{return boost::get<0>(p);}

typedef CGAL::Random_points_in_cube_3<Point_3>
Random_points_iterator;

typedef CGAL::Search_traits_3<Kernel>
Traits_base;

typedef
CGAL::Search_traits_adapter<Point_and_int,My_point_property_map,Traits_base>

Traits;

typedef CGAL::Orthogonal_k_neighbor_search<Traits>
K_neighbor_search;

typedef K_neighbor_search::Tree
Tree;
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typedef K_neighbor_search::Distance
Distance;

int main() {
const unsigned int K = 5;
// generator for random data points in the cube ( (-1,-1,-1), (1,1,1) )
Random_points_iterator rpit( 1.0);
std::vector<Point_3> points;
std::vector<int> indices;

points.push_back(Point_3(*rpit++));
points.push_back(Point_3(*rpit++));
points.push_back(Point_3(*rpit++));
points.push_back(Point_3(*rpit++));
points.push_back(Point_3(*rpit++));
points.push_back(Point_3(*rpit++));
points.push_back(Point_3(*rpit++));

indices.push_back(0);
indices.push_back(1);
indices.push_back(2);
indices.push_back(3);
indices.push_back(4);
indices.push_back(5);
indices.push_back(6);

// Insert number_of_data_points in the tree
Tree tree(

boost::make_zip_iterator(boost::make_tuple(
points.begin(),indices.begin() )),
boost::make_zip_iterator(boost::make_tuple(
points.end(),indices.end() ) )

);
Point_3 query(0.0, 0.0, 0.0);
Distance tr_dist;

// search K nearest neighbours
K_neighbor_search search(tree, query, K);
for(K_neighbor_search::iterator it = search.begin(); it !=
search.end(); it++){
std::cout << " d(q, nearest neighbor)= "

<< tr_dist.inverse_of_transformed_distance(it->second) <<
" " << boost::get<0>(it->first)<< " " << boost::get<1>(it->first) <<
std::endl;

}
return 0;

}� �

File: examples/Spatial_searching/searching_with_point_with_info.cpp
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Using an Integer as Key Type

In this example program, the search tree stores only integers that refer to points stored within a user vector. The
point type of the search traits is std::size t.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/basic.h>
#include <CGAL/Search_traits_3.h>
#include <CGAL/Search_traits_adapter.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/Orthogonal_k_neighbor_search.h>
#include <boost/iterator/counting_iterator.hpp>
#include <utility>

typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point_3;

typedef std::size_t Point;

//definition of the property map and get
//function as friend function to have access to
//private member
class My_point_property_map{

const std::vector<Point_3>& points;
public:

typedef Point_3 value_type;
typedef const value_type& reference;
typedef Point key_type;
typedef boost::readable_property_map_tag category;

My_point_property_map(const std::vector<Point_3>& pts):points(pts){}

friend reference get(const My_point_property_map& ppmap,key_type i)
{return ppmap.points[i];}

};

typedef CGAL::Random_points_in_cube_3<Point_3>
Random_points_iterator;

typedef CGAL::Search_traits_3<Kernel>
Traits_base;

typedef
CGAL::Search_traits_adapter<Point,My_point_property_map,Traits_base>

Traits;

typedef CGAL::Orthogonal_k_neighbor_search<Traits>
K_neighbor_search;

typedef K_neighbor_search::Tree
Tree;

typedef Tree::Splitter
Splitter;

typedef K_neighbor_search::Distance
Distance;

3572



int main() {
const unsigned int K = 5;
// generator for random data points in the cube ( (-1,-1,-1), (1,1,1) )
Random_points_iterator rpit( 1.0);
std::vector<Point_3> points;

points.push_back(Point_3(*rpit++));
points.push_back(Point_3(*rpit++));
points.push_back(Point_3(*rpit++));
points.push_back(Point_3(*rpit++));
points.push_back(Point_3(*rpit++));
points.push_back(Point_3(*rpit++));
points.push_back(Point_3(*rpit++));

My_point_property_map ppmap(points);

// Insert number_of_data_points in the tree
Tree tree(

boost::counting_iterator<std::size_t>(0),
boost::counting_iterator<std::size_t>(points.size()),
Splitter(),
Traits(ppmap)

);
Point_3 query(0.0, 0.0, 0.0);
Distance tr_dist(ppmap);

// search K nearest neighbours
K_neighbor_search search(tree, query, K,0,true,tr_dist);
for(K_neighbor_search::iterator it = search.begin(); it !=
search.end(); it++){
std::cout << " d(q, nearest neighbor)= "

<< tr_dist.inverse_of_transformed_distance(it->second) <<
" " << points[it->first] << " " << it->first << std::endl;

}
return 0;

}� �
File: examples/Spatial_searching/searching_with_point_with_info_inplace.cpp

Using a Model of L-value Property Map Concept

This example programs uses a BOOST LvaluePropertyMap. Points are read from a std::map. The search tree
stores integers of type std::size t. The value type of the iterator of the neighbor searching algorithm is std::size t.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/basic.h>
#include <CGAL/Search_traits_3.h>
#include <CGAL/Search_traits_adapter.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/Orthogonal_k_neighbor_search.h>
#include <boost/iterator/counting_iterator.hpp>
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#include <utility>

typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point_3;

typedef std::size_t Point;

typedef boost::const_associative_property_map<std::map<Point,Point_3> >
My_point_property_map;

typedef CGAL::Random_points_in_cube_3<Point_3>
Random_points_iterator;

typedef CGAL::Search_traits_3<Kernel>
Traits_base;

typedef
CGAL::Search_traits_adapter<Point,My_point_property_map,Traits_base>

Traits;

typedef CGAL::Orthogonal_k_neighbor_search<Traits>
K_neighbor_search;

typedef K_neighbor_search::Tree
Tree;

typedef Tree::Splitter
Splitter;

typedef K_neighbor_search::Distance
Distance;

int main() {
const unsigned int K = 5;
// generator for random data points in the cube ( (-1,-1,-1), (1,1,1) )
Random_points_iterator rpit( 1.0);
std::map<Point,Point_3> points;

points[0]=Point_3(*rpit++);
points[1]=Point_3(*rpit++);
points[2]=Point_3(*rpit++);
points[3]=Point_3(*rpit++);
points[4]=Point_3(*rpit++);
points[5]=Point_3(*rpit++);
points[6]=Point_3(*rpit++);

My_point_property_map ppmap(points);

// Insert number_of_data_points in the tree
Tree tree(

boost::counting_iterator<std::size_t>(0),
boost::counting_iterator<std::size_t>(points.size()),
Splitter(),
Traits(ppmap)

);
Point_3 query(0.0, 0.0, 0.0);
Distance tr_dist(ppmap);
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// search K nearest neighbours
K_neighbor_search search(tree, query, K,0,true,tr_dist);
for(K_neighbor_search::iterator it = search.begin(); it !=
search.end(); it++){
std::cout << " d(q, nearest neighbor)= "

<< tr_dist.inverse_of_transformed_distance(it->second) <<
" " << points[it->first] << " " << it->first << std::endl;

}
return 0;

}� �
File: examples/Spatial_searching/searching_with_point_with_info_pmap.cpp
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61.3.7 Example for Selecting a Splitting Rule and Setting the Bucket Size

This example program illustrates selecting a splitting rule and setting the maximal allowed bucket size. The
only differences with the first example are the declaration of the Fair splitting rule, needed to set the maximal
allowed bucket size.� �
#include <CGAL/Simple_cartesian.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/Search_traits_2.h>
#include <CGAL/Orthogonal_k_neighbor_search.h>
#include <cmath>

typedef CGAL::Simple_cartesian<double> R;
typedef R::Point_2 Point_d;
typedef CGAL::Random_points_in_square_2<Point_d> Random_points_iterator;
typedef CGAL::Counting_iterator<Random_points_iterator>

N_Random_points_iterator;
typedef CGAL::Search_traits_2<R> Traits;
typedef CGAL::Euclidean_distance<Traits> Distance;
typedef CGAL::Fair<Traits> Fair;
typedef CGAL::Orthogonal_k_neighbor_search<Traits,Distance,Fair>

Neighbor_search;
typedef Neighbor_search::Tree Tree;

int main() {
const unsigned int N = 1000;
// generator for random data points in the square ( (-1,-1), (1,1) )
Random_points_iterator rpit( 1.0);

Fair fair(5); // bucket size=5
// Insert number_of_data_points in the tree
Tree tree(N_Random_points_iterator(rpit,0),

N_Random_points_iterator(N),
fair);

Point_d query(0,0);

// Initialize the search structure, and search all N points
Neighbor_search search(tree, query, N);

// report the N nearest neighbors and their distance
// This should sort all N points by increasing distance from origin
for(Neighbor_search::iterator it = search.begin(); it != search.end();
++it){
std::cout << it->first << " "<< std::sqrt(it->second) << std::endl;

}
return 0;

}� �
File: examples/Spatial_searching/using_fair_splitting_rule.cpp
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61.4 Software Design

61.4.1 The k-d tree

Bentley [Ben75] introduced the k-d tree as a generalization of the binary search tree in higher dimensions. k-d
trees hierarchically decompose space into a relatively small number of rectangles such that no rectangle contains
too many input objects. For our purposes, a rectangle in real d dimensional space, Rd , is the product of d closed
intervals on the coordinate axes. k-d trees are obtained by partitioning point sets in Rd using (d-1)-dimensional
hyperplanes. Each node in the tree is split into two children by one such separating hyperplane. Several splitting
rules (see Section 61.2 can be used to compute a separating (d-1)-dimensional hyperplane.

Each internal node of the k-d tree is associated with a rectangle and a hyperplane orthogonal to one of the
coordinate axis, which splits the rectangle into two parts. Therefore, such a hyperplane, defined by a splitting
dimension and a splitting value, is called a separator. These two parts are then associated with the two child
nodes in the tree. The process of partitioning space continues until the number of data points in the rectangle
falls below some given threshold. The rectangles associated with the leaf nodes are called buckets, and they
define a subdivision of the space into rectangles. Data points are only stored in the leaf nodes of the tree, not in
the internal nodes.

Friedmann, Bentley and Finkel [FBF77] described the standard search algorithm to find the kth nearest neighbor
by searching a k-d tree recursively.

When encountering a node of the tree, the algorithm first visits the child that is closest to the query point.
On return, if the rectangle containing the other child lies within 1/ (1+ε) times the distance to the kth nearest
neighbors so far, then the other child is visited recursively. Priority search [AM93b] visits the nodes in increasing
order of distance from the queue with help of a priority queue. The search stops when the distance of the query
point to the nearest nodes exceeds the distance to the nearest point found with a factor 1/ (1+ε). Priority search
supports next neighbor search, standard search does not.

In order to speed-up the internal distance computations in nearest neighbor searching in high dimensional
space, the approximate searching package supports orthogonal distance computation. Orthogonal distance
computation implements the efficient incremental distance computation technique introduced by Arya and
Mount [AM93a]. This technique works only for neighbor queries with query items represented as points and
with a quadratic form distance, defined by dA(x,y) = (x− y)A(x− y)T , where the matrix A is positive def-
inite, i.e. dA(x,y) ≥ 0. An important class of quadratic form distances are weighted Minkowski distances.
Given a parameter p > 0 and parameters wi ≥ 0,0 < i ≤ d, the weighted Minkowski distance is defined by
lp(w)(r,q) = (Σi=d

i=1 wi(ri−qi)p)1/p for 0 < p < ∞ and defined by l∞(w)(r,q) = max{wi|ri− qi| | 1 ≤ i ≤ d}.
The Manhattan distance (p = 1, wi = 1) and the Euclidean distance (p = 2, wi = 1) are examples of a weighted
Minkowski metric.

To speed up distance computations also transformed distances are used instead of the distance itself. For instance
for the Euclidean distance, to avoid the expensive computation of square roots, squared distances are used
instead of the Euclidean distance itself.
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dD Spatial Searching
Reference Manual
Hans Tangelder and Andreas Fabri

This package provides data structures and algorithms for exact and approximate distance browsing, supporting

• both nearest and furthest neighbor searching,

• both exact and approximate searching,

• (approximate) range searching,

• (approximate) k-nearest and k-furthest neighbor searching,

• (approximate) incremental nearest and incremental furthest neighbor searching,

• query items representing points and spatial objects.

The spatial searching package consists of the following concepts and classes that are described in the reference
pages.

61.5 Classified Reference Pages

Search Classes

CGAL::K neighbor search<Traits, GeneralDistance, Splitter, SpatialTree> . . . . . . . . . . . . . . . . . . . . . . .page 3595
CGAL::Incremental neighbor search<Traits, GeneralDistance, Splitter, SpatialTree> . . . . . . . . . . . . . page 3593
CGAL::Orthogonal incremental neighbor search<Traits, OrthogonalDistance, Splitter, SpatialTree>
page 3613
CGAL::Orthogonal k neighbor search<Traits, OrthogonalDistance, Splitter, SpatialTree> . . . . . . . . page 3615
CGAL::Kd tree<Traits, Splitter, UseExtendedNode> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3598

Range Query Item Classes

CGAL::Fuzzy iso box<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3588
CGAL::Fuzzy sphere<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3590
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Search Traits Classes

CGAL::Search traits 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3625
CGAL::Search traits 3<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3627
CGAL::Search traits d<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3629
CGAL::Search traits<NT,Point,CartesianIterator,ConstructCartesianIterator,ConstructMinVertex,ConstructMaxVertex>
page 3631
CGAL::Search traits adapter<Key,PointPropertyMap,BaseTraits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3633

Distance Classes

CGAL::Euclidean distance<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3582
CGAL::Euclidean distance sphere point<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3584
CGAL::Manhattan distance iso box point<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3605
CGAL::Weighted Minkowski distance<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3644
CGAL::Distance for point adapter<Key,PointPropertyMap,Base distance> . . . . . . . . . . . . . . . . . . . . . page 3635

Splitter Classes

CGAL::Sliding midpoint<Traits, SpatialSeparator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3639
CGAL::Sliding fair<Traits, SpatialSeparator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3637
CGAL::Fair<Traits, SpatialSeparator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3586
CGAL::Median of max spread<Traits, SpatialSeparator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3607
CGAL::Median of rectangle<Traits, SpatialSeparator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3608
CGAL::Midpoint of max spread<Traits, SpatialSeparator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3609
CGAL::Midpoint of rectangle<Traits, SpatialSeparator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3610

Advanced Classes

CGAL::Kd tree node<Traits, Splitter, UseExtendedNode> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3601
CGAL::Kd tree rectangle<FT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3603
CGAL::Plane separator<FT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3617
CGAL::Point container<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3619

Concepts

FuzzyQueryItem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3587
GeneralDistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3592
OrthogonalDistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3611
SearchTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3623
RangeSearchTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3624
SpatialSeparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3640
SpatialTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3641
Splitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3643

61.6 Alphabetical List of Reference Pages

Distance for point adapter<Key,PointPropertyMap,Base distance> . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3635
Euclidean distance<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3582
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Euclidean distance sphere point<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3584
Fair<Traits, SpatialSeparator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3586
FuzzyQueryItem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3587
Fuzzy iso box<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3588
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GeneralDistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3592
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CGAL::Euclidean distance<Traits>

Definition

The class Euclidean distance<Traits> provides an implementation of the concept OrthogonalDistance, with the
Euclidean distance (l2 metric). To optimize distance computations squared distances are used.

#include <CGAL/Euclidean distance.h>

Parameters

Expects for the first template argument a model of the concept SearchTraits, for example CGAL::Search traits
2<CGAL::Cartesian<double> >.

Is Model for the Concepts

OrthogonalDistance

Types

Traits::FT FT; Number type.

Traits::Point d Point d; Point type.

Point d Query item; Query item type.

Creation

Euclidean distance<Traits> ed( Traits t=Traits());

Default constructor.

Operations

FT ed.transformed distance( Query item q, Point d p) const

Returns the squared Euclidean distance between q and p.

FT ed.min distance to rectangle( Query item q, Kd tree rectangle<FT> r) const

Returns the squared Euclidean distance between q and the
point on the boundary of r closest to q.
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FT ed.max distance to rectangle( Query item q, Kd tree rectangle<FT> r;) const

Returns the squared Euclidean distance, where d denotes the
distance between q and the point on the boundary of r farthest
to q.

FT ed.new distance( FT dist, FT old off, FT new off, int cutting dimension) const

Updates the squared dist incrementally and returns the up-
dated squared distance.

FT ed.transformed distance( FT d) const

Returns d2.

FT ed.inverse of transformed distance( FT d) const

Returns d1/2.

See Also

OrthogonalDistance
CGAL::Weighted Minkowski distance<Traits>
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CGAL::Euclidean distance sphere point<Traits>

Definition

The class Euclidean distance sphere point<Traits> provides an implementation of the GeneralDistance con-
cept for the Euclidean distance (l2 metric) between a d-dimensional sphere and a point, and the Euclidean
distance between a d-dimensional sphere and a d-dimensional iso-rectangle defined as a k-d tree rectangle.

#include <CGAL/Euclidean distance sphere point.h>

Parameters

Expects for the template argument a model of the concept SearchTraits, for example CGAL::Cartesian d<
double>.

Is Model for the Concepts

GeneralDistance

Types

Traits::FT FT; Number type.

Traits::Point d Point d; Point type.

Traits::Sphere d Sphere d; Query item type.

Creation

Euclidean distance sphere point<Traits> ed( Traits t=Traits());

Default constructor.

Operations

NT ed.transformed distance( Query item s, Point d p) const

Returns the distance between s and p.

NT ed.min distance to rectangle( Query item s, Kd tree rectangle<FT> r) const

Returns the minimal distance between a point from the
sphere s and a point from r.
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NT ed.max distance to rectangle( Query item s, Kd tree rectangle<FT> r) const

Returns the maximal distance between the sphere s and a
point from r furthest to s.

NT ed.transformed distance( NT d) const

Returns d2.

NT ed.inverse of transformed distance( NT d) const

Returns d1/2.

See Also

GeneralDistance
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CGAL::Fair<Traits, SpatialSeparator>

Definition

Implements the fair splitting rule. This splitting rule is a compromise between the median of rectangle splitting
rule and the midpoint of rectangle splitting rule. This splitting rule maintains an upper bound on the maximal
allowed ratio of the longest and shortest side of a rectangle (the value of this upper bound is set in the constructor
of the fair splitting rule). Among the splits that satisfy this bound, it selects the one in which the points have the
largest spread. It then splits the points in the most even manner possible, subject to maintaining the bound on
the ratio of the resulting rectangles.

#include <CGAL/Splitters.h>

Parameters

Expects for the first template argument a model of the concept SearchTraits, for example Cartesian d<double>.

Expects for the second template argument a model of the concept Separator. It has as default value the type,
CGAL::Plane separator<Traits::FT>.

Is Model for the Concepts

Splitter

Types

Traits::FT FT; Number type.

Creation

Fair<Traits, SpatialSeparator> s; Default constructor.

Fair<Traits, SpatialSeparator> s( unsigned int bucket size, FT aspect ratio=FT(3));

Constructor.

See Also

Splitter
SpatialSeparator
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FuzzyQueryItem

Definition

The concept FuzzyQueryItem describes the requirements for fuzzy d-dimensional spatial objects.

Has Models

CGAL::Fuzzy sphere<Traits>,
CGAL::Fuzzy iso box<Traits>

Types

FuzzyQueryItem:: Point d represents a d-dimensional point.

FuzzyQueryItem:: FT Number type.

Operations

bool q.contains( Point d p) const

test whether q contains p.

bool q.inner range intersects( Kd tree rectangle<FT> rectangle) const

test whether the inner approximation of the spatial object in-
tersects a rectangle associated with a node of a tree.

bool q.outer range contains( Kd tree rectangle<FT> rectangle) const

test whether the outer approximation of the spatial object en-
closes the rectangle associated with a node of a tree.
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CGAL::Fuzzy iso box<Traits>

Definition

The class Fuzzy iso box<Traits> implements fuzzy d-dimensional iso boxes. A fuzzy iso box with fuzziness
value ε has as outer approximation a box dilated, and as inner approximation a box eroded by a d-dim square
with side length ε.

#include <CGAL/Fuzzy iso box.h>

Parameters

Expects for the template argument a model of the concept SearchTraits, for example CGAL::Search traits 2<
CGAL::Simple cartesian<double> >.

Is Model for the Concepts

FuzzyQueryItem

Types

Traits::Point d Point d; Point type.

Traits::FT FT; Number type.

Creation

Fuzzy iso box<Traits> b( Point d p, Point d q, FT epsilon=FT(0), Traits t=Traits());

Constructs a fuzzy iso box specified by the minimal iso box
containing p and q and fuzziness value epsilon.
Precondition: p must be lexicographically smaller than q.

In case Traits is Search traits adapter<Key,PointPropertyMap,BaseTraits>, the following constructor is also
available:

Fuzzy iso box<Traits> b( Traits::Base::Point d p,
Traits::Base::Point d q,
FT epsilon=FT(0),
Traits t=Traits())

Constructs a fuzzy iso box specified by the minimal iso box
containing p and q and fuzziness value epsilon.
Precondition: p must be lexicographically smaller than q.
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Operations

bool b.contains( Point d p) const

test whether b contains p.

bool b.inner range intersects( Kd tree rectangle<FT> rectangle) const

test whether the inner box intersects the rectangle associated
with a node of a tree.

bool b.outer range contains( Kd tree rectangle<FT> rectangle) const

test whether the outer box encloses the rectangle associated
with a node of a tree.

See Also

FuzzyQueryItem
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CGAL::Fuzzy sphere<Traits>

Definition

The class Fuzzy sphere<Traits> implements fuzzy d-dimensional spheres. A fuzzy sphere with radius r and
fuzziness value ε has as outer approximation a sphere with radius r + ε and as inner approximation a sphere
with radius r− ε.

#include <CGAL/Fuzzy sphere.h>

Parameters

Expects for the template argument a model of the concept SearchTraits, for example CGAL::Cartesian d<
double>.

Is Model for the Concepts

FuzzyQueryItem

Types

Traits::Point d Point d; Point type.

Traits::FT FT; Number type.

Creation

Fuzzy sphere<Traits> s( Point d center, FT radius, FT epsilon=FT(0), Traits t=Traits());

Constructs a fuzzy sphere centered at center with radius ra-
dius and fuzziness value epsilon.

In case Traits is Search traits adapter<Key,PointPropertyMap,BaseTraits>, the following constructor is also
available:

Fuzzy sphere<Traits> s( Traits::Base::Point d center, FT radius, FT epsilon=FT(0), Traits t=Traits());

Constructs a fuzzy sphere centered at center with radius ra-
dius and fuzziness value epsilon.

Operations

bool s.contains( Point d p) const

test whether s contains p.
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bool s.inner range intersects( Kd tree rectangle<FT> rectangle) const

test whether the inner sphere intersects the rectangle associ-
ated with a node of a tree.

bool s.outer range contains( Kd tree rectangle<FT> rectangle) const

test whether the outer sphere encloses the rectangle associ-
ated with a node of a tree.

See Also

FuzzyQueryItem
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GeneralDistance

Definition

Requirements of a distance class defining a distance between a query item denoting a spatial object and a point.
To optimize distance computations transformed distances are used, e.g., for a Euclidean distance the transformed
distance is the squared Euclidean distance.

Has Models

CGAL::Manhattan distance iso box point<Traits>
CGAL::Euclidean distance sphere point<Traits>.

Types

GeneralDistance:: FT Number type.

GeneralDistance:: Point d Point type.

GeneralDistance:: Query item Query item type.

Operations

FT gd.transformed distance( Query item q, Point d r)

Returns the transformed distance between q and r.

FT gd.min distance to rectangle( Query item q, Kd tree rectangle<FT> r) const

Returns the transformed distance between q and the point on
the boundary of r closest to q.

FT gd.max distance to rectangle( Query item q, Kd tree rectangle<FT> r) const

Returns the transformed distance between q and the point on
the boundary of r furthest to q.

FT gd.transformed distance( FT d) const

Returns the transformed distance.

FT gd.inverse of transformed distance( FT d) const

Returns the inverse of the transformed distance.
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CGAL::Incremental neighbor search<Traits, GeneralDistance, Splitter,
SpatialTree>

Definition

The class Incremental neighbor search<Traits, GeneralDistance, Splitter, SpatialTree> implements incremen-
tal nearest and furthest neighbor searching on a tree. The tree may have extended or unextended nodes.

#include <CGAL/Incremental neighbor search.h>

Parameters

Expects for the first template argument a model of the concept SearchTraits, for example CGAL::Search traits
2<CGAL::Cartesian<double> >.

Expects for the second template argument a model of the concept GeneralDistance. If Traits is CGAL::Search
traits adapter<Key,PointPropertyMap,BaseTraits> the default type is CGAL::Distance for point adapter<
Key,PointPropertyMap,CGAL::Euclidean distance<Traits> >, and CGAL::Euclidean distance<Traits> other-
wise.

Expects for third template argument a model of the concept Splitter. The default type is CGAL::Sliding
midpoint<Traits>.

Expects for fourth template argument a model of the concept SpatialTree. The default type is CGAL::Kd tree<
Traits,Splitter,CGAL::Tag false>. The template argument CGAL::Tag false makes that the tree is built with
unextended nodes.

Types

Traits::Point d Point d; Point type.

Traits::NT NT; Number type.

GeneralDistance Distance; Distance type.

std::pair<Point d,NT>

Point with transformed distance;

Pair of point and transformed distance.

Incremental neighbor search<Traits, GeneralDistance, Splitter, SpatialTree>:: iterator

const input iterator with value type Point with transformed
distance for enumerating approximate neighbors.
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GeneralDistance::Query item

Query item; Query item type.

SpatialTree Tree; The tree type.

Creation

Incremental neighbor search<Traits, GeneralDistance, Splitter, SpatialTree> s(
Tree& tree,
QueryItem q,
NT eps=NT(0.0),
bool search nearest=true,
GeneralDistance d=GeneralDistance())

Constructor for incremental neighbor searching of the query
item q in the points stored tree using a distance d and approx-
imation factor eps.

Operations

iterator s.begin() const Returns a const iterator to the approximate nearest or furthest
neighbor.

iterator s.end() const Returns the appropriate past-the-end const iterator.

advanced

std::ostream& s.statistics( std::ostream& s)

Inserts statistics of the search process into the output stream
s.

advanced

See Also

CGAL::Orthogonal incremental neighbor search<Traits, OrthogonalDistance, Splitter, SpatialTree>
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CGAL::K neighbor search<Traits, GeneralDistance, Splitter, Spatial-
Tree>

Definition

The class K neighbor search<Traits, GeneralDistance, Splitter, SpatialTree> implements approximate k-
nearest and k-furthest neighbor searching using standard search on a tree using a general distance class. The
tree may be built with extended or unextended nodes.

#include <CGAL/K neighbor search.h>

Parameters

Expects for the first template argument an implementation of the concept SearchTraits, for example
CGAL::Cartesian d<double>.

Expects for the second template argument a model of the concept GeneralDistance. If Traits is CGAL::Search
traits adapter<Key,PointPropertyMap,BaseTraits> the default type is CGAL::Distance for point adapter<
Key,PointPropertyMap,CGAL::Euclidean distance<Traits> >, and CGAL::Euclidean distance<Traits> other-
wise.

Expects for fourth template argument an implementation of the concept SpatialTree. The default type is
CGAL::Kd tree<Traits, Splitter, CGAL::Tag false>. The template argument CGAL::Tag false makes that the
tree is built with unextended nodes.

Types

Traits::Point d Point d; Point type.

Traits::FT FT; Number type.

GeneralDistance Distance; Distance type.

std::pair<Point d,FT>

Point with transformed distance;

Pair of point and transformed distance.

K neighbor search<Traits, GeneralDistance, Splitter, SpatialTree>:: iterator

Bidirectional const iterator with value type Point with
distance for enumerating approximate neighbors.

GeneralDistance::Query item

Query item; Query item type.
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SpatialTree Tree; The tree type.

Creation

K neighbor search<Traits, GeneralDistance, Splitter, SpatialTree> s(
Tree tree,
Query item q,
unsigned int k=1,
FT eps=FT(0.0),
bool search nearest=true,
GeneralDistance d=GeneralDistance(),
bool sorted=true)

Constructor for searching approximately k neighbors of the
query item q in the points stored in tree using distance class
d and approximation factor eps. sorted indicates if the com-
puted sequence of k-nearest neighbors needs to be sorted.

Operations

iterator s.begin() const Returns a const iterator to the approximate nearest or furthest
neighbor.

iterator s.end() const Returns the appropriate past-the-end const iterator.

advanced

std::ostream& s.statistics( std::ostream& s)

Inserts statistics of the search process into the output stream
s.

advanced

See Also

CGAL::Orthogonal k neighbor search<Traits, OrthogonalDistance, Splitter, SpatialTree>
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CGAL::Kd tree<Traits, Splitter, UseExtendedNode>

Definition

The class Kd tree<Traits, Splitter, UseExtendedNode> defines a k-d tree.

#include <CGAL/Kd tree.h>

Parameters

Expects for the first template argument a model of the concept SearchTraits, for example CGAL::Search traits
2<CGAL::Cartesian<double> >.

Expects for the second template argument a model for the concept Splitter. It defaults to Sliding midpoint<
Traits>.

Expects for the third template argument CGAL::Tag true, if the tree shall be built with extended nodes, and
CGAL::Tag false otherwise.

Types

Traits::Point d Point d; Point class.

Traits::FT FT; Number type.

Kd tree<Traits, Splitter, UseExtendedNode>:: Splitter

Splitter type.

Kd tree<Traits, Splitter, UseExtendedNode>:: iterator

Bidirectional const iterator with value type Point d that al-
lows to enumerate all points in the tree.

advanced

Kd tree<Traits, Splitter, UseExtendedNode>:: Node handle

A handle with value type Kd tree node<Traits,Splitter>.

Kd tree<Traits, Splitter, UseExtendedNode>:: Node const handle

A const handle with value type Kd tree node<
Traits,Splitter>.

Kd tree<Traits, Splitter, UseExtendedNode>:: Point d iterator

Random access const iterator with value type const Point d*.
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Kd tree<Traits, Splitter, UseExtendedNode>:: size type

A type that counts the number of elements in a k-d tree.

advanced

Creation

Kd tree<Traits, Splitter, UseExtendedNode> tree( Splitter s=Splitter(), Traits t=Traits());

Constructs an empty k-d tree.

template <class InputIterator>
Kd tree<Traits, Splitter, UseExtendedNode> tree( InputIterator first,

InputIterator beyond,
Splitter s=Splitter(),
Traits t=Traits())

Constructs a k-d tree on the elements from the sequence
[first, beyond) using the splitting rule implemented by s. The
value type of the InputIterator must be Point d.

Operations

void tree.insert( Point d p)

Inserts the point p in the k-d tree.

template <class InputIterator>
void tree.insert( InputIterator first, InputIterator beyond)

Inserts the elements from the sequence [first, beyond) in the
k-d tree. The value type of the InputIterator must be Point d.

template <class OutputIterator, class FuzzyQueryItem>
OutputIterator tree.search( OutputIterator it, FuzzyQueryItem q) const

Reports the points that are approximately contained by q.
The types FuzzyQueryItem::Point d and Point d must be
equivalent. To use this function Traits must be a model of
the concept RangeSearchTraits.

iterator tree.begin() const Returns a const iterator to the first point in the tree.

iterator tree.end() const Returns the appropriate past-the-end const iterator.

void tree.clear() Removes all points from the k-d tree.
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size type tree.size() const Returns the number of points that are stored in the tree.

Traits tree.traits() const return the instance of the traits used to construct the tree.

advanced

Node handle tree.root() Returns a handle to the root node of the tree.

Node const handle tree.root() const Returns a const handle to the root node of the tree.

Kd tree rectangle<FT>

tree.bounding box() const

returns a const reference to the bounding box of the root node
of the tree.

std::ostream& tree.statistics( std::ostream& s) const

Inserts statistics of the tree into the output stream s.

advanced

See Also

Tree. CGAL::Kd tree node<Traits>
CGAL::Search traits 2<Kernel>
CGAL::Search traits 3<Kernel>
CGAL::Search traits<FT ,Point,CartesianIterator,ConstructCartesianIterator>
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CGAL::Kd tree node<Traits, Splitter, UseExtendedNode>

advanced

Definition

The class Kd tree node<Traits, Splitter, UseExtendedNode> implements a node class for a k-d tree. A node is
either a leaf node, an internal node or an extended internal node. A leaf node contains one or more points. An
internal node contains a pointer to its lower child, a pointer to its upper child, and a pointer to its separator. An
extended internal node is an internal node containing the lower and upper limit of an extended node’s rectangle
along the node’s cutting dimension.

#include <CGAL/Kd tree node.h>

Parameters

Expects for the template argument a model of the concept SearchTraits, for example CGAL::Search traits 2<
CGAL::Cartesian<double> >, or CGAL::Cartesian d<double>.

Types

enum Node type { LEAF, INTERNAL, EXTENDED INTERNAL};

Denotes type of node.

Traits::FT FT; Number type.

Traits::Point d Point d; Point type.

Splitter::Separator Separator; Separator type.

Kd tree<Traits,Splitter,UseExtendedNode>::Point d iterator

Point d iterator; const iterator over points.

Kd tree<Traits,Splitter,UseExtendedNode>::Node handle

Node handle; Node handle.

Kd tree<Traits,Splitter,UseExtendedNode>::Node const handle

Node const handle; const node handle.

Creation
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Operations

template <class OutputIterator, class FuzzyQueryItem>
OutputIterator n.search( OutputIterator it, FuzzyQueryItem q) const

Reports the points from the subtree of the node, that are ap-
proximately contained by q.

template <class OutputIterator>
OutputIterator n.tree items( OutputIterator it) const

Reports all the points contained by the subtree of the node.

bool n.is leaf() const Indicates whether a node is a leaf node.

unsigned int n.size() const Returns the number of items stored in a leaf node.

Point d iterator n.begin() const Returns a const iterator to the first item in a leaf node.

Point d iterator n.end() const Returns the appropriate past-the-end const iterator.

Node handle n.lower() Returns a handle to the lower child of an internal node.

Node handle n.upper() Returns a handle to the upper child of an internal node.

Node const handle n.lower() const Returns a const handle to the lower child of an internal node.

Node const handle n.upper() const Returns a const handle to the upper child of an internal node.

Separator& n.separator() Returns a reference to the separator.

FT n.low value() const Returns the lower limit of an extended node’s rectangle along
the node’s cutting dimension.

FT n.high value() const Returns the upper limit of an extended node’s rectangle along
the node’s cutting dimension.

advanced
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CGAL::Kd tree rectangle<FT>

advanced

Definition

The class Kd tree rectangle<FT> implements d-dimensional iso-rectangles and related operations, e.g., meth-
ods to compute bounding boxes of point sets.

#include <CGAL/Kd tree rectangle.h>

Types

FT FT; Number type.

Creation

Kd tree rectangle<FT> r( int d); Constructs a d-dimensional rectangle r with lower bound and
upper bound set to zero in each dimension.

template <class Construct cartesian const iterator d,class PointIter>
Kd tree rectangle<FT> r( int d,

PointIter begin,
PointIter end,
Construct cartesian const iterator d construct it)

Constructs the bounding box of the points in the range [be-
gin,end), where the value type of PointIter can be used by op-
erators of functors Construct cartesian const iterator d to
define iterators with value type FT .

Operations

FT r.min coord( int i) const

Returns the lower bound of the rectangle in dimension i.

FT r.max coord( int i) const

Returns the upper bound of the rectangle in dimension i.

void r.set upper bound( int i, FT x)

Sets upper bound in dimension i to x.
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void r.set lower bound( int i, FT x)

Sets lower bound in dimension i to x.

FT r.max span() const Returns the maximal span of the rectangle.

FT r.max span coord() const

Returns the smallest coordinate for which the rectangle has
its maximal span.

int r.dimension() const Returns the dimension of the rectangle.

void r.split( & r, int d, FT value)

Splits rectangle in dimension d at coordinate-value value by
modifying itself to lower half and by modifying r to upper
half.

Output Routines

template<class FT>
std::ostream& std::ostream& s << & r

Inserts rectangle r in the output stream s and returns s.

advanced
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CGAL::Manhattan distance iso box point<Traits>

Definition

The class Manhattan distance iso box point<Traits> provides an implementation of the GeneralDistance con-
cept for the Manhattan distance (l1 metric) between a d-dimensional iso-box and a d-dimensional point and
the Manhattan distance between a d-dimensional iso-box and a d-dimensional iso-box defined as a k-d tree
rectangle.

#include <CGAL/Manhattan distance iso box point.h>

Parameters

Expects for the template argument a model for the concept SearchTraits, for example CGAL::Search traits 3<
CGAL::Cartesian<double> >.

Is Model for the Concepts

GeneralDistance

Types

Traits::FT FT; Number type.

Traits::Point d Point d; Point type.

Traits::Iso box d Query item; Query item type.

Creation

Manhattan distance iso box point<Traits> md( Traits t=Traits());

Default constructor.

Operations

FT md.transformed distance( Query item b, Point d p) const

Returns the transformed distance between b and p.

FT md.transformed distance( FT d) const

Returns the transformed value of of d.
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FT md.inverse of transformed distance( FT d) const

Returns the value of the inverse of the transform function
applied to d.

FT md.min distance to rectangle( Query item b, Kd tree rectangle<FT> r) const

Returns the minimal distance between a point from b and a
point from r.

FT md.max distance to rectangle( Query item b, Kd tree rectangle<FT> r) const

Returns the maximal distance between the iso-box b and a
point from r furthest to b.

See Also

GeneralDistance
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CGAL::Median of max spread<Traits, SpatialSeparator>

Definition

Implements the median of max spread splitting rule. The splitting dimension is the dimension of the longest
side of the rectangle. The splitting value is defined by the median of the coordinates of the data points along
this dimension.

#include <CGAL/Splitters.h>

Parameters

Expects for the first template argument a model of the concept SearchTraits, for example the type
CGAL::Search traits 3< Cartesian<double> >.

Expects for the second template argument a model of the concept Separator. It has as default value the type,
CGAL::Plane separator<Traits::FT>.

Is Model for the Concepts

Splitter

Creation

Median of max spread<Traits, SpatialSeparator> s;

Default constructor.

Median of max spread<Traits, SpatialSeparator> s( unsigned int bucket size);

Constructor.

See Also

Splitter
SpatialSeparator
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CGAL::Median of rectangle<Traits, SpatialSeparator>

Definition

Implements the median of rectangle splitting rule. The splitting dimension is the dimension of the longest side
of the rectangle. The splitting value is defined by the median of the coordinates of the data points along this
dimension.

#include <CGAL/Splitters.h>

Parameters

Expects for the first template argument a model of the concept SearchTraits, for example the type
CGAL::Search traits 3< Cartesian<double> >.

Expects for the second template argument a model of the concept Separator. It has as default value the type,
CGAL::Plane separator<Traits::FT>.

Is Model for the Concepts

Splitter

Creation

Median of rectangle<Traits, SpatialSeparator> s;

Default constructor.

Median of rectangle<Traits, SpatialSeparator> s( unsigned int bucket size);

Constructor.

See Also

Splitter,
SpatialSeparator
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CGAL::Midpoint of max spread<Traits, SpatialSeparator>

Definition

Implements the midpoint of max spread splitting rule. A rectangle is cut through (Mind +Maxd)/2 orthogonal
to the dimension with the maximum point spread [Mind,Maxd].

#include <CGAL/Splitters.h>

Parameters

Expects for the first template argument a model of the concept SearchTraits, for example the type
CGAL::Search traits 3< Cartesian<double> >.

Expects for the second template argument a model of the concept Separator. It has as default value the type,
CGAL::Plane separator<Traits::FT>

Is Model for the Concepts

Splitter

Creation

Midpoint of max spread<Traits, SpatialSeparator> s;

Default constructor.

Midpoint of max spread<Traits, SpatialSeparator> s( unsigned int bucket size);

Constructor.

See Also

Splitter,
SpatialSeparator
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CGAL::Midpoint of rectangle<Traits, SpatialSeparator>

Definition

Implements the midpoint of rectangle splitting rule. A rectangles is cut through its midpoint orthogonal to the
longest side.

#include <CGAL/Splitters.h>

Parameters

Expects for the first template argument a model of the concept SearchTraits, for example the type
CGAL::Search traits 3< Cartesian<double> >.

Expects for the second template argument a model of the concept Separator. It has as default value the type,
CGAL::Plane separator<Traits::FT>

Is Model for the Concepts

Splitter

Creation

Midpoint of rectangle<Traits, SpatialSeparator> s;

Default constructor.

Midpoint of rectangle<Traits, SpatialSeparator> s( unsigned int bucket size);

Constructor.

See Also

Splitter
SpatialSeparator
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OrthogonalDistance

Definition

Requirements of an orthogonal distance class supporting incremental distance updates. To optimize distance
computations transformed distances are used. E.g., for an Euclidean distance the transformed distance is the
squared Euclidean distance.

Refines

GeneralDistance

Has Models

CGAL::Euclidean distance<Traits>,
CGAL::Weighted Minkowski distance<Traits>

Types

OrthogonalDistance:: FT Number type.

OrthogonalDistance:: Point d Point type.

OrthogonalDistance:: Query item Query item type.

Creation

OrthogonalDistance od( int d); Constructor implementing distance for d-dimensional points.

Operations

FT od.transformed distance( Query item q, Point d r) const

Returns the transformed distance between q and r.

FT od.min distance to rectangle( Query item q, Kd tree rectangle<FT> r) const

Returns the transformed distance between q and the point on
the boundary of r closest to q.

FT od.max distance to rectangle( Query item q, Kd tree rectangle<FT> r) const

Returns the transformed distance between q and the point on
the boundary of r farthest to q.
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FT od.transformed distance( FT d) const

Returns the transformed distance.

FT od.inverse of transformed distance( FT d) const

Returns the inverse of the transformed distance.

FT od.new distance( FT dist, FT old off, FT new off, int cutting dimension) const

Updates dist incrementally and returns the updated distance.
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CGAL::Orthogonal incremental neighbor search<Traits, Orthogo-
nalDistance, Splitter, SpatialTree>

Definition

The class Orthogonal incremental neighbor search<Traits, OrthogonalDistance, Splitter, SpatialTree> imple-
ments incremental nearest and furthest neighbor searching on a tree.

#include <CGAL/Orthogonal incremental neighbor search.h>

Parameters

Expects for the first template argument a model of the concept SearchTraits, for example CGAL::Search traits
2<CGAL::Cartesian<double> >.

Expects for the second template argument a model of the concept GeneralDistance. If Traits is CGAL::Search
traits adapter<Key,PointPropertyMap,BaseTraits> the default type is CGAL::Distance for point adapter<
Key,PointPropertyMap,CGAL::Euclidean distance<Traits> >, and CGAL::Euclidean distance<Traits> other-
wise.

Expects for third template argument a model of the concept Splitter. The default type is CGAL::Sliding
midpoint<Traits>.

Expects for fourth template argument a model of the concept SpatialTree. The default type is CGAL::Kd tree<
Traits, Splitter, CGAL::Tag true>. The template argument must be CGAL::Tag true because orthogonal search
needs extended kd tree nodes.

Types

Traits::Point d Point d; Point type.

Traits::FT FT; Number type.

OrthogonalDistance Distance; Distance type.

OrthogonalDistance::Query item

Query item; Query item.

std::pair<Point d,FT>

Point with transformed distance;

Pair of point and transformed distance.

Orthogonal incremental neighbor search<Traits, OrthogonalDistance, Splitter, SpatialTree>:: iterator

const input iterator with value type Point with transformed
distance for enumerating approximate neighbors.
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SpatialTree Tree; The tree type.

Creation

Orthogonal incremental neighbor search<Traits, OrthogonalDistance, Splitter, SpatialTree> s(
SpatialTree& tree,
Query item query,
FT eps=FT(0.0),
bool search nearest=true,
OrthogonalDistance d=OrthogonalDistance())

Constructor for incremental neighbor searching of the query
item query in the points stored tree using a distance d and
approximation factor eps.

Operations

iterator s.begin() const Returns a const iterator to the approximate nearest or furthest
neighbor.

iterator s.end() const Returns the appropriate past-the-end const iterator.

advanced

std::ostream& s.statistics( std::ostream& s) const

Inserts statistics of the search process into the output
stream s.

advanced

See Also

CGAL::Incremental neighbor search<Traits, GeneralDistance, SpatialTree>
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CGAL::Orthogonal k neighbor search<Traits, OrthogonalDistance,
Splitter, SpatialTree>

Definition

The class Orthogonal k neighbor search<Traits, OrthogonalDistance, Splitter, SpatialTree> implements ap-
proximate k-nearest and k-furthest neighbor searching on a tree using an orthogonal distance class.

#include <CGAL/Orthogonal k neighbor search.h>

Parameters

Expects for the first template argument an implementation of the concept SearchTraits, for example
CGAL::Search traits 2<CGAL::Cartesian<double> >.

Expects for the second template argument a model of the concept GeneralDistance. If Traits is
CGAL::Search traits adapter<Key,PointPropertyMap,BaseTraits> the default type is CGAL::Distance
adapter<Key,PointPropertyMap,CGAL::Euclidean distance<Traits> >, and CGAL::Euclidean distance<
Traits> otherwise.

The default type is CGAL::Euclidean distance<Traits>.

Expects for third template argument a model of the concept Splitter. The default type is CGAL::Sliding
midpoint<Traits>.

Expects for fourth template argument an implementation of the concept SpatialTree. The default type is
CGAL::Kd tree<Traits, Splitter, CGAL::Tag true>. The template argument must be CGAL::Tag true because
orthogonal search needs extended kd tree nodes.

Types

Traits::Point d Point d; Point type.

Traits::FT FT; Number type.

OrthogonalDistance Distance; Distance type.

GeneralDistance::Query item

Query item; Query item.

std::pair<Point d,FT>

Point with transformed distance;

Pair of point and transformed distance.
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Orthogonal k neighbor search<Traits, OrthogonalDistance, Splitter, SpatialTree>:: iterator

Bidirectional const iterator with value type Point with
transformed distance for enumerating approximate neigh-
bors.

SpatialTree Tree; The tree type.

Operations

Orthogonal k neighbor search<Traits, OrthogonalDistance, Splitter, SpatialTree> s(
SpatialTree tree,
Query item query,
unsigned int k=1,
FT eps=FT(0.0),
bool search nearest=true,
OrthogonalDistance d=OrthogonalDistance(),
bool sorted=true)

Constructor for searching approximately k neighbors of the
query item query in the points stored in tree using distance
d and approximation factor eps.sorted indicates if the com-
puted sequence of k-nearest neighbors needs to be sorted.

iterator s.begin() const Returns a const iterator to the approximate nearest or furthest
neighbor.

iterator s.end() const Returns the appropriate past-the-end const iterator.

advanced

std::ostream& s.statistics( std::ostream& s)

Inserts statistics of the search process into the output
stream s.

advanced

See Also

CGAL::K neighbor search<Traits, GeneralDistance, Splitter, SpatialTree>

3616



C
la

ss

CGAL::Plane separator<FT>

advanced

Definition

The class Plane separator<FT> implements a plane separator, i.e., a hyperplane that is used to separate two half
spaces. This hyperplane is defined by a cutting dimension d and a cutting value v as xd = v, where v denotes the
dth coordinate value.

#include <CGAL/Plane separator.h>

Is Model for the Concepts

SpatialSeparator

Creation

Plane separator<FT> s( int d, FT v); Constructs a separator that separates two half spaces by a
hyperplane defined by xd = v, where v denotes the dth coor-
dinate value.

Plane separator<FT> s( p); Copy constructor.

Operations

void s.set cutting dimension( int d)

Sets the cutting dimension to d.

void s.set cutting value( FT v)

Sets the cutting value to v.

int s.cutting dimension() const

Returns the number of the cutting dimension.

FT s.cutting value() const

Returns the cutting value.

Plane separator<FT>

s = s2 Assignment operator.
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Output Operators

template<class FT>
std::ostream& std::ostream& os << s

Inserts the plane separator s in the output stream os and re-
turns os.

advanced
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CGAL::Point container<Traits>

advanced

Definition

A custom container for points used to build a tree. Each point container holds the points from a rectangle
associated with a node of the tree. In the remainder of this reference page this rectangle is called the associated
rectangle. Provides a method to split a container and a number of methods to support the implementation of
splitting rules.

#include <CGAL/Point container.h>

Parameters

Expects for the template argument an implementation for d-dimensional points of the concept SearchTraits, for
example CGAL::Cartesian d<double>.

Types

Traits::FT FT; Number type.

Traits::Point d Point d; Point type.

Point container<Traits>:: iterator An iterator with value type Point d*.

Point container<Traits>:: const iterator A const iterator with value type const Point d*.

Creation

Point container<Traits> c( int d); Construct an empty container for storing d-dimensional
points.

template <class InputIterator>
Point container<Traits> c( int d, InputIterator begin, InputIterator end);

Construct the container of d-dimensional points of type
Point d given by the iterator sequence [begin, end).

Operations

template <class SpatialSeparator>
void c.split( &c2, SpatialSeparator sep, bool sliding=false)

Given an empty container c2 with the same dimension as c,
splits c into cand c2 using the separator sep. If sliding is
true after splitting each container contains at least one point.
Container c should contain at least two points.
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void c.swap( &c2) Swap the contents of c and c2

void c.recompute tight bounding box()

Recompute the bounding box of the points in the container.

iterator c.begin() Returns an iterator to a pointer to the first point.

iterator c.end() Returns the appropriate past-the-end iterator.

const iterator c.begin() const Returns a const iterator to a pointer to the first point.

const iterator c.end() const Returns the appropriate past-the-end const iterator.

int c.dimension() const Returns the dimension.

int c.built coordinate() const

Returns coordinate for which the pointer list is built.

int c.max span coord() const

Returns coordinate where the associated rectangle has maxi-
mal span.

int c.max tight span coord() const

Returns coordinate where the point coordinates have maxi-
mal span.

FT c.max span lower() const

Returns lower value of the interval corresponding to max
span coord().

FT c.max tight span lower() const

Returns lower value of the interval corresponding to max
tight span coord(). That is, the smallest max tight span
coord()-th coordinate of the points in c.

FT c.max span upper() const

Returns upper value of the interval corresponding to max
span coord().
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FT c.max span upper without dim( int d) const

Returns upper value of the interval over all dimensions with-
out taking dimension d into account.

FT c.max tight span upper() const

Returns upper value of the interval corresponding to max
tight span coord().

FT c.max spread() const Returns the size of the interval corresponding to max span
coord().

FT c.max tight spread() const

Returns the size of the interval corresponding to max tight
span coord().

FT c.median( int split coord) const

Returns the median value of the points stored in the container
for dimension split coord.

Kd tree rectangle<Traits>

c.bounding box() const

Returns the associated rectangle.

Kd tree rectangle<Traits>

c.tight bounding box()

Returns the bounding box of the items in associated rectan-
gle.

int c.max tight span coord balanced( FT aspect ratio) const

Returns the dimension with the maximal point spread, for
which after fair splitting the ratio of the length of the longest
side and the smallest side of the bounding box of the items in
associated rectangle, does not exceed aspect ratio.

FT c.balanced fair( int d, FT aspect ratio)

Returns the splitting value for fair splitting.
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FT c.balanced sliding fair( int d, FT aspect ratio)

Returns the splitting value for sliding fair splitting.

std::size t c.size() const Returns the number of points stored.

bool c.empty() const Returns true if no points are present, false otherwise.

Output Routines

template<class Traits>
std::ostream& std::ostream& s << c Prints the point container c to the output stream s and returns

s.

See Also

SearchTraits
SpatialSeparator

advanced
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SearchTraits

Definition

The concept SearchTraits defines the requirements for the template parameter of the search classes.

Types

SearchTraits:: Point d Point type. CGAL::Kernel traits has to be specialized for
this type.

SearchTraits:: FT The number type of the Cartesian coordinates of types Point
d

SearchTraits:: Cartesian const iterator d A random access iterator type to enumerate the Cartesian co-
ordinates of a point.

SearchTraits:: Construct cartesian const iterator d

Functor with operators to construct iterators on the first and
the past-the-end iterator for the Cartesian coordinates of a
point. This functor must provides the type result type that
must be the same a Cartesian const iterator d.

Creation

Operations

Construct cartesian const iterator d

t.construct construct cartesian const iterator d object( Point d p) const

function used to construct an object of type Construct
cartesian const iterator d.

Has Models

CGAL::Cartesian d<FT>
CGAL::Homogeneous d<RT>
CGAL::Search traits 2<Kernel>
CGAL::Search traits 3<Kernel>,
CGAL::Search traits<NT,Point,CartesianCoordinateIterator,ConstructCartesianCoordinateIterator,ConstructMinVertex,ConstructMaxVertex>
.

See Also

RangeSearchTraits
CGAL::Search traits adapter<Key,PointPropertyMap,BaseTraits>
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RangeSearchTraits

Definition

The concept RangeSearchTraits defines the requirements for the template parameter of the search classes. This
concept also defines requirements to range search queries in a model of SpatialTree.

Refines

SearchTraits

Types

RangeSearchTraits:: Iso box d Iso box type. It is only needed for range search queries.

RangeSearchTraits:: Sphere d Sphere type. It is only needed for range search queries.

RangeSearchTraits:: Construct iso box d Functor with operator to construct the iso box from two
points.

RangeSearchTraits:: Construct center d Functor with operator to construct the center of an object of
type Sphere d.

RangeSearchTraits:: Construct squared radius d

Functor with operator to compute the squared radius of a an
object of type Sphere d.

RangeSearchTraits:: Construct min vertex d Functor with operator to construct the vertex with lexico-
graphically smallest coordinates of an object of type Iso box
d.

RangeSearchTraits:: Construct max vertex d Functor with operator to construct the vertex with lexico-
graphically largest coordinates of an object of type Iso box
d.

Has Models

CGAL::Cartesian d<FT>
CGAL::Homogeneous d<RT>
CGAL::Search traits 2<Kernel>
CGAL::Search traits 3<Kernel>

See Also

SearchTraits
CGAL::Search traits adapter<Key,PointPropertyMap,BaseTraits>
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CGAL::Search traits 2<Kernel>

Definition

The class Search traits 2<Kernel> can be used as a template parameter of the kd tree and the search classes.

#include <CGAL/Search traits 2.h>

Parameters

Expects for the template argument a model of the concept Kernel, for example CGAL::Cartesian<double> or
CGAL::Simple cartesian<CGAL::Gmpq>.

Is Model for the Concepts

SearchTraits and RangeSearchTraits.

Types

Kernel::FT FT; Number type.

Kernel::Point 2 Point d; Point type.

Kernel::Iso rectangle 2

Iso box d; Iso box type.

Kernel::Sphere 2 Sphere d; Sphere type.

Kernel::Cartesian const iterator 2

Cartesian const iterator d;

An iterator over the Cartesian coordinates.

Kernel::Construct cartesian const iterator 2

Construct cartesian const iterator d;

A functor with two function operators, which return the begin
and past the end iterator for the Cartesian coordinates. The
functor for begin has as argument a Point d. The functor for
the past the end iterator, has as argument a Point d and an
int.
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Kernel::Construct iso rectangle 2

Construct iso box d; Functor with operator to construct the iso box from two
points.

Kernel::Construct center 2

Construct center d; Functor with operator to construct the center of an object of
type Sphere d.

Kernel::Compute squared radius 2

Construct squared radius d;

Functor with operator to compute the squared radius of a an
object of type Sphere d.

Kernel::Construct min vertex 2

Construct min vertex d;

Functor with operator to construct the vertex with lexico-
graphically smallest coordinates of an object of type Iso box
d.

Kernel::Construct max vertex 2

Construct max vertex d;

Functor with operator to construct the vertex with lexico-
graphically largest coordinates of an object of type Iso box
d.

See Also

Search traits 3<Kernel>
Search traits<NT ,Point,CartesianConstIterator,ConstructCartesianConstIterator
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CGAL::Search traits 3<Kernel>

Definition

The class Search traits 3<Kernel> can be used as a template parameter of the kd tree and the search classes.
Kernel must be a CGAL kernel.

#include <CGAL/Search traits 3.h>

Parameters

Expects for the template argument a model of the concept Kernel, for example CGAL::Cartesian<double> or
CGAL::Simple cartesian<CGAL::Gmpq>.

Is Model for the Concepts

SearchTraits and RangeSearchTraits.

Types

Kernel::FT FT; Number type.

Kernel::Point 3 Point d; Point type.

Kernel::Iso cuboid 3

Iso box d; Iso box type.

Kernel::Sphere 3 Sphere d; Sphere type.

Kernel::Cartesian const iterator 3

Cartesian const iterator d;

An iterator over the Cartesian coordinates.

Kernel::Construct cartesian const iterator 3

Construct cartesian const iterator d;

A functor with two function operators, which return the begin
and past the end iterator for the Cartesian coordinates. The
functor for begin has as argument a Point d. The functor for
the past the end iterator, has as argument a Point d and an
int.
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Kernel::Construct center 3

Construct center d; Functor with operator to construct the center of an object of
type Sphere d.

Kernel::Compute squared radius 3

Construct squared radius d;

Functor with operator to compute the squared radius of a an
object of type Sphere d.

Kernel::Construct min vertex 3

Construct min vertex d;

Functor with operator to construct the vertex with lexico-
graphically smallest coordinates of an object of type Iso box
d.

Kernel::Construct max vertex 3

Construct max vertex d;

Functor with operator to construct the vertex with lexico-
graphically largest coordinates of an object of type Iso box
d.

See Also

Search traits 2<Kernel>
Search traits<Point,CartesianConstIterator,ConstructCartesianConstIterator
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CGAL::Search traits d<Kernel>

Definition

The class Search traits d<Kernel> can be used as a template parameter of the kd tree and the search classes.
Kernel must be a CGAL kernel.

Kernel must be a d-dimensional CGAL kernel.

#include <CGAL/Search traits d.h>

Parameters

Expects for the template argument a model of the concept Kernel d, for example CGAL::Cartesian d<double>
or CGAL::Homogeneous d<CGAL::Gmpz>.

Is Model for the Concepts

SearchTraits and RangeSearchTraits.

Types

Kernel::FT NT; Number type.

Kernel::Point d Point d; Point type.

Kernel::Iso box d Iso box d; Iso box type.

Kernel::Sphere d Sphere d; Sphere type.

Kernel::Cartesian const iterator d

Cartesian const iterator;

An iterator over the Cartesian coordinates.

Kernel::Construct cartesian const iterator d

Construct cartesian const iterator;

A functor with two function operators, which return the begin
and past the end iterator for the Cartesian coordinates. The
functor for begin has as argument a Point d. The functor for
the past the end iterator, has as argument a Point d and an
int.
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Kernel::Construct min vertex d

Construct min vertex d;

Functor with operator to construct the vertex with lexico-
graphically smallest coordinates of an object of type Iso box
d.

Kernel::Construct max vertex d

Construct max vertex d;

Functor with operator to construct the vertex with lexico-
graphically largest coordinates of an object of type Iso box
d.

See Also

Search traits 2<Kernel>
Search traits 3<Kernel>
Search traits<Point,CartesianConstIterator,ConstructCartesianConstIterator>
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CGAL::Search traits<NT,Point,CartesianIterator,ConstructCartesianIterator,ConstructMinVertex,ConstructMaxVertex>

Definition

The class Search traits<NT,Point,CartesianIterator,ConstructCartesianIterator,ConstructMinVertex,ConstructMaxVertex>
can be used as a template parameter of the kd tree and the search classes. It is a mere wrapper for the geometric
types needed by these classes.

#include <CGAL/Search traits.h>

Is Model for the Concepts

SearchTraits.

Types

NT FT; The number type of the coordinates.

Point Point d; Point type.

CartesianIterator Cartesian const iterator d;

An iterator over the coordinates.

ConstructCartesianIterator

Construct Cartesian const iterator d;

A functor with two function operators, which return the begin
and past the end iterator for the Cartesian coordinates. The
functor for begin has as argument a Point d. The functor for
the past the end iterator, has as argument a Point d and an
int.

ConstructMinVertex Construct min vertex d;

Functor with operator to construct the vertex with lexico-
graphically smallest coordinates of an object of type Iso box
d.

Kernel::ConstructMaxVertex

Construct max vertex d;

Functor with operator to construct the vertex with lexico-
graphically largest coordinates of an object of type Iso box
d.
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See Also

Search traits 2<Kernel>
Search traits 3<Kernel>
Search traits d<Kernel>
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CGAL::Search traits adapter<Key,PointPropertyMap,BaseTraits>

Definition

The class Search traits adapter<Key,PointPropertyMap,BaseTraits> can be used as a template parameter of
the kd tree and the search classes. When using this traits class in a nearest neighbor search algorithm, the class
Distance for point adapter<Key,PointPropertyMap,Base distance> must be used as distance.

#include <CGAL/Search traits adapter.h>

Parameters

Key is a type that is associated to a point of type Base distance::Point d.
PointPropertyMap is a model of boost::ReadablePropertyMap with Key as key type and Base distance::Point
d as value type.
BaseTraits is a model of either SearchTraits or RangeSearchTraits.

Inherits From

BaseTraits

Is Model for the Concepts

SearchTraits if BaseTraits is a model of SearchTraits.
RangeSearchTraits if BaseTraits is a model of RangeSearchTraits.

Types

Key Point d;

BaseTraits::FT FT;

BaseTraits::Cartesian const iterator d

Cartesian const iterator d;

BaseTraits Base;

Creation

Search traits adapter<Key,PointPropertyMap,BaseTraits> t( PointPropertyMap
ppmap=PointPropertyMap(),

BaseTraits base=BaseTraits())

Constructor initializing the class to base and setting the point
property map of the class to ppmap.
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Operations

PointPropertyMap t.point property map() const

Returns the point property map.

See Also

Distance for point adapter<Key,PointPropertyMap,Base distance>
Search traits 2<Kernel>
Search traits 3<Kernel>
Search traits d<Kernel>
Search traits<Point,CartesianConstIterator,ConstructCartesianConstIterator
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CGAL::Distance for point adapter<Key,PointPropertyMap,Base
distance>

Definition

A class that uses a point property map to adapt a distance class to work on a key as point type. When using
Search traits adapter<Key,PointPropertyMap,BaseTraits> in a nearest neighbor search algorithm, this class
must be used as distance.

#include <CGAL/Search traits adapter.h>

Parameters

Key is a type that is associated to a point of type Base distance::Point d.
PointPropertyMap is a model of boost::ReadablePropertyMap with Key as key type and Base distance::Point
d as value type.
Base distance is a model of either GeneralDistance or OrthogonalDistance.

Inherits From

Base distance

Is Model for the Concepts

GeneralDistance if Base distance is a model of GeneralDistance.
OrthogonalDistance if Base distance is a model of OrthogonalDistance.

Types

Base distance::FT FT;

Key Point d;

Base distance::Query item

Query item;

Creation

Distance for point adapter<Key,PointPropertyMap,Base distance> d( PointPropertyMap
ppmap=PointPropertyMap(),

Base distance base=Base distance())

Constructor initializing the class to base and setting the point
property map of the class to ppmap.
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Operations

PointPropertyMap d.point property map() const

Returns the point property map.

See Also

Search traits adapter<Key,PointPropertyMap,BaseTraits>
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CGAL::Sliding fair<Traits, SpatialSeparator>

Definition

Implements the sliding fair splitting rule. This splitting rule is a compromise between the Fair splitting rule and
the Sliding midpoint rule. Sliding fair-split is based on the theory that there are two types of splits that are good:
balanced splits that produce fat rectangles, and unbalanced splits provided the rectangle with fewer points is fat.

Also, this splitting rule maintains an upper bound on the maximal allowed ratio of the longest and shortest side
of a rectangle (the value of this upper bound is set in the constructor of the fair splitting rule). Among the splits
that satisfy this bound, it selects the one one in which the points have the largest spread. It then considers the
most extreme cuts that would be allowed by the aspect ratio bound. This is done by dividing the longest side
of the rectangle by the aspect ratio bound. If the median cut lies between these extreme cuts, then we use the
median cut. If not, then consider the extreme cut that is closer to the median. If all the points lie to one side of
this cut, then we slide the cut until it hits the first point. This may violate the aspect ratio bound, but will never
generate empty cells.

#include <CGAL/Splitters.h>

Parameters

Expects for the first template argument a model of the concept SearchTraits, for example CGAL::Cartesian d<
double>.

Expects for the second template argument a model of the concept Separator. It has as default value the type,
CGAL::Plane separator<Traits::FT>

Is Model for the Concepts

Splitter

Types

Traits::FT FT; Number type.

Creation

Sliding fair<Traits, SpatialSeparator> s( unsigned int bucket size, FT aspect ratio=FT(3));

Constructor.

Operations

FT s.aspect ratio() Returns the maximal ratio between the largest and smallest
side of a cell allowed for fair splitting.

unsigned int s.bucket size() Returns the bucket size of the leaf nodes.
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See Also

Splitter
SpatialSeparator
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CGAL::Sliding midpoint<Traits, SpatialSeparator>

Definition

Implements the sliding midpoint splitting rule. This is a modification of the Midpoint of rectangle splitting
rule. It first attempts to perform a midpoint of rectangle split as described above. If data points lie on both
sides of the separating plane the sliding midpoint rule computes the same separator as the midpoint of rectangle
rule. If the data points lie only on one side it avoids this by sliding the separator, computed by the midpoint of
rectangle rule, to the nearest data point.

#include <CGAL/Splitters.h>

Parameters

Expects for the first template argument a model of the concept SearchTraits, for example CGAL::Cartesian d<
double>.

Expects for the second template argument a model of the concept Separator. It has as default value the type,
CGAL::Plane separator<Traits::FT>.

Is Model for the Concepts

Splitter

Creation

Sliding midpoint<Traits, SpatialSeparator> s( unsigned int bucket size);

Constructor.

Operations

unsigned int s.bucket size() Returns the bucket size of the leaf nodes.

See Also

Splitter
SpatialSeparator
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SpatialSeparator

advanced

Definition

The concept SpatialSeparator defines the requirements for a separator. A separator is a (d-1)-dimensional sub-
space that separates a d-dimensional space into two parts. One part of space is said to be on the negative side of
the separator and the other part of space is said to be on the positive side of the separator.

Has Models

CGAL::Plane separator<FT>.

Types

SpatialSeparator:: FT Number type.

Creation

SpatialSeparator s; Default constructor.

Operations

void s.set cutting dimension( int d)

Sets the cutting dimension to d.

void s.set cutting value( FT v)

Sets the cutting value to v.

int s.cutting dimension() Returns the number of the cutting dimension.

FT s.cutting value() Returns the cutting value.

template <class Point d>
bool s.has on negative side( Point d p)

Returns true if and only if the point p is on the negative side
of the separator.

advanced
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SpatialTree

Definition

The concept SpatialTree defines the requirements for a tree supporting both neighbor searching and approximate
range searching.

Types

SpatialTree:: SearchTraits Search traits.

SpatialTree:: Point d Point type.

SpatialTree:: iterator Bidirectional const iterator with value type Point d that al-
lows to enumerate all points in the tree.

SpatialTree:: Node handle Node handle.

SpatialTree:: Node const handle const node handle.

SpatialTree:: Point d iterator const iterator with value type const Point d*.

SpatialTree:: Splitter Splitter.

SpatialTree:: Distance Distance.

Creation

template <class InputIterator>
SpatialTree tree( InputIterator first, InputIterator beyond, SearchTraits t);

Constructs a tree on the elements from the sequence
[first,beyond).

Operations

template <class OutputIterator, class FuzzyQueryItem>
OutputIterator tree.search( OutputIterator it, FuzzyQueryItem q)

Reports the points that are approximately contained by q.
The value type of OutputIterator must be Point d.

iterator tree.begin() const Returns a const iterator to the first point in the tree.
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iterator tree.end() const Returns the appropriate past-the-end const iterator.

Node handle tree.root() Returns a handle to the root node of the tree.

Node const handle tree.root() const Returns a const handle to the root node of the tree.

Kd tree rectangle<SearchTraits::FT>

tree.bounding box() const

returns a const reference to the bounding box of the root node
of the tree.

unsigned int tree.size() const Returns the number of items that are stored in the tree.

Has Models

CGAL::Kd tree<Traits,Splitter,UseExtendedNode>.
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Splitter

advanced

Definition

The concept Splitter defines the requirements for a function object class implementing a splitting rule.

Has Models

CGAL::Fair<Traits, SpatialSeparator>,
CGAL::Median of rectangle<Traits, SpatialSeparator>,
CGAL::Median of max spread<Traits, SpatialSeparator>,
CGAL::Midpoint of rectangle<Traits, SpatialSeparator>,
CGAL::Midpoint of max spread<Traits, SpatialSeparator>,
CGAL::Sliding fair<Traits, SpatialSeparator>,
CGAL::Sliding midpoint<Traits, SpatialSeparator>.

Types

Splitter:: FT Number type.

Splitter:: Separator Separator.

Splitter:: Container Typedef to an instantiation of CGAL::Point container<
Traits>.

The parameters aspect ratio and bucket size define the way in which k-d tree is constructed.

Operations

FT s.aspect ratio() const Returns the maximal ratio between the largest and smallest
side of a cell allowed for fair splitting.

unsigned int s.bucket size() const Returns the bucket size of the leaf nodes.

void s( Separator& sep, Container& c0, Container& c1)

Sets up sep and splits points of c0 into c0 and c1 using sep.
Container c0 should contain at least two points and c1 must
be empty.

advanced
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CGAL::Weighted Minkowski distance<Traits>

Definition

The class Weighted Minkowski distance<Traits> provides an implementation of the concept Orthogo-
nalDistance, with a weighted Minkowski metric on d-dimensional points defined by lp(w)(r,q) =
(Σi=d

i=1 wi(ri−qi)p)1/p for 0 < p < ∞ and defined by l∞(w)(r,q) = max{wi|ri− qi| | 1 ≤ i ≤ d}. For the pur-
pose of the distance computations it is more efficient to compute the transformed distance σi=d

i=1 wi(ri−qi)p

instead of the actual distance.

#include <CGAL/Weighted Minkowski distance.h>

Parameters

Expects for the template argument a model of the concept SearchTraits, for example CGAL::Search traits 2<
Kernel>.

Is Model for the Concepts

OrthogonalDistance

Types

Traits::FT FT; Number type.

Traits::Point d Point d; Point type.

Creation

Weighted Minkowski distance<Traits> wd( int d, Traits t=Traits());

Constructor implementing l2 metric for d-dimensional
points.

template <class InputIterator>
Weighted Minkowski distance<Traits> wd( FT power,

int dim,
InputIterator wb,
InputIterator we,
Traits t=Traits())

Constructor implementing the lpower(weights) metric.
power ≤ 0 denotes the l∞(weights) metric. The values in the
iterator range [wb,we) are the weight.
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Operations

FT wd.transformed distance( Point d q, Point d r) const

Returns dpower, where d denotes the distance between q
and r.

FT wd.min distance to rectangle( Point d q, Kd tree rectangle<FT> r;) const

Returns dpower, where d denotes the distance between the
query item q and the point on the boundary of r closest to q.

FT wd.max distance to rectangle( Point d q, Kd tree rectangle<FT> r;) const

Returns dpower, where d denotes the distance between the
query item q and the point on the boundary of r farthest to q.

FT wd.new distance( FT dist, FT old off, FT new off, int cutting dimension) const

Updates dist incrementally and returns the updated distance.

FT wd.transformed distance( FT d) const

Returns dp for 0 < p < ∞ . Returns d for p = ∞ .

FT wd.inverse of transformed distance( FT d) const

Returns d1/p for 0 < p < ∞. Returns d for p = ∞.

See Also

OrthogonalDistance
CGAL::Euclidean distance<Traits>
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62.1 Introduction

This chapter presents the CGAL range tree and segment tree data structures.

62.2 Definitions

This section presents d-dimensional range and segment trees. A one-dimensional range tree is a binary search
tree on one-dimensional point data. Here we call all one-dimensional data types having a strict ordering (like
integer and double) point data. d-dimensional point data are d-tuples of one-dimensional point data.

A one-dimensional segment tree is a binary search tree as well, but with one-dimensional interval data as input
data. One-dimensional interval data is a pair (i.e., 2-tuple) (a,b), where a and b are one-dimensional point data
of the same type and a < b. The pair (a,b) represents a half open interval [a,b). Analogously, a d-dimensional
interval is represented by a d-tuple of one-dimensional intervals.
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The input data type for a d-dimensional tree is a container class consisting of a d-dimensional point data type,
interval data type or a mixture of both, and optionally a value type, which can be used to store arbitrary data. E.g.,
the d–dimensional bounding box of a d–dimensional polygon may define the interval data of a d–dimensional
segment tree and the polygon itself can be stored as its value. An input data item is an instance of an input data
type.

The range and segment tree classes are fully generic in the sense that they can be used to define multilayer
trees. A multilayer tree of dimension (number of layers) d is a simple tree in the d-th layer, whereas the k-th
layer, 1≤ k ≤ d−1, of the tree defines a tree where each (inner) vertex contains a multilayer tree of dimension
d− k + 1. The k− 1-dimensional tree which is nested in the k-dimensional tree (T ) is called the sublayer tree
(of T ). For example, a d-dim tree can be a range tree on the first layer, constructed with respect to the first
dimension of d-dimensional data items. On all the data items in each subtree, a (d− 1)-dimensional tree is
built, either a range or a segment tree, with respect to the second dimension of the data items. And so on.
Figures 62.2, 62.3 and 62.5 illustrate the meaning of a sublayer tree graphically.

After creation of the tree, further insertions or deletions of data items are disallowed. The tree class does neither
depend on the type of data nor on the concrete physical representation of the data items. E.g., let a multilayer
tree be a segment tree for which each vertex defines a range tree. We can choose the data items to consist of
intervals of type double and the point data of type integer. As value type we can choose string.

For this generality we have to define what the tree of each dimension looks like and how the input data is
organized. For dimension k, 1 ≤ k ≤ 4, CGAL provides ready-to-use range and segment trees that can store
k-dimensional keys (intervals resp.). Examples illustrating the use of these classes are given in Sections 62.5.1
and 62.6.1. The description of the functionality of these classes as well as the definition of higher dimensional
trees and mixed multilayer trees is given in the reference manual.

In the following two sections we give short definitions of the version of the range tree and segment tree imple-
mented here together with some examples. The presentation closely follows [dBvKOS97].

62.3 Software Design

In order to be able to define a multilayer tree we first designed the range and segment tree to have a template
argument defining the type of the sublayer tree. With this sublayer tree type information the sublayers could
be created. This approach lead to nested template arguments, since the sublayer tree can again have a template
argument defining the sublayer. Therefore, the internal class and function identifiers got longer than a compiler-
dependent limit. This happend already for d = 2.

Therefore, we chose another, object oriented, design. We defined a pure virtual base class called Tree base
from which we derived the classes Range tree d and Segment tree d. The constructor of these classes expects
an argument called sublayer prototype of type Tree base. Since class Range tree d and class Segment tree d
are derived from class Tree base, one can use an instantiation of class Range tree d or class Segment tree d as
constructor argument. This argument defines the sublayer tree of the tree. E.g., you can construct a Range tree
d with an instantiation of class Segment tree d as constructor argument. You then have defined a range tree with
a segment tree as sublayer tree. Since both classes Range tree d and Segment tree d expect a sublayer tree in
their constructor we had to derive a third class called Tree anchor from class Tree base which does not expect
a constructor argument. An instantiation of this class is used as constructor argument of class Range tree d or
Segment tree d in order to stop the recursion.

All classes provide a clone() function which returns an instance (a copy) of the same tree type. The clone()
function of the sublayer prototype is called in the construction of the tree. In case that the sublayer tree again
has a sublayer, it also has a sublayer prototype which is also cloned and so on. Thus, a call to the clone()
function generates a sublayer tree which has the complete knowledge about its sublayer tree.
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The trees allow to perform window queries, enclosing queries, and inverse range queries on the keys. Clearly,
an inverse range query makes only sense in the segment tree. In order to perform an inverse range query, a range
query of ε width has to be performed. We prefered not to offer an extra function for this sort of query, since
the inverse range query is a special case of the range query. Furthermore, offering an inverse range query in the
segment tree class implies offering this function also in the range tree class and having an extra item in the traits
class that accesses the inverse range query point.

The trees are templatized with three arguments: Data, Window and Traits. Type Data defines the input data
type and type Window defines the query window type. The tree uses a well defined set of functions in order to
access data. These functions have to be provided by class Traits.

The design partly follows the prototype design pattern in [GHJV95]. In comparison to our first approach using
templates we want to note the following: In this approach the sublayer type is defined in use of object oriented
programming at run time, while in the approach using templates, the sublayer type is defined at compile time.

The runtime overhead caused in use of virtual member functions in this object oriented design is negligible
since all virtual functions are non trivial. The design concept is illustrated in Figure 62.1.

E.g. in order to define a two dimensional multilayer tree, which consists of a range tree in the first dimension
and a segment tree in the second dimension we proceed as follows: We construct an object of type Tree anchor
which stops the recursion. Then we construct an object of type Segment tree d, which gets as prototype argu-
ment our object of type Tree anchor. After that, we define an object of type Range tree d which is constructed
with the object of type Segment tree d as prototype argument. The following piece of code illustrates the
construction of the two-dimensional multilayer tree.

int main(){
Tree_Anchor *anchor=new Tree_Anchor;
Segment_Tree_d *segment_tree = new Segment_Tree_d(*anchor);
Range_Tree_d *range_segment_tree = new Range_Tree_d(*segment_tree);
/* let data_items be a list of Data items */
range_segment_tree->make_tree(data_items.begin(),data_items.end());

}

Here, class Tree Anchor, Segment Tree d, and Range Tree d are defined by typedef s:

typedef Tree_anchor<Data,Window> Tree_Anchor;
typedef Segment_tree_d<Data,Window,Interval_traits> Segment_Tree_d;
typedef Range_tree_d<Data,Window,Point_traits> Range_Tree_d;

Class Tree base and class Tree anchor get two template arguments: a class Data which defines the type of
data that is stored in the tree, and a class Window which defines the type of a query range. The derived classes
Range tree d and Segment tree d additionally get an argument called Tree traits which defines the interface
between the Data and the tree. Let the Data type be a d-dimensional tuple, which is either a point data or an
interval data in each dimension. Then, the class Tree traits provides accessors to the point (resp. interval) data
of that tree layer and a compare function. Remind our example of the two-dimensional tree which is a range tree
in the first dimension and a segment tree in the second dimension. Then, the Tree traits class template argument
of class Segment tree d defines an accessor to the interval data of the Data, and the Tree traits class template
argument of class Range tree d defines an accessor to the point data of Data. An example implementation for
these classes is listed below.

struct Data{
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int min,max; /* interval data */
double point; /* point data */

};

struct Window{
int min,max;
double min_point, max_point;

};

class Point_traits{
public:
typedef double Key;
Key get_key(Data& d){return d.point;} /*key accessor */
Key get_left(Window& w){return w.min_point;}
Key get_right(Window& w){return w.max_point;}
bool comp(Key& key1, Key& key2){return (key1 < key2);}

}

class Interval_traits{
public:
typedef int Key;
Key get_left(Data& d){return d.min;}
Key get_right(Data& d){return d.max;}
Key get_left_win(Window& w){return w.min;}
Key get_right_win(Window& w){return w.max;}
static bool comp(Key& key1, Key& key2){return (key1 < key2);}

}

62.4 Creating an Arbitrary Multilayer Tree

Now let us have a closer look on how a multilayer tree is built. In case of creating a d-dimensional tree, we
handle a sequence of arbitrary data items, where each item defines a d-dimensional interval, point or other
object. The tree is constructed with an iterator over this structure. In the i-th layer, the tree is built with respect
to the data slot that defines the i-th dimension. Therefore, we need to define which data slot corresponds to
which dimension. In addition we want our tree to work with arbitrary data items. This requires an adaptor
between the algorithm and the data item. This is resolved by the use of traits classes, implemented in form of a
traits class using function objects. These classes provide access functions to a specified data slot of a data item.
A d-dimensional tree is then defined separately for each layer by defining a traits class for each layer.

62.5 Range Trees

A one-dimensional range tree is a binary search tree on one-dimensional point data. The point data of the tree
is stored in the leaves. Each inner vertex stores the highest entry of its left subtree. The version of a range tree
implemented here is static, which means that after construction of the tree, no elements be inserted or deleted.
A d-dimensional range tree is a binary leaf search tree according to the first dimension of the d-dimensional
point data, where each vertex contains a (d− 1)-dimensional search tree of the points in the subtree (sublayer
tree) with respect to the second dimension. See [dBvKOS97] and [Sam90] for more detailed information.

A d-dimensional range tree can be used to determine all d-dimensional points that lie inside a given d-
dimensional interval (window query). Figure 62.2 shows a two-dimensional range tree, Figure 62.3 a d-
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dimensional one.

Data Items of v

Data Items of v

Sublevel

Tree of v

Range Tree

Figure 62.2: A two-dimensional range tree. The
tree is a binary search tree on the first dimension.
Each sublayer tree of a vertex v is a binary search
tree on the second dimension. The data items in a
sublayer tree of v are all data items of the subtree
of v.

Figure 62.3: A d-dimensional range tree. For each
layer of the tree, one sublayer tree is illustrated.

The tree can be built in O(n logd−1 n) time and needs O(n logd−1 n) space. The d-dimensional points that lie in
the d-dimensional query interval can be reported in O(logd n + k) time, where n is the total number of points
and k is the number of reported points.

62.5.1 Example for Range Tree on Map-like Data

The following example program uses the predefined Range tree 2 data structure together with the predefined
traits class Range tree map traits 2 which has two template arguments specifying the type of the point data in
each dimension (CGAL::Cartesian<double>) and the value type of the 2-dimensional point data (char). There-
fore the Range tree 2 is defined on 2-dimensional point data each of which is associated with a character. Then,
a few data items are created and put into a list. After that the tree is constructed according to that list, a window
query is performed, and the query elements are given out.

#include <CGAL/Cartesian.h>
#include <CGAL/Range_segment_tree_traits.h>
#include <CGAL/Range_tree_k.h>

typedef CGAL::Cartesian<double> K;
typedef CGAL::Range_tree_map_traits_2<K, char> Traits;
typedef CGAL::Range_tree_2<Traits> Range_tree_2_type;

int main()
{
typedef Traits::Key Key;
typedef Traits::Interval Interval;
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std::vector<Key> InputList, OutputList;
InputList.push_back(Key(K::Point_2(8,5.1), ’a’));
InputList.push_back(Key(K::Point_2(1,1.1), ’b’));
InputList.push_back(Key(K::Point_2(3,2.1), ’c’));

Range_tree_2_type Range_tree_2(InputList.begin(),InputList.end());
Interval win(Interval(K::Point_2(4,8.1),K::Point_2(5,8.2)));
std::cout << "\n Window Query:\n ";
Range_tree_2.window_query(win, std::back_inserter(OutputList));
std::vector<Key>::iterator current=OutputList.begin();
while(current!=OutputList.end()){
std::cout << (*current).first.x() << "," << (*current).first.y()

<< ":" << (*current++).second << std::endl;
}

}

62.5.2 Example for Range Tree on Set-like Data

This example illustrates the use of the range tree on 2-dimensional point data (no value is associated to a data
item). After the definition of the tree, some input data items are created and the tree is constructed according to
the input data items. After that, a window query is performed and the query elements are given to standard out.

#include <CGAL/Cartesian.h>
#include <CGAL/Range_segment_tree_traits.h>
#include <CGAL/Range_tree_k.h>

typedef CGAL::Cartesian<double> K;
typedef CGAL::Range_segment_tree_set_traits_2<K> Traits;
typedef CGAL::Range_tree_2<Traits> Range_tree_2_type;

int main()
{
typedef Traits::Key Key;
typedef Traits::Interval Interval;
std::vector<Key> InputList, OutputList;
std::vector<Key>::iterator first, last, current;

InputList.push_back(Key(8,5.1));
InputList.push_back(Key(1,1.1));
InputList.push_back(Key(3,2.1));

Range_tree_2_type Range_tree_2(InputList.begin(),InputList.end());

Interval win=Interval(Key(4,8.1),Key(5,8.2));
std::cout << std::endl << "Window Query: lower left point: (4.0,5.0),";
std::cout << "upper right point: (8.1,8.2)" << std::endl;
Range_tree_2.window_query(win, std::back_inserter(OutputList));
current=OutputList.begin();
while(current!=OutputList.end()){
std::cout << (*current).x()<< "-" << (*current).y() << std::endl;
current++;
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}
}

62.6 Segment Trees

A segment tree is a static binary search tree for a given set of coordinates. The set of coordinates is defined
by the endpoints of the input data intervals. Any two adjacent coordinates build an elementary interval. Every
leaf corresponds to an elementary interval. Inner vertices correspond to the union of the subtree intervals of the
vertex. Each vertex or leaf v contains a sublayer type (or a list, if it is one-dimensional) that will contain all
intervals I, such that I contains the interval of vertex v but not the interval of the parent vertex of v.

A d-dimensional segment tree can be used to solve the following problems:

• Determine all d-dimensional intervals that contain a d-dimensional point. This query type is called “in-
verse range query”.

• Determine all d-dimensional intervals that enclose a given d-dimensional interval (enclosing query).

• Determine all d-dimensional intervals that partially overlap or are contained in a given d-dimensional
interval (window query).

In Figure 62.4 an example of a one-dimensional segment tree is given. Figure 62.5 shows a two-dimensional
segment tree.

The tree can be built in O(n logd n) time and needs O(n logd n) space. The processing time for inverse range
queries in an d-dimensional segment tree is O(logd n+k) time, where n is the total number of intervals and k is
the number of reported intervals.

One possible application of a two-dimensional segment tree is the following. Given a set of convex polygons in
two-dimensional space (CGAL::Polygon 2), we want to determine all polygons that intersect a given rectangular
query window. Therefore, we define a two-dimensional segment tree, where the two-dimensional interval of a
data item corresponds to the bounding box of a polygon and the value type corresponds to the polygon itself.
The segment tree is created with a sequence of all data items, and a window query is performed. The polygons
of the resulting data items are finally tested independently for intersections.

62.6.1 Example for Segment Tree on Map-like Data

The following example program uses the predefined Segment tree 2 data structure together with the prede-
fined traits class Segment tree map traits 2 which has two template arguments specifying the type of the point
data in each dimension (CGAL::Cartesian<double>) and the value type of the 2-dimensional point data (char).
Therefore the Segment tree 2 is defined on 2-dimensional point data (CGAL::Point 2<Cartesian<double> >)
each of which is associated with a character. Then, a few data items are created and put into a list. After that the
tree is constructed according to that list, a window query is performed, and the query elements are given out.

#include <CGAL/Cartesian.h>
#include <CGAL/Segment_tree_k.h>
#include <CGAL/Range_segment_tree_traits.h>

typedef CGAL::Cartesian<double> K;
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Figure 62.4: A one-dimensional segment tree. The segments and the corre-
sponding elementary intervals are shown below the tree. The arcs from the
nodes point to their subsets.
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Figure 62.5: A two-dimensional segment tree. The first layer of the tree is built
according to the elementary intervals of the first dimension. Each sublayer tree
of a vertex v is a segment tree according to the second dimension of all data
items of v.
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typedef CGAL::Segment_tree_map_traits_2<K, char> Traits;
typedef CGAL::Segment_tree_2<Traits > Segment_tree_2_type;

int main()
{
typedef Traits::Interval Interval;
typedef Traits::Pure_interval Pure_interval;
typedef Traits::Key Key;
std::list<Interval> InputList, OutputList1, OutputList2;

InputList.push_back(Interval(Pure_interval(Key(1,5), Key(2,7)),’a’));
InputList.push_back(Interval(Pure_interval(Key(2,7), Key(3,8)),’b’));
InputList.push_back(Interval(Pure_interval(Key(6,9), Key(9,13)),’c’));
InputList.push_back(Interval(Pure_interval(Key(1,3), Key(3,9)),’d’));

Segment_tree_2_type Segment_tree_2(InputList.begin(),InputList.end());

Interval a=Interval(Pure_interval(Key(3,6), Key(7,12)),’e’);
Segment_tree_2.window_query(a,std::back_inserter(OutputList1));

std::list<Interval>::iterator j = OutputList1.begin();
std::cout << "\n window_query (3,6),(7,12)\n";
while(j!=OutputList1.end()){
std::cout << (*j).first.first.x() << "-" << (*j).first.second.x() << " "

<< (*j).first.first.y() << "-" << (*j).first.second.y() << std::endl;
j++;

}

Interval b=Interval(Pure_interval(Key(6,10),Key(7,11)), ’f’);
Segment_tree_2.enclosing_query(b,std::back_inserter(OutputList2));
j = OutputList2.begin();
std::cout << "\n enclosing_query (6,10),(7,11)\n";
while(j!=OutputList2.end()){
std::cout << (*j).first.first.x() << "-" << (*j).first.second.x() << " "

<< (*j).first.first.y() << "-" << (*j).first.second.y() << std::endl;
j++;

}
return 0;

}

62.6.2 Example for Segment Tree on Set-like Data

This example illustrates the use of the predefined segment tree on 3-dimensional interval data (with no value
associated). After the definition of the traits type and tree type, some intervals are constructed and the tree is
build according to the intervals. Then, a window query is performed and the query elements are given out.

#include <CGAL/Cartesian.h>
#include <CGAL/Segment_tree_k.h>
#include <CGAL/Range_segment_tree_traits.h>

typedef CGAL::Cartesian<int> K;
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typedef CGAL::Range_segment_tree_set_traits_3<K> Traits;
typedef CGAL::Segment_tree_3<Traits > Segment_tree_3_type;

int main()
{
typedef Traits::Interval Interval;
typedef Traits::Key Key;
std::list<Interval> InputList, OutputList;

InputList.push_back(Interval(Key(1,5,7), Key(2,7,9)));
InputList.push_back(Interval(Key(2,7,6), Key(3,8,9)));
InputList.push_back(Interval(Key(6,9,5), Key(9,13,8)));
InputList.push_back(Interval(Key(1,3,4), Key(3,9,8)));

Segment_tree_3_type Segment_tree_3(InputList.begin(),InputList.end());

Interval a(Key(3,6,5), Key(7,12,8));
Segment_tree_3.window_query(a,std::back_inserter(OutputList));
std::list<Interval>::iterator j = OutputList1.begin();
std::cout << "\n window_query (3,6,5),(7,12,8) \n";
while(j!=OutputList.end()){
std::cout << (*j).first.x() << "," << (*j).first.y() << ",";
std::cout << (*j).first.z() <<", " << (*j).second.x() << ",";
std::cout << (*j).second.y() << "," << (*j).second.z() << std::endl;
j++;

}
}
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This chapter presents the CGAL range tree and segment tree data structures.

The range tree is theoretically superior to the Kd-tree, but the latter often seems to perform better. However, the
range tree as implemented in CGAL is more flexible than the Kd-tree implementation, in that it enables to layer
together range trees and segment trees in the same data structure.
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RangeSegmentTreeTraits k

Definition

A tree traits class gives the range tree and segment tree class the necessary type information of the keys and
intervals. Further more, they define function objects that allow to access the keys and intervals, and provide
comparison functions that are needed for window queries.

Types

RangeSegmentTreeTraits k:: Key The k-dimensional key type.

RangeSegmentTreeTraits k:: Interval The k-dimensional interval type.

RangeSegmentTreeTraits k:: Key i The type in dimension i, with 1≤ i≤ k.

RangeSegmentTreeTraits k:: key i function object providing an operator() that takes an argu-
ment of type Key and returns a component of type Key i.

RangeSegmentTreeTraits k:: low i function object providing an operator() that takes an argu-
ment of type Interval and returns a component of type Key i.

RangeSegmentTreeTraits k:: high i function object providing an operator() that takes an argu-
ment of type Interval and returns a component of type Key i.

RangeSegmentTreeTraits k:: compare i function object providing an operator() that takes two argu-
ments argument a, b of type Key i and returns true if a < b,
false otherwise.

Example

The following piece of code gives an example of how a traits class might look like, if you have keys that are of
the type int in the first and that are of the type double in the second dimension.

class Int_double_tree_traits_2{
public:
typedef std::pair<int, double> Key;
typedef int Key_1;
typedef double Key_2;
typedef std::pair<Key,Key> Interval;

class C_Key_1{
public:
Key_1 operator()(const Key& k)
{ return k.first;}

};
class C_Key_2{
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public:
Key_2 operator()(const Key& k)
{ return k.second;}

};
class C_Low_1{
public:
Key_1 operator()(const Interval& i)
{ return i.first.first;}

};
class C_High_1{
public:
Key_1 operator()(const Interval& i)
{ return i.second.first;}

};
class C_Low_2{
public:
Key_2 operator()(const Interval& i)
{ return i.first.second;}

};
class C_High_2{
public:
Key_2 operator()(const Interval& i)
{ return i.second.second;}

};
class C_Compare_1{
public:
bool operator()(Key_1 k1, Key_1 k2)
{ return less<int>()(k1,k2);}

};
class C_Compare_2{
public:
bool operator()(Key_2 k1, Key_2 k2)
{ return less<double>()(k1,k2);}

};
typedef C_Compare_1 compare_1;
typedef C_Compare_2 compare_2;
typedef C_Low_1 low_1;
typedef C_High_1 high_1;
typedef C_Key_1 key_1;
typedef C_Low_2 low_2;
typedef C_High_2 high_2;
typedef C_Key_2 key_2;

};
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CGAL::Range segment tree traits set 2<R>

Definition

The class is a range and segment tree traits class for the 2-dimensional point class from the CGAL kernel. The
class is parameterized with a representation class R.

#include <CGAL/Range segment tree traits.h>

Types

Point 2<R> Key;

std::pair<Key, Key> Interval;
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CGAL::Range segment tree traits set 3<R>

Definition

The class is a range and segment tree traits class for the 3-dimensional point class from the CGAL kernel. The
class is parameterized with a representation class R.

#include <CGAL/Range segment tree traits.h>

Types

Point 3<R> Key;

std::pair<Key, Key> Interval;
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CGAL::Range tree d<Data, Window, Traits>

Types

Range tree d<Data, Window, Traits>:: Data container Data.

Range tree d<Data, Window, Traits>:: Window

container Window.

Range tree d<Data, Window, Traits>:: Traits container Traits.
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Creation

#include <CGAL/Range tree d.h>
Range tree d<Data, Window, Traits> r( Tree base<Data, Window> sublayer tree);

A range tree is constructed, such that the subtree of each
vertex is of the same type prototype sublayer tree is.
We assume that the dimension of the tree is d. This means,
that sublayer tree is a prototype of a d−1-dimensional tree.
All data items of the d-dimensional range tree have container
type Data. The query window of the tree has container type
Window. Traits provides access to the corresponding data
slots of container Data and Window for the d-th dimension.
The traits class Traits must at least provide all functions and
type definitions as described in, for example, the reference
page for tree point traits. The template class described there
is fully generic and should fulfill the most requirements one
can have. In order to generate a one-dimensional range tree
instantiate Tree anchor<Data, Window> sublayer tree with
the same template parameters (Data and Window) Range
tree d is defined. In order to construct a two-dimensional
range tree, create Range tree d with a one-dimensional
Range tree d with the corresponding Traits class of the first
dimension.
Precondition: Traits::Data==Data and
Traits::Window==Window.

Operations

template<class ForwardIterator>
bool r.make tree( ForwardIterator first, ForwardIterator last)

The tree is constructed according to the data items in the se-
quence between the element pointed by iterator first and iter-
ator last. The data items of the iterator must have type Data.

Precondition: This function can only be called once. If it is the first call the tree is build and true is returned.
Otherwise, nothing is done but a CGAL warning is given and false returned.

template<class OutputIterator>
OutputIterator r.window query( Window win, OutputIterator result)

All elements that lay inside the d-dimensional interval de-
fined through win are placed in the sequence container of
OutputIterator; the output iterator that points to the last lo-
cation the function wrote to is returned.

bool r.is valid() The tree structure is checked. For each vertex the subtree is
checked on being valid and it is checked whether the value of
the Key type of a vertex corresponds to the highest Key type
value of the left subtree.
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Protected Operations

bool r.is inside( Window win, Data object)

returns true, if the data of object lies between the start and
endpoint of interval win. False otherwise.

bool r.is anchor() returns false.

Implementation

The construction of a d-dimensional range tree takes O(n lognd−1) time. The points in the query window are
reported in time O(k + logdn), where k is the number of reported points. The tree uses O(n lognd−1) storage.
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CGAL::Range tree k<Traits>

Definition

An object of the class is a k-dimensional range tree that can store k-dimensional keys of type Key. The class
allows to perform window queries on the keys. The class is parameterized with a range tree traits class Traits
that defines, among other things, the type of the Key.

CGAL provides traits class implementations that allow to use the range tree with point classes from the CGAL
kernel as keys. These classes are CGAL::Range segment tree traits set 2<R>, CGAL::Range segment tree
traits set 3<R>, CGAL::Range tree traits map 2<R> and CGAL::Range tree traits map 3<R>. The concept
RangeSegmentTreeTraits d defines the requirements that range tree traits classes must fulfill. This allows the
advanced user to develop further range tree traits classes.

#include <CGAL/Range tree k.h>

Types

Range tree k<Traits>:: Traits the type of the range tree traits class.

typedef Traits::Key Key;

typedef Traits::Interval

Interval;

Creation

Range tree k<Traits> R; Introduces an empty range tree R.

template < class ForwardIterator >
Range tree k<Traits> R( ForwardIterator first, ForwardIterator last);

Introduces a range tree R and initializes it with the data in the
range [first, last).
Precondition: value type(first) == Traits::Key.

Operations

template < class ForwardIterator >
void R.make tree( ForwardIterator first, ForwardIterator last)

Introduces a range tree R and initializes it with the data in the
range [first, last). This function can only be applied once on
an empty range tree.
Precondition: value type(first) == Traits::Key.
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template < class OutputIterator >
OutputIterator R.window query( Interval window, OutputIterator out)

writes all data that are in the interval window to the container
where out points to, and returns an output iterator that points
to the last location the function wrote to.
Precondition: value type(out) == Traits::Key.

Example

The following example program uses the predefined Range tree 2 data structure together with the predefined
traits class Range tree map traits 2 which has two template arguments specifying the type of the point data in
each dimension (CGAL::Cartesian<double>) and the value type of the 2-dimensional point data (char). There-
fore the Range tree 2 is defined on 2-dimensional point data (CGAL::Point 2<Cartesian<double> >) each of
which is associated with a character. Then, a few data items are created and put into a list. After that the tree is
constructed according to that list, a window query is performed, and the query elements are given out.

#include <CGAL/Cartesian.h>
#include <CGAL/Range_segment_tree_traits.h>
#include <CGAL/Range_tree_k.h>

typedef CGAL::Cartesian<double> K;
typedef CGAL::Range_tree_map_traits_2<K, char> Traits;
typedef CGAL::Range_tree_2<Traits> Range_tree_2_type;

int main()
{
typedef Traits::Key Key;
typedef Traits::Interval Interval;

std::vector<Key> InputList, OutputList;
InputList.push_back(Key(K::Point_2(8,5.1), ’a’));
InputList.push_back(Key(K::Point_2(1,1.1), ’b’));
InputList.push_back(Key(K::Point_2(3,2.1), ’c’));

Range_tree_2_type Range_tree_2(InputList.begin(),InputList.end());
Interval win(Interval(K::Point_2(4,8.1), K::Point_2(5,8.2)));
std::cout << "\n Window Query:\n ";
Range_tree_2.window_query(win, std::back_inserter(OutputList));
std::vector<Key>::iterator current=OutputList.begin();
while(current!=OutputList.end()){
std::cout << (*current).first.x() << "," << (*current).first.y()

<< ":" << (*current++).second << std::endl;
}

}
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CGAL::Range tree traits map 2<R,T>

Definition

The class is a range tree traits class for the 2-dimensional point class from the CGAL kernel, where data of
type T is associated to each key. The class is parameterized with a representation class R and the type of the
associated data T .

#include <CGAL/Range segment tree traits.h>

Types

std::pair<R::Point 2,T>

Key;

std::pair<R::Point 2, R::Point 2 >

Interval;
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CGAL::Range tree traits map 3<R,T>

Definition

The class is a range and segment tree traits class for the 3-dimensional point class from the CGAL kernel, where
data of type T is associated to each key. The class is parameterized with a representation class R and the type of
the associated data T .

#include <CGAL/Range segment tree traits.h>

Types

std::pair<R::Point 3,T>

Key;

std::pair<R::Point 3, R::Point 3>

Interval;
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CGAL::Segment tree d<Data, Window, Traits>

Types

Segment tree d<Data, Window, Traits>:: Data

container Data.

Segment tree d<Data, Window, Traits>:: Window

container Window.

Segment tree d<Data, Window, Traits>:: Traits

class Traits.

Creation

#include <CGAL/Segment tree d.h>
Segment tree d<Data, Window, Traits> s( Tree base<Data, Window> sublayer tree);

A segment tree is defined, such that the subtree of each
vertex is of the same type prototype sublayer tree is.
We assume that the dimension of the tree is d. This means,
that sublayer tree is a prototype of a d − 1-dimensional
tree. All data items of the d-dimensional segment tree
have container type Data. The query window of the tree
has container type Window. Traits provides access to the
corresponding data slots of container Data and Window
for the d-th dimension. The traits class Traits must at
least provide all functions and type definitions described,
for example, in the reference page for tree point traits.
The template class described there is fully generic and
should fulfill the most requirements one can have. In order
to generate a one-dimensional segment tree instantiate
Tree anchor<Data, Window> sublayer tree with the same
template parameters Data and Window Segment tree d
is defined. In order to construct a two-dimensional seg-
ment tree, create Segment tree d with a one-dimensional
Segment tree d with the corresponding Traits of the first
dimension.
Precondition: Traits::Data==Data and
Traits::Window==Window.
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Operations

bool s.make tree( In it first, In it last)

The tree is constructed according to the data items in the se-
quence between the element pointed by iterator first and it-
erator last.

Precondition: This function can only be called once. If it is the first call the tree is build and true is returned.
Otherwise, nothing is done but a CGAL warning is given and false returned.

OutputIterator s.window query( Window win, OutputIterator result)

win= [a1,b1), . . . , [ad ,bd), ai,bi ∈ Ti, 1≤ i≤ d. All elements
that intersect the associated d-dimensional interval of win are
placed in the associated sequence container of OutputIterator
and returns an output iterator that points to the last location
the function wrote to. In order to perform an inverse range
query, a range query of ε width has to be performed.

OutputIterator s.enclosing query( Window win, OutputIterator result)

All elements that enclose the associated d-dimensional inter-
val of win are placed in the associated sequence container of
OutputIterator and returns an output iterator that points to
the last location the function wrote to.

bool s.is valid() The tree structure is checked. For each vertex either the sub-
layer tree is a tree anchor, or it stores a (possibly empty) list
of data items. In the first case, the sublayer tree of the ver-
tex is checked on being valid. In the second case, each data
item is checked weather it contains the associated interval of
the vertex and does not contain the associated interval of the
parent vertex or not. True is returned if the tree structure is
valid, false otherwise.

Protected Operations

bool s.is inside( Window win, Data object)

returns true, if the interval of object is contained in the inter-
val of win. False otherwise.

bool s.is anchor() returns false.

Implementation

A d-dimensional segment tree is constructed in O(n lognd) time. An inverse range query is performed in time
O(k + logdn), where k is the number of reported intervals. The tree uses O(n lognd) storage.
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CGAL::Segment tree k<Traits>

Definition

An object of the class is a k-dimensional segment tree that can store k-dimensional intervals of type Interval.
The class allows to perform window queries, enclosing queries, and inverse range queries on the keys. The class
is parameterized with a segment tree traits class Traits that defines, among other things, the type of the Interval.
In order to perform an inverse range query, a range query of ε width has to be performed. We prefered not to
offer an extra function for this sort of query, since the inverse range query is a special case of the range query.
Furthermore, offering an inverse range query in the segment tree class implies offering this function also in the
range tree class and having an extra item in the traits class that accesses the inverse range query point.

CGAL provides traits class implementations that allow to use the segment tree with point classes from the
CGAL kernel as keys. These classes are CGAL::Range segment tree traits set 2<R>, CGAL::Range segment
tree traits set 3<R>, CGAL::Segment tree traits map 2<R> and CGAL::Segment tree traits map 3<R>. The
concept RangeSegmentTreeTraits d defines the requirements that segment tree traits classes must fulfill. This
allows the advanced user to develop further segment tree traits classes.

#include <CGAL/Segment tree k.h>

Types

Segment tree k<Traits>:: Traits the type of the segment tree traits class.

typedef Traits::Key Key;

typedef Traits::Interval

Interval;

Creation

Segment tree k<Traits> S; Introduces an empty segment tree S.

template < class ForwardIterator >
Segment tree k<Traits> S( ForwardIterator first, ForwardIterator last);

Introduces a segment tree S and initializes it with the data in
the range [first, last).
Precondition: value type(first) == Traits::Interval.

Operations

template < class ForwardIterator >
void S.make tree( ForwardIterator first, ForwardIterator last)

Introduces a segment tree S and initializes it with the data in
the range [first, last). This function can only be applied once
on an empty segment tree.
Precondition: value type(first) == Traits::Interval.
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template < class OutputIterator >
OutputIterator S.window query( Interval window, OutputIterator out)

writes all intervals that have non empty intersection with in-
terval window to the container where out points to, and re-
turns an output iterator that points to the last location the
function wrote to.
Precondition: value type(out) == Traits::Interval.

template < class OutputIterator >
OutputIterator S.enclosing query( Interval window, OutputIterator out)

writes all intervals that enclose in the interval window to the
container where out points to, and returns an output iterator
that points to the last location the function wrote to.
Precondition: value type(out) == Traits::Interval.

Example

This example illustrates the use of the predefined segment tree on 3-dimensional interval data (with no value
associated). After the definition of the traits type and tree type, some intervals are constructed and the tree is
build according to the intervals. Then, a window query is performed and the query elements are given out.

#include <CGAL/Cartesian.h>
#include <CGAL/Segment_tree_k.h>
#include <CGAL/Range_segment_tree_traits.h>

typedef CGAL::Cartesian<int> K;
typedef CGAL::Range_segment_tree_set_traits_3<K> Traits;
typedef CGAL::Segment_tree_3<Traits> Segment_tree_3_type;

int main()
{
typedef Traits::Interval Interval;
typedef Traits::Key Key;
std::list<Interval> InputList, OutputList;

InputList.push_back(Interval(Key(1,5,7), Key(2,7,9)));
InputList.push_back(Interval(Key(2,7,6), Key(3,8,9)));
InputList.push_back(Interval(Key(6,9,5), Key(9,13,8)));
InputList.push_back(Interval(Key(1,3,4), Key(3,9,8)));

Segment_tree_3_type Segment_tree_3(InputList.begin(),InputList.end());

Interval a(Key(3,6,5), Key(7,12,8));
Segment_tree_3.window_query(a,std::back_inserter(OutputList));
std::list<Interval>::iterator j = OutputList1.begin();
std::cout << "\n window_query (3,6,5),(7,12,8) \n";
while(j!=OutputList.end()){
std::cout << (*j).first.x() << "," << (*j).first.y() << ",";
std::cout << (*j).first.z() <<", " << (*j).second.x() << ",";
std::cout << (*j).second.y() << "," << (*j).second.z() << std::endl;
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j++;
}

}
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CGAL::Segment tree traits map 2<R,T>

Definition

The class is a segment tree traits class for the 2-dimensional point class from the CGAL kernel, where data of
type T is associated to each interval. The class is parameterized with a representation class R and the type of the
associated data T .

#include <CGAL/Range segment tree traits.h>

Types

R::Point 2 Key;

std::pair<std::pair<Key,Key>,T>

Interval;

3677



C
la

ss

CGAL::Segment tree traits map 3<R,T>

Definition

The class is a segment tree traits class for the 3-dimensional point class from the CGAL kernel, where data of
type T is associated to each interval. The class is parameterized with a representation class R and the type of the
associated data T .

#include <CGAL/Range segment tree traits.h>

Types

std::pair<R::Point 3 >

Key;

std::pair<std::pair<Key, Key>,T>

Interval;
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Sublayer

Definition

Defines the requirements that a Sublayer type of class Range tree d or Segment tree d has to fulfill.

First of all, the class has to be derived from the abstract base class Tree base and therefore has to provide meth-
ods make tree, window query, enclosing query and is inside with the same parameter types as the instantiated
class Range tree d or Segment tree d, respectively. Furthermore a method bool is anchor() has to be provided.
If the Sublayer type class builds a recursion anchor for class Segment tree d, this function is expected to return
true, false otherwise.

Such a recursion anchor class is provided by the class class. Tree anchor<Data, Window>.
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CGAL::tree interval traits

Definition

tree interval traits is a template class that provides an interface to data items. It is similar to tree point traits,
except that it provides access to two data slots of the same type of each container class (Data, Window) instead
of providing access to one data slot of container class Data and two data slots of class Window.

#include <CGAL/Tree traits.h>

Types

typedef
tree interval traits<Data, Window, Key, Data left func, Data right func, Window left func, Window right
func, Compare> Interval traits;

tree interval traits:: Data the container Data — the data type. It may consist of several
data slots. Two of these data slots have to be of type Key.

tree interval traits:: Window the container Window — the query window type. It may
consist of several data slots. Two of these data slots have
to be of type Key.

tree interval traits:: Key the type Key of the data slot this traits class provides access
to.

tree interval traits:: Data left func Data left func is a function object providing an operator()
that takes an argument of type Data and returns a (the left)
component of type Key.

tree interval traits:: Data right func Data right func is a function object providing an operator()
that takes an argument of type Data and returns a (the right)
component of type Key.

tree interval traits:: Window left func Window left func is a function objects that allow to access
the left data slot of container Window which has type Key

tree interval traits:: Window right func Window right func is a function objects that allow to access
the right data slot of container Window which has type Key

tree interval traits:: Compare defines a comparison relation which must define a strict or-
dering of the objects of type Key. If defined, less<Key> is
sufficient.

Creation

tree interval traits<Data, Window, Key, Data left func, Data right func, Window left func, Window right
func, Compare> d();

Generation of a tree point traits instance. It is a template class that provides an interface
to data items.
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Operations

Key d.get left( Data d) The data slot of the data item of d of type Key is accessed by
function object Data left func.

Key d.get right( Data d) The data slot of the data item of d of type Key is accessed by
function object Data right func.

Key d.get left win( Window w)

The data slot of the data item of w of type Key is accessed by
function object Window left func.

Key d.get right win( Window w)

The data slot of the data item of w of type Key is accessed by
function object Window right func.

static bool d.comp( Key& key1, Key& key2)

returns Compare(key1, key2).
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CGAL::tree point traits

Definition

tree point traits is a template class that provides an interface to data items.

#include <CGAL/Tree traits.h>

Types

typedef
tree point traits<Data, Window, Key, Data func, Window left func, Window right func, Compare> Point
traits;

tree point traits:: Data the container Data — defines the Data type. It may consist
of several data slots. One of these data slots has to be of type
Key.

tree point traits:: Window the container Window — defines the type of the query rect-
angle. It may consist of several data slots. Two of these data
slots has to be of type Key

tree point traits:: Key the type Key of the data slot this traits class provides access
to.

tree point traits:: Data func Data func is a function object providing an operator() that
takes an argument of type Data and returns a component of
type Key.

tree point traits:: Window left func Window left func is a function objects that allow to access
the left data slot of container Window which has type Key

tree point traits:: Window right func Window right func is a function objects that allow to access
the right data slot of container Window which has type Key

tree point traits:: Compare defines a comparison relation which must define a strict or-
dering of the objects of type Key. If defined, less<Key> is
sufficient.

Creation

tree point traits<Data, Window, Key, Data func, Window left func, Window right func, Compare> d();
Generation of a tree point traits instance. It is a template class that provides an interface
to data items.
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Operations

Key d.get key( Data d) The data slot of the data item of d of type Key is accessed by
function object Data func.

Key d.get left( Window w) The data slot of the data item of w of type Key is accessed by
function object Window left func.

Key d.get right( Window w)

The data slot of the data item of w of type Key is accessed by
function object Window right func.

static bool d.comp( Key& key1, Key& key2)

returns Compare(key1, key2).

static bool d.key comp( Data& data1, Data& data2)

returns Compare(get key(data1), get key(data2)).
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CGAL::Tree anchor<Data, Window>

Definition

Tree anchor is also derived from Tree base. Therefore, it provides the same methods as Range tree d and
Segment tree d, but does nothing; it can be used as a recursion anchor for those classes. Therefore, instantiate
Sublayer type of Range tree d (Segment tree d respectively) with Tree anchor and the container classes for
the data items (Data and Window).

Definition

Tree anchor<Data, Window>:: Data container Data.

Tree anchor<Data, Window>:: Window container Window.

Creation

#include <CGAL/Tree base.h>

Tree anchor<Data, Window> a;

Operations

template<class OutputIterator>
OutputIterator a.window query( Window win, OutputIterator result)

template<class OutputIterator>
OutputIterator a.enclosing query( Window win, OutputIterator result)

bool a.is valid() returns true;

Protected Operations

bool a.is inside( Window win, Data object)

returns true.

bool a.is anchor() returns true.

Example

The following figures show a number of rectangles and a 2-dimensional segment tree built on them.
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Figure 62.7: Two dimensional segment tree according to the interval data of Figure 62.6.
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Intersecting Sequences of dD Iso-oriented
Boxes
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63.1 Introduction

Simple questions on geometric primitives, such as intersection and distance computations, can themselves be-
come quite expensive if the primitives are not so simple anymore, for example, three-dimensional triangles and
facets of polyhedral surfaces. Thus algorithms operating on these primitives tend to be slow in practice. A com-
mon (heuristic) optimization approximates the geometric primitives with their axis-aligned bounding boxes,
runs a suitable modification of the algorithm on the boxes, and whenever a pair of boxes has an interesting
interaction1, only then the exact answer is computed on the complicated geometric primitives contained in the
boxes.

1Boxes represent volumes or point-sets. So, intersection means intersection of the point-set enclosed by the box and not only intersection
of the boundary, of course.

3687



We provide an efficient algorithm [ZE02] for finding all intersecting pairs for large numbers of iso-oriented
boxes, i.e., typically these will be such bounding boxes of more complicated geometries. One immediate ap-
plication of this algorithm is the detection of all intersections (and self-intersections) for polyhedral surfaces,
i.e., applying the algorithm on a large set of triangles in space, we give an example program later in this chap-
ter. Not so obvious applications are proximity queries and distance computations among such surfaces, see
Section 63.10 for an example and [ZE02] for more details.

63.2 Definition

A d-dimensional iso-oriented box is defined as the Cartesian product of d intervals. We call the box half-
open if the d intervals {[loi,hii) |0≤ i < d} are half-open intervals, and we call the box closed if the d intervals
{[loi,hii] |0≤ i < d} are closed intervals. Note that closed boxes support zero-width boxes and they can intersect
at their boundaries, while non-empty half-open boxes always have a positive volume and they only intersect
iff their interiors overlap. The distinction between closed and half-open boxes does not require a different
representation of boxes, just a different interpretation when comparing boxes, which is selected with the two
possible values for the topology parameter:

• CGAL::Box intersection d::HALF OPEN and

• CGAL::Box intersection d::CLOSED.

The number type of the interval boundaries must be one of the built-in types int, unsigned int, double or
float.

In addition, a box has an unique id-number. It is used to order boxes consistently in each dimension even if
boxes have identical coordinates. In consequence, the algorithm guarantees that a pair of intersecting boxes
is reported only once. Note that boxes with equal id-number are not reported since they obviously intersect
trivially.

The box intersection algorithm comes in two flavors: One algorithm works on a single sequence of boxes
and computes all pairwise intersections, which is called the complete case, and used, for example, in the self-
intersection test. The other algorithm works on two sequences of boxes and computes the pairwise intersections
between boxes from the first sequence with boxes from the second sequence, which is called the bipartite case.
For each pairwise intersection found a callback function is called with two arguments; the first argument is a
box from the first sequence and the second argument a box from the second sequence. In the complete case, the
second argument is a box from an internal copy of the first sequence.

63.3 Software Design

The box intersection algorithm is implemented as a family of generic functions; the functions for the complete
case accept one iterator range, and the functions for the bipartite case accept two iterator ranges. The callback
function for reporting the intersecting pairs is provided as a template parameter of the BinaryFunction concept.
The two principle function calls utilizing all default arguments look as follows:

#include <CGAL/box intersection d.h>

template< class RandomAccessIterator, class Callback >
void box intersection d( RandomAccessIterator begin, RandomAccessIterator end, Callback callback)
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template< class RandomAccessIterator1, class RandomAccessIterator2, class Callback >
void box intersection d( RandomAccessIterator1 begin1,

RandomAccessIterator1 end1,
RandomAccessIterator2 begin2,
RandomAccessIterator2 end2,
Callback callback)

Additional parameters to the functions calls are a cutoff value to adjust performance trade-offs, and a topology
parameter selecting between topologically closed boxes (the default) and topologically half-open boxes.

The algorithm reorders the boxes in the course of the algorithm. Now, depending on the size of a box it can be
faster to copy the boxes, or to work with pointers to boxes and copy only pointers. We offer automatic support
for both options. To simplify the description, let us call the value type of the iterator ranges box handle. The box
handle can either be our box type itself or a pointer (or const pointer) to the box type; these choices represent
both options from above.

In general, the algorithms treat the box type as opaque type and just assume that they are models of the
Assignable concept, so that the algorithms can modify the input sequences and reorder the boxes. The ac-
cess to the box dimension and box coordinates is mediated with a traits class of the BoxIntersectionTraits d
concept. A default traits class is provided that assumes that the box type is a model of the BoxIntersectionBox d
concept and that the box handle, i.e., the iterators value type, is identical to the box type or a pointer to the box
type (see the previous paragraph for the value versus pointer nature of the box handle).

Two implementations of iso-oriented boxes are provided; CGAL::Box intersection d::Box d as a plain box,
and CGAL::Box intersection d::Box with handle d as a box plus a handle that can be used to point to the full
geometry that is approximated by the box. Both implementations have template parameters for the number type
used for the interval bounds, for the fixed dimension of the box, and for a policy class [Ale01] selecting among
several solutions for providing the id-number.

The function signatures for the bipartite case look as follows. The signatures for the complete case with the
box self intersection d function look the same except for the single iterator range.

#include <CGAL/box intersection d.h>

template< class RandomAccessIterator1, class RandomAccessIterator2, class Callback >
void box intersection d( RandomAccessIterator1 begin1,

RandomAccessIterator1 end1,
RandomAccessIterator2 begin2,
RandomAccessIterator2 end2,
Callback callback,
std::ptrdiff t cutoff = 10,
Box intersection d::Topology topology = Box intersection d::CLOSED,
Box intersection d::Setting setting = Box intersection d::BIPARTITE)

template< class RandomAccessIterator1, class RandomAccessIterator2, class Callback, class BoxTraits >
void box intersection d( RandomAccessIterator1 begin1,

RandomAccessIterator1 end1,
RandomAccessIterator2 begin2,
RandomAccessIterator2 end2,
Callback callback,
BoxTraits box traits,
std::ptrdiff cutoff = 10,
Box intersection d::Topology topology = Box intersection d::CLOSED,
Box intersection d::Setting setting = Box intersection d::BIPARTITE)
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63.4 Minimal Example for Intersecting Boxes

The box implementation provided with CGAL::Box intersection d::Box d<double,2> has a dedicated construc-
tor for the CGAL bounding box type CGAL::Bbox 2 (similar for dimension 3). We use this in our minimal
example to create easily nine two-dimensional boxes in a grid layout of 3×3 boxes. Additionally we pick the
center box and the box in the upper-right corner as our second box sequence query.

The default policy of the box type implements the id-number with an explicit counter in the boxes, which is the
default choice since it always works, but it costs space that could potentially be avoided, see the example in the
next section. We use the id-number in our callback function to report the result of the intersection algorithm.
The result will be that the first query box intersects all nine boxes and the second query box intersects the four
boxes in the upper-right quadrant. See Section 63.7 for the change of the topology parameter and its effect.� �
#include <CGAL/box_intersection_d.h>
#include <CGAL/Bbox_2.h>
#include <iostream>

typedef CGAL::Box_intersection_d::Box_d<double,2> Box;
typedef CGAL::Bbox_2 Bbox;

// 9 boxes of a grid
Box boxes[9] = { Bbox( 0,0,1,1), Bbox( 1,0,2,1), Bbox( 2,0,3,1), // low

Bbox( 0,1,1,2), Bbox( 1,1,2,2), Bbox( 2,1,3,2), //
middle

Bbox( 0,2,1,3), Bbox( 1,2,2,3), Bbox( 2,2,3,3)};// upper
// 2 selected boxes as query; center and upper right
Box query[2] = { Bbox( 1,1,2,2), Bbox( 2,2,3,3)};

void callback( const Box& a, const Box& b ) {
std::cout << "box " << a.id() << " intersects box " << b.id() <<
std::endl;

}
int main() {

CGAL::box_intersection_d( boxes, boxes+9, query, query+2, callback);
return 0;

}� �
File: examples/Box_intersection_d/minimal.cpp

63.5 Example for Finding Intersecting 3D Triangles

The conventional application of the axis-aligned box intersection algorithm will start from complex geometry,
here 3D triangles, approximate them with their bounding box, compute the intersecting pairs of boxes, and
check only for those if the original triangles intersect as well.

We start in the main function and create ten triangles with endpoints chosen randomly in a cube [−1,+1)3. We
store the triangles in a vector called triangles.

Next we create a vector for the bounding boxes of the triangles called boxes. For the boxes we choose the
type Box with handle d<double,3,Iterator> that works nicely together with the CGAL bounding boxes of type
CGAL::Bbox 3. In addition, each box stores the iterator to the corresponding triangle.
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The default policy of this box type uses for the id-number the address of the value of the iterator, i.e., the address
of the triangle. This is a good choice that works correctly iff the boxes have unique iterators, i.e., there is a one-
to-one mapping between boxes and approximated geometry, which is the case here. It saves us the extra space
that was needed for the explicit id-number in the previous example.

We run the self intersection algorithm with the report inters function as callback. This callback reports the
intersecting boxes. It uses the handle and the global triangles vector to calculate the triangle numbers. Then
it checks the triangles themselves for intersection and reports if not only the boxes but also the triangles inter-
sect. We take some precautions before the intersection test in order to avoid problems, although unlikely, with
degenerate triangles that we might have created with the random process.

This example can be easily extended to test polyhedral surfaces of the Polyhedron 3 class
for (self-) intersections. The main difference are the numerous cases of incidences be-
tween triangles in the polyhedral surface that should not be reported as intersections, see the
examples/Polyhedron/polyhedron self intersection.cpp example program in the CGAL distribu-
tion.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/intersections.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/box_intersection_d.h>
#include <CGAL/function_objects.h>
#include <CGAL/Join_input_iterator.h>
#include <CGAL/algorithm.h>
#include <vector>

typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point_3;
typedef Kernel::Triangle_3 Triangle_3;
typedef std::vector<Triangle_3> Triangles;
typedef Triangles::iterator Iterator;
typedef CGAL::Box_intersection_d::Box_with_handle_d<double,3,Iterator>

Box;

Triangles triangles; // global vector of all triangles

// callback function that reports all truly intersecting triangles
void report_inters( const Box& a, const Box& b) {

std::cout << "Box " << (a.handle() - triangles.begin()) << " and "
<< (b.handle() - triangles.begin()) << " intersect";

if ( ! a.handle()->is_degenerate() && ! b.handle()->is_degenerate()
&& CGAL::do_intersect( *(a.handle()), *(b.handle()))) {

std::cout << ", and the triangles intersect also";
}
std::cout << ’.’ << std::endl;

}

int main() {
// Create 10 random triangles
typedef CGAL::Random_points_in_cube_3<Point_3> Pts;
typedef CGAL::Creator_uniform_3< Point_3, Triangle_3> Creator;
typedef CGAL::Join_input_iterator_3<Pts,Pts,Pts,Creator>
Triangle_gen;
Pts points( 1); // in centered cube [-1,1)ˆ3
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Triangle_gen triangle_gen( points, points, points);
CGAL::cpp0x::copy_n( triangle_gen, 10,
std::back_inserter(triangles));

// Create the corresponding vector of bounding boxes
std::vector<Box> boxes;
for ( Iterator i = triangles.begin(); i != triangles.end(); ++i)

boxes.push_back( Box( i->bbox(), i));

// Run the self intersection algorithm with all defaults
CGAL::box_self_intersection_d( boxes.begin(), boxes.end(),
report_inters);
return 0;

}� �
File: examples/Box_intersection_d/triangle_self_intersect.cpp

63.6 Example for Using Pointers to Boxes

We modify the previous example, finding intersecting 3D triangles, and add an additional vector ptr that stores
pointers to the bounding boxes, so that the intersection algorithm will work on a sequence of pointers and not
on a sequence of boxes. The change just affects the preparation of the additional vector and the call of the box
intersection function. The box intersection function (actually its default traits class) detects automatically that
the value type of the iterators is a pointer type and not a class type.� �

// Create the corresponding vector of pointers to bounding boxes
std::vector<Box *> ptr;
for ( std::vector<Box>::iterator i = boxes.begin(); i != boxes.end();
++i)

ptr.push_back( &*i);

// Run the self intersection algorithm with all defaults on the
// indirect pointers to bounding boxes. Avoids copying the boxes.
CGAL::box_self_intersection_d( ptr.begin(), ptr.end(),
report_inters);� �

In addition, the callback function report inters needs to be changed to work with pointers to boxes. The full
example program looks as follows:� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/intersections.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/box_intersection_d.h>
#include <CGAL/function_objects.h>
#include <CGAL/Join_input_iterator.h>
#include <CGAL/algorithm.h>
#include <vector>

typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point_3;
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typedef Kernel::Triangle_3 Triangle_3;
typedef std::vector<Triangle_3> Triangles;
typedef Triangles::iterator Iterator;
typedef CGAL::Box_intersection_d::Box_with_handle_d<double,3,Iterator>

Box;

Triangles triangles; // global vector of all triangles

// callback function that reports all truly intersecting triangles
void report_inters( const Box* a, const Box* b) {

std::cout << "Box " << (a->handle() - triangles.begin()) << " and "
<< (b->handle() - triangles.begin()) << " intersect";

if ( ! a->handle()->is_degenerate() && ! b->handle()->is_degenerate()
&& CGAL::do_intersect( *(a->handle()), *(b->handle()))) {

std::cout << ", and the triangles intersect also";
}
std::cout << ’.’ << std::endl;

}

int main() {
// Create 10 random triangles
typedef CGAL::Random_points_in_cube_3<Point_3> Pts;
typedef CGAL::Creator_uniform_3< Point_3, Triangle_3> Creator;
typedef CGAL::Join_input_iterator_3<Pts,Pts,Pts,Creator>
Triangle_gen;
Pts points( 1); // in centered cube [-1,1)ˆ3
Triangle_gen triangle_gen( points, points, points);
CGAL::cpp0x::copy_n( triangle_gen, 10,
std::back_inserter(triangles));

// Create the corresponding vector of bounding boxes
std::vector<Box> boxes;
for ( Iterator i = triangles.begin(); i != triangles.end(); ++i)

boxes.push_back( Box( i->bbox(), i));

// Create the corresponding vector of pointers to bounding boxes
std::vector<Box *> ptr;
for ( std::vector<Box>::iterator i = boxes.begin(); i != boxes.end();
++i)

ptr.push_back( &*i);

// Run the self intersection algorithm with all defaults on the
// indirect pointers to bounding boxes. Avoids copying the boxes.
CGAL::box_self_intersection_d( ptr.begin(), ptr.end(),
report_inters);
return 0;

}� �
File: examples/Box_intersection_d/triangle_self_intersect_pointers.cpp

A note on performance: The algorithm sorts and partitions the input sequences. It is clearly costly to copy
a large box compared to a simple pointer. However, the algorithm benefits from memory locality in the later
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stages when it copies the boxes, while the pointers would refer to boxes that become wildly scattered in memory.
These two effects, copying costs and memory locality, counteract each other. For small box sizes, i.e., small
dimension, memory locality wins and one should work with boxes, while for larger box sizes one should work
with pointers. The exact threshold depends on the memory hierarchy (caching) of the hardware platform and
the size of the boxes, most notably the type used to represent the box coordinates. A concrete example; on a
laptop with an Intel Mobile Pentium4 running at 1.80GHz with 512KB cache and 254MB main memory under
Linux this version with pointers was 20% faster than the version above that copies the boxes for 10000 boxes,
but the picture reversed for 100000 boxes, where the version above that copies the boxes becomes 300% faster.

Note that switching to the built-in type float is supported by the box intersection algorithm, but the interfacing
with the CGAL bounding box CGAL::Bbox 3 would not be that easy. In particular, just converting from the
double to the float representation incurs rounding that needs to be controlled properly, otherwise the box might
shrink and one might miss intersections.

63.7 Example Using the topology and the cutoff Parameters

Boxes can be interpreted by the box intersection algorithm as closed or as half-open boxes, see also Section 63.2.
Closed boxes support zero-width boxes and they can intersect at their boundaries, while half-open boxes always
have a positive volume and they only intersect iff their interiors overlap. The choice between closed or half-open
boxes is selected with the topology parameter and its two values:

• CGAL::Box intersection d::HALF OPEN and

• CGAL::Box intersection d::CLOSED.

The example program uses a two-dimensional box with int coordinates and id-numbers that are by default
explicitly stored. We create the same boxes as in the minimal example in Section 63.4. We create a 3×3 grid
of boxes, and two boxes for the query sequence, namely the box at the center and the box from the upper-right
corner of the grid.

We write a more involved callback function object Report that stores an output iterator and writes the id-
number of the box in the first argument to the output iterator. We also provide a small helper function report
that simplifies the use of the function object.

We call the box intersection algorithm twice; once for the default topology, which is the closed box topology,
and once for the half-open box topology. We sort the resulting output for better readability and verify its
correctness with the check1 and check2 data. For the closed box topology, the center box in query intersects all
boxes, and the upper-right box in query intersects the four boxes of the upper-right quadrant in boxes. Almost
all intersections are with the box boundaries, thus, for the half-open topology only one intersection remains per
query box, namely its corresponding box in boxes. So, the output of the algorithm will be:

0 1 2 3 4 4 5 5 6 7 7 8 8
4 8

For the second box intersection function call we have to specify the cutoff parameter explicitly. See the Sec-
tion 63.8 below for a detailed discussion.� �
#include <CGAL/box_intersection_d.h>
#include <vector>
#include <algorithm>
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#include <iterator>
#include <cassert>

typedef CGAL::Box_intersection_d::Box_d<int,2> Box;

// coordinates for 9 boxes of a grid
int p[9*4] = { 0,0,1,1, 1,0,2,1, 2,0,3,1, // lower

0,1,1,2, 1,1,2,2, 2,1,3,2, // middle
0,2,1,3, 1,2,2,3, 2,2,3,3};// upper

// 9 boxes
Box boxes[9] = { Box( p, p+ 2), Box( p+ 4, p+ 6), Box( p+ 8, p+10),

Box( p+12, p+14), Box( p+16, p+18), Box( p+20, p+22),
Box( p+24, p+26), Box( p+28, p+30), Box( p+32, p+34)};

// 2 selected boxes as query; center and upper right
Box query[2] = { Box( p+16, p+18), Box( p+32, p+34)};

// callback function object writing results to an output iterator
template <class OutputIterator>
struct Report {

OutputIterator it;
Report( OutputIterator i) : it(i) {} // store iterator in object
// We write the id-number of box a to the output iterator assuming
// that box b (the query box) is not interesting in the result.
void operator()( const Box& a, const Box&) { *it++ = a.id(); }

};
template <class Iter> // helper function to create the function object
Report<Iter> report( Iter it) { return Report<Iter>(it); }

int main() {
// run the intersection algorithm and store results in a vector
std::vector<std::size_t> result;
CGAL::box_intersection_d( boxes, boxes+9, query, query+2,

report( std::back_inserter( result)));
// sort, check, and show result
std::sort( result.begin(), result.end());
std::size_t check1[13] = {0,1,2,3,4,4,5,5,6,7,7,8,8};
assert(result.size() == 13 &&
std::equal(check1,check1+13,result.begin()));
std::copy( result.begin(), result.end(),

std::ostream_iterator<std::size_t>( std::cout, " "));
std::cout << std::endl;

// run it again but for different cutoff value and half-open boxes
result.clear();
CGAL::box_intersection_d( boxes, boxes+9, query, query+2,

report( std::back_inserter( result)),
std::ptrdiff_t(1),
CGAL::Box_intersection_d::HALF_OPEN);

// sort, check, and show result
std::sort( result.begin(), result.end());
std::size_t check2[2] = {4,8};
assert(result.size() == 2 && std::equal(check2, check2+2,
result.begin()));
std::copy( result.begin(), result.end(),
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std::ostream_iterator<std::size_t>( std::cout, " "));
std::cout << std::endl;
return 0;

}� �
File: examples/Box_intersection_d/box_grid.cpp

63.8 Runtime Performance

The implemented algorithm is described in [ZE02] as version two. Its performance depends on a cutoff pa-
rameter. When the size of both iterator ranges drops below the cutoff parameter the function switches from the
streamed segment-tree algorithm to the two-way-scan algorithm, see [ZE02] for the details.

The streamed segment-tree algorithm needs O(n logd(n)+ k) worst-case running time and O(n) space, where
n is the number of boxes in both input sequences, d the (constant) dimension of the boxes, and k the out-
put complexity, i.e., the number of pairwise intersections of the boxes. The two-way-scan algorithm needs
O(n log(n)+ l) worst-case running time and O(n) space, where l is the number of pairwise overlapping inter-
vals in one dimensions (the dimension where the algorithm is used instead of the segment tree). Note that l is
not necessarily related to k and using the two-way-scan algorithm is a heuristic.

Unfortunately, we have no general method to automatically determine an optimal cutoff parameter, since it de-
pends on the used hardware, the runtime ratio between callback runtime and segment-tree runtime, and of course
the number of boxes to be checked and their distribution. In cases where the callback runtime is dominant, it
may be best to make the threshold parameter small. Otherwise a cutoff =

√
n can lead to acceptable results. For

well distributed boxes the original paper [ZE02] gives optimal cutoffs in the thousands. Anyway, for optimal
runtime some experiments to compare different cutoff parameters are recommended.

To demonstrate that box intersection can be done quite fast, different box sequences are intersected in the
range between 4 and 800000 boxes total. We use three-dimensional default boxes of closed topology with float
coordinates and without additional data fields. The algorithm works directly on the boxes, not on pointer to
boxes. Each box intersection is reported to an empty dummy callback.

For each box set, a near-optimal cutoff parameter is determined using an adaptive approximation. The runtime
required for streaming is compared against usual scanning. Results on a Xeon 2.4GHz with 4GB main memory
can be seen in Figure 63.1. For a small number of boxes, pure scanning is still faster than streaming with optimal
cutoff, which would just delegate the box sets to the scanning algorithm. As there are more and more boxes, the
overhead becomes less important.

63.9 Example Using a Custom Box Implementation

The example in the previous Section 63.7 uses an array to provide the coordinates and then creates another array
for the boxes. In the following example we write our own box class Box that we can initialize directly with the
four coordinates and create the array of boxes directly. We also omit the explicitly stored id-number and use the
address of the box itself as id-number. This works only if the boxes do not change their position, i.e., we work
with pointers to the boxes in the intersection algorithm.

We follow with our own box class Box the BoxIntersectionBox d concept, which allows us to reuse the default
traits implementation, i.e., we can use the same default function call to compute all intersections. See the
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Figure 63.1: Runtime comparison between the scanning and the streaming algorithm.

example in the next section for a self-written traits class. So, in principle, the remainder of the example stays
the same and we omit the part from the previous example for brevity that illustrates the half-open box topology.

The requirements for the box implementation are best studied on page 3714 in the Reference Manual. In a
nutshell, we have to define the type NT for the box coordinates and the type ID for the id-number. Member
functions give access to the coordinates and the id-number. A static member function returns the dimension.� �
#include <CGAL/box_intersection_d.h>
#include <vector>
#include <algorithm>
#include <iterator>
#include <cassert>

struct Box {
typedef int NT;
typedef std::ptrdiff_t ID;
int lo[2], hi[2];
Box( int lo0, int lo1, int hi0, int hi1) { lo[0]=lo0; lo[1]=lo1;
hi[0]=hi0; hi[1]=hi1;}
static int dimension() { return 2; }
int min_coord(int dim) const { return lo[dim]; }
int max_coord(int dim) const { return hi[dim]; }
// id-function using address of current box,
// requires to work with pointers to boxes later
std::ptrdiff_t id() const { return (std::ptrdiff_t)(this); }

};

// 9 boxes of a grid
Box boxes[9] = { Box( 0,0,1,1), Box( 1,0,2,1), Box( 2,0,3,1), // low

Box( 0,1,1,2), Box( 1,1,2,2), Box( 2,1,3,2), // middle
Box( 0,2,1,3), Box( 1,2,2,3), Box( 2,2,3,3)};// upper

// 2 selected boxes as query; center and upper right
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Box query[2] = { Box( 1,1,2,2), Box( 2,2,3,3)};

// With the special id-function we need to work on box pointers
Box* b_ptr[9] = { boxes, boxes+1, boxes+2, boxes+3, boxes+4, boxes+5,

boxes+6, boxes+7, boxes+8};
Box* q_ptr[2] = { query, query+1};

// callback function object writing results to an output iterator
template <class OutputIterator>
struct Report {

OutputIterator it;
Report( OutputIterator i) : it(i) {} // store iterator in object
// We write the position with respect to ’boxes’ to the output
iterator
// assuming that box b (the query box) is not interesting in the
result.
void operator()( const Box* a, const Box*) {

*it++ = ( reinterpret_cast<Box*>(a->id()) - boxes);
}

};
template <class Iter> // helper function to create the function object
Report<Iter> report( Iter it) { return Report<Iter>(it); }

int main() {
// run the intersection algorithm and store results in a vector
std::vector<std::size_t> result;
CGAL::box_intersection_d( b_ptr, b_ptr+9, q_ptr, q_ptr+2,

report( std::back_inserter( result)),
std::ptrdiff_t(0));

// sort and check result
std::sort( result.begin(), result.end());
std::size_t chk[13] = {0,1,2,3,4,4,5,5,6,7,7,8,8};
assert( result.size()==13 && std::equal(chk,chk+13,result.begin()));
return 0;

}� �
File: examples/Box_intersection_d/custom_box_grid.cpp

63.10 Example for Point Proximity Search with a Custom Traits Class

Given a set of 3D points, we want to find all pairs of points that are less than a certain distance apart. We use the
box intersection algorithm to find good candidates, namely those that are less than this specified distance apart
in the L∞ norm, which is a good approximation of the Euclidean norm.

We use an unusual representation for the box, namely pointers to the 3D points themselves. We implement a
special box traits class that interprets the point as a box of the dimensions [−eps,+eps]3 centered at this point.
The value for eps is half the specified distance from above, i.e., points are reported if their distance is smaller
than 2*eps.

The requirements for the box traits class are best studied on page 3715 in the Reference Manual. In a nutshell, we
have to define the type NT for the box coordinates, the type ID for the id-number, and the type Box parameter
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similar to the box handle, here Point 3* since we work with the pointers. All member functions in the traits
class are static. Two functions give access to the max and min coordinates that we compute from the point
coordinates plus or minus the eps value, respectively. For the id-number function the address of the point itself
is sufficient, since the points stay stable. Another function returns the dimension.

The report callback function computes than the Euclidean distance and prints a message for points that are close
enough.

Note that we need to reserve sufficient space in the points vector to avoid reallocations while we create the
points vector and the boxes vector in parallel, since otherwise the points vector might reallocate and invalidate
all pointers stored in the boxes so far.� �
#include <CGAL/Simple_cartesian.h>
#include <CGAL/box_intersection_d.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/algorithm.h>
#include <vector>
#include <algorithm>
#include <iterator>
#include <cmath>

typedef CGAL::Simple_cartesian<float> Kernel;
typedef Kernel::Point_3 Point_3;
typedef CGAL::Random_points_on_sphere_3<Point_3> Points_on_sphere;

std::vector<Point_3> points;
std::vector<Point_3*> boxes; // boxes are just pointers to points
const float eps = 0.1f; // finds point pairs of distance <

2*eps

// Boxes are just pointers to 3d points. The traits class adds the
// +- eps size to each interval around the point, effectively building
// on the fly a box of size 2*eps centered at the point.
struct Traits {

typedef float NT;
typedef Point_3* Box_parameter;
typedef std::ptrdiff_t ID;

static int dimension() { return 3; }
static float coord( Box_parameter b, int d) {

return (d == 0) ? b->x() : ((d == 1) ? b->y() : b->z());
}
static float min_coord( Box_parameter b, int d) { return
coord(b,d)-eps;}
static float max_coord( Box_parameter b, int d) { return
coord(b,d)+eps;}
// id-function using address of current box,
// requires to work with pointers to boxes later
static std::ptrdiff_t id(Box_parameter b) { return
(std::ptrdiff_t)(b); }

};

// callback function reports pairs in close proximity
void report( const Point_3* a, const Point_3* b) {

float dist = std::sqrt( CGAL::squared_distance( *a, *b));
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if ( dist < 2*eps) {
std::cout << "Point " << (a - &(points.front())) << " and Point "

<< (b - &(points.front())) << " have distance " << dist
<< "." << std::endl;

}
}

int main() {
// create some random points on the sphere of radius 1.0
Points_on_sphere generator( 1.0);
points.reserve( 50);
for ( int i = 0; i != 50; ++i) {

points.push_back( *generator++);
boxes.push_back( & points.back());

}

// run the intersection algorithm and report proximity pairs
CGAL::box_self_intersection_d( boxes.begin(), boxes.end(),

report, Traits());
return 0;

}� �
File: examples/Box_intersection_d/proximity_custom_box_traits.cpp

63.11 Design and Implementation History

Lutz Kettner and Andreas Meyer implemented the algorithms starting from the publication [ZE02]. We had
access to the original C implementation of Afra Zomorodian, which helped clarifying some questions, and we
are grateful to the help of Afra Zomorodian in answering our questions during his visit. We thank Steve Robbins
for an excellent review for this package. Steve Robbins provided an independent and earlier implementation of
this algorithm, however, we learned too late about this implementation.
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We provide an efficient algorithm [ZE02] for finding all intersecting2 pairs for large numbers of iso-oriented
boxes, i.e., typically these will be bounding boxes of more complicated geometries. For comparison and as a
base case for other methods, we also offer the simple all-pairs test as a generic function.

63.12 Classified Reference Pages
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2Boxes represent volumes or point-sets. So, intersection means intersection of the point-set enclosed by the box and not only intersection
of the boundary, of course.
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CGAL::box intersection d

Definition

The function box intersection d computes the pairwise intersecting boxes between two sequences of iso-
oriented boxes in arbitrary dimension. The sequences of boxes are given with two random-access iterator
ranges and will be reordered in the course of the algorithm. For each intersecting pair of boxes a callback
function object is called with the two intersecting boxes as argument; the first argument is a box from the first
sequence, the second argument a box from the second sequence. The performance of the algorithm can be tuned
with a cutoff parameter, see the implementation section below for more details.

The algorithm reorders the boxes in the course of the algorithm. Now, depending on the size of a box it can be
faster to copy the boxes, or to work with pointers to boxes and copy only pointers. We offer automatic support
for both options. To simplify the description, let us call the value type of the iterators box handle. The box
handle can either be our box type itself or a pointer (or const pointer) to the box type.

A d-dimensional iso-oriented box is defined as the Cartesian product of d intervals. We call the box half-
open if the d intervals {[loi,hii) |0≤ i < d} are half-open intervals, and we call the box closed if the d intervals
{[loi,hii] |0≤ i < d} are closed intervals. Note that closed boxes support zero-width boxes and they can intersect
at their boundaries, while non-empty half-open boxes always have a positive volume and they only intersect iff
their interiors overlap. The distinction between closed or half-open boxes does not require a different represen-
tation of boxes, just a different interpretation when comparing boxes, which is selected with the topology param-
eter and its two values, CGAL::Box intersection d::HALF OPEN and CGAL::Box intersection d::CLOSED.

In addition, a box has an unique id-number. It is used to order boxes consistently in each dimension even if
boxes have identical coordinates. In consequence, the algorithm guarantees that a pair of intersecting boxes is
reported only once. Boxes with equal id-number are not reported since they obviously intersect trivially.

The algorithm uses a traits class of the BoxIntersectionTraits d concept to access the boxes. A default traits
class is provided that assumes that the box type is a model of the BoxIntersectionBox d concept and that the
box handle, i.e., the iterators value type, is identical to the box type or a pointer to the box type.

An important special application of this algorithm is the test for self-intersections where the second box se-
quence is an identical copy of the first sequence including the preserved id-number. Note that this implies
that the address of the box is not sufficient for the id-number if boxes are copied by value. To ease the use of
this special case we offer a simplified version of this function with one iterator range only, which then creates
internally the second copy of the boxes, under the name CGAL::box self intersection d.

In the general case, we distinguish between the bipartite case (the boxes are from different sequences) and the
complete case (the boxes are from the same sequence, i.e., the self intersection case). The default is the bipartite
case, since the complete case is typically handled with the simplified function call mentioned above. However,
the general function call offers the setting parameter with the values CGAL::Box intersection d::COMPLETE
and CGAL::Box intersection d::BIPARTITE.

#include <CGAL/box intersection d.h>

template< class RandomAccessIterator1, class RandomAccessIterator2, class Callback >
void box intersection d( RandomAccessIterator1 begin1,
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RandomAccessIterator1 end1,
RandomAccessIterator2 begin2,
RandomAccessIterator2 end2,
Callback callback,
std::ptrdiff t cutoff = 10,
Box intersection d::Topology topology = Box intersection d::CLOSED,
Box intersection d::Setting setting = Box intersection d::BIPARTITE)

Invocation of box intersection with default box traits CGAL::Box intersection d::Box
traits d<Box handle>, where Box handle corresponds to the iterator value type of Ran-
domAccessIterator1.

template< class RandomAccessIterator1, class RandomAccessIterator2, class Callback, class BoxTraits >
void box intersection d( RandomAccessIterator1 begin1,

RandomAccessIterator1 end1,
RandomAccessIterator2 begin2,
RandomAccessIterator2 end2,
Callback callback,
BoxTraits box traits,
std::ptrdiff t cutoff = 10,
Box intersection d::Topology topology = Box intersection d::CLOSED,
Box intersection d::Setting setting = Box intersection d::BIPARTITE)

Invocation with custom box traits.

Requirements

• RandomAccessIterator1, and . . . 2, must be mutable random-access iterators and both value types must
be the same. We call this value type Box handle in the following.

• Callback must be of the BinaryFunction concept. The Box handle must be convertible to both argument
types. The return type is not used and can be void.

• The Box handle must be a model of the Assignable concept.

• In addition, if the default box traits is used the Box handle must be a class type T or a pointer to a class
type T , where T must be a model of the BoxIntersectionBox d concept. In both cases, the default box
traits specializes to a suitable implementation.

• BoxTraits must be of the BoxIntersectionTraits d concept.

See Also

CGAL::box self intersection d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3709
CGAL::box intersection all pairs d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3707

CGAL::Box intersection d::Box traits d<BoxHandle> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3720
BoxIntersectionBox d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3714
BoxIntersectionTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3715
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Implementation

The implemented algorithm is described in [ZE02] as version two. Its performance depends on a cutoff pa-
rameter. When the size of both iterator ranges drops below the cutoff parameter the function switches from the
streamed segment-tree algorithm to the two-way-scan algorithm, see [ZE02] for the details.

The streamed segment-tree algorithm needs O(n logd(n)+ k) worst-case running time and O(n) space, where
n is the number of boxes in both input sequences, d the (constant) dimension of the boxes, and k the out-
put complexity, i.e., the number of pairwise intersections of the boxes. The two-way-scan algorithm needs
O(n log(n)+ l) worst-case running time and O(n) space, where l is the number of pairwise overlapping inter-
vals in one dimensions (the dimension where the algorithm is used instead of the segment tree). Note that l is
not necessarily related to k and using the two-way-scan algorithm is a heuristic.

Unfortunately, we have no general method to automatically determine an optimal cutoff parameter, since it de-
pends on the used hardware, the runtime ratio between callback runtime and segment-tree runtime, and of course
the number of boxes to be checked and their distribution. In cases where the callback runtime is dominant, it
may be best to make the threshold parameter small. Otherwise a cutoff =

√
n can lead to acceptable results. For

well distributed boxes the original paper [ZE02] gives optimal cutoffs in the thousands. Anyway, for optimal
runtime some experiments to compare different cutoff parameters are recommended. See also Section 63.8.

Example

The box implementation provided with CGAL::Box intersection d::Box d<double,2> has a special constructor
for the CGAL bounding box type CGAL::Bbox 2 (and similar for dimension 3). We use this in the example to
create 3×3 boxes in a grid layout. Additionally we pick the center box and the box in the upper-right corner as
our second box sequence query.

The default policy of the box type implements the id-number with an explicit counter in the boxes, which is the
default choice since it always works. We use the id-number in our callback function to report the result of the
intersection algorithm call. The result will be that the first query box intersects all nine boxes and the second
query box intersects the four boxes in the upper-right quadrant.� �
#include <CGAL/box_intersection_d.h>
#include <CGAL/Bbox_2.h>
#include <iostream>

typedef CGAL::Box_intersection_d::Box_d<double,2> Box;
typedef CGAL::Bbox_2 Bbox;

// 9 boxes of a grid
Box boxes[9] = { Bbox( 0,0,1,1), Bbox( 1,0,2,1), Bbox( 2,0,3,1), // low

Bbox( 0,1,1,2), Bbox( 1,1,2,2), Bbox( 2,1,3,2), //
middle

Bbox( 0,2,1,3), Bbox( 1,2,2,3), Bbox( 2,2,3,3)};// upper
// 2 selected boxes as query; center and upper right
Box query[2] = { Bbox( 1,1,2,2), Bbox( 2,2,3,3)};

void callback( const Box& a, const Box& b ) {
std::cout << "box " << a.id() << " intersects box " << b.id() <<
std::endl;

}
int main() {

CGAL::box_intersection_d( boxes, boxes+9, query, query+2, callback);
return 0;

}� �
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File: examples/Box_intersection_d/minimal.cpp
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CGAL::box intersection all pairs d

Definition

The function box intersection all pairs d computes the pairwise intersecting boxes between two sequences of
iso-oriented boxes in arbitrary dimension. It does so by comparing all possible pairs of boxes and is thus inferior
to the fast CGAL::box intersection d algorithm on page 3703.

The sequences of boxes are given with two forward iterator ranges. The sequences are not modified. For each
intersecting pair of boxes a callback function object is called with the two intersecting boxes as argument; the
first argument is a box from the first sequence, the second argument a box from the second sequence.

The algorithm is interface compatible with the CGAL::box intersection d function. Similarly, we call the value
type of the iterators the box handle, which is either our box type or a pointer type to our box type.

A d-dimensional iso-oriented box is defined as the Cartesian product of d intervals. We call the box half-
open if the d intervals {[loi,hii) |0≤ i < d} are half-open intervals, and we call the box closed if the d intervals
{[loi,hii] |0≤ i < d} are closed intervals. Note that closed boxes support zero-width boxes and they can intersect
at their boundaries, while non-empty half-open boxes always have a positive volume and they only intersect iff
their interiors overlap. The distinction between closed or half-open boxes does not require a different represen-
tation of boxes, just a different interpretation when comparing boxes, which is selected with the topology param-
eter and its two values, CGAL::Box intersection d::HALF OPEN and CGAL::Box intersection d::CLOSED.

In addition, a box has an unique id-number. Boxes with equal id-number are not reported since they obviously
intersect trivially.

The algorithm uses a traits class of the BoxIntersectionTraits d concept to access the boxes. A default traits
class is provided that assumes that the box type is a model of the BoxIntersectionBox d concept and that the
box handle, i.e., the iterators value type, is identical to the box type or a pointer to the box type.

An important special application of this algorithm is the test for self-intersections where the second box se-
quence is an identical copy of the first sequence including the preserved id-number. We offer a specialized
implementation CGAL::box self intersection all pairs for this application.

#include <CGAL/box intersection d.h>

template< class ForwardIterator1, class ForwardIterator2, class Callback >
void box intersection all pairs d( ForwardIterator1 begin1,

ForwardIterator1 end1,
ForwardIterator2 begin2,
ForwardIterator2 end2,
Callback callback,
Box intersection d::Topology topology = Box intersection d::CLOSED)

Invocation of box intersection with default box traits CGAL::Box intersection d::Box
traits d<Box handle>, where Box handle corresponds to the iterator value type of For-
wardIterator1.

template< class ForwardIterator1, class ForwardIterator2, class Callback, class BoxTraits >
void box intersection all pairs d( ForwardIterator1 begin1,
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ForwardIterator1 end1,
ForwardIterator2 begin2,
ForwardIterator2 end2,
Callback callback,
BoxTraits box traits,
Box intersection d::Topology topology = Box intersection d::CLOSED)

Invocation with custom box traits.

Requirements

• ForwardIterator1, and . . . 2, must be forward iterators and both value types must be the same. We call
this value type Box handle in the following.

• Callback must be of the BinaryFunction concept. The Box handle must be convertible to both argument
types. The return type is not used and can be void.

• The Box handle must be a model of the Assignable concept.

• In addition, if the default box traits is used the Box handle must be a class type T or a pointer to a class
type T , where T must be a model of the BoxIntersectionBox d concept. In both cases, the default box
traits specializes to a suitable implementation.

• BoxTraits must be of the BoxIntersectionTraits d concept.

See Also

CGAL::box intersection d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3703
CGAL::box self intersection d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3709
CGAL::box self intersection all pairs d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3712

CGAL::Box intersection d::Box traits d<BoxHandle> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3720
BoxIntersectionBox d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3714
BoxIntersectionTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3715

Implementation

The algorithm is trivially testing all pairs and runs therefore in time O(nm) where n is the size of the first
sequence and m is the size of the second sequence.
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CGAL::box self intersection d

Definition

The function box self intersection d computes the pairwise intersecting boxes in a sequence of iso-oriented
boxes in arbitrary dimension. The sequence of boxes is given with as a random-access iterator range and will be
reordered in the course of the algorithm. For each intersecting pair of boxes a callback function object is called
with the two intersecting boxes as argument; the first argument is a box from the sequence, the second argument
is a copy of a box from the sequence. The performance of the algorithm can be tuned with a cutoff parameter,
see the implementation section of the CGAL::box intersection d function on page 3703.

The algorithm creates a second copy of the boxes and reorders the boxes in the course of the algorithm. Now,
depending on the size of a box it can be faster to copy the boxes, or to work with pointers to boxes and copy only
pointers. We offer automatic support for both options. To simplify the description, let us call the value type of
the iterators box handle. The box handle can either be our box type itself or a pointer (or const pointer) to the
box type.

A d-dimensional iso-oriented box is defined as the Cartesian product of d intervals. We call the box half-
open if the d intervals {[loi,hii) |0≤ i < d} are half-open intervals, and we call the box closed if the d intervals
{[loi,hii] |0≤ i < d} are closed intervals. Note that closed boxes support zero-width boxes and they can intersect
at their boundaries, while non-empty half-open boxes always have a positive volume and they only intersect iff
their interiors overlap. The distinction between closed or half-open boxes does not require a different represen-
tation of boxes, just a different interpretation when comparing boxes, which is selected with the topology param-
eter and its two values, CGAL::Box intersection d::HALF OPEN and CGAL::Box intersection d::CLOSED.

In addition, a box has an unique id-number. It is used to order boxes consistently in each dimension even if
boxes have identical coordinates. In consequence, the algorithm guarantees that a pair of intersecting boxes is
reported only once. This self-intersection function creates internally a second copy of the box sequence. The
copying has to preserve the id-number of boxes. Note that this implies that the address of the box is not sufficient
for the id-number if boxes are copied by value. Boxes of equal id-number are not reported as intersecting pairs
since they are always intersecting trivially.

The algorithm uses a traits class of the BoxIntersectionTraits d concept to access the boxes. A default traits
class is provided that assumes that the box type is a model of the BoxIntersectionBox d concept and that the
box handle, i.e., the iterators value type, is identical to the box type or a pointer to the box type.

#include <CGAL/box intersection d.h>

template< class RandomAccessIterator, class Callback >
void box self intersection d( RandomAccessIterator begin,

RandomAccessIterator end,
Callback callback,
std::ptrdiff t cutoff = 10,
Box intersection d::Topology topology = Box intersection d::CLOSED)

Invocation of box intersection with default box traits CGAL::Box
intersection d::Box traits d<Box handle>, where Box handle corre-
sponds to the iterator value type of RandomAccessIterator.

template< class RandomAccessIterator, class Callback, class BoxTraits >
void box self intersection d( RandomAccessIterator begin,
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RandomAccessIterator end,
Callback callback,
BoxTraits box traits,
std::ptrdiff t cutoff = 10,
Box intersection d::Topology topology = Box intersection d::CLOSED)

Invocation with custom box traits.

Requirements

• RandomAccessIterator must be a mutable random-access iterator. We call its value type Box handle in
the following.

• Callback must be of the BinaryFunction concept. The Box handle must be convertible to both argument
types. The return type is not used and can be void.

• The Box handle must be a model of the Assignable concept.

• In addition, if the default box traits is used the Box handle must be a class type T or a pointer to a class
type T , where T must be a model of the BoxIntersectionBox d concept. In both cases, the default box
traits specializes to a suitable implementation.

• BoxTraits must be of the BoxIntersectionTraits d concept.

See Also

CGAL::box intersection d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3703
CGAL::box self intersection all pairs d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3712

CGAL::Box intersection d::Box traits d<BoxHandle> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3720
BoxIntersectionBox d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3714
BoxIntersectionTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3715

Implementation

See the implementation section of the CGAL::box intersection d function on page 3703.

Example

The box implementation provided with CGAL::Box intersection d::Box d<double,2> has a special constructor
for the CGAL bounding box type CGAL::Bbox 2 (and similar for dimension 3). We use this in the example to
create 3×3 boxes in a grid layout.

The default policy of the box type implements the id-number with an explicit counter in the boxes, which is the
default choice since it always works. We use the id-number in our callback function to report the result of the
intersection algorithm call. The result will be 20 pairwise intersections, but the order in which they are reported
is non-intuitive.
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� �
#include <CGAL/box_intersection_d.h>
#include <CGAL/Bbox_2.h>
#include <iostream>

typedef CGAL::Box_intersection_d::Box_d<double,2> Box;
typedef CGAL::Bbox_2 Bbox;

// 9 boxes of a grid
Box boxes[9] = { Bbox( 0,0,1,1), Bbox( 1,0,2,1), Bbox( 2,0,3,1), // low

Bbox( 0,1,1,2), Bbox( 1,1,2,2), Bbox( 2,1,3,2), //
middle

Bbox( 0,2,1,3), Bbox( 1,2,2,3), Bbox( 2,2,3,3)};// upper

void callback( const Box& a, const Box& b ) {
std::cout << "box " << a.id() << " intersects box " << b.id() <<
std::endl;

}

int main() {
CGAL::box_self_intersection_d( boxes, boxes+9, callback);
return 0;

}� �
File: examples/Box_intersection_d/minimal_self.cpp
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CGAL::box self intersection all pairs d

Definition

The function box self intersection all pairs d computes the pairwise intersecting boxes in a sequence of iso-
oriented boxes in arbitrary dimension. It does so by comparing all possible pairs of boxes and is thus inferior to
the fast CGAL::box self intersection d algorithm on page 3709.

The sequence of boxes is given with a forward iterator range. The sequences are not modified. For each
intersecting pair of boxes a callback function object is called with the two intersecting boxes as argument.

The algorithm is interface compatible with the CGAL::box self intersection d function. Similarly, we call the
value type of the iterators the box handle, which is either our box type or a pointer type to our box type.

A d-dimensional iso-oriented box is defined as the Cartesian product of d intervals. We call the box half-
open if the d intervals {[loi,hii) |0≤ i < d} are half-open intervals, and we call the box closed if the d intervals
{[loi,hii] |0≤ i < d} are closed intervals. Note that closed boxes support zero-width boxes and they can intersect
at their boundaries, while non-empty half-open boxes always have a positive volume and they only intersect iff
their interiors overlap. The distinction between closed or half-open boxes does not require a different represen-
tation of boxes, just a different interpretation when comparing boxes, which is selected with the topology param-
eter and its two values, CGAL::Box intersection d::HALF OPEN and CGAL::Box intersection d::CLOSED.

The algorithm uses a traits class of the BoxIntersectionTraits d concept to access the boxes. A default traits
class is provided that assumes that the box type is a model of the BoxIntersectionBox d concept and that the
box handle, i.e., the iterators value type, is identical to the box type or a pointer to the box type.

#include <CGAL/box intersection d.h>

template< class ForwardIterator, class Callback >
void box self intersection all pairs d(

ForwardIterator begin,
ForwardIterator end,
Callback callback,
Box intersection d::Topology topology = Box intersection d::CLOSED)

Invocation of box intersection with default box traits CGAL::Box intersection d::Box
traits d<Box handle>, where Box handle corresponds to the iterator value type of For-
wardIterator.

template< class ForwardIterator, class Callback, class BoxTraits >
void box self intersection all pairs d(

ForwardIterator begin,
ForwardIterator end,
Callback callback,
BoxTraits box traits,
Box intersection d::Topology topology = Box intersection d::CLOSED)

Invocation with custom box traits.

Requirements
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• ForwardIterator must be a forward iterator. We call its value type Box handle in the following.

• Callback must be of the BinaryFunction concept. The Box handle must be convertible to both argument
types. The return type is not used and can be void.

• The Box handle must be a model of the Assignable concept.

• In addition, if the default box traits is used the Box handle must be a class type T or a pointer to a class
type T , where T must be a model of the BoxIntersectionBox d concept. In both cases, the default box
traits specializes to a suitable implementation.

• BoxTraits must be of the BoxIntersectionTraits d concept.

See Also

CGAL::box intersection d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3703
CGAL::box self intersection d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3709
CGAL::box intersection all pairs d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3707

CGAL::Box intersection d::Box traits d<BoxHandle> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3720
BoxIntersectionBox d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3714
BoxIntersectionTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3715

Implementation

The algorithm is trivially testing all pairs and runs therefore in time O(n2) where n is the size of the input
sequence. This algorithm does not use the id-number of the boxes.
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BoxIntersectionBox d

Definition

The BoxIntersectionBox d concept is used in the context of the intersection algorithms for sequences of iso-
oriented boxes. These algorithms come with a default traits class that assumes that the boxes are a model of this
BoxIntersectionBox d concept. This concept defines the access functions to the dimension, the id-number, and
the boundaries of the box.

Refines

Assignable.

Has Models

CGAL::Box intersection d::Box d<NT,int D,IdPolicy> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3717
CGAL::Box intersection d::Box with handle d<NT, int D, Handle, IdPolicy> . . . . . . . . . . . . . . . . . . . . page 3721

Types

BoxIntersectionBox d:: NT number type to represent the box boundaries. Allowed are the
built-in types int, unsigned int, float, and double.

BoxIntersectionBox d:: ID type for the box id-number, must be a model of the LessThanCom-
parable concept.

Access Functions

int BoxIntersectionBox d::dimension()

returns the dimension of the box.

ID box.id() const returns the unique id-number for the box.

NT box.min coord( int d) const returns the lower boundary in dimension d, 0≤d<dimension().

NT box.max coord( int d) const returns the upper boundary in dimension d, 0≤d<dimension().

See Also

CGAL::box intersection d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3703
CGAL::box self intersection d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3709
CGAL::box intersection all pairs d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3707
CGAL::box self intersection all pairs d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3712

CGAL::Box intersection d::Box traits d<BoxHandle> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3720
BoxIntersectionTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3715
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BoxIntersectionTraits d

Definition

The BoxIntersectionTraits d concept is used for the intersection algorithms for sequences of iso-oriented boxes.
This concept defines the access functions to the dimension, the id-number, and the boundaries of the boxes
manipulated in these algorithms.

Refines

Assignable.

Has Models

CGAL::Box intersection d::Box traits d<BoxHandle> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3720

Types

BoxIntersectionTraits d:: Box parameter

type used for passing box parameters in the functions below. Since we support
in our algorithms passing the boxes by value as well as passing them as point-
ers, this type can be either const B&, B*, or const B* respectively, where B is
the actual box type. The difference to the box handle type lies in the first case
where the box handle would be B where this type is const B&.

BoxIntersectionTraits d:: NT number type to represent the box boundaries. Allowed are the built-in types
int, unsigned int, float, and double.

BoxIntersectionTraits d:: ID type for the id-number, model of the LessThanComparable concept.

Access Functions

int BoxIntersectionTraits d::dimension() returns the dimension of the box.

ID BoxIntersectionTraits d::id( Box parameter box) returns the unique id-number for the box.

NT BoxIntersectionTraits d::min coord( Box parameter box, int d)

returns the lower boundary of the box in dimension d, 0≤d<dimension().

NT BoxIntersectionTraits d::max coord( Box parameter box, int d)

returns the upper boundary of the box in dimension d, 0≤d<dimension().
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See Also

CGAL::box intersection d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3703
CGAL::box self intersection d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3709
CGAL::box intersection all pairs d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3707
CGAL::box self intersection all pairs d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3712
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CGAL::Box intersection d::Box d<NT,int D,IdPolicy>

Definition

Box d<NT,int D,IdPolicy> is a generic iso-oriented bounding box in dimension D. It provides in each dimension
an interval with lower and upper endpoints represented with the number type NT . This class is designed to work
smoothly with the algorithms for intersecting sequences of iso-oriented boxes. For degeneracy handling, the
boxes need to provide a unique id-number. The policy parameter IdPolicy offers several choices. The template
parameters have to comply with the following requirements:

• NT: number type for the box boundaries, needs to be a model of the Assignable and the LessThanCom-
parable concept.

• int D: the dimension of the box.

• IdPolicy: specifies how the id-number will be provided. Can be one of the following types, where ID
EXPLICIT is the default for this parameter:

– ID NONE: no id-number is provided. Can be useful if Box d is used as a base class for a different
implementation of id-numbers than the ones provided here.

– ID EXPLICIT: the id-number is stored explicitly in the box and automatically created and assigned
at construction time of the box. Note that copying a box (copy-constructor and assignment) does
not create a new id-number but keeps the old one, which is the behavior needed by the CGAL::box
self intersection algorithm. This is therefore the safe default implementation.

– ID FROM BOX ADDRESS: casts the address of the box into a std::ptrdiff t to create the id-number.
Works fine if the intersection algorithms work effectively with pointers to boxes, but not in the case
where the algorithms work with box values, because the algorithms modify the order of the boxes,
and the CGAL::box self intersection algorithm creates copies of the boxes that would not have
identical id-numbers.

#include <CGAL/Box intersection d/Box d.h>
and also automatically with
#include <CGAL/box intersection d.h>

Is Model for the Concepts

BoxIntersectionBox d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3714

Types

Box d<NT,int D,IdPolicy>:: NT number type to represent the box boundaries. Allowed
are the built-in types int, unsigned int, float, and double.

typedef std::size t ID; type for the box id-number.
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Creation

Box d<NT,int D,IdPolicy> box; Default constructor. No particular initialization.

Box d<NT,int D,IdPolicy> box( bool complete); initializes to the complete or the empty space. If
empty, all interval starting(end) points will be set to posi-
tive(negative) infinity.

Box d<NT,int D,IdPolicy> box( NT lo[D], NT hi[D]);

initializes the box intervals to [lo[i],hi[i]], 0≤ i < D.
Precondition: lo[i] < hi[i] for 0≤ i < D.

Box d<NT,int D,IdPolicy> box( Bbox 2 bbox); constructs from bbox
Requirement: D = 2 and NT≡double.

Box d<NT,int D,IdPolicy> box( Bbox 3 bbox); constructs from bbox
Requirement: D = 3 and NT≡double.

Modifiers

void box.init( bool complete = false) initializes to the complete or the empty space. If
empty, all interval starting(end) points will be set to posi-
tive(negative) infinity.

void box.extend( NT point[D]) extend box to contain the old box and point.

Access Functions

int Box d::dimension() returns D, the dimension of the box.

std::size t box.id() returns a unique box id, see the IdPolicy template param-
eter above for the different choices.
Requirement: IdPolicy6=ID NONE

NT box.min coord( int d) const returns the lower boundary in dimension d
Precondition: 0≤d< D

NT box.max coord( int d) const returns the upper boundary in dimension d
Precondition: 0≤d< D

Bbox 2 box.bbox() const returns the bounding box
Requirement: D = 2 and NT≡double

Bbox 3 box.bbox() const returns the bounding box
Requirement: D = 3 and NT≡double

void box.extend( NT p[N]) extends box to the smallest box that additionally contains
the point represented by coordinates in p.
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void box.extend( std::pair<NT,NT> p[N])

extends box to the smallest box that additionally contains
the point represented by coordinate intervals in p.

See Also

CGAL::box intersection d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3703
CGAL::box self intersection d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3709
CGAL::box intersection all pairs d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3707
CGAL::box self intersection all pairs d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3712

CGAL::Box intersection d::Box with handle d<NT, int D, Handle, IdPolicy> . . . . . . . . . . . . . . . . . . . . page 3721

CGAL::Box intersection d::Box traits d<BoxHandle> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3720
BoxIntersectionTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3715
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CGAL::Box intersection d::Box traits d<BoxHandle>

Definition

This is the default traits class for the intersection algorithms for iso-oriented boxes. There are actually three
versions depending on the type of BoxHandle; there is one if BoxHandle is a class type and there are two if
BoxHandle is a pointer type, one for a mutable and one for a const pointer, respectively.

This class implements the mapping from its BoxHandle argument to the Box parameter type required in the
BoxIntersectionTraits d concept. In particular in the case where BoxHandle is a class type B, it defines Box
parameter to be of type const B&, while for the other cases it just uses the pointer type.

• BoxHandle: either a class type B, a pointer B*, or a const-pointer const B*, where B is a model of the
BoxIntersectionBox d concept.

#include <CGAL/Box intersection d/Box traits d.h> and also automatically with
#include <CGAL/box intersection d.h>

Is Model for the Concepts

BoxIntersectionTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3715

Creation

Box traits d<BoxHandle> traits; default constructor.

See Also

CGAL::box intersection d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3703
CGAL::box self intersection d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3709
CGAL::box intersection all pairs d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3707

BoxIntersectionBox d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3714
CGAL::Box intersection d::Box d<NT,int D,IdPolicy> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3717
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CGAL::Box intersection d::Box with handle d<NT, int D, Handle, Id-
Policy>

Definition

Box with handle d<NT, int D, Handle, IdPolicy> is a generic iso-oriented bounding box in dimension D that
stores additionally a handle to some underlying geometric object. It provides in each dimension an interval
with lower and upper endpoints represented with the number type NT . This class is designed to work smoothly
with the algorithms for intersecting sequences of iso-oriented boxes. For degeneracy handling, the boxes need
to provide a unique id-number. The policy parameter IdPolicy offers several choices. The template parameters
have to comply with the following requirements:

• NT: number type for the box boundaries, needs to be a model of the Assignable and the LessThanCom-
parable concept.

• int D: the dimension of the box.

• Handle concept, e.g., a pointer, an iterator, or a circulator.

• IdPolicy: specifies how the id-number will be provided. Can be one of the following types, where ID
EXPLICIT is the default for this parameter:

– ID NONE: no id-number is provided. Can be useful to have this class as a base class for different
implementations of id-numbers than the ones provided here.

– ID EXPLICIT: the id-number is stored explicitly in the box and automatically created and assigned
at construction time of the box. Note that copying a box (copy-constructor and assignment) does
not create a new id-number but keeps the old one, which is the behavior needed by the CGAL::box
self intersection algorithm. This is therefore the safe default implementation.

– ID FROM BOX ADDRESS: casts the address of the box into a std::ptrdiff t to create the id-number.
Works fine if the intersection algorithms work effectively with pointers to boxes, but not in the case
where the algorithms work with box values, because the algorithms modify the order of the boxes,
and the CGAL::box self intersection algorithm creates copies of the boxes that would not have
identical id-numbers.

– ID FROM HANDLE: casts the address of the value of the handle into a std::ptrdiff t to create the
id-number. Works in many conceivable settings, e.g., it works with boxes copied by value or by
pointer, and the self intersection test. It will not work if there is no one-to-one mapping between
boxes and the geometry that is referred to with the handles, i.e., this id-number scheme fails if a
geometric object creates several boxes with the same handle value. Note that this option is not
available for the CGAL::Box intersection d::Box d type that does not store a handle.

#include <CGAL/Box intersection d/Box with handle d.h>
and also automatically with
#include <CGAL/box intersection d.h>

Is Model for the Concepts

BoxIntersectionBox d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3714
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Types

Box with handle d<NT, int D, Handle, IdPolicy>:: NT

number type to represent the box boundaries. Allowed
are the built-in types int, unsigned int, float, and double.

typedef std::size t ID; type for the box id-number.

Creation

Box with handle d<NT, int D, Handle, IdPolicy> box;

Default constructor. No particular initialization.

Box with handle d<NT, int D, Handle, IdPolicy> box( bool complete, Handle h);

initializes to the complete or the empty space. If
empty, all interval starting(end) points will be set to posi-
tive(negative) infinity, sets handle to h.

Box with handle d<NT, int D, Handle, IdPolicy> box( NT lo[D], NT hi[D], Handle h);

initializes the box intervals to [lo[i],hi[i]], 0≤ i < D and
sets the handle to h.
Precondition: lo[i] < hi[i] for 0≤ i < D.

Box with handle d<NT, int D, Handle, IdPolicy> box( Bbox 2 bbox, Handle h);

constructs from bbox and sets the handle to h, exists iff
D = 2 and NT≡double.

Box with handle d<NT, int D, Handle, IdPolicy> box( Bbox 3 bbox, Handle h);

constructs from bbox and sets the handle to h, exists iff
D = 3 and NT≡double.

Modifiers

void box.init( bool complete = false) initializes to the complete or the empty space. If
empty, all interval starting(end) points will be set to posi-
tive(negative) infinity.

void box.extend( NT point[D]) extend box to contain the old box and point.
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Access Functions

Handle box.handle() const returns the handle stored in box.

int Box with handle d::dimension() returns D, the dimension of the box.

std::size t box.id() returns a unique box id, see the IdPolicy template param-
eter above for the different choices. Does not exist if ID
NONE has been chosen for the IdPolicy.

NT box.min coord( int d) const returns the lower boundary in dimension d, 0≤d< D.

NT box.max coord( int d) const returns the upper boundary in dimension d, 0≤d< D.

Bbox 2 box.bbox() const returns the bounding box iff D = 2 and NT≡double.
Bbox 3 box.bbox() const returns the bounding box iff D = 3 and NT≡double.

See Also

CGAL::box intersection d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3703
CGAL::box self intersection d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3709
CGAL::box intersection all pairs d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3707
CGAL::box self intersection all pairs d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3712

CGAL::Box intersection d::Box traits d<BoxHandle> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3720
BoxIntersectionTraits d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3715
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Chapter 64

3D Fast Intersection and Distance
Computation (AABB Tree)
Pierre Alliez, Stéphane Tayeb, Camille Wormser
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64.1 Introduction

The AABB tree component offers a static data structure and algorithms to perform efficient intersection and
distance queries against sets of finite 3D geometric objects. The set of geometric objects stored in the data
structure can be queried for intersection detection, intersection computation and distance. The intersection
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queries can be of any type, provided that the corresponding intersection predicates and constructors are
implemented in the traits class. The distance queries are limited to point queries. Examples of intersection
queries include line objects (rays, lines, segments) against sets of triangles, or plane objects (planes, triangles)
against sets of segments. An example of a distance query consists of finding the closest point from a point
query to a set of triangles.

Note that this component is not suited to the problem of finding all intersecting pairs of objects. We refer
to the component Box intersection d (Intersecting Sequences of dD Iso-oriented Boxes) which can find all
intersecting pairs of iso-oriented boxes.

The AABB tree data structure takes as input an iterator range of geometric data, which is then converted into
primitives. From these primitives a hierarchy of axis-aligned bounding boxes (AABBs) is constructed and used
to speed up intersection and distance queries (see Figure 64.1). Each primitive gives access to both one input
geometric object (so-called datum) and one reference id to this object. A typical example primitive wraps a
3D triangle as datum and a face handle of a polyhedral surface as id. Each intersection query can return the
intersection objects (e.g., 3D points or segments for ray queries) as well the as id (here the face handle) of the
intersected primitives. Similarly, each distance query can return the closest point from the point query as well
as the id of the closest primitive.

Figure 64.1: AABB tree. Left: surface triangle mesh of a mechanical part. Right: AABB tree constructed.

64.2 Interface

The main entry point to the component is the class AABB tree which represents a static AABB tree constructed
from an iterator range of geometric data. Once instantiated an AABB tree can be queried for intersection and
distance queries.

Intersections. Assume for example that the tree contains triangle primitives. The tree can be queried for
intersection against line objects (rays, segments or line) in various ways. We distinguish intersection tests
which do not construct any intersection objects, from intersections which construct the intersection objects.
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Tests:

• Function do intersect tests if the input primitives are intersected by the query. This function is fast as it
involves only predicates and stops after the first encountered intersection.

• Function number of intersected primitives counts all intersected primitives.

• Function all intersected primitives enumerates all intersected primitives ids without constructing the cor-
responding intersection objects.

• Function any intersected primitive returns the first encountered intersecting primitive id (if any) without
constructing the corresponding intersection object, and stops after the first encountered intersection. Note
that the traversal order of the tree is such that first herein does not refer to any particular ordering of the
intersections with respect to the query.

Constructions:

• Function all intersections detects and constructs all intersection objects with the input primitives.

• Function any intersection detects and constructs the first encountered intersection and constructs the cor-
responding object. This function is fast as it stops after the first encountered intersection.

Distance. An AABB tree computes the closest point from a given point query to the input primitives through
the function closest point(query). In addition, it can compute the id of the closest primitive from a given point
query through the function closest point and primitive(query), i.e., the id of the primitive which realizes the
minimum distance from the point query. The AABB tree uses a secondary search structure to speed up the
distance queries. The construction of this secondary structure should be requested by the user by a call to
accelerate distance queries before the first the distance computation. This data structure is not generated by
default because it is used only for distance computations.

64.3 Examples

64.3.1 Tree of Triangles, for Intersection and Distance Queries

In the following example a set of 3D triangles is stored in a list. The AABB primitive wraps a triangle as datum
and an iterator in the list as id. We compute the number of input triangles intersected by a ray query, as well as
the closest point and the squared distance from a point query.� �
#include <iostream>
#include <list>

#include <CGAL/Simple_cartesian.h>
#include <CGAL/AABB_tree.h>
#include <CGAL/AABB_traits.h>
#include <CGAL/AABB_triangle_primitive.h>

typedef CGAL::Simple_cartesian<double> K;

typedef K::FT FT;
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typedef K::Ray_3 Ray;
typedef K::Line_3 Line;
typedef K::Point_3 Point;
typedef K::Triangle_3 Triangle;

typedef std::list<Triangle>::iterator Iterator;
typedef CGAL::AABB_triangle_primitive<K,Iterator> Primitive;
typedef CGAL::AABB_traits<K, Primitive> AABB_triangle_traits;
typedef CGAL::AABB_tree<AABB_triangle_traits> Tree;

int main()
{

Point a(1.0, 0.0, 0.0);
Point b(0.0, 1.0, 0.0);
Point c(0.0, 0.0, 1.0);
Point d(0.0, 0.0, 0.0);

std::list<Triangle> triangles;
triangles.push_back(Triangle(a,b,c));
triangles.push_back(Triangle(a,b,d));
triangles.push_back(Triangle(a,d,c));

// constructs AABB tree
Tree tree(triangles.begin(),triangles.end());

// counts #intersections
Ray ray_query(a,b);
std::cout << tree.number_of_intersected_primitives(ray_query)

<< " intersections(s) with ray query" << std::endl;

// compute closest point and squared distance
Point point_query(2.0, 2.0, 2.0);
Point closest_point = tree.closest_point(point_query);
std::cerr << "closest point is: " << closest_point << std::endl;
FT sqd = tree.squared_distance(point_query);
std::cout << "squared distance: " << sqd << std::endl;

return EXIT_SUCCESS;
}� �
File: examples/AABB_tree/AABB_triangle_3_example.cpp

64.3.2 Tree of Polyhedron Triangle Facets for Intersection Queries

In the following example the AABB primitive wraps a facet handle of a triangle polyhedral surface as id and the
corresponding 3D triangle as geometric object. From a segment query we test the intersections, then compute the
number of intersections, compute the first encountered intersection (generally a point), compute all intersections
(where each intersection is a pair of one CGAL object and one primitive id - here a face handle) and compute
all intersected primitives. The latter involves only tests and no predicates and is hence faster than computing
all intersections. We also compute the first encountered intersection with a plane query, which is generally a
segment.
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� �
#include <iostream>

#include <CGAL/Simple_cartesian.h>
#include <CGAL/AABB_tree.h>
#include <CGAL/AABB_traits.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/AABB_polyhedron_triangle_primitive.h>

typedef CGAL::Simple_cartesian<double> K;
typedef K::Point_3 Point;
typedef K::Plane_3 Plane;
typedef K::Vector_3 Vector;
typedef K::Segment_3 Segment;
typedef CGAL::Polyhedron_3<K> Polyhedron;
typedef CGAL::AABB_polyhedron_triangle_primitive<K,Polyhedron> Primitive;
typedef CGAL::AABB_traits<K, Primitive> Traits;
typedef CGAL::AABB_tree<Traits> Tree;
typedef Tree::Object_and_primitive_id Object_and_primitive_id;
typedef Tree::Primitive_id Primitive_id;

int main()
{

Point p(1.0, 0.0, 0.0);
Point q(0.0, 1.0, 0.0);
Point r(0.0, 0.0, 1.0);
Point s(0.0, 0.0, 0.0);
Polyhedron polyhedron;
polyhedron.make_tetrahedron(p, q, r, s);

// constructs AABB tree
Tree tree(polyhedron.facets_begin(),polyhedron.facets_end());

// constructs segment query
Point a(-0.2, 0.2, -0.2);
Point b(1.3, 0.2, 1.3);
Segment segment_query(a,b);

// tests intersections with segment query
if(tree.do_intersect(segment_query))

std::cout << "intersection(s)" << std::endl;
else

std::cout << "no intersection" << std::endl;

// computes #intersections with segment query
std::cout << tree.number_of_intersected_primitives(segment_query)

<< " intersection(s)" << std::endl;

// computes first encountered intersection with segment query
// (generally a point)
boost::optional<Object_and_primitive_id> intersection =

tree.any_intersection(segment_query);
if(intersection)
{

3729



// gets intersection object
Object_and_primitive_id op = *intersection;
CGAL::Object object = op.first;
Point point;
if(CGAL::assign(point,object))

std::cout << "intersection object is a point" << std::endl;
}

// computes all intersections with segment query (as pairs object -
primitive_id)
std::list<Object_and_primitive_id> intersections;
tree.all_intersections(segment_query,
std::back_inserter(intersections));

// computes all intersected primitives with segment query as
primitive ids
std::list<Primitive_id> primitives;
tree.all_intersected_primitives(segment_query,
std::back_inserter(primitives));

// constructs plane query
Vector vec(0.0,0.0,1.0);
Plane plane_query(a,vec);

// computes first encountered intersection with plane query
// (generally a segment)
intersection = tree.any_intersection(plane_query);
if(intersection)
{

// gets intersection object
Object_and_primitive_id op = *intersection;
CGAL::Object object = op.first;
Segment segment;
if(CGAL::assign(segment,object))

std::cout << "intersection object is a segment" << std::endl;
}

return EXIT_SUCCESS;
}� �
File: examples/AABB_tree/AABB_polyhedron_facet_intersection_example.cpp

64.3.3 Tree of Polyhedron Triangle Facets for Distance Queries

In the following example the AABB primitive wraps a facet handle of a triangle polyhedral surface as id and
the corresponding 3D triangle as geometric object. From a point query we compute the squared distance, the
closest point as well as the closest point and primitive id. The latter returns a pair composed of a point and a
face handle.� �
// Author(s) : Pierre Alliez
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#include <iostream>

#include <CGAL/Simple_cartesian.h>
#include <CGAL/AABB_tree.h>
#include <CGAL/AABB_traits.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/AABB_polyhedron_triangle_primitive.h>

typedef CGAL::Simple_cartesian<double> K;
typedef K::FT FT;
typedef K::Point_3 Point;
typedef K::Segment_3 Segment;
typedef CGAL::Polyhedron_3<K> Polyhedron;
typedef CGAL::AABB_polyhedron_triangle_primitive<K,Polyhedron> Primitive;
typedef CGAL::AABB_traits<K, Primitive> Traits;
typedef CGAL::AABB_tree<Traits> Tree;
typedef Tree::Object_and_primitive_id Object_and_primitive_id;
typedef Tree::Point_and_primitive_id Point_and_primitive_id;

int main()
{

Point p(1.0, 0.0, 0.0);
Point q(0.0, 1.0, 0.0);
Point r(0.0, 0.0, 1.0);
Point s(0.0, 0.0, 0.0);
Polyhedron polyhedron;
polyhedron.make_tetrahedron(p, q, r, s);

// constructs AABB tree and computes internal KD-tree
// data structure to accelerate distance queries
Tree tree(polyhedron.facets_begin(),polyhedron.facets_end());
tree.accelerate_distance_queries();

// query point
Point query(0.0, 0.0, 3.0);

// computes squared distance from query
FT sqd = tree.squared_distance(query);
std::cout << "squared distance: " << sqd << std::endl;

// computes closest point
Point closest = tree.closest_point(query);
std::cout << "closest point: " << closest << std::endl;

// computes closest point and primitive id
Point_and_primitive_id pp = tree.closest_point_and_primitive(query);
Point closest_point = pp.first;
Polyhedron::Face_handle f = pp.second; // closest primitive id
std::cout << "closest point: " << closest_point << std::endl;
std::cout << "closest triangle: ( "

<< f->halfedge()->vertex()->point() << " , "
<< f->halfedge()->next()->vertex()->point() << " , "
<< f->halfedge()->next()->next()->vertex()->point()
<< " )" << std::endl;
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return EXIT_SUCCESS;
}� �
File: examples/AABB_tree/AABB_polyhedron_facet_distance_example.cpp

64.3.4 Tree of Segments for Intersection and Distance Queries

In the following example the segments are stored into a list, and the AABB primitive wraps a segment as datum
and an iterator in the list as id. We compute the number of intersections with plane and triangles queries, and
the closest point from a point query.� �
#include <iostream>
#include <list>

#include <CGAL/Simple_cartesian.h>
#include <CGAL/AABB_tree.h>
#include <CGAL/AABB_traits.h>
#include <CGAL/AABB_segment_primitive.h>

typedef CGAL::Simple_cartesian<double> K;

typedef K::FT FT;
typedef K::Point_3 Point;
typedef K::Plane_3 Plane;
typedef K::Segment_3 Segment;
typedef K::Triangle_3 Triangle;

typedef std::list<Segment>::iterator Iterator;
typedef CGAL::AABB_segment_primitive<K,Iterator> Primitive;
typedef CGAL::AABB_traits<K, Primitive> Traits;
typedef CGAL::AABB_tree<Traits> Tree;

int main()
{

Point a(1.0, 0.0, 0.0);
Point b(0.0, 1.0, 0.0);
Point c(0.0, 0.0, 1.0);
Point d(0.0, 0.0, 0.0);

std::list<Segment> segments;
segments.push_back(Segment(a,b));
segments.push_back(Segment(a,c));
segments.push_back(Segment(c,d));

// constructs the AABB tree and the internal search tree for
// efficient distance computations.
Tree tree(segments.begin(),segments.end());
tree.accelerate_distance_queries();

// counts #intersections with a plane query
Plane plane_query(a,b,d);
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std::cout << tree.number_of_intersected_primitives(plane_query)
<< " intersections(s) with plane" << std::endl;

// counts #intersections with a triangle query
Triangle triangle_query(a,b,c);
std::cout << tree.number_of_intersected_primitives(triangle_query)

<< " intersections(s) with triangle" << std::endl;

// computes the closest point from a point query
Point point_query(2.0, 2.0, 2.0);
Point closest = tree.closest_point(point_query);

std::cerr << "closest point is: " << closest << std::endl;
return EXIT_SUCCESS;

}� �
File: examples/AABB_tree/AABB_segment_3_example.cpp

64.3.5 Tree of Polyhedron Edge Segments for Intersection and Distance Queries

In the following example the AABB primitive wraps a halfedge handle as id and generates a 3D segment on the
fly, each time its method datum is called. We compute the number of intersections with a triangle query and the
closest point from a point query.� �
#include <iostream>

#include <CGAL/Simple_cartesian.h>
#include <CGAL/AABB_tree.h>
#include <CGAL/AABB_traits.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/AABB_polyhedron_segment_primitive.h>

typedef CGAL::Simple_cartesian<double> K;
typedef K::FT FT;
typedef K::Point_3 Point;
typedef K::Triangle_3 Triangle;
typedef CGAL::Polyhedron_3<K> Polyhedron;
typedef CGAL::AABB_polyhedron_segment_primitive<K,Polyhedron> Primitive;
typedef CGAL::AABB_traits<K, Primitive> Traits;
typedef CGAL::AABB_tree<Traits> Tree;

int main()
{

Point p(1.0, 0.0, 0.0);
Point q(0.0, 1.0, 0.0);
Point r(0.0, 0.0, 1.0);
Point s(0.0, 0.0, 0.0);
Polyhedron polyhedron;
polyhedron.make_tetrahedron(p, q, r, s);

// constructs the AABB tree and the internal search tree for

3733



// efficient distance queries.
Tree tree(polyhedron.edges_begin(),polyhedron.edges_end());
tree.accelerate_distance_queries();

// counts #intersections with a triangle query
Triangle triangle_query(p,q,r);
std::cout << tree.number_of_intersected_primitives(triangle_query)

<< " intersections(s) with triangle" << std::endl;

// computes the closest point from a query point
Point point_query(2.0, 2.0, 2.0);
Point closest = tree.closest_point(point_query);

std::cerr << "closest point is: " << closest << std::endl;
return EXIT_SUCCESS;

}� �
File: examples/AABB_tree/AABB_polyhedron_edge_example.cpp

64.3.6 Incremental Insertion of Primitives

The AABB tree is a static data structure, but it allows to insert primitives, and will internally rebuild triggered
by the first query, or because the user calls the build method. The following example illustrates this for two
polyhedral surfaces.� �
#include <iostream>

#include <CGAL/Simple_cartesian.h>
#include <CGAL/AABB_tree.h>
#include <CGAL/AABB_traits.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/AABB_polyhedron_triangle_primitive.h>

typedef CGAL::Simple_cartesian<double> K;
typedef K::FT FT;
typedef K::Point_3 Point;
typedef K::Segment_3 Segment;
typedef CGAL::Polyhedron_3<K> Polyhedron;
typedef CGAL::AABB_polyhedron_triangle_primitive<K,Polyhedron> Primitive;
typedef CGAL::AABB_traits<K, Primitive> Traits;
typedef CGAL::AABB_tree<Traits> Tree;
typedef Tree::Object_and_primitive_id Object_and_primitive_id;
typedef Tree::Point_and_primitive_id Point_and_primitive_id;

int main()
{

Point p(1.0, 0.0, 0.0);
Point q(0.0, 1.0, 0.0);
Point r(0.0, 0.0, 1.0);
Point s(0.0, 0.0, 0.0);
Polyhedron polyhedron1;
polyhedron1.make_tetrahedron(p, q, r, s);
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Point p2(11.0, 0.0, 0.0);
Point q2(10.0, 1.0, 0.0);
Point r2(10.0, 0.0, 1.0);
Point s2(10.0, 0.0, 0.0);
Polyhedron polyhedron2;
polyhedron2.make_tetrahedron(p2, q2, r2, s2);
// constructs AABB tree and computes internal KD-tree
// data structure to accelerate distance queries
Tree tree(polyhedron1.facets_begin(),polyhedron1.facets_end());

tree.accelerate_distance_queries();

tree.insert(polyhedron2.facets_begin(),polyhedron2.facets_end());

// query point
Point query(0.0, 0.0, 3.0);

// computes squared distance from query
FT sqd = tree.squared_distance(query);
std::cout << "squared distance: " << sqd << std::endl;

return EXIT_SUCCESS;
}� �
File: examples/AABB_tree/AABB_insertion_example.cpp

64.3.7 Trees of Custom Primitives

The AABB tree example folder contains three examples of trees constructed with customize primitives. In
AABB custom example.cpp the primitive contains triangles which are defined by three pointers to custom
points. In AABB custom triangle soup example.cpp all input triangles are stored into a single array so as to
form a triangle soup. The primitive internally uses a boost::iterator adaptor so as to provide the three functions
(id(), datum(), reference point()) required by the primitive concept. In AABB custom indexed triangle set
example.cpp the input is an indexed triangle set stored through two arrays: one array of points and one array of
indices which refer to the point array. Here also the primitive internally uses a boost::iterator adaptor.

64.4 Performances

We provide some performance numbers for the case where the AABB tree contains a set of polyhedron triangle
facets. We measure the tree construction time, the memory occupancy and the number of queries per second for
a variety of intersection and distance queries. The machine used is a PC running Windows XP64 with an Intel
CPU Core2 Extreme clocked at 3.06 GHz with 4GB of RAM. By default the kernel used is Simple cartesian<
double> (the fastest in our experiments). The program has been compiled with Visual C++ 2005 compiler with
the O2 option which maximizes speed.
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64.4.1 Construction

The surface triangle mesh chosen for benchmarking the tree construction is the knot model (14,400 triangles)
depicted by Figure 64.4.3. We measure the tree construction time (both AABB tree alone and AABB tree with
internal KD-tree) for this model as well as for three denser versions subdivided through the Loop subdivision
scheme which multiplies the number of triangles by four.

Number of triangles Construction (in ms) Construction with internal KD-tree (in ms)
14,400 156 157
57,600 328 328
230,400 1,141 1,437
921,600 4,813 5,953

64.4.2 Memory

When using the polyhedron triangle facet primitive (defined in AABB polyhedron triangle primitive.h) the
AABB tree occupies approximately 61 bytes per primitive (without constructing the internal KD-tree). It
increases to approximately 150 bytes per primitive when constructing the internal KD-tree with one reference
point per primitive (the default mode when calling the function tree.accelerate distance queries()). Note that
the polyhedron facet primitive primitive stores only one facet handle as primitive id and computes on the fly a
3D triangle from the facet handle stored internally. When explicitly storing a 3D triangle in the primitive the
tree occupies approximately 140 bytes per primitive instead of 60 (without constructing the internal KD-tree).

The following table provides orders of memory occupancy in MBytes for an increasing number of triangles. As
the internal KD-tree used to accelerate the distance queries dominates the memory occupancy, we recommend to
specify for large models a lower number of reference point (evenly distributed) to construct the internal KD-tree
through the function tree.accelerate distance queries(begin,end) which takes an iterator range as input.

Number of triangles AABB tree (in MBytes) AABB tree with internal KD-tree (in MBytes)
18,400 1.10 2.76
102,400 6.33 14.73
1,022,400 59.56 151.31
1,822,400 108.34 291.84

64.4.3 Intersections

The following table measures the number of intersection queries per second on the 14,400 triangle version
of the knot mesh model for ray, line, segment and plane queries. Each ray query is generated by choosing a
random source point within the mesh bounding box and a random vector. A line or segment query is generated
by choosing two random points inside the bounding box. A plane query is generated by picking a random
point inside the bounding box and a random normal vector. Note that a plane query generally intersects many
triangles of the input surface mesh. This explains the low performance numbers for the intersection functions
which enumerate all intersections.

Function Segment Ray Line Plane
do intersect() 187,868 185,649 206,096 377,969
any intersected primitive() 190,684 190,027 208,941 360,337
any intersection() 147,468 143,230 148,235 229,336
number of intersected primitives() 64,389 52,943 54,559 7,906
all intersected primitives() 65,553 54,838 53,183 5,693
all intersections() 46,507 38,471 36,374 2,644
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Curve 64.4.3 plots the number of queries per second (here the all intersections function with random segment
queries) against the number of input triangles for the knot triangle surface mesh.

Figure 64.2: Number of queries per second against number of triangles for the knot model with 14K (shown),
57K, 230K and 921K triangles. We call the all intersections function with segment queries randomly chosen
within the bounding box.

The following table measures the number of all intersections() queries per second against several kernels. We
use the 14,400 triangle version of the knot mesh model for random segment queries. Note how the Simple
cartesian kernel is substantially faster than the Cartesian kernel.

Kernel Queries/s (all intersections() with segment queries)
Simple cartesian<double> 46,507
Simple cartesian<float> 43,187
Cartesian<double> 5,335
Cartesian<float> 5,522
Exact predicates inexact constructions 18,411

64.4.4 Distances

The surface triangle mesh chosen for benchmarking distances is again the knot model in four increasing reso-
lutions obtained through Loop subdivision. In the following table we first measure the tree construction time
(which includes the construction of the internal KD-tree data structure used to accelerate the distance queries
by up to one order of magnitude in our experiments). We then measure the number of queries per second for
the three types distance queries (closest point, squared distance and closest point and primitive) from point
queries randomly chosen inside the bounding box.

Nb triangles Construction (ms) Closest point() squared distance() closest point and primitive()
14,400 157 45,132 45,626 45,770
57,600 328 21,589 21,312 21,137
230,400 1,437 11,063 10,962 11,086
921,600 5,953 5,636 5,722 5,703

64.4.5 Summary

The experiments described above are neither exhaustive nor conclusive as we have chosen one specific case
where the input primitives are the facets of a triangle surface polyhedron. Nevertheless we now provide some
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general observations and advices about how to put the AABB tree to use with satisfactory performances. While
the tree construction times and memory occupancy do not fluctuate much in our experiments depending on
the input surface triangle mesh, the performance expressed in number of queries varies greatly depending on a
complex combination of criteria: type of kernel, number of input primitives, distribution of primitives in space,
type of function queried, type of query and location of query in space.

• Kernel: The type of CGAL kernel turns out to dominate the final execution times, the maximum perfor-
mances being obtained with the simple Cartesian kernel parameterized with the double precision number
type. In applications where the intersection and distance execution times are crucial it is possible to use
this kernel for the AABB tree in combination with a more robust kernel for the main data structure.

• Primitives: Although the number of input primitives plays an obvious role in the final performance, their
distribution in space is at least equally important in order to obtain a well-balanced AABB tree. Ideally
the primitives must be evenly distributed in space and the long primitives spanning the bounding box of
the tree root node must be avoided as much as possible. It is often beneficial to split these long primitives
into smaller ones before constructing the tree, e.g., through recursive longest edge bisection for triangle
surface meshes.

• Function: The type of function queried plays another important role. Obviously the “exhaustive”
functions, which list all intersections, are slower than the ones stopping after the first intersec-
tion. Within each of these functions the ones which call only intersection tests (do intersect(), num-
ber of intersected primitives(), any intersected primitive(), all intersected primitives()) are faster than
the ones which explicitly construct the intersections (any intersection() and all intersections()).

• Query: The type of query (e.g., line, ray, segment or plane used above) plays another role, strongly
correlated with the type of function (exhaustive or not, and whether or not it constructs the intersections).
When all intersection constructions are needed, the final execution times highly depend on the complexity
of the general intersection object. For example a plane query generally intersects a surface triangle mesh
into many segments while a segment query generally intersects a surface triangle mesh into few points.
Finally, the location of the query in space also plays an obvious role in the performances, especially for
the distance queries. Assuming the internal KD-tree constructed through the function tree.accelerate
distance queries(), it is preferable to specify a query point already close to the surface triangle mesh so
that the query traverses only few AABBs of the tree. For a large number of primitive data (greater than
2M faces in our experiments) however we noticed that it is not necessary (and sometimes even slower) to
use all reference points when constructing the KD-tree. In these cases we recommend to specify trough
the function tree.accelerate distance queries(begin,end) fewer reference points (typically not more than
100K) evenly distributed over the input primitives.

64.5 Implementation Details

The AABB tree construction is initialized by computing the AABB of the whole set of input primitives. All
primitives are then sorted along the longest coordinate axis of this box, and the primitives are separated into
two equal size sets. This procedure is applied recursively until an AABB contains a single primitive. The tree
is leafless as presented in OPCODE [Ter05]. An intersection query traverses the tree by computing intersection
tests only with respect to the AABBs during traversal, and with respect to the input primitives at the end of
traversal (in the leafs of the tree).

The reference id is not used internally but simply used by the AABB tree to refer to the primitive in the results
provided to the user. It follows that, while in most cases each reference id corresponds to a unique primitive,
this is not a requirement of the component. This way a user may use these reference ids as labels, each of them
being shared by several geometric object.

3738



A distance query between a query point q and the input primitives is turned into a ball query centered at q.
The ball traverses the tree while recursively querying intersections with the AABBs, and computes the closest
point p from the query point to the input primitives at the leafs of the tree. The ball radius is then shrunk to
the distance between p and q for all remaining recursive traversals of the tree. Efficiency is achieved through
setting the initial ball radius to a small value still guaranteed to intersect the input primitives. This is achieved
by constructing through the function accelerate distance queries an internal secondary data structure which
provides a good hint to the algorithm at the beginning of the traversal.

64.6 Design and Implementation History

Camille Wormser and Pierre Alliez started working on a data structure for efficient collision detection in 2007.
The generic design for implementing both intersection and distance queries, and for generic queries and primi-
tives was developed by Camille Wormser. In 2009, Pierre Alliez, Stéphane Tayeb and Camille Wormser made
the implementation CGAL-compliant, with the help of Laurent Rineau for optimizing the tree construction.
The authors wish to thank Andreas Fabri, Jane Tournois, Mariette Yvinec and Sylvain Lefèbvre for helpful
comments and discussions.
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CGAL::AABB tree<AT>

Definition

Class AABB tree<AT> is a static data structure for efficient intersection and distance computations in 3D. It
builds a hierarchy of axis-aligned bounding boxes (an AABB tree) from a set of 3D geometric objects, and
can receive intersection and distance queries, provided that the corresponding predicates are implemented in
the traits class AT . The template parameter AT stands for a traits class which must be a model of the concept
AABBTraits.

#include <CGAL/AABB tree.h>

Types

AABB tree<AT>:: size type; Unsigned integral size type.
typedef AT::FT FT; Number type returned by the distance queries.
typedef AT::Point 3 Point; Type of 3D point.
typedef AT::Primitive

Primitive; Type of input primitive.
typedef AT::Bounding box

Bounding box; Type of bounding box.
typedef std::pair<Point, Primitive::Id>

Point and primitive id;
typedef std::pair<CGAL::Object, Primitive::Id>

Object and primitive id;

Creation

AABB tree<AT> tree; Constructs an empty tree.

template < class InputIterator>
AABB tree<AT> tree( InputIterator begin, InputIterator beyond);

Builds the AABB tree data structure. Type InputIterator can
be any const iterator such that Primitive has a constructor
taking a InputIterator as argument. The tree stays empty if
the memory allocation is not successful.

Operations

template < class InputIterator>
void tree.rebuild( InputIterator begin, InputIterator beyond)

Clears the current tree and rebuilds it from scratch. See con-
structor above for the parameters.
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void tree.clear() Clears the AABB tree.
template <class InputIterator>
void tree.insert( InputIterator begin, InputIterator beyond)

Add a sequence of primitives to the set of primitive of the
AABB tree. Type InputIterator can be any const iterator such
that Primitive has a constructor taking an InputIterator as ar-
gument.

void tree.insert( const Primitive p)

Add a primitive to the set of primitives of the AABB tree.

advanced

void tree.build() After one or more calls to insert, the internal data structure
of AABB tree<AT> must be reconstructed. This procedure
has a complexity of O(n log(n)), where n is the number of
primitives of the tree. This procedure is called implicitly at
the first call to a query member function. You can call build()
explicitly to ensure that the next call to query functions will
not trigger the reconstruction of the data structure.

advancedBounding box tree.bbox() const Returns the axis-aligned bounding box of the whole tree.
size type tree.size() const Returns the number of primitives in the tree.
bool tree.empty() const Returns true, iff tree contains no primitive.

Intersection Tests

template <class Query>
bool tree.do intersect( Query query) const

Returns true, iff the query intersects at least one of the input
primitives. Type Query must be a type for which do intersect
predicates are defined in the AT class.

template <class Query>
size type tree.number of intersected primitives( Query query) const

Returns the number of primitives intersected by the query.
Type Query must be a type for which do intersect predicates
are defined in the AT class.

template <class Query, class OutputIterator>
OutputIterator tree.all intersected primitives( Query query, OutputIterator out) const

Outputs to the iterator the list of all intersected primitives ids.
This function does not compute the intersection points and
is hence faster than the function all intersections function
below. Type Query must be a type for which do intersect
predicates are defined in the AT class.

template <class Query>
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boost::optional<Primitive::Id>

tree.any intersected primitive( Query query) const

Returns the first encountered intersected primitive id, iff the
query intersects at least one of the input primitives. No par-
ticular order is guaranteed over the tree traversal, such that,
e.g, the primitive returned is not necessarily the closest from
the source point of a ray query. Type Query must be a type
for which do intersect predicates are defined in the AT class.

Intersections

template <class Query, class OutputIterator>
OutputIterator tree.all intersections( Query query, OutputIterator out) const

Outputs to the iterator the list of all intersections between
the query and input data, as objects of type Object and
primitive id. Type Query must be a type for which do
intersect predicates and intersections are defined in the AT
class.

template <class Query>
boost::optional<Object and primitive id>

tree.any intersection( Query query) const

Returns the first encountered intersection, iff the query inter-
sects at least one of the input primitives. No particular order
is guaranteed over the tree traversal, such that, e.g, the prim-
itive returned is not necessarily the closest from the source
point of a ray query. Type Query must be a type for which
do intersect predicates and intersections are defined in the
AT class.

Distance Queries

FT tree.squared distance( Point query) const

Returns the minimum squared distance between the query
point and all input primitives. Method accelerate distance
queries should be called before the first distance query, so
that an internal secondary search structure is build, for im-
proving performance.

Point tree.closest point( Point query) const

Returns the point in the union of all input primitives which is
closest to the query. In case there are several closest points,
one arbitrarily chosen closest point is returned. Method
accelerate distance queries should be called before the first
distance query, so that an internal secondary search structure
is build, for improving performance.
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Point and primitive id

tree.closest point and primitive( Point query) const

Returns a Point and primitive id which realizes the small-
est distance between the query point and all input primitives.
Method accelerate distance queries should be called before
the first distance query, so that an internal secondary search
structure is build, for improving performance.

Accelerating the Distance Queries

bool tree.accelerate distance queries() const

Constructs an internal data structure for accelerating distance
queries. This method should be called once, before the first
distance query. Returns true, iff the memory allocation is
successful.

advanced

In the following paragraphs, we discuss details of the implementation of the distance queries. We explain
the internal use of hints, how the user can pass his own hints to the tree, and how the user can influence the
construction of the secondary data structure used for accelerating distance queries.

Internally, the distance queries algorithms are initialized with some hint, which has the same type as the return
type of the query, and this value is refined along a traversal of the tree, until it is optimal, that is to say until it
realizes the shortest distance to the primitives. In particular, the exact specification of these internal algorithms
is that they minimize the distance to the object composed of the union of the primitives and the hint.

It follows that

• in order to return the exact distance to the set of primitives, the algorithms need the hint to be exactly on
the primitives;

• if this is not the case, and if the hint happens to be closer to the query point than any of the primitives,
then the hint is returned.

This second observation is reasonable, in the sense that providing a hint to the algorithm means claiming that this
hint belongs to the union of the primitives. These considerations about the hints being exactly on the primitives
or not are important: in the case where the set of primitives is a triangle soup, and if some of the primitives
are large, one may want to provide a much better hint than a vertex of the triangle soup could be. It could be,
for example, the barycenter of one of the triangles. But, except with the use of an exact constructions kernel,
one cannot easily construct points other than the vertices, that lie exactly on a triangle soup. Hence, providing
a good hint sometimes means not being able to provide it exactly on the primitives. In rare occasions, this hint
can be returned as the closest point.

In order to accelerate distance queries significantly, the AABB tree builds an internal KD-tree containing a set
of potential hints, when the method accelerate distance queries is called. This KD-tree provides very good
hints that allow the algorithms to run much faster than with a default hint (such as the reference point of the
first primitive). The set of potential hints is a sampling of the union of the primitives, which is obtained, by
default, by calling the method reference point of each of the primitives. However, such a sampling with one
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point per primitive may not be the most relevant one: if some primitives are very large, it helps inserting more
than one sample on them. Conversely, a sparser sampling with less than one point per input primitive is relevant
in some cases.

For this reason, the user can provide his own set of sample points:

template <class InputIterator>
bool tree.accelerate distance queries( InputIterator begin, InputIterator beyond) const

Constructs an internal KD-tree containing the specified point
set, to be used as the set of potential hints for accelerating the
distance queries. InputIterator is an iterator with value type
Point and primitive id.

Note that, in some cases, the user is not able to provide ids of the primitives on which the points lie. In these
cases, providing a default value for the ids of the hints is possible. Still, the user should be aware that if she uses
the closest point and primitive method, there is a (tiny) chance that a hint is returned, along with this default
value as corresponding primitive id. Hence, the validity of the returned primitive id should be checked in these
cases.

As an alternative to using the KD-tree, the user can also provide the hints directly, by using the following
methods:

FT tree.squared distance( Point query, Point hint) const

Returns the minimum squared distance between the query
point and all input primitives. The internal KD-tree is not
used.

Point tree.closest point( Point query, Point hint) const

Returns the point in the union of all input primitives which is
closest to the query. In case there are several closest points,
one arbitrarily chosen closest point is returned. The internal
KD-tree is not used.

Point and primitive id

tree.closest point and primitive( Point query, Point and primitive id hint) const

Returns a Point and primitive id which realizes the small-
est distance between the query point and all input primitives.
The internal KD-tree is not used.

advanced

See Also

AABBTraits,
AABBPrimitive.
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AABBGeomTraits

Definition

The concept AABBGeomTraits defines the requirements for the first template parameter of the class AABB
traits<GeomTraits, Primitive>. It provides predicates and constructors to detect and compute intersections
between query objects and the primitives stored in the AABB tree. In addition, it contains predicates and
constructors to compute distances between a point query and the primitives stored in the AABB tree.

Types

AABBGeomTraits:: Bbox 3 Bounding box type.

AABBGeomTraits:: Sphere 3 Sphere type, that should be consistent with the distance func-
tion chosen for the distance queries, namely the Squared
distance 3 functor.

AABBGeomTraits:: Point 3 Point type.

AABBGeomTraits:: Do intersect 3 A functor object to detect intersections between two geomet-
ric objects. Provides the operators: bool operator()(const
Type 1& type 1, const Type 2& type 2); where Type 1 and
Type 2 are relevant types among Ray 3, Segment 3, Line 3,
Triangle 3, Plane 3 and Bbox 3. Relevant herein means that
a line primitive (ray, segment, line) is tested against a planar
or solid primitive (plane, triangle, box), and a solid primitive
is tested against another solid primitive (box against box).
The operator returns true iff type 1 and type 2 have a non
empty intersection.

AABBGeomTraits:: Intersect 3 A functor object to construct the intersection between two
geometric objects. Provides the operators: CGAL::Object
operator()(const Type 1& type 1, const Type 2& type 2);
where Type 1 and Type 2 are any relevant types among Ray
3, Segment 3, Line 3, Triangle 3, Plane 3 and Bbox 3. Rel-
evant herein means that a line primitive (ray, segment, line)
is tested against a planar or solid primitive (plane, triangle,
box). The operator computes a CGAL::Object which is the
intersection between the objects type 1 and type 2.

AABBGeomTraits:: Construct sphere 3 A functor object to construct the sphere centered at one point
and passing through another one. Provides the operator:
Sphere 3 operator()(const Point 3& p, const Point 3 & q);
which returns the sphere centered at p and passing through q.

AABBGeomTraits:: Compute closest point 3 A functor object to compute the point on a geometric prim-
itive which is closest from a query. Provides the operator:
Point 3 operator()(const Point 3& p, const Type 2& type 2);
where Type 2 is any type among Segment 3 and Triangle 3.
The operator returns the point on type 2 which is closest to
p.
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AABBGeomTraits:: Has on bounded side 3 A functor object to detect if a point lies inside a sphere or
not. Provides the operator: bool operator()(const Sphere 3&
s, const Point 3& p); which returns true iff the closed volume
bounded by s contains p.

AABBGeomTraits:: Compute squared radius 3

A functor object to compute the squared radius of a sphere.
Provides the operator: FT operator()(const Sphere 3& s);
which returns the squared radius of s.

Creation

Operations

Do intersect 3 geomtraits.do intersect 3 object()

Returns the intersection detection functor.

Intersect 3 geomtraits.intersect 3 object()

Returns the intersection constructor.

Construct sphere 3 geomtraits.construct sphere 3 object()

Returns the distance comparison functor.

Compute closest point 3

geomtraits.compute closest point 3 object()

Returns the closest point constructor.

Has on bounded side 3

geomtraits.has on bounded side 3 object()

Returns the closest point constructor.

Compute squared radius 3

geomtraits.compute squared radius 3 object()

Returns the squared radius functor.
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Has Models

Any instantiation of CGAL::Kernel is a model of this traits concept.

See Also

AABB traits<GeomTraits,AABBPrimitive>.
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AABBPrimitive

Definition

The concept AABBPrimitive describes the requirements for the primitives stored in the AABB tree data struc-
ture. The concept encapsulates a type for the input datum (a geometric object) and an identifier (id) type
through which those primitives are referred to. The concept AABBPrimitive also refines the concepts Default-
Constructible and Assignable.

Types

AABBPrimitive:: Point 3D point type.

AABBPrimitive:: Datum Type of input datum.

AABBPrimitive:: Id Type of identifiers through which the input objects are re-
ferred to. It must be a model of the concepts DefaultCon-
structible and Assignable.

Operations

Datum primitive.datum() Returns the datum (geometric object) represented by the
primitive.

Id primitive.id() Returns the corresponding identifier. This identifier is only
used as a reference for the objects in the output of the AABB
tree methods.

Point primitive.reference point()

Returns a 3D point located on the geometric object repre-
sented by the primitive. This function is used to sort the
primitives during the AABB tree construction as well as to
construct the search KD-tree internal to the AABB tree used
to accelerate distance queries.

See Also

AABB tree<AT>

Example

The Primitive type can be, e.g., a wrapper around a Handle. Assume for instance that the input objects are the
triangle faces of a mesh stored as a CGAL::Polyhedron. The Datum would be a Triangle 3 and the Id would be
a polyhedron Face handle. Method datum() can return either a Triangle 3 constructed on the fly from the face
handle or a Triangle 3 stored internally. This provides a way for the user to trade memory for efficiency.
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Has Models

AABB polyhedron triangle primitive<GeomTraits,Polyhedron>,
AABB polyhedron segment primitive<GeomTraits,Polyhedron>.
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CGAL::AABB polyhedron triangle primitive<GeomTraits,Polyhedron>

Definition

The class AABB polyhedron triangle primitive<GeomTraits,Polyhedron> is a model of the concept
AABBPrimitive. It wraps a facet handle of a polyhedron, which is used as id, and allows the construction
of the datum on the fly. Since only the facet handle is stored in this primitive, the polyhedron from which the
AABB tree is built should not be deleted while the AABB tree is in use.

Parameters

The template parameter GeomTraits provides a Point 3 type, used as Point, and a Triangle 3 type, used as
Datum and constructible from three arguments of type Point. The template parameter Polyhedron should be a
CGAL::Polyhedron whose points have type Point.

#include <CGAL/AABB polyhedron triangle primitive.h>

Types

typedef GeomTraits::Triangle 3

Datum; Geometric data type.
typedef Polyhedron::Facet handle

Id; Id type.

See Also

AABBPrimitive,
AABB polyhedron segment primitive<GeomTraits,Polyhedron>
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CGAL::AABB polyhedron segment primitive<GeomTraits,Polyhedron>

Definition

The class AABB polyhedron segment primitive<GeomTraits,Polyhedron> is a model of the concept
AABBPrimitive. It wraps a halfedge handle of a polyhedron, which is used as id, and allows the construc-
tion of the datum on the fly. Since only the halfedge handle is stored in this primitive, the polyhedron from
which the AABB tree is built should not be deleted while the AABB tree is in use.

Parameters

The template parameter GeomTraits provides a Point 3 type, used as Point, and a Segment 3 type, used as
Datum and constructible from two arguments of type Point. The template parameter Polyhedron should be a
CGAL::Polyhedron whose points have type Point.

#include <CGAL/AABB polyhedron segment primitive.h>

Types

typedef GeomTraits::Segment 3

Datum; Geometric data type.
typedef Polyhedron::Halfedge handle

Id; Id type.

See Also

AABBPrimitive,
AABB polyhedron triangle primitive<GeomTraits,Polyhedron>
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AABBTraits

Definition

The concept AABBTraits provides the geometric primitive types and methods for the class AABB tree<AT>.

Types

AABBTraits:: FT Value type of the Squared distance functor.

AABBTraits:: Point 3 Type of a 3D point.

AABBTraits:: Primitive Type of primitive. Must be a model of the concept
AABBPrimitive.

AABBTraits:: Bounding box Bounding box type.

AABBTraits:: enum Axis { X AXIS, Y AXIS, Z AXIS }

typedef std::pair<Point 3, Primitive::Id>

Point and primitive id;

typedef std::pair<Object, Primitive::Id>

Object and primitive id;

During the construction of the AABB tree, the primitives are sorted according to some comparison functions
related to the x, y or z coordinate axis:

AABBTraits:: Split primitives along x axis A functor object to split a range of primitives into two sub-
ranges along the X-axis. Provides the operator: void oper-
ator()(InputIterator first, InputIterator beyond); Iterator In-
putIterator must be a model of RandomAccessIterator and
have Primitive as value type. The operator is used for deter-
mining the primitives assigned to the two children nodes of a
given node, assuming that the goal is to split the X-dimension
of the bounding box of the node. The primitives assigned to
this node are passed as argument to the operator. It should
modify the iterator range in such a way that its first half and
its second half correspond to the two children nodes.

AABBTraits:: Split primitives along y axis A functor object to split a range of primitives into two sub-
ranges along the Y-axis. See Split primitives along x axis
for the detailed description.

AABBTraits:: Split primitives along z axis A functor object to split a range of primitives into two sub-
ranges along the Z-axis. See Split primitives along x axis
for the detailed description.
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AABBTraits:: Compute bbox A functor object to compute the bounding box of a
set of primitives. Provides the operator: Bounding box
operator()(Input iterator begin, Input iterator beyond); It-
erator InputIterator must have Primitive as value type.

AABBTraits:: Splitting direction A functor object to specify the direction along which
the bounding box should be split: Axis operator()(const
Bounding box& bbox); which returns the direction used for
splitting bbox. It is usually the axis aligned with the longest
edge of bbox.

The following predicates are required for each type Query for which the class AABB tree<AT> may receive an
intersection detection or computation query.

AABBTraits:: Do intersect A functor object to compute intersection predicates between
the query and the nodes of the tree. Provides the operators:
bool operator()(const Query & q, const Bounding box & box);
which returns true iff the query intersects the bounding box,
and bool operator()(const Query & q, const Primitive & primi-
tive); which returns true iff the query intersects the primitive.

AABBTraits:: Intersect A functor object to compute the intersection of a query and
a primitive. Provides the operator: boost::optional<Object
and primitive id> operator()(const Query & q, const Primi-
tive& primitive); which returns the intersection as a pair com-
posed of an object and a primitive id, iff the query intersects
the primitive.

The following predicates are required for each type Query for which the class AABB tree<AT> may receive a
distance query.

AABBTraits:: Compare distance A functor object to compute distance comparisons between
the query and the nodes of the tree. Provides the operators:
bool operator()(const Query & query, const Bounding box&
box, const Point & closest); which returns true iff the bound-
ing box is closer to query than closest is, and bool opera-
tor()(const Query & query, const Primitive & primitive, const
Point & closest); which returns true iff primitive is closer to
the query than closest is.

AABBTraits:: Closest point A functor object to compute closest point from the query on
a primitive. Provides the operator: Point 3 operator()(const
Query& query, const Primitive& primitive, const Point 3 &
closest); which returns the closest point to query, among
closest and all points of the primitive.

AABBTraits:: Squared distance A functor object to compute the squared distance between
the query and a point. Provides the operator: FT opera-
tor()(const Query& query, const Point 3 & p); which returns
the squared distance between query and p.

Operations
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Split primitives along x axis

traits.split primitives along x axis object()

Returns the primitive splitting functor for the X axis.

Split primitives along y axis

traits.split primitives along y axis object()

Returns the primitive splitting functor for the Y axis.

Split primitives along z axis

traits.split primitives along z axis object()

Returns the primitive splitting functor for the Z axis.

Compute bbox traits.compute bbox object()

Returns the bounding box constructor.

Do intersect traits.do intersect object()

Returns the intersection detection functor.

Intersect traits.intersect object()

Returns the intersection constructor.

Compare distance traits.compare distance object()

Returns the distance comparison functor.

Closest point traits.closest point object()

Returns the closest point constructor.

Has Models

AABB traits<GeomTraits,Primitive>.

See Also

AABB traits<GeomTraits,Primitive>
AABB tree<AT> AABBPrimitive
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CGAL::AABB traits<GeomTraits,Primitive>

Definition

The class AABB traits<GeomTraits,Primitive> is a model of the concept AABBTraits. This traits class handles
any type of 3D geometric primitives provided that the proper intersection tests and constructions are imple-
mented. It handles points, rays, lines and segments as query types for intersection detection and computations,
and it handles points as query type for distance queries.

Parameters

The template parameter GeomTraits provides the geometric types as well as the intersection tests and computa-
tions required. This type must be a model of the concept AABBGeomTraits. The template parameter Primitive
provides the type of primitives stored in the AABB tree. This parameter must be a model of the concept
AABBPrimitive.

#include <CGAL/AABB traits.h>

Types

typedef GeomTraits::Point 3

Point 3; Point query type.
typedef GeomTraits::Ray 3

Ray 3; Ray query type.
typedef GeomTraits::Line 3

Line 3; Line query type.
typedef GeomTraits::Segment 3

Segment 3; Segment query type.
AABB traits<GeomTraits,Primitive>:: size type

Unsigned integral type.

AABB traits<GeomTraits,Primitive> traits( GeomTraits gt = GeomTraits());

Default constructor.

See Also

AABBTraits,
AABB tree<AT>,
AABBPrimitive
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Chapter 65

Spatial Sorting
Christophe Delage and Olivier Devillers
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65.1 Introduction

Many geometric algorithms implemented in CGAL are incremental, and thus their speed is dependent on the
order of insertion. This package provides sorting algorithms that may considerably improve running times of
such algorithms.

The rationale is to sort objects along a space-filling curve so that two objects close geometrically will be close
in the insertion order with high probability. That way, parts of a data structure that will be looked at during an
insertion will probably have been looked at in a recent insertion, and thus probably will be in cache memory
instead of main memory. As another side-effect, these sorting functions usually improve memory locality of the
data structures produced by incremental algorithms, sometimes leading to speed ups in other algorithm using
these data structures.

Some algorithms have a good complexity under randomized hypotheses which contradicts the idea of sorting
the input using any sorting criterion. In such a case, it is possible to introduce just a bit of randomness to be
able to combine the good randomized complexity and the good effects of locality [ACR03].

The predicates used by this package are comparisons between coordinates, thus there is no robustness issue
involved here, for example to choose the arithmetic of the kernel.
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Figure 65.1: Hilbert mapping

65.2 Hilbert Sorting

In 2D, one can construct a space filling curve, that is a mapping f of [0,1] to the unit square [0,1]2, such that
f (0) = (0,0) and f (1) = (1,0) in the following way: the unit square is subdivided in four such that

f ([0, 1
4 ]) = [0, 1

2 ]2, f ([ 1
4 , 1

2 ]) = [0, 1
2 ]× [ 1

2 ,1], f ([ 1
2 , 3

4 ]) = [ 1
2 ,1]2, and f ([ 3

4 ,1]) = [ 1
2 ,1]× [0, 1

2 ].
f ( 1

4 ) = (0, 1
2 )

f ( 1
2 ) = ( 1

2 , 1
2 ), and f ( 3

4 ) = (1, 1
2 ).

Then each square is subdivided in the same way recursively. Figure 65.1 illustrates this process.

Now given a set of 2D points, they can be sorted in the order they have on such a space filling curve as illustrated
in Figure 65.2 :

Figure 65.2: Hilbert sort with middle policy
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65.2.1 Examples

The code to use Hilbert sort is as simple as the following example:� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/hilbert_sort.h>
#include <iostream>
#include <vector>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_2 Point;
typedef CGAL::Creator_uniform_2<double,Point> Creator;

int main ()
{

std::size_t size = 16;
std::vector<Point> v; v.reserve(size);
CGAL::points_on_square_grid_2(3.0, size, // generate points

std::back_inserter(v), Creator());

CGAL::hilbert_sort (v.begin(), v.end()); // sort

for(std::size_t i=0; i<size; ++i)std::cout<<v[i]<<std::endl;//output
return 0;

}� �
File: examples/Spatial_sorting/hilbert.cpp

If instead of subdividing the square in a fixed way at its middle point, as above, we subdivide it by splitting at
the median point (in x or y directions alternating), we construct a 2-d tree adapted to the point set. This tree can
be visited in a similar manner and we get also a suitable ordering of the points (see Figure 65.3).

CGAL provides Hilbert sorting for points in 2D, 3D and higher dimensions, in the middle and the median
policies.

The middle policy is easier to analyze, and is interesting in practice for well distributed set of points in small
dimension (if the number of points is really smaller than 2d). The median policy should be prefered for high
dimension or if the point set distribution is not regular (or unknown). Since the median policy cannot be much
worse than the middle policy, while the converse can happen, the median policy is the default behavior. Most
theoretical results are using the middle policy [ACR03, But71, BG89, PB89].

This other example illustrates the use of the two different policies� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/hilbert_sort.h>
#include <iostream>
#include <vector>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_2 Point;

int main ()
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Figure 65.3: Hilbert sort with median policy

{
std::vector<Point> v; v.reserve(4);
v.push_back( Point(0.0,0.0)) ;
v.push_back( Point(1.0,1.0)) ;
v.push_back( Point(0.1,0.1)) ;
v.push_back( Point(0.2,0.8)) ;

std::cout << "Hilbert sort (middle policy)." << std::endl;
CGAL::hilbert_sort (v.begin(), v.end(),
CGAL::Hilbert_sort_middle_policy());

std::cout<<v[0]<<"; "<<v[1]<<"; "<<v[2]<<"; "<<v[3]<<"; "<<std::endl;
std::cout << "Hilbert sort (median policy)." << std::endl;
CGAL::hilbert_sort (v.begin(), v.end(),
CGAL::Hilbert_sort_median_policy());

std::cout<<v[0]<<"; "<<v[1]<<"; "<<v[2]<<"; "<<v[3]<<"; "<<std::endl;
return 0;

}� �
File: examples/Spatial_sorting/hilbert_policies.cpp

65.3 Spatial Sorting

Hilbert sort cannot be used directly before feeding a randomized algorithm. Thus, the trick is to organize the
point set in random buckets of increasing sizes, Hilbert sort being used only inside a bucket.

It has been proved, in the context of Delaunay triangulation, that such an order provides enough randomness to
combine the advantages of a random order and a space filling curve order [ACR03].
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CGAL provides spatial sorting for points in 2D, 3D and higher dimensions, with the middle and the median
policies for Hilbert sort in the buckets.

65.3.1 Basic Example

The following example shows that, on particular input, spatial sort runs much faster than a bad order or than
Hilbert sort (below results with release mode compilation on a 1.8GHz processor).

$ ./small_example_delaunay_2
10000 points on a parabola
Delaunay without spatial sort... done in 6.33443 seconds.
Delaunay with median hilbert sort... done in 0.822975 seconds.
Delaunay with median spatial sort... done in 0.022415 seconds.� �

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/spatial_sort.h>
#include <CGAL/Timer.h>
#include <iostream>
#include <vector>
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Delaunay_triangulation_2<K> DT;
void compute_delaunay(std::vector<K::Point_2>::iterator it,

std::vector<K::Point_2>::iterator e){
DT dt;
DT::Face_handle hint;
for( ;it!=e; ++it) hint = dt.insert(*it, hint)->face();

}
int main ()
{ int size = 1000;

std::vector<K::Point_2> v;
v.reserve(size);
CGAL::Timer cost;
std::cout <<size<< " points on a parabola" << std::endl;
for (int i=0; i< size; ++i) {

double x= -size +i;
v.push_back( K::Point_2( x, x*x ));

}
cost.reset();cost.start();
std::cout << " Delaunay without spatial sort... "<< std::flush;
compute_delaunay(v.begin(),v.end());cost.stop();
std::cout << "done in "<<cost.time()<<" seconds." << std::endl;
cost.reset();cost.start();
std::cout << " Delaunay with Hilbert sort... " << std::flush;
CGAL::hilbert_sort(v.begin(),v.end());
compute_delaunay(v.begin(),v.end());cost.stop();
std::cout << "done in "<<cost.time()<<" seconds." << std::endl;
cost.reset();cost.start();
std::cout << " Delaunay with spatial sort... " << std::flush;
CGAL::spatial_sort(v.begin(),v.end());
compute_delaunay(v.begin(),v.end());cost.stop();
std::cout << "done in "<<cost.time()<<" seconds." << std::endl;

3763



return 0;
}� �
File: examples/Spatial_sorting/small_example_delaunay_2.cpp

65.3.2 Using Your Own Point Type

If you want to sort points of your own point type, you only have to provide functors that compare the x and y
coordinates of your points. Note that in case you simply want to associate an extra information to your point
you might consider the example of Section 65.3.3 as an alternative.� �
#include <CGAL/spatial_sort.h>

struct MyPoint {
double x,y;
int color;
MyPoint()

: x(0), y(0),color(0)
{}

MyPoint(double x, double y, int color=0)
: x(x), y(y), color(color)

{}
};

struct MyLessX {

bool operator()(const MyPoint& p, const MyPoint& q) const
{

return p.x < q.x;
}

};

struct MyLessY {

bool operator()(const MyPoint& p, const MyPoint& q) const
{

return p.y < q.y;
}

};

struct MySpatialSortingTraits {

typedef MyPoint Point_2;

typedef MyLessX Less_x_2;
typedef MyLessY Less_y_2;

Less_x_2 less_x_2_object() const
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{
return Less_x_2();

}

Less_y_2 less_y_2_object() const
{

return Less_y_2();
}

};

int main()
{

std::vector< MyPoint > points;

points.push_back(MyPoint(14,12, 3));
points.push_back(MyPoint(1,2 , 0));
points.push_back(MyPoint(414,2, 5));
points.push_back(MyPoint(4,21 , 1));
points.push_back(MyPoint(7,74 , 2));
points.push_back(MyPoint(74,4 , 4));

MySpatialSortingTraits sst;
CGAL::spatial_sort(points.begin(), points.end(), sst);

for (std::vector< MyPoint >::iterator
it=points.begin();it!=points.end();++it)
std::cout << it->color << " ";

std::cout << "\n";

std::cerr << "done" << std::endl;
return 0;

}� �
File: examples/Spatial_sorting/myPoint.cpp

65.3.3 Sorting Arbitrary Types

The spatial sorting traits class provides a point type and functors for comparing, for example, the x-coordinates
of two points. If you want to sort something else than just points, for example a sequence of tuples containing
a point, or a sequence of indices in a vector of points, you need another level of indirection. We provide the
spatial sorting traits class adapters which are templated by another spatial sorting traits class, and a property
map. which allows to obtain a point from whatever you want to sort.

The following examples illustrate the usage of these traits class adapters.

Sorting Using Pairs of Points and Integers

In this example program, the sorted sequence of points is retrieved using a vector of pairs of points and integers.� �
#include <CGAL/Simple_cartesian.h>
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#include <CGAL/spatial_sort.h>
#include <CGAL/Spatial_sort_traits_adapter_2.h>
#include <vector>

typedef CGAL::Simple_cartesian<double> Kernel;
typedef Kernel::Point_2 Point_2;
typedef std::pair<Point_2,int> Point_with_info;
typedef std::vector< Point_with_info > Data_vector;

//property map
struct First_of_pair{

//classical typedefs
typedef Point_with_info key_type;
typedef Point_2 value_type;
typedef const Point_2& reference;
typedef boost::readable_property_map_tag category;

};
//get function for property map
First_of_pair::reference
get(const First_of_pair&, const First_of_pair::key_type& k) {

return k.first;
}

typedef CGAL::Spatial_sort_traits_adapter_2<Kernel,First_of_pair>
Search_traits_2;

int main()
{

Data_vector points;
points.push_back(std::make_pair(Point_2(14,12) , 3));
points.push_back(std::make_pair(Point_2(1,2) , 0));
points.push_back(std::make_pair(Point_2(414,2) , 5));
points.push_back(std::make_pair(Point_2(4,21) , 1));
points.push_back(std::make_pair(Point_2(7,74) , 2));
points.push_back(std::make_pair(Point_2(74,4) , 4));

Search_traits_2 traits;
CGAL::spatial_sort(points.begin(), points.end(), traits);
for (Data_vector::iterator it=points.begin();it!=points.end();++it)

std::cout << it->second << " ";
std::cout << "\n";

std::cout << "done" << std::endl;

return 0;
}� �

File: examples/Spatial_sorting/sp_sort_using_property_map_2.cpp
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Sorting Using Indices of Points

In this example program, the sorted sequence of points is retrieved using the indices of the points in a vector of
points.� �
#include <CGAL/Simple_cartesian.h>
#include <CGAL/spatial_sort.h>
#include <CGAL/Spatial_sort_traits_adapter_3.h>
#include <vector>
#include <boost/iterator/counting_iterator.hpp>

typedef CGAL::Simple_cartesian<double> Kernel;
typedef Kernel::Point_3 Point_3;
//using a pointer as a special property map type
typedef

CGAL::Spatial_sort_traits_adapter_3<Kernel,Point_3*> Search_traits_3;

int main()
{

std::vector<Point_3> points;
points.push_back(Point_3(1,3,11));
points.push_back(Point_3(14,34,46));
points.push_back(Point_3(414,34,4));
points.push_back(Point_3(4,2,56));
points.push_back(Point_3(744,4154,43));
points.push_back(Point_3(74,44,1));

std::vector<std::ptrdiff_t> indices;
indices.reserve(points.size());

std::copy(boost::counting_iterator<std::ptrdiff_t>(0),
boost::counting_iterator<std::ptrdiff_t>(points.size()),
std::back_inserter(indices));

CGAL::spatial_sort(
indices.begin(),indices.end(),Search_traits_3(&(points[0])) );

for (std::vector<std::ptrdiff_t>::iterator
it=indices.begin();it!=indices.end();++it)
std::cout << points[*it] << "\n";

std::cout << "done" << std::endl;

return 0;
}� �
File: examples/Spatial_sorting/sp_sort_using_property_map_3.cpp

Sorting Using Indices of Pairs of Points and Integers

In this example program, the sorted sequence of points is retrieved using the indices of the points in a vector of
pairs of points and integers.
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#include <CGAL/Cartesian_d.h>
#include <CGAL/spatial_sort.h>
#include <CGAL/Spatial_sort_traits_adapter_d.h>
#include <boost/iterator/counting_iterator.hpp>
#include <vector>

typedef CGAL::Cartesian_d<double> Kernel;
typedef Kernel::Point_d Point_d;
typedef std::pair<Point_d,int> Point_with_info;
typedef std::vector< Point_with_info > Data_vector;

//property map and get as friend
// to be allowed to use private member
class Vect_ppmap{

const Data_vector& points;
public:

//classical typedefs
typedef Data_vector::size_type key_type;
typedef Point_d value_type;
typedef const value_type& reference;
typedef boost::readable_property_map_tag category;

Vect_ppmap(const Data_vector& points_):points(points_){}

friend reference get(const Vect_ppmap& vmap, key_type i) {
return vmap.points[i].first;

}
};

typedef CGAL::Spatial_sort_traits_adapter_d<Kernel,Vect_ppmap>
Search_traits_d;

int main()
{

double coords[] ={ 1.0, 1.0, 1.0, 1.0,
2.0, 2.0, 2.0, 2.0 };

Data_vector points;
points.push_back(std::make_pair(Point_d(4,coords ,coords+4) , 1));
points.push_back(std::make_pair(Point_d(4,coords+4,coords+8) , 2));

std::vector<Vect_ppmap::key_type> indices;
indices.reserve(points.size());

std::copy(
boost::counting_iterator<Vect_ppmap::key_type>(0),
boost::counting_iterator<Vect_ppmap::key_type>(points.size()),
std::back_inserter(indices) );

CGAL::spatial_sort(
indices.begin(),
indices.end(),
Search_traits_d(Vect_ppmap(points)) );

3768



std::vector<Vect_ppmap::key_type>::iterator it=indices.begin();
for (;it!=indices.end();++it)

std::cout << points[*it].second << " ";
std::cout << std::endl;

std::cout << "done" << std::endl;

return 0;
}� �
File: examples/Spatial_sorting/sp_sort_using_property_map_d.cpp
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CGAL::spatial sort

Definition

The function spatial sort sorts an iterator range of points in a way that improves space locality. Two points
close in the order will be close geometrically, and two points close geometrically will have a high probability of
being close in the order.

#include <CGAL/spatial sort.h>

template <class RandomAccessIterator, class Traits, class PolicyTag>
void spatial sort( RandomAccessIterator begin,

RandomAccessIterator end,
Traits traits = Default traits,
PolicyTag policy = Default policy,
std::ptrdiff t threshold hilbert=default,
std::ptrdiff t threshold multiscale=default,
double ratio=default)

sorts the range [begin,end) in place.

The default traits class Default traits is the kernel in which the type RandomAccessIterator::value type is de-
fined.

The default policy is Hilbert sort median policy() and the other option is Hilbert sort middle policy().

The default values for the thresholds and the ratio depends on the dimension.

Requirements

1. RandomAccessIterator::value type is convertible to Traits::Point 2, Traits::Point 3, or Traits::Point d.

2. Traits is a model for concept SpatialSortingTraits 2, SpatialSortingTraits 3, or SpatialSortingTraits d.

Implementation

Creates an instance of Multiscale sort<Hilbert sort> where Hilbert sort is an Hilbert sorting object, and calls
its operator().

The threshold hilbert is the minimal size of a point set to be subdivided recursively during Hilbert sorting,
otherwise random order is used. The threshold multiscale value is the minimal size for a sample to call Hilbert
sort, otherwise random order is used. The ratio value is used to split the original set in two subsets, spatial sort
is applied on the first subset of size ratio times the original size of the set, Hilbert sort is applied on the second
subset.

3773



F
un

ct
io

n

CGAL::hilbert sort

Definition

The function hilbert sort sorts an iterator range of points along a Hilbert curve.

#include <CGAL/hilbert sort.h>

template <class RandomAccessIterator, class Traits, class PolicyTag>
void hilbert sort( RandomAccessIterator begin,

RandomAccessIterator end,
Traits traits = Default traits,
PolicyTag policy = Default policy)

sorts the range [begin,end) in place.

The default traits class Default traits is the kernel in which the type RandomAccessIterator::value type is de-
fined. The default policy is Hilbert sort median policy() and the other option is Hilbert sort middle policy().

Requirements

1. RandomAccessIterator::value type is convertible to Traits::Point 2, Traits::Point 3, or Traits::Point d.

2. Traits is a model for concept SpatialSortingTraits 2, SpatialSortingTraits 3, or SpatialSortingTraits d.

Implementation

Creates an instance of Hilbert sort 2<Traits, PolicyTag>, Hilbert sort 3<Traits, PolicyTag>, or Hilbert sort
d<Traits, PolicyTag> and calls its operator().
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SpatialSortingTraits 2

Definition

All 2D spatial sorting algorithms provided in CGAL are parameterized by a traits class Traits, which defines the
primitives (objects and predicates) that the sorting algorithms use. SpatialSortingTraits 2 defines the complete
set of primitives required in these functions and functors.

Types

SpatialSortingTraits 2:: Point 2 The point type on which the sorting algorithms operate.

SpatialSortingTraits 2:: Compute x 2

Functor object type returning the x coordinate of a Point 2. Must
provide FT operator()(Point 2 p) where FT can be used as argument
of CGAL::to double.

SpatialSortingTraits 2:: Compute y 2

Functor object type returning the y coordinate of a Point 2. Must
provide FT operator()(Point 2 p) where FT can be used as argument
of CGAL::to double.

SpatialSortingTraits 2:: Less x 2 Binary predicate object type comparing Point 2s along the x coordi-
nate. Must provide bool operator()(Point 2 p, Point 2 q) where true
is returned iff px < qx, where px and qx denote x coordinate of point p
and q, respectively.

SpatialSortingTraits 2:: Less y 2 Binary predicate object type comparing Point 2s along the y coordi-
nate. Must provide bool operator()(Point 2 p, Point 2 q) where true
is returned iff py < qy, where py and qy denote y coordinate of point p
and q, respectively.

Creation

Only a copy constructor is required.

SpatialSortingTraits 2 traits( t);

Operations

The following member functions to create instances of the above predicate object types must exist.
Compute x 2 traits.compute x 2 object()
Compute y 2 traits.compute y 2 object()
Less x 2 traits.less x 2 object()
Less y 2 traits.less y 2 object()

3775



Has Models

Any CGAL kernel.
CGAL::Spatial sort traits adapter 2<Base traits,PointPropertyMap>.
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CGAL::Hilbert sort 2<Traits, PolicyTag>

Definition

The function object Hilbert sort 2<Traits, PolicyTag> sorts iterator ranges of Traits::Point 2 along a Hilbert
curve by recursively subdividing at the median or the middle depending on the PolicyTag.

Requirements

Traits is a model for SpatialSortingTraits.

Creation

Hilbert sort 2<Traits, PolicyTag> o( const Traits &traits = Traits());

constructs an instance with traits as traits class instance.

Operations

template <class RandomAccessIterator>
void o.operator()( RandomAccessIterator begin, RandomAccessIterator end) const

sorts the range [begin, end).
Requirement: RandomAccessIterator::value type equals to Traits::Point 2.
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SpatialSortingTraits 3

Definition

All 3D spatial sorting algorithms provided in CGAL are parameterized by a traits class Traits, which defines the
primitives (objects and predicates) that the sorting algorithms use. SpatialSortingTraits 3 defines the complete
set of primitives required in these functions and functors.

Types

SpatialSortingTraits 3:: Point 3 The point type on which the sorting algorithms operate.

SpatialSortingTraits 3:: Compute x 3

Functor object type returning the x coordinate of a Point 3. Must
provide FT operator()(Point 3 p) where FT can be used as argument
of CGAL::to double.

SpatialSortingTraits 3:: Compute y 3

Functor object type returning the y coordinate of a Point 3. Must
provide FT operator()(Point 3 p) where FT can be used as argument
of CGAL::to double.

SpatialSortingTraits 3:: Compute z 3

Functor object type returning the z coordinate of a Point 3. Must pro-
vide FT operator()(Point 3 p) where FT can be used as argument of
CGAL::to double.

SpatialSortingTraits 3:: Less x 3 Binary predicate object type comparing Point 3s along the x coordi-
nate. Must provide bool operator()(Point 3 p, Point 3 q) where true
is returned iff px < qx, where px and qx denote x coordinate of point p
and q, respectively.

SpatialSortingTraits 3:: Less y 3 Binary predicate object type comparing Point 3s along the y coordi-
nate. Must provide bool operator()(Point 3 p, Point 3 q) where true
is returned iff py < qy, where py and qy denote y coordinate of point p
and q, respectively.

SpatialSortingTraits 3:: Less z 3 Binary predicate object type comparing Point 3s along the z coordi-
nate. Must provide bool operator()(Point 3 p, Point 3 q) where true
is returned iff pz < qz, where pz and qz denote z coordinate of point p
and q, respectively.
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Creation

Only a copy constructor is required.

SpatialSortingTraits 3 traits( t);

Operations

The following member functions to create instances of the above predicate object types must exist.
Compute x 3 traits.compute x 3 object()
Compute y 3 traits.compute y 3 object()
Compute z 3 traits.compute z 3 object()
Less x 3 traits.less x 3 object()
Less y 3 traits.less y 3 object()
Less z 3 traits.less z 3 object()

Has Models

Any CGAL kernel.
CGAL::Spatial sort traits adapter 3<Base traits,PointPropertyMap>.
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CGAL::Hilbert sort 3<Traits, PolicyTag>

Definition

The function object Hilbert sort 3<Traits, PolicyTag> sorts iterator ranges of Traits::Point 3 along a Hilbert
curve by recursively subdividing at the median or the middle depending on the PolicyTag.

Requirements

Traits is a model for SpatialSortingTraits 3.

Creation

Hilbert sort 3<Traits, PolicyTag> o( const Traits &traits = Traits());

constructs an instance with traits as traits class instance.

Operations

template <class RandomAccessIterator>
void o.operator()( RandomAccessIterator begin, RandomAccessIterator end) const

sorts the range [begin, end).
Requirement: RandomAccessIterator::value type equals to Traits::Point 3.
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SpatialSortingTraits d

Definition

All higher dimensional spatial sorting algorithms provided in CGAL are parameterized by a traits class Traits,
which defines the primitives (objects and predicates) that the sorting algorithms use. SpatialSortingTraits d
defines the complete set of primitives required in these functions and functors.

Types

SpatialSortingTraits d:: Point d The point type on which the sorting algorithms operate.

SpatialSortingTraits d:: Point dimension d Functor object type returning the dimension of a Point d.
Must provide int operator()(Point d p) returning the dimen-
sion of p.

SpatialSortingTraits d:: Compute coordinate d

Functor object type returning the coordinates of a Point d.
Must provide FT operator()(Point d p, int i) returning the ith
coordinate of p. FT is a type that can be used as argument
of CGAL::to double.

SpatialSortingTraits d:: Less coordinate d Binary predicate object type comparing Point ds along
some coordinate. Must provide bool operator()(Point d p,
Point d q, int i) where true is returned iff pi < qi, where pi
and qi denote ith coordinate of point p and q, respectively.

Creation

Only a copy constructor is required.

SpatialSortingTraits d traits( t);

Operations

The following member functions to create instances of the above predicate object types must exist.
Point dimension d traits.point dimension d object()

Compute coordinate d
traits.compute coordinate d object()

Less coordinate d traits.less coordinate d object()

Has Models

Any CGAL d dimensional kernel.
CGAL::Spatial sort traits adapter d<Base traits,PointPropertyMap>.
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CGAL::Hilbert sort d<Traits, PolicyTag>

Definition

The function object Hilbert sort d<Traits, PolicyTag> sorts iterator ranges of Traits::Point d along a Hilbert
curve by recursively subdividing at the median or the middle depending on the PolicyTag.

Requirements

Traits is a model for SpatialSortingTraits d.

Creation

Hilbert sort d<Traits, PolicyTag> o( const Traits &traits = Traits());

constructs an instance with traits as traits class instance.

Operations

template <class RandomAccessIterator>
void o.operator()( RandomAccessIterator begin, RandomAccessIterator end) const

sorts the range [begin, end).
Requirement: RandomAccessIterator::value type equals to Traits::Point d.
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CGAL::Multiscale sort<Sort>

Definition

The class Multiscale sort<Sort> represents a sorting algorithm adaptor. Given a range of n points:

1. it applies Sort on the last (1−ratio)×n points,

2. it recurses on the first ratio×n points, stopping when there are less than threshold points.

Creation

Multiscale sort<Sort> o( const Sort &sort = Sort(), std::ptrdiff t threshold = 1, double ratio = 0.5);

constructs an instance with traits as traits class instance.

Operations

template <class RandomAccessIterator>
void o.operator()( RandomAccessIterator begin, RandomAccessIterator end) const

sorts the range [begin, end).
Requirement: Sort::operator()(RandomAccessIterator begin, RandomAccessIterator end) is de-
fined.
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CGAL::Median

Definition

Median is a tag class. It can be used to parameterize a strategy policy in order to specify the strategy for spatial
sorting. Hilbert policy<Median> can be passed to as parameter to hilbert sort to choose the sorting policy.

#include <CGAL/Hilbert policy tags.h>

Is Model for the Concepts

DefaultConstructible, CopyConstructible

See Also

Middle
Hilbert policy
Hilbert sort median policy
Hilbert sort middle policy
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CGAL::Middle

Definition

Middle is a tag class. It can be used to parameterize a strategy policy in order to specify the strategy for spatial
sorting. Hilbert policy<Middle> can be passed to as parameter to hilbert sort to choose the sorting policy.

#include <CGAL/Hilbert policy tags.h>

Is Model for the Concepts

DefaultConstructible, CopyConstructible

See Also

Median
Hilbert policy
Hilbert sort median policy
Hilbert sort middle policy
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CGAL::Hilbert policy<Tag>

Definition

Hilbert policy<Tag> is a policy class which can be used to parameterize a strategy policy in order to specify the
strategy for spatial sorting. Hilbert policy<Median> or Hilbert policy<Middle> can be passed to as parameter
to hilbert sort to choose the sorting policy.

#include <CGAL/Hilbert policy tags.h>

Parameters

Tag can only be either Median or Middle currently.

Is Model for the Concepts

DefaultConstructible, CopyConstructible

See Also

Median
Middle
Hilbert sort median policy
Hilbert sort middle policy
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CGAL::Hilbert sort median policy

Definition

A typedef to Hilbert policy<Median>.

#include <CGAL/Hilbert policy tags.h>

See Also

Median
Middle
Hilbert policy
Hilbert sort middle policy

3787



C
la

ss

CGAL::Hilbert sort middle policy

Definition

A typedef to Hilbert policy<Middle>.

#include <CGAL/Hilbert policy tags.h>

See Also

Median
Middle
Hilbert sort median policy
Hilbert policy
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CGAL::Spatial sort traits adapter 2<Base traits,PointPropertyMap>

Definition

Given a property map associating a key to a point, the class Spatial sort traits adapter 2<Base
traits,PointPropertyMap> induces a spatial reorder of the keys instead of the points, the comparisons being
done on the associated points. In other words, the traits provides to a spatial sort algorithm a point type which
is a key, while the actual point type is Base traits::Point 2.

Requirements

Base traits is a model for SpatialSortingTraits 2. PointPropertyMap is a model of boost::ReadablePropertyMap
with Base traits::Point 2 as value type.

Inherits From

Base traits

Is Model for the Concepts

SpatialSortingTraits 2

Types

boost::property traits<PointPropertyMap>::key type

Point 2;

Creation

Spatial sort traits adapter 2<Base traits,PointPropertyMap> o( Base traits base=Base traits());

Spatial sort traits adapter 2<Base traits,PointPropertyMap> o( const PointPropertyMap& ppmap,
Base traits base=Base traits())

Operations

const PointPropertyMap&

o.point property map() const

Returns a const reference to the point property map.
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CGAL::Spatial sort traits adapter 3<Base traits,PointPropertyMap>

Definition

Given a property map associating a key to a point, the class Spatial sort traits adapter 3<Base
traits,PointPropertyMap> induces a spatial reorder of the keys instead of the points, the comparisons being
done on the associated points. In other words, the traits provides to a spatial sort algorithm a point type which
is a key, while the actual point type is Base traits::Point 3.

Requirements

Base traits is a model for SpatialSortingTraits 3. PointPropertyMap is a model of boost::ReadablePropertyMap
with Base traits::Point 3 as value type.

Inherits From

Base traits

Is Model for the Concepts

SpatialSortingTraits 3

Types

boost::property traits<PointPropertyMap>::key type

Point 3;

Creation

Spatial sort traits adapter 3<Base traits,PointPropertyMap> o( Base traits base=Base traits());

Spatial sort traits adapter 3<Base traits,PointPropertyMap> o( const PointPropertyMap& ppmap,
Base traits base=Base traits())

Operations

const PointPropertyMap&

o.point property map() const

Returns a const reference to the point property map.
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CGAL::Spatial sort traits adapter d<Base traits,PointPropertyMap>

Definition

Given a property map associating a key to a point, the class Spatial sort traits adapter d<Base
traits,PointPropertyMap> induces a spatial reorder of the keys instead of the points, the comparisons being
done on the associated points. In other words, the traits provides to a spatial sort algorithm a point type which
is a key, while the actual point type is Base traits::Point d.

Requirements

Base traits is a model for SpatialSortingTraits d. PointPropertyMap is a model of boost::ReadablePropertyMap
with Base traits::Point d as value type.

Inherits From

Base traits

Is Model for the Concepts

SpatialSortingTraits d

Types

boost::property traits<PointPropertyMap>::key type

Point d;

Creation

Spatial sort traits adapter d<Base traits,PointPropertyMap> o( Base traits base=Base traits());

Spatial sort traits adapter d<Base traits,PointPropertyMap> o( const PointPropertyMap& ppmap,
Base traits base=Base traits())

Operations

const PointPropertyMap&

o.point property map() const

Returns a const reference to the point property map.
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Chapter 66

Bounding Volumes
Kaspar Fischer, Bernd Gärtner, Thomas Herrmann, Michael Hoffmann, and Sven Schönherr

This chapter describes algorithms which for a given point set compute the “best” circumscribing object from
a specific class. If the class consists of all spheres in d-dimensional Euclidean space and “best” is defined as
having smallest radius, then we obtain the smallest enclosing sphere problem already mentioned above.

In the following example a smallest enclosing circle (CGAL::Min circle 2<Traits>) is constructed from points
on a line and written to standard output. The example shows that it is advisable to switch on random shuffling
in order to deal with a ‘bad’ order of the input points.� �
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Min_circle_2.h>
#include <CGAL/Min_circle_2_traits_2.h>
#include <iostream>

// typedefs
typedef CGAL::Exact_predicates_exact_constructions_kernel K;
typedef CGAL::Min_circle_2_traits_2<K> Traits;
typedef CGAL::Min_circle_2<Traits> Min_circle;

typedef K::Point_2 Point;

int
main( int, char**)
{

const int n = 100;
Point P[n];
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for ( int i = 0; i < n; ++i)
P[ i] = Point( (i%2 == 0 ? i : -i), 0);

// (0,0), (-1,0), (2,0), (-3,0), ...

Min_circle mc1( P, P+n, false); // very slow
Min_circle mc2( P, P+n, true); // fast

CGAL::set_pretty_mode( std::cout);
std::cout << mc2;

return 0;
}� �
File: examples/Min_circle_2/min_circle_2.cpp

Other classes for which we provide solutions are ellipses (CGAL::Min ellipse 2<Traits>), rectangles
(CGAL::min rectangle 2), parallelograms (CGAL::min parallelogram 2) and strips (CGAL::min strip 2) in
the plane, with appropriate optimality criteria. For arbitrary dimensions we provide smallest enclosing spheres
for points (CGAL::Min sphere d<Traits>) and spheres for spheres (CGAL::Min sphere of spheres d<Traits>
), smallest enclosing annuli (CGAL::Min annulus d<Traits>), and approximate minimum-volume enclosing
ellipsoid with user-specified approximation ratio (CGAL::Approximate min ellipsoid d<Traits>).

Bounding volumes can be used to obtain simple approximations of complicated objects. For example, consider
the problem of deciding whether two moving polygons currently intersect. An obvious solution is to discretize
time and perform a full intersection test for any time step. If the polygons are far apart most of the time, this is
unnecessary. Instead, simple bounding volumes (for examples, circles) are computed for both polygons at their
initial positions. At subsequent time steps, an intersection test between the moving bounding circles replaces
the actual intersection test; only if the circles do intersect, the expensive intersection test between the polygons
is performed. In practice, bounding volume hierarchies are often used on top of simple bounding volumes to
approximate complicated objects more accurately.

Bounding volumes are also frequently applied to extract geometric properties of objects. For example, the
smallest enclosing annulus of a point set can be used to test whether a set of points is approximately cospher-
ical. Here, the width of the annulus (or its area, or still another criterion that we use) is a good measure for
this property. The largest area triangle is for example used in heuristics for matching archaeological aerial
photographs. Largest perimeter triangles are used in scoring cross country soaring flights, where the goal is
basically to fly as far as possible, but still return to the departure airfield. To score simply based on the total
distance flown is not a good measure, since circling in thermals allows to increase it easily.

Bounding volumes also define geometric “center points” of objects. For example, if two objects are to be
matched (approximately), one approch is to first apply the translation that maps the centers of their smallest
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enclosing spheres onto each other. Simpler centers are possible, of course (center of gravity, center of bounding
box), but more advanced bounding volumes might give better results in some cases. It can also make sense to
consider several center points instead of just one. For example, we provide algorithms to cover a planar point
set with between two and four minimal boxes (CGAL::rectangular p center 2). Below is an example covering
with three boxes; the center points are shown in red.
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Bounded Volumes
Reference Manual
Kaspar Fischer, Bernd Gärtner, Thomas Herrmann, Michael Hoffmann, and Sven Schönherr

This chapter describes concepts, classes, and functions for bounding areas and volumes.

These are Smallest enclosing circle and ellipse (2D), smallest enclosing rectangle, parallelogram, and strip
(2D), rectangular p-center (2D), smallest enclosing sphere and annulus (dD), approximate minimum-volume
enclosing ellipsoid with user-specified approximation ratio (dD).

Assertions

The optimization code uses infix OPTIMISATION in the assertions, e.g. defining the compiler flag CGAL
OPTIMISATION NO PRECONDITIONS switches precondition checking off, cf. Section 2.8.
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Bounding Areas and Volumes

CGAL::Min circle 2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3802
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CGAL::Min circle 2<Traits>

Definition

An object of the class Min circle 2<Traits> is the unique circle of smallest area enclosing a finite (multi)set
of points in two-dimensional Euclidean space E2. For a point set P we denote by mc(P) the smallest circle
that contains all points of P. Note that mc(P) can be degenerate, i.e. mc(P) = /0 if P = /0 and mc(P) = {p} if
P = {p}.

An inclusion-minimal subset S of P with mc(S) = mc(P) is called a support set, the points in S are the support
points. A support set has size at most three, and all its points lie on the boundary of mc(P). In general, neither
the support set nor its size are necessarily unique.

The underlying algorithm can cope with all kinds of input, e.g. P may be empty or points may occur more than
once. The algorithm computes a support set S which remains fixed until the next insert or clear operation.

Please note: This class is (almost) obsolete. The class CGAL::Min sphere of spheres d<Traits> solves a
more general problem and is faster then Min circle 2<Traits> even if used only for points in two dimensions
as input. Most importantly, CGAL::Min sphere of spheres d<Traits> has a specialized implementation for
floating-point arithmetic which ensures correct results in a large number of cases (including highly degenerate
ones). In contrast, Min circle 2<Traits> is not tuned for floating-point computations. The only advantage of
Min circle 2<Traits> over CGAL::Min sphere of spheres d<Traits> is that the former can deal with points in
homogeneous coordinates, in which case the algorithm is division-free. Thus, Min circle 2<Traits> might still
be an option in case your input number type cannot (efficiently) divide.

#include <CGAL/Min circle 2.h>

Requirements

The template parameter Traits is a model for MinCircle2Traits.

We provide the model CGAL::Min circle 2 traits 2 using the two-dimensional CGAL kernel.

Types

Min circle 2<Traits>:: Point typedef to Traits::Point.

Min circle 2<Traits>:: Circle typedef to Traits::Circle.

Min circle 2<Traits>:: Point iterator

non-mutable model of the STL concept BidirectionalIterator with value type
Point. Used to access the points of the smallest enclosing circle.

Min circle 2<Traits>:: Support point iterator

non-mutable model of the STL concept RandomAccessIterator with value
type Point. Used to access the support points of the smallest enclosing circle.
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Creation

A Min circle 2<Traits> object can be created from an arbitrary point set P and by specialized construction
methods expecting no, one, two or three points as arguments. The latter methods can be useful for reconstructing
mc(P) from a given support set S of P.

template < class InputIterator >
Min circle 2<Traits> min circle( InputIterator first,

InputIterator last,
bool randomize,
Random& random = CGAL::default random,
Traits traits = Traits())

initializes min circle to mc(P) with P being the set of points in the
range [first,last). If randomize is true, a random permutation of P
is computed in advance, using the random numbers generator ran-
dom. Usually, this will not be necessary, however, the algorithm’s
efficiency depends on the order in which the points are processed,
and a bad order might lead to extremely poor performance (see
example below).
Requirement: The value type of first and last is Point.

Min circle 2<Traits> min circle( Traits traits = Traits());

initializes min circle to mc( /0), the empty set.
Postcondition: min circle.is empty() = true.

Min circle 2<Traits> min circle( Point p, Traits traits = Traits());

initializes min circle to mc({p}), the set {p}.
Postcondition: min circle.is degenerate() = true.

Min circle 2<Traits> min circle( Point p1, Point p2, Traits traits = Traits());

initializes min circle to mc({p1, p2}), the circle with diameter
equal to the segment connecting p1 and p2.

Min circle 2<Traits> min circle( Point p1, Point p2, Point p3, Traits traits = Traits());

initializes min circle to mc({p1, p2, p3}).

Access Functions

int min circle.number of points() const

returns the number of points of min circle, i.e. |P|.
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int min circle.number of support points() const

returns the number of support points of min circle, i.e. |S|.

Point iterator
min circle.points begin() const

returns an iterator referring to the first point of min circle.
Point iterator

min circle.points end() const returns the corresponding past-the-end iterator.

Support point iterator
min circle.support points begin() const

returns an iterator referring to the first support point of min circle.
Support point iterator

min circle.support points end() const
returns the corresponding past-the-end iterator.

Point min circle.support point( int i) const

returns the i-th support point of min circle. Between two modify-
ing operations (see below) any call to min circle.support point(i)
with the same i returns the same point.
Precondition: 0≤ i < min circle.number of support points().

Circle min circle.circle() const returns the current circle of min circle.

Predicates

By definition, an empty Min circle 2<Traits> has no boundary and no bounded side, i.e. its unbounded side
equals the whole space E2.

CGAL::Bounded side

min circle.bounded side( Point p) const

returns CGAL::ON BOUNDED SIDE, CGAL::ON BOUNDARY ,
or CGAL::ON UNBOUNDED SIDE iff p lies properly inside, on
the boundary of, or properly outside of min circle, resp.

bool min circle.has on bounded side( Point p) const

returns true, iff p lies properly inside min circle.

bool min circle.has on boundary( Point p) const

returns true, iff p lies on the boundary of min circle.

bool min circle.has on unbounded side( Point p) const

returns true, iff p lies properly outside of min circle.
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bool min circle.is empty() const returns true, iff min circle is empty (this implies degeneracy).

bool min circle.is degenerate() const

returns true, iff min circle is degenerate, i.e. if min circle is empty
or equal to a single point, equivalently if the number of support
points is less than 2.

Modifiers

New points can be added to an existing min circle, allowing to build mc(P) incrementally, e.g. if P is not known
in advance. Compared to the direct creation of mc(P), this is not much slower, because the construction method
is incremental itself.

void min circle.insert( Point p) inserts p into min circle and recomputes the smallest enclosing cir-
cle.

template < class InputIterator >
void min circle.insert( InputIterator first, InputIterator last)

inserts the points in the range [first,last) into min circle and re-
computes the smallest enclosing circle by calling insert(p) for each
point p in [first,last).
Requirement: The value type of first and last is Point.

void min circle.clear() deletes all points in min circle and sets min circle to the empty set.
Postcondition: min circle.is empty() = true.

Validity Check

An object min circle is valid, iff

• min circle contains all points of its defining set P,

• min circle is the smallest circle spanned by its support set S, and

• S is minimal, i.e. no support point is redundant.

bool min circle.is valid( bool verbose = false, int level = 0) const

returns true, iff min circle is valid. If verbose is true, some mes-
sages concerning the performed checks are written to standard er-
ror stream. The second parameter level is not used, we provide it
only for consistency with interfaces of other classes.

Miscellaneous

const Traits&

min circle.traits() const returns a const reference to the traits class object.
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I/O

std::ostream&

std::ostream& os << min circle

writes min circle to output stream os.
Requirement: The output operator is defined for Point (and for
Circle, if pretty printing is used).

std::istream&

std::istream& is >> min circle&

reads min circle from input stream is.
Requirement: The input operator is defined for Point.

See Also

CGAL::Min ellipse 2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3812
CGAL::Min sphere d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3846

CGAL::Min sphere of spheres d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3867

CGAL::Min circle 2 traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3808

MinCircle2Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3809

Implementation

We implement the incremental algorithm of Welzl, with move-to-front heuristic [Wel91]. The whole implemen-
tation is described in [GS98a].

If randomization is chosen, the creation time is almost always linear in the number of points. Access functions
and predicates take constant time, inserting a point might take up to linear time, but substantially less than
computing the new smallest enclosing circle from scratch. The clear operation and the check for validity each
takes linear time.

Example

To illustrate the creation of Min circle 2<Traits> and to show that randomization can be useful in certain cases,
we give an example.� �
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Min_circle_2.h>
#include <CGAL/Min_circle_2_traits_2.h>
#include <iostream>

// typedefs
typedef CGAL::Exact_predicates_exact_constructions_kernel K;
typedef CGAL::Min_circle_2_traits_2<K> Traits;
typedef CGAL::Min_circle_2<Traits> Min_circle;
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typedef K::Point_2 Point;

int
main( int, char**)
{

const int n = 100;
Point P[n];

for ( int i = 0; i < n; ++i)
P[ i] = Point( (i%2 == 0 ? i : -i), 0);

// (0,0), (-1,0), (2,0), (-3,0), ...

Min_circle mc1( P, P+n, false); // very slow
Min_circle mc2( P, P+n, true); // fast

CGAL::set_pretty_mode( std::cout);
std::cout << mc2;

return 0;
}� �
File: examples/Min_circle_2/min_circle_2.cpp
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CGAL::Min circle 2 traits 2<K>

Definition

The class Min circle 2 traits 2<K> is a traits class for Min circle 2<Traits> using the two-dimensional CGAL
kernel.

#include <CGAL/Min circle 2 traits 2.h>

Requirements

The template parameter K is a model for Kernel.

Is Model for the Concepts

MinCircle2Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3809

Types

Min circle 2 traits 2<K>:: Point typedef to K::Point 2.

Min circle 2 traits 2<K>:: Circle internal type.

Creation

Min circle 2 traits 2<K> traits; default constructor.

Min circle 2 traits 2<K> traits( Min circle 2 traits 2<K>);

copy constructor.

Operations

CGAL::Orientation traits.orientation( Point p, Point q, Point r) const

returns CGAL::orientation( p, q, r).

See Also

CGAL::Min circle 2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3802

MinCircle2Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3809
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MinCircle2Traits

Definition

This concept defines the requirements for traits classes of CGAL::Min circle 2<Traits>.

Types

MinCircle2Traits:: Point The point type must provide default and copy constructor,
assignment and equality test.

MinCircle2Traits:: Circle The circle type must fulfill the requirements listed below in
the next section.

Variables

Circle circle; The current circle. This variable is maintained by the algo-
rithm, the user should neither access nor modify it directly.

Creation

Only default and copy constructor are required.

MinCircle2Traits traits;

MinCircle2Traits traits( MinCircle2Traits);

Operations

The following predicate is only needed, if the member function is valid of Min circle 2 is used.

CGAL::Orientation traits.orientation( Point p, Point q, Point r) const

returns constants CGAL::LEFT TURN,
CGAL::COLLINEAR, or CGAL::RIGHT TURN iff r
lies properly to the left of, on, or properly to the right of the
oriented line through p and q, resp.

Has Models

CGAL::Min circle 2 traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3808

See Also

CGAL::Min circle 2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3802
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Circle Type (Circle)

Definition

An object of the class Circle is a circle in two-dimensional Euclidean plane E2. Its boundary splits the plane
into a bounded and an unbounded side. By definition, an empty Circle has no boundary and no bounded side,
i.e. its unbounded side equals the whole plane E2. A Circle containing exactly one point p has no bounded side,
its boundary is {p}, and its unbounded side equals E2 \{p}.

Types

Circle:: Point Point type.

The following type is only needed, if the member function is valid of Min circle 2 is used.

Circle:: Distance Distance type. The function squared radius (see below) returns an
object of this type.

Creation

void circle.set() sets circle to the empty circle.

void circle.set( Point p) sets circle to the circle containing exactly {p}.

void circle.set( Point p, Point q) sets circle to the circle with diameter equal to the segment connect-
ing p and q. The algorithm guarantees that set is never called with
two equal points.

void circle.set( Point p, Point q, Point r)

sets circle to the circle through p,q,r. The algorithm guarantees
that set is never called with three collinear points.

Predicates

bool circle.has on unbounded side( Point p) const

returns true, iff p lies properly outside of circle.

Each of the following predicates is only needed, if the corresponding predicate of Min circle 2 is used.

CGAL::Bounded side

circle.bounded side( Point p) const

returns CGAL::ON BOUNDED SIDE, CGAL::ON BOUNDARY ,
or CGAL::ON UNBOUNDED SIDE iff p lies properly inside, on
the boundary, or properly outside of circle, resp.
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bool circle.has on bounded side( Point p) const

returns true, iff p lies properly inside circle.

bool circle.has on boundary( Point p) const

returns true, iff p lies on the boundary of circle.

bool circle.is empty() const returns true, iff circle is empty (this implies degeneracy).

bool circle.is degenerate() const returns true, iff circle is degenerate, i.e. if circle is empty or equal
to a single point.

Additional Operations for Checking

The following operations are only needed, if the member function is valid of Min circle 2 is used.

bool circle == circle2 returns true, iff circle and circle2 are equal.

Point circle.center() const returns the center of circle.

Distance circle.squared radius() const

returns the squared radius of circle.

I/O

The following I/O operator is only needed, if the corresponding I/O operator of Min circle 2 is used.

std::ostream&

std::ostream& os << circle writes circle to output stream os.
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CGAL::Min ellipse 2<Traits>

Definition

An object of the class Min ellipse 2<Traits> is the unique ellipse of smallest area enclosing a finite (multi)set
of points in two-dimensional euclidean space E2. For a point set P we denote by me(P) the smallest ellipse that
contains all points of P. Note that me(P) can be degenerate, i.e. me(P) = /0 if P = /0, me(P) = {p} if P = {p},
and me(P) = {(1−λ)p+λq | 0≤ λ≤ 1} if P = {p,q}.

An inclusion-minimal subset S of P with me(S) = me(P) is called a support set, the points in S are the support
points. A support set has size at most five, and all its points lie on the boundary of me(P). In general, neither
the support set nor its size are necessarily unique.

The underlying algorithm can cope with all kinds of input, e.g. P may be empty or points may occur more than
once. The algorithm computes a support set S which remains fixed until the next insert or clear operation.

#include <CGAL/Min ellipse 2.h>

Requirements

The template parameter Traits is a model for MinEllipse2Traits.

We provide the model CGAL::Min ellipse 2 traits 2<K> using the two-dimensional CGAL kernel.

Types

Min ellipse 2<Traits>:: Point Typedef to Traits::Point.

Min ellipse 2<Traits>:: Ellipse Typedef to Traits::Ellipse. If you are using the predefined traits class
CGAL::Min ellipse 2 traits 2<K>, you can access the coefficients of the
ellipse, see the documentation of CGAL::Min ellipse 2 traits 2<K> and the
example below.

Min ellipse 2<Traits>:: Point iterator

Non-mutable model of the STL concept BidirectionalIterator with value
type Point. Used to access the points of the smallest enclosing ellipse.

Min ellipse 2<Traits>:: Support point iterator

Non-mutable model of the STL concept RandomAccessIterator with value
type Point. Used to access the support points of the smallest enclosing el-
lipse.

Creation
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A Min ellipse 2<Traits> object can be created from an arbitrary point set P and by specialized construction
methods expecting no, one, two, three, four or five points as arguments. The latter methods can be useful for
reconstructing me(P) from a given support set S of P.

template < class InputIterator >
Min ellipse 2<Traits> min ellipse( InputIterator first,

InputIterator last,
bool randomize,
Random& random = default random,
Traits traits = Traits())

initializes min ellipse to me(P) with P being the set of points in the
range [first,last). If randomize is true, a random permutation of P
is computed in advance, using the random numbers generator ran-
dom. Usually, this will not be necessary, however, the algorithm’s
efficiency depends on the order in which the points are processed,
and a bad order might lead to extremely poor performance (see
example below).
Requirement: The value type of first and last is Point.

Min ellipse 2<Traits> min ellipse( Traits traits = Traits());

creates a variable min ellipse of type Min ellipse 2<Traits>. It is
initialized to me( /0), the empty set.
Postcondition: min ellipse.is empty() = true.

Min ellipse 2<Traits> min ellipse( Point p, Traits traits = Traits());

initializes min ellipse to me({p}), the set {p}.
Postcondition: min ellipse.is degenerate() = true.

Min ellipse 2<Traits> min ellipse( Point p, Point q, Traits traits = Traits());

initializes min ellipse to me({p,q}),
the set {(1−λ)p+λq | 0≤ λ≤ 1}.
Postcondition: min ellipse.is degenerate() = true.

Min ellipse 2<Traits> min ellipse( Point p1, Point p2, Point p3, Traits traits = Traits());

initializes min ellipse to me({p1, p2, p3}).

Min ellipse 2<Traits> min ellipse( Point p1, Point p2, Point p3, Point p4, Traits traits = Traits());

initializes min ellipse to me({p1, p2, p3, p4}).

Min ellipse 2<Traits> min ellipse( Point p1, Point p2, Point p3, Point p4, Point p5, Traits traits = Traits());

initializes min ellipse to me({p1, p2, p3, p4, p5}).
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Access Functions

int min ellipse.number of points() const

returns the number of points of min ellipse, i.e. |P|.

int min ellipse.number of support points() const

returns the number of support points of min ellipse, i.e. |S|.

Point iterator
min ellipse.points begin() const

returns an iterator referring to the first point of min ellipse.

Point iterator
min ellipse.points end() const returns the corresponding past-the-end iterator.

Support point iterator
min ellipse.support points begin() const

returns an iterator referring to the first support point of min ellipse.

Support point iterator
min ellipse.support points end() const

returns the corresponding past-the-end iterator.

Point min ellipse.support point( int i) const

returns the i-th support point of min ellipse. Between two modify-
ing operations (see below) any call to min ellipse.support point(i)
with the same i returns the same point.
Precondition: 0≤ i < min ellipse.number of support points().

Ellipse min ellipse.ellipse() const returns the current ellipse of min ellipse.

Predicates

By definition, an empty Min ellipse 2<Traits> has no boundary and no bounded side, i.e. its unbounded side
equals the whole space E2.

CGAL::Bounded side

min ellipse.bounded side( Point p) const

returns CGAL::ON BOUNDED SIDE, CGAL::ON BOUNDARY ,
or CGAL::ON UNBOUNDED SIDE iff p lies properly inside, on
the boundary of, or properly outside of min ellipse, resp.

bool min ellipse.has on bounded side( Point p) const

returns true, iff p lies properly inside min ellipse.
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bool min ellipse.has on boundary( Point p) const

returns true, iff p lies on the boundary of min ellipse.

bool min ellipse.has on unbounded side( Point p) const

returns true, iff p lies properly outside of min ellipse.

bool min ellipse.is empty() const returns true, iff min ellipse is empty (this implies degeneracy).

bool min ellipse.is degenerate() const

returns true, iff min ellipse is degenerate, i.e. if min ellipse is
empty, equal to a single point or equal to a segment, equivalently
if the number of support points is less than 3.

Modifiers

New points can be added to an existing min ellipse, allowing to build me(P) incrementally, e.g. if P is not
known in advance. Compared to the direct creation of me(P), this is not much slower, because the construction
method is incremental itself.

void min ellipse.insert( Point p) inserts p into min ellipse and recomputes the smallest enclosing
ellipse.

template < class InputIterator >
void min ellipse.insert( InputIterator first, InputIterator last)

inserts the points in the range [first,last) into min ellipse and re-
computes the smallest enclosing ellipse by calling insert(p) for
each point p in [first,last).
Requirement: The value type of first and last is Point.

void min ellipse.clear() deletes all points in min ellipse and sets min ellipse to the empty
set.
Postcondition: min ellipse.is empty() = true.

Validity Check

An object min ellipse is valid, iff

• min ellipse contains all points of its defining set P,

• min ellipse is the smallest ellipse spanned by its support set S, and

• S is minimal, i.e. no support point is redundant.
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Note: In this release only the first item is considered by the validity check.

bool min ellipse.is valid( bool verbose = false, int level = 0) const

returns true, iff min ellipse contains all points of its defining set
P. If verbose is true, some messages concerning the performed
checks are written to standard error stream. The second parameter
level is not used, we provide it only for consistency with interfaces
of other classes.

Miscellaneous

const Traits&

min ellipse.traits() const returns a const reference to the traits class object.

I/O

std::ostream&

std::ostream& os << min ellipse

writes min ellipse to output stream os.
Requirement: The output operator is defined for Point (and for
Ellipse, if pretty printing is used).

std::istream&

std::istream& is >> min ellipse&

reads min ellipse from input stream is.
Requirement: The input operator is defined for Point.

See Also

CGAL::Min circle 2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3802

CGAL::Min ellipse 2 traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3819

MinEllipse2Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3821

Implementation

We implement the incremental algorithm of Welzl, with move-to-front heuristic [Wel91], using the primitives
as described in [GS97a, GS97b]. The whole implementation is described in [GS98b].

If randomization is chosen, the creation time is almost always linear in the number of points. Access functions
and predicates take constant time, inserting a point might take up to linear time, but substantially less than
computing the new smallest enclosing ellipse from scratch. The clear operation and the check for validity each
takes linear time.
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Example

To illustrate the usage of Min ellipse 2<Traits> and to show that randomization can be useful in certain cases,
we give an example. The example also shows how the coefficents of the constructed ellipse can be accessed.� �
#include <CGAL/Cartesian.h>
#include <CGAL/Min_ellipse_2.h>
#include <CGAL/Min_ellipse_2_traits_2.h>
#include <CGAL/Gmpq.h>

#include <cassert>

typedef CGAL::Gmpq NT;
typedef CGAL::Cartesian<NT> K;
typedef CGAL::Point_2<K> Point;
typedef CGAL::Min_ellipse_2_traits_2<K> Traits;
typedef CGAL::Min_ellipse_2<Traits> Min_ellipse;

int
main( int, char**)
{

const int n = 200;
Point P[n];

for ( int i = 0; i < n; ++i)
P[ i] = Point( i % 2 ? i : -i , 0);

// (0,0), (-1,0), (2,0), (-3,0)

std::cout << "Computing ellipse (without randomization)...";
std::cout.flush();
Min_ellipse me1( P, P+n, false); // very slow
std::cout << "done." << std::endl;

std::cout << "Computing ellipse (with randomization)...";
std::cout.flush();
Min_ellipse me2( P, P+n, true); // fast
std::cout << "done." << std::endl;

// because all input points are collinear, the ellipse is
// degenerate and equals a line segment; the ellipse has
// two support points
assert(me2.is_degenerate());
assert(me2.number_of_support_points()==2);

// prettyprinting
CGAL::set_pretty_mode( std::cout);
std::cout << me2;

// in general, the ellipse is not explicitly representable
// over the input number type NT; when you use the default
// traits class CGAL::Min_ellipse_2_traits_2<K>, you can
// get double approximations for the coefficients of the
// underlying conic curve. NOTE: this curve only exists
// in the nondegenerate case!
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me2.insert(Point(0,1)); // resolves the degeneracy
assert(!me2.is_degenerate());

// get the coefficients
double r,s,t,u,v,w;
me2.ellipse().double_coefficients( r, s, t, u, v, w);
std::cout << "ellipse has the equation " <<

r << " xˆ2 + " <<
s << " yˆ2 + " <<
t << " xy + " <<
u << " x + " <<
v << " y + " <<
w << " = 0." << std::endl;

return 0;
}� �
File: examples/Min_ellipse_2/min_ellipse_2.cpp
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CGAL::Min ellipse 2 traits 2<K>

Definition

The class Min ellipse 2 traits 2<K> is a traits class for CGAL::Min ellipse 2<Traits> using the two-dimen-
sional CGAL kernel.

#include <CGAL/Min ellipse 2 traits 2.h>

Requirements

The template parameter K is a model for Kernel.

Is Model for the Concepts

MinEllipse2Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3821

Types

Min ellipse 2 traits 2<K>:: Point typedef to K::Point 2.

Min ellipse 2 traits 2<K>:: Ellipse internal type.

The Ellipse type provides the following access methods not required by the concept MinEllipse2Traits.

bool ellipse.is circle() tests whether the ellipse is a circle.

void ellipse.double coefficients( double &r,
double &s,
double &t,
double &u,
double &v,
double &w)

gives a double approximation of the ellipse’s conic equa-
tion. If K is a Cartesian kernel, the ellipse is the set of
all points (x,y) satisfying rx2 + sy2 + txy + ux + vy + w =
0. In the Homogeneous case, the ellipse is the set of
points (hx,hy,hw) satisfying r(hx)2 + s(hy)2 + t(hx)(hy) +
u(hx)(hw)+ v(hy)(hw)+w(hw)2 = 0.

Creation

Min ellipse 2 traits 2<K> traits; default constructor.
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Min ellipse 2 traits 2<K> traits( Min ellipse 2 traits 2<K>);

copy constructor.

See Also

CGAL::Min ellipse 2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3812

MinEllipse2Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3821
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MinEllipse2Traits

Definition

This concept defines the requirements for traits classes of CGAL::Min ellipse 2<Traits>.

Types

MinEllipse2Traits:: Point The point type must provide default and copy constructor,
assignment and equality test.

MinEllipse2Traits:: Ellipse The ellipse type must fulfill the requirements listed below in
the next section.

Variables

Ellipse ellipse; The current ellipse. This variable is maintained by the algo-
rithm, the user should neither access nor modify it directly.

Creation

Only default and copy constructor are required.

MinEllipse2Traits traits;

MinEllipse2Traits traits( Traits);

Has Models

CGAL::Min ellipse 2 traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3819

See Also

CGAL::Min ellipse 2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3812
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Ellipse Type (Ellipse)

Definition

An object of the class Ellipse is an ellipse in two-dimensional Euclidean plane E2. Its boundary splits the plane
into a bounded and an unbounded side. By definition, an empty Ellipse has no boundary and no bounded side,
i.e. its unbounded side equals the whole plane E2.

Types

Ellipse:: Point Point type.

Creation

void ellipse.set() sets ellipse to the empty ellipse.

void ellipse.set( Point p) sets ellipse to the ellipse containing exactly {p}.

void ellipse.set( Point p, Point q)

sets ellipse to the ellipse containing exactly the segment con-
necting p and q. The algorithm guarantees that set is never
called with two equal points.

void ellipse.set( Point p, Point q, Point r)

sets ellipse to the smallest ellipse through p,q,r. The algo-
rithm guarantees that set is never called with three collinear
points.

void ellipse.set( Point p, Point q, Point r, Point s)

sets ellipse to the smallest ellipse through p,q,r,s. The algo-
rithm guarantees that this ellipse exists.

void ellipse.set( Point p, Point q, Point r, Point s, Point t)

sets ellipse to the unique conic through p,q,r,s,t. The algo-
rithm guarantees that this conic is an ellipse.

Predicates

bool ellipse.has on unbounded side( Point p) const

returns true, iff p lies properly outside of ellipse.
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Each of the following predicates is only needed, if the corresponding predicate of Min ellipse 2 is used.

CGAL::Bounded side

ellipse.bounded side( Point p) const

returns CGAL::ON BOUNDED SIDE, CGAL::ON
BOUNDARY , or CGAL::ON UNBOUNDED SIDE iff p
lies properly inside, on the boundary, or properly outside of
ellipse, resp.

bool ellipse.has on bounded side( Point p) const

returns true, iff p lies properly inside ellipse.

bool ellipse.has on boundary( Point p) const

returns true, iff p lies on the boundary of ellipse.

bool ellipse.is empty() const

returns true, iff ellipse is empty (this implies degeneracy).

bool ellipse.is degenerate() const

returns true, iff ellipse is degenerate, i.e. if ellipse is empty
or equal to a single point.

I/O

The following I/O operator is only needed, if the corresponding I/O operator of Min ellipse 2 is used.

ostream& ostream& os << ellipse

writes ellipse to output stream os.
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CGAL::min rectangle 2

Definition

The function computes a minimum area enclosing rectangle R(P) of a given convex point set P. Note that R(P)
is not necessarily axis-parallel, and it is in general not unique. The focus on convex sets is no restriction, since
any rectangle enclosing P – as a convex set – contains the convex hull of P. For general point sets one has to
compute the convex hull as a preprocessing step.

#include <CGAL/min quadrilateral 2.h>

template < class ForwardIterator, class OutputIterator, class Traits >
OutputIterator min rectangle 2(

ForwardIterator points begin,
ForwardIterator points end,
OutputIterator o,
Traits& t = Default traits)

computes a minimum area enclosing rectangle of the point set described by [points begin, points end), writes
its vertices (counterclockwise) to o, and returns the past-the-end iterator of this sequence.
If the input range is empty, o remains unchanged.
If the input range consists of one element only, this point is written to o four times.

Precondition: The points denoted by the range [points begin, points end) form the boundary of a simple convex
polygon P in counterclockwise orientation.

The geometric types and operations to be used for the computation are specified by the traits class parameter t.
The parameter can be omitted, if ForwardIterator refers to a two-dimensional point type from one the CGAL
kernels. In this case, a default traits class (Min quadrilateral default traits 2<K>) is used.

Requirement:

1. If Traits is specified, it is a model for MinQuadrilateralTraits 2 and the value type VT of ForwardIterator
is Traits::Point 2. Otherwise VT is CGAL::Point 2<K> for some kernel K.

2. OutputIterator accepts VT as value type.

See Also

CGAL::min parallelogram 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3826
CGAL::min strip 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3828
MinQuadrilateralTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3834
CGAL::Min quadrilateral default traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3830

Implementation

We use a rotating caliper algorithm [Tou83] with worst case running time linear in the number of input points.
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Example

The following code generates a random convex polygon P with 20 vertices and computes the minimum enclos-
ing rectangle of P.� �
#include <CGAL/Cartesian.h>
#include <CGAL/Polygon_2.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/random_convex_set_2.h>
#include <CGAL/min_quadrilateral_2.h>
#include <iostream>

struct Kernel : public CGAL::Cartesian<double> {};

typedef Kernel::Point_2 Point_2;
typedef Kernel::Line_2 Line_2;
typedef CGAL::Polygon_2<Kernel> Polygon_2;
typedef CGAL::Random_points_in_square_2<Point_2> Generator;

int main()
{

// build a random convex 20-gon p
Polygon_2 p;
CGAL::random_convex_set_2(20, std::back_inserter(p), Generator(1.0));
std::cout << p << std::endl;

// compute the minimal enclosing rectangle p_m of p
Polygon_2 p_m;
CGAL::min_rectangle_2(

p.vertices_begin(), p.vertices_end(), std::back_inserter(p_m));
std::cout << p_m << std::endl;

return 0;
}� �
File: examples/Min_quadrilateral_2/minimum_enclosing_rectangle_2.cpp
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CGAL::min parallelogram 2

Definition

The function computes a minimum area enclosing parallelogram A(P) of a given convex point set P. Note that
R(P) is not necessarily axis-parallel, and it is in general not unique. The focus on convex sets is no restriction,
since any parallelogram enclosing P – as a convex set – contains the convex hull of P. For general point sets
one has to compute the convex hull as a preprocessing step.

#include <CGAL/min quadrilateral 2.h>

template < class ForwardIterator, class OutputIterator, class Traits >
OutputIterator min parallelogram 2(

ForwardIterator points begin,
ForwardIterator points end,
OutputIterator o,
Traits& t = Default traits)

computes a minimum area enclosing parallelogram of the point set described by [points begin, points end),
writes its vertices (counterclockwise) to o and returns the past-the-end iterator of this sequence. If the input
range is empty, o remains unchanged.
If the input range consists of one element only, this point is written to o four times.

Precondition: The points denoted by the range [points begin, points end) form the boundary of a simple convex
polygon P in counterclockwise orientation.

The geometric types and operations to be used for the computation are specified by the traits class parameter t.
The parameter can be omitted, if ForwardIterator refers to a two-dimensional point type from one the CGAL
kernels. In this case, a default traits class (Min quadrilateral default traits 2<K>) is used.

Requirement:

1. If Traits is specified, it is a model for MinQuadrilateralTraits 2 and the value type VT of ForwardIterator
is Traits::Point 2. Otherwise VT is CGAL::Point 2<K> for some kernel K.

2. OutputIterator accepts VT as value type.

See Also

CGAL::min rectangle 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3824
CGAL::min strip 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3828
MinQuadrilateralTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3834
CGAL::Min quadrilateral default traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3830

Implementation

We use a rotating caliper algorithm [STV+95, Vai90] with worst case running time linear in the number of input
points.
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Example

The following code generates a random convex polygon P with 20 vertices and computes the minimum enclos-
ing parallelogram of P.� �
#include <CGAL/Cartesian.h>
#include <CGAL/Polygon_2.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/random_convex_set_2.h>
#include <CGAL/min_quadrilateral_2.h>
#include <iostream>

struct Kernel : public CGAL::Cartesian<double> {};

typedef Kernel::Point_2 Point_2;
typedef Kernel::Line_2 Line_2;
typedef CGAL::Polygon_2<Kernel> Polygon_2;
typedef CGAL::Random_points_in_square_2<Point_2> Generator;

int main()
{

// build a random convex 20-gon p
Polygon_2 p;
CGAL::random_convex_set_2(20, std::back_inserter(p), Generator(1.0));
std::cout << p << std::endl;

// compute the minimal enclosing parallelogram p_m of p
Polygon_2 p_m;
CGAL::min_parallelogram_2(

p.vertices_begin(), p.vertices_end(), std::back_inserter(p_m));
std::cout << p_m << std::endl;

return 0;
}� �
File: examples/Min_quadrilateral_2/minimum_enclosing_parallelogram_2.cpp
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CGAL::min strip 2

Definition

The function computes a minimum width enclosing strip S(P) of a given convex point set P. A strip is the
closed region bounded by two parallel lines in the plane. Note that S(P) is not unique in general. The focus on
convex sets is no restriction, since any parallelogram enclosing P – as a convex set – contains the convex hull
of P. For general point sets one has to compute the convex hull as a preprocessing step.

#include <CGAL/min quadrilateral 2.h>

template < class ForwardIterator, class OutputIterator, class Traits >
OutputIterator min strip 2(

ForwardIterator points begin,
ForwardIterator points end,
OutputIterator o,
Traits& t = Default traits)

computes a minimum enclosing strip of the point set described by [points begin, points end), writes its two
bounding lines to o and returns the past-the-end iterator of this sequence.
If the input range is empty or consists of one element only, o remains unchanged.

Precondition: The points denoted by the range [points begin, points end) form the boundary of a simple convex
polygon P in counterclockwise orientation.

The geometric types and operations to be used for the computation are specified by the traits class parameter t.
The parameter can be omitted, if ForwardIterator refers to a two-dimensional point type from one the CGAL
kernels. In this case, a default traits class (Min quadrilateral default traits 2<K>) is used.

Requirement:

1. If Traits is specified, it is a model for MinQuadrilateralTraits 2 and the value type VT of ForwardIterator
is Traits::Point 2. Otherwise VT is CGAL::Point 2<K> for some kernel K.

2. OutputIterator accepts Traits::Line 2 as value type.

See Also

CGAL::min rectangle 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3824
CGAL::min parallelogram 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3826
MinQuadrilateralTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3834
CGAL::Min quadrilateral default traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3830

Implementation

We use a rotating caliper algorithm [Tou83] with worst case running time linear in the number of input points.
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Example

The following code generates a random convex polygon P with 20 vertices and computes the minimum enclos-
ing strip of P.� �
#include <CGAL/Cartesian.h>
#include <CGAL/Polygon_2.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/random_convex_set_2.h>
#include <CGAL/min_quadrilateral_2.h>
#include <iostream>

struct Kernel : public CGAL::Cartesian<double> {};

typedef Kernel::Point_2 Point_2;
typedef Kernel::Line_2 Line_2;
typedef CGAL::Polygon_2<Kernel> Polygon_2;
typedef CGAL::Random_points_in_square_2<Point_2> Generator;

int main()
{

// build a random convex 20-gon p
Polygon_2 p;
CGAL::random_convex_set_2(20, std::back_inserter(p), Generator(1.0));
std::cout << p << std::endl;

// compute the minimal enclosing strip p_m of p
Line_2 p_m[2];
CGAL::min_strip_2(p.vertices_begin(), p.vertices_end(), p_m);
std::cout << p_m[0] << "\n" << p_m[1] << std::endl;

return 0;
}� �
File: examples/Min_quadrilateral_2/minimum_enclosing_strip_2.cpp
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CGAL::Min quadrilateral default traits 2<K>

Definition

The class Min quadrilateral default traits 2<K> is a traits class for the functions min rectangle 2, min
parallelogram 2 and min strip 2 using a two-dimensional CGAL kernel.

Requirements

The template parameter K is a model for Kernel.

#include <CGAL/Min quadrilateral traits 2.h>

Is Model for the Concepts

MinQuadrilateralTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3834

Types

Min quadrilateral default traits 2<K>:: Point 2 Kernel::Point 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . page 794.

Min quadrilateral default traits 2<K>:: Vector 2 Kernel::Vector 2 . . . . . . . . . . . . . . . . . . . . . . . . . page 806.

Min quadrilateral default traits 2<K>:: Direction 2

Kernel::Direction 2 . . . . . . . . . . . . . . . . . . . . . . . page 785.

Min quadrilateral default traits 2<K>:: Line 2 Kernel::Line 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . page 789.

Min quadrilateral default traits 2<K>:: Rectangle 2

internal type.

Min quadrilateral default traits 2<K>:: Parallelogram 2

internal type.

Min quadrilateral default traits 2<K>:: Strip 2 internal type.

Predicates

Min quadrilateral default traits 2<K>:: Equal 2 Kernel::Equal 2 . . . . . . . . . . . . . . . . . . . . . . . . . . page 996.
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Min quadrilateral default traits 2<K>:: Less xy 2 Kernel::Less xy 2 . . . . . . . . . . . . . . . . . . . . . . . . . page ??.

Min quadrilateral default traits 2<K>:: Less yx 2 Kernel::Less yx 2 . . . . . . . . . . . . . . . . . . . . . . . . . page ??.

Min quadrilateral default traits 2<K>:: Orientation 2

Kernel::Orientation 2 . . . . . . . . . . . . . . . . . . . . page 1034.

Min quadrilateral default traits 2<K>:: Has on negative side 2

Kernel::Has on negative side 2 . . . . . . . . . . . . . page ??.

Min quadrilateral default traits 2<K>:: Compare angle with x axis 2

Kernel::Compare angle with x axis 2 . . . . . . . page ??.

Min quadrilateral default traits 2<K>:: Area less rectangle 2

AdaptableBinaryFunction class
op: Rectangle 2 × Rectangle 2→ bool.
op(r1,r2) returns true, iff the area of r1 is strictly less
than the area of r2.

Min quadrilateral default traits 2<K>:: Area less parallelogram 2

AdaptableBinaryFunction class
op: Parallelogram 2 × Parallelogram 2→ bool.
op(p1,p2) returns true, iff the area of p1 is strictly less
than the area of p2.

Min quadrilateral default traits 2<K>:: Width less strip 2

AdaptableBinaryFunction class
op: Strip 2 × Strip 2→ bool.
op(s1,s2) returns true, iff the width of s1 is strictly less
than the width of s2.

Constructions

Min quadrilateral default traits 2<K>:: Construct vector 2

Kernel::Construct vector 2 . . . . . . . . . . . . . . . . . page ??.

Min quadrilateral default traits 2<K>:: Construct vector from direction 2

AdaptableFunctor
op: Direction 2→ Vector 2.
op(d) returns a vector in direction d.
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Min quadrilateral default traits 2<K>:: Construct perpendicular vector 2

Kernel::Construct perpendicular vector 2 . . . . page ??.

Min quadrilateral default traits 2<K>:: Construct direction 2

Kernel::Construct direction 2 . . . . . . . . . . . . . . . page ??.

Min quadrilateral default traits 2<K>:: Construct opposite direction 2

Kernel::Construct opposite direction 2 . . . . . . page ??.

Min quadrilateral default traits 2<K>:: Construct line 2

Kernel::Construct line 2 . . . . . . . . . . . . . . . . . . . .page ??.

Min quadrilateral default traits 2<K>:: Construct rectangle 2

Function class
op: Point 2 × Direction 2 × Point 2 × Point 2 ×
Point 2→ Rectangle 2.
If the points p1, p2, p3, p4 form the boundary of
a convex polygon (oriented counterclockwise),
op(p1,d,p2,p3,p4) returns the rectangle with one of the
points on each side and one sides parallel to d.

Min quadrilateral default traits 2<K>:: Construct parallelogram 2

Function class
op: Point 2 × Direction 2 × Point 2 × Direction 2 ×
Point 2 × Point 2→ Rectangle 2.
If the points p1, p2, p3, p4 form the boundary of
a convex polygon (oriented counterclockwise),
op(p1,d1,p2,d2,p3,p4) returns the parallelogram with
one of the points on each side and one side parallel to
each of d1 and d2.

Min quadrilateral default traits 2<K>:: Construct strip 2

Function class
op: Point 2 × Direction 2 × Point 2→ Strip 2.
op(p1,d,p2) returns the strip bounded by the lines
through p1 resp. p2 with direction d.

Operations

template < class OutputIterator >
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OutputIterator t.copy rectangle vertices 2( const Rectangle 2& r, OutputIterator o) const

copies the four vertices of r in counterclockwise order to o.

template < class OutputIterator >
OutputIterator t.copy parallelogram vertices 2( const Parallelogram 2& p, OutputIterator o) const

copies the four vertices of p in counterclockwise order to o.

template < class OutputIterator >
OutputIterator t.copy strip lines 2( const Strip 2& s, OutputIterator o) const

copies the two lines bounding s to o.

Additionally, for each of the predicate and construction functor types listed above, there is a member function
that requires no arguments and returns an instance of that functor type. The name of the member function is
the uncapitalized name of the type returned with the suffix object appended. For example, for the functor type
Construct vector 2 the following member function exists:

Construct vector 2

t.construct vector 2 object() const

See Also

CGAL::min rectangle 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3824
CGAL::min parallelogram 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3826
CGAL::min strip 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3828
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MinQuadrilateralTraits 2

Definition

The concept MinQuadrilateralTraits 2 defines types and operations needed to compute minimum enclosing
quadrilaterals of a planar point set using the functions min rectangle 2, min parallelogram 2 and min strip 2.

Types

MinQuadrilateralTraits 2:: Point 2 type for representing points.

MinQuadrilateralTraits 2:: Vector 2 type for representing vectors.

MinQuadrilateralTraits 2:: Direction 2 type for representing directions.

MinQuadrilateralTraits 2:: Line 2 type for representing lines.

MinQuadrilateralTraits 2:: Rectangle 2 type for representing (not necessarily axis-parallel) rectan-
gles.

MinQuadrilateralTraits 2:: Parallelogram 2 type for representing parallelograms.

MinQuadrilateralTraits 2:: Strip 2 type for representing strips, that is the closed region
bounded by two parallel lines.

Predicates

MinQuadrilateralTraits 2:: Equal 2 a model for Kernel::Equal 2 . . . . . . . . . . . . . . . . . . . page 996.

MinQuadrilateralTraits 2:: Less xy 2 a model for Kernel::Less xy 2 . . . . . . . . . . . . . . . . . . page ??.

MinQuadrilateralTraits 2:: Less yx 2 a model for Kernel::Less yx 2 . . . . . . . . . . . . . . . . . . page ??.

MinQuadrilateralTraits 2:: Has on negative side 2

a model for Kernel::Has on negative side 2 . . . . . page ??.

MinQuadrilateralTraits 2:: Compare angle with x axis 2

a model for Kernel::Compare angle with x axis 2page ??.

MinQuadrilateralTraits 2:: Area less rectangle 2

AdaptableFunctor
op: Rectangle 2 × Rectangle 2→ bool.
op(r1,r2) returns true, iff the area of r1 is strictly less than
the area of r2.
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MinQuadrilateralTraits 2:: Area less parallelogram 2

AdaptableFunctor
op: Parallelogram 2 × Parallelogram 2→ bool.
op(p1,p2) returns true, iff the area of p1 is strictly less than
the area of p2.

MinQuadrilateralTraits 2:: Width less strip 2 AdaptableFunctor
op: Strip 2 × Strip 2→ bool.
op(s1,s2) returns true, iff the width of s1 is strictly less than
the width of s2.

The following type is used for expensive precondition checking only.

MinQuadrilateralTraits 2:: Orientation 2 a model for Kernel::Orientation 2 . . . . . . . . . . . . . page 1034.

Constructions

MinQuadrilateralTraits 2:: Construct vector 2

a model for Kernel::Construct vector 2 . . . . . . . . . . page ??.

MinQuadrilateralTraits 2:: Construct vector from direction 2

AdaptableFunctor
op: Direction 2→ Vector 2.
op(d) returns a vector in direction d.

MinQuadrilateralTraits 2:: Construct perpendicular vector 2

a model for Kernel::Construct perpendicular vector 2
page ??.

MinQuadrilateralTraits 2:: Construct direction 2

a model for Kernel::Construct direction 2. . . . . . . .page ??.

MinQuadrilateralTraits 2:: Construct opposite direction 2

a model for Kernel::Construct opposite direction 2
page ??.

MinQuadrilateralTraits 2:: Construct line 2 a model for Kernel::Construct line 2 . . . . . . . . . . . . page ??.
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MinQuadrilateralTraits 2:: Construct rectangle 2

Function class
op: Point 2 × Direction 2 × Point 2 × Point 2 × Point 2
→ Rectangle 2.
If the points p1, p2, p3, p4 form the boundary of a convex
polygon (oriented counterclockwise), op(p1,d,p2,p3,p4) re-
turns the rectangle with one of the points on each side and
one sides parallel to d.

MinQuadrilateralTraits 2:: Construct parallelogram 2

Function class
op: Point 2 × Direction 2 × Point 2 × Direction 2 ×
Point 2 × Point 2→ Rectangle 2.
If the points p1, p2, p3, p4 form the boundary of
a convex polygon (oriented counterclockwise),
op(p1,d1,p2,d2,p3,p4) returns the parallelogram with
one of the points on each side and one side parallel to each
of d1 and d2.

MinQuadrilateralTraits 2:: Construct strip 2 Function class
op: Point 2 × Direction 2 × Point 2→ Strip 2.
op(p1,d,p2) returns the strip bounded by the lines through
p1 resp. p2 with direction d.

Operations

template < class OutputIterator >
OutputIterator t.copy rectangle vertices 2( const Rectangle 2& r, OutputIterator o) const

copies the four vertices of r in counterclockwise order to o.

template < class OutputIterator >
OutputIterator t.copy parallelogram vertices 2( const Parallelogram 2& p, OutputIterator o) const

copies the four vertices of p in counterclockwise order to o.

template < class OutputIterator >
OutputIterator t.copy strip lines 2( const Strip 2& s, OutputIterator o) const

copies the two lines bounding s to o.

Additionally, for each of the predicate and construction functor types listed above, there must exist a member
function that requires no arguments and returns an instance of that functor type. The name of the member
function is the uncapitalized name of the type returned with the suffix object appended. For example, for the
functor type Construct vector 2 the following member function must exist:

Construct vector 2

t.construct vector 2 object() const
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Has Models

CGAL::Min quadrilateral default traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3830

See Also

CGAL::min rectangle 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3824
CGAL::min parallelogram 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3826
CGAL::min strip 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3828
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CGAL::rectangular p center 2

Definition

The function rectangular p center 2 computes rectilinear p-centers of a planar point set, i.e. a set of p points
such that the maximum minimal L∞-distance between both sets is minimized.

More formally the problem can be defined as follows.

Given a finite set P of points, compute a point set C with |C | ≤ p such that the p-radius of P ,

radp(P ) := max
P∈P

min
Q∈C
||P−Q||∞

is minimized. We can interpret C as the best approximation (with respect to the given metric) for P with at most
p points.

#include <CGAL/rectangular p center 2.h>

template < class ForwardIterator, class OutputIterator, class FT, class Traits >
OutputIterator rectangular p center 2(

ForwardIterator f,
ForwardIterator l,
OutputIterator o,
FT& r,
int p,
Traits t = Default traits)

computes rectilinear p-centers for the point set described by the range [f , l), sets r to the corresponding p-radius,
writes the at most p center points to o and returns the past-the-end iterator of this sequence.

Precondition: 2 ≤ p ≤ 4.

The geometric types and operations to be used for the computation are specified by the traits class parameter
t. This parameter can be omitted if ForwardIterator refers to a point type from the 2D-Kernel. In this case, a
default traits class (Rectangular p center default traits 2<K>) is used.

Requirement:

1. Either: (if no traits parameter is given) Value type of ForwardIterator is CGAL::Point 2<K> for some
representation class K and FT is equivalent to K::FT ,

2. Or: (if a traits parameter is specified) Traits is a model for RectangularPCenterTraits 2.

3. OutputIterator accepts the value type of ForwardIterator as value type.

See Also

RectangularPCenterTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3843
CGAL::Rectangular p center default traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3840
CGAL::sorted matrix search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 465
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Implementation

The runtime is linear for p ∈ {2, 3} and O(n · logn) for p = 4 where n is the number of input points. These run-
times are worst case optimal. The 3-center algorithm uses a prune-and-search technique described in [Hof99].
The 4-center implementation uses sorted matrix search [FJ83, FJ84] and fast algorithms for piercing rectangles
[SW96].

Example

The following code generates a random set of ten points and computes its two-centers.� �
#include <CGAL/Cartesian.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/rectangular_p_center_2.h>
#include <CGAL/IO/Ostream_iterator.h>
#include <CGAL/algorithm.h>
#include <iostream>
#include <algorithm>
#include <vector>

typedef double FT;

typedef CGAL::Cartesian<FT> Kernel;

typedef Kernel::Point_2 Point;
typedef std::vector<Point> Cont;
typedef CGAL::Random_points_in_square_2<Point> Generator;
typedef CGAL::Ostream_iterator<Point,std::ostream> OIterator;

int main()
{

int n = 10;
int p = 2;
OIterator cout_ip(std::cout);
CGAL::set_pretty_mode(std::cout);

Cont points;
CGAL::cpp0x::copy_n(Generator(1), n, std::back_inserter(points));
std::cout << "Generated Point Set:\n";
std::copy(points.begin(), points.end(), cout_ip);

FT p_radius;
std::cout << "\n\n" << p << "-centers:\n";
CGAL::rectangular_p_center_2(

points.begin(), points.end(), cout_ip, p_radius, 3);
std::cout << "\n\n" << p << "-radius = " << p_radius << std::endl;

return 0;
}� �
File: examples/Matrix_search/rectangular_p_center_2.cpp
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CGAL::Rectangular p center default traits 2<K>

Definition

The class Rectangular p center default traits 2<K> defines types and operations needed to compute rectilinear
p-centers of a planar point set using the function rectangular p center 2.

Requirements

The template parameter K is a model for Kernel.

Is Model for the Concepts

RectangularPCenterTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3843

Types

Rectangular p center default traits 2<K>:: FT

typedef to K::FT .

Rectangular p center default traits 2<K>:: Point 2

typedef to K::Point 2.

Rectangular p center default traits 2<K>:: Iso rectangle 2

typedef to K::Iso rectangle 2.

Rectangular p center default traits 2<K>:: Less x 2

typedef to K::Less x 2.

Rectangular p center default traits 2<K>:: Less y 2

typedef to K::Less y 2.

Rectangular p center default traits 2<K>:: Construct vertex 2

typedef to K::Construct vertex 2.

Rectangular p center default traits 2<K>:: Construct iso rectangle 2

typedef to K::Construct iso rectangle 2.
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Rectangular p center default traits 2<K>:: Signed x distance 2

adaptable binary function class: Point 2 × Point 2 → FT
returns the signed distance of two points’ x-coordinates.

Rectangular p center default traits 2<K>:: Signed y distance 2

adaptable binary function class: Point 2 × Point 2 → FT
returns the signed distance of two points’ y-coordinates.

Rectangular p center default traits 2<K>:: Infinity distance 2

adaptable binary function class: Point 2 × Point 2 → FT
returns the || · ||∞ distance of two points.

Rectangular p center default traits 2<K>:: Signed infinity distance 2

adaptable binary function class: Point 2 × Point 2 → FT
returns the signed || · ||∞ distance of two points.

Rectangular p center default traits 2<K>:: Construct point 2 below left implicit point 2

3-argument function class: Point 2 × Point 2 × FT →
Point 2. For arguments (p, q, r) it returns the lower-left cor-
ner of the iso-oriented square with sidelength r and upper-
right corner at the intersection of the vertical line through p
and the horizontal line through q.

Rectangular p center default traits 2<K>:: Construct point 2 below right implicit point 2

3-argument function class: Point 2 × Point 2 × FT →
Point 2. For arguments (p, q, r) it returns the lower-right
corner of the iso-oriented square with sidelength r and upper-
left corner at the intersection of the vertical line through p
and the horizontal line through q.

Rectangular p center default traits 2<K>:: Construct point 2 above right implicit point 2

3-argument function class: Point 2 × Point 2 × FT →
Point 2. For arguments (p, q, r) it returns the upper-right
corner of the iso-oriented square with sidelength r and lower-
left corner at the intersection of the vertical line through p
and the horizontal line through q.

Rectangular p center default traits 2<K>:: Construct point 2 above left implicit point 2

3-argument function class: Point 2 × Point 2 × FT →
Point 2. For arguments (p, q, r) it returns the upper-left cor-
ner of the iso-oriented square with sidelength r and lower-
right corner at the intersection of the vertical line through p
and the horizontal line through q.
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Operations

For every function class listed above there is a member function to fetch the corresponding function object.

Inf distance 2 t.inf distance 2 object() const
Signed inf distance 2

t.signed inf distance 2 object() const
Construct vertex 2 t.construct vertex 2 object() const
Construct iso rectangle 2

t.construct iso rectangle 2 object() const
Construct iso rectangle 2 below left point 2

t.construct iso rectangle 2 below left point 2 object() const
Construct iso rectangle 2 above left point 2

t.construct iso rectangle 2 above left point 2 object() const
Construct iso rectangle 2 below right point 2

t.construct iso rectangle 2 below right point 2 object() const
Construct iso rectangle 2 above right point 2

t.construct iso rectangle 2 above right point 2 object() const

See Also

CGAL::rectangular p center 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3838
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RectangularPCenterTraits 2

Definition

The concept RectangularPCenterTraits 2 defines types and operations needed to compute rectilinear p-centers
of a planar point set using the function rectangular p center 2.

Types

RectangularPCenterTraits 2:: FT model for FieldNumberType . . . . . . . . . . . . . . . . . . . page 149.

RectangularPCenterTraits 2:: Point 2 model for Kernel::Point 2 . . . . . . . . . . . . . . . . . . . . . . page 794.

RectangularPCenterTraits 2:: Iso rectangle 2

model for Kernel::Iso rectangle 2 . . . . . . . . . . . . . . . . page ??.

RectangularPCenterTraits 2:: Less x 2 model for Kernel::Less x 2. . . . . . . . . . . . . . . . . . . . . .page ??.

RectangularPCenterTraits 2:: Less y 2 model for Kernel::Less y 2. . . . . . . . . . . . . . . . . . . . . .page ??.

RectangularPCenterTraits 2:: Construct vertex 2

model for Kernel::Construct vertex 2 . . . . . . . . . . . . page ??.

RectangularPCenterTraits 2:: Construct iso rectangle 2

model for Kernel::Construct iso rectangle 2 . . . . . . page ??.

RectangularPCenterTraits 2:: Signed x distance 2

adaptable binary function class: Point 2 × Point 2 → FT
returns the signed distance of two points’ x-coordinates.

RectangularPCenterTraits 2:: Signed y distance 2

adaptable binary function class: Point 2 × Point 2 → FT
returns the signed distance of two points’ y-coordinates.

RectangularPCenterTraits 2:: Infinity distance 2

adaptable binary function class: Point 2 × Point 2 → FT
returns the || · ||∞ distance of two points.
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RectangularPCenterTraits 2:: Signed infinity distance 2

adaptable binary function class: Point 2 × Point 2 → FT
returns the signed || · ||∞ distance of two points.

RectangularPCenterTraits 2:: Construct point 2 below left implicit point 2

3-argument function class: Point 2 × Point 2 × FT →
Point 2. For arguments (p, q, r) it returns the lower-left cor-
ner of the iso-oriented square with sidelength r and upper-
right corner at the intersection of the vertical line through p
and the horizontal line through q.

RectangularPCenterTraits 2:: Construct point 2 below right implicit point 2

3-argument function class: Point 2 × Point 2 × FT →
Point 2. For arguments (p, q, r) it returns the lower-right
corner of the iso-oriented square with sidelength r and upper-
left corner at the intersection of the vertical line through p
and the horizontal line through q.

RectangularPCenterTraits 2:: Construct point 2 above right implicit point 2

3-argument function class: Point 2 × Point 2 × FT →
Point 2. For arguments (p, q, r) it returns the upper-right
corner of the iso-oriented square with sidelength r and lower-
left corner at the intersection of the vertical line through p
and the horizontal line through q.

RectangularPCenterTraits 2:: Construct point 2 above left implicit point 2

3-argument function class: Point 2 × Point 2 × FT →
Point 2. For arguments (p, q, r) it returns the upper-left cor-
ner of the iso-oriented square with sidelength r and lower-
right corner at the intersection of the vertical line through p
and the horizontal line through q.

Operations

For every function class listed above there is a member function to fetch the corresponding function object.

Inf distance 2 t.inf distance 2 object() const
Signed inf distance 2

t.signed inf distance 2 object() const
Construct vertex 2 t.construct vertex 2 object() const
Construct iso rectangle 2

t.construct iso rectangle 2 object() const

3844



Construct iso rectangle 2 below left point 2

t.construct iso rectangle 2 below left point 2 object() const
Construct iso rectangle 2 above left point 2

t.construct iso rectangle 2 above left point 2 object() const
Construct iso rectangle 2 below right point 2

t.construct iso rectangle 2 below right point 2 object() const
Construct iso rectangle 2 above right point 2

t.construct iso rectangle 2 above right point 2 object() const

Has Models

CGAL::Rectangular p center default traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3840

See Also

CGAL::rectangular p center 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3838
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CGAL::Min sphere d<Traits>

Definition

An object of the class Min sphere d<Traits> is the unique sphere of smallest volume enclosing a finite (multi)set
of points in d-dimensional Euclidean space Ed . For a set P we denote by ms(P) the smallest sphere that contains
all points of P. ms(P) can be degenerate, i.e. ms(P) = /0 if P = /0 and ms(P) = {p} if P = {p}.

An inclusion-minimal subset S of P with ms(S) = ms(P) is called a support set, the points in S are the support
points. A support set has size at most d +1, and all its points lie on the boundary of ms(P). In general, neither
the support set nor its size are unique.

The algorithm computes a support set S which remains fixed until the next insert or clear operation.

Please note: This class is (almost) obsolete. The class CGAL::Min sphere of spheres d<Traits> solves a more
general problem and is faster then Min sphere d<Traits> even if used only for points as input. Most im-
portantly, CGAL::Min sphere of spheres d<Traits> has a specialized implementation for floating-point arith-
metic which ensures correct results in a large number of cases (including highly degenerate ones). In contrast,
Min sphere d<Traits> is not reliable under floating-point computations. The only advantage of Min sphere d<
Traits> over CGAL::Min sphere of spheres d<Traits> is that the former can deal with points in homogeneous
coordinates, in which case the algorithm is division-free. Thus, Min sphere d<Traits> might still be an option
in case your input number type cannot (efficiently) divide.

#include <CGAL/Min sphere d.h>

Requirements

The class Min sphere d<Traits> expects a model of the concept OptimisationDTraits as its template
argument. We provide the models CGAL::Optimisation d traits 2, CGAL::Optimisation d traits 3 and
CGAL::Optimisation d traits d for two-, three-, and d-dimensional points respectively.

Types

Min sphere d<Traits>:: Traits

Min sphere d<Traits>:: FT typedef to Traits::FT .

Min sphere d<Traits>:: Point typedef to Traits::Point.

Min sphere d<Traits>:: Point iterator non-mutable model of the STL concept BidirectionalItera-
tor with value type Point. Used to access the points used to
build the smallest enclosing sphere.

Min sphere d<Traits>:: Support point iterator non-mutable model of the STL concept BidirectionalItera-
tor with value type Point. Used to access the support points
defining the smallest enclosing sphere.

Creation
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Min sphere d<Traits> min sphere( Traits traits = Traits());

creates a variable of type Min sphere d<Traits> and initializes it to
ms( /0). If the traits parameter is not supplied, the class Traits must
provide a default constructor.

template < class InputIterator >
Min sphere d<Traits> min sphere( InputIterator first, InputIterator last, Traits traits = Traits());

creates a variable min sphere of type Min sphere d<Traits>. It is
initialized to ms(P) with P being the set of points in the range
[first,last).
Requirement: The value type of first and last is Point. If the traits
parameter is not supplied, the class Traits must provide a default
constructor.
Precondition: All points have the same dimension.

int min sphere.number of points() const

returns the number of points of min sphere, i.e. |P|.

int min sphere.number of support points() const

returns the number of support points of min sphere, i.e. |S|.

Point iterator min sphere.points begin() const
returns an iterator referring to the first point of min sphere.

Point iterator min sphere.points end() const
returns the corresponding past-the-end iterator.

Support point iterator min sphere.support points begin() const
returns an iterator referring to the first support point of min sphere.

Support point iterator min sphere.support points end() const
returns the corresponding past-the-end iterator.

int min sphere.ambient dimension() const

returns the dimension of the points in P. If min sphere is empty, the
ambient dimension is −1.

Point min sphere.center() const

returns the center of min sphere.
Precondition: min sphere is not empty.

FT min sphere.squared radius() const

returns the squared radius of min sphere.
Precondition: min sphere is not empty.
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Predicates

By definition, an empty Min sphere d<Traits> has no boundary and no bounded side, i.e. its unbounded side
equals the whole space Ed .

Bounded side min sphere.bounded side( Point p) const

returns CGAL::ON BOUNDED SIDE, CGAL::ON BOUNDARY ,
or CGAL::ON UNBOUNDED SIDE iff p lies properly inside, on the
boundary, or properly outside of min sphere, resp.
Precondition: if min sphere is not empty, the dimension of p equals
ambient dimension().

bool min sphere.has on bounded side( Point p) const

returns true, iff p lies properly inside min sphere.
Precondition: if min sphere is not empty, the dimension of p equals
ambient dimension().

bool min sphere.has on boundary( Point p) const

returns true, iff p lies on the boundary of min sphere.
Precondition: if min sphere is not empty, the dimension of p equals
ambient dimension().

bool min sphere.has on unbounded side( Point p) const

returns true, iff p lies properly outside of min sphere.
Precondition: if min sphere is not empty, the dimension of p equals
ambient dimension().

bool min sphere.is empty() const

returns true, iff min sphere is empty (this implies degeneracy).

bool min sphere.is degenerate() const

returns true, iff min sphere is degenerate, i.e. if min sphere is empty
or equal to a single point, equivalently if the number of support points
is less than 2.

Modifiers

void min sphere.clear()

resets min sphere to ms( /0).

template < class InputIterator >
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void min sphere.set( InputIterator first, InputIterator last)

sets min sphere to the ms(P), where P is the set of points in the range
[first,last).
Requirement: The value type of first and last is Point.
Precondition: All points have the same dimension.

void min sphere.insert( Point p)

inserts p into min sphere. If p lies inside the current sphere, this
is a constant-time operation, otherwise it might take longer, but usu-
ally substantially less than recomputing the smallest enclosing sphere
from scratch.
Precondition: The dimension of p equals ambient dimension() if
min sphere is not empty.

template < class InputIterator >
void min sphere.insert( InputIterator first, InputIterator last)

inserts the points in the range [first,last) into min sphere and recom-
putes the smallest enclosing sphere, by calling insert for all points in
the range.
Requirement: The value type of first and last is Point.
Precondition: All points have the same dimension. If min sphere is
not empty, this dimension must be equal to ambient dimension().

Validity Check

An object min sphere is valid, iff

• min sphere contains all points of its defining set P,

• min sphere is the smallest sphere containing its support set S, and

• S is minimal, i.e. no support point is redundant.

Note: Under inexact arithmetic, the result of the validation is not realiable, because the checker itself can suffer
from numerical problems.

bool min sphere.is valid( bool verbose = false, int level = 0) const

returns true, iff min sphere is valid. If verbose is true, some mes-
sages concerning the performed checks are written to standard error
stream. The second parameter level is not used, we provide it only
for consistency with interfaces of other classes.

Miscellaneous
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const Traits& min sphere.traits() const

returns a const reference to the traits class object.

I/O

std::ostream& std::ostream& os << min sphere

writes min sphere to output stream os.
Requirement: The output operator is defined for Point.

std::istream& std::istream& is >> min sphere&

reads min sphere from input stream is.
Requirement: The input operator is defined for Point.

See Also

CGAL::Optimisation d traits 2<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
CGAL::Optimisation d traits 3<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
CGAL::Optimisation d traits d<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page ??
OptimisationDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
CGAL::Min circle 2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3802
CGAL::Min sphere of spheres d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3867
CGAL::Min annulus d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3860

Implementation

We implement the algorithm of Welzl with move-to-front heuristic [Wel91] for small point sets, combined
with a new efficient method for large sets, which is particularly tuned for moderately large dimension (d ≤ 20)
[Gär99]. The creation time is almost always linear in the number of points. Access functions and predicates
take constant time, inserting a point might take up to linear time, but substantially less than computing the new
smallest enclosing sphere from scratch. The clear operation and the check for validity each take linear time.

Example� �
#include <CGAL/Cartesian_d.h>
#include <iostream>
#include <cstdlib>
#include <CGAL/Random.h>
#include <CGAL/Min_sphere_annulus_d_traits_d.h>
#include <CGAL/Min_sphere_d.h>

typedef CGAL::Cartesian_d<double> K;
typedef CGAL::Min_sphere_annulus_d_traits_d<K> Traits;
typedef CGAL::Min_sphere_d<Traits> Min_sphere;
typedef K::Point_d Point;

const int n = 10; // number of points
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const int d = 5; // dimension of points

int main ()
{

Point P[n]; // n points
double coord[d]; // d coordinates
CGAL::Random r; // random number generator

for (int i=0; i<n; ++i) {
for (int j=0; j<d; ++j)

coord[j] = r.get_double();
P[i] = Point(d, coord, coord+d); // random point

}

Min_sphere ms (P, P+n); // smallest enclosing sphere

CGAL::set_pretty_mode (std::cout);
std::cout << ms; // output the sphere

return 0;
}� �
File: examples/Min_sphere_d/min_sphere_d.cpp
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MinSphereAnnulusDTraits

Definition

This concept defines the requirements for traits classes of d-dimensional min sphere and min annulus algorithms.

Types

MinSphereAnnulusDTraits:: Point d point type used to represent the input points.

MinSphereAnnulusDTraits:: Rep tag compile time tag to distinguish between Cartesian and homoge-
neous representation of the input points. Rep tag has to be either
CGAL::Cartesian tag or CGAL::Homogeneous tag.

MinSphereAnnulusDTraits:: RT number type used to represent the coordinates of the input points. It
has to be a model for RingNumberType.

MinSphereAnnulusDTraits:: FT number type used to return either the squared radius of the smallest
enclosing sphere or annulus, or the squared distance of the polytopes.
FT has to be either RT or CGAL::Quotient<RT> if the input points
have Cartesian or homogeneous representation, respectively (cf. Rep
tag).

MinSphereAnnulusDTraits:: Access dimension d

data accessor object used to access the dimension of the input points.

MinSphereAnnulusDTraits:: Access coordinates begin d

data accessor object used to access the coordinates of the input points.

MinSphereAnnulusDTraits:: Construct point d

constructor object used to construct either the center of the smallest en-
closing sphere or annulus, or the points realizing the distance between
the two polytopes.

The following two number types are only needed for CGAL::Min annulus d<Traits> and CGAL::Polytope
distance d<Traits>.

MinSphereAnnulusDTraits:: ET exact number type used to do the exact computations in the underlying
solver for linear programs. It has to to be a model for RingNumber-
Type. There must be an implicit conversion from RT to ET available.

MinSphereAnnulusDTraits:: NT fast (possibly inexact) number type used to speed up the pricing step
in the underlying solver for linear programs. It has to be a model for
RingNumberType. There must be implicit conversions from RT to NT
and from NT to ET available.
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Creation

Only default and copy constructor are required.

MinSphereAnnulusDTraits traits;

MinSphereAnnulusDTraits traits( MinSphereAnnulusDTraits);

Operations

The following functions just return the corresponding function class object.

Access dimension d traits.access dimension d object() const

Access coordinates begin d traits.access coordinates begin d object() const

Construct point d traits.construct point d object() const

Has Models

CGAL::Min sphere annulus d traits 2<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3901
CGAL::Min sphere annulus d traits 3<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3903
CGAL::Min sphere annulus d traits d<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3905

See Also

CGAL::Min sphere d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3846
CGAL::Min annulus d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3860
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CGAL::Min sphere annulus d traits 2<K,ET,NT>

Definition

The class Min sphere annulus d traits 2<K,ET,NT> is a traits class for the d-dimensional optimisation algo-
rithms using the two-dimensional CGAL kernel.

#include <CGAL/Min sphere annulus d traits 2.h>

Requirements

The template parameter K is a model for Kernel. Template parameters ET and NT are models for RingNumber-
Type.

The second and third template parameter have default type K::RT .

Is Model for the Concepts

MinSphereAnnulusDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3907

Types

Min sphere annulus d traits 2<K,ET,NT>:: Point d typedef to K::Point 2.

Min sphere annulus d traits 2<K,ET,NT>:: Rep tag typedef to K::Rep tag.

Min sphere annulus d traits 2<K,ET,NT>:: RT typedef to K::RT .

Min sphere annulus d traits 2<K,ET,NT>:: FT typedef to K::FT .

Min sphere annulus d traits 2<K,ET,NT>:: Access dimension d

typedef to K::Access dimension 2.

Min sphere annulus d traits 2<K,ET,NT>:: Access coordinates begin d

typedef to K::Access coordinates begin 2.

Min sphere annulus d traits 2<K,ET,NT>:: Construct point d

typedef to K::Construct point 2.

Min sphere annulus d traits 2<K,ET,NT>:: ET second template parameter (default is K::RT).

Min sphere annulus d traits 2<K,ET,NT>:: NT third template parameter (default is K::RT).
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Creation

Min sphere annulus d traits 2<K,ET,NT> traits; default constructor.

Min sphere annulus d traits 2<K,ET,NT> traits( Min sphere annulus d traits 2<K,ET,NT>);

copy constructor.

Operations

The following functions just return the corresponding function class object.

Access dimension d traits.access dimension d object() const

Access coordinates begin d traits.access coordinates begin d object() const

Construct point d traits.construct point d object() const

See Also

CGAL::Min sphere d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3846
CGAL::Min annulus d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3860
CGAL::Min sphere annulus d traits 3<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3903
CGAL::Min sphere annulus d traits d<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3905

MinSphereAnnulusDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3907
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CGAL::Min sphere annulus d traits 3<K,ET,NT>

Definition

The class Min sphere annulus d traits 3<K,ET,NT> is a traits class for the d-dimensional optimisation algo-
rithms using the three-dimensional CGAL kernel.

#include <CGAL/Min sphere annulus d traits 3.h>

Requirements

The template parameter K is a model for Kernel. Template parameters ET and NT are models for RingNumber-
Type.

The second and third template parameter have default type K::RT .

Is Model for the Concepts

MinSphereAnnulusDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3907

Types

Min sphere annulus d traits 3<K,ET,NT>:: Point d typedef to K::Point 3.

Min sphere annulus d traits 3<K,ET,NT>:: Rep tag typedef to K::Rep tag.

Min sphere annulus d traits 3<K,ET,NT>:: RT typedef to K::RT .

Min sphere annulus d traits 3<K,ET,NT>:: FT typedef to K::FT .

Min sphere annulus d traits 3<K,ET,NT>:: Access dimension d

typedef to K::Access dimension 3.

Min sphere annulus d traits 3<K,ET,NT>:: Access coordinates begin d

typedef to K::Access coordinates begin 3.

Min sphere annulus d traits 3<K,ET,NT>:: Construct point d

typedef to K::Construct point 3.

Min sphere annulus d traits 3<K,ET,NT>:: ET second template parameter (default is K::RT).

Min sphere annulus d traits 3<K,ET,NT>:: NT third template parameter (default is K::RT).
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Creation

Min sphere annulus d traits 3<K,ET,NT> traits; default constructor.

Min sphere annulus d traits 3<K,ET,NT> traits( Min sphere annulus d traits 3<K,ET,NT>);

copy constructor.

Operations

The following functions just return the corresponding function class object.

Access dimension d traits.access dimension d object() const

Access coordinates begin d traits.access coordinates begin d object() const

Construct point d traits.construct point d object() const

See Also

CGAL::Min sphere d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3846
CGAL::Min annulus d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3860
CGAL::Min sphere annulus d traits 2<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3901
CGAL::Min sphere annulus d traits d<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3905

Min sphere annulusDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
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CGAL::Min sphere annulus d traits d<K,ET,NT>

Definition

The class Min sphere annulus d traits d<K,ET,NT> is a traits class for the d-dimensional optimisation algo-
rithms using the d-dimensional CGAL kernel.

#include <CGAL/Min sphere annulus d traits d.h>

Requirements

The template parameter K is a model for Kernel. Template parameters ET and NT are models for RingNumber-
Type.

The second and third template parameter have default type K::RT .

Is Model for the Concepts

MinSphereAnnulusDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3907

Types

Min sphere annulus d traits d<K,ET,NT>:: Point d typedef to K::Point d.

Min sphere annulus d traits d<K,ET,NT>:: Rep tag typedef to K::Rep tag.

Min sphere annulus d traits d<K,ET,NT>:: RT typedef to K::RT .

Min sphere annulus d traits d<K,ET,NT>:: FT typedef to K::FT .

Min sphere annulus d traits d<K,ET,NT>:: Access dimension d

typedef to K::Access dimension d.

Min sphere annulus d traits d<K,ET,NT>:: Access coordinates begin d

typedef to K::Access coordinates begin d.

Min sphere annulus d traits d<K,ET,NT>:: Construct point d

typedef to K::Construct point d.

Min sphere annulus d traits d<K,ET,NT>:: ET second template parameter (default is K::RT).

Min sphere annulus d traits d<K,ET,NT>:: NT third template parameter (default is K::RT).
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Creation

Min sphere annulus d traits d<K,ET,NT> traits; default constructor.

Min sphere annulus d traits d<K,ET,NT> traits( Min sphere annulus d traits d<K,ET,NT>);

copy constructor.

Operations

The following functions just return the corresponding function class object.

Access dimension d traits.access dimension d object() const

Access coordinates begin d traits.access coordinates begin d object() const

Construct point d traits.construct point d object() const

See Also

CGAL::Min sphere d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3846
CGAL::Min annulus d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3860
CGAL::Polytope distance d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3944

CGAL::Min sphere annulus d traits 2<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3901
CGAL::Min sphere annulus d traits 3<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3903

MinSphereAnnulusDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3907
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CGAL::Min annulus d<Traits>

Definition

An object of the class Min annulus d<Traits> is the unique annulus (region between two concentric spheres
with radii r and R, r ≤ R) enclosing a finite set of points in d-dimensional Euclidean space Ed , where the
difference R2−r2 is minimal. For a point set P we denote by ma(P) the smallest annulus that contains all points
of P. Note that ma(P) can be degenerate, i.e. ma(P) = /0 if P = /0 and ma(P) = {p} if P = {p}.

An inclusion-minimal subset S of P with ma(S) = ma(P) is called a support set, the points in S are the support
points. A support set has size at most d + 2, and all its points lie on the boundary of ma(P). In general, the
support set is not necessarily unique.

The underlying algorithm can cope with all kinds of input, e.g. P may be empty or points may occur more than
once. The algorithm computes a support set S which remains fixed until the next set, insert, or clear operation.

#include <CGAL/Min annulus d.h>

Requirements

The template parameter Traits is a model for OptimisationDTraits.

We provide the models Optimisation d traits 2, Optimisation d traits 3, and Optimisation d traits d using the
two-, three-, and d-dimensional CGAL kernel, respectively.

Types

Min annulus d<Traits>:: Point typedef to Traits::Point d. Point type used to represent the input points.

Min annulus d<Traits>:: FT typedef to Traits::FT . Number type used to return the squared radii of the
smallest enclosing annulus.

Min annulus d<Traits>:: ET typedef to Traits::ET . Number type used to do the exact computations in the
underlying solver for quadratic programs (cf. Implementation).

Min annulus d<Traits>:: Point iterator

non-mutable model of the STL concept RandomAccessIterator with value
type Point. Used to access the points of the smallest enclosing annulus.

Min annulus d<Traits>:: Support point iterator

non-mutable model of the STL concept RandomAccessIterator with value
type Point. Used to access the support points of the smallest enclosing an-
nulus.

Min annulus d<Traits>:: Inner support point iterator

non-mutable model of the STL concept RandomAccessIterator with value
type Point. Used to access the inner support points of the smallest enclosing
annulus.
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Min annulus d<Traits>:: Outer support point iterator

non-mutable model of the STL concept RandomAccessIterator with value
type Point. Used to access the outer support points of the smallest enclosing
annulus.

Min annulus d<Traits>:: Coordinate iterator

non-mutable model of the STL concept RandomAccessIterator with value
type ET . Used to access the coordinates of the center of the smallest enclos-
ing annulus.

Creation

Min annulus d<Traits> min annulus( Traits traits = Traits(),
int verbose = 0,
std::ostream& stream = std::cout)

initializes min annulus to ma( /0).

template < class InputIterator >
Min annulus d<Traits> min annulus( InputIterator first,

InputIterator last,
Traits traits = Traits(),
int verbose = 0,
std::ostream& stream = std::cout)

initializes min annulus to ma(P) with P being the set of points in
the range [first,last).
Requirement: The value type of InputIterator is Point.
Precondition: All points have the same dimension.

Access Functions

int min annulus.ambient dimension() const

returns the dimension of the points in P. If min annulus is empty,
the ambient dimension is −1.

int min annulus.number of points() const

returns the number of points of min annulus, i.e. |P|.

int min annulus.number of support points() const

returns the number of support points of min annulus, i.e. |S|.
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int min annulus.number of inner support points() const

returns the number of support points of min annulus which lie on
the inner sphere.

int min annulus.number of outer support points() const

returns the number of support points of min annulus which lie on
the outer sphere.

Point iterator
min annulus.points begin() const

returns an iterator referring to the first point of min annulus.
Point iterator

min annulus.points end() const
returns the corresponding past-the-end iterator.

Support point iterator
min annulus.support points begin() const

returns an iterator referring to the first support point of min
annulus.
Precondition: ma(P) is not degenerate, i.e., number of support
points() is at least one.

Support point iterator
min annulus.support points end() const

returns the corresponding past-the-end iterator.
Precondition: ma(P) is not degenerate, i.e., number of support
points() is at least one.

Inner support point iterator
min annulus.inner support points begin() const

returns an iterator referring to the first inner support point of min
annulus.

Inner support point iterator
min annulus.inner support points end() const

returns the corresponding past-the-end iterator.

Outer support point iterator
min annulus.outer support points begin() const

returns an iterator referring to the first outer support point of min
annulus.

Outer support point iterator
min annulus.outer support points end() const

returns the corresponding past-the-end iterator.

Point min annulus.center() const returns the center of min annulus.
Requirement: An implicit conversion from ET to RT is available.
Precondition: min annulus is not empty.

FT min annulus.squared inner radius() const

returns the squared inner radius of min annulus.
Requirement: An implicit conversion from ET to RT is available.
Precondition: min annulus is not empty.
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FT min annulus.squared outer radius() const

returns the squared outer radius of min annulus.
Requirement: An implicit conversion from ET to RT is available.
Precondition: min annulus is not empty.

Coordinate iterator
min annulus.center coordinates begin() const

returns an iterator referring to the first coordinate of the center of
min annulus.
Note: The coordinates have a rational representation, i.e. the first d
elements of the iterator range are the numerators and the (d+1)-st
element is the common denominator.

Coordinate iterator
min annulus.center coordinates end() const

returns the corresponding past-the-end iterator.

ET min annulus.squared inner radius numerator() const

returns the numerator of the squared inner radius of min annulus.

ET min annulus.squared outer radius numerator() const

returns the numerator of the squared outer radius of min annulus.

ET min annulus.squared radii denominator() const

returns the denominator of the squared radii of min annulus.

Predicates

The bounded area of the smallest enclosing annulus lies between the inner and the outer sphere. The boundary
is the union of both spheres. By definition, an empty annulus has no boundary and no bounded side, i.e. its
unbounded side equals the whole space Ed .

CGAL::Bounded side

min annulus.bounded side( Point p) const

returns CGAL::ON BOUNDED SIDE, CGAL::ON BOUNDARY ,
or CGAL::ON UNBOUNDED SIDE iff p lies properly inside, on
the boundary, or properly outside of min annulus, resp.
Precondition: The dimension of p equals min annulus.ambient
dimension() if min annulus is not empty.

bool min annulus.has on bounded side( Point p) const

returns true, iff p lies properly inside min annulus.
Precondition: The dimension of p equals min annulus.ambient
dimension() if min annulus is not empty.
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bool min annulus.has on boundary( Point p) const

returns true, iff p lies on the boundary of min annulus.
Precondition: The dimension of p equals min annulus.ambient
dimension() if min annulus is not empty.

bool min annulus.has on unbounded side( Point p) const

returns true, iff p lies properly outside of min annulus.
Precondition: The dimension of p equals min annulus.ambient
dimension() if min annulus is not empty.

bool min annulus.is empty() const

returns true, iff min annulus is empty (this implies degeneracy).

bool min annulus.is degenerate() const

returns true, iff min annulus is degenerate, i.e. if min annulus is
empty or equal to a single point.

Modifiers

void min annulus.clear() resets min annulus to ma( /0).

template < class InputIterator >
void min annulus.set( InputIterator first, InputIterator last)

sets min annulus to ma(P), where P is the set of points in the range
[first,last).
Requirement: The value type of InputIterator is Point.
Precondition: All points have the same dimension.

void min annulus.insert( Point p)

inserts p into min annulus.
Precondition: The dimension of p equals min annulus.ambient
dimension() if min annulus is not empty.

template < class InputIterator >
void min annulus.insert( InputIterator first, InputIterator last)

inserts the points in the range [first,last) into min annulus and re-
computes the smallest enclosing annulus.
Requirement: The value type of InputIterator is Point.
Precondition: All points have the same dimension. If min
annulus is not empty, this dimension must be equal to min
annulus.ambient dimension().
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Validity Check

An object min annulus is valid, iff

• min annulus contains all points of its defining set P,

• min annulus is the smallest annulus containing its support set S, and

• S is minimal, i.e. no support point is redundant.

Note: In this release only the first item is considered by the validity check.

bool min annulus.is valid( bool verbose = false, int level = 0) const

returns true, iff min annulus is valid. If verbose is true, some mes-
sages concerning the performed checks are written to standard er-
ror stream. The second parameter level is not used, we provide it
only for consistency with interfaces of other classes.

Miscellaneous

const Traits&

min annulus.traits() const returns a const reference to the traits class object.

I/O

std::ostream&

std::ostream& os << min annulus

writes min annulus to output stream os.
Requirement: The output operator is defined for Point.

std::istream&

std::istream& is >> min annulus&

reads min annulus from input stream is.
Requirement: The input operator is defined for Point.

See Also

CGAL::Min sphere d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3846

CGAL::Optimisation d traits 2<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
CGAL::Optimisation d traits 3<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
CGAL::Optimisation d traits d<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page ??

OptimisationDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
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Implementation

The problem of finding the smallest enclosing annulus of a finite point set can be formulated as an optimization
problem with linear constraints and a linear objective function. The solution is obtained using our exact solver
for linear and quadratic programs [GS00].

The creation time is almost always linear in the number of points. Access functions and predicates take constant
time, inserting a point takes almost always linear time. The clear operation and the check for validity each take
linear time.
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CGAL::Min sphere of spheres d<Traits>

Definition

An object of the class Min sphere of spheres d<Traits> is a data structure that represents the unique sphere of
smallest volume enclosing a finite set of spheres in d-dimensional Euclidean space Ed . For a set S of spheres
we denote by ms(S) the smallest sphere that contains all spheres of S; we call ms(S) the minsphere of S. ms(S)
can be degenerate, i.e., ms(S) = /0, if S = /0 and ms(S) = {s}, if S = {s}. Any sphere in S may be degenerate,
too, i.e., any sphere from S may be a point. Also, S may contain several copies of the same sphere.

An inclusion-minimal subset R of S with ms(R) = ms(S) is called a support set for ms(S); the spheres in R are
the support spheres. A support set has size at most d + 1, and all its spheres lie on the boundary of ms(S). (A
sphere s′ is said to lie on the boundary of a sphere s, if s′ is contained in s and if their boundaries intersect.) In
general, the support set is not unique.

The algorithm computes the center and the radius of ms(S), and finds a support set R (which remains fixed until
the next insert(), clear() or set() operation). We also provide a specialization of the algorithm for the case when
the center coordinates and radii of the input spheres are floating-point numbers. This specialized algorithm uses
floating-point arithmetic only, is very fast and especially tuned for stability and robustness. Still, it’s output may
be incorrect in some (rare) cases; termination is guaranteed.

When default constructed, an instance of type Min sphere of spheres d<Traits> represents the set S = /0, to-
gether with its minsphere ms(S) = /0. You can add spheres to the set S by calling insert(). Querying the
minsphere is done by calling the routines is empty(), radius() and center cartesian begin(), among others.

In general, the radius and the Euclidean center coordinates of ms(S) need not be rational. Consequently, the
algorithm computing the exact minsphere will have to deal with algebraic numbers. Fortunately, both the radius
and the coordinates of the minsphere are numbers of the form ai + bi

√
t, where ai,bi, t ∈ Q and where t ≥ 0

is the same for all coordinates and the radius. Thus, the exact minsphere can be described by the number t,
which is called the sphere’s discriminant, and by d +1 pairs (ai,bi)∈Q2 (one for the radius and d for the center
coordinates).

#include <CGAL/Min sphere of spheres d.h>

Note: This class (almost) replaces CGAL::Min sphere d<Traits>, which solves the less general problem
of finding the smallest enclosing ball of a set of points. Min sphere of spheres d<Traits> is faster than
CGAL::Min sphere d<Traits>, and in contrast to the latter provides a specialized implementation for floating-
point arithmetic which ensures correct results in a large number of cases (including highly degenerate ones). The
only advantage of CGAL::Min sphere d<Traits> over Min sphere of spheres d<Traits> is that the former can
deal with points in homogeneous coordinates, in which case the algorithm is division-free. Thus, CGAL::Min
sphere d<Traits> might still be an option in case your input number type cannot (efficiently) divide.

Requirements

The class Min sphere of spheres d<Traits> expects a model of the concept MinSphereOfSpheresTraits as its
template argument.

Types

Min sphere of spheres d<Traits>:: Sphere is a typedef to Traits::Sphere.
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Min sphere of spheres d<Traits>:: FT is a typedef to Traits::FT .

Min sphere of spheres d<Traits>:: Result is the type of the radius and of the center coordinates of the
computed minsphere: When FT is an inexact number type
(double, for instance), then Result is simply FT . However,
when FT is an exact number type, then Result is a typedef
to a derived class of std::pair<FT,FT>; an instance of this
type represents the number a + b

√
t, where a is the first and

b the second element of the pair and where the number t is
accessed using the member function discriminant() of class
Min sphere of spheres d<Traits>.

Min sphere of spheres d<Traits>:: Algorithm is either CGAL::LP algorithm or CGAL::Farthest first
heuristic. As is described in the documentation of concept
MinSphereOfSpheresTraits, the type Algorithm reflects the
method which is used to compute the minsphere. (Normally,
Algorithm coincides with Traits::Algorithm. However, if the
method Traits::Algorithm should not be supported anymore
in a future release, then Algorithm will have another type.)

Min sphere of spheres d<Traits>:: Support iterator

non-mutable model of the STL concept BidirectionalIterator
with value type Sphere. Used to access the support spheres
defining the smallest enclosing sphere.

Min sphere of spheres d<Traits>:: Cartesian const iterator

non-mutable model of the STL concept BidirectionalIterator
to access the center coordinates of the minsphere.

Creation

Min sphere of spheres d<Traits> minsphere( Traits traits = Traits());

creates a variable of type Min sphere of spheres d<Traits>
and initializes it to ms( /0). If the traits parameter is not sup-
plied, the class Traits must provide a default constructor.

template < typename InputIterator >
Min sphere of spheres d<Traits> minsphere( InputIterator first, InputIterator last, Traits traits = Traits());

creates a variable minsphere of type Min sphere of spheres
d<Traits> and inserts (cf. insert()) the spheres from the range
[first,last).
Requirement: The value type of first and last is Sphere. If the
traits parameter is not supplied, the class Traits must provide
a default constructor.
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Access Functions

Support iterator minsphere.support begin() const

returns an iterator referring to the first support sphere of min-
sphere.

Support iterator minsphere.support end() const

returns the corresponding past-the-end iterator.

FT minsphere.discriminant() const

returns the discriminant of minsphere. This number is unde-
fined when FT is an inexact number type. When FT is exact,
the center coordinates and the radius of the minsphere are
numbers of the form a + b

√
t, where t is the discriminant of

the minsphere as returned by this function.
Precondition: minsphere is not empty, and FT is an exact
number type.

Result minsphere.radius() const

returns the radius of minsphere. If FT is an exact number
type then the radius of the minsphere is the real number a +
b
√

t, where t is the minsphere’s discriminant, a is the first
and b the second component of the pair returned by radius().
Precondition: minsphere is not empty.

Cartesian const iterator

minsphere.center cartesian begin() const

returns a const-iterator to the first of the Traits::D center co-
ordinates of minsphere. The iterator returns objects of type
Result. If FT is an exact number type, then a center coordi-
nate is represented by a pair (a,b) describing the real number
a+b
√

t, where t is the minsphere’s discriminant (cf. discrim-
inant()).
Precondition: minsphere is not empty.

Cartesian const iterator

minsphere.center cartesian end() const

returns the corresponding past-the-end iterator, i.e. center
cartesian begin()+Traits::D.
Precondition: minsphere is not empty.
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Predicates

bool minsphere.is empty() const

returns true, iff minsphere is empty, i.e. iff ms(S) = /0.

Modifiers

void minsphere.clear() resets minsphere to ms( /0), with S := /0.

template < class InputIterator >
void minsphere.set( InputIterator first, InputIterator last)

sets minsphere to the ms(S), where S is the set of spheres in
the range [first,last).
Requirement: The value type of first and last is Sphere.

void minsphere.insert( Sphere s)

inserts the sphere s into the set S of instance minsphere.

template < class InputIterator >
void minsphere.insert( InputIterator first, InputIterator last)

inserts the spheres in the range [first,last) into the set S of
instance minsphere.
Requirement: The value type of first and last is Sphere.

Validity Check

An object minsphere is valid, iff

• minsphere contains all spheres of its defining set S,

• minsphere is the smallest sphere containing its support set R, and

• R is minimal, i.e., no support sphere is redundant.

bool minsphere.is valid() const

returns true, iff minsphere is valid. When FT is inexact, this
routine always returns true.

Miscellaneous

const Traits& minsphere.traits() const

returns a const reference to the traits class object.
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See Also

CGAL::Min sphere d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3846
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Implementation

We implement two algorithms, the LP-algorithm and a heuristic [MSW92]. As described in the documentation
of concept MinSphereOfSpheresTraits, each has its advantages and disadvantages: Our implementation of the
LP-algorithm has maximal expected running time O(2dn), while the heuristic comes without any complexity
guarantee. In particular, the LP-algorithm runs in linear time for fixed dimension d. (These running times hold
for the arithmetic model, so they count the number of operations on the number type FT .)

On the other hand, the LP-algorithm is, for inexact number types FT , much worse at handling degeneracies
and should therefore not be used in such a case. (For exact number types FT , both methods handle all kinds of
degeneracies.)

Currently, we require Traits::FT to be either an exact number type or double or float; other inexact number
types are not supported at this time. Also, the current implementation only handles spheres with Cartesian
coordinates; homogenous representation is not supported yet.

Example� �
#include <CGAL/Cartesian_d.h>
#include <CGAL/Random.h>
#include <CGAL/Gmpq.h>
#include <CGAL/Min_sphere_of_spheres_d.h>
#include <vector>

const int N = 1000; // number of spheres
const int D = 3; // dimension of points
const int LOW = 0, HIGH = 10000; // range of coordinates and

radii

typedef CGAL::Gmpq FT;
//typedef double FT;
typedef CGAL::Cartesian_d<FT> K;
typedef CGAL::Min_sphere_of_spheres_d_traits_d<K,FT,D> Traits;
typedef CGAL::Min_sphere_of_spheres_d<Traits> Min_sphere;
typedef K::Point_d Point;
typedef Traits::Sphere Sphere;

int main () {
std::vector<Sphere> S; // n spheres
FT coord[D]; // d coordinates
CGAL::Random r; // random number generator

for (int i=0; i<N; ++i) {
for (int j=0; j<D; ++j)

coord[j] = r.get_int(LOW,HIGH);
Point p(D,coord,coord+D); // random center...
S.push_back(Sphere(p,r.get_int(LOW,HIGH))); // ...and random radius
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}

Min_sphere ms(S.begin(),S.end()); // check in the spheres
CGAL_assertion(ms.is_valid());

}� �
File: examples/Min_sphere_of_spheres_d/min_sphere_of_spheres_d_d.cpp
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MinSphereOfSpheresTraits

Definition

A model of concept MinSphereOfSpheresTraits must provide the following constants, types, predicates and
operations.

Has Models

CGAL::Min sphere of spheres d traits 2<K,FT,UseSqrt,Algorithm>
CGAL::Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>
CGAL::Min sphere of spheres d traits d<K,FT,Dim,UseSqrt,Algorithm>

Constants

MinSphereOfSpheresTraits:: D specifies the dimension of the spheres you want to compute
the minsphere of.

Types

MinSphereOfSpheresTraits:: Sphere is a typedef to to some class representing a sphere. (The
package will compute the minsphere of spheres of type
Sphere.) The type Sphere must provide a copy constructor.

MinSphereOfSpheresTraits:: FT is a (exact or inexact) field number type.
Requirement: Currently, FT must either be double or float,
or an exact field number type. (An exact number type is one
which evaluates arithmetic expressions involving the four ba-
sic operations and comparisions with infinite precision, that
is, like in R.)

MinSphereOfSpheresTraits:: Cartesian const iterator

non-mutable model of the STL concept ForwardIterator with
value type FT . Used to access the center coordinates of a
sphere.
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MinSphereOfSpheresTraits:: Use square roots

must typedef to either CGAL::Tag true or CGAL::Tag false.
The algorithm uses (depending on the type MinSphere-
OfSpheresTraits::Algorithm) floating-point arithmetic inter-
nally for some intermediate computations. The type Use
square roots affects how these calculations are done: When
Use square roots is Tag true, the algorithm computing the
minsphere will perform square-root operations on doubles
and floats where appropriate. On the other hand, if Use
square roots is CGAL::Tag false, the algorithm will work
without doing square-roots.
Note: On some platforms the algorithm is much faster when
square-roots are disabled (due to lacking hardware support).

MinSphereOfSpheresTraits:: Algorithm selects the method to compute the minsphere with. It must
typedef to either CGAL::Default algorithm, CGAL::LP
algorithm or CGAL::Farthest first heuristic. The recom-
mended choice is the first, which is a synonym to the one of
the other two methods which we consider “the best in prac-
tice.” In case of CGAL::LP algorithm, the minsphere will be
computed using the LP-algorithm [MSW92], which in our
implementation has maximal expected running time O(2dn)
(in the number of operations on the number type FT). In case
of CGAL::Farthest first heuristic, a simple heuristic will be
used instead which seems to work fine in practice, but comes
without a guarantee on the running time. For an inexact
number type FT we strongly recommend CGAL::Default
algorithm, or, if you want, CGAL::Farthest first heuristic,
since these handle most degeneracies in a satisfying man-
ner. Notice that this compile-time flag is taken as a hint only.
Should one of the methods not be available anymore in a fu-
ture release, then the default algorithm will be chosen.

Access Functions

FT traits.radius( Sphere s)

returns the radius of sphere s.
Postcondition: The returned number is greater or equal to 0.

Cartesian const iterator

traits.center cartesian begin( Sphere s)

returns an iterator referring to the first of the D Cartesian
coordinates of the center of s.
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CGAL::Min sphere of spheres d traits 2<K,FT,UseSqrt,Algorithm>

Definition

The class Min sphere of spheres d traits 2<K,FT,UseSqrt,Algorithm> is a model for concept MinSphereOf-
SpheresTraits. It uses the CGAL type Point 2 to represent circles.

Is Model for the Concepts

MinSphereOfSpheresTraits

Parameters

The last two template parameters, UseSqrt and Algorithm, have default arguments, namely CGAL::Tag false
and CGAL::Default algorithm, respectively.

The template parameters of class Min sphere of spheres d traits 2<K,FT,UseSqrt,Algorithm> must fulfill the
following requirements:

Min sphere of spheres d traits 2<K,FT,UseSqrt,Algorithm>:: K

is a model for Kernel.

Min sphere of spheres d traits 2<K,FT,UseSqrt,Algorithm>:: FT

is a number type, which fulfills the requirements of type FT
of concept MinSphereOfSpheresTraits: It must be either dou-
ble or float, or an exact number type.

Min sphere of spheres d traits 2<K,FT,UseSqrt,Algorithm>:: UseSqrt

fulfills the requirements of type Use square roots of con-
cept MinSphereOfSpheresTraits: It must be either Tag true
or Tag false.

Min sphere of spheres d traits 2<K,FT,UseSqrt,Algorithm>:: Algorithm

fulfills the requirements of type Algorithm of concept Min-
SphereOfSpheresTraits: It must be either Default algorithm,
LP algorithm or Farthest first heuristic.

Constants

Min sphere of spheres d traits 2<K,FT,UseSqrt,Algorithm>:: D

is the constant 2, i.e. the dimension of R2.
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Types

In addition to the types required by the concept MinSphereOfSpheresTraits, this model also defines the types
Radius and Point. Here’s the complete list of defined types:

Min sphere of spheres d traits 2<K,FT,UseSqrt,Algorithm>:: FT

Min sphere of spheres d traits 2<K,FT,UseSqrt,Algorithm>:: Use square roots

Min sphere of spheres d traits 2<K,FT,UseSqrt,Algorithm>:: Algorithm

Min sphere of spheres d traits 2<K,FT,UseSqrt,Algorithm>:: Radius

is a typedef to the template parameter FT

Min sphere of spheres d traits 2<K,FT,UseSqrt,Algorithm>:: Point

is a typedef to K::Point 2.

Min sphere of spheres d traits 2<K,FT,UseSqrt,Algorithm>:: Sphere

is a typedef to std::pair<Point,Radius>.

Min sphere of spheres d traits 2<K,FT,UseSqrt,Algorithm>:: Cartesian const iterator

is a typedef to K::Cartesian const iterator 2.

Access Functions

The class provides the access functions required by the concept MinSphereOfSpheresTraits; they simply map
to the corresponding routines of class K::Point 2:

FT traits.radius( Sphere s)

maps to s.second.

Cartesian const iterator

traits.center cartesian begin( Sphere s)

maps to s.first.cartesian begin().
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CGAL::Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>

Definition

The class Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm> is a model for concept MinSphereOf-
SpheresTraits. It uses the CGAL type Point 3 to represent circles.

Is Model for the Concepts

MinSphereOfSpheresTraits

Parameters

The last two template parameters, UseSqrt and Algorithm, have default arguments, namely CGAL::Tag false
and CGAL::Default algorithm, respectively.

The template parameters of class Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm> must fulfill the
following requirements:

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: K

is a model for Kernel.

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: FT

is a number type, which fulfills the requirements of type FT
of concept MinSphereOfSpheresTraits: It must be either dou-
ble or float, or an exact number type.

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: UseSqrt

fulfills the requirements of type Use square roots of con-
cept MinSphereOfSpheresTraits: It must be either Tag true
or Tag false.

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: Algorithm

fulfills the requirements of type Algorithm of concept Min-
SphereOfSpheresTraits: It must be either Default algorithm,
LP algorithm or Farthest first heuristic.

Constants

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: D

is the constant 3, i.e. the dimension of R3.
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Types

In addition to the types required by the concept MinSphereOfSpheresTraits, this model also defines the types
Radius and Point. Here’s the complete list of defined types:

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: FT

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: Use square roots

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: Algorithm

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: Radius

is a typedef to the template parameter FT

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: Point

is a typedef to K::Point 3.

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: Sphere

is a typedef to std::pair<Point,Radius>.

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: Cartesian const iterator

is a typedef to K::Cartesian const iterator 2.

Access Functions

The class provides the access functions required by the concept MinSphereOfSpheresTraits; they simply map
to the corresponding routines of class K::Point 3:

FT traits.radius( Sphere s)

maps to s.second.

Cartesian const iterator

traits.center cartesian begin( Sphere s)

maps to s.first.cartesian begin().
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CGAL::Min sphere of spheres d traits d<K,FT,Dim,UseSqrt,Algorithm>

Definition

The class Min sphere of spheres d traits d<K,FT,Dim,UseSqrt,Algorithm> is a model for concept MinSphere-
OfSpheresTraits. It uses the CGAL type Point d to represent circles.

Is Model for the Concepts

MinSphereOfSpheresTraits

Parameters

The last two template parameters, UseSqrt and Algorithm, have default arguments, namely CGAL::Tag false
and CGAL::Default algorithm, respectively.

The template parameters of class Min sphere of spheres d traits d<K,FT,UseSqrt,Algorithm> must fulfill the
following requirements:

Min sphere of spheres d traits d<K,FT,Dim,UseSqrt,Algorithm>:: K

is a model for Kernel.

Min sphere of spheres d traits d<K,FT,Dim,UseSqrt,Algorithm>:: FT

is a number type, which fulfills the requirements of type FT
of concept MinSphereOfSpheresTraits: It must be either dou-
ble or float, or an exact number type.

Min sphere of spheres d traits d<K,FT,Dim,UseSqrt,Algorithm>:: UseSqrt

fulfills the requirements of type Use square roots of con-
cept MinSphereOfSpheresTraits: It must be either Tag true
or Tag false.

Min sphere of spheres d traits d<K,FT,Dim,UseSqrt,Algorithm>:: Algorithm

fulfills the requirements of type Algorithm of concept Min-
SphereOfSpheresTraits: It must be either Default algorithm,
LP algorithm or Farthest first heuristic.
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Constants

Min sphere of spheres d traits d<K,FT,Dim,UseSqrt,Algorithm>:: D

is the constant Dim.

Types

In addition to the types required by the concept MinSphereOfSpheresTraits, this model also defines the types
Radius and Point. Here’s the complete list of defined types:

Min sphere of spheres d traits d<K,FT,Dim,UseSqrt,Algorithm>:: FT

Min sphere of spheres d traits d<K,FT,Dim,UseSqrt,Algorithm>:: Use square roots

Min sphere of spheres d traits d<K,FT,Dim,UseSqrt,Algorithm>:: Algorithm

Min sphere of spheres d traits d<K,FT,Dim,UseSqrt,Algorithm>:: Radius

is a typedef to the template parameter FT

Min sphere of spheres d traits d<K,FT,Dim,UseSqrt,Algorithm>:: Point

is a typedef to K::Point d.

Min sphere of spheres d traits d<K,FT,Dim,UseSqrt,Algorithm>:: Sphere

is a typedef to std::pair<Point,Radius>.

Min sphere of spheres d traits d<K,FT,Dim,UseSqrt,Algorithm>:: Cartesian const iterator

is a typedef to K::Cartesian const iterator d.

Access Functions

The class provides the access functions required by the concept MinSphereOfSpheresTraits; they simply map
to the corresponding routines of class K::Point d:

FT traits.radius( Sphere s)

maps to s.second.

Cartesian const iterator

traits.center cartesian begin( Sphere s)

maps to s.first.cartesian begin().
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CGAL::Min sphere of points d traits 2<K,FT,UseSqrt,Algorithm>

Definition

The class Min sphere of points d traits 2<K,FT,UseSqrt,Algorithm> is a model for concept MinSphereOf-
SpheresTraits. It uses the CGAL type Point 2 to represent circles.

Is Model for the Concepts

MinSphereOfSpheresTraits

Parameters

The last two template parameters, UseSqrt and Algorithm, have default arguments, namely CGAL::Tag false
and CGAL::Default algorithm, respectively.

The template parameters of class Min sphere of points d traits 2<K,FT,UseSqrt,Algorithm> must fulfill the
following requirements:

Min sphere of points d traits 2<K,FT,UseSqrt,Algorithm>:: K

is a model for Kernel.

Min sphere of points d traits 2<K,FT,UseSqrt,Algorithm>:: FT

is a number type, which fulfills the requirements of type FT
of concept MinSphereOfSpheresTraits: It must be either dou-
ble or float, or an exact number type.

Min sphere of points d traits 2<K,FT,UseSqrt,Algorithm>:: UseSqrt

fulfills the requirements of type Use square roots of con-
cept MinSphereOfSpheresTraits: It must be either Tag true
or Tag false.

Min sphere of points d traits 2<K,FT,UseSqrt,Algorithm>:: Algorithm

fulfills the requirements of type Algorithm of concept Min-
SphereOfSpheresTraits: It must be either Default algorithm,
LP algorithm or Farthest first heuristic.

Constants

Min sphere of points d traits 2<K,FT,UseSqrt,Algorithm>:: D

is the constant 2, i.e. the dimension of R2.
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Types

In addition to the types required by the concept MinSphereOfSpheresTraits, this model also defines the types
Radius and Point. Here’s the complete list of defined types:

Min sphere of points d traits 2<K,FT,UseSqrt,Algorithm>:: FT

Min sphere of points d traits 2<K,FT,UseSqrt,Algorithm>:: Use square roots

Min sphere of points d traits 2<K,FT,UseSqrt,Algorithm>:: Algorithm

Min sphere of points d traits 2<K,FT,UseSqrt,Algorithm>:: Radius

is a typedef to the template parameter FT

Min sphere of points d traits 2<K,FT,UseSqrt,Algorithm>:: Point

is a typedef to K::Point 2.

Min sphere of points d traits 2<K,FT,UseSqrt,Algorithm>:: Sphere

is a typedef to Point.

Min sphere of points d traits 2<K,FT,UseSqrt,Algorithm>:: Cartesian const iterator

is a typedef to K::Cartesian const iterator 2.

Access Functions

The class provides the access functions required by the concept MinSphereOfSpheresTraits; they simply map
to the corresponding routines of class K::Point 2:

FT traits.radius( Sphere s)

returns 0.

Cartesian const iterator

traits.center cartesian begin( Sphere s)

maps to s.first.cartesian begin().
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CGAL::Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>

Definition

The class Min sphere of points d traits 3<K,FT,UseSqrt,Algorithm> is a model for concept MinSphereOf-
SpheresTraits. It uses the CGAL type Point 3 to represent circles.

Is Model for the Concepts

MinSphereOfSpheresTraits

Parameters

The last two template parameters, UseSqrt and Algorithm, have default arguments, namely CGAL::Tag false
and CGAL::Default algorithm, respectively.

The template parameters of class Min sphere of points d traits 3<K,FT,UseSqrt,Algorithm> must fulfill the
following requirements:

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: K

is a model for Kernel.

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: FT

is a number type, which fulfills the requirements of type FT
of concept MinSphereOfSpheresTraits: It must be either dou-
ble or float, or an exact number type.

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: UseSqrt

fulfills the requirements of type Use square roots of con-
cept MinSphereOfSpheresTraits: It must be either Tag true
or Tag false.

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: Algorithm

fulfills the requirements of type Algorithm of concept Min-
SphereOfSpheresTraits: It must be either Default algorithm,
LP algorithm or Farthest first heuristic.

Constants

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: D

is the constant 2, i.e. the dimension of R2.
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Types

In addition to the types required by the concept MinSphereOfSpheresTraits, this model also defines the types
Radius and Point. Here’s the complete list of defined types:

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: FT

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: Use square roots

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: Algorithm

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: Radius

is a typedef to the template parameter FT

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: Point

is a typedef to K::Point 3.

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: Sphere

is a typedef to Point.

Min sphere of spheres d traits 3<K,FT,UseSqrt,Algorithm>:: Cartesian const iterator

is a typedef to K::Cartesian const iterator 3.

Access Functions

The class provides the access functions required by the concept MinSphereOfSpheresTraits; they simply map
to the corresponding routines of class K::Point 3:

FT traits.radius( Sphere s)

returns 0.

Cartesian const iterator

traits.center cartesian begin( Sphere s)

maps to s.first.cartesian begin().
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CGAL::Min sphere of points d traits d<K,FT,Dim,UseSqrt,Algorithm>

Definition

The class Min sphere of points d traits d<K,FT,Dim,UseSqrt,Algorithm> is a model for concept MinSphere-
OfSpheresTraits. It uses the CGAL type Point d to represent circles.

Is Model for the Concepts

MinSphereOfSpheresTraits

Parameters

The last two template parameters, UseSqrt and Algorithm, have default arguments, namely CGAL::Tag false
and CGAL::Default algorithm, respectively.

The template parameters of class Min sphere of points d traits d<K,FT,UseSqrt,Algorithm> must fulfill the
following requirements:

Min sphere of points d traits d<K,FT,Dim,UseSqrt,Algorithm>:: K

is a model for Kernel.

Min sphere of points d traits d<K,FT,Dim,UseSqrt,Algorithm>:: FT

is a number type, which fulfills the requirements of type FT
of concept MinSphereOfSpheresTraits: It must be either dou-
ble or float, or an exact number type.

Min sphere of points d traits d<K,FT,Dim,UseSqrt,Algorithm>:: UseSqrt

fulfills the requirements of type Use square roots of con-
cept MinSphereOfSpheresTraits: It must be either Tag true
or Tag false.

Min sphere of points d traits d<K,FT,Dim,UseSqrt,Algorithm>:: Algorithm

fulfills the requirements of type Algorithm of concept Min-
SphereOfSpheresTraits: It must be either Default algorithm,
LP algorithm or Farthest first heuristic.
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Constants

Min sphere of points d traits d<K,FT,Dim,UseSqrt,Algorithm>:: D

is the constant Dim.

Types

In addition to the types required by the concept MinSphereOfSpheresTraits, this model also defines the types
Radius and Point. Here’s the complete list of defined types:

Min sphere of points d traits d<K,FT,Dim,UseSqrt,Algorithm>:: FT

Min sphere of points d traits d<K,FT,Dim,UseSqrt,Algorithm>:: Use square roots

Min sphere of points d traits d<K,FT,Dim,UseSqrt,Algorithm>:: Algorithm

Min sphere of points d traits d<K,FT,Dim,UseSqrt,Algorithm>:: Radius

is a typedef to the template parameter FT

Min sphere of points d traits d<K,FT,Dim,UseSqrt,Algorithm>:: Point

is a typedef to K::Point d.

Min sphere of points d traits d<K,FT,Dim,UseSqrt,Algorithm>:: Sphere

is a typedef to Point.

Min sphere of points d traits d<K,FT,Dim,UseSqrt,Algorithm>:: Cartesian const iterator

is a typedef to K::Cartesian const iterator d.

Access Functions

The class provides the access functions required by the concept MinSphereOfSpheresTraits; they simply map
to the corresponding routines of class K::Point d:

FT traits.radius( Sphere s)

returns 0.

Cartesian const iterator

traits.center cartesian begin( Sphere s)

maps to s.cartesian begin().
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CGAL::Approximate min ellipsoid d<Traits>

Definition

An object of class Approximate min ellipsoid d<Traits> is an approximation to the ellipsoid of smallest volume
enclosing a finite multiset of points in d-dimensional Euclidean space Ed , d ≥ 2.

An ellipsoid in Ed is a Cartesian pointset of the form {x ∈ Ed | xT Ex + xT e + η ≤ 0}, where E is some pos-
itive definite matrix from the set Rd×d , e is some real d-vector, and η ∈ R. A pointset P ⊆ Ed is called full-
dimensional if its affine hull has dimension d. For a finite, full-dimensional pointset P we denote by MEL(P)
the smallest ellipsoid that contains all points of P; this ellipsoid exists and is unique.

For a given finite and full-dimensional pointset P⊂Ed and a real number ε≥ 0, we say that an ellipsoid E ⊂Ed

is an (1+ε)-appoximation to MEL(P) if P⊂E and VOL(E)≤ (1+ε) VOL(MEL(P)). In other words, an (1+ε)-
approximation to MEL(P) is an enclosing ellipsoid whose volume is by at most a factor of 1+ ε larger than the
volume of the smallest enclosing ellipsoid of P.

Given this notation, an object of class Approximate min ellipsoid d<Traits> represents an (1 + ε)-
approximation to MEL(P) for a given finite and full-dimensional multiset of points P ⊂ Ed and a real constant
ε > 0.1 When an Approximate min ellipsoid d<Traits> object is constructed, an iterator over the points P and
the number ε have to be specified; the number ε defines the desired approximation ratio 1+ ε. The underlying
algorithm will then try to compute an (1 + ε)-approximation to MEL(P), and one of the following two cases
takes place.

• The algorithm determines that P is not full-dimensional (see is full dimensional() below).

Important note: due to rounding errors, the algorithm cannot in all cases decide correctly whether P is
full-dimensional or not. If is full dimensional() returns false, the points lie in such a “thin” subspace
of Ed that the algorithm is incapable of computing an approximation to MEL(P). More precisely, if is
full dimensional() returns false, there exist two parallel hyperplanes in Ed with the points P in between
so that the distance δ between the hyperplanes is very small, possible zero. (If δ = 0 then P is not full-
dimensional.)

If P is not full-dimensional, linear algebra techniques should be used to determine an affine subspace S of
Ed that contains the points P as a (w.r.t. S) full-dimensional pointset; once S is determined, the algorithm
can be invoked again to compute an approximation to (the lower-dimensional) MEL(P) in S. Since is full
dimensional() might (due to rounding errors, see above) return false even though P is full-dimensional, the
lower-dimensional subspace S containing P need not exist. Therefore, it might be more advisable to fit a
hyperplane H through the pointset P, project P onto this affine subspace H, and compute an approximation
to the minimum-volume enclosing ellipsoid of the projected points within H; the fitting can be done for
instance using the linear least squares fitting() function from the CGAL package Principal component
analysis.

• The algorithm determines that P is full-dimensional. In this case, it provides an approximation E to
MEL(P), but depending on the input problem (i.e., on the pair (P,ε)), it may not have achieved the desired
approximation ratio but merely some worse approximation ratio 1+ε′ > 1+ε. The achieved approxima-
tion ratio 1 + ε′ can be queried using achieved epsilon(), which returns ε′. The ellipsoid E itself can be
queried via the methods defining matrix(), defining vector(), and defining scalar().

The ellipsoid E computed by the algorithm satisfies the inclusions

1
(1+ ε′)d

E ⊆ conv(P)⊆ E (66.1)

1A multiset is a set where elements may have multiplicity greater than 1.
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where f E denotes the ellipsoid E scaled by the factor f ∈ R+ with respect to its center, and where conv(A)
denotes the convex hull of a pointset A⊂ Ed .

The underlying algorithm can cope with all kinds of inputs (multisets P, ε ∈ [0,∞)) and terminates in all cases.
There is, however, no guarantee that any desired approximation ratio is actually achieved; the performance of
the algorithm in this respect highly depends on the input pointset. Values of at least 0.01 for ε are usually
handled without problems.

Internally, the algorithm represents the input points’ Cartesian coordinates as double’s. For this conversion to
work, the input point coordinates must be convertible to double. Also, in order to compute the achieved epsilon
ε′ mentioned above, the algorithm requires a number type ET that provides exact arithmetic. (Both these aspects
are discussed in the documentation of the concept ApproximateMinEllipsoid d Traits d.)

#include <CGAL/Approximate min ellipsoid d.h>

Requirements

The template parameter Traits is a model for ApproximateMinEllipsoid d Traits d.

We provide the model CGAL::Approximate min ellipsoid d traits d<K> using the d-dimensional CGAL ker-
nel; the models CGAL::Approximate min ellipsoid d traits 2<K> and CGAL::Approximate min ellipsoid d
traits 3<K> are for use with the 2- and 3-dimensional CGAL kernel, respectively.

Types

Approximate min ellipsoid d<Traits>:: FT

typedef Traits::FT FT (which is always a typedef to double).

Approximate min ellipsoid d<Traits>:: ET

typedef Traits::ET ET (which is an exact number type used for exact
computation like for example in achieved epsilon()).

Approximate min ellipsoid d<Traits>:: Point

typedef Traits::Point Point

Approximate min ellipsoid d<Traits>:: Cartesian const iterator

typedef Traits::Cartesian const iterator Cartesian const iterator

Approximate min ellipsoid d<Traits>:: Center coordinate iterator

A model of STL concept RandomAccessIterator with value type dou-
ble that is used to iterate over the Cartesian center coordinates of the
computed ellipsoid, see center cartesian begin().
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Approximate min ellipsoid d<Traits>:: Axes lengths iterator

A model of STL concept RandomAccessIterator with value type dou-
ble that is used to iterate over the lengths of the semiaxes of the com-
puted ellipsoid, see axes lengths begin().

Approximate min ellipsoid d<Traits>:: Axis direction iterator

A model of STL concept RandomAccessIterator with value type dou-
ble that is used to iterate over the Cartesian coordinates of the di-
rection of a fixed axis of the computed ellipsoid, see axis direction
cartesian begin().

Creation

An object of type Approximate min ellipsoid d<Traits> can be created from an arbitrary point set P and some
nonnegative double value eps.

template < class Iterator >
Approximate min ellipsoid d<Traits> ame( double eps, Iterator first, Iterator last, Traits traits = Traits());

initializes ame to an (1 + ε)-approximation of MEL(P) with
P being the set of points in the range [first,last). The number
ε in this will be at most eps, if possible. However, due to the
limited precision in the algorithm’s underlying arithmetic, it
can happen that the computed approximation ellipsoid has a
worse approximation ratio (and ε can thus be larger than eps
in general). In any case, the number ε (and with this, the
achived approximation 1 + ε) can be queried by calling the
routine achieved epsilon() discussed below.
Requirement: Iterator must be a model for concept InputIt-
erator with value type Point.
Precondition: The dimension d of the input points must be
at least 2, and ε > 0.

Access Functions

The following methods can be used to query the achieved approximation ratio 1+ε′ and the computed ellipsoid
E = {x ∈ Ed | xT Ex + xT e + η ≤ 0}. The methods defining matrix(), defining vector(), and defining scalar()
do not return E, e, and η directly but yield multiples of these quantities that are exactly representable using the
double type. (This is necessary because the parameters E, e, and η of the computed approximation ellipsoid E
might not be exactly representable as double numbers.)

unsigned int ame.number of points() const

returns the number of points of ame, i.e., |P|.
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double ame.achieved epsilon() const

returns a number ε′ such that the computed approximation
is (under exact arithmetic) guaranteed to be an (1 + ε′)-
approximation to MEL(P).
Precondition: ame.is full dimensional() == true.
Postcondition: ε′ > 0.

double ame.defining matrix( int i, int j) const
gives access to the (i, j)th entry of the matrix E in the rep-
resentation {x ∈ Ed | xT Ex + xT e + η ≤ 0} of the computed
approximation ellipsoid E . The number returned by this rou-
tine is (1+ε′)(d +1)Ei j, where ε′ is the number returned by
achieved epsilon().
Precondition: 0 ≤ i, j ≤ d, where d is the dimension of the
points P, and ame.is full dimensional() == true.

double ame.defining vector( int i) const
gives access to the ith entry of the vector e in the represen-
tation {x ∈ Ed | xT Ex + xT e + η ≤ 0} of the computed ap-
proximation ellipsoid E . The number returned by this rou-
tine is (1 + ε′)(d + 1)ei, where ε′ is the number returned by
achieved epsilon().
Precondition: 0 ≤ i ≤ d, where d is the dimension of the
points P, and ame.is full dimensional() == true.

double ame.defining scalar() const
gives access to the scalar η from the representation {x ∈ Ed |
xT Ex + xT e + η ≤ 0} of the computed approximation ellip-
soid E . The number returned by this routine is (1 + ε′)(d +
1)(η + 1), where ε′ is the number returned by achieved
epsilon().
Precondition: ame.is full dimensional() == true.

Traits ame.traits() const returns a const reference to the traits class object.
int ame.dimension() const

returns the dimension of the ambient space, i.e., the dimen-
sion of the points P.

In order to access the center and semiaxes of the computed approximation ellipsoid, the functions center
cartesian begin(), axes lengths begin(), and axis direction cartesian begin() can be used. In constrast to the
above access functions achieved epsilon(), defining matrix(), defining vector(), and defining scalar(), which
return the described quantities exactly, the routines below return numerical approximations to the real center
and real semiaxes of the computed ellipsoid; the comprised relative error may be larger than zero, and there are
no guarantees for the returned quantities.
Center coordinate iterator

ame.center cartesian begin()
returns an iterator pointing to the first of the d Cartesian co-
ordinates of the computed ellipsoid’s center.
The returned point is a floating-point approximation to the
ellipsoid’s exact center; no guarantee is given w.r.t. the in-
volved relative error.
Precondition: ame.is full dimensional() == true.

Center coordinate iterator
ame.center cartesian end()

returns the past-the-end iterator corresponding to center
cartesian begin().
Precondition: ame.is full dimensional() == true.

3890



Axes lengths iterator
ame.axes lengths begin()

returns an iterator pointing to the first of the d descendantly
sorted lengths of the computed ellipsoid’s axes. The d re-
turned numbers are floating-point approximations to the ex-
act axes-lengths of the computed ellipsoid; no guarantee is
given w.r.t. the involved relative error. (See also method
axes direction cartesian begin().)
Precondition: ame.is full dimensional() == true, and d ∈
{2,3}.

Axes lengths iterator
ame.axes lengths end()

returns the past-the-end iterator corresponding to axes
lengths begin().
Precondition: ame.is full dimensional() == true, and d ∈
{2,3}.

Axes direction coordinate iterator
ame.axis direction cartesian begin( int i)

returns an iterator pointing to the first of the d Cartesian co-
ordinates of the computed ellipsoid’s ith axis direction (i.e.,
unit vector in direction of the ellipsoid’s ith axis). The direc-
tion described by this iterator is a floating-point approxima-
tion to the exact axis direction of the computed ellipsoid; no
guarantee is given w.r.t. the involved relative error. An ap-
proximation to the length of axis i is given by the ith entry of
axes lengths begin().
Precondition: ame.is full dimensional() == true, and d ∈
{2,3}, and 0≤ i < d.

Axes direction coordinate iterator
ame.axis direction cartesian end( int i)

returns the past-the-end iterator corresponding to axis
direction cartesian begin().
Precondition: ame.is full dimensional() == true, and d ∈
{2,3}, and 0≤ i < d.

Predicates

bool ame.is full dimensional() const

returns whether P is full-dimensional or not, i.e., returns true
if and only if P is full-dimensional.
Note: due to the limited precision in the algorithm’s under-
lying arithmetic, the result of this method is not always cor-
rect. Rather, a return value of false means that the points P
are contained in a “very thin” linear subspace of Ed , and as
a consequence, the algorithm cannot compute an approxima-
tion. More precisely, a return value of false means that the
points P are contained between two parallel hyperplanes in
Ed that are very close to each other (possibly at distance zero)
— so close, that the algorithm could not compute an approx-
imation ellipsoid. Similarly, a return value of true does not
guarantee P to be full-dimensional; but there exists an input
pointset P′ such that the points P′ and P have almost identical
coordinates and P′ is full-dimensional.
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Validity Check

An object ame is valid iff

• ame contains all points of its defining set P,

• ame is an (1+ ε′)-approximation to the smallest ellipsoid MEL(P) of P,

• The ellipsoid represented by ame fulfills the inclusion (66.1).

bool ame.is valid( bool verbose = false) const

returns true iff ame is valid according to the above definition.
If verbose is true, some messages concerning the performed
checks are written to the standard error stream.

Miscellaneous

void ame.write eps( const std::string& name) const

Writes the points P and the computed approximation to
MEL(P) as an EPS-file under pathname name.
Precondition: The dimension of points P must be 2.
Note: this routine is provided as a debugging routine; future
version of CGAL might not provide it anymore.
Precondition: ame.is full dimensional() == true.

See Also

CGAL::Min ellipse 2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3812

Implementation

We implement Khachyian’s algorithm for rounding polytopes [Kha96]. Internally, we use double-arithmetic
and (initially a single) Cholesky-decomposition. The algorithm’s running time is O(nd2(ε−1 + lnd + ln ln(n))),
where n = |P| and 1+ ε is the desired approximation ratio.

Example

To illustrate the usage of Approximate min ellipsoid d<Traits> we give two examples in 2D. The first program
generates a random set P⊂E2 and outputs the points and a 1.01-approximation of MEL(P) as an EPS-file, which
you can view using gv, for instance. (In both examples you can change the variables n and d to experiment with
the code.)� �
#include <CGAL/Cartesian_d.h>
#include <CGAL/MP_Float.h>
#include <CGAL/point_generators_d.h>
#include <CGAL/Approximate_min_ellipsoid_d.h>
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#include <CGAL/Approximate_min_ellipsoid_d_traits_d.h>

#include <vector>
#include <iostream>

typedef CGAL::Cartesian_d<double> Kernel;
typedef CGAL::MP_Float ET;
typedef CGAL::Approximate_min_ellipsoid_d_traits_d<Kernel, ET> Traits;
typedef Traits::Point Point;
typedef std::vector<Point>

Point_list;
typedef CGAL::Approximate_min_ellipsoid_d<Traits> AME;

int main()
{

const int n = 1000; // number of points
const int d = 2; // dimension
const double eps = 0.01; // approximation ratio is
(1+eps)

// create a set of random points:
Point_list P;
CGAL::Random_points_in_cube_d<Point> rpg(d,100.0);
for (int i = 0; i < n; ++i) {

P.push_back(*rpg);
++rpg;

}

// compute approximation:
Traits traits;
AME ame(eps, P.begin(), P.end(), traits);

// write EPS file:
if (ame.is_full_dimensional() && d == 2)

ame.write_eps("example.eps");

// output center coordinates:
std::cout << "Cartesian center coordinates: ";
for (AME::Center_coordinate_iterator c_it =
ame.center_cartesian_begin();

c_it != ame.center_cartesian_end();
++c_it)

std::cout << *c_it << ’ ’;
std::cout << ".\n";

if (d == 2 || d == 3) {
// output axes:
AME::Axes_lengths_iterator axes = ame.axes_lengths_begin();
for (int i = 0; i < d; ++i) {

std::cout << "Semiaxis " << i << " has length " << *axes++ << "\n"
<< "and Cartesian coordinates ";

for (AME::Axes_direction_coordinate_iterator
d_it = ame.axis_direction_cartesian_begin(i);

d_it != ame.axis_direction_cartesian_end(i); ++d_it)
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std::cout << *d_it << ’ ’;
std::cout << ".\n";

}
}

}� �
File: examples/Approximate_min_ellipsoid_d/ellipsoid.cpp

The second program outputs the approximation in a format suitable for display in Maplesoft’s Maple.� �
#include <CGAL/Cartesian_d.h>
#include <CGAL/MP_Float.h>
#include <CGAL/point_generators_d.h>
#include <CGAL/Approximate_min_ellipsoid_d.h>
#include <CGAL/Approximate_min_ellipsoid_d_traits_d.h>

#include <vector>
#include <iostream>
#include <iomanip>

typedef CGAL::Cartesian_d<double> Kernel;
typedef CGAL::MP_Float ET;
typedef CGAL::Approximate_min_ellipsoid_d_traits_d<Kernel, ET> Traits;
typedef Traits::Point Point;
typedef std::vector<Point>

Point_list;
typedef CGAL::Approximate_min_ellipsoid_d<Traits> AME;

int main()
{

const int n = 100; // number of points
const int d = 2; // dimension
const double eps = 0.01; // approximation ratio is
(1+eps)

// create a set of random points:
Point_list P;
CGAL::Random_points_in_cube_d<Point> rpg(d,1.0);
for (int i = 0; i < n; ++i) {

P.push_back(*rpg);
++rpg;

}

// compute approximation:
Traits traits;
AME mel(eps, P.begin(), P.end(), traits);

// output for Maple:
if (mel.is_full_dimensional() && d == 2) {

const double alpha = (1+mel.achieved_epsilon())*(d+1);
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// output points:
using std::cout;
cout << "restart;\n"

<< "with(LinearAlgebra):\n"
<< "with(plottools):\n"
<< "n:= " << n << ":\n"
<< "P:= Matrix(" << d << "," << n << "):\n";

for (int i=0; i<n; ++i)
for (int j=0; j<d; ++j)

cout << "P[" << j+1 << "," << i+1 << "] := "
<< std::setiosflags(std::ios::scientific)
<< std::setprecision(20) << P[i][j] << ":\n";

cout << "\n";

// output defining equation:
cout << "Mp:= Matrix([\n";
for (int i=0; i<d; ++i) {

cout << " [";
for (int j=0; j<d; ++j) {

cout << mel.defining_matrix(i,j)/alpha;
if (j<d-1)

cout << ",";
}
cout << "]";
if (i<d-1)

cout << ",";
cout << "\n";

}
cout << "]);\n" << "mp:= Vector([";
for (int i=0; i<d; ++i) {

cout << mel.defining_vector(i)/alpha;
if (i<d-1)

cout << ",";
}
cout << "]);\n"

<< "eta:= " << (mel.defining_scalar()/alpha-1.0) << ";\n"
<< "v:= Vector([x,y]):\n"
<< "e:= Transpose(v).Mp.v+Transpose(v).mp+eta;\n"
<< "plots[display]({seq(point([P[1,i],P[2,i]]),i=1..n),\n"
<< " plots[implicitplot](e,x=-5..5,y=-5..5,numpoints=10000)},\n"
<< " scaling=CONSTRAINED);\n";

}
}� �
File: examples/Approximate_min_ellipsoid_d/ellipsoid_for_maple.cpp
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ApproximateMinEllipsoid d Traits d

Definition

This concept defines the requirements for traits classes of CGAL::Approximate min ellipsoid d<Traits>.

Refines

DefaultConstructible
CopyConstructible
Assignable

Types

ApproximateMinEllipsoid d Traits d:: FT typedef double FT

ApproximateMinEllipsoid d Traits d:: ET Some model of concept RingNumberType that provides exact
arithmetic, meaning that CGAL::Number type traits<ET>
::Has exact ring operations must be CGAL::Tag true. In
addition, ET must be able to exactly represent any finite
double value. (An example for such a type is CGAL::MP
Float.).
The type ET is to be used by the Approximate min ellipsoid
d<Traits> class for internal, exact computations.

ApproximateMinEllipsoid d Traits d:: Point Type of the input points. Point must provide the default
and copy constructor, and must be a model of DefaultCon-
structible, CopyConstructible, and Assignable.

ApproximateMinEllipsoid d Traits d:: Cartesian const iterator

Model for the STL concept RandomAccessIterator whose
value type must be convertible to double. This type is used to
iterate over the Cartesian coordinates of an instance of type
Point, see cartesian begin() below.

Access Functions

int traits.dimension( Point p)

returns the dimension of a point p.

Cartesian const iterator

traits.cartesian begin( Point p)

returns an input iterator over the Euclidean coordinates of
the point p. The range of the iterator must have size dimen-
sion(p).
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Has Models

CGAL::Approximate min ellipsoid d traits 2<K,ET> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3898
CGAL::Approximate min ellipsoid d traits 3<K,ET> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3899
CGAL::Approximate min ellipsoid d traits d<K,ET> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3900

See Also

CGAL::Min ellipse 2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3812
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CGAL::Approximate min ellipsoid d traits 2<K,ET>

Definition

The class Approximate min ellipsoid d traits 2<K,ET> is a traits class for CGAL::Approximate min ellipsoid
d<Traits> using the 2-dimensional CGAL kernel. In order to use this class, an exact number-type ET has to be
provided which Approximate min ellipsoid d<Traits> will use for its internal exact computations.

#include <CGAL/Approximate min ellipsoid d traits 2.h>

Requirements

The template parameter K must be a model for concept Kernel. The template parameter ET must be a model
for concept RingNumberType with exact arithmetic operations, i.e., the type CGAL::Number type traits<ET>
::Has exact ring operations must be CGAL::Tag true. In addition, ET must be able to exactly represent any
finite double value. (Examples of such a number-type are CGAL::MP Float, CORE::Expr, and CGAL::Gmpq.)

Is Model for the Concepts

ApproximateMinEllipsoid d Traits d

Types

Approximate min ellipsoid d traits 2<K,ET>:: FT typedef double FT . The kernel’s number type K::RT
must be convertible to double.

Approximate min ellipsoid d traits 2<K,ET>:: ET typedef to the second template argument, ET .

Approximate min ellipsoid d traits 2<K,ET>:: Point

typedef K::Point 2 Point

Approximate min ellipsoid d traits 2<K,ET>:: Cartesian const iterator

typedef K::Cartesian const iterator 2 Cartesian
const iterator

See Also

CGAL::Approximate min ellipsoid d traits 3<K,ET> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3899
CGAL::Approximate min ellipsoid d traits d<K,ET> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3900
ApproximateMinEllipsoid d Traits d
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CGAL::Approximate min ellipsoid d traits 3<K,ET>

Definition

The class Approximate min ellipsoid d traits 3<K,ET> is a traits class for CGAL::Approximate min ellipsoid
d<Traits> using the 3-dimensional CGAL kernel. In order to use this class, an exact number-type ET has to be
provided which Approximate min ellipsoid d<Traits> will use for its internal exact computations.

#include <CGAL/Approximate min ellipsoid d traits 3.h>

Requirements

The template parameter K must be a model for concept Kernel. The template parameter ET must be a model
for concept RingNumberType with exact arithmetic operations, i.e., the type CGAL::Number type traits<ET>
::Has exact ring operations must be CGAL::Tag true. In addition, ET must be able to exactly represent any
finite double value. (Examples of such a number-type are CGAL::MP Float, CORE::Expr, and CGAL::Gmpq.)

Is Model for the Concepts

ApproximateMinEllipsoid d Traits d

Types

Approximate min ellipsoid d traits 3<K,ET>:: FT

typedef double FT . The kernel’s number type K::RT must be
convertible to double.

Approximate min ellipsoid d traits 3<K,ET>:: ET

typedef to the second template argument, ET .

Approximate min ellipsoid d traits 3<K,ET>:: Point

typedef K::Point 3 Point

Approximate min ellipsoid d traits 3<K,ET>:: Cartesian const iterator

typedef K::Cartesian const iterator 3 Cartesian const
iterator

See Also

CGAL::Approximate min ellipsoid d traits 2<K,ET> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3898
CGAL::Approximate min ellipsoid d traits d<K,ET> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3900
ApproximateMinEllipsoid d Traits d
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CGAL::Approximate min ellipsoid d traits d<K,ET>

Definition

The class Approximate min ellipsoid d traits d<K,ET> is a traits class for CGAL::Approximate min ellipsoid
d<Traits> using the d-dimensional CGAL kernel. In order to use this class, an exact number-type ET has to be
provided which Approximate min ellipsoid d<Traits> will use for its internal exact computations.

#include <CGAL/Approximate min ellipsoid d traits d.h>

Requirements

The template parameter K must be a model for concept Kernel. The template parameter ET must be a model
for concept RingNumberType with exact arithmetic operations, i.e., the type CGAL::Number type traits<ET>
::Has exact ring operations must be CGAL::Tag true. In addition, ET must be able to exactly represent any
finite double value. (Examples of such a number-type are CGAL::MP Float, CORE::Expr, and CGAL::Gmpq.)

Is Model for the Concepts

ApproximateMinEllipsoid d Traits d

Types

Approximate min ellipsoid d traits d<K,ET>:: FT

typedef double FT . The kernel’s number type K::RT must be
convertible to double.

Approximate min ellipsoid d traits d<K,ET>:: ET

typedef to the second template argument, ET .

Approximate min ellipsoid d traits d<K,ET>:: Point

typedef K::Point d Point

Approximate min ellipsoid d traits d<K,ET>:: Cartesian const iterator

typedef K::Cartesian const iterator Cartesian const
iterator

See Also

CGAL::Approximate min ellipsoid d traits 2<K,ET> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3898
CGAL::Approximate min ellipsoid d traits 3<K,ET> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3899
ApproximateMinEllipsoid d Traits d
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CGAL::Min sphere annulus d traits 2<K,ET,NT>

Definition

The class Min sphere annulus d traits 2<K,ET,NT> is a traits class for the d-dimensional optimisation algo-
rithms using the two-dimensional CGAL kernel.

#include <CGAL/Min sphere annulus d traits 2.h>

Requirements

The template parameter K is a model for Kernel. Template parameters ET and NT are models for RingNumber-
Type.

The second and third template parameter have default type K::RT .

Is Model for the Concepts

MinSphereAnnulusDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3907

Types

Min sphere annulus d traits 2<K,ET,NT>:: Point d typedef to K::Point 2.

Min sphere annulus d traits 2<K,ET,NT>:: Rep tag typedef to K::Rep tag.

Min sphere annulus d traits 2<K,ET,NT>:: RT typedef to K::RT .

Min sphere annulus d traits 2<K,ET,NT>:: FT typedef to K::FT .

Min sphere annulus d traits 2<K,ET,NT>:: Access dimension d

typedef to K::Access dimension 2.

Min sphere annulus d traits 2<K,ET,NT>:: Access coordinates begin d

typedef to K::Access coordinates begin 2.

Min sphere annulus d traits 2<K,ET,NT>:: Construct point d

typedef to K::Construct point 2.

Min sphere annulus d traits 2<K,ET,NT>:: ET second template parameter (default is K::RT).

Min sphere annulus d traits 2<K,ET,NT>:: NT third template parameter (default is K::RT).
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Creation

Min sphere annulus d traits 2<K,ET,NT> traits; default constructor.

Min sphere annulus d traits 2<K,ET,NT> traits( Min sphere annulus d traits 2<K,ET,NT>);

copy constructor.

Operations

The following functions just return the corresponding function class object.

Access dimension d traits.access dimension d object() const

Access coordinates begin d traits.access coordinates begin d object() const

Construct point d traits.construct point d object() const

See Also

CGAL::Min sphere d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3846
CGAL::Min annulus d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3860
CGAL::Min sphere annulus d traits 3<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3903
CGAL::Min sphere annulus d traits d<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3905

MinSphereAnnulusDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3907

3902



C
la

ss

CGAL::Min sphere annulus d traits 3<K,ET,NT>

Definition

The class Min sphere annulus d traits 3<K,ET,NT> is a traits class for the d-dimensional optimisation algo-
rithms using the three-dimensional CGAL kernel.

#include <CGAL/Min sphere annulus d traits 3.h>

Requirements

The template parameter K is a model for Kernel. Template parameters ET and NT are models for RingNumber-
Type.

The second and third template parameter have default type K::RT .

Is Model for the Concepts

MinSphereAnnulusDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3907

Types

Min sphere annulus d traits 3<K,ET,NT>:: Point d typedef to K::Point 3.

Min sphere annulus d traits 3<K,ET,NT>:: Rep tag typedef to K::Rep tag.

Min sphere annulus d traits 3<K,ET,NT>:: RT typedef to K::RT .

Min sphere annulus d traits 3<K,ET,NT>:: FT typedef to K::FT .

Min sphere annulus d traits 3<K,ET,NT>:: Access dimension d

typedef to K::Access dimension 3.

Min sphere annulus d traits 3<K,ET,NT>:: Access coordinates begin d

typedef to K::Access coordinates begin 3.

Min sphere annulus d traits 3<K,ET,NT>:: Construct point d

typedef to K::Construct point 3.

Min sphere annulus d traits 3<K,ET,NT>:: ET second template parameter (default is K::RT).

Min sphere annulus d traits 3<K,ET,NT>:: NT third template parameter (default is K::RT).
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Creation

Min sphere annulus d traits 3<K,ET,NT> traits; default constructor.

Min sphere annulus d traits 3<K,ET,NT> traits( Min sphere annulus d traits 3<K,ET,NT>);

copy constructor.

Operations

The following functions just return the corresponding function class object.

Access dimension d traits.access dimension d object() const

Access coordinates begin d traits.access coordinates begin d object() const

Construct point d traits.construct point d object() const

See Also

CGAL::Min sphere d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3846
CGAL::Min annulus d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3860
CGAL::Min sphere annulus d traits 2<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3901
CGAL::Min sphere annulus d traits d<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3905

Min sphere annulusDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
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CGAL::Min sphere annulus d traits d<K,ET,NT>

Definition

The class Min sphere annulus d traits d<K,ET,NT> is a traits class for the d-dimensional optimisation algo-
rithms using the d-dimensional CGAL kernel.

#include <CGAL/Min sphere annulus d traits d.h>

Requirements

The template parameter K is a model for Kernel. Template parameters ET and NT are models for RingNumber-
Type.

The second and third template parameter have default type K::RT .

Is Model for the Concepts

MinSphereAnnulusDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3907

Types

Min sphere annulus d traits d<K,ET,NT>:: Point d typedef to K::Point d.

Min sphere annulus d traits d<K,ET,NT>:: Rep tag typedef to K::Rep tag.

Min sphere annulus d traits d<K,ET,NT>:: RT typedef to K::RT .

Min sphere annulus d traits d<K,ET,NT>:: FT typedef to K::FT .

Min sphere annulus d traits d<K,ET,NT>:: Access dimension d

typedef to K::Access dimension d.

Min sphere annulus d traits d<K,ET,NT>:: Access coordinates begin d

typedef to K::Access coordinates begin d.

Min sphere annulus d traits d<K,ET,NT>:: Construct point d

typedef to K::Construct point d.

Min sphere annulus d traits d<K,ET,NT>:: ET second template parameter (default is K::RT).

Min sphere annulus d traits d<K,ET,NT>:: NT third template parameter (default is K::RT).
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Creation

Min sphere annulus d traits d<K,ET,NT> traits; default constructor.

Min sphere annulus d traits d<K,ET,NT> traits( Min sphere annulus d traits d<K,ET,NT>);

copy constructor.

Operations

The following functions just return the corresponding function class object.

Access dimension d traits.access dimension d object() const

Access coordinates begin d traits.access coordinates begin d object() const

Construct point d traits.construct point d object() const

See Also

CGAL::Min sphere d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3846
CGAL::Min annulus d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3860
CGAL::Polytope distance d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3944

CGAL::Min sphere annulus d traits 2<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3901
CGAL::Min sphere annulus d traits 3<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3903

MinSphereAnnulusDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3907
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MinSphereAnnulusDTraits

Definition

This concept defines the requirements for traits classes of d-dimensional min sphere and min annulus algorithms.

Types

MinSphereAnnulusDTraits:: Point d point type used to represent the input points.

MinSphereAnnulusDTraits:: Rep tag compile time tag to distinguish between Cartesian and homoge-
neous representation of the input points. Rep tag has to be either
CGAL::Cartesian tag or CGAL::Homogeneous tag.

MinSphereAnnulusDTraits:: RT number type used to represent the coordinates of the input points. It
has to be a model for RingNumberType.

MinSphereAnnulusDTraits:: FT number type used to return either the squared radius of the smallest
enclosing sphere or annulus, or the squared distance of the polytopes.
FT has to be either RT or CGAL::Quotient<RT> if the input points
have Cartesian or homogeneous representation, respectively (cf. Rep
tag).

MinSphereAnnulusDTraits:: Access dimension d

data accessor object used to access the dimension of the input points.

MinSphereAnnulusDTraits:: Access coordinates begin d

data accessor object used to access the coordinates of the input points.

MinSphereAnnulusDTraits:: Construct point d

constructor object used to construct either the center of the smallest en-
closing sphere or annulus, or the points realizing the distance between
the two polytopes.

The following two number types are only needed for CGAL::Min annulus d<Traits> and CGAL::Polytope
distance d<Traits>.

MinSphereAnnulusDTraits:: ET exact number type used to do the exact computations in the underlying
solver for linear programs. It has to to be a model for RingNumber-
Type. There must be an implicit conversion from RT to ET available.

MinSphereAnnulusDTraits:: NT fast (possibly inexact) number type used to speed up the pricing step
in the underlying solver for linear programs. It has to be a model for
RingNumberType. There must be implicit conversions from RT to NT
and from NT to ET available.
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Creation

Only default and copy constructor are required.

MinSphereAnnulusDTraits traits;

MinSphereAnnulusDTraits traits( MinSphereAnnulusDTraits);

Operations

The following functions just return the corresponding function class object.

Access dimension d traits.access dimension d object() const

Access coordinates begin d traits.access coordinates begin d object() const

Construct point d traits.construct point d object() const

Has Models

CGAL::Min sphere annulus d traits 2<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3901
CGAL::Min sphere annulus d traits 3<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3903
CGAL::Min sphere annulus d traits d<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3905

See Also

CGAL::Min sphere d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3846
CGAL::Min annulus d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3860
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Chapter 67

Inscribed Areas
Michael Hoffmann and Eli Packer

This chapter describes algorithms which for a given point set compute the “best” inscribed object from a specific
class. We provide algorithms for computing maximal inscribed k-gons (triangles, quadrilaterals, . . . ) of a planar
point set P. Maximal k-gons are convex, and it is known that their vertices can be chosen to be vertices of
the convex hull of P. Hence, the functions CGAL::maximum area inscribed k gon 2 and CGAL::maximum
perimeter inscribed k gon 2 operate on convex polygons only. The example below shows that the largest area
triangle (green) and the largest perimeter triangle (orange, containing the top point) of a point set are different
in general.

We further provide an algorithm for computing the maximal area inscribed axis parallel rectangle

Given a set of points in the plane, the class CGAL::Largest empty iso rectangle 2<T> is a data structure that
maintains an iso-rectangle with the largest area among all iso-rectangles that are inside a given iso-rectangles,
and that do not contain any point of the point set.
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Inscribed volumes are also frequently applied to extract geometric properties of objects. The largest area triangle
is for example used in heuristics for matching archaeological aerial photographs. Largest perimeter triangles
are used in scoring cross country soaring flights, where the goal is basically to fly as far as possible, but still
return to the departure airfield. To score simply based on the total distance flown is not a good measure, since
circling in thermals allows to increase it easily.
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Inscribed Areas
Reference Manual
Michael Hoffmann and Eli Packer

This chapter describes concepts, classes, and functions for maximum area and perimeter inscribed k-gon (2D),
extremal inscribed k-gon (2D), largest empty isorectangle (2D).

Assertions

The optimization code uses infix OPTIMISATION in the assertions, e.g. defining the compiler flag CGAL
OPTIMISATION NO PRECONDITIONS switches precondition checking off, cf. Section 2.8.

67.1 Classified References Pages

CGAL::maximum area inscribed k gon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3912
CGAL::maximum perimeter inscribed k gon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3914
CGAL::extremal polygon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3916
CGAL::Largest empty iso rectangle 2<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3923

CGAL::Extremal polygon area traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3917
CGAL::Extremal polygon perimeter traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3919

ExtremalPolygonTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3921
LargestEmptyIsoRectangleTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3926

67.2 Alphabetical List of Reference Pages

ExtremalPolygonTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3921
extremal polygon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3916
Extremal polygon area traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3917
Extremal polygon perimeter traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3919
LargestEmptyIsoRectangleTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3926
Largest empty iso rectangle 2<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3923
maximum area inscribed k gon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3912
maximum perimeter inscribed k gon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3914
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CGAL::maximum area inscribed k gon 2

Definition

The function maximum area inscribed k gon 2 computes a maximum area k-gon Pk that can be inscribed into
a given convex polygon P. Note that

• Pk is not unique in general, but it can be chosen in such a way that its vertices form a subset of the vertex
set of P and

• the vertices of a maximum area k-gon, where the k vertices are to be drawn from a planar point set S, lie
on the convex hull of S i.e. a convex polygon.

#include <CGAL/extremal polygon 2.h>

template < class RandomAccessIterator, class OutputIterator >
OutputIterator maximum area inscribed k gon 2(

RandomAccessIterator points begin,
RandomAccessIterator points end,
int k,
OutputIterator o)

computes a maximum area inscribed k-gon of the convex polygon described by [points begin, points end),
writes its vertices to o and returns the past-the-end iterator of this sequence.

Precondition:

1. the – at least three – points denoted by the range [points begin, points end) form the boundary of a convex
polygon (oriented clock– or counterclockwise).

2. k ≥ 3.

Requirement:

1. Value type of RandomAccessIterator is K::Point 2 where K is a model for Kernel.

2. OutputIterator accepts the value type of RandomAccessIterator as value type.

See Also

CGAL::maximum perimeter inscribed k gon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3914
ExtremalPolygonTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3921
CGAL::Extremal polygon area traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3917
CGAL::Extremal polygon perimeter traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3919
CGAL::extremal polygon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3916
CGAL::monotone matrix search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 458
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Implementation

The implementation uses monotone matrix search [AKM+87] and has a worst case running time of O(k ·n+n ·
logn), where n is the number of vertices in P.

Example

The following code generates a random convex polygon p with ten vertices and computes the maximum area
inscribed five-gon of p.� �
#include <CGAL/Cartesian.h>
#include <CGAL/Polygon_2.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/random_convex_set_2.h>
#include <CGAL/extremal_polygon_2.h>
#include <iostream>
#include <vector>

typedef double FT;

typedef CGAL::Cartesian<FT> Kernel;

typedef Kernel::Point_2 Point;
typedef std::vector<int> Index_cont;
typedef CGAL::Polygon_2<Kernel> Polygon_2;
typedef CGAL::Random_points_in_square_2<Point> Generator;

int main() {

int n = 10;
int k = 5;

// generate random convex polygon:
Polygon_2 p;
CGAL::random_convex_set_2(n, std::back_inserter(p), Generator(1));
std::cout << "Generated Polygon:\n" << p << std::endl;

// compute maximum area incribed k-gon of p:
Polygon_2 k_gon;
CGAL::maximum_area_inscribed_k_gon_2(

p.vertices_begin(), p.vertices_end(), k, std::back_inserter(k_gon));
std::cout << "Maximum area " << k << "-gon:\n"

<< k_gon << std::endl;

return 0;
}� �
File: examples/Matrix_search/extremal_polygon_2_area.cpp
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CGAL::maximum perimeter inscribed k gon 2

Definition

The function maximum perimeter inscribed k gon 2 computes a maximum perimeter k-gon Pk that can be
inscribed into a given convex polygon P. Note that

• Pk is not unique in general, but it can be chosen in such a way that its vertices form a subset of the vertex
set of P and

• the vertices of a maximum perimeter k-gon, where the k vertices are to be drawn from a planar point set
S, lie on the convex hull of S i.e. a convex polygon.

#include <CGAL/extremal polygon 2.h>

template < class RandomAccessIterator, class OutputIterator >
OutputIterator maximum perimeter inscribed k gon 2(

RandomAccessIterator points begin,
RandomAccessIterator points end,
int k,
OutputIterator o)

computes a maximum perimeter inscribed k-gon of the convex polygon described by [points begin, points end),
writes its vertices to o and returns the past-the-end iterator of this sequence.

Precondition:

1. the – at least three – points denoted by the range [points begin, points end) form the boundary of a convex
polygon (oriented clock– or counterclockwise).

2. k ≥ 2.

Requirement:

1. Value type of RandomAccessIterator is K::Point 2 where K is a model for Kernel.

2. There is a global function K::FT CGAL::sqrt(K::FT) defined that computes the squareroot of a number.

3. OutputIterator accepts the value type of RandomAccessIterator as value type.

See Also

CGAL::maximum area inscribed k gon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3912
ExtremalPolygonTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3921
CGAL::Extremal polygon area traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3917
CGAL::Extremal polygon perimeter traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3919
CGAL::extremal polygon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3916
CGAL::monotone matrix search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 458
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Implementation

The implementation uses monotone matrix search [AKM+87] and has a worst case running time of O(k ·n+n ·
logn), where n is the number of vertices in P.

Example

The following code generates a random convex polygon p with ten vertices and computes the maximum perime-
ter inscribed five-gon of p.� �
#include <CGAL/Cartesian.h>
#include <CGAL/Polygon_2.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/random_convex_set_2.h>
#include <CGAL/extremal_polygon_2.h>
#include <iostream>
#include <vector>

typedef double FT;

typedef CGAL::Cartesian<FT> Kernel;

typedef Kernel::Point_2 Point;
typedef std::vector<int> Index_cont;
typedef CGAL::Polygon_2<Kernel> Polygon_2;
typedef CGAL::Random_points_in_square_2<Point> Generator;

int main() {

int n = 10;
int k = 5;

// generate random convex polygon:
Polygon_2 p;
CGAL::random_convex_set_2(n, std::back_inserter(p), Generator(1));
std::cout << "Generated Polygon:\n" << p << std::endl;

// compute maximum perimeter incribed k-gon of p:
Polygon_2 k_gon;
CGAL::maximum_perimeter_inscribed_k_gon_2(

p.vertices_begin(), p.vertices_end(), k, std::back_inserter(k_gon));
std::cout << "Maximum perimeter " << k << "-gon:\n"

<< k_gon << std::endl;

return 0;
}� �
File: examples/Matrix_search/extremal_polygon_2_perimeter.cpp
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CGAL::extremal polygon 2

advanced

Definition

The function extremal polygon 2 computes a maximal k-gon that can be inscribed into a given convex poly-
gon. The criterion for maximality and some basic operations have to be specified in an appropriate traits class
parameter.

#include <CGAL/extremal polygon 2.h>

template < class RandomAccessIterator, class OutputIterator, class Traits >
OutputIterator extremal polygon 2(

RandomAccessIterator points begin,
RandomAccessIterator points end,
int k,
OutputIterator o,
Traits t)

computes a maximal (as specified by t) inscribed k-gon of the convex polygon described by [points begin,
points end), writes its vertices to o and returns the past-the-end iterator of this sequence.

Precondition:

1. the – at least three – points denoted by the range [points begin, points end) form the boundary of a convex
polygon (oriented clock– or counterclockwise).

2. k ≥ t.min k().

Requirement:

1. Traits is a model for ExtremalPolygonTraits 2.

2. Value type of RandomAccessIterator is Traits::Point 2.

3. OutputIterator accepts Traits::Point 2 as value type.

See Also

CGAL::maximum area inscribed k gon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3912
CGAL::maximum perimeter inscribed k gon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3914
ExtremalPolygonTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3921
CGAL::monotone matrix search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 458

Implementation

The implementation uses monotone matrix search [AKM+87] and has a worst case running time of O(k ·n+n ·
logn), where n is the number of vertices in P.

advanced
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CGAL::Extremal polygon area traits 2<K>

advanced

Definition

The class provides the types and operations needed to compute a maximum area k-gon Pk that can be inscribed
into a given convex polygon P using the function extremal polygon 2.

Requirements

The template parameter K is a model for Kernel.

Is Model for the Concepts

ExtremalPolygonTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3921

Types

Extremal polygon area traits 2<K>:: FT typedef to K::FT .

Extremal polygon area traits 2<K>:: Point 2 typedef to K::Point 2.

Extremal polygon area traits 2<K>:: Less xy 2

typedef to K::Less xy 2.

Extremal polygon area traits 2<K>:: Orientation 2

typedef to K::Orientation 2.

Extremal polygon area traits 2<K>:: Operation

AdaptableBinaryFunction class op: Point 2 × Point 2 →
FT . For a fixed Point 2 root, op(p, q) returns twice the area
of the triangle (root, q, p).

Operations

int t.min k() const returns 3.

FT t.init( const Point 2& p, const Point 2& q) const

returns FT(0).
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Operation t.operation( const Point 2& p) const

returns Operation where p is the fixed root point.

template < class RandomAccessIterator, class OutputIterator >
OutputIterator t.compute min k gon( RandomAccessIterator points begin,

RandomAccessIterator points end,
FT& max area,
OutputIterator o) const

writes the vertices of [points begin, points end) forming a
maximum area triangle rooted at points begin[0] to o and
returns the past-the-end iterator for that sequence (== o + 3).

Less xy 2 t.less xy 2 object()
Orientation 2 t.orientation 2 object()

See Also

CGAL::maximum area inscribed k gon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3912
CGAL::maximum perimeter inscribed k gon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3914
CGAL::extremal polygon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3916
CGAL::Extremal polygon perimeter traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3919
ExtremalPolygonTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3921

advanced
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CGAL::Extremal polygon perimeter traits 2<K>

advanced

Definition

The class provides the types and operations needed to compute a maximum perimeter k-gon Pk that can be
inscribed into a given convex polygon P using the function extremal polygon 2.

Requirements

The template parameter K is a model for Kernel.

Is Model for the Concepts

ExtremalPolygonTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3921

Types

Extremal polygon perimeter traits 2<K>:: FT

typedef to K::FT .

Extremal polygon perimeter traits 2<K>:: Point 2

typedef to K::Point 2.

Extremal polygon perimeter traits 2<K>:: Less xy 2

typedef to K::Less xy 2.

Extremal polygon perimeter traits 2<K>:: Orientation 2

typedef to K::Orientation 2.

Extremal polygon perimeter traits 2<K>:: Operation

AdaptableBinaryFunction class op: Point 2 × Point 2 →
FT . For a fixed Point 2 root, op(p, q) returns d(r, p) +
d(p, q)−d(r, q) where d denotes the Euclidean distance.
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Operations

int t.min k() const returns 2.

FT t.init( const Point 2& p, const Point 2& q) const

returns twice the Euclidean distance between p and q.

Operation t.operation( const Point 2& p) const

returns Operation where p is the fixed root point.

template < class RandomAccessIterator, class OutputIterator >
OutputIterator t.compute min k gon( RandomAccessIterator points begin,

RandomAccessIterator points end,
FT& max area,
OutputIterator o) const

writes the pair (points begin[0], p) where p is drawn from
[points begin, points end) such that the Euclidean distance
between both points is maximized (maximum perimeter 2-
gon rooted at points begin[0]) to o and returns the past-the-
end iterator for that sequence (== o + 2).

Less xy 2 t.less xy 2 object()
Orientation 2 t.orientation 2 object()

See Also

CGAL::maximum area inscribed k gon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3912
CGAL::maximum perimeter inscribed k gon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3914
CGAL::extremal polygon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3916
CGAL::Extremal polygon area traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3917
ExtremalPolygonTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3921

advanced
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ExtremalPolygonTraits 2

advanced

Definition

The concept ExtremalPolygonTraits 2 provides the types and operations needed to compute a maximal k-gon
that can be inscribed into a given convex polygon.

Types

ExtremalPolygonTraits 2:: FT model for FieldNumberType . . . . . . . . . . . . . . . . . . . page 149.

ExtremalPolygonTraits 2:: Point 2 model for Kernel::Point 2 . . . . . . . . . . . . . . . . . . . . . . page 794.

ExtremalPolygonTraits 2:: Less xy 2 model for Kernel::Less xy 2 . . . . . . . . . . . . . . . . . . . . page ??.

ExtremalPolygonTraits 2:: Orientation 2 model for Kernel::Orientation 2 . . . . . . . . . . . . . . . page 1034.

ExtremalPolygonTraits 2:: Operation AdaptableBinaryFunction class op: Point 2 × Point 2 →
FT . Together with init this operation recursively defines the
objective function to maximize. Let p and q be two vertices
of a polygon P such that q precedes p in the oriented ver-
tex chain of P starting with vertex root. Then op(p,q) re-
turns the value by which an arbitrary sub-polygon of P with
vertices from [root, q] increases when p is added to it. E.g.
in the maximum area case this is the area of the triangle
(root, q, p).

Operations

int t.min k() const returns the minimal k for which a maximal k-gon can be com-
puted. (e.g. in the maximum area case this is three.)

FT t.init( const Point 2& p, const Point 2& q) const

returns the value of the objective function for a polygon con-
sisting of the two points p and q. (e.g. in the maximum area
case this is FT( 0).)

Operation t.operation( const Point 2& p) const

return Operation where p is the fixed root point.

template < class RandomAccessIterator, class OutputIterator >
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OutputIterator t.compute min k gon( RandomAccessIterator points begin,
RandomAccessIterator points end,
FT& max area,
OutputIterator o) const

writes the points of [points begin, points end) forming a
min k()-gon rooted at points begin[0] of maximal value to
o and returns the past-the-end iterator for that sequence (==
o + min k()).

Less xy 2 t.less xy 2 object()
Orientation 2 t.orientation 2 object()

Notes

• ::Less xy 2 and ::Orientation 2 are used for (expensive) precondition checking only. Therefore, they
need not to be specified, in case that precondition checking is disabled.

Has Models

CGAL::Extremal polygon area traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3917
CGAL::Extremal polygon perimeter traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3919

See Also

CGAL::maximum area inscribed k gon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3912
CGAL::maximum perimeter inscribed k gon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3914
CGAL::extremal polygon 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3916

advanced
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CGAL::Largest empty iso rectangle 2<T>

Definition

Given a set of points in the plane, the class Largest empty iso rectangle 2<T> is a data structure that main-
tains an iso-rectangle with the largest area among all iso-rectangles that are inside a given bounding box( iso-
rectangle), and that do not contain any point of the point set.

The class Largest empty iso rectangle 2<T> expects a model of the concept LargestEmptyIsoRectangleTraits
2 as its template argument.

#include <CGAL/Largest empty iso rectangle 2.h>

Types

The class Largest empty iso rectangle 2<T> defines the following types:

typedef T Traits;

typedef Traits::Point 2

Point 2;

typedef Traits::Iso rectangle 2

Iso rectangle 2;

The following iterator allows to enumerate the points. It is non mutable, bidirectional and its value type is
Point 2. It is invalidated by any insertion or removal of a point.

Largest empty iso rectangle 2<T>:: const iterator

Iterator over the points.

Creation

Largest empty iso rectangle 2<T> l( Iso rectangle 2 b);

Constructor. The iso-rectangle b is the bounding rectangle.

Largest empty iso rectangle 2<T> l( const Point 2 p, const Point 2 q);

Constructor. The iso-rectangle whose lower left and upper right points are p and q respectively is
the bounding rectangle.

Largest empty iso rectangle 2<T> l;

Constructor. The iso-rectangle whose lower left point and upper right points are (0,0) and (1,1)
respectively is the bounding rectangle.
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Largest empty iso rectangle 2<T> l( const Largest empty iso rectangle 2<Traits> tr);

Copy constructor.

Operations

Assignment

Largest empty iso rectangle 2<T>

l = tr

Access Functions

Traits l.traits() const Returns a const reference to the traits object.

const iterator l.begin() const Returns an iterator to the beginning of the point set.

const iterator l.end() const Returns a past-the-end iterator for the point set.

Queries

Quadruple<Point 2, Point 2, Point 2, Point 2>

l.get left bottom right top()

Returns the four points that define the largest empty iso-rectangle.
(Note that these points are not necessarily on a corner of an iso-
rectangle.)

Iso rectangle 2

l.get largest empty iso rectangle()

Returns the largest empty iso-rectangle. (Note that the two points
defining the iso-rectangle are not necessarily part of the point set.)

Iso rectangle 2

l.get bounding box() Returns the iso-rectangle passed in the constructor.

Insertion

void l.insert( Point 2 p) Inserts point p in the point set, if it is not already in the set.

void l.push back( Point 2 p) Inserts point p in the point set, if it is not already in the set.

template < class InputIterator >
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int l.insert( InputIterator first, InputIterator last)

Inserts the points in the range [ first, last ). Returns the number of
inserted points.

Requirements

The value type of first and last is Point.

Removal

bool l.remove( Point 2 p) Removes point p. Returns false iff p is not in the point set.

void l.clear() Removes all points of l.

Implementation

The algorithm is an implementation of [Orl90]. The runtime of an insertion or a removal is O(logn). A query
takes O(n2) worst case time and O(n logn) expected time. The working storage is O(n).
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LargestEmptyIsoRectangleTraits 2

Definition

The concept LargestEmptyIsoRectangleTraits 2 describes the set of requirements to be fulfilled by any class
used to instantiate the template parameter of the class Largest empty iso rectangle 2<T>. This concept pro-
vides the types of the geometric primitives used in this class and some function object types for the required
predicates on those primitives.

Types

LargestEmptyIsoRectangleTraits 2:: Point 2 The point type.
LargestEmptyIsoRectangleTraits 2:: Iso rectangle 2

The iso rectangle type.

LargestEmptyIsoRectangleTraits 2:: Compare x 2

Predicate object. Must provide the operator Comparison
result operator()(Point 2 p, Point 2 q) which returns
SMALLER, EQUAL or LARGER according ding to the x-
ordering of points p and q.

LargestEmptyIsoRectangleTraits 2:: Compare y 2

Predicate object. Must provide the operator Comparison
result operator()(Point 2 p, Point 2 q) which returns
SMALLER, EQUAL or LARGER according to the y-ordering
of points p and q.

LargestEmptyIsoRectangleTraits 2:: Less x 2 Predicate object. Must provide the operator bool
operator()(Point 2 p, Point 2 q) which returns whether p is
less than q according to their x-ordering.

LargestEmptyIsoRectangleTraits 2:: Less y 2 Predicate object. Must provide the operator bool
operator()(Point 2 p, Point 2 q) which returns whether p is
less than q according to their y-ordering.

Creation

Only a default constructor, copy constructor and an assignement operator are required. Note that further con-
structors can be provided.

LargestEmptyIsoRectangleTraits 2 traits; Default constructor.
LargestEmptyIsoRectangleTraits 2 traits( LargestEmptyIsoRectangleTraits 2);

Copy constructor

LargestEmptyIsoRectangleTraits 2

traits = gtr Assignment operator.
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Predicate functions

The following functions give access to the predicate and constructor objects.

Compare x 2 traits.compare x 2 object()
Compare y 2 traits.compare y 2 object()
Less x 2 traits.less x 2 object()
Less y 2 traits.less y 2 object()

Has Models

CGAL::Cartesian<R>
CGAL::Homogeneous<R>

See Also

CGAL::Largest empty iso rectangle 2<Traits>
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Chapter 68

Optimal Distances
Kaspar Fischer, Bernd Gärtner, Thomas Herrmann, Michael Hoffmann, and Sven Schönherr

This chapter describes how to compute the distance between the convex hulls of two given point sets in d-
dimensional Euclidean space (CGAL::Polytope distance d<Traits>). Moreover, it is possible to compute the
width of a point set in three dimensions (CGAL::Width 3<Traits>).

The obvious application is collision detection between convex bodies in space. In the spirit of the bounding vol-
ume application above, it also makes sense for nonconvex objects: a full intersection test between complicated
objects could in a first stage be approximated with the test between the convex hulls of the objects. Only if the
hulls intersect, a full intersection test is necessary.

To dampen fears concerning the performance of the distance computation, we want to mention that the convex
hulls of the input point sets are not explicitly computed. This avoids a runtime which grows exponentially in d.
In fact, the runtime is almost always linear in the size of the two point sets.
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Optimal Distances
Reference Manual
Kaspar Fischer, Bernd Gärtner, Thomas Herrmann, Michael Hoffmann, and Sven Schönherr

This chapter describes concepts, classes, and functions for 2D all furthest neigbors, 3D width of a point set, and
dD polytope distance.

Assertions

The optimization code uses infix OPTIMISATION in the assertions, e.g. defining the compiler flag CGAL
OPTIMISATION NO PRECONDITIONS switches precondition checking off, cf. Section 2.8.

68.1 Classified References Pages

All furthest neighbors

CGAL::all furthest neighbors 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3933

AllFurthestNeighborsTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3935

Width

CGAL::Width 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3936

CGAL::Width default traits 3<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3940

WidthTraits 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3942

Polytope Distance

CGAL::Polytope distance d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3944

CGAL::Polytope distance d traits 2<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3953
CGAL::Polytope distance d traits 3<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3955
CGAL::Polytope distance d traits d<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3957

PolytopeDistanceDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3951
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68.2 Alphabetical List of Reference Pages

AllFurthestNeighborsTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3935
all furthest neighbors 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3933
PolytopeDistanceDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3951
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CGAL::all furthest neighbors 2

Definition

The function all furthest neighbors 2 computes all furthest neighbors for the vertices of a convex polygon P,
i.e. for each vertex v of P a vertex fv of P such that the distance between v and fv is maximized.

#include <CGAL/all furthest neighbors 2.h>

template < class RandomAccessIterator, class OutputIterator, class Traits >
OutputIterator all furthest neighbors 2(

RandomAccessIterator points begin,
RandomAccessIterator points end,
OutputIterator o,
Traits t = Default traits)

computes all furthest neighbors for the vertices of the convex polygon described by the range [points begin,
points end), writes their indices (relative to points begin) to o1 and returns the past-the-end iterator of this
sequence.

Precondition: The points denoted by the non-empty range [points begin, points end) form the boundary of a
convex polygon P (oriented clock– or counterclockwise).

The geometric types and operations to be used for the computation are specified by the traits class parameter t.
This parameter can be omitted if RandomAccessIterator refers to a point type from a Kernel. In this case, the
kernel is used as default traits class.

Requirement:

1. If t is specified explicitly, Traits is a model for AllFurthestNeighborsTraits 2.

2. Value type of RandomAccessIterator is Traits::Point 2 or – if t is not specified explicitly – K::Point 2
where K is a model for Kernel.

3. OutputIterator accepts int as value type.

See Also

AllFurthestNeighborsTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3935
CGAL::monotone matrix search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 458

Implementation

The implementation uses monotone matrix search[AKM+87]. Its runtime complexity is linear in the number of
vertices of P.

1i.e. the furthest neighbor of points begin[i] is points begin[i-th number written to o]
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Example

The following code generates a random convex polygon p with ten vertices, computes all furthest neighbors
and writes the sequence of their indices (relative to points begin) to cout (e.g. a sequence of 4788911224
means the furthest neighbor of points begin[0] is points begin[4], the furthest neighbor of points begin[1] is
points begin[7] etc.).� �
#include <CGAL/Cartesian.h>
#include <CGAL/Polygon_2.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/random_convex_set_2.h>
#include <CGAL/all_furthest_neighbors_2.h>
#include <CGAL/IO/Ostream_iterator.h>
#include <iostream>
#include <vector>

typedef double FT;

typedef CGAL::Cartesian<FT> Kernel;

typedef Kernel::Point_2 Point;
typedef std::vector<int> Index_cont;
typedef CGAL::Polygon_2<Kernel> Polygon_2;
typedef CGAL::Random_points_in_square_2<Point> Generator;
typedef CGAL::Ostream_iterator<int,std::ostream> Oiterator;

int main()
{

// generate random convex polygon:
Polygon_2 p;
CGAL::random_convex_set_2(10, std::back_inserter(p), Generator(1));

// compute all furthest neighbors:
CGAL::all_furthest_neighbors_2(p.vertices_begin(), p.vertices_end(),

Oiterator(std::cout));
std::cout << std::endl;

return 0;
}� �
File: examples/Matrix_search/all_furthest_neighbors_2.cpp
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AllFurthestNeighborsTraits 2

Definition

The concept AllFurthestNeighborsTraits 2 defines types and operations needed to compute all furthest neigh-
bors for the vertices of a convex polygon using the function all furthest neighbors 2.

Types

AllFurthestNeighborsTraits 2:: FT model for FieldNumberType . . . . . . . . . . . . . . . . . . . page 149.

AllFurthestNeighborsTraits 2:: Point 2 model for Kernel::Point 2 . . . . . . . . . . . . . . . . . . . . . . page 794.

AllFurthestNeighborsTraits 2:: Compute squared distance 2

model for Kernel::Compute squared distance 2 . . . page ??.

AllFurthestNeighborsTraits 2:: Less xy 2 model for Kernel::Less xy 2 . . . . . . . . . . . . . . . . . . . . page ??.

AllFurthestNeighborsTraits 2:: Orientation 2 model for Kernel::Orientation 2 . . . . . . . . . . . . . . . page 1034.

Operations

The following member functions return function objects of the types listed above.
Compute squared distance 2

t.compute squared distance 2 object()
Less xy 2 t.less xy 2 object()
Orientation 2 t.orientation 2 object()

Has Models

Cartesian<FieldNumberType> . . . . . . . . . . . . page ??, Homogeneous<RingNumberType> . . . . . . . . . . . . page ??,
Simple cartesian<FieldNumberType> . . . . . . page ??, Simple homogeneous<RingNumberType> . . . . . . page ??.

See Also

CGAL::all furthest neighbors 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3933

Notes

• ::Less xy 2 and ::Orientation 2 are used for (expensive) precondition checking only. Therefore, they
need not to be specified, in case that precondition checking is disabled.

3935



C
la

ss

CGAL::Width 3<Traits>

Definition

Given a set of points S = {p1, . . . , pn} in R3. The width of S , denoted as W (S), is defined as the minimum
distance between two parallel planes of support of conv(S); where conv(S) denotes the convex hull of S . The
width in direction d, denoted as Wd(S), is the distance between two parallel planes of support of conv(S),
which are orthogonal to d.

Subject to the applications of the width algorithm, several objects might be interesting:

1. The two parallel planes of support such that the distance between them is as small as possible. These
planes are called width-planes in further considerations.

2. The width W (S), i.e., the distance between the width-planes.

3. The direction dopt such that W (S) = Wdopt (S)

Note: There might be several optimal build directions. Hence neither the width-planes nor the direction dopt are
unique – only the width is.

#include <CGAL/Width 3.h>

Requirements

The template parameter Traits is a model for WidthTraits 3. We provide the model Width default traits 3<
Kernel> based on a three-dimensional CGAL kernel.

Types
Width 3<Traits>:: Traits traits class.

typedef typename Traits::Point 3 Point 3; point type.

typedef typename Traits::Plane 3 Plane 3; plane type.

typedef typename Traits::Vector 3 Vector 3; vector type.

typedef typename Traits::RT RT; algebraic ring type.

typedef typename Traits::ChullTraits ChullTraits; traits class for the 3D convex hull algorithm.

Creation

template < class InputIterator >
Width 3<Traits> width( InputIterator first, InputIterator beyond);

creates a variable width initialized to the width of S – with S being the
set of points in the range [first,beyond).
Requirement: The value type of InputIterator is Point 3.
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template < class Polyhedron >
Width 3<Traits> width( Polyhedron& P);

creates a variable width initialized to the width of the polyhedron P. Note
that the vertex point coordinates are altered!
Precondition: P is a convex polyhedron.
Requirement: Polyhedron is a CGAL::Polyhedron 3 with facets sup-
porting plane equations where Polyhedron::Point 3 ≡ Point 3 and
Polyhedron::Plane 3 ≡ Plane 3.

Access Functions

void width.get squared width( RT& width num, RT& width denom)

returns the squared width. For the reason of exact computation not the
width itself is stored, but the squared width as a fraction: The numerator
in width num and the denominator in width denom. The width of the
point set S is

√
width num

width denom .

void width.get width planes( Plane 3& e1, Plane 3& e2)

The planes e1 and e2 are the two parallel supporting planes, which dis-
tance is minimal (among all such planes).

void width.get width coefficients( RT& A, RT& B, RT& C, RT& D, RT& K)

The returned coefficients A,B,C,D,K have the property that width-plane
e1 is given by the equation Ax+By+Cz+D = 0 and width-plane e2 by
Ax+By+Cz+K = 0.

Vector 3 width.get build direction()

returns a direction dopt such that the width-planes e1 and e2 are perpen-
dicular to dopt . The width of the point set is minimal in this direction.

void width.get all build directions( std::vector<Vector 3>& dir)

All the build directions are stored in the vector dir. It might happen that
a certain body has several different build directions, but it is also possible
to have only one build direction.

int width.get number of optimal solutions()

returns the number of optimal solutions, i.e., the number of optimal build
directions.
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See Also

CGAL::Width default traits 3<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3940

WidthTraits 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3942

Implementation

Since the width of the point set S and the width of the convex hull of S (conv(S)) is the same, the algorithm
uses the 3D convex hull algorithm CGAL provides.

The width-algorithm is not incremental and therefore inserting and erasing points cause not an ‘automatic’
update of the width. Instead you have to run the width-algorithm again even if the point set is extended by only
one new point.

advanced

Large Numbers. Because there is no need for dividing values during the algorithm, the numbers can get
really huge (all the computations are made using a lot of multiplications). Therefore it is strongly recommended
to use a number type that can handle numbers of arbitrary length (e.g., leda integer in combination with the
homogeneous representation of the points). But these large numbers have a disadvantage: Operations on them
are slower as greater the number gets. Therefore it is possible to shorten the numbers by using the compiler
flag -DSIMPLIFY. For using this option it is required that the underlying number type provides the ‘modulo’
operation.

Information Output during the Computations. If during the algorithm the program should output some
information (e.g., during the debugging phase) you can turn on the output information by giving the compiler
flag DEBUG. In the file width assertions.h you can turn on/off the output of some functions and additional
informations by changing the defined values from 0 (no output) to 1 (output available). But then it is required
that the <<-operator has to been overloaded for Point 3, Plane 3, Vector 3 and RT .

advanced

Example� �
#include <CGAL/Homogeneous.h>
#include <CGAL/Width_default_traits_3.h>
#include <CGAL/Width_3.h>
#include <iostream>
#include <vector>

#if defined(CGAL_USE_GMP)
#include <CGAL/Gmpz.h>
typedef CGAL::Gmpz RT;
#elif defined (CGAL_USE_LEDA)
#include <CGAL/leda_integer.h>
typedef leda_integer RT;
#else
#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float RT;
#endif
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typedef CGAL::Homogeneous<RT> Kernel;
typedef Kernel::Point_3 Point_3;
typedef Kernel::Plane_3 Plane_3;
typedef CGAL::Width_default_traits_3<Kernel> Width_traits;
typedef CGAL::Width_3<Width_traits> Width;

int main() {
// Create a simplex using homogeneous integer coordinates
std::vector<Point_3> points;
points.push_back( Point_3(2,0,0,1));
points.push_back( Point_3(0,1,0,1));
points.push_back( Point_3(0,0,1,1));
points.push_back( Point_3(0,0,0,1));

// Compute width of simplex
Width simplex( points.begin(), points.end());

// Output of squared width, width-planes, and optimal direction
RT wnum, wdenom;
simplex.get_squared_width( wnum, wdenom);
std::cout << "Squared Width: " << wnum << "/" << wdenom << std::endl;

std::cout << "Direction: " << simplex.get_build_direction() <<
std::endl;

Plane_3 e1, e2;
std::cout << "Planes: E1: " << e1 << ". E2: " << e2 <<std::endl;

std::cout << "Number of optimal solutions: "
<< simplex.get_number_of_optimal_solutions() << std::endl;

return(0);
}� �
File: examples/Width_3/width_simplex.cpp

3939



C
la

ss

CGAL::Width default traits 3<K>

Definition

The class Width default traits 3<K> is a traits class for Width 3<Traits> using the three-dimensional CGAL
kernel.

#include <CGAL/Width default traits 3.h>

Requirements

The template parameter K is a model for Kernel

Is Model for the Concepts

WidthTraits 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3942

Types
typedef typename K::Point 3 Point 3;

typedef typename K::Plane 3 Plane 3;

typedef typename K::Vector 3 Vector 3;

typedef typename K::RT RT;

typedef Convex hull traits 3<K> ChullTraits;

Creation

Width default traits 3<K> traits; default constructor.

Operations
RT traits.get hx( Point 3 p) const

returns the homogeneous x-coordinate of point p.
RT traits.get hy( Point 3 p) const

returns the homogeneous y-coordinate of point p.
RT traits.get hz( Point 3 p) const

returns the homogeneous z-coordinate of point p.
RT traits.get hw( Point 3 p) const

returns the homogenizing coordinate of point p.
void traits.get point coordinates( Point 3 p, RT& px, RT& py, RT& pz, RT& ph) const

returns all homogeneous coordinates of point p at once.

RT traits.get a( Plane 3 f) const
returns the first coefficient of plane f .

RT traits.get b( Plane 3 f) const
returns the second coefficient of plane f .

3940



RT traits.get c( Plane 3 f) const
returns the third coefficient of plane f .

RT traits.get d( Plane 3 f) const
returns the fourth coefficient of plane f .

void traits.get plane coefficients( Plane 3 f, RT& a, RT& b, RT& c, RT& d) const
returns all four plane coefficients of f at once.

Point 3 traits.make point( RT hx, RT hy, RT hz, RT hw) const
returns a point of type Point 3 with homogeneous coordinates hx, hy,
hz and hw.

Plane 3 traits.make plane( RT a, RT b, RT c, RT d) const
returns a plane of type Plane 3 whose coefficients are a, b, c and d.

Vector traits.make vector( RT a, RT b, RT c) const
returns a vector of type Vector 3 with the four coefficients a, b, c and
1.

See Also

CGAL::Width 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3936

WidthTraits 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3942
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WidthTraits 3

Definition

This concept defines the requirements for traits classes of Width 3<Traits>.

Types
WidthTraits 3:: Point 3 The point type. The (in)equality tests must be available. Access to the point

coordinates is done via the get .() functions. Constructing a point is done with
the make point( ) operation.

WidthTraits 3:: Plane 3 The plane type. Access to the coefficients of the plane is made via the get .()
functions. Constructing a plane is done with the make plane() operation.

WidthTraits 3:: Vector 3 The vector type. There is no need to access the coefficients of a vector; only
constructing is required and is done with the make vector operation.

WidthTraits 3:: ChullTraits The traits class for using the convex hull algorithm. It must be a model of the
concept ConvexHullTraits 3. This class is used only if the width is computed
from a set of points.

WidthTraits 3:: RT Ring type numbers. Internally all numbers are treated as ring type numbers, i.e.,
neither /-operator nor√. nor other inexact operations are used. But because the
algorithm does not use any divisions, but multiplication instead, the numbers
can get really big. Therefore it is recommended to use a ring type number,
that provides values of arbitrary length. Furthermore it is assumed that the
underlying number type of Point 3, Plane 3 and Vector 3 equals RT .

Notes: If you want to compute the width of a polyhedron then you have to make sure that the point type in the
traits class and the point type in the polyhedron class are the same! The same holds for Traits::Plane 3 and
Polyhedron::Plane 3.

Creation

Only a default constructor is required.

WidthTraits 3 traits;

Operations

Whatever the coordinates of the points are, it is required for the width-algorithm to have access to the homoge-
neous representation of points.
RT get hx( Point 3 p) const returns the homogeneous x-coordinate of point p.
RT get hy( Point 3 p) const returns the homogeneous y-coordinate of point p.
RT get hz( Point 3 p) const returns the homogeneous z-coordinate of point p.
RT get hw( Point 3 p) const returns the homogenizing coordinate of point p.
void get point coordinates( Point 3 p, RT& px, RT& py, RT& pz, RT& ph) const

returns all homogeneous coordinates of point p at once.

RT get a( Plane 3 f) const returns the first coefficient of plane f .
RT get b( Plane 3 f) const returns the second coefficient of plane f .
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RT get c( Plane 3 f) const returns the third coefficient of plane f .
RT get d( Plane 3 f) const returns the fourth coefficient of plane f .
void get plane coefficients( Plane 3 f, RT& a, RT& b, RT& c, RT& d) const

returns all four plane coefficients of f at once.

Point 3 make point( RT hx, RT hy, RT hz, RT hw) const
returns a point of type Point 3 with homogeneous coordinates hx, hy,
hz and hw.

Plane 3 make plane( RT a, RT b, RT c, RT d) const
returns a plane of type Plane 3 with coefficients a, b, c and d.

Vector 3 make vector( RT a, RT b, RT c) const
returns a vector of type Vector 3 with the four homogeneous coeffi-
cients a, b, c and 1.

Has Models

CGAL::Width default traits 3<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3940

See Also

CGAL::Width 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3936
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CGAL::Polytope distance d<Traits>

Definition

An object of the class Polytope distance d<Traits> represents the (squared) distance between two convex poly-
topes, given as the convex hulls of two finite point sets in d-dimensional Euclidean space Ed . For point sets
P and Q we denote by pd(P,Q) the distance between the convex hulls of P and Q. Note that pd(P,Q) can be
degenerate, i.e. pd(P,Q) = ∞ if P or Q is empty.

Two inclusion-minimal subsets SP of P and SQ of Q with pd(SP,SQ) = pd(P,Q) are called pair of support sets,
the points in SP and SQ are the support points. A pair of support sets has size at most d + 2 (by size we mean
|SP|+ |SQ|). The distance between the two polytopes is realized by a pair of points p and q lying in the convex
hull of SP and SQ, repectively, i.e.

√
||p−q|| = pd(P,Q). In general, neither the support sets nor the realizing

points are necessarily unique.

The underlying algorithm can cope with all kinds of input, e.g. P and Q may be in non-convex position or points
may occur more than once. The algorithm computes a pair of support sets SP and SQ with realizing points p and
q which remain fixed until the next set, insert, or clear operation.

#include <CGAL/Polytope distance d.h>

Requirements

The template parameter Traits is a model for OptimisationDTraits.

We provide the models Optimisation d traits 2, Optimisation d traits 3, and Optimisation d traits d using the
two-, three-, and d-dimensional CGAL kernel, respectively.

Types

Polytope distance d<Traits>:: Point typedef to Traits::Point d. Point type used to represent the input
points.

Polytope distance d<Traits>:: FT typedef to Traits::FT . Number type used to return the squared distance
between the two polytopes.

Polytope distance d<Traits>:: ET typedef to Traits::ET . Number type used to do the exact computations
in the underlying solver for quadratic programs (cf. Implementation).

Polytope distance d<Traits>:: Point iterator

non-mutable model of the STL concept RandomAccessIterator with
value type Point. Used to access the points of the two polytopes.

Polytope distance d<Traits>:: Support point iterator

non-mutable model of the STL concept RandomAccessIterator with
value type Point. Used to access the support points.
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Polytope distance d<Traits>:: Support point index iterator

non-mutable model of the STL concept RandomAccessIterator with
value type int. Used to access the indices of the support points in the
provided input order (starting from 0 in both point sets).

Polytope distance d<Traits>:: Coordinate iterator

non-mutable model of the STL concept RandomAccessIterator with
value type ET . Used to access the coordinates of the realizing points.

Creation

Polytope distance d<Traits> poly dist( Traits traits = Traits(),
int verbose = 0,
std::ostream& stream = std::cout)

initializes poly dist to pd( /0, /0).

template < class InputIterator1, class InputIterator2 >
Polytope distance d<Traits> poly dist( InputIterator1 p first,

InputIterator1 p last,
InputIterator2 q first,
InputIterator2 q last,
Traits traits = Traits(),
int verbose = 0,
std::ostream& stream = std::cout)

initializes poly dist to pd(P,Q) with P and Q being the sets
of points in the range [p first,p last) and [q first,q last), re-
spectively.
Requirement: The value type of InputIterator1 and InputIt-
erator2 is Point.
Precondition: All points have the same dimension.

advanced

If verbose is set to 1, 2, or 3 then some, more, or full verbose output of the underlying solver for quadratic
programs is written to stream, resp.

advanced

Access Functions

int poly dist.ambient dimension() const

returns the dimension of the points in P and Q. If poly dist
is pd( /0, /0), the ambient dimension is −1.
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int poly dist.number of points() const
returns the number of all points of poly dist, i.e. |P|+ |Q|.

int poly dist.number of points p() const
returns the number of points in P.

int poly dist.number of points q() const
returns the number of points in Q.

int poly dist.number of support points() const
returns the number of support points of poly dist, i.e. |SP|+
|SQ|.

int poly dist.number of support points p() const
returns the number of support points in SP.

int poly dist.number of support points q() const
returns the number of support points in SQ.

Point iterator poly dist.points p begin() const
returns an iterator referring to the first point in P.

Point iterator poly dist.points p end() const
returns the corresponding past-the-end iterator.

Point iterator poly dist.points q begin() const
returns an iterator referring to the first point in Q.

Point iterator poly dist.points q end() const
returns the corresponding past-the-end iterator.

Support point iterator
poly dist.support points p begin() const

returns an iterator referring to the first support point in SP.
Support point iterator

poly dist.support points p end() const
returns the corresponding past-the-end iterator.

Support point iterator
poly dist.support points q begin() const

returns an iterator referring to the first support point in SQ.
Support point iterator

poly dist.support points q end() const
returns the corresponding past-the-end iterator.

Support point index iterator
poly dist.support points p indices begin() const

returns an iterator referring to the index of the first support
point in P.

Support point index iterator
poly dist.support points p indices end() const

returns the corresponding past-the-end iterator.

Support point index iterator
poly dist.support points q indices begin() const

returns an iterator referring to the index of the first support
point in Q.
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Support point index iterator
poly dist.support points q indices end() const

returns the corresponding past-the-end iterator.

Point poly dist.realizing point p() const

returns the realizing point of P.
Requirement: An implicit conversion from ET to RT is avail-
able.
Precondition: pd(P,Q) is finite.

Point poly dist.realizing point q() const

returns the realizing point of Q.
Requirement: An implicit conversion from ET to RT is avail-
able.
Precondition: pd(P,Q) is finite.

FT poly dist.squared distance() const

returns the squared distance of poly dist, i.e. (pd(P,Q))2.
Requirement: An implicit conversion from ET to RT is avail-
able.
Precondition: pd(P,Q) is finite.

Coordinate iterator poly dist.realizing point p coordinates begin() const
returns an iterator referring to the first coordinate of the real-
izing point of P.
Note: The coordinates have a rational representation, i.e. the
first d elements of the iterator range are the numerators and
the (d+1)-st element is the common denominator.

Coordinate iterator poly dist.realizing point p coordinates end() const
returns the corresponding past-the-end iterator.

Coordinate iterator poly dist.realizing point q coordinates begin() const
returns an iterator referring to the first coordinate of the real-
izing point of Q.
Note: The coordinates have a rational representation, i.e. the
first d elements of the iterator range are the numerators and
the (d+1)-st element is the common denominator.

Coordinate iterator poly dist.realizing point q coordinates end() const
returns the corresponding past-the-end iterator.

ET poly dist.squared distance numerator() const

returns the numerator of the squared distance of poly dist.

ET poly dist.squared distance denominator() const

returns the denominator of the squared distance of poly dist.
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Predicates

bool poly dist.is finite() const

returns true, if pd(P,Q) is finite, i.e. none of the two poly-
topes is empty.

bool poly dist.is zero() const

returns true, if pd(P,Q) is zero, i.e. the two polytopes inter-
sect (this implies degeneracy).

bool poly dist.is degenerate() const

returns true, iff pd(P,Q) is degenerate, i.e. pd(P,Q) is not
finite.

Modifiers

void poly dist.clear() resets poly dist to pd( /0, /0).

template < class InputIterator1, class InputIterator2 >
void poly dist.set( InputIterator1 p first,

InputIterator1 p last,
InputIterator2 q first,
InputIterator2 q last)

sets poly dist to pd(P,Q) with P and Q being the sets of
points in the ranges [p first,p last) and [q first,q last), re-
spectively.
Requirement: The value type of InputIterator1 and InputIt-
erator2 is Point.
Precondition: All points have the same dimension.

template < class InputIterator >
void poly dist.set p( InputIterator p first, InputIterator p last)

sets poly dist to pd(P,Q) with P being the set of points in the
range [p first,p last) (Q remains unchanged).
Requirement: The value type of InputIterator is Point.
Precondition: All points in P have dimension poly
dist.ambient dimension() if Q is not empty.

template < class InputIterator >
void poly dist.set q( InputIterator q first, InputIterator q last)

sets poly dist to pd(P,Q) with Q being the set of points in
the range [q first,q last) (P remains unchanged).
Requirement: The value type of InputIterator is Point.
Precondition: All points in Q have dimension poly
dist.ambient dimension() if P is not empty.
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void poly dist.insert p( Point p)

inserts p into P.
Precondition: The dimension of p equals poly dist.ambient
dimension() if poly dist is not pd( /0, /0).

void poly dist.insert q( Point q)

inserts q into Q.
Precondition: The dimension of q equals poly dist.ambient
dimension() if poly dist is not pd( /0, /0).

template < class InputIterator1, class InputIterator2 >
void poly dist.insert( InputIterator1 p first,

InputIterator1 p last,
InputIterator2 q first,
InputIterator2 q last)

inserts the points in the range [p first,p last) and [q first,q
last) into P and Q, respectively, and recomputes the (squared)
distance.
Requirement: The value type of InputIterator1 and InputIt-
erator2 is Point.
Precondition: All points have the same dimension. If poly
dist is not pd( /0, /0), this dimension must be equal to poly
dist.ambient dimension().

template < class InputIterator >
void poly dist.insert p( InputIterator p first, InputIterator p last)

inserts the points in the range [p first,p last) into P and re-
computes the (squared) distance (Q remains unchanged).
Requirement: The value type of InputIterator is Point.
Precondition: All points have the same dimension. If poly
dist is not empty, this dimension must be equal to poly
dist.ambient dimension().

template < class InputIterator >
void poly dist.insert q( InputIterator q first, InputIterator q last)

inserts the points in the range [q first,q last) into Q and re-
computes the (squared) distance (P remains unchanged).
Requirement: The value type of InputIterator is Point.
Precondition: All points have the same dimension. If poly
dist is not empty, this dimension must be equal to poly
dist.ambient dimension().

Validity Check

An object poly dist is valid, iff . . .
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• poly dist contains all points of its defining set P,

• poly dist is the smallest sphere containing its support set S, and

• S is minimal, i.e. no support point is redundant.

bool poly dist.is valid( bool verbose = false, int level = 0) const

returns true, iff poly dist is valid. If verbose is true, some
messages concerning the performed checks are written to
standard error stream. The second parameter level is not
used, we provide it only for consistency with interfaces of
other classes.

Miscellaneous

const Traits& poly dist.traits() const

returns a const reference to the traits class object.

I/O

std::ostream& std::ostream& os << poly dist

writes poly dist to output stream os.
Requirement: The output operator is defined for Point d.

std::istream& std::istream& is >> poly dist&

reads poly dist from input stream is.
Requirement: The input operator is defined for Point d.

See Also

CGAL::Optimisation d traits 2<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
CGAL::Optimisation d traits 3<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
CGAL::Optimisation d traits d<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page ??

OptimisationDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??

Implementation

The problem of finding the distance between two convex polytopes given as the convex hulls of two finite point
sets can be formulated as an optimization problem with linear constraints and a convex quadratic objective
function. The solution is obtained using our exact solver for quadratic programs [GS00].

The creation time is almost always linear in the number of points. Access functions and predicates take constant
time, inserting a point might take up to linear time. The clear operation and the check for validity each take
linear time.
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PolytopeDistanceDTraits

Definition

This concept defines the requirements for traits classes of d-dimensional optimisation algorithms.

Types

PolytopeDistanceDTraits:: Point d point type used to represent the input points.

PolytopeDistanceDTraits:: Rep tag compile time tag to distinguish between Cartesian and homoge-
neous representation of the input points. Rep tag has to be either
CGAL::Cartesian tag or CGAL::Homogeneous tag.

PolytopeDistanceDTraits:: RT number type used to represent the coordinates of the input points. It has
to be a model for RingNumberType.

PolytopeDistanceDTraits:: FT number type used to return either the squared radius of the smallest en-
closing sphere or annulus, or the squared distance of the polytopes. FT
has to be either RT or CGAL::Quotient<RT> if the input points have
Cartesian or homogeneous representation, respectively (cf. Rep tag).

PolytopeDistanceDTraits:: Access dimension d

data accessor object used to access the dimension of the input points.

PolytopeDistanceDTraits:: Access coordinates begin d

data accessor object used to access the coordinates of the input points.

PolytopeDistanceDTraits:: Construct point d

constructor object used to construct either the center of the smallest en-
closing sphere or annulus, or the points realizing the distance between
the two polytopes.

The following two number types are only needed for CGAL::Min annulus d<Traits> and CGAL::Polytope
distance d<Traits>.

PolytopeDistanceDTraits:: ET exact number type used to do the exact computations in the underlying
solver for linear programs. It has to to be a model for RingNumberType.
There must be an implicit conversion from RT to ET available.

PolytopeDistanceDTraits:: NT fast (possibly inexact) number type used to speed up the pricing step
in the underlying solver for linear programs. It has to be a model for
RingNumberType. There must be implicit conversions from RT to NT
and from NT to ET available.
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Creation

Only default and copy constructor are required.

PolytopeDistanceDTraits traits;

PolytopeDistanceDTraits traits( PolytopeDistanceDTraits);

Operations

The following functions just return the corresponding function class object.

Access dimension d traits.access dimension d object() const

Access coordinates begin d traits.access coordinates begin d object() const

Construct point d traits.construct point d object() const

Has Models

CGAL::Polytope distance d traits 2<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3953
CGAL::Polytope distance d traits 3<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3955
CGAL::Polytope distance d traits d<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3957

See Also

CGAL::Polytope distance d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3944
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CGAL::Polytope distance d traits 2<K,ET,NT>

Definition

The class Polytope distance d traits 2<K,ET,NT> is a traits class for the d-dimensional optimisation algorithms
using the two-dimensional CGAL kernel.

#include <CGAL/Polytope distance d traits 2.h>

Requirements

The template parameter K is a model for Kernel. Template parameters ET and NT are models for RingNumber-
Type.

The second and third template parameter have default type K::RT .

Is Model for the Concepts

PolytopeDistanceDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3951

Types

Polytope distance d traits 2<K,ET,NT>:: Point d typedef to K::Point 2.

Polytope distance d traits 2<K,ET,NT>:: Rep tag typedef to K::Rep tag.

Polytope distance d traits 2<K,ET,NT>:: RT typedef to K::RT .

Polytope distance d traits 2<K,ET,NT>:: FT typedef to K::FT .

Polytope distance d traits 2<K,ET,NT>:: Access dimension d

typedef to K::Access dimension 2.

Polytope distance d traits 2<K,ET,NT>:: Access coordinates begin d

typedef to K::Access coordinates begin 2.

Polytope distance d traits 2<K,ET,NT>:: Construct point d

typedef to K::Construct point 2.

Polytope distance d traits 2<K,ET,NT>:: ET second template parameter (default is K::RT).

Polytope distance d traits 2<K,ET,NT>:: NT third template parameter (default is K::RT).
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Creation

Polytope distance d traits 2<K,ET,NT> traits; default constructor.

Polytope distance d traits 2<K,ET,NT> traits( Polytope distance d traits 2<K,ET,NT>);

copy constructor.

Operations

The following functions just return the corresponding function class object.

Access dimension d traits.access dimension d object() const

Access coordinates begin d traits.access coordinates begin d object() const

Construct point d traits.construct point d object() const

See Also

CGAL::Polytope distance d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3944

CGAL::Polytope distance d traits 3<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3955
CGAL::Polytope distance d traits d<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3957

PolytopeDistanceDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3951
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CGAL::Polytope distance d traits 3<K,ET,NT>

Definition

The class Polytope distance d traits 3<K,ET,NT> is a traits class for the d-dimensional optimisation algorithms
using the three-dimensional CGAL kernel.

#include <CGAL/Polytope distance d traits 3.h>

Requirements

The template parameter K is a model for Kernel. Template parameters ET and NT are models for RingNumber-
Type.

The second and third template parameter have default type K::RT .

Is Model for the Concepts

PolytopeDistanceDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3951

Types

Polytope distance d traits 3<K,ET,NT>:: Point d typedef to K::Point 3.

Polytope distance d traits 3<K,ET,NT>:: Rep tag typedef to K::Rep tag.

Polytope distance d traits 3<K,ET,NT>:: RT typedef to K::RT .

Polytope distance d traits 3<K,ET,NT>:: FT typedef to K::FT .

Polytope distance d traits 3<K,ET,NT>:: Access dimension d

typedef to K::Access dimension 3.

Polytope distance d traits 3<K,ET,NT>:: Access coordinates begin d

typedef to K::Access coordinates begin 3.

Polytope distance d traits 3<K,ET,NT>:: Construct point d

typedef to K::Construct point 3.

Polytope distance d traits 3<K,ET,NT>:: ET second template parameter (default is K::RT).

Polytope distance d traits 3<K,ET,NT>:: NT third template parameter (default is K::RT).
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Creation

Polytope distance d traits 3<K,ET,NT> traits; default constructor.

Polytope distance d traits 3<K,ET,NT> traits( Polytope distance d traits 3<K,ET,NT>);

copy constructor.

Operations

The following functions just return the corresponding function class object.

Access dimension d traits.access dimension d object() const

Access coordinates begin d traits.access coordinates begin d object() const

Construct point d traits.construct point d object() const

See Also

CGAL::Polytope distance d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3944

CGAL::Polytope distance d traits 2<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3953
CGAL::Polytope distance d traits d<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3957

PolytopeDistanceDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3951
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CGAL::Polytope distance d traits d<K,ET,NT>

Definition

The class Polytope distance d traits d<K,ET,NT> is a traits class for the d-dimensional optimisation algo-
rithms using the d-dimensional CGAL kernel.

#include <CGAL/Polytope distance d traits d.h>

Requirements

The template parameter K is a model for Kernel. Template parameters ET and NT are models for RingNumber-
Type.

The second and third template parameter have default type K::RT .

Is Model for the Concepts

PolytopeDistanceDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3951

Types

Polytope distance d traits d<K,ET,NT>:: Point d typedef to K::Point d.

Polytope distance d traits d<K,ET,NT>:: Rep tag typedef to K::Rep tag.

Polytope distance d traits d<K,ET,NT>:: RT typedef to K::RT .

Polytope distance d traits d<K,ET,NT>:: FT typedef to K::FT .

Polytope distance d traits d<K,ET,NT>:: Access dimension d

typedef to K::Access dimension d.

Polytope distance d traits d<K,ET,NT>:: Access coordinates begin d

typedef to K::Access coordinates begin d.

Polytope distance d traits d<K,ET,NT>:: Construct point d

typedef to K::Construct point d.

Polytope distance d traits d<K,ET,NT>:: ET second template parameter (default is K::RT).

Polytope distance d traits d<K,ET,NT>:: NT third template parameter (default is K::RT).
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Creation

Polytope distance d traits d<K,ET,NT> traits; default constructor.

Polytope distance d traits d<K,ET,NT> traits( Polytope distance d traits d<K,ET,NT>);

copy constructor.

Operations

The following functions just return the corresponding function class object.

Access dimension d traits.access dimension d object() const

Access coordinates begin d traits.access coordinates begin d object() const

Construct point d traits.construct point d object() const

See Also

CGAL::Polytope distance d<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3944

CGAL::Polytope distance d traits 2<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3953
CGAL::Polytope distance d traits 3<K,ET,NT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3955

PolytopeDistanceDTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3951
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Chapter 69

Principal Component Analysis
Pierre Alliez, Sylvain Pion and Ankit Gupta
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This package provides functions to analyze sets of objects in 2D and 3D. It provides the computation of axis-
aligned bounding boxes, centers of mass and principal component analysis for all bounded objects, as well
as barycenters for sets of weighted points. Note that unlike most of the CGAL packages, this package uses
approximation methods (in particular for linear least squares fitting) and is not intended to provide an exact
canonical result in any sense.

69.1 Definitions

A bounding box for a set of objects is a cuboid that contains the set. An axis-aligned bounding box captures the
maximum extents of all objects from the set within their coordinate system, i.e., a bounding box aligned with
the axes of the coordinate system. Axis-aligned bounding boxes are frequently used in geometric algorithms as
an indication of the general location of a data set, for either display, first-approximation spatial query, or spatial
indexing purposes.

A centroid of a set of objects is their center of mass, i.e., the point whose coordinates are computed by means
of coordinates of all points composing the objects. Note that although the general definition of center of mass
incorporates a density function (and hence weighted means), the current implementation assumes a uniform
density (see barycenter below defined for weighted points). For a point set {X1,X2, ...,XN} the centroid X̄ is
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computed as

X̄ =
1
N

N

∑
i=1

Xi.

For a set of segments {S1,S2, ...,SN} the centroid X̄ is computed as

X̄ =
1

∑
N
i=1 |Si|

N

∑
i=1
|Si| S̄i,

where |Si| stands for the length of a segment and S̄i stands for its uniform barycenter (midpoint). For a set of
triangles {T1,T2, ...,TN} the centroid X̄ is computed as

X̄ =
1

∑
N
i=1 |Ti|

N

∑
i=1
|Ti| T̄i,

where |Ti| stands for the area of a triangle and T̄i stands for its uniform barycenter. Such definition still holds
for more general objects where the Lebesgue measure (length in 1D, area in 2D, volume in 3D) is used for
weighting the object barycenters. Centers of mass are used to summarize data sets for either approximation,
spatial query or spatial indexing purposes.

A barycenter of a set of weighted points is the point whose coordinates are computed by means of weighted
coordinates of all weighted points from the set. When all weights are equal the barycenter coincides with the
centroid.

Given a set of objects, linear least squares fitting amounts to finding the linear sub-space which minimizes the
sum of squared distances from all points composing the objects of the set, to their projection onto this linear
sub-space. Such linear sub-space is obtained by so-called principal component analysis (PCA). PCA is defined
as a transformation that transforms the objects to a new coordinate system such that the greatest variance by
orthogonal projection of the objects comes to lie on the first coordinate (called the first principal component),
the second greatest variance on the second coordinate, and so on. PCA is often used in geometric applications
to reduce data sets to lower dimensions for analysis or approximation. Figure below illustrates (least squares)
fitting of a line to a 2D point set, fitting of a line and a plane to a 3D point set and fitting of a plane to a set of
3D triangles.

Figure 69.1: Left: fitting a line to a 2D point set (centroid dotted in red). Middle: fitting a line and a plane to a
3D point set. Right: fitting a plane to a set of 3D triangles.
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69.2 Examples

69.2.1 Bounding Box of 2D and 3D Point Sets

In the following example we use STL containers of 2D points and 3D points, and compute their axis-aligned
bounding box.� �
#include <CGAL/Cartesian.h>
#include <CGAL/bounding_box.h>

#include <list>
#include <iostream>

typedef double FT;
typedef CGAL::Cartesian<FT> K;
typedef K::Point_2 Point_2;
typedef K::Point_3 Point_3;

int main()
{

// axis-aligned bounding box of 2D points
std::list<Point_2> points_2;
points_2.push_back(Point_2(1.0, 0.0));
points_2.push_back(Point_2(2.0, 2.0));
points_2.push_back(Point_2(3.0, 5.0));

K::Iso_rectangle_2 c2 = CGAL::bounding_box(points_2.begin(),
points_2.end());

std::cout << c2 << std::endl;

// axis-aligned bounding box of 3D points
std::list<Point_3> points_3;
points_3.push_back(Point_3(1.0, 0.0, 0.5));
points_3.push_back(Point_3(2.0, 2.0, 1.2));
points_3.push_back(Point_3(3.0, 5.0, 4.5));

K::Iso_cuboid_3 c3 = CGAL::bounding_box(points_3.begin(),
points_3.end());

std::cout << c3 << std::endl;

return 0;
}� �
File: examples/Principal_component_analysis/bounding_box.cpp

69.2.2 Centroid of 2D and 3D Objects

In the following example we use STL containers of 2D, 3D points and 3D triangles, and compute their centroid.
The dimension tag indicates the dimension of the objects being fitted (0 for points, 2 for triangles). Note that it
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is also possible to compute the centroid of the triangle edges (3D segments) by specifying 1 as dimension tag,
and to compute the centroid of the triangle vertices (3D points) by specifying 0 as dimension tag.� �
#include <CGAL/Cartesian.h>
#include <CGAL/centroid.h>

#include <list>
#include <iostream>

typedef double FT;
typedef CGAL::Cartesian<FT> K;
typedef K::Point_2 Point_2;
typedef K::Point_3 Point_3;
typedef K::Triangle_3 Triangle_3;

int main()
{

// centroid of 2D points
std::list<Point_2> points_2;
points_2.push_back(Point_2(1.0, 0.0));
points_2.push_back(Point_2(2.0, 2.0));
points_2.push_back(Point_2(3.0, 5.0));
Point_2 c2 = CGAL::centroid(points_2.begin(),
points_2.end(),CGAL::Dimension_tag<0>());

std::cout << c2 << std::endl;

// centroid of 3D points
std::list<Point_3> points_3;
points_3.push_back(Point_3(1.0, 0.0, 0.5));
points_3.push_back(Point_3(2.0, 2.0, 1.2));
points_3.push_back(Point_3(3.0, 5.0, 4.5));
Point_3 c3 = CGAL::centroid(points_3.begin(),
points_3.end(),CGAL::Dimension_tag<0>());

std::cout << c3 << std::endl;

// centroid of 3D triangles
std::list<Triangle_3> triangles_3;
Point_3 p(1.0, 0.0, 0.0);
Point_3 q(1.0, 2.0, 0.0);
Point_3 r(0.0, 1.0, 3.0);
Point_3 s(0.0, 2.0, 5.0);
triangles_3.push_back(Triangle_3(p,q,r));
triangles_3.push_back(Triangle_3(p,q,s));
c3 = CGAL::centroid(triangles_3.begin(),
triangles_3.end(),CGAL::Dimension_tag<2>());

std::cout << c3 << std::endl;

return 0;
}� �
File: examples/Principal_component_analysis/centroid.cpp
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69.2.3 Barycenter of a Set of Weighted Points

In the following example we use STL containers of 2D and 3D weighted points, and compute their barycenter.� �
#include <CGAL/Cartesian.h>
#include <CGAL/barycenter.h>

#include <list>
#include <iostream>
#include <utility>

typedef double FT;
typedef CGAL::Cartesian<FT> K;
typedef K::Point_2 Point_2;
typedef K::Point_3 Point_3;

int main()
{

// barycenter of 2D weighted points
std::list<std::pair<Point_2, FT> > points_2;
points_2.push_back(std::make_pair(Point_2(1.0, 0.0), 1.0));
points_2.push_back(std::make_pair(Point_2(2.0, 2.0), 2.0));
points_2.push_back(std::make_pair(Point_2(3.0, 5.0), -2.0));

Point_2 c2 = CGAL::barycenter(points_2.begin(), points_2.end());
std::cout << c2 << std::endl;

// barycenter of 3D weighted points
std::list<std::pair<Point_3, FT> > points_3;
points_3.push_back(std::make_pair(Point_3(1.0, 0.0, 0.5), 1.0));
points_3.push_back(std::make_pair(Point_3(2.0, 2.0, 1.2), 2.0));
points_3.push_back(std::make_pair(Point_3(3.0, 5.0, 4.5), -5.0));

Point_3 c3 = CGAL::barycenter(points_3.begin(), points_3.end());
std::cout << c3 << std::endl;

return 0;
}� �
File: examples/Principal_component_analysis/barycenter.cpp

69.2.4 Least Squares Fitting of a Line to a 2D Point Set

In the following example we use a STL container of 2D points, and compute the best fitting line in the least
squares sense.� �
#include <CGAL/Cartesian.h>
#include <CGAL/linear_least_squares_fitting_2.h>
#include <list>

typedef double FT;
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typedef CGAL::Cartesian<FT> K;
typedef K::Line_2 Line;
typedef K::Point_2 Point;

int main()
{

std::list<Point> points;
points.push_back(Point(1.0,2.0));
points.push_back(Point(3.0,4.0));
points.push_back(Point(5.0,6.0));

// fit line
Line line;

linear_least_squares_fitting_2(points.begin(),points.end(),line,CGAL::Dimension_tag<0>());

return 0;
}� �
File: examples/Principal_component_analysis/linear_least_squares_fitting_points_2.cpp

69.2.5 Least Squares Fitting of a Line and a Plane to a 3D Triangle Set

In the following example we use a STL container of 3D triangles, and compute the best fitting line and plane in
the least squares sense. Note that we can fit either the whole triangles, the triangle edges or the triangle vertices.� �
#include <CGAL/Cartesian.h>
#include <CGAL/linear_least_squares_fitting_3.h>
#include <list>

typedef double FT;
typedef CGAL::Cartesian<FT> K;
typedef K::Line_3 Line;
typedef K::Plane_3 Plane;
typedef K::Point_3 Point;
typedef K::Triangle_3 Triangle;

int main(void)
{

std::list<Triangle> triangles;
Point a(1.0,2.0,3.0);
Point b(4.0,0.0,6.0);
Point c(7.0,8.0,9.0);
Point d(8.0,7.0,6.0);
Point e(5.0,3.0,4.0);
triangles.push_back(Triangle(a,b,c));
triangles.push_back(Triangle(a,b,d));
triangles.push_back(Triangle(d,e,c));

Line line;
Plane plane;
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// fit plane to whole triangles

linear_least_squares_fitting_3(triangles.begin(),triangles.end(),plane,CGAL::Dimension_tag<2>());

// fit line to triangle vertices
linear_least_squares_fitting_3(triangles.begin(),triangles.end(),line,
CGAL::Dimension_tag<0>());

return 0;
}� �
File: examples/Principal_component_analysis/linear_least_squares_fitting_triangles_3.cpp
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Principal Component Analysis
Reference Manual
Pierre Alliez, Sylvain Pion and Ankit Gupta

This CGAL component provides functions to compute global information about the shape of a set of 2D or 3D
objects. It provides the computation of axis-aligned bounding boxes for point sets, and barycenters of weighted
point sets. In addition, it provides computation of centroids (center of mass) and linear least squares fitting for
point sets as well as for sets of other bounded objects. More specifically, it is possible to fit 2D lines to 2D
segments, circles, disks, iso-rectangles and triangles, as well as to fit 3D lines or 3D planes to 3D segments,
triangles, iso-cuboids, tetrahedra, spheres and balls. The interface to these functions takes an iterator range of
objects.

69.3 Classified Reference Pages

Functions

CGAL::barycenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3971
CGAL::bounding box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3968
CGAL::centroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3969
CGAL::linear least squares fitting 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3973
CGAL::linear least squares fitting 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3975
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CGAL::bounding box

Definition

The function bounding box computes the axis-aligned bounding box of a set of 2D or 3D points. The bounding
box is returned either as an iso rectangle in 2D or as an iso cuboid in 3D, the type being deduced automatically
from the value type of the iterator range.

#include <CGAL/bounding box.h>

There is a set of overloaded bounding box functions for 2D and 3D points. The user can also optionally pass
an explicit kernel, in case the default, based on Kernel traits is not sufficient. The dimension is also deduced
automatically.

template < typename InputIterator >
K::Iso rectangle 2 bounding box( InputIterator first, InputIterator beyond)

computes the bounding box of a non-empty set of 2D
points. K is Kernel traits<std::iterator traits<InputIterator>
::value type>::Kernel. The value type must be K::Point 2.
Precondition: first != beyond.

template < typename InputIterator, typename K >
K::Iso rectangle 2 bounding box( InputIterator first, InputIterator beyond, K k)

computes the bounding box of a non-empty set of 2D points.
The value type must be K::Point 2.
Precondition: first != beyond.

template < typename InputIterator >
K::Iso cuboid 3 bounding box( InputIterator first, InputIterator beyond)

computes the bounding box of a non-empty set of 3D
points. K is Kernel traits<std::iterator traits<InputIterator>
::value type>::Kernel. The value type must be K::Point 3.
Precondition: first != beyond.

template < typename InputIterator, typename K >
K::Iso cuboid 3 bounding box( InputIterator first, InputIterator beyond, K k)

computes the bounding box of a non-empty set of 3D points.
The value type must be K::Point 3.
Precondition: first != beyond.
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CGAL::centroid

Definition

The function centroid computes the (uniform) center of mass of a set of 2D or 3D bounded objects. In 2D these
objects include points, segments, triangles, iso rectangles, circles and disks. In 3D these objects include points,
segments, triangles, iso cuboids, spheres, balls and tetrahedra.

#include <CGAL/centroid.h>

There is a set of overloaded centroid functions for 2D and 3D objects. The user can also optionally pass an
explicit kernel, in case the default based on Kernel traits is not sufficient. The default dimension tag is deduced
automatically, although the user can pass a tag specifying the dimension of the objects to be considered for the
centroid computation. For example, the default dimension of a tetrahedron is 3, but specifying a dimension 0
computes the centroid of the tetrahedron vertices (3D points), specifying a dimension 1 computes the centroid
of the tetrahedron edges (3D segments) and specifying a dimension 2 computes the centroid of the tetrahedron
facets (3D triangles).

template < typename InputIterator, typename Tag >
K::Point 2 centroid( InputIterator first, InputIterator beyond, Tag t)

computes the centroid of a non-empty set of 2D objects.
The tag is used to specify the dimension to be consid-
ered from the objects. K is Kernel traits<std::iterator
traits<InputIterator>::value type>::Kernel. The value type
must be either K::Point 2, K::Segment 2, K::Triangle 2,
K::Rectangle 2 or K::Circle 2. To fit a set of disks the
user must call the function with value type K::Circle 2 and
with dimension tag of 2. The tag must range between
CGAL::Dimension tag<0> and CGAL::Dimension tag<2>.
Precondition: first != beyond.

template < typename InputIterator, typename K, typename Tag >
K::Point 2 centroid( InputIterator first, InputIterator beyond, K k, Tag t)

computes the centroid of a non-empty set of 2D objects.
The tag is used to specify the dimension to be consid-
ered from the objects. K is Kernel traits<std::iterator
traits<InputIterator>::value type>::Kernel. The value type
must be either K::Point 2, K::Segment 2, K::Triangle 2,
K::Rectangle 2 or K::Circle 2. To fit a set of disks the
user must call the function with value type K::Circle 2 and
with dimension tag of 2. The tag must range between
CGAL::Dimension tag<0> and CGAL::Dimension tag<2>.
Precondition: first != beyond.

template < typename InputIterator, typename Tag >
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K::Point 3 centroid( InputIterator first, InputIterator beyond, Tag t)

computes the centroid of a non-empty set of 3D objects.
The tag is used to specify the dimension to be considered
from the objects. K is Kernel traits<std::iterator traits<
InputIterator>::value type>::Kernel. The value type must
be either K::Point 3, K::Segment 3, Triangle 3, Cuboid
3, Sphere 3 or Tetrahedron 3. To fit a set of balls the
user must call the function with value type K::Sphere 3
and with dimension tag of 3. The tag must range between
CGAL::Dimension tag<0> and CGAL::Dimension tag<3>.
Precondition: first != beyond.

template < typename InputIterator, typename K, typename Tag >
K::Point 3 centroid( InputIterator first, InputIterator beyond, K k, Tag t)

computes the centroid of a non-empty set of 3D objects.
The tag is used to specify the dimension to be considered
from the objects. K is Kernel traits<std::iterator traits<
InputIterator>::value type>::Kernel. The value type must
be either K::Point 3, K::Segment 3, Triangle 3, Cuboid
3, Sphere 3 or Tetrahedron 3. To fit a set of balls the
user must call the function with value type K::Sphere 3
and with dimension tag of 3. The tag must range between
CGAL::Dimension tag<0> and CGAL::Dimension tag<3>.
Precondition: first != beyond.

See Also

CGAL::barycenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3971
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CGAL::barycenter

Definition

The function barycenter computes the barycenter (weighted center of mass) of a set of 2D or 3D weighted
points. The weight associated to each point is specified using a std::pair storing the point and its weight.

#include <CGAL/barycenter.h>

There is a set of overloaded barycenter functions for 2D and 3D weighted points. The user can also optionally
pass an explicit kernel, in case the default, based on Kernel traits is not sufficient. The dimension is also
deduced automatically.

template < typename InputIterator >
K::Point 2 barycenter( InputIterator first, InputIterator beyond)

computes the barycenter of a non-empty set of 2D weighted
points. K is Kernel traits<std::iterator traits<InputIterator>
::value type::first type>::Kernel. The value type must be
std::pair<K::Point 2, K::FT>.
Precondition: first != beyond, and the sum of the weights is
non-zero.

template < typename InputIterator, typename K >
K::Point 2 barycenter( InputIterator first, InputIterator beyond, K k)

computes the barycenter of a non-empty set of 2D weighted
points. The value type must be std::pair<K::Point 2,
K::FT>.
Precondition: first != beyond, and the sum of the weights is
non-zero.

template < typename InputIterator >
K::Point 3 barycenter( InputIterator first, InputIterator beyond)

computes the barycenter of a non-empty set of 3D weighted
points. K is Kernel traits<std::iterator traits<InputIterator>
::value type::first type>::Kernel. The value type must be
std::pair<K::Point 3, K::FT>.
Precondition: first != beyond, and the sum of the weights is
non-zero.

template < typename InputIterator, typename K >
K::Point 3 barycenter( InputIterator first, InputIterator beyond, K k)

computes the barycenter of a non-empty set of 3D weighted
points. The value type must be std::pair<K::Point 3,
K::FT>.
Precondition: first != beyond, and the sum of the weights is
non-zero.
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CGAL::centroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3969
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CGAL::linear least squares fitting 2

Definition

The function linear least squares fitting 2 computes the 2D best fitting line (in the least squares sense) of a
set of 2D objects such as points, segments, triangles, iso rectangles, circles or disks.

The best fitting line minimizes the sum of squared distances from all points comprising these objects to their
orthogonal projections onto the line. It can be shown that this line goes through the centroid of the set. This
problem is equivalent to search for the linear sub-space which maximizes the variance of projected points (sum
of squared distances to the centroid). Internally we solve this problem by eigen decomposition of the covariance
matrix of the whole set. Note that the 2× 2 covariance matrix is computed internally in closed form and not
by point sampling the objects. Eigenvectors corresponding to large eigenvalues are the directions in which
the data has strong component, or equivalently large variance. If one eigenvalue is null the fit is perfect as the
sum of squared distance from all points to their projection onto the best line is null. If the two eigenvalues are
the same there is no preferable sub-space and all lines going through the centroid share the same fitting property.

#include <CGAL/linear least squares fitting 2.h>

template < typename InputIterator, typename K, typename Tag >
typename K::FT linear least squares fitting 2( InputIterator first,

InputIterator beyond,
typename K::Line 2 & line,
typename K::Point 2 & centroid,
Tag tag,
K k)

computes the best fitting 2D line of a 2D object set in the
range [first,beyond). The value returned is a fitting quality
between 0 and 1, where 0 means that the variance is the same
along any line (a horizontal line going through the centroid
is output by default), and 1 means that the variance is null
orthogonally to the best fitting line (hence the fit is perfect).
Precondition: first != beyond.

The tag tag identifies the dimension to be considered from the objects. For point sets it should be 0. For
segments it can be 1 or 0 according to whether one wants to fit the whole segment or just their end points. For
triangles it can range from 0 to 2 according to whether one wants to fit either the triangle points, the segments
or the whole triangles. For rectangles it can range from 0 to 2 according to whether one wants to fit either the
corner points, the segments, or the whole rectangles. For circles it can be 1 or 2 according to whether one wants
to fit either the circles or the whole discs. For triangles it ranges from 0 to 2 according to whether one wants to
fit either the points, the segments or the whole triangles.

The class K is the kernel in which the type InputIterator::value type is defined. It can be omitted and deduced
automatically from the value type.

Requirements
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1. InputIterator::value type is equivalent to K::Point 2 or K::Segment 2 or K::Triangle 2 or K::Rectangle
2 or K::Circle 2.

2. line is the best fitting line computed.

3. centroid is the centroid computed. This parameter is optional and can be omitted.

4. tag is the tag identifying the dimension to be considered from the objects. It should be one of Dimension
tag<0>, Dimension tag<1> or Dimension tag<2>. Also, it should not be of dimension greater than the
geometry of the object. For example, a Segment can not have a Dimension tag<2> tag.
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CGAL::linear least squares fitting 3

Definition

Function linear least squares fitting 3 computes the best fitting 3D line or plane (in the least squares sense) of
a set of 3D objects such as points, segments, triangles, spheres, balls, cuboids or tetrahedra.

The best fitting linear sub-space (here line or plane) minimizes the sum of squared distances from all points
comprising these objects to their orthogonal projections onto this linear subspace. It can be shown that the best
line or plane goes through the centroid of the set. This problem is equivalent to search for the linear sub-space
which maximizes the variance of projected points (sum of squared distances to the centroid). Internally we
solve this problem by eigen decomposition of the covariance matrix of the whole set. Note that the 3× 3
covariance matrix is computed internally in closed form and not by point sampling the objects. Eigenvectors
corresponding to large eigenvalues are the directions in which the data has strong component, or equivalently
large variance.

The fitting quality property is characterized by the values of the three eigenvalues. When all three values are
distinct the best linear subspace is uniquely determined, be it a line or a plane. When all three eigenvalues are
equal there is no preferable sub-space and any line or plane going through the centroid share the same fitting
property (a horizontal plane or a line along the x axis are returned by default). A best fitting line is uniquely
determined as soon as the largest eigenvalue is different from the two others, otherwise all lines contained in
the best fitting plane share the same fitting property. A best fitting plane is uniquely determined as soon as the
smallest eigenvalue is different from the two others, otherwise all planes going through the best fitting line share
the same fitting property.

#include <CGAL/linear least squares fitting 3.h>

template < typename InputIterator, typename K, typename Tag >
typename K::FT linear least squares fitting 3( InputIterator first,

InputIterator beyond,
typename K::Line 3& line,
typename K::Point 3& centroid,
Tag tag,
K k)

computes the best fitting 3D line of a 3D object set in the
range [first,beyond). The value returned is a fitting quality
between 0 and 1, where 0 means that the variance is the same
along any line contained within the best fitting plane, and 1
means that the variance is null orthogonally to the best fitting
line (hence the fit is perfect).

The tag tag identifies the dimension to be considered from the objects. For point sets it should be 0. For segment
sets it could be 1 or 0 according to whether one wants to fit the entire segments or just the end points. For triangle
sets it can range from 0 to 2 according to whether one wants to fit either the corner points, the segments or the
whole triangles. For cuboid sets it can range from 0 to 3 according to whether one wants to fit either the corners,
the segments, the faces or the whole solid cuboids. For sphere sets it can be 2 or 3 according to whether one
wants to fit either the surface of the spheres or the whole solid balls. For tetrahedron sets it can range from 0 to
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3 according to whether one wants to fit either the points, the segments, the surface triangles or the whole solid
tetrahedra.

The class K is the kernel in which the type InputIterator::value type is defined. It can be omitted and deduced
automatically from the value type.

Requirements

1. InputIterator::value type can be either K::Point 3, K::Segment 3, Triangle 3, Cuboid 3, Sphere 3 or
Tetrahedron 3.

2. line is the best fitting line computed.

3. centroid is the centroid computed. This parameter is optional and can be omitted.

4. tag is the tag identifying the dimension to be considered from the objects. It should range from
Dimension tag<0> to Dimension tag<3>. Also, it should not be of a dimension greater nor smaller than
the geometry of the object. For example, a Triangle can not have a Dimension tag<3> tag. A Segment can
not have a Dimension tag<2> nor a Dimension tag<3> tag. A Sphere can not have a Dimension tag<0>
nor a Dimension tag<1> tag.

template < typename InputIterator, typename K, typename Tag >
typename K::FT linear least squares fitting 3( InputIterator first,

InputIterator beyond,
typename K::Plane 3& plane,
typename K::Point 3& centroid,
Tag tag,
K k)

computes the best fitting 3D plane of a 3D object set in the
range [first,beyond). The value returned is a fitting quality
between 0 and 1, where 0 means that the variance is the same
along any plane going through the best fitting line, and 1
means that the variance is null orthogonally to the best fit-
ting plane (hence the fit is perfect).

The class K is the kernel in which the type InputIterator::value type is defined. It can be omitted and deduced
automatically from the value type. The tag tag identifies the dimension to be considered from the objects (see
above).

Requirements

1. InputIterator::value type can either be K::Point 3, K::Segment 3, Triangle 3, Cuboid 3, Sphere 3 or
Tetrahedron 3.

2. plane is the best fitting plane computed.

3. centroid is the centroid computed. This parameter is optional and can be omitted.

4. tag is the tag identifying the dimension to be considered from the objects. It should range from
Dimension tag<0> to Dimension tag<3>. Also, it should not be of a dimension greater nor smaller than
the geometry of the object. For example, a Triangle can not have a Dimension tag<3> tag. A Segment can
not have a Dimension tag<2> nor a Dimension tag<3> tag. A Sphere can not have a Dimension tag<0>
nor a Dimension tag<1> tag.
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2D and Surface Function Interpolation
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This chapter describes CGAL’s interpolation package which implements natural neighbor coordinate functions
as well as different methods for scattered data interpolation most of which are based on natural neighbor co-
ordinates. The functions for computing natural neighbor coordinates in Euclidean space are described in Sec-
tion 70.1, the functions concerning the coordinate and neighbor computation on surfaces are discussed in Sec-
tion 70.2. In Section 70.3, we describe the different interpolation functions.

Scattered data interpolation solves the following problem: given measures of a function on a set of discrete data
points, the task is to interpolate this function on an arbitrary query point. More formally, let P = {p1, . . . ,pn}
be a set of n points in R2 or R3 and Φ be a scalar function defined on the convex hull of P . We assume that
the function values are known at the points of P , i.e. to each pi ∈ P , we associate zi = Φ(pi). Sometimes, the
gradient of Φ is also known at pi. It is denoted gi = ∇Φ(pi). The interpolation is carried out for an arbitrary
query point x on the convex hull of P .
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70.1 Natural Neighbor Coordinates

70.1.1 Introduction

Natural neighbor interpolation has been introduced by Sibson [Sib81] to interpolate multivariate scattered data.
Given a set of data points P , the natural neighbor coordinates associated to P are defined from the Voronoi
diagram of P . When simulating the insertion of a query point x into the Voronoi diagram of P , the potential
Voronoi cell of x “steals” some parts from the existing cells.

x

p1

p5

p2

p3

p4

π3(x)

Figure 70.1: 2D example: x has five natural neighbors p1, . . . ,p5. The natural neighbor coordinate λ3(x) is the
ratio of the area of the pink polygon, π3(x), over the area of the total highlighted zone.

Let π(x) denote the volume of the potential Voronoi cell of x and πi(x) denote the volume of the sub-cell that
would be stolen from the cell of pi by the cell of x. The natural neighbor coordinate of x with respect to the data
point pi ∈ P is defined by

λi(x) =
πi(x)
π(x)

.

A two-dimensional example is depicted in Figure 70.1.

Various papers ([Sib80], [Far90], [Pip93], [Bro97], [HS00]) show that the natural neighbor coordinates have the
following properties:

1. x = ∑
n
i=1 λi(x)pi (barycentric coordinate property).

2. For any i, j ≤ n,λi(pj) = δi j, where δi j is the Kronecker symbol.

3. ∑
n
i=1 λi(x) = 1 (partition of unity property).

For the case where the query point x is located on the envelope of the convex hull of P , the potential Voronoi
cell of x becomes infinite and :

π(x) = ∞

λi(x) = 0 for all data point pi of P except for the two endpoints, let’s say p and q ,of the edge where x lies.

The natural neighbor coordinate of x with respect to these endpoints p and q will be :

λp(x) = ‖x−q‖
‖q−p‖

λq(x) = ‖x−p‖
‖q−p‖
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Furthermore, Piper [Pip93] shows that the coordinate functions are continuous in the convex hull of P and
continuously differentiable except on the data points P .

The interpolation package of CGAL provides functions to compute natural neighbor coordinates for 2D and
3D points with respect to Voronoi diagrams as well as with respect to power diagrams (only 2D), i.e. for
weighted points. Refer to the reference pages natural neighbor coordinates 2, natural neighbor coordinates
3 and regular neighbor coordinates 2.

In addition, the package provides functions to compute natural neighbor coordinates on well sampled point set
surfaces. See Section 70.2 and the reference page surface neighbor coordinates 3 for further information.

70.1.2 Implementation

Given a Delaunay triangulation or a Regular triangulation, the vertices in conflict with the query point are
determined. The areas πi(x) are computed by triangulating the Voronoi sub-cells. The normalization factor
π(x) is also returned. If the query point is already located and/or the boundary edges of the conflict zone are
already determined, alternative functions allow to avoid the re-computation.

70.1.3 Example for Natural Neighbor Coordinates

The signature of all coordinate computation functions is about the same.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/natural_neighbor_coordinates_2.h>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Delaunay_triangulation_2<K>

Delaunay_triangulation;
typedef std::vector< std::pair< K::Point_2, K::FT > >

Point_coordinate_vector;

int main()
{

Delaunay_triangulation dt;

for (int y=0 ; y<3 ; y++)
for (int x=0 ; x<3 ; x++)

dt.insert(K::Point_2(x,y));

//coordinate computation
K::Point_2 p(1.2, 0.7);
Point_coordinate_vector coords;
CGAL::Triple<

std::back_insert_iterator<Point_coordinate_vector>,
K::FT, bool> result =
CGAL::natural_neighbor_coordinates_2(dt, p,

std::back_inserter(coords));
if(!result.third){

std::cout << "The coordinate computation was not successful."
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<< std::endl;
std::cout << "The point (" <<p << ") lies outside the convex hull."

<< std::endl;
}
K::FT norm = result.second;
std::cout << "Coordinate computation successful." << std::endl;
std::cout << "Normalization factor: " <<norm << std::endl;
std::cout << "done" << std::endl;
return 0;

}� �
File: examples/Interpolation/nn_coordinates_2.cpp

70.1.4 Example for Regular Neighbor Coordinates

For regular neighbor coordinates, it is sufficient to replace the name of the function and the type of triangulation
passed as parameter. A special traits class is needed.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Regular_triangulation_2.h>
#include <CGAL/Regular_triangulation_euclidean_traits_2.h>
#include <CGAL/regular_neighbor_coordinates_2.h>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Regular_triangulation_euclidean_traits_2<K> Gt;
typedef CGAL::Regular_triangulation_2<Gt>

Regular_triangulation;
typedef Regular_triangulation::Weighted_point Weighted_point;
typedef std::vector< std::pair< Weighted_point, K::FT > >

Point_coordinate_vector;

int main()
{

Regular_triangulation rt;

for (int y=0 ; y<3 ; y++)
for (int x=0 ; x<3 ; x++)

rt.insert(Weighted_point(K::Point_2(x,y), 0));

//coordinate computation
Weighted_point wp(K::Point_2(1.2, 0.7),2);
Point_coordinate_vector coords;
CGAL::Triple<

std::back_insert_iterator<Point_coordinate_vector>,
K::FT, bool> result =
CGAL::regular_neighbor_coordinates_2(rt, wp,

std::back_inserter(coords));
if(!result.third){

std::cout << "The coordinate computation was not successful."
<< std::endl;
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std::cout << "The point (" <<wp.point() << ") lies outside the convex
hull."

<< std::endl;
}
K::FT norm = result.second;
std::cout << "Coordinate computation successful." << std::endl;
std::cout << "Normalization factor: " <<norm << std::endl;

std::cout << "done" << std::endl;
return 0;

}� �
File: examples/Interpolation/rn_coordinates_2.cpp

For surface neighbor coordinates, the surface normal at the query point must be provided, see Section 70.2.

70.2 Surface Natural Neighbor Coordinates and Surface Neighbors

This section introduces the functions to compute natural neighbor coordinates and surface neighbors associated
to a set of sample points issued from a surface S and given a query point x on S . We suppose that S is a closed
and compact surface of R3, and let P = {p1, . . . ,pn} be an ε-sample of S (refer to Amenta and Bern [AB99]).
The concepts are based on the definition of Boissonnat and Flötotto [BF02], [Flö03b]. Both references contain
a thorough description of the requirements and the mathematical properties.

70.2.1 Introduction

Two observations lead to the definition of surface neighbors and surface neighbor coordinates: First, it is clear
that the tangent plane Tx of the surface S at the point x∈ S approximates S in the neighborhood of x. It has been
shown in [BF02] that, if the surface S is well sampled with respect to the curvature and the local thickness of S ,
i.e. it is an ε-sample, the intersection of the tangent plane Tx with the Voronoi cell of x in the Voronoi diagram
of P ∪{x} has a small diameter. Consequently, inside this Voronoi cell, the tangent plane Tx is a reasonable
approximation of S . Furthermore, the second observation allows to compute this intersection diagram easily:
one can show using Pythagoras’ Theorem that the intersection of a three-dimensional Voronoi diagram with a
plane H is a two-dimensional power diagram. The points defining the power diagram are the projections of the
points in P onto H , each point weighted with its negative square distance to H . Algorithms for the computation
of power diagrams via the dual regular triangulation are well known and for example provided by CGAL in the
class Regular triangulation 2<Gt, Tds>.

70.2.2 Implementation

Voronoi Intersection Diagrams

In CGAL, the regular triangulation dual to the intersection of a 3D Voronoi diagram with a plane H can be com-
puted by instantiating the Regular triangulation 2<Gt, Tds> class with the traits class Voronoi intersection
2 traits 3<K>. This traits class contains a point and a vector as class member which define the plane H . All
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predicates and constructions used by Regular triangulation 2<Gt, Tds> are replaced by the corresponding oper-
ators on three-dimensional points. For example, the power test predicate (which takes three weighted 2D points
p′, q′, r′ of the regular triangulation and tests the power distance of a fourth point t ′ with respect to the power
circle orthogonal to p, q, r) is replaced by a Side of plane centered sphere 2 3 predicate that tests the position
of a 3D point t with respect to the sphere centered on the plane H passing through the 3D points p, q, r. This
approach allows to avoid the explicit constructions of the projected points and the weights which are very prone
to rounding errors.

Natural Neighbor Coordinates on Surfaces

The computation of natural neighbor coordinates on surfaces is based upon the computation of regular neighbor
coordinates with respect to the regular triangulation that is dual to Vor(P )∩Tx, the intersection of Tx and the
Voronoi diagram of P , via the function regular neighbor coordinates 2.

Of course, we might introduce all data points P into this regular triangulation. However, this is not necessary
because we are only interested in the cell of x. It is sufficient to guarantee that all surface neighbors of the
query point x are among the input points that are passed as argument to the function. The sample points P can
be filtered for example by distance, e.g. using range search or k-nearest neighbor queries, or with the help of
the 3D Delaunay triangulation since the surface neighbors are necessarily a subset of the natural neighbors of
the query point in this triangulation. CGAL provides a function that encapsulates the filtering based on the 3D
Delaunay triangulation. For input points filtered by distance, functions are provided that indicate whether or
not points that lie outside the input range (i.e. points that are further from x than the furthest input point) can
still influence the result. This allows to iteratively enlarge the set of input points until the range is sufficient to
certify the result.

Surface Neighbors

The surface neighbors of the query point are its neighbors in the regular triangulation that is dual to Vor(P )∩
Tx, the intersection of Tx and the Voronoi diagram of P . As for surface neighbor coordinates, this regular
triangulation is computed and the same kind of filtering of the data points as well as the certification described
above is provided.

70.2.3 Example for Surface Neighbor Coordinates� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

#include <CGAL/point_generators_3.h>
#include <CGAL/algorithm.h>
#include <CGAL/Origin.h>

#include <CGAL/surface_neighbor_coordinates_3.h>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::FT Coord_type;
typedef K::Point_3 Point_3;
typedef K::Vector_3 Vector_3;
typedef std::vector< std::pair< Point_3, K::FT > >

Point_coordinate_vector;
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int main()
{

int n=100;
std::vector< Point_3> points;
points.reserve(n);

std::cout << "Generate " << n << " random points on a sphere."
<< std::endl;

CGAL::Random_points_on_sphere_3<Point_3> g(1);
CGAL::cpp0x::copy_n( g, n, std::back_inserter(points));

Point_3 p(1, 0,0);
Vector_3 normal(p-CGAL::ORIGIN);
std::cout << "Compute surface neighbor coordinates for "

<< p << std::endl;
Point_coordinate_vector coords;
CGAL::Triple< std::back_insert_iterator<Point_coordinate_vector>,

K::FT, bool> result =
CGAL::surface_neighbor_coordinates_3(points.begin(), points.end(),

p, normal,
std::back_inserter(coords),
K());

if(!result.third){
//Undersampling:
std::cout << "The coordinate computation was not successful."

<< std::endl;
return 0;

}
K::FT norm = result.second;

std::cout << "Testing the barycentric property " << std::endl;
Point_3 b(0, 0,0);
for(std::vector< std::pair< Point_3, Coord_type > >::const_iterator

it = coords.begin(); it!=coords.end(); ++it)
b = b + (it->second/norm)* (it->first - CGAL::ORIGIN);

std::cout <<" weighted barycenter: " << b <<std::endl;
std::cout << " squared distance: " <<

CGAL::squared_distance(p,b) <<std::endl;

std::cout << "done" << std::endl;
return 0;

}� �

File: examples/Interpolation/surface_neighbor_coordinates_3.cpp
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70.3 Interpolation Methods

70.3.1 Introduction

Linear Precision Interpolation

Sibson [Sib81] defines a very simple interpolant that re-produces linear functions exactly. The interpolation of
Φ(x) is given as the linear combination of the neighbors’ function values weighted by the coordinates:

Z0(x) = ∑
i

λi(x)zi.

Indeed, if zi = a+btpi for all natural neighbors of x, we have

Z0(x) = ∑
i

λi(x)(a+btpi) = a+btx

by the barycentric coordinate property. The first example in Subsection 70.3.3 shows how the function is called.

Sibson’s C1 Continuous Interpolant

In [Sib81], Sibson describes a second interpolation method that relies also on the function gradient gi for all
pi ∈ P . It is C1 continuous with gradient gi at pi. Spherical quadrics of the form Φ(x) = a + btx + γ xtx are
reproduced exactly. The proof relies on the barycentric coordinate property of the natural neighbor coordinates
and assumes that the gradient of Φ at the data points is known or approximated from the function values as
described in [Sib81] (see Section 70.3.2).

Sibson’s Z1 interpolant is a combination of the linear interpolant Z0 and an interpolant ξ which is the weighted
sum of the first degree functions

ξi(x) = zi +gi
t(x−pi), ξ(x) =

∑i
λi(x)
‖x−pi‖

ξi(x)

∑i
λi(x)
‖x−pi‖

.

Sibson observed that the combination of Z0 and ξ reconstructs exactly a spherical quadric if they are mixed as
follows:

Z1(x) =
α(x)Z0(x)+β(x)ξ(x)

α(x)+β(x)
where α(x) =

∑i λi(x) ‖x−pi‖2
f (‖x−pi‖)

∑i
λi(x)

f (‖x−pi‖)

and β(x) = ∑
i

λi(x)‖x−pi‖2,

where in Sibson’s original work, f (‖x−pi‖) = ‖x−pi‖.

CGAL contains a second implementation with f (‖x−pi‖) = ‖x−pi‖2 which is less demanding on the number
type because it avoids the square-root computation needed to compute the distance ‖x−pi‖. The theoretical
guarantees are the same (see [Flö03b]). Simply, the smaller the slope of f around f (0), the faster the interpolant
approaches ξi as x→ pi.

Farin’s C1 Continuous Interpolant

Farin [Far90] extended Sibson’s work and realizes a C1 continuous interpolant by embedding natural neighbor
coordinates in the Bernstein-Bézier representation of a cubic simplex. If the gradient of Φ at the data points is
known, this interpolant reproduces quadratic functions exactly. The function gradient can be approximated from
the function values by Sibson’s method [Sib81] (see Section 70.3.2) which is exact only for spherical quadrics.
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Quadratic Precision Interpolants

Knowing the gradient gi for all pi ∈ P , we formulate a very simple interpolant that reproduces exactly quadratic
functions. This interpolant is not C1 continuous in general. It is defined as follows:

I1(x) = ∑
i

λi(x)(zi +
1
2

gi
t(x−pi))

70.3.2 Gradient Fitting

Sibson describes a method to approximate the gradient of the function f from the function values on the data
sites. For the data point pi, we determine

gi = min
g ∑

j

λ j(pi)
‖pi−pj‖2

(
z j− (zi +gt(pj−pi))

)
,

where λ j(pi) is the natural neighbor coordinate of pi with respect to pi associated to P \ {pi}. For spherical
quadrics, the result is exact.

CGAL provides functions to approximate the gradients of all data points that are inside the convex hull. There
is one function for each type of natural neighbor coordinate (i.e. natural neighbor coordinates 2, regular
neighbor coordinates 2).

70.3.3 Example for Linear Interpolation� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>

#include <CGAL/Interpolation_traits_2.h>
#include <CGAL/natural_neighbor_coordinates_2.h>
#include <CGAL/interpolation_functions.h>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Delaunay_triangulation_2<K>

Delaunay_triangulation;
typedef CGAL::Interpolation_traits_2<K> Traits;
typedef K::FT Coord_type;
typedef K::Point_2 Point;

int main()
{

Delaunay_triangulation T;
std::map<Point, Coord_type, K::Less_xy_2> function_values;
typedef CGAL::Data_access< std::map<Point, Coord_type, K::Less_xy_2 > >

Value_access;

Coord_type a(0.25), bx(1.3), by(-0.7);

for (int y=0 ; y<3 ; y++)
for (int x=0 ; x<3 ; x++){

K::Point_2 p(x,y);
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T.insert(p);
function_values.insert(std::make_pair(p,a + bx* x+ by*y));

}
//coordinate computation
K::Point_2 p(1.3,0.34);
std::vector< std::pair< Point, Coord_type > > coords;
Coord_type norm =

CGAL::natural_neighbor_coordinates_2
(T, p,std::back_inserter(coords)).second;

Coord_type res = CGAL::linear_interpolation(coords.begin(),
coords.end(),

norm,

Value_access(function_values));

std::cout << " Tested interpolation on " << p << " interpolation: "
<< res << " exact: " << a + bx* p.x()+ by* p.y()<< std::endl;

std::cout << "done" << std::endl;
return 0;

}� �
File: examples/Interpolation/linear_interpolation_2.cpp

70.3.4 Example for Sibson’s C1 Interpolation Scheme with Gradient Estimation� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>

#include <CGAL/natural_neighbor_coordinates_2.h>
#include <CGAL/Interpolation_gradient_fitting_traits_2.h>
#include <CGAL/sibson_gradient_fitting.h>
#include <CGAL/interpolation_functions.h>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Delaunay_triangulation_2<K>

Delaunay_triangulation;
typedef CGAL::Interpolation_gradient_fitting_traits_2<K> Traits;

typedef K::FT Coord_type;
typedef K::Point_2 Point;
typedef std::map<Point, Coord_type, K::Less_xy_2> Point_value_map

;
typedef std::map<Point, K::Vector_2 , K::Less_xy_2 >

Point_vector_map;

int main()
{

Delaunay_triangulation T;

Point_value_map function_values;
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Point_vector_map function_gradients;

//parameters for spherical function:
Coord_type a(0.25), bx(1.3), by(-0.7), c(0.2);
for (int y=0 ; y<4 ; y++)

for (int x=0 ; x<4 ; x++){
K::Point_2 p(x,y);
T.insert(p);
function_values.insert(std::make_pair(p,a + bx* x+ by*y +

c*(x*x+y*y)));
}

sibson_gradient_fitting_nn_2(T,std::inserter(function_gradients,

function_gradients.begin()),
CGAL::Data_access<Point_value_map>
(function_values),
Traits());

//coordiante computation
K::Point_2 p(1.6,1.4);
std::vector< std::pair< Point, Coord_type > > coords;
Coord_type norm =

CGAL::natural_neighbor_coordinates_2(T, p,std::back_inserter
(coords)).second;

//Sibson interpolant: version without sqrt:
std::pair<Coord_type, bool> res =

CGAL::sibson_c1_interpolation_square
(coords.begin(),
coords.end(),norm,p,
CGAL::Data_access<Point_value_map>(function_values),
CGAL::Data_access<Point_vector_map>(function_gradients),
Traits());

if(res.second)
std::cout << " Tested interpolation on " << p

<< " interpolation: " << res.first << " exact: "
<< a + bx * p.x()+ by * p.y()+ c*(p.x()*p.x()+p.y()*p.y())
<< std::endl;

else
std::cout << "Cˆ1 Interpolation not successful." << std::endl

<< " not all function_gradients are provided." <<
std::endl

<< " You may resort to linear interpolation." << std::endl;

std::cout << "done" << std::endl;
return 0;

}� �

File: examples/Interpolation/sibson_interpolation_2.cpp
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An additional example in the distribution compares numerically the errors of the different interpolation functions
with respect to a known function. It is distributed in the examples directory.
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2D and Surface Function Interpolation
Reference Manual
Julia Flötotto

Scattered data interpolation solves the following problem: given measures of a function on a set of discrete data
points, the task is to interpolate this function on an arbitrary query point.

If the function is a linear function and given barycentric coordinates that allow to express the query point as the
convex combination of some data points, the function can be exactly interpolated. If the function gradients are
known, we can exactly interpolate quadratic functions given barycentric coordinates. Any further properties of
these interpolation functions depend on the properties of the barycentric coordinates. They are provided in this
package under the name linear interpolation and quadratic interpolation.

Natural neighbor interpolation

Natural neighbor coordinates are defined by Sibson in 1980 and are based on the Voronoi diagram of the data
points. Interpolation methods based on natural neighbor coordinates are particularly interesting because they
adapt easily to non-uniform and highly anisotropic data. This package contains Sibson’s C1 continuous inter-
polation method which interpolates exactly spherical quadrics (of the form Φ(x) = a+btx+ γ xtx) and Farin’s
C1 continuous interpolation method based on Bernstein-Bézier techniques and interpolating exactly quadratic
functions – assuming that the function gradient is known. In addition, Sibson defines a method to approximate
the function gradients for data points that are in the interior of the convex hull. This method is exact for spherical
quadrics.

This CGAL package implements Sibson’s and Farin’s interpolation functions as well as Sibson’s function gradi-
ent fitting method. Furthermore, it provides functions to compute the natural neighbor coordinates with respect
to a two-dimensional Voronoi diagram (i. e., from the Delaunay triangulation of the data points) and to a
two-dimensional power diagram for weighted points (i. e., from their regular triangulation). Natural neighbor
coordinates on closed and well-sampled surfaces can also be computed if the normal to the surface at the query
point is known. The latter coordinates are only approximately barycentric, see [BF02].

For a more thorough introduction see the user manual.

70.4 Classified Reference Pages

3991



Concepts

InterpolationTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4001
GradientFittingTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4010

Interpolation Functions

CGAL::linear interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3993
CGAL::sibson c1 interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3994
CGAL::farin c1 interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3996
CGAL::quadratic interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3998
CGAL::sibson gradient fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4008

CGAL::Interpolation traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4003
CGAL::Interpolation gradient fitting traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4012

Natural neighbor coordinate computation

CGAL::natural neighbor coordinates 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4004
CGAL::regular neighbor coordinates 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4006

Surface neighbor and surface neighbor coordinate computation

CGAL::Voronoi intersection 2 traits 3<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4014
CGAL::surface neighbor coordinates 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4016
CGAL::surface neighbors 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4020

70.5 Alphabetical List of Reference Pages

Data access<Map> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4000
farin c1 interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3996
GradientFittingTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4010
InterpolationTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4001
Interpolation gradient fitting traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4012
Interpolation traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4003
linear interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3993
natural neighbor coordinates 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4004
quadratic interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3998
regular neighbor coordinates 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4006
sibson c1 interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3994
sibson gradient fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4008
surface neighbors 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4020
surface neighbor coordinates 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4016
Voronoi intersection 2 traits 3<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4014

3992



F
un

ct
io

n

CGAL::linear interpolation

Definition

The function linear interpolation computes the weighted sum of the function values which must be provided
via a functor.

#include <CGAL/interpolation functions.h>

template < class ForwardIterator, class Functor>
typename Functor::result type::first type

linear interpolation( ForwardIterator first,
ForwardIterator beyond,
typename std::iterator traits<ForwardIterator>::value

type::second type norm,
Functor function values)

ForwardIterator::value type is a pair associating a point to
a (non-normalized) barycentric coordinate. norm is the nor-
malization factor. Given a point, the functor function values
allows to access a pair of a function value and a Boolean.
The Boolean indicates whether the function value could be
retrieved correctly. This function generates the interpolated
function value as the weighted sum of the values correspond-
ing to each point of the point/coordinate pairs in the range
[ first, beyond ).
Precondition: norm 6= 0. function value(p).second == true
for all points p of the point/coordinate pairs in the range
[ first, beyond ).

Requirements

1. ForwardIterator::value type is a pair of point/coordinate value, thus ForwardIterator::value type::first
type is equivalent to a point and ForwardIterator::value type::second type is a field number type.

2. Functor::argument type must be equivalent to ForwardIterator::value type::first type and
Functor::result type is a pair of the function value type and a Boolean value. The function value type
must provide a multiplication and addition operation with the field number type ForwardIterator::value
type::second type and a constructor with argument 0. A model of the functor is provided by the struct
Data access. It must be instantiated accordingly with an associative container (e.g. STL std::map)
having the point type as key type and the function value type as mapped type.

See Also

CGAL::Data access<Map> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4000
CGAL::natural neighbor coordinates 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4004
CGAL::regular neighbor coordinates 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4006
CGAL::surface neighbor coordinates 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4016
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CGAL::sibson c1 interpolation

Definition

The function sibson c1 interpolation interpolates the function values and the gradients that are provided by
functors following the method described in [Sib81].

Parameters

The template parameter Traits is to be instantiated with a model of InterpolationTraits. ForwardIterator::value
type is a pair associating a point to a (non-normalized) barycentric coordinate. norm is the normalization factor.
The range [ first,beyond ) contains the barycentric coordinates for the query point p. The functor function value
allows to access the value of the interpolated function given a point. function gradient allows to access the
function gradient given a point.

#include <CGAL/interpolation functions.h>

template < class ForwardIterator, class Functor, class GradFunctor, class Traits>
std::pair< typename Functor::result type, bool>

sibson c1 interpolation( ForwardIterator first,
ForwardIterator beyond,
typename std::iterator traits<ForwardIterator>::value

type::second type norm,
typename std::iterator traits<ForwardIterator>::value

type:: first type p,
Functor function value,
GradFunctor function gradient,
Traits traits)

This function generates the interpolated function value at the
point p using Sibson’s Z1 interpolant [Sib81].
If the functor function gradient cannot supply the gradient
of a point, the function returns a pair where the Boolean is
set to false. If the interpolation was successful, the pair con-
tains the interpolated function value as first and true as sec-
ond value.
Precondition: norm 6= 0. function value(p).second == true
for all points p of the point/coordinate pairs in the range
[ first, beyond ).

Requirements

1. Traits is a model of the concept InterpolationTraits.

2. ForwardIterator::value type is a point/coordinate pair. Precisely ForwardIterator::value type::first
type is equivalent to Traits::Point d and ForwardIterator::value type::second type is equivalent to
Traits::FT .
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3. Functor::argument type must be equivalent to Traits::Point d and Functor::result type is a pair of the
function value type and a Boolean. The function value type must provide a multiplication and addition
operation with the type Traits::FT as well as a constructor with argument 0.

4. GradFunctor::argument type must be equivalent to Traits::Point d and Functor::result type is a pair of
the function’s gradient type and a Boolean. The function gradient type must provide a multiplication
operation with Traits::Vector d.

5. A model of the functor types Functor (resp. GradFunctor) is provided by the struct Data access. It must
be instantiated accordingly with an associative container (e.g. STL std::map) having the point type as
key type and the function value type (resp. function gradient type) as mapped type.

6. The number type FT provided by Traits must support the square root operation sqrt().

template < class ForwardIterator, class Functor, class GradFunctor, class Traits>
typename Functor::result type

sibson c1 interpolation square( ForwardIterator first,
ForwardIterator beyond,
typename std::iterator traits<ForwardIterator>

::value type::second type norm,
typename std::iterator traits<ForwardIterator>

::value type::first type p,
Functor function value,
GradFunctor function gradient,
Traits traits)

The same as above except that no square root operation is
needed for FT .

See Also

InterpolationTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4001
GradientFittingTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4010
CGAL::Data access<Map> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4000
CGAL::sibson gradient fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4008
CGAL::linear interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3993
CGAL::Interpolation traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4003
CGAL::Interpolation gradient fitting traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4012
CGAL::natural neighbor coordinates 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4004
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CGAL::farin c1 interpolation

Definition

The function farin c1 interpolation interpolates the function values and the gradients that are provided by func-
tors using the method described in [Far90].

#include <CGAL/interpolation functions.h>

Parameters

RandomAccessIterator::value type is a pair associating a point to a (non-normalized) barycentric coordinate.
See sibson c1 interpolation for the other parameters.

template < class RandomAccessIterator, class Functor, class GradFunctor, class Traits>
typename Functor::result type

farin c1 interpolation( RandomAccessIterator first,
RandomAccessIterator beyond,
typename std::iterator traits<RandomAccessIterator>::value

type::second type norm,
typename std::iterator traits<ForwardIterator>::value

type::first type p,
Functor function value,
GradFunctor function gradient,
Traits traits)

generates the interpolated function value computed
by Farin’s interpolant [Far90]. See also sibson c1
interpolation.
Precondition: norm 6= 0. function value(p).second == true
for all points p of the point/coordinate pairs in the range
[ first, beyond ).
Precondition: The range [ first, beyond ) contains either one
or more than three elements.

Requirements

Same requirements as for sibson c1 interpolation only the iterator must provide random access and Traits::FT
does not need to provide the square root operation.

See Also

CGAL::Data access<Map> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4000
CGAL::linear interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3993
CGAL::sibson c1 interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3994
CGAL::sibson gradient fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4008
CGAL::Interpolation traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4003
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CGAL::quadratic interpolation

Definition

The function quadratic interpolation interpolates the function values and first degree functions defined from
the function gradients. Both, function values and gradients, must be provided by functors.

#include <CGAL/interpolation functions.h>

Parameters

See sibson c1 interpolation.

template < class ForwardIterator, class Functor, class GradFunctor, class Traits>
typename Functor::result type

quadratic interpolation( ForwardIterator first,
ForwardIterator beyond,
typename std::iterator traits<ForwardIterator>:: value

type::second type norm,
typename std::iterator traits<ForwardIterator>::value

type:: first type p,
Functor function value,
GradFunctor function gradient,
Traits traits)

This function generates the interpolated function value as the
weighted sum of the values plus a linear term in the gradient
for each point of the point/coordinate pairs in the range [
first, beyond ). See also sibson c1 interpolation.
Precondition: norm 6= 0 function value(p).second == true
for all points p of the point/coordinate pairs in the range
[ first, beyond ).

Requirements

Same requirements as for sibson c1 interpolation only that Traits::FT does not need to provide the square root
operation.

See Also

InterpolationTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4001
GradientFittingTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4010
CGAL::Data access<Map> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4000
CGAL::sibson gradient fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4008
CGAL::linear interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3993
CGAL::Interpolation traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4003
CGAL::Interpolation gradient fitting traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4012
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CGAL::Data access<Map>

Definition

The struct Data access<Map> implements a functor that allows to retrieve data from an associative container.
The functor keeps a reference to the container. Given an instance of the container’s key type, it returns a pair of
the container’s value type and a Boolean indicating whether the retrieval was successful.

This class can be used to provide the values and gradients of the interpolation functions.

#include <CGAL/interpolation functions.h>

Parameters

The class Data access<Map> has the container type Map as template parameter.

Types

typedef Map::mapped type

Data type;
typedef Map::key type

Key type;

Creation

Data access<Map> data access( Map map); Introduces a Data access to the container map.

std::pair< Data type, bool>

data access( Key type p)

If there is an entry for p in the container map, then the pair
of map.find(p) and true is returned. Otherwise, the Boolean
value of the pair is false.
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InterpolationTraits

Definition

Most interpolation functions are parameterized by a traits class that defines the primitives used in the interpola-
tion algorithms. The concept InterpolationTraits defines this common set of requirements.

Types

InterpolationTraits:: FT The number type must follow the model FieldNumberType.

InterpolationTraits:: Point d The point type on which the function is defined and interpo-
lated.

InterpolationTraits:: Vector d The corresponding vector type.

InterpolationTraits:: Construct vector d A constructor object for Vector d. Provides :
Vector d operator() (Point d a, Point d b) which produces
the vector b - a and
Vector d operator() (Null vector NULL VECTOR) which
introduces the null vector.

InterpolationTraits:: Construct scaled vector d

Constructor object for Vector d. Provides :
Vector d operator() (Vector d v,FT scale) which produces
the vector v scaled by a factor scale.

InterpolationTraits:: Compute squared distance d

Constructor object for FT . Provides the operator:
FT operator() (Point d a, Point d b) returning the squared
distance between a and b.

InterpolationTraits traits; default constructor.

Construction objects

The following functions that create instances of the above constructor object types must exist.
Construct vector d traits.construct vector d object()
Construct scaled vector d

traits.construct scaled vector d object()
Compute squared distance d

traits.compute squared distance d object()
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Has Models

CGAL::Interpolation traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4003
CGAL::Interpolation gradient fitting traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4012

See Also

GradientFittingTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4010
CGAL::sibson c1 interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3994
CGAL::sibson gradient fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4008
CGAL::farin c1 interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3996
CGAL::quadratic interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3998
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CGAL::Interpolation traits 2<K>

Definition

Interpolation traits 2<K> is a model for the concept InterpolationTraits and can be used to instantiate the
geometric traits class of interpolation methods applied on a bivariate function over a two-dimensional domain.
The traits class is templated by a kernel class K.

#include <CGAL/Interpolation traits 2.h>

Is Model for the Concepts

InterpolationTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4001

Types

typedef K::FT FT;
typedef K::Point 2 Point d;
typedef K::Vector 2 Vector d;
typedef K::Construct vector 2

Construct vector d;
typedef K::Construct scaled vector 2

Construct scaled vector d;
typedef K::Compute squared distance 2

Compute squared distance d;

Operations

Construct scaled vector d

traits.construct scaled vector d object() const

Construct vector d traits.construct vector d object() const

Compute squared distance d

traits.compute squared distance d object() const

See Also

InterpolationTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4001
GradientFittingTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4010
CGAL::Interpolation gradient fitting traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4012
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CGAL::natural neighbor coordinates 2

Definition

The function natural neighbor coordinates 2 computes natural neighbor coordinates, also called Sibson’s co-
ordinates, for 2D points provided a two-dimensional triangulation and a query point in the convex hull of the
vertices of the triangulation.

#include <CGAL/natural neighbor coordinates 2.h>

template < class Dt, class OutputIterator >
CGAL::Triple< OutputIterator, typename Dt::Geom traits::FT, bool >

natural neighbor coordinates 2( Dt dt,
typename Dt::Geom traits::Point 2 p,
OutputIterator out,
typename Dt::Face handle start = typename

Dt::Face handle())

computes the natural neighbor coordinates for p with respect
to the points in the two-dimensional Delaunay triangulation
dt. The template class Dt should be of type Delaunay
triangulation 2<Traits, Tds>. The value type of the Out-
putIterator is a pair of Dt::Point 2 and the coordinate value
of type Dt::Geom traits::FT . The sequence of point/coordi-
nate pairs that is computed by the function is placed starting
at out. The function returns a triple with an iterator that is
placed past-the-end of the resulting sequence of point/coor-
dinate pairs, the normalization factor of the coordinates and
a Boolean value which is set to true iff the coordinate com-
putation was successful.

template <class Dt, class OutputIterator, class EdgeIterator >
CGAL::Triple< OutputIterator, typename Dt::Geom traits::FT, bool >

natural neighbor coordinates 2( Dt dt,
typename Dt::Geom traits::Point 2 p,
OutputIterator out,
EdgeIterator hole begin,
EdgeIterator hole end)

The same as above. hole begin and hole end determines the
iterator range over the boundary edges of the conflict zone of
p in the triangulation. It is the result of the function T.get
boundary of conflicts(p,std::back inserter(hole), start), see
Delaunay triangulation 2<Traits, Tds>.

template <class Dt, class OutputIterator>
CGAL::Triple< OutputIterator, typename Dt::Geom traits::FT, bool >

natural neighbor coordinates 2( Dt dt,
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typename Dt::Vertex handle vh,
OutputIterator out)

This function computes the natural neighbor coordinates of
the point vh->point() with respect to the vertices of dt ex-
cluding vh->point(). The same as above for the remaining
parameters.

Requirements

1. Dt are equivalent to the class Delaunay triangulation 2<Traits, Tds>.

2. The traits class Traits of Dt is a model of the concept DelaunayTriangulationTraits 2. Only the following
members of this traits class are used:

• Construct circumcenter 2

• FT

• Point 2

• construct circumcenter 2 object

Additionally, Traits must meet the requirements for the traits class of the polygon area 2 function.

3. OutputIterator::value type is equivalent to std::pair<Dt::Point 2, Dt::Geom traits::FT>, i.e. a pair as-
sociating a point and its natural neighbor coordinate.

See Also

CGAL::linear interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3993
CGAL::sibson c1 interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3994
CGAL::surface neighbor coordinates 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4016
CGAL::regular neighbor coordinates 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4006

Implementation

This function computes the area of the sub-cells stolen from the Voronoi cells of the points in dt when inserting
p. The total area of the Voronoi cell of p is also computed and returned by the function. If p lies outside the
convex hull, the coordinate values cannot be computed and the third value of the result triple is set to false.
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CGAL::regular neighbor coordinates 2

Definition

The function regular neighbor coordinates 2 computes natural neighbor coordinates, also called Sibson’s co-
ordinates, for weighted 2D points provided a two-dimensional regular triangulation and a (weighted) query
point inside the convex hull of the vertices of the triangulation. We call these coordinates regular neighbor
coordinates.

#include <CGAL/regular neighbor coordinates 2.h>

template < class Rt, class OutputIterator >
CGAL::Triple< OutputIterator, typename Rt::Geom traits::FT, bool >

regular neighbor coordinates 2( Rt rt,
typename Rt::Weighted point p,
OutputIterator out,
typename Rt::Face handle start = typename

Rt::Face handle())

computes the regular neighbor coordinates for p with respect
to the weighted points in the two-dimensional regular trian-
gulation rt. The template class Rt should be of type Regular
triangulation 2<Traits, Tds>. The value type of the Out-
putIterator is a pair of Rt::Weighted point and the coordinate
value of type Rt::Geom traits::FT . The sequence of point/-
coordinate pairs that is computed by the function is placed
starting at out. The function returns a triple with an iterator
that is placed past-the-end of the resulting sequence of point/-
coordinate pairs, the normalization factor of the coordinates
and a Boolean value which is set to true iff the coordinate
computation was successful, i.e. if p lies inside the convex
hull of the points in rt.

template <class Rt, class OutputIterator, class EdgeIterator, class VertexIterator >
CGAL::Triple< OutputIterator, typename Traits::FT, bool >

regular neighbor coordinates 2( Rt rt,
typename Traits::Weighted point p,
OutputIterator out,
EdgeIterator hole begin,
EdgeIterator hole end,
VertexIterator hidden vertices begin,
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VertexIterator hidden vertices end)

The same as above. hole begin and hole end deter-
mines the iterator range over the boundary edges of
the conflict zone of p in the triangulation rt. hidden
vertices begin and hidden vertices end determines the it-
erator range over the hidden vertices of the conflict
zone of p inrt. It is the result of the function T.get
boundary of conflicts(p,std::back inserter(hole), std::back
inserter(hidden vertices), start), see Regular triangulation
2<Traits, Tds>.

template <class Rt, class OutputIterator>
CGAL::Triple< OutputIterator, typename Rt::Geom traits::FT, bool >

regular neighbor coordinates 2( Rt rt,
typename Rt::Vertex handle vh,
OutputIterator out)

This function computes the regular neighbor coordinates of
the point vh->point() with respect to the vertices of rt ex-
cluding vh->point(). The same as above for the remaining
parameters.

Requirements

1. Rt are equivalent to the class Regular triangulation 2<Traits, Tds>.

2. The traits class Traits of Rt is a model of the concept RegularTriangulationTraits 2. It provides the
number type FT which is a model for FieldNumberType and it must meet the requirements for the traits
class of the polygon area 2 function. A model of this traits class is Regular triangulation euclidean
traits 2<K, Weight>.

3. OutputIterator::value type is equivalent to std::pair<Rt::Weighted point, Rt::Geom traits::FT>, i.e. a
pair associating a point and its regular neighbor coordinate.

Implementation

This function computes the areas stolen from the Voronoi cells of points in rt by the insertion of p. The total
area of the Voronoi cell of p is also computed and returned by the function. If p lies outside the convex hull, the
coordinate values cannot be computed and the third value of the result triple is set to false.

See Also

CGAL::natural neighbor coordinates 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4004
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CGAL::sibson gradient fitting

Definition

The function sibson gradient fitting approximates the gradient of a function at a point p given natural neighbor
coordinates for p and its neighbors’ function values. The approximation method is described in [Sib81]. Further
functions are provided to fit the gradient for all data points that lie inside the convex hull of the data points. One
function exists for each type of natural neighbor coordinates.

#include <CGAL/sibson gradient fitting.h>

template < class ForwardIterator, class Functor, class Traits>
typename Traits::Vector d

sibson gradient fitting( ForwardIterator first,
ForwardIterator beyond,
typename std::iterator traits<ForwardIterator>::value

type::second type norm,
typename std::iterator traits<ForwardIterator>::value

type::first type p,
Functor f,
Traits traits)

This function estimates the gradient of a function at the point
p given natural neighbor coordinates of p in the range [ first,
beyond ) and the function values of the neighbors provided
by the functor f . norm is the normalization factor of the
barycentric coordinates.

Requirements

1. ForwardIterator::value type is a pair of point/coordinate value, thus ForwardIterator::value type::first
type is equivalent to a point and ForwardIterator::value type::second type is a number type.

2. Functor::argument type must be equivalent to ForwardIterator::value type::first type and
Functor::result type is the function value type. It must provide a multiplication and addition op-
eration with the type ForwardIterator::value type::second type.

3. Traits is a model of the concept GradientFittingTraits.

template < class Dt, class OutputIterator, class Functor, class Traits>
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OutputIterator sibson gradient fitting nn 2( Dt dt, OutputIterator out, Functor f, Traits traits)

estimates the function gradients at all vertices of dt
that lie inside the convex hull using the coordinates
computed by the function natural neighbor coordinates 2.
OutputIterator::value type is a pair associating a point to a
vector. The sequence of point/gradient pairs computed by
this function is placed starting at out. The function returns an
iterator that is placed past-the-end of the resulting sequence.
The requirements are the same as above. The template class
Dt must be equivalent to Delaunay triangulation 2<Gt, Tds>
.

template < class Rt, class OutputIterator, class Functor, class Traits>
OutputIterator sibson gradient fitting rn 2( Rt rt, OutputIterator out, Functor f, Traits traits)

estimates the function gradients at all vertices of rt
that lie inside the convex hull using the coordinates
computed by the function regular neighbor coordinates 2.
OutputIterator::value type is a pair associating a point to a
vector. The sequence of point/gradient pairs computed by
this function is placed starting at out. The function returns an
iterator that is placed past-the-end of the resulting sequence.
The requirements are the same as above. The template class
Rt must be equivalent to Regular triangulation 2<Gt, Tds>.

See Also

CGAL::linear interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3993
CGAL::sibson c1 interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3994
CGAL::farin c1 interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3996
CGAL::quadratic interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3998
CGAL::Interpolation gradient fitting traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4012
CGAL::natural neighbor coordinates 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4004
CGAL::regular neighbor coordinates 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4006
CGAL::surface neighbor coordinates 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4016

Implementation

This function implements Sibson’s gradient estimation method based on natural neighbor coordinates [Sib81].
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GradientFittingTraits

Definition

The function sibson gradient fitting is parameterized by a traits class that defines the primitives used by the
algorithm. The concept GradientFittingTraits defines this common set of requirements.

Types

GradientFittingTraits:: FT The number type must follow the model FieldNumberType.

GradientFittingTraits:: Point d The point type on which the function is defined and interpo-
lated.

GradientFittingTraits:: Vector d The corresponding vector type.

GradientFittingTraits:: Aff transformation d defines a matrix type. Must provide the following member
functions :
Aff transformation tr.inverse () which gives the inverse
transformation, and
Aff transformation tr.transform( Vector v) which returns the
multiplication of tr with v.

GradientFittingTraits:: Construct vector d A constructor object for Vector d. Provides :
Vector d operator() (Point d a, Point d b) which produces
the vector b - a and
Vector d operator() (Null vector NULL VECTOR) which
introduces the null vector.

GradientFittingTraits:: Construct scaled vector d

Constructor object for Vector d. Provides :
Vector d operator() (Vector d v,FT scale) which produces
the vector v scaled by a factor scale.

GradientFittingTraits:: Construct null matrix d

Constructor object for Aff transformation d. Provides :
Aff transformation d operator()() which introduces an affine
transformation whose matrix has only zero entries.

GradientFittingTraits:: Construct scaling matrix d

Constructor object for Aff transformation d. Provides :
Aff transformation d operator()(FT scale) which introduces
a scaling by a scale factor scale.
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GradientFittingTraits:: Construct sum matrix d

Constructor object for Aff transformation d. Provides :
Aff transformation d operator()(Aff transformation d tr1,
Aff transformation d tr2) which returns the sum of the two
matrices representing tr1 and tr2.

GradientFittingTraits:: Construct outer product d

Constructor object for Aff transformation d. Provides :
Aff transformation d operator()(Vector v) which returns the
outer product, i.e. the quadratic matrix vtv.

Creation

GradientFittingTraits traits; default constructor.

Operations

The following functions that create instances of the above constructor object types must exist.
Construct vector d traits.construct vector d object()

Construct scaled vector d

traits.construct scaled vector d object()
Construct null matrix d

traits.construct null matrix d object()
Construct sum matrix d

traits.construct sum matrix d object()
Construct outer product d

traits.construct outer product d object()

Has Models

CGAL::Interpolation gradient fitting traits 2<K>

See Also

InterpolationTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4001
CGAL::Interpolation traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4003
CGAL::sibson gradient fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4008
CGAL::sibson c1 interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3994
CGAL::farin c1 interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3996
CGAL::quadratic interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3998
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CGAL::Interpolation gradient fitting traits 2<K>

Definition

Interpolation gradient fitting traits 2<K> is a model for the concepts InterpolationTraits and GradientFitting-
Traits. It can be used to instantiate the geometric traits class of interpolation functions and of Sibson’s gradient
fitting function when applied on a function defined over a two-dimensional domain. The traits class is templated
by a kernel class K.

#include <CGAL/Interpolation gradient fitting traits 2.h>

Is Model for the Concepts

GradientFittingTraits InterpolationTraits

Types

typedef K::FT FT;
typedef K::Point 2 Point d;
typedef K::Vector 2 Vector d;
typedef K::Aff transformation 2 Aff transformation d;
typedef K::Construct vector 2 Construct vector d;
typedef K::Construct scaled vector 2 Construct scaled vector d;
typedef K::Compute squared distance 2 Compute squared distance d;
typedef Construct null matrix 2<Aff transformation d>

Construct null matrix d;
typedef Construct scaling matrix 2<Aff transformation d>

Construct scaling matrix d;
typedef Construct sum matrix 2<Aff transformation d>

Construct sum matrix d;
typedef Construct outer product 2<K> Construct outer product d;

Operations

Construct scaled vector d traits.construct scaled vector d object() const

Construct vector d traits.construct vector d object() const

Compute squared distance d traits.compute squared distance d object() const

Construct null matrix d traits.construct null matrix d object() const

Construct scaling matrix d traits.construct scaling matrix d object() const
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Construct sum matrix d traits.construct sum matrix d object() const

Construct outer product d traits.construct outer product d object() const

See Also

InterpolationTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4001
GradientFittingTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4010
CGAL::Interpolation traits 2<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4003
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CGAL::Voronoi intersection 2 traits 3<K>

Definition

Voronoi intersection 2 traits 3<K> is a model for the concept RegularTriangulationTraits 2 and Interpola-
tionTraits. It can be used to instantiate the geometric traits class of a two-dimensional regular triangulation. A
three-dimensional plane is defined by a point and a vector that are members of the traits class. The triangulation
is defined on 3D points. It is the regular triangulation of the input points projected onto the plane and each
weighted with the negative squared distance of the input point to the plane. It can be shown that it is dual to
the power diagram obtained by intersecting the three-dimensional Voronoi diagram of the input points with the
plane. All predicates and constructions used in the computation of the regular triangulation are formulated on
the three dimensional points without explicitly constructing the projected points and the weights. This reduces
the arithmetic demands. The traits class is templated by a kernel class K.

#include <CGAL/Voronoi intersection 2 traits 3.h>

Is Model for the Concepts

RegularTriangulationTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2524

Types

typedef K::RT Weight;

typedef K::FT FT;
typedef K::Point 3 Point 2;
typedef K::Segment 3

Segment 2;
typedef K::Triangle 3

Triangle 2;
typedef K::Line 3 Line 2;
typedef K::Ray 3 Ray 2;
typedef K::Vector 3 Vector 2;
typedef K::Construct triangle 3

Construct triangle 2;
typedef K::Construct ray 3

Construct ray 2;
typedef K::Compare distance 3

Compare distance 2;

Compute area 3<Rep>

Compute area 2; An instance of this function object class computes the square
root of the result of K::Compute squared area 3. If the
number type FT does not support the square root operation,
the result is cast to double before computing the square root.
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typedef Orientation with normal plane 2 3<Rep>

Orientation 2;
typedef Side of plane centered sphere 2 3<Point 2>

Power test 2;
typedef Construct plane centered circumcenter 3<Point 2>

Construct weighted circumcenter 2;
typedef Compare first projection 3<Point 2>

Compare x 2;
typedef Compare second projection 3<Point 2>

Compare y 2;

Creation

Voronoi intersection 2 traits 3<K> traits( typename K::Point 3 point=typename K::Point 3(),
typename K::Vector 3 normal=NULL VECTOR)

The plane associated to the traits class contains point and has
as normal vector normal.

See Also

RegularTriangulationTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 2524
CGAL::Regular triangulation 2<Gt, Tds> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
CGAL::regular neighbor coordinates 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4006
CGAL::surface neighbor coordinates 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4016
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CGAL::surface neighbor coordinates 3

Definition

The function surface neighbor coordinates 3 computes natural neighbor coordinates for surface points associ-
ated to a finite set of sample points issued from the surface. The coordinates are computed from the intersection
of the Voronoi cell of the query point p with the tangent plane to the surface at p. If the sampling is sufficiently
dense, the coordinate system meets the properties described in the manual pages and in [BF02],[Flö03b]. The
query point p needs to lie inside the convex hull of the projection of the sample points onto the tangent plane at
p.

#include <CGAL/surface neighbor coordinates 3.h>

template <class OutputIterator, class InputIterator, class Kernel>
CGAL::Triple< OutputIterator, typename Kernel::FT, bool >

surface neighbor coordinates 3( InputIterator first,
InputIterator beyond,
typename Kernel::Point 3 p,
typename Kernel::Vector 3 normal,
OutputIterator out,
Kernel K)

The sample points P are provided in the range [ first,
beyond ). InputIterator::value type is the point type
Kernel::Point 3. The tangent plane is defined by the point
p and the vector normal. The parameter K determines the
kernel type that will instantiate the template parameter of
Voronoi intersection 2 traits 3<K>.
The natural neighbor coordinates for p are computed in the
power diagram that results from the intersection of the 3D
Voronoi diagram of P with the tangent plane. The sequence
of point/coordinate pairs that is computed by the function is
placed starting at out. The function returns a triple with an
iterator that is placed past-the-end of the resulting sequence
of point/coordinate pairs, the normalization factor of the co-
ordinates and a Boolean value which is set to true iff the co-
ordinate computation was successful, i.e. if p lies inside the
convex hull of the projection of the points P onto the tangent
plane.

template <class OutputIterator, class InputIterator, class ITraits>
CGAL::Triple< OutputIterator, typename ITraits::FT, bool >

surface neighbor coordinates 3( InputIterator first,
InputIterator beyond,
typename ITraits::Point 2 p,
OutputIterator out,
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ITraits traits)

the same as above only that the traits class must be instan-
tiated by the user. ITraits must be equivalent to Voronoi
intersection 2 traits 3<K>.

The next functions return, in addition, a second Boolean value (the fourth value of the quadruple) that certifies
whether or not, the Voronoi cell of p can be affected by points that lie outside the input range, i.e. outside the ball
centered on p passing through the furthest sample point from p in the range [ first, beyond ). If the sample points
are collected by a k-nearest neighbor or a range search query, this permits to check whether the neighborhood
which has been considered is large enough.

template <class OutputIterator, class InputIterator, class Kernel>
CGAL::Quadruple< OutputIterator, typename Kernel::FT, bool, bool >

surface neighbor coordinates certified 3( InputIterator first,
InputIterator beyond,
typename Kernel::Point 3 p,
typename Kernel::Vector 3 normal,
OutputIterator out,
Kernel K)

Similar to the first function. The additional fourth return
value is true if the furthest point in the range [ first, beyond )
is further away from p than twice the distance from p to the
furthest vertex of the intersection of the Voronoi cell of p with
the tangent plane defined by (p,normal). It is false otherwise.

template <class OutputIterator, class InputIterator, class Kernel>
CGAL::Quadruple< OutputIterator, typename Kernel::FT, bool, bool >

surface neighbor coordinates certified 3( InputIterator first,
InputIterator beyond,
typename Kernel::Point 3 p,
typename Kernel::FT max distance,
OutputIterator out,
Kernel kernel)

The same as above except that this function takes the maxi-
mal distance from p to the points in the range [ first, beyond )
as additional parameter.

template <class OutputIterator, class InputIterator, class ITraits>
CGAL::Quadruple< OutputIterator, typename ITraits::FT, bool, bool >

surface neighbor coordinates certified 3( InputIterator first,
InputIterator beyond,
typename ITraits::Point 2 p,
OutputIterator out,
ITraits traits)

The same as above only that the traits class must be instan-
tiated by the user and without the parameter max distance.
ITraits must be equivalent to Voronoi intersection 2 traits
3<K>.
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template <class OutputIterator, class InputIterator, class ITraits>
CGAL::Quadruple< OutputIterator, typename ITraits::FT, bool, bool >

surface neighbor coordinates certified 3( InputIterator first,
InputIterator beyond,
typename ITraits::Point 2 p,
typename ITraits::FT max distance,
OutputIterator out,
ITraits traits)

The same as above with the parameter max distance.

The next function allows to filter some potential neighbors of the query point p from P via its three-dimensional
Delaunay triangulation. All surface neighbors of p are necessarily neighbors in the Delaunay triangulation of
P ∪{p}.

template < class Dt, class OutputIterator >
CGAL::Triple< OutputIterator, typename Dt::Geom traits::FT, bool >

surface neighbor coordinates 3( Dt dt,
typename Dt::Geom traits::Point 3 p,
typename Dt::Geom traits::Vector 3 normal,
OutputIterator out,
typename Dt::Cell handle start = typename

Dt::Cell handle())

computes the surface neighbor coordinates with respect to
the points that are vertices of the Delaunay triangulation dt.
The type Dt must be equivalent to Delaunay triangulation
3<Gt, Tds>. The optional parameter start is used as a starting
place for the search of the conflict zone. It may be the result
of the call dt.locate(p). This function instantiates the tem-
plate parameter ITraits to be Voronoi intersection 2 traits
3<Dt::Geom traits>.

template < class Dt, class OutputIterator, class ITraits>
CGAL::Triple< OutputIterator, typename Dt::Geom traits::FT, bool >

surface neighbor coordinates 3( Dt dt,
typename Dt::Geom traits::Point 3 p,
OutputIterator out,
ITraits traits,
typename Dt::Cell handle start = typename

Dt::Cell handle())

The same as above only that the parameter traits instantiates
the geometric traits class. Its type ITraits must be equivalent
to Voronoi intersection 2 traits 3<K>.

Requirements

1. Dt is equivalent to the class Delaunay triangulation 3.
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2. OutputIterator::value type is equivalent to std::pair<Dt::Point 3, Dt::Geom traits::FT>, i.e. a pair as-
sociating a point and its natural neighbor coordinate.

3. ITraits is equivalent to the class Voronoi intersection 2 traits 3<K>.

See Also

CGAL::linear interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3993
CGAL::sibson c1 interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3994
CGAL::farin c1 interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3996
CGAL::Voronoi intersection 2 traits 3<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4014
CGAL::surface neighbors 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4020

Implementation

This functions construct the regular triangulation of the input points instantiated with Voronoi intersection
2 traits 3<Kernel> or ITraits if provided. They return the result of the function call regular neighbor
coordinates 2 with the regular triangulation and p as arguments.
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CGAL::surface neighbors 3

Definition

Given a set of sample points issued from a surface and a query point p, the function surface neighbors 3
computes the neighbors of p on the surface within the sample points. If the sampling is sufficiently dense, the
neighbors are provably close to the point p on the surface (cf. the manual pages and [BF02],[Flö03b]). They are
defined to be the neighbors of p in the regular triangulation dual to the power diagram which is equivalent to the
intersection of the Voronoi cell of the query point p with the tangent plane to the surface at p.

#include <CGAL/surface neighbors 3.h>

template <class OutputIterator, class InputIterator, class Kernel>
OutputIterator surface neighbors 3( InputIterator first,

InputIterator beyond,
typename Kernel::Point 3 p,
typename Kernel::Vector 3 normal,
OutputIterator out,
Kernel K)

The sample points P are provided in the range [ first,
beyond ). InputIterator::value type is the point type
Kernel::Point 3. The tangent plane is defined by the point
p and the vector normal. The parameter K determines the
kernel type that will instantiate the template parameter of
Voronoi intersection 2 traits 3<K>.
The surface neighbors of p are computed which are the
neighbors of p in the regular triangulation that is dual to the
intersection of the 3D Voronoi diagram of P with the tangent
plane. The point sequence that is computed by the function
is placed starting at out. The function returns an iterator that
is placed past-the-end of the resulting point sequence.

template <class OutputIterator, class InputIterator, class ITraits>
OutputIterator surface neighbors 3( InputIterator first,

InputIterator beyond,
typename ITraits::Point 2 p,
OutputIterator out,
ITraits traits)

the same as above only that the traits class must be instan-
tiated by the user. ITraits must be equivalent to Voronoi
intersection 2 traits 3<K>.

The next functions return, in addition, a Boolean value that certifies whether or not, the Voronoi cell of p can be
affected by points that lie outside the input range, i.e. outside the ball centered on p passing through the furthest
sample point from p in the range [ first, beyond ). If the sample points are collected by a k-nearest neighbor or a
range search query, this permits to verify that a large enough neighborhood has been considered.

template <class OutputIterator, class InputIterator, class Kernel>
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std::pair< OutputIterator, bool >

surface neighbors certified 3( InputIterator first,
InputIterator beyond,
typename Kernel::Point 3 p,
typename Kernel::Vector 3 normal,
OutputIterator out,
Kernel K)

Similar to the first function. The additional third return value
is true if the furthest point in the range [ first, beyond ) is
further away from p than twice the distance from p to the
furthest vertex of the intersection of the Voronoi cell of p with
the tangent plane defined be (p,normal). It is false otherwise.

template <class OutputIterator, class InputIterator, class Kernel>
std::pair< OutputIterator, bool >

surface neighbors certified 3( InputIterator first,
InputIterator beyond,
typename Kernel::Point 3 p,
typename Kernel::Vector 3 normal,
typename Kernel::FT max distance,
OutputIterator out,
Kernel kernel)

The same as above except that this function takes the maxi-
mal distance from p to the points in the range [ first, beyond )
as additional parameter.

template <class OutputIterator, class InputIterator, class ITraits>
std::pair< OutputIterator, bool >

surface neighbors certified 3( InputIterator first,
InputIterator beyond,
typename ITraits::Point 2 p,
OutputIterator out,
ITraits traits)

The same as above only that the traits class must be instan-
tiated by the user. ITraits must be equivalent to Voronoi
intersection 2 traits 3<K>. There is no parameter max
distance.

template <class OutputIterator, class InputIterator, class ITraits>
std::pair< OutputIterator, bool >

surface neighbors certified 3( InputIterator first,
InputIterator beyond,
typename ITraits::Point 2 p,
typename ITraits::FT max distance,
OutputIterator out,
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ITraits traits)

The same as above with the parameter max distance.

The next function allows to filter some potential neighbors of the query point p from P via its three-dimensional
Delaunay triangulation. All surface neighbors of p are necessarily neighbors in the Delaunay triangulation of
P ∪{p}.

template < class Dt, class OutputIterator >
OutputIterator surface neighbors 3( Dt dt,

typename Dt::Geom traits::Point 3 p,
typename Dt::Geom traits::Vector 3 normal,
OutputIterator out,
typename Dt::Cell handle start = typename Dt::Cell handle())

computes the surface neighbor coordinates with respect to
the points that are vertices of the Delaunay triangulation dt.
The type Dt must be equivalent to Delaunay triangulation
3<Gt, Tds>. The optional parameter start is used for the
used as a starting place for the search of the conflict zone.
It may be the result of the call dt.locate(p). This function
instantiates the template parameter ITraits to be Voronoi
intersection 2 traits 3<Dt::Geom traits>.

template < class Dt, class OutputIterator, class ITraits>
OutputIterator surface neighbors 3( Dt dt,

typename ITraits::Point 2 p,
OutputIterator out,
ITraits traits,
typename Dt::Cell handle start = typename Dt::Cell handle())

The same as above only that the parameter traits instantiates
the geometric traits class. Its type ITraits must be equivalent
to Voronoi intersection 2 traits 3<K>.

Requirements

1. Dt is equivalent to the class Delaunay triangulation 3.

2. OutputIterator::value type is equivalent to Dt::Point 3, i.e. a point type.

3. ITraits is equivalent to the class Voronoi intersection 2 traits 3<K>.

See Also

CGAL::Voronoi intersection 2 traits 3<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4014
CGAL::surface neighbor coordinates 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4016
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Implementation

These functions compute the regular triangulation of the sample points and the point p using a traits class
equivalent to Voronoi intersection 2 traits 3<K>. They determine the neighbors of p in this triangulation. The
functions which certify the result need to compute, in addition, the Voronoi vertices of the cell of p in this
diagram.
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Lets say you want to maintain a sorted list of items (each item is associate with a real number key). You can
imagine placing each of the items on the point on the real line corresponding to its key. Now, let the key for
each item change continuously (i.e. no jumps are allowed). As long as no two (consecutive) items cross, the
sorted order is intact. When two items cross, they need to be exchanged in the list and then the sorted order
is once again correct. This is a trivial example of a kinetic data structure. The key observation is that the
combinatorial structure which is maintained changes at discrete times (events) even though the basic building
blocks are changing continuously.

This chapter describes a number of such kinetic data structures implemented using the Kinetic framework
described in Chapter 72. We first, in Section 71.2 introduce kinetic data structures and sweepline algorithms.
This section can be skipped if the reader is already familiar with the area. The next sections, Section 71.2.1 and
Section 71.3 introduce the terms and give an overview of the framework. They are recommended reading for
all readers, even if you are just using provided kinetic data structures. We then present kinetic data structures
for Delaunay triangulations in two and three dimensions in Section 71.4.

If you are already familiar with kinetic data structures and know what you want to do, you might want to first
take a look at the next section Section 71.1 which covers quick hints.
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71.1 Quick Hints

This section gives quick answers to some questions people might have. It presumes knowledge of kinetic data
structures and this framework.

How do I store extra information allow with, for example, a kinetic Point 2?

See the example Kinetic framework/defining a simulation traits.cpp to see how to define a new Simulation-
Traits class where the ActiveObjectsTable contains extra data along with the point.

Where is the best place to look if I want to write my own kinetic data structure?

We provide two simple kinetic data structures, first most trivial is Kinetic framework/trivial kds.cpp and a
slightly more complicated one is:

#include <CGAL/Kinetic/Sort.h>

How can I use kinetic data structures to update Delaunay triangulations?

We are working on that one, but you will have to wait.

71.2 An Overview of Kinetic Data Structures and Sweep Algorithms

Kinetic data structures were first introduced in by Basch et. al. in 1997 [BGH97]. The idea stems from the
observation that most, if not all, computational geometry structures are built using predicates — functions on
quantities defining the geometric input (e.g. point coordinates), which return a discrete set of values. Many
predicates reduce to determining the sign of a polynomial on the defining parameters of the primitive objects.
For example, to test whether a point lies above or below a plane we compute the dot product of the point
with the normal of the plane and subtract the plane’s offset along the normal. If the result is positive, the
point is above the plane, zero on the plane, negative below. The validity of many combinatorial structures
built on top of geometric primitives can be verified by checking a finite number of predicates of the geometric
primitives. These predicates, which collectively certify the correctness of the structure, are called certificates.
For a Delaunay triangulation in three dimensions, for example, the certificates are one InCircle test per facet of
the triangulation, plus a point plane orientation test for each facet or edge of the convex hull.

The kinetic data structures approach is built on top of this view of computational geometry. Let the geometric
primitives move by replacing each of their defining quantities with a function of time (generally a polynomial).
As time advances, the primitives trace out paths in space called trajectories. The values of the polynomial
functions of the defining quantities used to evaluate the predicates now also become functions of time. We call
these functions certificate functions. Typically, a geometric structure is valid when all predicates have a specific
non-zero sign. In the kinetic setting, as long as the certificate functions maintain the correct sign as time varies,
the corresponding predicates do not change values, and the original data structure remains correct. However,
if one of the certificate functions changes sign, the original structure must be updated, as well as the set of
certificate functions that verify it. We call such occurrences events.

Maintaining a kinetic data structure is then a matter of determining which certificate function changes sign next,
i.e. determining which certificate function has the first real root that is greater than the current time, and then
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updating the structure and the set of certificate functions. In addition, the trajectories of primitives are allowed
to change at any time, although C0-continuity of the trajectories must be maintained. When a trajectory update
occurs for a geometric primitive, all certificates involving that primitive must be updated. We call the collection
of kinetic data structures, primitives, event queue and other support structures a simulation.

Sweepline algorithms for computing arrangements in d dimensions easily map on to kinetic data structures
by taking one of the coordinates of the ambient space as the time variable. The kinetic data structure then
maintains the arrangement of a set of objects defined by the intersection of a hyperplane of dimension d− 1
with the objects whose arrangement is being computed.

Time is one of the central concepts in a kinetic simulation. Just as static geometric data structures divide the
continuous space of all possible inputs (as defined by sets of coordinates) into a discrete set of combinatorial
structures, kinetic data structures divide the continuous time domain into a set of disjoint intervals. In each
interval the combinatorial structure does not change, so, in terms of the combinatorial structure, all times in the
interval are equivalent. We capitalize on this equivalence in the framework in order to simplify computations.
If the primitives move on polynomial trajectories and the certificates are polynomials in the coordinates, then
events occur at real roots of polynomials of time. Real numbers, which define the endpoints of the interval, are
more expensive to compute with than rational numbers, so performing computations at a rational number inside
the interval is preferable whenever possible. See Section 72.1.4 for an example of where this equivalence is
exploited.

71.2.1 Terms Used

primitive The basic geometric types, e.g., the points of a triangulation. A primitive has a set of coordinates.

combinatorial structure A structure built on top of the primitives. The structure does not depend directly on
the coordinates of the primitives, only on relationships between them.

trajectory The path traced out by a primitive as time passes. In other words how the coordinates of a primitive
change with time.

snapshot The position of all the primitives at a particular moment in time.

static Having to do with geometric data structures on non-moving primitives.

predicate A function which takes the coordinates of several primitives from a snapshot as input and produces
one of a discrete set of outputs.

certificate One of a set of predicates which, when all having the correct values, ensure that the combinatorial
structure is correct.

certificate function A function of time which is positive when the corresponding certificate has the correct
value. When the certificate function changes sign, the combinatorial structure needs to be updated.

event When a certificate function changes sign and the combinatorial structure needs to be updated.

71.3 An Overview of the Kinetic Framework

The provided kinetic data structures are implemented on top of the Kinetic framework presented in Chapter 72.
It is not necessary to know the details of the framework, but some familiarity is useful. Here we presented a
quick overview of the framework.

The framework is structured around five main concepts. See Figure 71.1 for a schematic of how a kinetic data
structure interacts with the various parts. The main concepts are

4029



Simulator
current_time

end_time

new_event()

delete_event()

Time

KineticKernel

is_less_x_1_object()

Point_1 CertificateIs_less_x_1

Sort
ordering

erase()

insert()

set()

swap()

Swap_event

process()

Active_objects_vector

set()

insert()

erase()

operator[]()

Active_objects_table_helper
Notifier

new_notification()

Less_x_1Point_1

Key

notify of changes

process events

create

update order

notify of end of changes

performs static comparisons

create certificates
schedule events

InstantaneousKernel

less_x_1_object()

Diagram: class diagram Page 1

Figure 71.1: The figure shows the interaction between the Kinetic::Sort<Traits, Visitor> kinetic data structure
and the various pieces of our package. Other, more complicated, kinetic data structures will also use the Ki-
netic::InstantaneousKernel in order to insert/remove geometric primitives and audit themselves. Kinetic::Sort<
Traits, Visitor> uses the sorting functionality in the STL instead.

• the Kinetic::Simulator. Models of this concept process events in the correct order and audit kinetic data
structures. There should be one instance of a model of this concept per simulation.

• the Kinetic::Kernel. The structure of a Kinetic::Kernel is analogous to the static CGAL (i.e., non-kinetic)
kernels in that it defines a set of primitives and functors which generate certificates from the primitives.

• the Kinetic::ActiveObjectsTable. Models of this concept hold a collection of kinetic primitives in a cen-
tralized manner. This structure centralizes management of the primitives in order to properly disseminate
notifications when trajectories change, new primitives are added or primitives are deleted. There is gen-
erally one instance of a model of this concept per simulation.

• the Kinetic::InstantaneousKernel. Models of this concept allow existing non-kinetic CGAL data struc-
tures to be used on a snapshot of kinetic data. As a result, pre-existing static structures can be used to
initialize and audit kinetic data structures.

• the Kinetic::FunctionKernel. This concept is the computational kernel of our framework. Models of
this concept are responsible for representing, generating and manipulating the motional and certificate
functions and their roots. It is this concept that provides the kinetic data structures framework with the
necessary algebraic operations for manipulating event times. The Kinetic::FunctionKernel is discussed
in detail in Section 72.2.

For simplicity, we added an additional concept, that of Kinetic::SimulationTraits, which wraps together a par-
ticular set of choices for the above concepts and is responsible for creating instances of each of the models.
As a user of existing kinetic data structures, this is the only framework object you will have to create. The
addition of this concept reduces the choices the user has to make to picking the dimension of the ambient space
and choosing between exact and inexact computations. The model of Kinetic::SimulationTraits creates an in-
stance each of the Kinetic::Simulator and Kinetic::ActiveObjectsTable. Handles for these instances as well as
instances of the Kinetic::Kernel and Kinetic::InstantaneousKernel can be requested from the simulation traits
class. Both the Kinetic::Kernel and the Kinetic::Simulator use the Kinetic::FunctionKernel, the former to find
certificate failure times and the later to operate on them. For technical reasons, each supplied model of Ki-
netic::SimulationTraits also picks out a particular type of kinetic primitive which will be used by the kinetic
data structures.
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71.4 Using Kinetic Data Structures

There are five provided kinetic data structures. They are

Kinetic::Sort<Traits, Visitor> maintain a list of points sorted by x-coordinate.

Kinetic::Delaunay triangulation 2<Traits, Visitor, Triangulation> maintain the Delaunay triangulation of a
set of two dimensional points

Kinetic::Delaunay triangulation 3<Traits,Visitor, Triangulation> maintain the Delaunay triangulation of a set
of three dimensional points.

Kinetic::Regular triangulation 3<Traits, Visitor, Triangulation> maintain the regular triangulation of a set of
waiting three dimensional points.

Kinetic::Enclosing box 2<Traits>, Kinetic::Enclosing box 3<Traits> restrict points to stay within a box by
bouncing them off the walls.

71.4.1 A Simple Example

Using a kinetic data structure can be as simple as the following:� �
#include <CGAL/Kinetic/basic.h>

#include <CGAL/Kinetic/Exact_simulation_traits.h>
#include <CGAL/Kinetic/Insert_event.h>
#include <CGAL/Kinetic/Sort.h>

int main()
{

typedef CGAL::Kinetic::Exact_simulation_traits Traits;

typedef CGAL::Kinetic::Insert_event<Traits::Active_points_1_table>
Insert_event;
typedef Traits::Active_points_1_table::Data Moving_point;
typedef CGAL::Kinetic::Sort<Traits> Sort;
typedef Traits::Simulator::Time Time;

Traits tr(0,100000);
Sort sort(tr);
Traits::Simulator::Handle sp= tr.simulator_handle();

std::ifstream in("data/points_1");
in >> *tr.active_points_1_table_handle();

while (sp->next_event_time() != sp->end_time()) {
sp->set_current_event_number(sp->current_event_number()+1);

}

return EXIT_SUCCESS;
}� �
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File: examples/Kinetic_data_structures/Kinetic_sort.cpp

Using the other kinetic data structures is substantially identical. Please see the appropriate files in the demo/Ki-
netic data structures directory.

In the example, first the Kinetic::SimulationTraits object is chosen (in this case one that supports exact compu-
tations). Then the kinetic data structure is defined using the chosen traits object and a visitor class which logs
changes to the sorted list. Next, instances of the two are created and a set of points is read from a file. Then,
the simulator is instructed to process all the events until the end of the simulation. Finally, a record of what
happened is printed to the terminal.

Several important things happen behind the scenes in this example. First, the Kinetic::ActiveObjectsTable which
holds the moving points notifies the kinetic data structure that new points have been added to the simulation.
Second, the Kinetic::Sort<Traits,Visitor> kinetic data structure registers its events with the Kinetic::Simulator
by providing a time and a proxy object for each event. When a particular event occurs, the Kinetic::Simulator
calls a function on the proxy object which in turn updates the kinetic data structure.

The example illustrates how to monitor the supplied data structures as they evolve by using a Kinetic::SortVisitor
object—a small class whose methods are called whenever the kinetic data structure changes. Hooks for such
visitor concepts are provided for all of the shipped kinetic data structures. In the case of kinetic sorting, the
visitor’s methods are called every time a new point is inserted in the sorted list, when one is removed, or when
two points are swapped in the sorted order.

The visitor concept is quite powerful, allowing us, for example, to implement a data structure for computing
and storing two-dimensional arrangements of x-monotone curves on top of the Kinetic::Sort<Traits, Visitor>
data structure using about 60 lines of code. This sweepline code is presented in Section 71.4.4.

71.4.2 Creating Kinetic Primitives

One key part of the framework not shown is how to create kinetic primitives (rather than just reading them
in from a file). There are two ways to construction the necessary motion functions (which are models of
Kinetic::FunctionKernel::Function). The first is to create an array of polynomial coeffients and simply call
the constructor as in:� �
typedef Traits::Kinetic_kernel::Motion_function F;
std::vector<F::NT> coefs;
coefs.push_back(F::NT(1.0));
coefs.push_back(F::NT(2.0));
F x(coefs.begin(), coefs.end());� �
A slightly more flexible way is to use a Kinetic::FunctionKernel::ConstructFunction object. To do this do the
following:� �
typedef Traits::Kinetic_kernel::Function_kernel::Construct_function
CF; typedef Traits::Kinetic_kernel::Motion_function F; CF cf; F
x=cf(F::NT(1.0), F::NT(2.0));� �
The Kinetic::FunctionKernel::ConstructFunction can be passed (almost) an number of arguments and will con-
struct a polynomial with those arguments are coefficients.

Once the motion functions are constructed, constructing the primitive is just like constructing the corresponding
static object.

4032



� �
typedef Traits::Kinetic_kernel::Point_1 Point_1;
Point_1 p(x);� �
71.4.3 Visualization of Kinetic Data Structures

The framework includes Qt widgets for displaying kinetic data structures in two and three dimensions. The
following example shows using the two dimensional widget with a Delaunay triangulation:� �
#include <CGAL/Kinetic/Exact_simulation_traits.h>
#include <CGAL/Kinetic/Delaunay_triangulation_2.h>
#include <CGAL/Kinetic/Enclosing_box_2.h>
#include <CGAL/Kinetic/IO/Qt_moving_points_2.h>
#include <CGAL/Kinetic/IO/Qt_triangulation_2.h>
#include <CGAL/Kinetic/IO/Qt_widget_2.h>

int main(int argc, char *argv[]) {
using namespace CGAL::Kinetic;
typedef Exact_simulation_traits Traits;
typedef Delaunay_triangulation_2<Traits> Del_2;
typedef Enclosing_box_2<Traits> Box_2;
typedef Qt_widget_2<Traits::Simulator> Qt_widget;
typedef Qt_moving_points_2<Traits, Qt_gui> Qt_mps;
typedef Qt_triangulation_2<Del_2, Qt_widget, Qt_mps> Qt_dt2;

// create a simulation traits and add two KDSs:
// a kinetic Delaunay triangulation and an enclosing box;
// the moving points bounce against the walls of the enclosing box
Traits tr;
Box_2::Handle box = new Box_2(tr);
Del_2::Handle kdel = new Del_2(tr);

// register the simulator, set of moving points and
// Delaunay triangulation with the kinetic Qt widget
Qt_widget::Handle qt_w = new Qt_widget(argc, argv,
tr.simulator_handle());
Qt_mps::Handle qt_mps = new Qt_mps(qt_w, tr);
Qt_dt2::Handle qt_dt2 = new Qt_dt2(kdel, qt_w, qt_mps);

// read the trajectories of the moving points
// the simulation traits automatically inserts them in the two KDSs
// and schedules the appropriate kinetic events; as in the kinetic
// sorting example this is done with appropriate notifications
std::ifstream in("data/points_2");
in >> *tr.active_points_2_table_handle();

// run the interactive kinetic simulation
return qt_w->begin_event_loop();

};� �
The example shows how to use a number of additional features of the framework. First, it shows that two
kinetic data structures (Kinetic::Delaunay triangulation 2<Traits, Triangulation> and Kinetic::Enclosing box
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2<Traits>) can coexist on the same set of points without any extra effort. Both interact with the moving points
through the active objects table, and never need to directly interact with one another. Second, objects (like qt w,
qt mps and qt dt2) are all stored by using reference counted handles (Object::Handle). This allows them
to share references to one another without the user having to worry about memory management and order of
deletion. For example, the Kinetic::Qt triangulation 2<KineticDelaunay 2, QtWidget 2, Qt moving points 2>
object needs a handle to the kinetic triangulation, in order to get the structure to display, and a handle to the
Active points 1 table to get the coordinates of the points.

Finally, the example shows how to use the graphical interface elements provided, see Figure 71.3. Our pack-
age includes Qt widgets for displaying kinetic geometry in two and three dimensions. In addition to being
able to play and pause the simulation, the user can step through events one at a time and reverse the simula-
tion to retrace what had happened. The three-dimensional visualization support is based on the Coin library
http://www.coin3d.org.

1. 2. 3.

4. 5. 6.

7. 8. 9.

Figure 71.2: Some events from a Delaunay triangulation kinetic data structure: The state of the two dimensional
Delaunay triangulation immediately following the first events is shown. Green edges are ones which were
just created. The pictures are screen shots from demo/Kinetic data structures/Kinetic Delaunay triangulation
2.cpp.

71.4.4 Extending Kinetic Data Structures

Here we present a simple example that uses the Kinetic::Sort<Traits, Visitor> kinetic data structure to compute
an arrangement of algebraic functions. It wraps the sorting data structure and uses a visitor to monitor changes
and map them to corresponding features in the arrangement. To see an example using this kinetic data structure
read the example at examples/Kinetic data structures/Kinetic sweepline.cpp.
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Figure 71.3: The figure shows the graphical user interface for controlling two-dimensional kinetic data struc-
tures. It is built on top of the Qt widget and adds buttons to play, pause, step through and run the simulation
backwards.

First we define the visitor class. An object of this type is passed to the Kinetic::Sort<Traits, Visitor> data
structure and turns events into calls on the arrangement structure. This class has to be defined externally since
the arrangement will inherit from the sorting structure.� �
template <class Arrangement>
struct Arrangement_visitor: public Kinetic::Sort_visitor_base
{

Arrangement_visitor(Arrangement *a):p_(a){}
template <class Vertex_handle>
void remove_vertex(Vertex_handle a) {

p_->erase(a);
}
template <class Vertex_handle>
void create_vertex(Vertex_handle a) {

p_->insert(a);
}
template <class Vertex_handle>
void after_swap(Vertex_handle a, Vertex_handle b) {

p_->swap(a, b);
}
Arrangement *p_;

};� �
Now we define the actual arrangement data structure.� �
template <class TraitsT>
class Planar_arrangement:

public Kinetic::Sort<TraitsT,
Arrangement_visitor<Planar_arrangement<TraitsT> >

> {
typedef TraitsT Traits;
typedef Planar_arrangement<TraitsT> This;
typedef typename Kinetic::Sort<TraitsT,

Arrangement_visitor<This> > Sort;
typedef Arrangement_visitor<This> Visitor;
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typedef typename Traits::Active_objects_table::Key Key;

public:
typedef CGAL::Exact_predicates_inexact_constructions_kernel::Point_2
Approximate_point;

typedef std::pair<int,int> Edge;
typedef typename Sort::Vertex_handle Vertex_handle;

// Register this KDS with the MovingObjectTable and the Simulator
Planar_arrangement(Traits tr): Sort(tr, Visitor(this)) {}

Approximate_point vertex(int i) const
{

return approx_coords_[i];
}

size_t vertices_size() const
{

return approx_coords_.size();
}

typedef std::vector<Edge >::const_iterator Edges_iterator;
Edges_iterator edges_begin() const
{

return edges_.begin();
}
Edges_iterator edges_end() const
{

return edges_.end();
}

void insert(Vertex_handle k) {
last_points_[*k]=new_point(*k);

}

void swap(Vertex_handle a, Vertex_handle b) {
int swap_point= new_point(*a);
edges_.push_back(Edge(swap_point, last_points_[*a]));
edges_.push_back(Edge(swap_point, last_points_[*b]));
last_points_[*a]= swap_point;
last_points_[*b]= swap_point;

}

void erase(Vertex_handle a) {
edges_.push_back(Edge(last_points_[*a], new_point(*a)));

}

int new_point(typename Traits::Active_objects_table::Key k) {
double tv=
CGAL::to_double(Sort::traits().simulator_handle()->current_time());
double dv=
CGAL::to_double(Sort::traits().active_objects_table_handle()->at(k).x()(tv));
approx_coords_.push_back(Approximate_point(tv, dv));
return approx_coords_.size()-1;
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}

std::vector<Approximate_point > approx_coords_;
std::map<Key, int> last_points_;
std::vector<Edge> edges_;

};� �
Finally, we have to set everything up. To do this we use some special event classes: Kinetic::Insert event<
ActiveObjectsTable> and Kinetic::Erase event<ActiveObjectsTable>. These are events which can be put in the
event queue which either insert a primitive into the set of active objects or remove it. Using these, we can allow
curves in the arrangement to begin or end in arbitrary places.� �
typedef CGAL::Kinetic::Insert_event<Traits::Active_points_1_table>

Insert_event;
typedef CGAL::Kinetic::Erase_event<Traits::Active_points_1_table>

Erase_event;
do {

NT begin, end;
Point function;
// initialize the function and the beginning and end somewhere
tr.simulator_handle()->new_event(Time(begin),

Insert_event(function,
tr.active_points_1_table_handle()));

tr.simulator_handle()->new_event(Time(end),

Erase_event(Traits::Active_points_1_table::Key(num),

tr.active_points_1_table_handle()));
++num;

} while (true);� �
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71.5 Classified Reference Pages

Kinetic data structures are a way of adding motion to classical geometric data structures. CGAL provides several
prepackaged kinetic data structures. Here we present those kinetic data structures and the helper classes that
allow their activity to be monitored.
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CGAL::Kinetic::Delaunay triangulation 3<Traits, Visitor, Triangulation> . . . . . . . . . . . . . . . . . . . . . . . page 4044

Kinetic::DelaunayTriangulationVisitor 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4052

4039



CGAL::Kinetic::Delaunay triangulation event log visitor 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4048

CGAL::Kinetic::Delaunay triangulation visitor base 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4055

CGAL::Kinetic::Delaunay triangulation cell base 3<Traits, Base> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4046
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Kinetic::RegularTriangulationVisitor 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4071

CGAL::Kinetic::Regular triangulation visitor base 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4072

CGAL::Kinetic::Regular triangulation event log visitor 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4068

CGAL::Kinetic::Regular triangulation cell base 3<Traits, Base> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4067

CGAL::Kinetic::Regular triangulation vertex base 3<Traits, Base> . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4070

Support Classes

CGAL::Kinetic::Enclosing box 2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4056

CGAL::Kinetic::Enclosing box 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4057

CGAL::Kinetic::Insert event<ActiveObjectsTable> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4060

CGAL::Kinetic::Erase event<ActiveObjectsTable> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4058

CGAL::Kinetic::Qt moving points 2<Traits, QtWidget 2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4061

CGAL::Kinetic::Qt triangulation 2<KineticTriangulation 2, QtWidget 2, QtMovingPoints 2> . . . . .page 4062

CGAL::Kinetic::Qt widget 2<Simulator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4063

71.6 Alphabetical List of Reference Pages

Kinetic::DelaunayTriangulationVisitor 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4051
Kinetic::DelaunayTriangulationVisitor 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4052
Kinetic::Delaunay triangulation 2<Traits, Visitor, Triangulation> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4042
Kinetic::Delaunay triangulation 3<Traits, Visitor, Triangulation> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4044
Kinetic::Delaunay triangulation cell base 3<Traits, Base> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4046
Kinetic::Delaunay triangulation event log visitor 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4047
Kinetic::Delaunay triangulation event log visitor 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4048
Kinetic::Delaunay triangulation face base 2<Traits, Base> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4049
Kinetic::Delaunay triangulation recent edges visitor 2<Triangulation> . . . . . . . . . . . . . . . . . . . . . . . . . page 4050
Kinetic::Delaunay triangulation visitor base 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4054
Kinetic::Delaunay triangulation visitor base 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4055
Kinetic::Enclosing box 2<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4056
Kinetic::Enclosing box 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4057
Kinetic::Erase event<ActiveObjectsTable> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4058
Kinetic::EventLogVisitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4059
Kinetic::Insert event<ActiveObjectsTable> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4060
Kinetic::Qt moving points 2<Traits, QtWidget 2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4061

4040



Kinetic::Qt triangulation 2<KineticTriangulation 2, QtWidget 2, QtMovingPoints 2> . . . . . . . . . . . . page 4062
Kinetic::Qt widget 2<Simulator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4063
Kinetic::RegularTriangulationVisitor 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4071
Kinetic::Regular triangulation 3<Traits, Visitor, Triangulation> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4065
Kinetic::Regular triangulation cell base 3<Traits, Base> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4067
Kinetic::Regular triangulation event log visitor 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4068
Kinetic::Regular triangulation instantaneous kernel<ActiveObjectsTable, StaticKernel> . . . . . . . . . . page 4069
Kinetic::Regular triangulation vertex base 3<Traits, Base> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4070
Kinetic::Regular triangulation visitor base 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4072
Kinetic::Sort<Traits, Visitor> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4074
Kinetic::SortVisitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4077
Kinetic::Sort event log visitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4073
Kinetic::Sort visitor base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4076

4041



C
la

ss

CGAL::Kinetic::Delaunay triangulation 2<Traits, Visitor, Triangula-
tion>

Definition

The class Kinetic::Delaunay triangulation 2<Traits, Visitor, Triangulation> maintains a Delaunay triangulation
on top of the points contained in a Kinetic::ActiveObjectsTable. It has one main method of interest, triangula-
tion(), which returns the triangulation it is maintaining.

Note that the Delaunay triangulation is fully dynamic as it tracks points added to and removed from the Ki-
netic::ActiveObjectsTable.

The class Kinetic::Qt triangulation 2<KineticTriangulation 2, QtWidget 2, QtMovingPoints 2> displays a ki-
netic Delaunay triangulation using the Qt widget.

This class is a good example of a simple, but non-trivial, kinetic data structure.

The Triangulation template parameter must be a model of CGAL::Delaunay triangulation 2<Traits, Tds>
which uses Traits::Default instantaneous kernel as its geometric traits and a Tds whose face inherits from
Kinetic::Delaunay triangulation face base 2<Traits, Base>.

The optional Visitor parameter takes a model of Kinetic::DelaunayTriangulationVisitor 2. Methods on this
object will be called whenever the triangulation changes.

#include <CGAL/Kinetic/Delaunay triangulation 2.h>

Is Model for the Concepts

Ref counted<T>

Types

Kinetic::Delaunay triangulation 2<Traits, Visitor, Triangulation>:: Triangulation

The template argument triangulation.

Kinetic::Delaunay triangulation 2<Traits, Visitor, Triangulation>:: Visitor

The template argument for the visitor.

Creation

Kinetic::Delaunay triangulation 2<Traits, Visitor, Triangulation> dt( Traits tr);

Maintain the Delaunay triangulation of the points in
tr.active points 2 handle().
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Operations

Triangulation dt.triangulation() const

Access the triangulation that is maintained.

Visitor& dt.visitor() Access the visitor.

Vertex handle dt.insert( Point key k)

Insert the point.

void dt.erase( Vertex handle h)

Erase the vertex.

See Also

Kinetic::DelaunayTriangulationVisitor 2, Kinetic::Delaunay triangulation default visitor 2,
Kinetic::Delaunay triangulation recent edges visitor 2<Triangulation>, Kinetic::Delaunay triangulation
event log visitor 2, Kinetic::Qt Delaunay triangulation 2.
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CGAL::Kinetic::Delaunay triangulation 3<Traits, Visitor, Triangula-
tion>

Definition

The class Kinetic::Delaunay triangulation 3<Traits, Visitor, Triangulation> maintains a Delaunay triangulation
on top of the points contained in a Kinetic::ActiveObjectsTable. It has one main method of interest. triangu-
lation() which returns the triangulation it is maintaining. In addition, as an optimisation, you can turn on and
off whether it is currently maintaining its certificates. This allows a large number of changes to the underlying
points to be made at one time without recomputing the certificates each time a single point changes.

Note that the Delaunay triangulation is fully dynamic as it tracks points added to and removed from the Ki-
netic::ActiveObjectsTable.

The class Kinetic::Qt triangulation 3<Traits>, included as part of the demo code, displays a kinetic Delaunay
triangulation in three dimensions using the Coin library.

The optional Visitor template argument is a model of Kinetic::DelaunayTriangulationVisitor 3 and can be used
to monitor changes in the kinetic data structure.

The optional Triangulation template argument must be a model of a CGAL::DelaunayTriangulation 3 which
uses Traits::Default instantaneous kernel as its geometric traits and has Kinetic::Delaunay triangulation cell
base 3<Traits, Base> a the cell type.

#include <CGAL/Kinetic/Delaunay triangulation 3.h>

Types

Kinetic::Delaunay triangulation 3<Traits, Visitor, Triangulation>:: Triangulation

The template argument.

Kinetic::Delaunay triangulation 3<Traits, Visitor, Triangulation>:: Visitor

The template argument.

Creation

Kinetic::Delaunay triangulation 3<Traits, Visitor, Triangulation> dt( Traits tr);

Maintain the Delaunay triangulation of the points in
tr.active points 3 handle().

Operations

const Triangulation* dt.triangulation() Access the triangulation that is maintained.
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bool dt.has certificates() This method returns true if the Kinetic::Delaunay
triangulation 3<Traits, Visitor, Triangulation> is currently
maintaining certificates for a Delaunay triangulation.

void dt.set has certificates( bool tf)

This method allows you to control whether the triangulation
is maintaining certificates.

Visitor& dt.visitor() Access the visitor.

See Also

Kinetic::Regular triangulation 3<Traits, Triangulation, Visitor>, Kinetic::Delaunay triangulation 2<Traits,
Triangulation, Visitor, Kinetic::Delaunay triangulation visitor base 3, Kinetic::Delaunay triangulation
event log visitor 3.
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CGAL::Kinetic::Delaunay triangulation cell base 3<Traits, Base>

Definition

This is the base class for faces used by Kinetic::Delaunay triangulation 3<Traits, Triangulation, Visitor>
::Triangulation.

#include <CGAL/Kinetic/Delaunay triangulation cell base 3.h>
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CGAL::Kinetic::Delaunay triangulation event log visitor 2

Definition

The concept Kinetic::Delaunay triangulation event log visitor 2 provides a model of
Kinetic::DelaunayTriangulationVisitor 2 and Kinetic::EventLogVisitor which logs edge flip events.

Is Model for the Concepts

Kinetic::DelaunayTriangulationVisitor 2, Kinetic::EventLogVisitor

See Also

Kinetic::Delaunay triangulation 2<Traits, Triangulation, Visitor>
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CGAL::Kinetic::Delaunay triangulation event log visitor 3

Definition

The concept Kinetic::Delaunay triangulation event log visitor 3 provides a model of
Kinetic::DelaunayTriangulationVisitor 3 and Kinetic::EventLogVisitor which logs edge and facet flip
events.

Is Model for the Concepts

Kinetic::DelaunayTriangulationVisitor 3, Kinetic::EventLogVisitor

See Also

Kinetic::Delaunay triangulation 3<Traits, Triangulation, Visitor>
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CGAL::Kinetic::Delaunay triangulation face base 2<Traits, Base>

Definition

This is the base class for faces used by the triangulation used in Kinetic::Delaunay triangulation 2<Traits,
Triangulation, Visitor>.

#include <CGAL/Kinetic/Delaunay triangulation face base 2.h>

See Also

Kinetic:Delaunay triangulation 2<Traits, Triangulation, Visitor>
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CGAL::Kinetic::Delaunay triangulation recent edges visitor 2<
Triangulation>

Definition

The concept Kinetic::Delaunay triangulation recent edges visitor 2<Triangulation> provides a model of
Kinetic::DelaunayTriangulationVisitor 2 which tracks which edges were created in the most recent change.

Is Model for the Concepts

Kinetic::DelaunayTriangulationVisitor 2

Creation

Kinetic::Delaunay triangulation recent edges visitor 2<Triangulation> a;

default constructor.

Kinetic::Delaunay triangulation recent edges visitor 2<Triangulation>:: iterator

The iterator through the recently created edges.

Operations

iterator a.begin() const Begin iteration through the recent edges.

iterator a.end() const End iteration through the recent edges.

bool a.contains( Triangulation::Edge) const

Returns true if this edge exists in the set.

See Also

Kinetic::Delaunay triangulation 2<Traits, Triangulation, Visitor>
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Kinetic::DelaunayTriangulationVisitor 2

Definition

This concept is for proxy objects which get notified when a kinetic Delaunay triangulation changes.

Operations

void v.pre remove vertex( Vertex handle)

The vertex is about to be deleted.

void v.post remove vertex( Point key)

The vertex was just removed.

void v.pre insert vertex( Point key)

The vertex is about to be inserted into the cell (although the
Cell handle might be NULL).

void v.post insert vertex( Vertex handle)

The vertex was just inserted.

void v.change vertex( Vertex handle)

The trajectory of the point at the vertex changed.

void v.create face( Face handle f)

The face has just been made.

void v.destroy face( Face handle f)

The face is about to be destroyed.

void v.pre flip( Edge) The edge is about to be flipped.

void v.post flip( Edge) The edge was just created with a flip.

Has Models

Kinetic::Delaunay triangulation visitor base 2, Kinetic::Delaunay triangulation recent edges visitor 2<
Triangulation>, Kinetic::Delaunay triangulation event log visitor 2
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Kinetic::DelaunayTriangulationVisitor 3

Definition

This concept is for proxy objects which get notified when a kinetic Delaunay triangulation changes.

Operations

void v.pre remove vertex( Vertex handle)

The vertex is about to be deleted.

void v.post remove vertex( Point key, Cell handle)

The vertex was just removed.

void v.pre insert vertex( Point key, Cell handle)

The vertex is about to be inserted into the cell (although the
Cell handle might be NULL).

void v.post insert vertex( Vertex handle)

The vertex was just inserted.

void v.change vertex( Vertex handle)

The trajectory of the point at the vertex changed.

void v.create cell( Cell handle)

The cell was just created and initialized.

void v.destroy cell( Cell handle)

The cell is about to be removed.

void v.pre edge flip( Edge)

The edge is about to be flipped.

void v.post edge flip( Facet)

The facet was just created with a flip.
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void v.pre facet flip( Facet)

The facet is about to be flipped.

void v.post facet flip( Edge)

The edge was just created with a flip.

Has Models

Kinetic::Delaunay triangulation visitor base 3, Kinetic::Delaunay triangulation recent edges visitor 3<
Triangulation>, Kinetic::Delaunay triangulation event log visitor 3
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CGAL::Kinetic::Delaunay triangulation visitor base 2

Definition

The concept Kinetic::Delaunay triangulation visitor base 2 provides a model of
Kinetic::DelaunayTriangulationVisitor 2. You can extend this class if you only want to implement a
few methods from Kinetic::DelaunayTriangulationVisitor 2.

Is Model for the Concepts

Kinetic::DelaunayTriangulationVisitor 2

Creation

Kinetic::Delaunay triangulation visitor base 2 a;

default constructor.

See Also

Kinetic::Delaunay triangulation 2<Traits, Triangulation, Visitor>
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CGAL::Kinetic::Delaunay triangulation visitor base 3

Definition

The concept Kinetic::Delaunay triangulation visitor base 3 provides a model of
Kinetic::DelaunayTriangulationVisitor 3. You can extend this class if you only want to implement a
few methods from Kinetic::DelaunayTriangulationVisitor 3.

Is Model for the Concepts

Kinetic::DelaunayTriangulationVisitor 3

Creation

Kinetic::Delaunay triangulation visitor base 3 a;

default constructor.

See Also

Kinetic::Delaunay triangulation 3<Traits, Triangulation, Visitor>
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CGAL::Kinetic::Enclosing box 2<Traits>

Definition

The class Kinetic::Enclosing box 2<Traits> keeps the points in the simulation inside of a box. Whenever the
points come close to the wall of the box they bounce off of the wall.

Note that, in general, points hit the wall of the box at times which are not easily represented by standard
(rational) number types. The resulting trajectories would also have non-rational coefficients, complicating and
slowing the simulation. In order to handle this, the Kinetic::Enclosing box 2<Traits> bounces the points at the
nearest easily representable time before the point would leave the box.

#include <CGAL/Kinetic/Enclosing box 2.h>

Types

Kinetic::Enclosing box 2<Traits>:: NT The number type used to represent the walls of the box and
perform calculations. Generally this is Traits::NT .

Creation

Kinetic::Enclosing box 2<Traits> eb( Traits, NT xmin, NT xmax, NT ymin, NT ymax);

This constructs a bounding box with the dimensions speci-
fied by the last 4 arguments. They are optional and will take
the values ±10 if omitted.
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CGAL::Kinetic::Enclosing box 3<Traits>

Definition

The class Kinetic::Enclosing box 3<Traits> keeps the points in the simulation inside of a box. Whenever the
points come close to the wall of the box they bounce off of the wall.

Note that, in general, points hit the wall of the box at times which are not easily represented by standard
(rational) number types. The resulting trajectories would also have non-rational coefficients, complicating and
slowing the simulation. In order to handle this, the Kinetic::Enclosing box 3<Traits> bounces the points at the
nearest easily representable time before the point would leave the box.

#include <CGAL/Kinetic/Enclosing box 3.h>

Types

Kinetic::Enclosing box 3<Traits>:: NT The number type used to represent the walls of the box and
perform calculations. Generally this is Traits::NT .

Creation

Kinetic::Enclosing box 3<Traits> eb( Traits, NT xmin, NT xmax, NT ymin, NT ymax, NT zmin, NT zmax);

This constructs a bounding box with the dimensions speci-
fied by the last 6 arguments. They are optional and will take
the values ±10 if omitted.
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CGAL::Kinetic::Erase event<ActiveObjectsTable>

Definition

This event erases a point from the ActiveObjectsTable when it is processed.

#include <CGAL/Kinetic/Erase event.h>

Is Model for the Concepts

Kinetic::Simulator::Event

Creation

Kinetic::Erase event<ActiveObjectsTable> i( ActiveObjectsTable::Key k, ActiveObjectsTable::Handle t);

Erase the object k from the table t when processed.

See Also

Kinetic::ActiveObjectsTable, Kinetic::Active objects vector<MovingObject>.

Example� �
typedef CGAL::Kinetic::Exact_simulation_traits Simulation_traits;
typedef Simulation_traits::Kinetic_kernel::Point_2 Moving_point_2;
typedef

CGAL::Kinetic::Insert_event<Simulation_traits::Active_points_2_table>
Insert_event;

typedef CGAL::Kinetic::Delaunay_triangulation_2<Simulation_traits> KDel;

Simulation_traits tr;

KDel kdel(tr);

Moving_point_2 mp(Moving_point_2::NT(0),
Moving_point_2::NT(0));

tr.simulator_handle()->new_event(Simulation_traits::Simulator::Time(3),

Erase_event(*tr.active_objects_table_handle()->keys_begin(),

tr.active_points_2_table_handle()));� �
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Kinetic::EventLogVisitor

Definition

This concept is for visitors which maintain a text log of events.

Types

Kinetic::EventLogVisitor:: Event iterator An iterator through strings defining the events that occurred.
Each event is represented by a std::string.

Operations

Event iterator v.events begin() Begin iterating through the events.

Event iterator v.events end()

Has Models

Kinetic::Delaunay triangulation event log visitor 3, Kinetic::Delaunay triangulation event log visitor 2,
Kinetic::Regular trianglation event log visitor 3, Kinetic::Sort event log visitor
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CGAL::Kinetic::Insert event<ActiveObjectsTable>

Definition

This event inserts a point into the ActiveObjectsTable when it is processed.

#include <CGAL/Kinetic/Insert event.h>

Is Model for the Concepts

Kinetic::Simulator::Event

Creation

Kinetic::Insert event<ActiveObjectsTable> i( ActiveObjectsTable::Data o, ActiveObjectsTable::Handle t);

Insert the object o, into the table t when processed.

See Also

Kinetic::ActiveObjectsTable, Kinetic::Active objects vector<MovingObject>.

Example� �
typedef CGAL::Kinetic::Exact_simulation_traits Simulation_traits;
typedef Simulation_traits::Kinetic_kernel::Point_2 Moving_point_2;
typedef

CGAL::Kinetic::Insert_event<Simulation_traits::Active_points_2_table>
Insert_event;

typedef CGAL::Kinetic::Delaunay_triangulation_2<Simulation_traits> KDel;

Simulation_traits tr;

KDel kdel(tr);

Moving_point_2 mp(Moving_point_2::Coordinate(0),
Moving_point_2::Coordinate(0));

tr.simulator_handle()->new_event(Simulation_traits::Simulator::Time(3),
Insert_event(mp,

tr.active_points_2_table_handle()));� �
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CGAL::Kinetic::Qt moving points 2<Traits, QtWidget 2>

Definition

The class Kinetic::Qt moving points 2<Traits, QtWidget 2> displays a set of moving points in 2D.

See Section 71.4.3 for an example using this class.

#include <CGAL/Kinetic/IO/Qt moving points 2.h>

Creation

Kinetic::Qt moving points 2<Traits, QtWidget 2> a( QtGui::Handle,
Traits::Active points 2 table::Handle)

default constructor.

See Also

Kinetic::Qt widget 2<Simulator>.
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CGAL::Kinetic::Qt triangulation 2<KineticTriangulation 2,
QtWidget 2, QtMovingPoints 2>

Definition

The class draws a triangulation into a CGAL::Qt widget 2. This class is very simple and a good one to look at
if you want to see how to draw your own two dimensional kinetic data structure.

See Section 71.4.3 for an example using this class.

#include <CGAL/Kinetic/IO/Qt triangulation 2.h>

Creation

Kinetic::Qt triangulation 2<KineticTriangulation 2, QtWidget 2, QtMovingPoints 2> a(
KineticTriangulation 2::Handle,

QtWidget
2::Handle,

QtMovingPoints
2::Handle)

Construct the object and make all the connections with the
appropriate other objects.

See Also

Kinetic::Qt widget 2<Simulator>
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CGAL::Kinetic::Qt widget 2<Simulator>

Definition

The class Kinetic::Qt widget 2<Simulator> implements a graphical interface for 2D kinetic data structures.

#include <CGAL/Kinetic/IO/Qt widget 2.h>

Types

Kinetic::Qt widget 2<Simulator>:: Listener The listener base to listen for when to update the pic-
ture. This class includes an extra method Qt widget widget()
which returns the Qt widget object which can be used for
drawing.

Creation

Kinetic::Qt widget 2<Simulator> a( int argc, char *argv[], Simulator::Handle);

default constructor.� �
#include <CGAL/basic.h>
#include <CGAL/Kinetic/Exact_simulation_traits.h>
#include <CGAL/Kinetic/Delaunay_triangulation_2.h>
#include <CGAL/Kinetic/Delaunay_triangulation_vertex_base_2.h>
#include <CGAL/Kinetic/Delaunay_triangulation_recent_edges_visitor_2.h>
#include <CGAL/Kinetic/Enclosing_box_2.h>
#include <CGAL/Kinetic/IO/Qt_moving_points_2.h>
#include <CGAL/Kinetic/IO/Qt_triangulation_2.h>
#include <CGAL/Kinetic/IO/Qt_widget_2.h>
#include <CGAL/Kinetic/Insert_event.h>

int main(int argc, char *argv[])
{

typedef CGAL::Kinetic::Exact_simulation_traits Traits;

typedef CGAL::Triangulation_data_structure_2<

CGAL::Kinetic::Delaunay_triangulation_vertex_base_2<Traits::Instantaneous_kernel>,
CGAL::Kinetic::Delaunay_triangulation_face_base_2<Traits> > TDS;

typedef CGAL::Delaunay_triangulation_2<Traits::Instantaneous_kernel,
TDS > Del;

// Color edges based on how recently they were created
typedef
CGAL::Kinetic::Delaunay_triangulation_recent_edges_visitor_2<Del>
Visitor;

typedef CGAL::Kinetic::Delaunay_triangulation_2<Traits, Visitor, Del>
KDel;

typedef CGAL::Kinetic::Qt_widget_2<Traits::Simulator> Qt_gui;
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typedef CGAL::Kinetic::Qt_moving_points_2<Traits, Qt_gui> Qt_mps;
typedef CGAL::Kinetic::Qt_triangulation_2<KDel,
Traits::Instantaneous_kernel, Qt_gui> Qt_triangulation;

// Keeps the points confined
typedef CGAL::Kinetic::Enclosing_box_2<Traits> Box;

CGAL_SET_LOG_LEVEL(CGAL::Log::LOTS);

// Run from time 0 until a really large value of time
Traits tr(0, 10000000);
Box::Handle box= new Box(tr);
KDel::Handle kdel= new KDel(tr);

Qt_gui::Handle qtsim= new Qt_gui(argc, argv, tr.simulator_handle());

Qt_mps::Handle qtmps= new Qt_mps(qtsim, tr);
Qt_triangulation::Handle qtdel= new Qt_triangulation(kdel,
tr.instantaneous_kernel_object(), qtsim);

Traits::Kinetic_kernel::Point_2 p;
std::cin >> p;
tr.active_points_2_table_handle()->insert(p);
return qtsim->begin_event_loop();

}� �
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CGAL::Kinetic::Regular triangulation 3<Traits, Visitor, Triangula-
tion>

Definition

The class Kinetic::Regular triangulation 3<Traits, Visitor, Triangulation> maintains a triangulation of set of
moving weighted points. Its interface is the same as Kinetic::Delaunay triangulation 3<Traits, Visitor, Trian-
gulation>.

Note that the regular triangulation tracks as points are added to the Kinetic::ActiveObjectsTable, but not removed
from it.

The optional Triangulation template argument must be a model of CGAL::RegularTriangulation 3 which has
Kinetic::Regular triangulation cell base 3<Traits, Base> as a cell base and Kinetic::Regular triangulation
vertex base 3<Traits, Base> as a vertex base.

#include <CGAL/Kinetic/Regular triangulation 3.h>

See Also

Kinetic::Delaunay triangulation 3<Traits, Visitor, Triangulation>. Kinetic::RegularTriangulationVisitor 3.

Example� �
#define CGAL_CHECK_EXACTNESS
#define CGAL_CHECK_EXPENSIVE

#include <CGAL/Kinetic/Regular_triangulation_exact_simulation_traits.h>
#include <CGAL/Kinetic/Regular_triangulation_3.h>

int main()
{

typedef CGAL::Kinetic::Regular_triangulation_exact_simulation_traits
Traits;
typedef CGAL::Kinetic::Regular_triangulation_3<Traits> KDel;

Traits tr(0,100000.0);
KDel kdel(tr);

Traits::Simulator::Handle sp= tr.simulator_handle();

std::ifstream in("data/weighted_points_3");
CGAL_assertion(in);
in >> *tr.active_points_3_table_handle();

std::cout << *tr.active_points_3_table_handle();

std::cout << *tr.active_points_3_table_handle() << std::endl;

kdel.set_has_certificates(true);
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sp->set_current_event_number(10000);
return EXIT_SUCCESS;

}� �
File: examples/Kinetic_data_structures/Kinetic_regular_triangulation_3.cpp
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CGAL::Kinetic::Regular triangulation cell base 3<Traits, Base>

Definition

This is the base class for faces used by Kinetic::Regular triangulation 3<Traits, Triangulation, Visitor>.

#include <CGAL/Kinetic/Regular triangulation cell base 3.h>
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CGAL::Kinetic::Regular triangulation event log visitor 3

Definition

The concept Kinetic::Regular triangulation event log visitor 3 provides a model of
Kinetic::RegularTriangulationVisitor 3 and EventLogVisitor which logs edge flip events.

Is Model for the Concepts

Kinetic::RegularTriangulationVisitor 3, Kinetic::EventLogVisitor

See Also

Kinetic::Regular triangulation 3<Traits, Triangulation, Visitor>
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CGAL::Kinetic::Regular triangulation instantaneous kernel<
ActiveObjectsTable, StaticKernel>

Definition

The class Kinetic::Regular triangulation instantaneous kernel<ActiveObjectsTable, StaticKernel> is an instan-
taneous kernel for use with a regular triangulation data structure. There is not currently a reason for the user
to call this directly unless the user wants created their own simulation traits as it is included as part of the
Kinetic::Regular triangulation exact simulation traits.

#include <CGAL/Kinetic/Regular triangulation instantaneous kernel.h>

Is Model for the Concepts

CGAL::RegularTriangulationTraits 3, Kinetic::InstantaneousKernel

See Also

Kinetic::Regular triangulation 3<Traits, Visitor, Triangulation>.
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CGAL::Kinetic::Regular triangulation vertex base 3<Traits, Base>

Definition

This is the base class for the vertices of the triangulation class used by Kinetic::Regular triangulation 3<Traits,
Triangulation, Visitor>.

#include <CGAL/Kinetic/Regular triangulation vertex base 3.h>
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Kinetic::RegularTriangulationVisitor 3

Definition

This concept is for proxy objects which get notified when a kinetic regular triangulation changes. It inherits all
the methods of DelaunayTriangulationVisitor 3.

Is Model for the Concepts

Kinetic::DelaunayTriangulationVisitor 3

Operations

void v.pre move( Key, Cell)

The point defined by Key is about to move from the cell.

void v.post move( Key, Cell)

The point defined by Key just moved to the cell.

Has Models

Kinetic::Regular triangulation visitor base 3, Kinetic::Regular triangulation event log visitor 3
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CGAL::Kinetic::Regular triangulation visitor base 3

Definition

The concept Kinetic::Regular triangulation visitor base 3 provides a model of
Kinetic::RegularTriangulationVisitor 3. You can extend this class if you only want to implement a few
methods from Kinetic::RegularTriangulationVisitor 3.

Is Model for the Concepts

Kinetic::RegularTriangulationVisitor 3

Creation

Kinetic::Regular triangulation visitor base 3 a;

default constructor.

See Also

Kinetic::Regular triangulation 3<Traits, Triangulation, Visitor>
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CGAL::Kinetic::Sort event log visitor

Definition

The concept Kinetic::Sort event log visitor provides a model of SortVisitor and EventLogVisitor which logs
changes to the structure.

Is Model for the Concepts

Kinetic::SortVisitor, Kinetic::EventLogVisitor

See Also

Kinetic::Sort<Traits, Visitor>
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CGAL::Kinetic::Sort<Traits, Visitor>

Definition

The class Kinetic::Sort<Traits, Visitor> maintains a sorted list of objects. It is the simplest kinetic data structure
provided and is a good place to start when looking at the basics of implementing a kinetic data structure.

The Kinetic::SortVisitor can be used to monitor what is happening.

#include <CGAL/Kinetic/Sort.h>

Creation

Kinetic::Sort<Traits, Visitor> s( Traits tr); The basic constructor.

Types

Kinetic::Sort<Traits, Visitor>:: Visitor The type of the visitor.

Kinetic::Sort<Traits, Visitor>:: Traits The traits type.

Kinetic::Sort<Traits, Visitor>:: Vertex handle The handle used to refer to vertex in the sorted list. Derefer-
necing this returns a Key into the ActiveObjectsTable.

Kinetic::Sort<Traits, Visitor>:: Handle A reference counted pointer to be used for storing references
to the object.

Kinetic::Sort<Traits, Visitor>:: Const handle A reference counted pointer to be used for storing references
to the object.

Operations

Visitor& s.visitor() Access the visitor.

Traits& s.traits() Access the traits.

Vertex handle s.insert( Point key k) Insert the point.

void s.erase( Vertex handle k)

Erase the point.

Iterator s.begin() Begin iterating through the ordered Vertex handles (the iter-
ator is convertible to Vertex handle.

Iterator s.end() End iterating through the ordered Vertex handles (the itera-
tor is convertible to Vertex handle.
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See Also

Kinetic::Ref counted<T>
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CGAL::Kinetic::Sort visitor base

Definition

The concept Kinetic::Sort visitor base provides a model of Kinetic::SortVisitor. You can extend this class if
you only want to implement a few methods from Kinetic::SortVisitor.

Is Model for the Concepts

Kinetic::SortVisitor.

Creation

Kinetic::Sort visitor base a; default constructor.

See Also

Kinetic::Sort<Traits, Visitor>
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Kinetic::SortVisitor

Definition

This concept is for proxy objects which have functions called on them when a Kinetic::Sort<Traits, Visitor>.

Operations

void v.pre remove vertex( Vertex handle)

The vertex is about to be deleted.

void v.post remove vertex( Point key)

The vertex was just removed.

void v.pre insert vertex( Point key)

The vertex is about to be inserted into the cell (although the
Cell handle might be NULL).

void v.post insert vertex( Vertex handle)

The vertex was just inserted.

void v.change vertex( Vertex handle)

Something changed at the vertex.

void v.pre swap( Vertex handle, Vertex handle)

The pair of vertices is about to be exchanged.

void v.post swap( Vertex handle, Vertex handle)

The pair of vertices was just swapped.

Has Models

Kinetic::Sort visitor base, Kinetic::Sort event log visitor
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This chapter describes a framework for implementing kinetic data structures and sweepline algorithms. If you
just would like to use existing kinetic data structures, please read Chapter 71 instead. Readers wishing to brush
up on their familiarity with kinetic data structures or better understand the terminology we use should read
Section 71.2 of that chapter. A brief overview of the framework can be found in Section 71.3 (also of that
chapter) and it too is recommended reading. Here we dive right in to discussing to discussing the architecture
of the framework in Section 72.1 and finally we give several examples of using the framework to implement a
kinetic data structure in Section 72.3. The framework makes heavy use of our Polynomial kernel package to
provide models of the Kinetic::FunctionKernel concept.

The framework was first presented at ALENEX [GKR04].

72.1 Architecture

This package provides a framework to allow exact implementation of kinetic data structures and sweepline
algorithms. Below we discuss in detail each one of the first four major concepts which help in implementing
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Figure 72.1: The figure, identical to the one in the overview of the previous chapter, shows the interaction be-
tween the Kinetic::Sort<Traits, Visitor> kinetic data structure and the various pieces of our framework. Other,
more complicated, kinetic data structures will also use the Kinetic::InstantaneousKernel in order to insert/re-
move geometric primitives and audit themselves. Kinetic::Sort<Traits, Visitor> uses the sorting functionality in
STL instead.

kinetic data structures: the Kinetic::Simulator, the Kinetic::Kernel, the Kinetic::ActiveObjectsTable and the
Kinetic::InstantaneousKernel. The Kinetic::FunctionKernel concept is discussed separately in Section 72.2.

72.1.1 The Kinetic::Simulator

The Kinetic::Simulator is the central repository of all active events. It maintains the event queue and can use
its knowledge of the events in the queue to find times for the kinetic data structures to easily check their own
correctness (this will be discussed in more detail later in this section). Kinetic data structures call methods of
the Kinetic::Simulator to schedule new events, deschedule old ones and access and change data contained in
already scheduled events (the operations on existing events are performed using a key which was returned when
the event was scheduled). For controlling the simulation, methods in the Kinetic::Simulator allow stepping
through events, advancing time and even running the simulation backwards (that is we run the simulation with
the time running in the opposite direction).

The kinetic sorting example in Figure 71.4.1 shows the basic usage of the Kinetic::Simulator. First, the Simu-
lator is created by the Kinetic::SimulationTraits. The kinetic data structure gets a handle to the simulator from
the traits class and uses the handle to add its events to the simulation. The Kinetic::Simulator is then told to
advance time up until the end of the simulation, processing all events along the way.

Each event is represented by a Kinetic::Simulator::Time and an instance of a model of the Ki-
netic::Simulator::Event concept. Models of the Kinetic::Simulator::Event concept are responsible for taking the
appropriate action in order to handle the kinetic event they represent. Specifically, the Kinetic::Simulator::Event
concept specifies one method, Kinetic::Simulator::Event::process(), that is called when the event occurs. The
body of the Kinetic::Simulator::Event::process() method typically simply calls a method of the kinetic data
structure that created the event; for example in our kinetic sorting example, processing an event means calling
the Kinetic::Sort<Traits, Visitor>::swap(Iterator) method of the kinetic sorting data structure.

In the model of the Kinetic::Simulator concept that we provide, Kinetic:Default simulator<FunctionKernel,
EventQueue>, any model of the Kinetic::Simulator::Event concept can be inserted as an event. This ability

4080



implies that events can be mixed at run time, which is essential when we want to support multiple kinetic data
structures operating on the same set of moving geometric primitives.

The Kinetic::Simulator::Time concept is defined by the simulator, typically to be some representation of a root
of a polynomial, taken from the Kinetic::FunctionKernel (details of the algebraic side of the package will be
discussed in Section 72.2). For most kinetic data structures Kinetic::Simulator::Time only needs to support
comparisons (we need to compare events, in order to process them in the correct order) and a few other non-
arithmetic operations.

When the failure times of certificates are sorted exactly (as opposed to when we numerically approximate the
roots of the certificate polynomials) the correctness of kinetic data structures can be easily verified. Let I be
an open interval between the last event processed and the next event to be processed. As was mentioned in
the introduction kinetic data structures do not change combinatorially in I. In addition, although the static
data structures can be degenerate at the roots defining the two ends of the interval, they are not, in general,
degenerate in the interior. An independent check of the integrity of kinetic data structures can be provided by,
for example, using an Kinetic::InstantaneousKernel (cf. Subsection 72.1.4) to rebuild the static version of the
structure from scratch at some time interior to I and compare it to the kinetic version. This auditing can typically
catch algorithmic or programming errors much closer to the time they arise in the simulation than, for example,
using visual inspection. Such easy auditing is one of the powerful advantages of having an exact computational
framework since, as with static data structures, when using inexact computations differentiating between errors
of implementation and numeric errors is quite tricky.

Kinetic data structures receive alerts of appropriate times to audit themselves using a notification framework.
The same framework is also used by the Kinetic::ActiveObjectsTable to alert kinetic data structures when the
set of primitives changes (see Subsection 72.1.3). To use the notification framework, the kinetic data structure
creates a proxy object which implements a standard Listener interface. It then registers this proxy with the
Kinetic::Simulator. When the Kinetic::Simulator finds an appropriate time for the kinetic data structures to
audit themselves it calls the function Listener::new notification(Type) on each of the registered proxy objects.
A helper for creating such proxy objects, called Kinetic::Simulator kds listener<Listener, KDS>, is provided by
the framework. It translates the notification into a function call (audit()) on the kinetic data structure. Pointers
in the notification framework are reference counted appropriately to avoid issues caused by the creation and
destruction order of kinetic data structures and the simulator. See Section 72.1.5 for a more complete discussion
of this part of the framework.

Internally the Kinetic::Simulator maintains a priority queue containing the scheduled events. The type of the
priority queue is a template argument to our Kinetic::Simulator model and, as such, it can be replaced by the
user. In our package, we provide two different types of priority queues, a heap and a two-list priority queue.
A two-list queue is a queue in which there is a sorted front list, containing all events before some time and an
unsorted back list. The queue tries to maintain a small number of elements in the front list, leaving most of them
in the unsorted main pool. The two-list queue, although an unconventional choice, is our default queue when
using exact computation because it minimizes comparisons involving events that are far in the future. These
events are likely to be deleted before they are processed, so extra work done structuring them is wasted. Our
experiments have shown that, for example, the two-list queue causes a 20% reduction in running time relative
to a binary heap for Delaunay triangulations with degree 3 polynomial motions and 20 points.

72.1.2 The Kinetic::Kernel

The Kinetic::Kernel is structured very much like static CGAL kernels. It defines a number of primitives, which
in the model provided are Kinetic::Kernel::Point 1, Kinetic::Kernel::Point 2, Kinetic::Kernel::Point 3 and
Kinetic::Kernel::Weighted point 3. The primitives are defined by a set of Cartesian coordinates each of which
is a function of time, a Kernel::MotionFunction. In addition it defines constructions and certificate generators
which act on the primitives. The certificate generators are the direct analog of the non-kinetic predicates. Each
certificate generator take a number of primitives as arguments, but instead of producing an element from a
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discrete set they produce a set of discrete failure times for the certificate. These failure times are wrapped in a
model of Kinetic::Certificate.

A Kinetic::Certificate is a simple object whose primary function is to produce a Kinetic::Simulator::Time object
representing the failure time of the certificate. Since, the handling of most certificate failures involves creating
a new certificate whose certificate function is the negation of the old certificate function, a Kinetic::Certificate
object caches any work that could be useful to isolate future roots of the certificate function (such as the Sturm
sequence of the certificate function). To illustrate this further, if you have two one-dimensional points with
coordinate functions p0(t) and p1(t), the certificate that the first moving point is after the second corresponds
to the inequality p0(t)− p1(t) > 0. When the certificate fails and the two points cross, the new certificate is
p1(t)− p0(t) > 0, which is the negated version of the certificate just processed and which has the same roots.

The model of Kinetic::Kernel provided includes the certificate generators necessary for Delaunay triangulations
(in one, two and three dimensions) and regular triangulations (in 3D). New certificates can be fairly easily added.
An example is included in the distributed code.

72.1.3 The Kinetic::ActiveObjectsTable

The Kinetic::ActiveObjectsTable stores a set of kinetic primitives. Its purpose is to notify kinetic data structures
when new primitives are added, when primitives are removed or when a trajectories change. Each primitive is
uniquely identified by a Key, assigned by the table when the primitive is added, that can be used to change or
remove it. We provide one model of the Kinetic::ActiveObjectsTable concept, called Kinetic::Active objects
vector<MovingObject> which stores all the moving primitives in an std::vector<D>.

Notifications of changes to the set of active objects are handled using a setup similar to the Kinetic::Simulator
audit time notification. We provide a helper class, Kinetic::Active objects listener helper<ActiveObjectsTable,
KDS>, which translates the notifications into insert(Key), erase(Key) or set(Key) function calls on the kinetic
data structure.

72.1.4 The Kinetic::InstantaneousKernel

The Kinetic::InstantaneousKernel allows existing CGAL data structures to be used on moving data as it appears
at some instant of time. Models of this concept are, by definition, models of a CGAL Kernel or a traits class,
and, therefore, can then be used as the traits class of CGAL’s algorithms and data structures.

Consider for example the kinetic Delaunay data structure in either two or three dimensions. Internally, it uses
a Delaunay triangulation 2<Traits, Tds> or Delaunay triangulation 3<Traits, Tds> to represent the triangula-
tion, instantiated with a model of the Kinetic::InstantaneousKernel concept as its traits class. At initialization,
as well as at times during the simulation when we want to insert a point to the kinetic Delaunay triangulation, a
static version of the Delaunay triangulation is conceptually instantiated. More precisely, the time for the copy
of the model of the Kinetic::InstantaneousKernel stored in the CGAL triangulation is set to be the current time
(or rather, as discussed in the introduction, a more convenient time determined by the Kinetic::Simulator com-
binatorially equivalent to the current time). The kinetic data structure then calls the Delaunay triangulation
3<Traits, Tds>::insert(Point) insert method to insert the point. The static insert method called uses various
predicate functors on the moving points which evaluate to the values that the predicates have at that instant in
time. Removal is handled in an analogous manner. Auditing of the geometric structure is easily handled in a
similar manner (in the case of Delaunay triangulations by simply calling the verify() method after setting the
time).
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72.1.5 Miscellaneous: notification and reference management

We describe some coding conventions used, graphical display, notification and reference management support
in the framework in the following sections.

Reference management

A number of objects need to maintain pointers to other independent objects. For example, each kinetic data
structure must have access to the Kinetic::Simulator so that it can schedule and deschedule events. These
pointers are all reference counted in order to guarantee that they are always valid. We provide a standard
reference counting pointer and object base to facilitate this, namely Ref counted<Object>.

Each shared object in the framework defines a type Handle which is the type for a reference counter pointer
pointing to it. These should be used for storing pointers to the objects in order to avoid dangling pointers. In
addition, many of the objects expect such pointers as arguments.

Runtime event passing

Runtime events must be passed from notifiers, namely the Kinetic::ActiveObjectsTable and the Ki-
netic::Simulator to listeners, typically the kinetic data structures. For example, kinetic data structures are
notified when new primitives are added to the Kinetic::ActiveObjectsTable. On reciving the notification, it
will add the new primitive to the combinatorial structure it is maintaining. The events are passed using a simple,
standardized notification interface. To receive notifications, the listener first defines a small proxy class which
inherits from a Listener base type provided by the notifier. On creation, the Listener base class registers itself
with the notifier on construction (and unregisters itself on destruction).

When the some state of the notifier changes, it calls the new notification method on the listener proxy object
provided and passes it a label corresponding to the name of the field that changed. The proxy object can then
call an appropriate method on the kinetic data structure or whetever the listening class is.

In order to unregister on destruction, the Listener must store a (reference counted) pointer to the object providing
notifications. This pointer can be accessed through the notifier() field. The Listener object stores a reference
counted pointer to the notifying object, while the notifying object stores a plain pointer to the Listener. It can
do this since the Listener is guaranteed to unregister itself when it is destroyed. This avoids circular reference
counted pointers as well as dangling pointers.

72.2 Algebraic Kernel

The interface between the algebraic kernel and the kinetic data structures package was kept quite minimal in
order to ease the implementation of various underlying computation models. The interface is detailed in the
reference page (Kinetic::FunctionKernel).

We provide models of the algebraic kernel that handle polynomial Kinetic::Function objects. The provided
models perform

• exact computations using Sturm sequences to isolate roots

• exact computations using Descartes rule of sign in order to isolate roots (Sturm sequences are also used
in order to properly handle even multiplicity roots)
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• filtered exact computations using Descartes rule of sign

• numeric (inexact) root approximations

• numeric root approximations which take advantage of certain assumptions that can be made about the
types of polynomials solved in the process of evaluating kinetic data structures

• a wrapper for CORE::Expr which implements the required concepts.

The exact models, which we implement the numerics for, handle non-square-free polynomials and polynomials
with arbitrary field number type coefficients and are quite robust.

72.2.1 Kinetic::FunctionKernel customized for kinetic data structures

There are several modifications we can make to how the roots are handled to optimize for the case of kinetic data
structures. The first are motivated by the question of how to handle degeneracies (certificate functions which
have roots at the same time). Naively, there is no way to differentiate between a certificate which fails immedi-
ately when it is created and one whose function is momentarily 0, but will be valid immediately in the future.
In order to handle such degeneracies we ensure that all the certificate function generators produce certificate
functions which are positive when the corresponding certificates are valid. Then, if we have a degeneracy we
can differentiate between a certificate which fails immediately and one which is simply degenerate by looking
at the sign of the certificate function immediately following the root (equivalently, by looking at the derivative).
In addition, this allows us, under the assumption that computations are performed exactly, to check that all
certificates are not invalid upon creation.

The assumption that certificates are positive when valid is particular useful when using numeric solvers. Without
it there is no reliable way to tell whether a root near the current time is the certificate having become valid just
before the current time, or failing shortly in the future. Testing the sign of the function immediately after the
root reliably disambiguates the two cases.

In addition, we have to specially handle even roots of functions. For the most part these can just be discarded
as dropping an even root is equivalent to perturbing the simulation to remove the degeneracy. However, when
we are using the Kinetic::Simulator to audit the kinetic data structures, they most be broken up in to two, equal,
roots to avoid auditing at the degeneracy.

72.3 Examples

We provide a number of examples of different levels of usage of the kinetic data structures framework, both for
kinetic data structures as well as sweepline algorithms.

To see how to use existing kinetic data structures, look at the examples in the previous chapter such as Sec-
tion 71.4.1.

The here we cover implementing kinetic data structures. The examples explained are

• A trivial kinetic data structure which has all the parts of a full kinetic data structure but doesn’t do much
in Section 72.3.2.

• Adding a new type of certificate to a kernel in Section 72.3.3.
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In order to see more detail about how to implement a kinetic data structure, the best place to start is the source
code for the kinetic sorting data structure, Kinetic::Sort<Traits, Visitor>. Once you are familiar with that,
Kinetic::Delaunay 2<Traits, Triangulation, Visitor> is the next step in complexity.

We will first explain in detail how a typical kinetic data structure uses the various pieces of the framework, then
move on to showing the actual code for a simpler data structure.

72.3.1 Using the Pieces of the Package

Here we will explain how the kinetic sorting data structure uses the various pieces of the package. A schematic
of its relationship to the various components is shown in the UML diagram in Figure 72.1. In this subsection
we abuse, for reasons of simplicity of presentation, the concept/model semantics: when we refer to concepts we
actually refer to an instance of a model of them.

As with most kinetic data structures, Kinetic::Sort<Traits, Visitor> maintains some sort of combinatorial struc-
ture (in this case a sorted doubly linked list), each element of which has a corresponding certificate in the event
queue maintained by the simulator. In the case of sorting, there is one certificate maintained for each “edge”
between two consecutive elements in the list.

On creation, the data structure is passed a copy of the Kinetic::SimulationTraits for this simulation,
which it saves for future use. It gets a handle to to the Kinetic::ActiveObjectsTable by calling the
Kinetic::SimulationTraits::active points 1 table handle() method and registers a proxy with the table in or-
der to receive notifications of changes to the point set. The Kinetic::SimulationTraits method returns a handle
to, rather than a copy of, the Kinetic::ActiveObjectsTable, since the table must be shared between all the ki-
netic data structures using these points. The handles are reference counted pointers, thus saving the user from
worrying about cleaning things up properly.

When new points are added to the model of the Kinetic::ActiveObjectsTable, the table calls the new
notification() method on the proxy of the kinetic data structure, which in turn calls the insert(Point
key) method of the kinetic data structure. The Point key here is the key which uniquely identifies the
newly inserted point in the table. The data structure then requests an instance of a model of the Ki-
netic::InstantaneousKernel from the Kinetic::SimulationTraits. It sets the time on the instantaneous ker-
nel to the time value gotten from the Kinetic::Simulator::current time nt() method. This method returns
a field number type that is between the previous and next event, as discussed in the introduction. An
instance of the Kinetic::InstantaneousKernel::Compare x 1 predicate (wrapped in order to make it return
less) and the STL function std::upper bound() are then used to insert the new point in the sorted list. For
each inserted object, the kinetic data structure removes the no longer relevant certificate from the event
queue by calling the Kinetic::Simulator::delete event(Key) function and creates two new certificates using a
Kinetic::Kernel::Compare x 1 certificate functor. The new certificates are inserted in the event queue by call-
ing the Kinetic::Simulator::new event(Time, Event) method where Kinetic::Simulator::Event is a proxy object
which instructs the sort kinetic data structure to swap two points when its process() method is called.

Now that the kinetic data structure has been initialized, the simulator is instructed to process all events. Each
time an event occurs, the simulator calls the process() method on the corresponding proxy object. The proxy, in
turn, tells the sort kinetic data structure to swap the two points whose order has changed.

The Kinetic::Simulator can periodically instruct the kinetic data structures to audit themselves. As is explained
in Section 72.1.1, a proxy object maps the notification on to an audit() function call in the kinetic data struc-
ture. To audit itself the kinetic data structure builds a list of all the current points and uses std::sort to sort
this list using a comparison function gotten from the Kinetic::InstantaneousKernel. This sorted list is com-
pared to the maintained one to verify correctness. This auditing could also have been done by evaluating the
Kinetic::InstantaneousKernel predicate for each sorted pair. Since auditing a kinetic data structure typically re-
quires at least linear time in the size of the combinatorial structure, the auditing procedure in between events is
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deactivated by default. The user can however easily switch it on by defining the CGAL CHECK EXACTNESS
and CGAL CHECK EXPENSIVE CGAL macros.

This general structure of the interaction between the kinetic data structure and the framework is shared by all of
the provided kinetic data structures and has proved itself to go quite far.

72.3.2 The Trivial Kinetic Data Structure

To show how to implement such things, instead of presenting a full kinetic data structure, we present a trivial
one which maintains one event in the queue which maintains one event in the queue, scheduled to occur one
time unit after the last change was made to the set of active primitives. Two classes are defined, the Trivial
event, and the Trivial kds. The event classes must be declared outside of the kinetic data structure so that the
operator<< can be defined for them.

The kinetic data structure maintains the invariant that it was one event in the queue at all times. This event ccurs
one time unit after the last event or change in the set of objects occurs. As a result, the kinetic data structure has
the main parts of a real one–it responds to changes in trajectories of the objects and certificate failures (when
the event expires).

The public methods can be grouped into three sets which are shared with almost all other kinetic data structures:

• has certificates and set has certificates which checks/sets whether the kinetic data structure is currently
maintaining certificates.

• insert, set, erase which are called by the Kinetic::Active objects listener helper in response to the addi-
tion, modification, or deletion of an object to, in or from the simulation.

• audit which is called periodically by the Kinetic::Simulator kds listener when kinetic data structures can
easily audit themselves.

In addition, it has one method which is called when a certificate fails. The name/existence of such methods
depend on the nature of the kinetic data structure in question.

Like many kinetic data structures, it takes a Kinetic::SimulationTraits as a template argument. This traits class
defines the types needed for the simulation and is responsible for instantiating them.� �
#include <CGAL/Kinetic/Ref_counted.h>
#include <CGAL/Kinetic/Exact_simulation_traits.h>
#include <CGAL/Kinetic/Active_objects_listener_helper.h>
#include <CGAL/Kinetic/Simulator_kds_listener.h>
...

// This must be external since operator<< has to be defined
template <class KDS>
struct Trivial_event
{

Trivial_event(){}
Trivial_event(KDS* kds): kds_(kds) {
}
void process() const
{

kds_->process();
}
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KDS* kds_;
};

template <class KDS>
std::ostream &operator<<(std::ostream &out,

const Trivial_event<KDS> &) {
out << "\"An event\"";
return out;

}

template <class Traits>
struct Trivial_kds: CGAL::Kinetic::Ref_counted<Trivial_kds<Traits> >
{

typedef Trivial_kds<Traits> This;
typedef typename Traits::Active_points_1_table::Data Point;
typedef typename Traits::Simulator::Time Time;
typedef typename Traits::Active_objects_table::Key Point_key;
typedef typename Traits::Simulator::Event_key Event_key;
typedef CGAL::Kinetic::Active_objects_listener_helper<

typename Traits::Active_points_1_table::Listener, This>
Active_objects_helper;

typedef CGAL::Kinetic::Simulator_kds_listener<
typename Traits::Simulator::Listener, This> Simulator_helper;

typedef Trivial_event<This> Event;

Trivial_kds(Traits tr): has_certificates_(true),
tr_(tr),
nth_(tr.active_points_1_table_handle(), this),
sh_(tr.simulator_handle(), this){}

// this method is called with the value true when the event is
processed

void process(bool tf) {
event_= Event_key();
set_has_certificates(false);
set_has_certificates(true);

}

void audit() const
{

...
}

void set_has_certificates(bool tf) {
typename Traits::Simulator::Handle sp= tr_.simulator_handle();
if (has_certificates_ != tf) {

has_certificates_=tf;
if (has_certificates_) {

bool ev= event_;
CGAL_assertion(!ev);
Time t= CGAL::to_interval(sp->current_time()).second+1;
event_= sp->new_event(t, Event(this));
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} else if (event_) {
sp->delete_event(event_);
event_=Event_key();

}
}

}

bool has_certificates() const {
return has_certificates_;

}

void insert(Point_key k) {
if (has_certificates_) {

set_has_certificates(false);
set_has_certificates(true);

}
}

void set(Point_key k) {
if (has_certificates_) {

set_has_certificates(false);
set_has_certificates(true);

}
}

void erase(Point_key k) {
if (has_certificates_) {

set_has_certificates(false);
set_has_certificates(true);

}
}

˜Trivial_kds(){
set_has_certificates(false);

}

protected:
bool has_certificates_;
Event_key event_;
Traits tr_;
Active_objects_helper nth_;
Simulator_helper sh_;

};� �
72.3.3 Adding a New Certificate Type

The following example shows how to add a new type of certificate to a simulation.

First we code the actual certificate function generator. It must take some sort (or sorts) of kinetic primitives,
compute some function from their coordinates.� �
template <class KineticKernel>
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struct Positive_x_f_2 {
typedef typename KineticKernel::Certificate_function result_type;
typedef typename KineticKernel::Point_2 argument_type;
result_type operator()(const argument_type &p){

return result_type(p.x()- result_type(0));
}

};� �
Then we define a kinetic kernel which includes this predicate. To do this we wrap the function generator
generator in a Kinetic::Certificate generator<Kernel, Generator>. This wrapper uses the generator to create
the certificate function and then the Kinetic::FunctionKernel to solve the certificate function. The result is
wrapped in a Kinetic::Certificate object.� �
template <class FunctionKernel>
class My_kinetic_kernel:

public CGAL::Kinetic::Cartesian<FunctionKernel> {
typedef CGAL::Kinetic::Cartesian<FunctionKernel> P;
typedef My_kinetic_kernel<FunctionKernel> This;

public:
typedef CGAL::Kinetic::internal::Certificate_generator<This,
Positive_x_f_2<This> > Positive_x_2;

Positive_x_2 positive_x_2_object() const
{

return Positive_x_2(P::function_kernel_object());
}

};� �
Now we have the unfortunately rather messy part of assembling a new Kinetic::SimulationTraits model. This is
done in two steps for convenience.� �
struct My_simulation_traits {

typedef My_simulation_traits This;

typedef CGAL::Exact_predicates_exact_constructions_kernel
Static_kernel;

//typedef
CGAL::Regular_triangulation_euclidean_traits_3<Static_kernel_base>
Static_kernel;

typedef CGAL::POLYNOMIAL::Polynomial<Static_kernel::FT> Function;
typedef CGAL::POLYNOMIAL::Sturm_root_stack_traits<Function>
Root_stack_traits;

typedef CGAL::POLYNOMIAL::Sturm_root_stack<Root_stack_traits>
Root_stack;

typedef CGAL::POLYNOMIAL::Kernel<Function, Root_stack> Function_kernel;

typedef
CGAL::Kinetic::Handle_degeneracy_function_kernel<Function_kernel,
false> Simulator_function_kernel_base;

struct Simulator_function_kernel: public
Simulator_function_kernel_base{};

typedef My_kinetic_kernel<Simulator_function_kernel> Kinetic_kernel;
typedef CGAL::Kinetic::Two_list_pointer_event_queue<Function_kernel>
Event_queue;
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typedef CGAL::Kinetic::Default_simulator<Simulator_function_kernel,
Event_queue > Simulator;

typedef CGAL::Kinetic::Active_objects_vector<Kinetic_kernel::Point_1>
Active_points_1_table;

typedef CGAL::Kinetic::Active_objects_vector<Kinetic_kernel::Point_2>
Active_points_2_table;

typedef CGAL::Kinetic::Active_objects_vector<Kinetic_kernel::Point_3>
Active_points_3_table;

// typedef Active_objects_vector<Kinetic_kernel::Weighted_point_3>
Active_weighted_points_3_table;

typedef CGAL::Kinetic::Default_instantaneous_kernel<This>
Instantaneous_kernel;

Active_points_1_table* active_points_1_table_handle() const { return
ap1_.get();}

Active_points_2_table* active_points_2_table_handle() const {return
ap2_.get();}

Active_points_3_table* active_points_3_table_handle() const {return
ap3_.get();}

//Active_weighted_points_3_table*
active_weighted_points_3_table_handle() const {return awp3_.get();}

Simulator* simulator_handle() const { return sim_.get();}
const Static_kernel& static_kernel_object() const {return k_;}
const Kinetic_kernel& kinetic_kernel_object() const {return kk_;}

Instantaneous_kernel instantaneous_kernel_object() const {
return Instantaneous_kernel(*this);

}

My_simulation_traits(const Simulator::Time &lb,
const Simulator::Time &ub): sim_(new Simulator(lb,

ub)),
ap1_(new

Active_points_1_table()),
ap2_(new

Active_points_2_table()),
ap3_(new

Active_points_3_table())
{}

bool is_exact() const {
return true;

}
protected:

Simulator::Handle sim_;
Active_points_1_table::Handle ap1_;
Active_points_2_table::Handle ap2_;
Active_points_3_table::Handle ap3_;
//Active_weighted_points_3_table::Handle awp3_;
Static_kernel k_;
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Kinetic_kernel kk_;
Function_kernel fk_;

};� �
Now the simulation traits can be used by a kinetic data structure. Note that we define active point table for all
dimensions. This is needed by the Kinetic::InstantaneousKernel, even if they are not used.
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72.4 Classified Reference Pages

Definition

Kinetic data structures are a way of adding motion to classical geometric data structures. CGAL provides a
number of classes to aid implementation of kinetic data structures.

There are three levels at which the user can interact with the package. The user can use an existing kinetic data
structure, write a new kinetic data structure, or replace parts of the framework.The first level is covered in the
Chapter 72.

Main Support Classes and Concepts

Here we list the main classes and concepts provided by the framework to support implementing kinetic data
structures

Kinetic::ActiveObjectsTable . . page 4096 CGAL::Kinetic::Active objects vector<MovingObject> . . page 4099
Kinetic::Cartesian<FunctionKernel>page ?? Kinetic::FunctionKernel page 4109 Kinetic::InstantaneousKernel
page 4115 CGAL::Kinetic::Default instantaneous kernel<ActiveObjectsTable, StaticKernel> . . . . . . . . page ??
Kinetic::Kernel . . . . . page 4117 Kinetic::SimulationTraits . . . . . page 4124 Kinetic::Simulator . . . . . page 4131
CGAL::Kinetic::Default simulator<FunctionKernel, EventQueue> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4128

Other Concepts

Key . page 4116 Kinetic::Certificate . page 4102 Kinetic::CertificateGenerator . page 4103 Kinetic::EventQueue
page 4105 Kinetic::FunctionKernel::ConstructFunction . . . . . . . . . . . . . page 4104 Key . . . . . . . . . . . . . page 4116
Kinetic::FunctionKernel::Function . . . . page 4112 Kinetic::RootStack . . . . page 4123 Kinetic::Simulator::Event
page 4107 Kinetic::Simulator::Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4135

Other Classes

CGAL::Listener<Interface> . page 4118 CGAL::Multi listener<Interface> . page 4121 CGAL::Ref counted<T>
page 4122 CGAL::Kinetic::Active objects listener helper<ActiveObjectsTable, KDS> . . . . . . . . . . . . . . . page ??
CGAL::Kinetic::Erase event<ActiveObjectsTable> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4058
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CGAL::Kinetic::Insert event<ActiveObjectsTable> . . . page 4060 CGAL::Kinetic::Qt moving points 2<Traits,
QtWidget 2> . . . . . . . . . . . page 4061 CGAL::Kinetic::Qt triangulation 2<KineticTriangulation 2, QtWidget 2,
QtMovingPoints 2> . . . . . . . . . . . . page 4062 CGAL::Kinetic::Qt widget 2<Simulator> . . . . . . . . . . . . page 4063
CGAL::Kinetic::Regular triangulation instantaneous kernel<ActiveObjectsTable, StaticKernel> . . .page 4069
CGAL::Kinetic::Simulator kds listener<Listener, KDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
CGAL::Kinetic::Simulator objects listener<Simulator listener, KDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4130

72.5 Alphabetical List of Reference Pages

CertificateGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4103
ConstructFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4104
Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4107
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4112
Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4116
Kinetic::ActiveObjectsTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4096
Kinetic::Active objects listener<ActiveObjectsTable, KDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4095
Kinetic::Active objects vector<MovingObject> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4099
Kinetic::Cartesian<FunctionKernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4100
Kinetic::Certificate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4102
Kinetic::Default instantaneous kernel<SimulationTraits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4113
Kinetic::Default simulator<FunctionKernel, EventQueue> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4128
Kinetic::EventQueue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4105
Kinetic::FunctionKernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4109
Kinetic::InstantaneousKernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4115
Kinetic::Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4117
Kinetic::RootStack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4123
Kinetic::SimulationTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4124
Kinetic::Simulator listener<Listener, KDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4129
Kinetic::Simulator objects listener<Simulator listener, KDS> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4130
Kinetic::Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4131
Listener<Interface> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4118
Multi listener<Interface> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4121
Ref counted<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4122
Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4135
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CGAL::Kinetic::Active objects listener<ActiveObjectsTable, KDS>

Definition

The class Kinetic::Active objects listener<ActiveObjectsTable, KDS> acts as an intermediate between a moving
object table and a KDS. It translates the ActiveObjectsTable::Listener::IS EDITING notification events into
appropriate calls to KDS::insert(Key), KDS::set(Key), KDS::erase(Key).

Kinetic data structures can still take advantage of the batch editing if they are careful. The methods (such as
KDS::set(Key) are called in lexicographical order in the Keys. So, when a KDS is preparing to update some
certificate involving a recently set object, it can first check if the certificate involves another changed object
which is lexicographically prior. If so, then the certificate has already been updated and can be skipped.

#include <CGAL/Kinetic/listeners.h>

See Also

Kinetic::Active objects vector<MovingObject>, Kinetic::ActiveObjectsTable.
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Kinetic::ActiveObjectsTable

Definition

This container holds a set of objects of a particular type. It creates notifications using the standard Multi
listener<Interface> interface when a primitive changes or is added or deleted. Objects which are listening for
events can then ask which primitives changed.

For speed, modifications to the Kinetic::ActiveObjectsTable can be grouped into editing sessions. A session is
begun by calling set is editing(true) and ended by calling set is editing(false). There is one type of notification,
namely, Listener::IS EDITING which occurs when the editing mode is set to false, signaling that a batch of
changes is completed.

As an convenience, the change methods can be called without setting the editing state to true, this acts as if it
were set to true for that one function call.

Types

Kinetic::ActiveObjectsTable:: Key A key identifying an object in the table.

Kinetic::ActiveObjectsTable:: Data The type being stored in the table.

Kinetic::ActiveObjectsTable:: Listener The base class to derive from for listening for runtime events.

The following types are iterators. Each type, Foo iterator has two corresponding methods foo begin and foo
end which allow you to iterate through the objects in the set Foo.

Kinetic::ActiveObjectsTable:: Key iterator An iterator through all the valid keys in the table.

Kinetic::ActiveObjectsTable:: Changed iterator

An iterator through all the objects which have been changed
in the last editing session. The iterator iterates through the
objects in lexicographical order.

Kinetic::ActiveObjectsTable:: Inserted iterator

An iterator through all the objects which were added in the
last editing session.

Kinetic::ActiveObjectsTable:: Erased iterator An iterator through all the objects which were deleted in the
last editing session.

Creation

4096



Operations

Data mot[ Key key] Access the object referenced by the key.

Data mot.at( Key key) const

Access the object referenced by the key.

void mot.set is editing( bool is editing)

Set the editing state of the object. A notification is sent when
the editing state is set to false after it has been true, i.e. the
editing session is finished. This allows changes to be batched
together.

bool mot.is editing() const Access the editing state.

void mot.set( Key key, Data object)

This method changes the motion of one moving object. The
position at the current time should not be different from the
previous current position. However, at the moment I do
not check this as there is no reference to time in the Ki-
netic::ActiveObjectsTable. If is editing() is not true, then
it is as if the calls set is editing(true), set(key, value) and fi-
nally set is editing(false) were made. If it is true, then no
notifications are created.

Key mot.insert object( Data ob)

Insert a new object into the table and return a Key which can
be used to refer to it. See set(Key, Data) for a description of
editing modes.

void mot.erase( Key key) Delete an object from the table. The object with Key key
must already be in the table. This does not necessarily de-
crease the amount of storage used at all. In fact, it is unlikely
to do so. See set(Key,Data) for an explainating of how the
editing modes are used.

void mot.clear() Remove all objects from the table and free all storage.

void mot.is set( Key) const Returns true if the object has been set in the currently notified
editing session. Note that this method can only be saftely
called when processing an IS EDITING notification.

void mot.is new( Key) const

Returns true if the object has been set in the currently notified
editing session.
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void mot.clear( Key) const Returns true if the object has been set in the currently notified
editing session.

Has Models

Kinetic::Active objects vector<MovingObject>

See Also

Multi listener<Interface>, Kinetic::Active objects listener helper<ActiveObjectsTable, KDS>
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CGAL::Kinetic::Active objects vector<MovingObject>

Definition

MovingObjects are stored in a vector. This means that access is constant time, but storage is not generally freed.
The only way to be sure is to remove all reference counts for the table or to call clear().

#include <CGAL/Kinetic/Active objects vector.h>

Is Model for the Concepts

Kinetic::ActiveObjectsTable
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CGAL::Kinetic::Cartesian<FunctionKernel>

Definition

This class provides a model of Kinetic::Kernel for use with general Cartesian geometry.

The IO format for points is currently p0, p1, ... w. pi and w are instances of Function. There IO format is
typically c0 + c1t + c2t2 + .... Beware of issues with CGAL IO of the coeffients as exact number typles often
require that the coefficents be expressed as a/b even when b is 1.

#include <CGAL/Kinetic/Cartesian.h>

Types

Kinetic::Cartesian<FunctionKernel>:: Certificate

This is a model of Kinetic::Certificate.

Kinetic::Cartesian<FunctionKernel>:: Point 1

Kinetic::Cartesian<FunctionKernel>:: Point 2

Kinetic::Cartesian<FunctionKernel>:: Point 3

Kinetic::Cartesian<FunctionKernel>:: Weighted point 3

The following are functors which generate Certificate objects. Each has a corresponding object method which
creates the functor. They are models of Kinetic::CertificateGenerator.

Kinetic::Cartesian<FunctionKernel>:: Orientation 2

Kinetic::Cartesian<FunctionKernel>:: Orientation 3

Kinetic::Cartesian<FunctionKernel>:: Side of oriented circle 2

Kinetic::Cartesian<FunctionKernel>:: Side of oriented sphere 3

Kinetic::Cartesian<FunctionKernel>:: Power test 3

Kinetic::Cartesian<FunctionKernel>:: Weighted orientation 3

Kinetic::Cartesian<FunctionKernel>:: Compare x 1

Kinetic::Cartesian<FunctionKernel>:: Compare x 2
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Kinetic::Cartesian<FunctionKernel>:: Compare y 2

Kinetic::Cartesian<FunctionKernel>:: Compare x 3

Kinetic::Cartesian<FunctionKernel>:: Compare y 3

Kinetic::Cartesian<FunctionKernel>:: Compare z 3

Kinetic::Cartesian<FunctionKernel>:: Compare distance 2

Kinetic::Cartesian<FunctionKernel>:: Compare distance 3

Is Model for the Concepts

Kinetic::Kernel.
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Kinetic::Certificate

Definition

The concept represents certificate. Its main purpose is to provide a way of creating Time objects corresponding
to when the certificate fails and to cache any useful work done in find the Time for later.

Operations

Time c.failure time() Returns the next failure time.

bool c.will fail() Returns true if the certificate will ever fail.

void c.pop failure time() Advances to the next failure time (the next root of the certifi-
cate functions).

See Also

Kinetic::Kernel.
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Kinetic::CertificateGenerator

Definition

This functor allows you to create certificate objects of some type. The models of this “concept” take some set
of arguments which depend on the certificate being computed (for example three points for a two dimensional
orientation) followed by either one or two instances of the Kinetic::Simulator::Time concept. The functions
either return a Certificate or the corresponding value at the current time (if only a time value rather than an
interval is passed).

Operations

Certificate a( Args, Time begin, Time end)

Return a Certifate object for the corresponding certificate.

CGAL::Sign a( Args, Time t) Compute the sign of the function at limδ→0 t +δ. This can be
used to evaluate predicates at the current moment.

Has Models

All over the place.

See Also

Kinetic::KineticKernel

Example

Here you see how to use both functions on an orientation predicate.� �
KineticKernel::Point_2 a,b,c;
Simulator::Handle sh;
KineticKernek kk;

KineticKernel::Orientation_2 o2= kk.orientation_2_object();

KineticKernel::Certificate c= o2(a,b,c, sh->current_time(),
sh->end_time());

if (c.will_fail()) {
std::cout << "Certificate will fail" << std::endl;

}
// Compute the sign immediately following the current time
CGAL::Sign sn= o2(a,c,b, sh->current_time());
CGAL_postcondition(sn==CGAL::NEGATIVE);� �
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Kinetic::FunctionKernel::ConstructFunction

Definition

The concept is used to construct functions.

Operations

Function a( NT a, ...) This family of methods takes a list of coefficients and returns
a function. There can be any number of coeffients passed as
arguments (up to about 25 in the current implementations).

See Also

FunctionKernel

Example� �
Function_kernel fk;
Function_kernel::Construct_function cf= fk.construct_function_object();
Function_kernel::Function f= cf(0,1,2,3,4,5);� �

4104



C
on

ce
pt

Kinetic::EventQueue

Definition

The for priority queues used by the Simulator. The concept basically defines a priority queue which supports
deletions and changes of items in the queue (but not their priorities). Items in the queue must implement the
Event concept.

Types

Kinetic::EventQueue:: Key The type used to access items in the queue in order to change
or delete them.

Kinetic::EventQueue:: Priority The priority type for items in the queue. This is typically the
same as Kinetic::Simulator::Time

.

Creation

Kinetic::EventQueue q( Priority start, Priority end, int size hint);

Construct a queue which will start at time start and run until
time end.

Operations

template <class Event>
Key q.insert( Priority, Event)

Insert an event into the event queue. A Key which can be
used to manipulated the event is returned.

void q.erase( Key) Erase an event from the queue.

template <class Event>
void q.set( Key, Event) Change the data in the event referred to by the key.

template <class Event>
Event& q.get( Key) const Access the event referred to by the passed key.

Priority q.priority( Key) const Return the priority of the event.

bool q.empty() Return true if the queue is empty.
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Priority q.next priority() const

Return the priority of the next event in the queue.

void q.process next() Process the next Event by calling its process method with its
Priority.

void q.set end priority() Set the priority beyond which to ignore events.

bool q.contains( Key) const

Return true if the queue contains the event and false if it
does not. This is used for auditing events and can be slow
if needed.

Has Models

Kinetic::Two list pointer event queue<FunctionKernel>, Kinetic::Heap pointer event queue<
FunctionKernel>.
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Kinetic::Simulator::Event

Definition

The concept represents a single event. Models of should be passed to the Kinetic::Simulator when scheduling
events which will in turn pass them to the EventQueue.

Operations

void a.process() This method is called when the event occurs. This method
will only be called once per time this event is scheduled and
the event will be removed from the queue immediately after-
wards.

void* a.kds() Return a void * which represents the KDS which this event
belongs to. The pointer is used solely to tell if two events
come from the same KDS for the purposes of handling de-
generacy.

CGAL::Comparison result

a.compare concurrent( Key a, Key b) const

The two events a and b occur at the same time (this has key
a). This method returns a CGAL::Comparison result which
is used to order the two equal events. If CGAL::EQUAL is
returned then merge will be called.

bool a.merge concurrent( Key a, Key b)

The two events a and b occur at the same time (this has key
a) and cannot be perturbed to be unequal. This event allows
the KDS to merge event b with a. If it returns true then b is
dropped from the event queue.

void a.audit( Key this key) Audit that this is a valid event. To use this, kinetic data struc-
ture can check that this event is indeed pointed to by the cor-
rect part of the combinatorial structure.

std::ostream& a.write( std::ostream&) const

Write the event to a stream.

Has Models

All over the place. Kinetic::Event base.
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See Also

Kinetic::EventQueue

Example

All of the kinetic data structures provided have models of Event. Here is the code implementing a swap event
from the sorting kinetic data structure. Events occuring at equal times are perturbed so that the one that occurs
first in the list is processed first (just to illustrate the idea).� �
template <class Certificate, class Id, class Root_enumerator>
class Swap_event {

typedef Swap_event<class Certificate, class Id, class Root_enumerator>
This;

public:
Swap_event(Id o, Sort* sorter,

const Certificate &s): left_object_(o),
sorter_(sorter),
s_(s){}

void process(){
sorter_->swap(left_object_, s_);

}
void *kds() const {return sorter_;}
CGAL::Comparison_result perturb_comparison(typename Sort::Event_key a,
typename Sort::Event_key b) const {
return CGAL::compare(std::distance(sorter_->objects_begin(),
left_object_),

std::distance(sorter_->objects_begin(),

sorter_->simulator_handle()->get_event<This>(b).left_object_));
}
bool merge(typename Sort::Event_key a, typename Sort::Event_key b) {

return false;
}
Id left_object_;
Sort* sorter_;
Certificate s_;

};� �
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Kinetic::FunctionKernel

Definition

The concept Kinetic::FunctionKernel encapsulates all the methods for representing and handing functions. The
set is kept deliberately small to easy use of new Kinetic::FunctionKernels, but together these operations are
sufficient to allow the correct processing of events, handling of degeneracies, usage of static data structures, run-
time error checking as well as run-time verification of the correctness of kinetic data structures. The computation
of a polynomial with the variable negated is used for reversing time in kinetic data structures and can be omitted
if that capability is not needed.

Types

Kinetic::FunctionKernel:: Function The type of function being handled.

Kinetic::FunctionKernel:: NT The basic representational number type.

Kinetic::FunctionKernel:: Root A type representing the roots of a Function.

Kinetic::FunctionKernel:: Root stack A model of RootStack. These objects can be created by call-
ing the root stack object method with a Function and two
(optional) Root objects. The enumerator then enumerates all
roots of the function in the open inverval defined by the two
root arguments. They optional arguments default to positive
and negative infinity.

Kinetic::FunctionKernel:: Root enumerator traits

The traits for the Root enumerator class.

Each of the following types has a corresponding type object method (not explicitly documented) which takes a
Function as an argument.

Kinetic::FunctionKernel:: Sign at A functor which returns the sign of a Function at a NT or
Root.

Kinetic::FunctionKernel:: Sign after A functor which returns sign of a function immediately after
a root.

The following type is used to construct functions from a list of coefficients. To get an instance use the construct
function object() method.

Kinetic::FunctionKernel:: Construct function This functor can be used create instances of Function. See its
reference page FunctionKernel::ConstructFunction for more
details.

The following functor likewise have a type object method, but these take arguments other than a Function. The
arguments are given below.
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Kinetic::FunctionKernel:: Sign between roots This functor, creation of which requires two Roots, returns
the sign of a passed function between the pair of roots.

Kinetic::FunctionKernel:: Differentiate This functor computes the derivitive of a Function. Con-
struction takes no arguments.

The following methods do not require any arguments to get the functor and take one Function as a functor
argument.

Kinetic::FunctionKernel:: Negate variable Map f (x) to f (−x).

Has Models

POLYNOMIAL::Kernel<RootStack>, POLYNOMIAL::Filtered kernel<RootStack>.

See Also

Kinetic::RootEnumerator.

Example

We provide several models of the concept, which are not documented separately. The models of Ki-
netic::SimulationTraits all choose appropriate models. However, if more control is desired, we here provide
examples of how to create the various supported Kinetic::FunctionKernel.

A Sturm sequence based kernel which supports exact comparisons of roots of polynomials (certificate failure
times):� �
typedef CGAL::POLYNOMIAL::Polynomial<CGAL::Gmpq> Function;
typedef CGAL::POLYNOMIAL::Sturm_root_stack_traits<Function>

Root_stack_traits;
typedef CGAL::POLYNOMIAL::Sturm_root_stack<Root_stack_traits> Root_stack;
typedef CGAL::POLYNOMIAL::Kernel<Function, Root_stack> Function_kernel;� �
A wrapper for CORE::Expr which implements the necessary operations:� �
typedef CGAL::POLYNOMIAL::CORE_kernel Function_kernel;� �
A function kernel which computes approximations to the roots of the polynomials:� �
typedef CGAL::POLYNOMIAL::Polynomial<double> Function;
typedef CGAL::POLYNOMIAL::Root_stack_default_traits<Function>

Root_stack_traits;
typedef CGAL::POLYNOMIAL::Numeric_root_stack<Root_stack_traits>

Root_stack;
typedef CGAL::POLYNOMIAL::Kernel<Function, Root_stack> Function_kernel;� �
When using the function kernel in kinetic data structures, especially one that is in exact, it is useful to wrap
the root stack. The wrapper checks the sign of the certificate function being solved and uses that to handle
degeneracies. This is done by, for the inexact solvers
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� �
typedef Kinetic::Derivitive_filter_function_kernel<Function_kernel>

KDS_function_kernel;� �
and for exact solvers� �
typedef Kinetic::Handle_degeneracy_function_kernel<Function_kernel>

KDS_function_kernel;� �
For exact computations, the primary representation for roots is the now standard choice of a polynomial with
an associated isolating interval (and interval containing exactly one distinct root of a polynomial) along with
whether the root has odd or even multiplicity and, if needed, the Sturm sequence of the polynomial. Two
intervals can be compared by first seeing if the isolating intervals are disjoint. If they are, then we know the
ordering of the respective roots. If not we can subdivide each of the intervals (using the endpoints of the other
interval) and repeat. In order to avoid subdividing endlessly when comparing equal roots, once we subdivide
a constant number of times, we use the Sturm sequence of p and p′q (where p and q are the two polynomials
and p′ is the derivative of p) to evaluate the sign of the second at the root of the first one directly (note that this
Sturm sequence is applied to a common isolating interval of the roots of interest of both polynomials).
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Kinetic::FunctionKernel::Function

Definition

The concept represents a function.

Types

Function:: NT The number type used in describing the function.

Function a( NT); Construct a constant function from a number.

Operations

NT a( NT) Evaluate the function at an NT .

See Also

FunctionKernel, FunctionKernel::ConstructFunction

Example

Several ways to create functions:

Using Kinetic::ConstructFunction:� �
Traits::Function_kernel::Construct_function cf=

traits.function_kernel_object().construct_function_object();
Traits::Kinetic_kernel::Motion_function x= cf(0.0,1.0,2.0);
Traits::Kinetic_kernel::Motion_function y= cf(0.0,1.0,2.0);
Traits::Kinetic_kernel::Point_2 pt(x,y);� �
Using the constructor:� �
double coefs[]={1.0, 2.0, 3.0};
Traits::Kinetic_kernel::Motion_function z(coefs, coefs+3);� �
Using ring operations:� �
Traits::Kinetic_kernel::Motion_function z= x*z+y;� �
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CGAL::Kinetic::Default instantaneous kernel<SimulationTraits>

Definition

This class provides a model of the Kinetic::InstantaneousKernel for use with general Cartesian Geometry. It
provides all the predicates needed for Delaunay triangulations and regular triangulations.

#include <CGAL/Kinetic/Default instantaneous kernel.h>

Types

Kinetic::Default instantaneous kernel<SimulationTraits>:: Orientation 2

Kinetic::Default instantaneous kernel<SimulationTraits>:: Orientation 3

Kinetic::Default instantaneous kernel<SimulationTraits>:: Side of oriented circle 2

Kinetic::Default instantaneous kernel<SimulationTraits>:: Side of oriented sphere 3

Kinetic::Default instantaneous kernel<SimulationTraits>:: Power test 3

Kinetic::Default instantaneous kernel<SimulationTraits>:: Weighted orientation 3

Kinetic::Default instantaneous kernel<SimulationTraits>:: Compare x 1

Kinetic::Default instantaneous kernel<SimulationTraits>:: Compare x 2

Kinetic::Default instantaneous kernel<SimulationTraits>:: Compare y 2

Kinetic::Default instantaneous kernel<SimulationTraits>:: Compare x 3

Kinetic::Default instantaneous kernel<SimulationTraits>:: Compare y 3

Kinetic::Default instantaneous kernel<SimulationTraits>:: Compare z 3

Kinetic::Default instantaneous kernel<SimulationTraits>:: Compare distance 2

Kinetic::Default instantaneous kernel<SimulationTraits>:: Compare distance 3

Kinetic::Default instantaneous kernel<SimulationTraits>:: Coplanar orientation 3

Note that this one does not work if the current time is not a
NT .
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Kinetic::Default instantaneous kernel<SimulationTraits>:: Coplanar side of bounded circle 3

Note that this one does not work if the current time is not a
NT .

Is Model for the Concepts

Kinetic::InstantaneousKernel
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Kinetic::InstantaneousKernel

Definition

The concept Kinetic::InstantaneousKernel covers models that act as adaptors allowing CGAL static data struc-
tures to act on snapshots of kinetic data. Different methods for evaluating predicates are used depending on
whether time is set using an NT or a Time object. Evaluating predicates when time is the former is much
cheaper.

Types

Kinetic::InstantaneousKernel:: NT A number type which can be used to represent the current
time. This must be a ring or field type.

Kinetic::InstantaneousKernel:: Time The type used to represent the current time. This type must
be comparable.

Operations

Time a.time() Return the current time.

NT a.time as nt() Return the current time as an NT . As a precondition, time is
nt must be true.

bool a.time is nt() Return true if the last time time was set, it was using an object
of type NT .

void a.set time( Time) Set the current time to have a certain value. All existing pred-
icates are updated automatically.

void a.set time( NT) The the current time to be an instance of NT . With this more
efficient techniques can be used. time is nt() must be true.

Static object a.static object( Key) Return a static object corresponding to the kinetic object at
this instant in time. time is nt() must be true.

Has Models

Kinetic::Default instantaneous kernel
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Key

Definition

The concept Key is a unique identifier for something in some sort of table. In general, they can be only created
by the table and are returned when a appropriate new foo() method is called on the table. There are two classes
of values for a Key, valid and invalid. The latter cannot refer to something in a table. Use the method is valid()
to differentiate.

Key a; The default constructor is guaranteed to construct an invalid
key (i.e. one which is false when cast to a bool.

Operations

bool a.is valid() const This method returns false if the key was created using the
default constructor or was otherwise created to be invalid.

std::ostream& std::ostream& << Event

Write a text description of the key to a standard stream.

Has Models

Kinetic::Simulator::Event key, Kinetic::Active objects vector<Object>::Key.
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Kinetic::Kernel

Definition

The concept Kinetic::Kernel acts as the kinetic analog of a CGAL kernel. It provides some set of primitives
and predicats acting on them. The predicates are instances of Kinetic::CertificateGenerator and can be used to
either create Certificates or to evaluate instantaneous predicates.

Types

Kinetic::Kernel:: Motion function The type which is used to represent coordinates of mov-
ing primitives. It is a model of the concept FunctionKer-
nel::Function. This is the analog of the CGAL kernel RT .

Kinetic::Kernel:: Certificate The type representing the results of predicates. See Ki-
netic::Certificate.

Kinetic::Kernel:: Function kernel The type of the function kernel used. See Ki-
netic::FunctionKernel.

Operations

Function kernel kk.function kernel object() const

Gets a copy of the function kernel.

Has Models

Kinetic::Cartesian<FunctionKernel>.
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CGAL::Listener<Interface>

Definition

The Listener<Interface> class provides the core of the run time notification system used by the kinetic data
structures package. In short, notifications are handled through proxy objects called listeners. In order to listen
for notifications from an object, called the notifier, you make define a small class called a listener proxy, which
inherits from the Listener interface defined by the notifier. When constructing your listner poxy, you pass a
reference counted pointer to the notifier, which is used to register the proxy for notifications. When a notification
occurs, the notifier calls the new notification method on the proxy, passing the type of the notification. The
proxy stores a reference counted pointer to the notifier, ensuring that there are never any dangling pointers in
the system.

The class Listener<Interface> provides base class for listener proxy objects. A notifier should provide a class
which inherits from this base. To use this base class, implement a class, here called Interface, which defines a
type Interface::Notification type and a type Interface::Notifier handle.

The Notification type is generally an enum with one value for each type of notification which can be used.

The Notifier handle is the type of a (ref counted) pointer to the object providing the notifications. The ref
counter pointer must provide a nested type Pointer which is the type of a raw pointer.

The Listener<Interface> maintains a ref counted pointer to the object performing notifications. It is regis-
tered for notifications on construction and unregistered on destruction using the function set listener(Listener<
Interface>*) on the object providing the notifications. The use of ref counted pointers means that as long as the
notification object exists, the object providing the notifications must exist, ensuring that the object providing the
notifications is not prematurely destroyed.

These objects cannot be copied since the notifier only support one listener. If copying and more than one listener
are desired, the Multi listener<Interface> base class should be used instead.

As a side note, Boost provides a similar functionality in the Boost.Signal package. However, it is quite a bit
more complex (and flexible). This complexity add significantly to compile time and (although I did not test
this directly), I suspect it is much slower at runtime due to the overhead of worrying about signal orders and
not supporting single signals. In addition, it does not get on well with Qt due to collisions with the Qt moc
keywords.

There is also the TinyTL library which implements signals. As of writing it did not have any easy support for
making sure all pointers are valid, so it did not seem to offer significant code saving over writing my own.

#include <CGAL/Kinetic/Listener.h>

Types

Listener<Interface>:: Notifier handle This type is inherited from the Interface template argument.
It is a reference counted pointer type for the object providing
notifications.

Listener<Interface>:: Notification type The type (usually an enum) used to distinguish different
types of notifications. This is inherited from the Interface
template argument.
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Creation

Listener<Interface> l( Notifier handle np); The Listener<Interface> subscribes to events coming from
the notifier and stores a pointer to the notifier.

Operations

Notifier handle l.notifier() Return a pointer to the notifier.

virtual void l.new notification( Notification type)

This method is pure virtual. A class which wishes to re-
ceive events must inherit from this class and implement this
method. The method will then be called whenever there is a
notification.

See Also

Multi listener<Interface>.

Example

Here is a simplier class that provides notifications:� �
struct Notifier: public CGAL::Kinetic::Ref_counted<Notifier>
{
public:

Notifier(): data_(0), listener_(NULL){}

struct Listener_interface
{
public:

typedef enum Notification_type {DATA_CHANGED} Notification_type;
typedef Notifier::Handle Notifier_handle;

};

typedef CGAL::Kinetic::Listener<Listener_interface> Listener;
friend class CGAL::Kinetic::Listener<Listener_interface>;

void set_data(int d) {
data_=d;
if (listener_ != NULL)
listener_->new_notification(Listener_interface::DATA_CHANGED);

}

protected:
void set_listener(Listener *l) {

listener_= l;
}
Listener* listener() const {return listener_;}
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int data_;
Listener *listener_;

};� �
Now the listener:� �
struct My_listener: public Notifier::Listener, public

CGAL::Kinetic::Ref_counted<My_listener>
{

typedef Notifier::Listener::Notifier_handle PP;
My_listener(PP p): P(p){}

void new_notification(P::Notification_type nt) {
...

}
};� �
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CGAL::Multi listener<Interface>

Definition

The class Multi listener<Interface> implements a base class for listeners where more than one listener is allowed
to subscribe to a notifier. See Listener for full documentation. This uses the function calls new listener() and
delete listener() to register and unrester the listener (instead of set listener()).

#include <CGAL/Kinetic/Multi listener.h>

See Also

Listener<Interface>.
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CGAL::Ref counted<T>

Definition

The class Ref counted<T> implements a base class for objects which are reference counted. To use it simply
inherit from Ref counted<T> (passing the type to be reference counted as the template argument) and then
access the object through Handle objects rather than bare C++ pointers.

#include <CGAL/Kinetic/Ref counted.h>

Types

Ref counted<T>:: Handle A reference counted pointer to an Object.

Ref counted<T>:: Const handle A const reference counted pointer to an Object.

Creation

Ref counted<T> rc; default constructor.

Operations

There are no methods which should be called by users of this class.
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Kinetic::RootStack

Definition

The concept Kinetic::RootStack enumerates through roots of a function contained in a half open interval
[lb. . . ub).

Types

Kinetic::RootStack:: Root The root of a function.

Kinetic::RootStack:: Traits The traits class for this concept.

Creation

Kinetic::RootStack re; default constructor.

Kinetic::RootStack re( Function f, Root lb, Root ub, Traits tr);

Construct a Kinetic::RootStack over the roots of f in the half
open interval [lb to ub).

Operations

void re.pop() Advance to the next root. As a precondition, empty() must
be false.

Root re.top() Return the current root. As a precondition, empty() must be
false. Note that the Root returned might not actually be in
the interval (since the solver has not yet proved that there are
no more roots).

bool re.empty() Return true if there are known to be no more roots left. There
might not actually be any roots of the polynomial left in the
interval, but the work necessary to prove this has been de-
layed.

See Also

Kinetic::FunctionKernel, Kinetic::Certificate.
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Kinetic::SimulationTraits

Definition

This concept ties together the parts needed in order to run a kinetic data structure. We provide several models
of this concept:

• Kinetic::Exact simulation traits

• Kinetic::Inexact simulation traits

• Kinetic::Regular triangulation exact simulation traits

• Kinetic::Regular triangulation inexact simulation traits

All support trajectories defined by polynomial coordinates. The Exact vs Inexect picks whether the roots of the
certificate functions are compared exactly or approximated numerically. The regular triangulation models have
weighted points of the appropriate dimension as the primitive used in the Kinetic::InstantaneousKernel and the
Kinetic::ActiveObjectsTable.

Types

Kinetic::SimulationTraits:: NT The number type used for representation.

Kinetic::SimulationTraits:: Instantaneous kernel

A model of Kinetic::InstantaneousKernel which can be used
to apply static CGAL data structures to snapshots of moving
data.

Kinetic::SimulationTraits:: Kinetic kernel A model of Kinetic::Kernel.

Kinetic::SimulationTraits:: Function kernel A model of Kinetic::FunctionKernel.

Kinetic::SimulationTraits:: Active points [123] table

A model of Kinetic::ActiveObjectsTable which holds the rel-
evant kinetic primitives.

Kinetic::SimulationTraits:: Simulator A model of Kinetic::Simulator which will be used by all the
kinetic data structures.

Operations

Instantaneous kernel st.instantaneous kernel object()

Get a new instantaneous kernel.
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Kinetic kernel st.kinetic kernel object()

Get a new kinetic kernel.

Function kernel st.function kernel object()

Get a new function kernel.

Simulator::Handle st.simulator handle() Return a pointer to the Kinetic::Simulator which is to be used
in the simulation.

Active points [123] table::Handle

st.active points [123] table handle()

Return a pointer to the Kinetic::ActiveObjectsTable which is
to be used in the simulation.

Has Models

Kinetic::Exact simulation traits, Kinetic::Inexact simulation traits, Kinetic::Regular triangulation exact
simulation traits, Kinetic::Regular triangulation inexact simulation traits
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Example

The simulation traits class is simply there for convenience in order to bundle a set of related typedefs and create
a few objects. As a resulting, creating your own requires little though, and just copying and changing a few
lines. An example is below which sets up to use the CORE Sturm sequences to solve polynomials rather than
our own (faster) solvers. It can be found in examples/Kinetic framework/defining a simulation traits.cpp.� �
#include <CGAL/Polynomial/Sturm_root_stack_traits.h>
#include <CGAL/Polynomial/Sturm_root_stack.h>
#include <CGAL/Kinetic/Active_objects_vector.h>
#include <CGAL/Kinetic/Default_instantaneous_kernel.h>
#include <CGAL/Kinetic/Cartesian.h>
#include <CGAL/Kinetic/Handle_degeneracy_function_kernel.h>
#include <CGAL/Kinetic/Default_simulator.h>
#include <CGAL/Kinetic/Two_list_pointer_event_queue.h>
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>

using namespace CGAL::Kinetic;

struct My_simulation_traits {
typedef My_simulation_traits This;

typedef CGAL::Exact_predicates_exact_constructions_kernel
Static_kernel;

//typedef
CGAL::Regular_triangulation_euclidean_traits_3<Static_kernel_base>
Static_kernel;

typedef CGAL::POLYNOMIAL::Polynomial<Static_kernel::FT> Function;
typedef CGAL::POLYNOMIAL::Sturm_root_stack_traits<Function>
Root_stack_traits;

typedef CGAL::POLYNOMIAL::Sturm_root_stack<Root_stack_traits>
Root_stack;

typedef CGAL::POLYNOMIAL::Kernel<Function, Root_stack> Function_kernel;

typedef
CGAL::Kinetic::Handle_degeneracy_function_kernel<Function_kernel,
false> Simulator_function_kernel_base;

struct Simulator_function_kernel: public
Simulator_function_kernel_base{};

typedef Cartesian<Simulator_function_kernel> Kinetic_kernel;
typedef Two_list_pointer_event_queue<Function_kernel> Event_queue;
typedef Default_simulator<Simulator_function_kernel, Event_queue >
Simulator;

typedef Active_objects_vector<Kinetic_kernel::Point_1>
Active_points_1_table;

typedef Active_objects_vector<Kinetic_kernel::Point_2>
Active_points_2_table;

typedef Active_objects_vector<Kinetic_kernel::Point_3>
Active_points_3_table;

// typedef Active_objects_vector<Kinetic_kernel::Weighted_point_3>
Active_weighted_points_3_table;
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typedef Default_instantaneous_kernel<This> Instantaneous_kernel;

Active_points_1_table* active_points_1_table_handle() const { return
ap1_.get();}

Active_points_2_table* active_points_2_table_handle() const {return
ap2_.get();}

Active_points_3_table* active_points_3_table_handle() const {return
ap3_.get();}

//Active_weighted_points_3_table*
active_weighted_points_3_table_handle() const {return awp3_.get();}

Simulator* simulator_handle() const { return sim_.get();}
const Static_kernel& static_kernel_object() const {return k_;}
const Kinetic_kernel& kinetic_kernel_object() const {return kk_;}

Instantaneous_kernel instantaneous_kernel_object() const {
return Instantaneous_kernel(*this);

}

My_simulation_traits(const Simulator::Time &lb,
const Simulator::Time &ub): sim_(new

Simulator(lb, ub)),
ap1_(new

Active_points_1_table()),
ap2_(new

Active_points_2_table()),
ap3_(new

Active_points_3_table())
//awp3_(new

Active_weighted_points_3_table())
{}

bool is_exact() const {
return true;

}
protected:

Simulator::Handle sim_;
Active_points_1_table::Handle ap1_;
Active_points_2_table::Handle ap2_;
Active_points_3_table::Handle ap3_;
//Active_weighted_points_3_table::Handle awp3_;
Static_kernel k_;
Kinetic_kernel kk_;
Function_kernel fk_;

};

#endif� �
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CGAL::Kinetic::Default simulator<FunctionKernel, EventQueue>

Definition

The class Kinetic::Default simulator<FunctionKernel, EventQueue> controls kinetic data structures by main-
taining a concept of time and ensuring that events are processed when necessary.

#include <CGAL/Kinetic/Default simulator.h>

Is Model for the Concepts

Kinetic::Simulator.

Creation

Kinetic::Default simulator<FunctionKernel, EventQueue> sim( const Time start=Time(0),
const Time end= Time::infinity())

Construct a Kinetic::Default simulator<FunctionKernel,
EventQueue> which will process events between times start
and end (events outside this window will be discarded).
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CGAL::Kinetic::Simulator listener<Listener, KDS>

Definition

The class Kinetic::Simulator listener<Listener, KDS> acts as a helper class for kinetic data structures which
want to respond to Simulator::Listener::HAS AUDIT TIME notifications. When kinetic data structures can
audit themselves, the Kinetic::Simulator listener<Listener, KDS> calls the audit() method on the kinetic data
structure.

#include <CGAL/Kinetic/listeners.h>

Creation

Kinetic::Simulator listener<Listener, KDS> a( Simulator::Handle, KDS *kds);

default constructor.

See Also

Kinetic::Simulator, Listener<Interface>.
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CGAL::Kinetic::Simulator objects listener<Simulator listener, KDS>

Definition

The class Kinetic::Simulator objects listener<Simulator listener, KDS> is a helper for classes which wish to
react to Simulator::Listener::DIRECTION OF TIME notifications. The helper object translates such notifica-
tions reverse time function calls on the responder. See Kinetic::Qt moving points 2 for a simple example of
using this helper function.

#include <CGAL/Kinetic/Simulator objects listener.h>

Creation

Kinetic::Simulator objects listener<Simulator listener, KDS> a( Simulator::Handle, KDS*);

default constructor.

See Also

Kinetic::Listener.
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Kinetic::Simulator

Definition

The class Kinetic::Simulator controls kinetic data structures by maintaining a the current time and ensuring that
events are processed when necessary.

In addition, the Kinetic::Simulator can call on the kinetic data structures to audit themselves at appropriate times.
When the last event processed and the next to be processed have different times, then there is a rational value of
time at which all kinetic data structures should be non-degenerate (since there are no events at that time). At such
a time, kinetic data structures can easily verify their correctness by checking that all the certificate predicates
have the correct value. When exactness checks are enabled, whenever the last event processed and the next event
to be processed have different times, a Kinetic::Simulator::Listener::HAS AUDIT TIME notification is made.
Kinetic data structures can listen for that event, and when it is made, they can call Kinetic::Simulator::audit
time() to get the time value and then verify that their structure is correct.

In addition, at such a time, the Event::audit(Key) is called on each event. This allows kinetic data structures to
check that the event should be in the queue.

Typically, the simulator is created by the Kinetic:SimulationTraits class and kinetic data structures request a
handle to it from there.

Events that occur at or after Kinetic::Simulator::end time() will may not be processed. The exception are events
which are scheduled using the new final event(Event) call which are guaranteed to occur after all other events
(but have no particular order amongst themselves).

Types

Kinetic::Simulator:: Function kernel The type of the function kernel used to instantiate this Ki-
netic::Simulator.

Kinetic::Simulator:: Listener Extend this base class to listen to notifications from this
Kinetic::Simulator. There are two types of notifications:
HAS AUDIT TIME and DIRECTION OF TIME. The first is
made when kinetic data structures can perform an audit. The
second is made when the direction of time is changed.

Kinetic::Simulator:: Time The representation type for times in the simulator. It is
Function kernel::Root enumerator::Root.

Kinetic::Simulator:: Event key The key to access scheduled Event in order to inspect or
delete them.

Kinetic::Simulator:: NT The basic number type used in computations.

Kinetic::Simulator:: Handle A reference counted pointer to be used for storing references
to the object.

Kinetic::Simulator:: Const handle A reference counted pointer to be used for storing references
to the object.
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Creation

Kinetic::Simulator sim( const Time start=Time(0), const Time end= Time::infinity());

Construct a Kinetic::Simulator which will process events be-
tween times start and end (events outside this window will be
discarded).

Operations

Function kernel sim.function kernel object() const

Access the Function kernel object used by the Ki-
netic::Simulator.

Time sim.current time() Return the current time.

void sim.set current time( Time t)

Set the current time to t, which cannot be less than current
time. Any events in the queue before time t are processed.

NT sim.next time reprsentable as nt() const

This function returns a time which can be represented using
an instance of type NT which is shortly after the current time.
You can then advance the current time to this one and act on
the data structure using the return nt.

bool sim.has current time as nt() const

Return true if there is a rational number which is equivalent
to the current time. Equivalent means that it has the same
ordering relation to all previous and scheduled events.

bool sim.has audit time() const

Returns true if the current time is a rational number and there
are no events at the current time. This means that the simu-
lation can be audited at this time.

Time sim.next event time() const

Return the time of the next event in the queue.

Time sim.end time() const Return the time the simulation will end. If time is running
backwards, then this returns Time::infinity().
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void sim.set interval( Time t cur, Time t end)

Set the current time to tcur and the end time to tend . The event
queue must be empty. Use this method if you want to reset
or extend the simulation.

template <class Event>
Event key sim.new event( Time t, const Event event)

Schedule a new event at time t. The object event must imple-
ment the concept Event. The Event key returned can be used
to access or deschedule the event.

template <class Event>
Event key sim.new final event( const Event event)

Schedule a new event that will occur at the end of the simula-
tion. This type of event is useful if, for example, you want to
run for a while, change all motions, and then run some more.

Event key sim.null event() const This method returns an Event key which is guaranteed never
to be assigned to any real event. This is a very useful place-
holder for events which are known never to occur (and al-
lows data structures to differentiate between uninitialized and
never failing).

void sim.audit event( Event key) const

Performs some checks as to whether the key corresponds to
a valid event. Generally, a event is valid if it is not defaultly
constructed and either is in the queue or is the null event().

bool sim.empty() const Return true if there are no more events.

void sim.delete event( const Event key k)

Remove the event referenced by k from the event queue.

template <class Ev>
typename Queue::Event handle<Ev>::Handle

sim.event( const Event key k, const Ev e) const

This method returns a pointer to an event, which can be used
for recoving data, such as cached solvers, from that event.
The second argument really shouldn’t be there, but gcc seems
to sometimes have issues if you try to specify the template
value directly.
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Time sim.event time( Event key k) const

Return the time at which the event referenced by k occurs.

template <class Ev>
Event key sim.set event( Event key k, const Ev ev)

Set the event referenced by key k to ev, for example if you
want to change what happens when that event occurs. A new
event key is returned.

Sign sim.direction of time() const

Return POSITIVE if time is running forwards or NEGATIVE
if it is running backwards.

void sim.set direction of time( Sign dir) const

Set which direction time is running.

unsigned int sim.current event number() const

Return the number of events which have been processed.

void sim.set current event number( unsigned int i) const

Process all events up to the ith event. i cannot be less than
current event number.

See Also

Kinetic::Simulator objects listener<Simulator listener, KDS>, Kinetic::Simulator kds listener<Simulator
listener, KDS>.

Has Models

Kinetic::Default simulator<FunctionKernel, EventQueue>
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Kinetic::Simulator::Time

Definition

The concept represents time in the simulator.

Time a( NT); Construct an instance of time from a number type, where NT
is the number type used in the simulation.

Operations

std::ostream& std::ostream& << Time

Write it to a stream.

double to double( Time)

Return a double approximation of the time value.

std::pair<double, double>

to interval( Time)

Return an interval containing the time value.

Comparisons with other Kinetic::Simulator::Time objects are supported.

Has Models

double, Kinetic::FunctionKernel::Root

See Also

Kinetic::Simulator
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STL Extensions for CGAL
Michael Hoffmann, Lutz Kettner, Sylvain Pion, and Ron Wein
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CGAL is designed in the spirit of the generic programming paradigm to work together with the Standard Tem-
plate Library (STL) [C++98, Aus98]. This chapter documents non-geometric STL-like components that are not
provided in the STL standard but in CGAL: a doubly-connected list managing items in place (where inserted
items are not copied), a compact container, a multi-set class that uses three-valued comparisons and offers addi-
tional functionality, generic algorithms, iterators, functor adaptors for binding and swapping arguments and for
composition, functors for projection and creation and adaptor classes around iterators and circulators. See also
circulators in Chapter 76. A class storing polymorphic objects is also provided, as well as a class to manage the
uncertainty of some values. Finally, tags and policy classes to specify complexity trade-offs of data-structures,
and a class which helps specifying that the default types in template parameter lists are desired is also provided.

73.1 Doubly-Connected List Managing Items in Place

The class In place list<T,bool> manages a sequence of items in place in a doubly-connected list. Its goals are
the flexible handling of memory management and performance optimization. The item type has to provide the
two necessary pointers &T::next link and &T::prev link. One possibility to obtain these pointers is to inherit
them from the base class In place list base<T>.

The class In place list<T,bool> is a container quite similar to STL containers, with the advantage that it is able
to handle the stored elements by reference instead of copying them. It is possible to delete an element only
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knowing its address and no iterator to it. This used to simplify mutually pointed data structures like a halfedge
data structure for planar maps or polyhedral surfaces (the current design does not need this anymore). The usual
iterators are also available.

73.2 Compact Container

The class Compact container<T, Allocator> is an STL like container which provides a very compact storage
for its elements. It achieves this goal by requiring T to provide access to a pointer in it, which is going to be used
by Compact container<T, Allocator> for its internal management. The traits class Compact container traits<
T> specifies the way to access that pointer. The class Compact container base can be used as a base class to
provide the pointer, although in this case you do not get the most compact representation. The values that this
pointer can have during valid use of the object are valid pointer values to 4 bytes aligned objects (i.e., the two
least significant bits of the pointer need to be zero when the object is constructed). Another interesting property
of this container is that iterators are not invalidated during insert or erase operations.

The main deviation from the STL container concept is that the ++ and -- operators of the iterator do not have a
constant time complexity in all cases. The actual complexity is related to the maximum size that the container
has had during its life time compared to its current size, because the iterator has to go over the ”erased” elements
as well, so the bad case is when the container used to contain lots of elements, but now has far less. In this case,
we suggest to do a copy of the container in order to ”defragment” the internal representation.

This container has been developed in order to efficiently handle large data structures like the triangulation and
halfedge data structures. It can probably be useful for other kinds of graphs as well.

73.3 Multiset with Extended Functionality

The class Multiset<Type,Compare,Allocator> represents a multi-set of elements of type Type, represented as a
red-black tree (see [CLRS01, Chapter 13] for an excellent introduction to red-black trees). It differs from the
STL’s multiset class-template mainly due to the fact that it is parameterized by a comparison functor Compare
that returns the three-valued Comparison result (namely it returns either SMALLER, EQUAL, or LARGER),
rather than a less functor returning bool. Thus, it is possible to maintain the underlying red-black tree with
less invocations of the comparison functor, which can considerably decrease running times, especially when
comparing elements of type Type is an expensive operation.

Multiset<Type,Compare,Allocator> also guarantees that the order of elements sent to the comparison functor
is fixed. For example, if we insert a new element x into the set (or erase an element from the set), then we
always invoke Compare() (x, y) (and never Compare() (y, x)), where y is an element already stored in the set.
This behavior, not supported by std::multiset, is sometimes crucial for designing more efficient comparison
predicates.

The interface of Multiset<Type,Compare,Allocator> is in general derived from std::multiset. However, it ex-
tends the interface by offering some additional operations, such as: inserting of an element into the set given
its exact position (and not just using an insertion hint); looking up keys whose type may differ from Type, as
long as users supply a comparison functor CompareKey, between the keys and set elements; and catenating and
splitting sets.
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73.4 Polymorphic Object

The class Object can store an object of whatever other type. It can be used by a function to return objects of
different types. A mechanism to extract the stored object based on its type is also provided. This class is similar
to boost::any.

73.5 Uncertainty Management

The class Uncertain<T> represents a range of values of type T . T is allowed to stand for bool, or CGAL’s
enumeration types Sign, Comparison result, Orientation, Oriented side, Bounded side and Angle.

The idea is that sometimes you are not sure of the result of a function, and you would like to communicate
that to the caller. Uncertain<T> allows just that. It also provides functions to naturally extend the Boolean
operations for Uncertain<bool> for example.

Uncertain<T> is used in CGAL as the return type of geometric predicates when the number type used is interval
arithmetic like Interval nt. End users typically do not see it as it is hidden in the implementation of the filtered
predicates provided by the various filtered kernels, but it is important that providers of predicates that are meant
to be filtered by Filtered predicate, know about it.

It can also be used in other contexts as well, as it is a general tool.

73.6 Complexity tags and policies

Some data structures and algorithms can be implemented with different complexity trade-offs between memory
usage and time complexity. CGAL provides the tags Fast and Compact which can be used to select between
those variants. For example, the Location policy class is parameterized by these tags and allows to specify the
complexity of point location (currently in Delaunay triangulation 3 only). Convenient typedefs Fast location
and Compact location are also provided.

73.7 Default Arguments in Template Parameter Lists

In C++, it is possible to specify defaults at the end of a template parameter list. Specifying that one wishes to
use the default is simply done by omitting it. This is however possible only at the end of the list. CGAL::Default
provides a simple mechanism that performs something equivalent anywhere in the sequence.

73.8 C++ 11 wrappers

Wrappers for the classes array and tuple which, based on availability, either use the version of Boost or the
one provided by the standard library are provided in the namespace CGAL::cpp11. The namespace alias
CGAL::cpp0x is provided for backward compatibility. Those are documented for completeness and imple-
menters. They are not intended to be used by users of the library.

4141



4142



STL Extensions for CGAL
Reference Manual
Michael Hoffmann, Lutz Kettner, Sylvain Pion, and Ron Wein
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CGAL::In place list base<T>

Definition

The node base classes provides pointers to build linked lists. The class In place sl list base<T> provides a
pointer next link for a single linked list. The class In place list base<T> provides an additional pointer prev
link for doubly linked lists. These names conform to the default parameters used in the template argument lists
of the container classes. The pointers are public members.

#include <CGAL/In place list.h>

Variables

T* next link; forward pointer
T* prev link; backward pointer
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CGAL::In place list<T,bool>

Definition

An object of the class In place list<T,bool> represents a sequence of items of type T that supports bidirectional
iterators and allows constant time insert and erase operations anywhere within the sequence. The functionality
is similar to the list<T> in the STL.

The In place list<T,bool> manages the items in place, i.e., inserted items are not copied. Two pointers of type
T* are expected to be reserved in T for the list management. The base class In place list base<T> can be used
to obtain such pointers.

The In place list<T,bool> does not copy element items during insertion (unless otherwise stated for a function).
On removal of an item or destruction of the list the items are not deleted by default. The second template
parameter bool is set to false in this case. If the In place list<T,bool> should take the responsibility for the
stored objects the bool parameter could be set to true, in which case the list will delete removed items and will
delete all remaining items on destruction. In any case, the destroy() member function deletes all items. Note
that these two possible versions of In place list<T,bool> are not assignable to each other to avoid confusions
between the different storage responsibilities.

#include <CGAL/In place list.h>

Parameters

The full class name is In place list<T, bool managed = false, class Alloc = CGAL ALLOCATOR(T)>.

The parameter T is supposed to have a default constructor, a copy constructor and an assignment operator. The
copy constructor and the assignment may copy the pointers in T for the list management, but they do not have
to. The equality test and the relational order require the operators == and < for T respectively. These operators
must not compare the pointers in T .

Types

In place list<T,bool>:: iterator
In place list<T,bool>:: const iterator

In place list<T,bool>:: value type
In place list<T,bool>:: reference
In place list<T,bool>:: const reference
In place list<T,bool>:: size type
In place list<T,bool>:: difference type

In place list<T,bool>:: reverse iterator
In place list<T,bool>:: const reverse iterator

In place list<T,bool>:: allocator type
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Creation

In place list<T,bool> l; introduces an empty list.

In place list<T,bool> l( list<T> l1); copy constructor. Each item in l1 is copied.

In place list<T,bool> l( size type n, T t = T());

introduces a list with n items, all initialized with copies of t.

template <class InputIterator>
In place list<T,bool> l( InputIterator first, InputIterator last);

a list with copies from the range [first,last).

In place list<T,bool> l( const T* first, const T* last);

non-member-template version.

In place list<T,bool> & l = l1 assignment. Each item in l1 is copied. Each item in l is deleted if the
bool parameter is true.

void l.swap( l1) swaps the contents of l with l1.

void l.destroy() all items in l are deleted regardless of the bool parameter.

Comparison Operations

bool l == l1 test for equality: Two lists are equal, iff they have the same size and
if their corresponding elements are equal.

bool l < l1 compares in lexicographical order.

Access Member Functions

iterator l.begin() returns a mutable iterator referring to the first element in l.
const iterator l.begin() const returns a constant iterator referring to the first element in l.
iterator l.end() returns a mutable iterator which is the past-end-value of l.
const iterator l.end() const returns a constant iterator which is the past-end-value of l.

bool l.empty() returns true if l is empty.
size type l.size() returns the number of items in list l.
size type l.max size() returns the maximum possible size of the list l.

T& l.front() returns the first item in list l.
T& l.back() returns the last item in list l.
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allocator type

l.get allocator() returns the allocator.

Insertion

void l.push front( T&) inserts an item in front of list l.
void l.push back( T&) inserts an item at the back of list l.

iterator l.insert( iterator pos, T& t)
iterator l.insert( T* pos, T& t) inserts t in front of pos. The return value points to the inserted item.

void l.insert( iterator pos, size type n, T t = T())
void l.insert( T* pos, size type n, T t = T())

inserts n copies of t in front of pos.

template <class InputIterator>
void l.insert( iterator pos, InputIterator first, InputIterator last)

template <class InputIterator>
void l.insert( T* pos, InputIterator first, InputIterator last)

inserts the range [first, last) in front of iterator pos.

As long as member templates are not supported, member functions using T* instead of the general InputIterator
are provided.

Removal

void l.pop front() removes the first item from list l.
void l.pop back() removes the last item from list l.
void l.erase( iterator pos) removes the item from list l, where pos refers to.
void l.erase( T* pos) removes the item from list l, where pos refers to.

void l.erase( iterator first, iterator last)
void l.erase( T* first, T* last)

removes the items in the range [first, last) from l.

Special List Operations

void l.splice( iterator pos, & x)
void l.splice( T* pos, & x) inserts the list x before position pos and x becomes empty. It takes

constant time.
Precondition: & l!= &x.

void l.splice( iterator pos, & x, iterator i)
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void l.splice( T* pos, & x, T* i)

inserts an element pointed to by i from list x before position pos
and removes the element from x. It takes constant time. i is a valid
dereferenceable iterator of x. The result is unchanged if pos == i or
pos == ++i.

void l.splice( iterator pos, & x, iterator first, iterator last)
void l.splice( T* pos, & x, T* first, T* last)

inserts elements in the range [first, last) before position pos and re-
moves the elements from x. It takes constant time if &x == &l; other-
wise, it takes linear time. [first, last) is a valid range in x.
Precondition: pos is not in the range [first, last).

void l.remove( T value) erases all elements e in the list l for which e == value. It is stable.
Precondition: a suitable operator== for the type T .

void l.unique() erases all but the first element from every consecutive group of equal
elements in the list l.
Precondition: a suitable operator== for the type T .

void l.merge( & x) merges the list x into the list l and x becomes empty. It is stable.
Precondition: Both lists are increasingly sorted. A suitable opera-
tor< for the type T .

void l.reverse() reverses the order of the elements in l in linear time.

void l.sort() sorts the list l according to the operator< in time O(n logn) where n
= size(). It is stable.
Precondition: a suitable operator< for the type T .
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Example� �
#include <cassert>
#include <algorithm>
#include <CGAL/In_place_list.h>

using CGAL::In_place_list_base;

struct item : public In_place_list_base<item> {
int key;
item() {}
item( const item& i) : In_place_list_base<item>(i), key(i.key) {}
item( int i) : key(i) {}
bool operator== (const item& i) const { return key == i.key;}
bool operator!= (const item& i) const { return ! (*this == i);}
bool operator== (int i) const { return key == i;}
bool operator!= (int i) const { return ! (*this == i);}
bool operator< (const item& i) const { return key < i.key;}

};

int main() {
typedef CGAL::In_place_list<item,true> List;
List l;
item* p = new item(1);
l.push_back(*p);
l.push_back(*new item(2));
l.push_front(*new item(3));
l.push_front(*new item(4));
l.push_front(*new item(2));
List::iterator i = l.begin();
++i;
l.insert(i, *new item(5));
l.insert(p, *new item(5));
int a[7] = {2,5,4,3,5,1,2};
bool ok = std::equal(l.begin(), l.end(), a);
assert(ok);
l.sort();
l.unique();
assert(l.size() == 5);
int b[5] = {1,2,3,4,5};
ok = std::equal(l.begin(), l.end(), b);
assert(ok);
return 0;

}� �
File: examples/STL_Extension/in_place_list_prog.cpp
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CGAL::Compact container base

Definition

The class Compact container base can be used as a base class for your own type T , so that T can be used
directly within Compact container<T, Allocator>. This class stores a void * pointer only for this purpose, so it
may not be the most memory efficient way to achieve this goal. The other ways are to provide in T the necessary
member functions so that the template Compact container traits<T> works, or to specialize it for the particular
type T that you want to use.

#include <CGAL/Compact container.h>

Operations

void* ccb.for compact container() const Returns the pointer necessary for Compact container traits<
T>.

void*& ccb.for compact container() Returns a reference to the pointer necessary for Compact
container traits<T>.
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CGAL::Compact container traits<T>

Definition

The traits class Compact container traits<T> provides the way to access the internal pointer required for T to
be used in a Compact container<T, Allocator>. Note that this pointer needs to be accessible even when the
object is not constructed, which means it has to reside in the same memory place as T .

You can specialize this class for your own type T if the default template is not suitable.

You can also use Compact container base as base class for your own types T to make them usable with the
default Compact container traits<T>.

#include <CGAL/Compact container.h>

Parameters

T is any type providing the following member functions:
void * t.for compact container() const;
void *& t.for compact container();.

Operations

static void* cct.pointer( const T &t) Returns the pointer hold by t. The template version defines this
function as:
return t.for compact container();

static void*& cct.pointer( T &t) Returns a reference to the pointer hold by t. The template version
defines this function as:
return t.for compact container();
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CGAL::Compact container<T, Allocator>

Definition

An object of the class Compact container<T, Allocator> is a container of objects of type T . It matches all
the standard requirements for reversible containers, except that the complexity of its iterator increment and
decrement operations is not always guaranteed to be amortized constant time.

This container is not a standard sequence nor associative container, which means the elements are stored in no
particular order, and it is not possible to specify a particular place in the iterator sequence where to insert new
objects. However, all dereferenceable iterators are still valid after calls to insert() and erase(), except those that
have been erased (it behaves similarly to std::list).

The main feature of this container is that it is very memory efficient : its memory size is N*sizeof(T)+o(N),
where N is the maximum size that the container has had in its past history, its capacity() (the memory of
erased elements is not deallocated until destruction of the container or a call to clear()). This container has been
developed in order to store large graph-like data structures like the triangulation and the halfedge data structures.

It supports bidirectional iterators and allows a constant time amortized insert() operation. You cannot specify
where to insert new objects (i.e. you don’t know where they will end up in the iterator sequence, although
insert() returns an iterator pointing to the newly inserted object). You can erase any element with a constant
time complexity.

Summary of the differences with std::list : it is more compact in memory since it doesn’t store two additional
pointers for the iterator needs. It doesn’t deallocate elements until the destruction or clear() of the container.
The iterator does not have constant amortized time complexity for the increment and decrement operations in
all cases, only when not too many elements have not been freed (i.e. when the size() is close to the capacity()).
Iterating from begin() to end() takes O(capacity()) time, not size(). In the case where the container has a small
size() compared to its capacity(), we advise to ”defragment the memory” by copying the container if the iterator
performance is needed.

The iterators themselves can be used as T , they provide the necessary functions to be used by Compact
container traits<T>. Moreover, they also provide a default constructor value which is not singular : it is copy-
able, comparable, and guaranteed to be unique under comparison (like NULL for pointers). This makes them
suitable for use in geometric graphs like handles to vertices in triangulations.

In addition, in a way inspired from the Boost.Intrusive containers, it is possible to construct iterators from
references to values in containers using the iterator to and s iterator to functions.

#include <CGAL/Compact container.h>

Parameters

The parameter T is required to have a copy constructor and an assignment operator. It also needs to provide
access to an internal pointer via Compact container traits<T>.

The equality test and the relational order require the operators == and < for T respectively.

The parameter Allocator has to match the standard allocator requirements, with value type T . This parameter
has the default value CGAL ALLOCATOR(T).
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Types

Compact container<T, Allocator>:: value type
Compact container<T, Allocator>:: reference
Compact container<T, Allocator>:: const reference
Compact container<T, Allocator>:: pointer
Compact container<T, Allocator>:: const pointer
Compact container<T, Allocator>:: size type
Compact container<T, Allocator>:: difference type

Compact container<T, Allocator>:: iterator
Compact container<T, Allocator>:: const iterator
Compact container<T, Allocator>:: reverse iterator
Compact container<T, Allocator>:: const reverse iterator

Compact container<T, Allocator>:: allocator type

Creation

Compact container<T, Allocator> c( Allocator a = Allocator());

introduces an empty container, eventually specifying a
particular allocator a as well.

template <class InputIterator>
Compact container<T, Allocator> c( InputIterator first, InputIterator last, Allocator a = Allocator());

a container with copies from the range [first,last), even-
tually specifying a particular allocator.

Compact container<T, Allocator> c( cc); copy constructor. Each item in cc is copied. The alloca-
tor is copied. The iterator order is preserved.

Compact container<T, Allocator> & c = cc assignment. Each item in cc is copied. The allocator is
copied. Each item in c is deleted. The iterator order is
preserved.

void c.swap( &cc)

swaps the contents of c and cc in constant time complex-
ity. No exception is thrown.

void c.reserve( size type value)

if value is less than or equal to capacity(), this call has
no effect. Otherwise, it is a request for allocation of ad-
ditional memory so that then capacity() is greater than
or equal to value. size() is unchanged.
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Access Member Functions

iterator c.begin() returns a mutable iterator referring to the first element
in c.

const iterator c.begin() const

returns a constant iterator referring to the first element
in c.

iterator c.end() returns a mutable iterator which is the past-end-value
of c.

const iterator c.end() const

returns a constant iterator which is the past-end-value
of c.

reverse iterator c.rbegin()
const reverse iterator c.rbegin() const
reverse iterator c.rend()
const reverse iterator c.rend() const

iterator c.iterator to( reference value) const

returns an iterator which points to value;

const iterator c.iterator to( const reference value) const

returns an iterator which points to value;

static iterator c.s iterator to( reference value)

returns an iterator which points to value;

static const iterator c.s iterator to( const reference value)

returns an iterator which points to value;

bool c.empty() returns true iff c is empty.
size type c.size() returns the number of items in c.
size type c.max size()

returns the maximum possible size of the container c.

size type c.capacity()

returns the total number of elements that c can hold with-
out requiring reallocation.

Allocator c.get allocator()

returns the allocator.
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Insertion

iterator c.insert( T t)

inserts a copy of t in c and returns the iterator pointing
to it.

template <class InputIterator>
void c.insert( InputIterator first, InputIterator last)

inserts the range [first, last) in c.

template <class InputIterator>
void c.assign( InputIterator first, InputIterator last)

erases all the elements of c, then inserts the range [first,
last) in c.

template < class T1 >
iterator c.emplace( T1 t1)

constructs an object of type T with the constructor that
takes t1 as argument, inserts it in c, and returns the itera-
tor pointing to it. Overloads of this member function are
defined that take additional arguments, up to 9.

Removal

void c.erase( iterator pos)

removes the item pointed by pos from c.

void c.erase( iterator first, iterator last)

removes the items from the range [first, last) from c.

void c.clear() all items in c are deleted, and the memory is deallocated.
After this call, c is in the same state as if just default
constructed.

Ownership testing

The following functions are mostly helpful for efficient debugging, since their complexity is O(
√

c.capacity()).

bool c.owns( const iterator pos)

returns whether pos is in the range [c.begin(), c.end()]
(c.end() included).
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bool c.owns dereferencable( const iterator pos)

returns whether pos is in the range [c.begin(), c.end())
(c.end() excluded).

Merging

void c.merge( &cc) adds the items of cc to the end of c and cc becomes empty. The time
complexity is O(c.capacity()-c.size()).
Precondition: cc must not be the same as c, and the allocators
of c and cc need to be compatible : c.get allocator() == cc.get
allocator().

Comparison Operations

bool c == cc test for equality: Two containers are equal, iff they have the same
size and if their corresponding elements are equal.

bool c != cc test for inequality: returns !(c == cc).

bool c < cc compares in lexicographical order.

bool c > cc returns cc < c.

bool c <= cc returns !(c > cc).

bool c >= cc returns !(c < cc).
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CGAL::Multiset<Type,Compare,Allocator>

Definition

An instance s of the parametrized data type Multiset<Type,Compare,Allocator> is a multi-set of elements of
type Type, represented as a red-black tree (see [CLRS01, Chapter 13] for an excellent introduction to red-
black trees). The main difference between Multiset<Type,Compare,Allocator> and STL’s multiset is that the
latter uses a less-than functor with a Boolean return type, while our Multiset<Type,Compare,Allocator> class
is parameterized by a comparison functor Compare that returns the three-valued Comparison result (namely it
returns either SMALLER, EQUAL, or LARGER). It is thus possible to maintain the underlying red-black tree
with less invocations of the comparison functor. This leads to a speedup of about 5% even if we maintain a set
of integers. When each comparison of two elements of type Type is an expensive operation (for example, when
they are geometric entities represented using exact arithmetic), the usage of a three-valued comparison functor
can lead to considerable decrease in the running times.

Moreover, Multiset<Type,Compare,Allocator> allows the insertion of an element into the set given its exact
position, and not just using an insertion hint, as done by std::multiset. This can further reduce the running
times, as additional comparison operations can be avoided.

In addition, the Multiset<Type,Compare,Allocator> guarantees that the order of elements sent to the comparison
functor is fixed. For example, if we insert a new element x into the set (or erase an element from the set), then
we always invoke Compare() (x, y) (and never Compare() (y, x)), where y is an element already stored in the
set. This behavior, not supported by std::multiset, is sometimes crucial for designing more efficient comparison
predicates.

Multiset<Type,Compare,Allocator> also allows for look-up of keys whose type may differ from Type, as long
as users supply a comparison functor CompareKey, where CompareKey() (key, y) returns the three-valued
Comparison result (key is the look-up key and y is an element of type Type). Indeed, it is very convenient
to look-up equivalent objects in the set given just by their key. We note however that it is also possible to
use a key of type Type and to employ the default Compare functor for the look-up, as done when using the
std::multiset class.

advanced

Finally, Multiset<Type,Compare,Allocator> introduces the catenate() and split() functions. The first function
operates on s and accepts a second set s’, such that the maximum element in s is not greater than the minimal
element in s’, and concatenates s’ to s. The second function splits s into two sets,one containing all the elements
that are less than a given key, and the other contains all elements greater than (or equal to) this key.

advanced

Parameters

The Multiset class-template has three parameters:

• Type — the type of the stored elements.

• Compare — the comparison-functor type. This type should provide the following operator for comparing
two Type elements, namely:
Comparison result operator() (const Type& t1, const Type& t2) const;
The CGAL::Compare<Type> functor is used by default. In this case, Type must support an equality
operator (operator==) and a less-than operator (operator<).
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• Allocator — the allocator type.
CGAL ALLOCATOR is used by default.

#include <CGAL/Multiset.h>

Assertions

The assertion and precondition flags for the Multiset class use MULTISET in their names (i.e., CGAL
MULTISET NO ASSERTIONS and CGAL MULTISET NO PRECONDITIONS).

Types

In compliance with STL, the types value type and key type (both equivalent to Type), reference and const
reference (reference to a value-type), key compare and value compare (both equivalent to Compare), size type
and difference type are defined as well.

Multiset<Type,Compare,Allocator>:: iterator
Multiset<Type,Compare,Allocator>:: const iterator

bi-directional iterators for the elements stored in the set.

Multiset<Type,Compare,Allocator>:: reverse iterator
Multiset<Type,Compare,Allocator>:: const reverse iterator

reverse bi-directional iterators for the elements stored in the
set.

Creation

Multiset<Type,Compare,Allocator> s; creates an an empty set s that uses a default comparison func-
tor.

Multiset<Type,Compare,Allocator> s( Compare comp);

creates an an empty set s that uses the given comparison func-
tor comp.

template <class InputIterator>
Multiset<Type,Compare,Allocator> s( InputIterator first, InputIterator last, Compare comp = Compare());

creates a set s containing all elements in the range [first, last),
that uses the comparison functor comp.

Multiset<Type,Compare,Allocator> s( other); copy constructor.

Multiset<Type,Compare,Allocator>

s = other assignment operator.
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void s.swap( & other) swaps the contents of s with those of the other set.

Access Member Functions

Compare s.key comp() const the comparison functor used.
Compare s.value comp() const the comparison functor used (same as above). Both func-

tions have a non-const version that return a reference to the
comparison functor.

bool s.empty() returns true if the set is empty, false otherwise.

size t s.size() returns the number of elements stored in the set.

size t s.max size() returns the maximal number of elements the set can store
(same as size()).

iterator s.begin() returns an iterator pointing to the first element stored in the
set (a const version is also available).

iterator s.end() returns an iterator pointing beyond the last element stored in
the set (a const version is also available).

reverse iterator s.rbegin() returns a reverse iterator pointing beyond the last element
stored in the set (a const version is also available).

reverse iterator s.rend() returns a reverse iterator pointing to the first element stored
in the set (a const version is also available).

Comparison Operations

bool s == other returns true if the sequences of elements in the two sets are
pairwise equal (using the comparison functor).

bool s < other returns true if the element sequence in s is lexicographically
smaller than the element sequence of other.

Insertion Methods

iterator s.insert( Type x) inserts the element x into the set and returns an iterator point-
ing to the newly inserted element.

template <class InputIterator>
void s.insert( InputIterator first, InputIterator last)

inserts all elements in the range [first, last) into the set.
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iterator s.insert( iterator position, Type x)

inserts the element x with a given iterator used as a hint for
the position of the new element. It Returns an iterator point-
ing to the newly inserted element.

iterator s.insert before( iterator position, Type x)

inserts the element x as the predecessor of the element at the
given position.
Precondition: The operation does not violate the set order —
that is, x is not greater than the element pointed by position
and not less than its current predecessor.

iterator s.insert after( iterator position, Type x)

inserts the element x as the successor of the element at the
given position.
Precondition: The operation does not violate the set order
— that is, x is not less than the element pointed by position
and not greater than its current successor.

Removal Methods

size t s.erase( Type x) erases all elements equivalent to x from the set and returns
the number of erased elements.

void s.erase( iterator position)

erases the element pointed by position.

void s.clear() clears the set (erases all stored elements).

Look-up Methods

All methods listed in this section can also accept a Type element as a look-up key. In this case, it is not necessary
to supply a CompareKey functor, as the Compare functor will be used by default.

template <class Key, class CompareKey>
iterator s.find( Key key, CompareKey comp key)

searches for the an element equivalent to key in the set. If the
set contains objects equivalent to key, it returns an iterator
pointing to the first one. Otherwise, end() is returned (a const
version is also available).

template <class Key, class CompareKey>
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size t s.count( Key key, CompareKey comp key) const

returns the number of elements equivalent to key in the set.

template <class Key, class CompareKey>
iterator s.lower bound( Key key, CompareKey comp key)

returns an iterator pointing to the first element in the set that
is not less than key. If all set elements are less than key, end()
is returned (a const version is also available).

template <class Key, class CompareKey>
iterator s.upper bound( Key key, CompareKey comp key)

returns an iterator pointing to the first element in the set that
is greater than key. If no set element is greater than key, end()
is returned (a const version is also available).

template <class Key, class CompareKey>
std::pair<iterator,iterator>

s.equal range( Key key, CompareKey comp key)

returns the range of set elements equivalent to the given key,
namely (lower bound(key), upper bound(key)) (a const ver-
sion is also available).

template <class Key, class CompareKey>
std::pair<iterator,bool>

s.find lower( Key key, CompareKey comp key)

returns a pair comprised of lower bound(key) and a Boolean
flag indicating whether this iterator points to an element
equivalent to the given key (a const version is also available).

advanced

Special Operations

void s.replace( iterator position, Type x)

replaces the element stored at the given position with x.
Precondition: The operation does not violate the set order
— that is, x is not less that position’s predecessor and not
greater than its successor.
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void s.swap( iterator pos1, iterator pos2)

swaps places between the two elements given by pos1 and
pos2.
Precondition: The operation does not violate the set order
— that is, pos1 and pos2 store equivalent elements.

void s.catenate( Self& s prime)

concatenates all elements in s prime into s and clears s
prime. All iterators to s and to s prime remain valid.
Precondition: The maximal element in s is not greater than
the minimal element in s prime.

template <class Key, class CompareKey>
void s.split( Key key, CompareKey comp key, Self& s prime)

splits s such that it contains all elements that are less than the
given key and such that s prime contains all other elements.
Precondition: s prime is initially empty.

void s.split( iterator position, Self& s prime)

splits s such that it contains all set elements in the range [be-
gin, position) and such that s prime contains all elements in
the range [position, end()).
Precondition: s prime is initially empty.

advanced

Implementation

Multiset uses a proprietary implementation of a red-black tree data-structure. The red-black tree invariants
guarantee that the height of a tree containing n elements is O(logn) (more precisely, it is bounded by 2log2 n).
As a consequence, all methods that accept an element and need to locate it in the tree (namely insert(x), erase(x),
find(x), count(x), lower bound(x) , upper bound(x), find lower(x) and equal range(x)) take O(logn) time and
perform O(logn) comparison operations.

On the other hand, the set operations that accept a position iterator (namely insert before(pos, x), insert
after(pos, x) and erase(pos)) are much more efficient as they can be performed at a constant amortized cost
(see [GS78] and [Tar83] for more details). More important, these set operations require no comparison oper-
ations. Therefore, it is highly recommended to maintain the set via iterators to the stored elements, whenever
possible. The function insert(pos, x) is safer to use, but it takes amortized O(min{d, logn}) time, where d is
the distance between the given position and the true position of x. In addition, it always performs at least two
comparison operations.

advanced

The catenate() and split() functions are also very efficient, and can be performed in O(logn) time, where n is
the total number of elements in the sets, and without performing any comparison operations (see [Tar83] for
the details). Note however that the size of two sets resulting from a split operation is initially unknown, as it is
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impossible to compute it in less than linear time. Thus, the first invocation of size() on such a set takes linear
time, and not constant time.

advanced

The design is derived from the STL multiset class-template (see, e.g, [MS96]), where the main differences
between the two classes are highlighted in the class definition above.

4166



C
la

ss

CGAL::Object

#include <CGAL/Object.h>

Definition

Some functions can return different types of objects. A typical C++ solution to this problem is to derive all
possible return types from a common base class, to return a pointer to this class and to perform a dynamic cast
on this pointer. The class Object provides an abstraction. An object obj of the class Object can represent an
arbitrary class. The only operations it provides is to make copies and assignments, so that you can put them
in lists or arrays. Note that Object is NOT a common base class for the elementary classes. Therefore, there
is no automatic conversion from these classes to Object. Rather this is done with the global function make
object. This encapsulation mechanism requires the use of assign or object cast to use the functionality of the
encapsulated class.

This class is similar in spirit to boost::any.

Creation

Object obj; introduces an empty object.

Object obj( o); Copy constructor.

Objects of type Object are normally created using the global function make object.

Operations

Object & obj = o Assignment.

bool obj.empty() returns true, if obj does not contain an object.

template<class T>
bool obj.is() returns true, iff obj contains an object of type T .

std::type info obj.type() const returns the type information of the contained type, or
typeid(void) if empty.

Construction of an Object storing an object of type T can be performed using the make object global function :

template <class T>
Object make object( T t) Creates an object that contains t.

Assignment of an object of type Object to an object of type T can be done using assign :

template <class T>
bool assign( T& c, o) assigns o to c if o was constructed from an object of type T .

Returns true, if the assignment was possible. For efficiency
reasons, we recommend using object cast instead.
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Another possibility to access the encapsulated object is to use object cast, which avoids the default constructor
and assignment required by assign :

template <class T>
const T* object cast( const * o)

Returns a pointer to the object of type T stored by o, if any,
otherwise returns NULL.

template <class T>
T object cast( o) Returns a copy of the object of type T stored by o, if any,

otherwise throws an exception of type Bad object cast.

Example

In the following example, the object class is used as return value for the intersection computation, as there are
possibly different return values.

{

typedef Cartesian<double> K;

typedef K::Point 2 Point 2;

typedef K::Segment 2 Segment 2;

Point 2 point;

Segment 2 segment, segment 1, segment 2;

std::cin � segment 1 � segment 2;

Object obj = intersection(segment 1, segment 2);

if (assign(point, obj)) {

/∗ do something with point ∗/
} else if (assign(segment, obj)) {

/∗ do something with segment∗/
}

/∗ there was no intersection ∗/
}

A more efficient way to access the object is to use object cast, which allows to skip a default construction and
assignment :

{

typedef Cartesian<double> K;

typedef K::Point 2 Point 2;

typedef K::Segment 2 Segment 2;

Segment 2 segment 1, segment 2;

std::cin � segment 1 � segment 2;
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Object obj = intersection(segment 1, segment 2);

if (const Point 2 ∗ point = object cast<Point 2>(&obj)) {

/∗ do something with ∗point ∗/
} else if (const Segment 2 ∗ segment = object cast<Segment 2>(&obj)) {

/∗ do something with ∗segment∗/
}

/∗ there was no intersection ∗/
}

The intersection routine itself looks roughly as follows:

template < class Kernel >

Object intersection(Segment 2<Kernel> s1, Segment 2<Kernel> s2)

{

if (/∗ intersection is a point ∗/ ) {

Point 2<Kernel> p = ... ;

return make object(p);

} else if (/∗ intersection is a segment ∗/ ) {

Segment 2<Kernel> s = ... ;

return make object(s);

}

/∗ empty intersection ∗/
return Object();

}
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CGAL::cpp0x::next

There is actually no function in namespace CGAL::cpp0x with this name, but a using declaration which imports
a function from another namespace. By order of priority: the one in namespace std is used (provided by C++0x),
if not found, then the one in namespace boost is used.

Definition

The function returns the result of operator++ on a ForwardIterator. The exact behaviour is described in §24.4.4
of the C++ standard draft N3242.

#include <CGAL/algorithm.h>

See Also

boost::next
CGAL::cpp0x::prev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4171
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CGAL::cpp0x::prev

If C++0x is available the function std::prev is imported into the namespace CGAL::cpp0x, otherwise
CGAL::cpp0x::prev is declared with the signature as given in §24.4.4 of the ISO C++ Standard and forwarded
to boost::prior.

Definition

The function returns the result of operator-- on a BidirectionalIterator. The exact behaviour is described in
§24.4.4 of the C++ standard draft N3242.

#include <CGAL/algorithm.h>

See Also

boost::prior
CGAL::cpp0x::next . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4170
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CGAL::predecessor

This function is deprecated. CGAL::cpp0x::prev should be used instead.

deprecated

Definition

The function predecessor returns the previous iterator, i.e. the result of operator-- on a bidirectional iterator.

#include <CGAL/algorithm.h>

template <class BidirectionalIterator>
BidirectionalIterator predecessor( BidirectionalIterator it)

returns --it.

See Also

CGAL::successor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4173

deprecated
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CGAL::successor

This function is deprecated. CGAL::cpp0x::next should be used instead.

deprecated

Definition

The function successor returns the next iterator, i.e. the result of operator++ on a forward iterator.

#include <CGAL/algorithm.h>

template <class ForwardIterator>
ForwardIterator successor( ForwardIterator it)

returns ++it.

See Also

CGAL::predecessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4172

deprecated
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CGAL::cpp0x::copy n

This provides an implementation of the standard function copy n from the C++0x standard. If copy n is avail-
able in the std:: namespace a using declaration is used, otherwise an alternative implementation from CGAL is
used.

Definition

The function cpp0x::copy n copies n items from an input iterator to an output iterator. Its exact behaviour is
defined in §25.3.1 of the C++ standard draft N3242.

#include <CGAL/algorithm.h>
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CGAL::copy n

This function is deprecated, CGAL::cpp0x::copy n should be used instead.

deprecated

Definition

The function copy n copies n items from an input iterator to an output iterator which is useful for possibly
infinite sequences of random geometric objects.1

#include <CGAL/algorithm.h>

template <class InputIterator, class Size, class OutputIterator>
OutputIterator copy n( InputIterator first, Size n, OutputIterator result)

copies the first n items from first to result. Returns the value of result after inserting
the n items.

See Also

CGAL::Counting iterator<Iterator, Value> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4185

deprecated

1The STL release June 13, 1997, from SGI contains an equivalent function, but it is not part of the ISO standard.
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CGAL::min max element

Definition

The function min max element computes the minimal and the maximal element of a range. It is modeled after
the STL functions min element and max element. The advantage of min max element compared to calling both
STL functions is that one only iterates once over the sequence. This is more efficient especially for large and/or
complex sequences.

#include <CGAL/algorithm.h>

template < class ForwardIterator >
std::pair< ForwardIterator, ForwardIterator >

min max element( ForwardIterator first, ForwardIterator last)

returns a pair of iterators where the first component refers to
the minimal and the second component refers to the maximal
element in the range [first, last). The ordering is defined by
operator< on the value type of ForwardIterator.

template < class ForwardIterator, class CompareMin, class CompareMax >
std::pair< ForwardIterator, ForwardIterator >

min max element( ForwardIterator first,
ForwardIterator last,
CompareMin comp min,
CompareMax comp max)

returns a pair of iterators where the first component refers to
the minimal and the second component refers to the maximal
element in the range [first, last).
Requirement: CompareMin and CompareMax are adaptable
binary function objects: VT × VT → bool where VT is the
value type of ForwardIterator.

Example

The following example program computes the minimal and maximal element of the sequence (3, 6, 5). Hence
the output is min = 3, max = 6.� �
#include <CGAL/algorithm.h>
#include <vector>
#include <iostream>

using std::vector;
using std::pair;
using std::cout;
using std::endl;
using CGAL::min_max_element;
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int main()
{

vector< int > v;
v.push_back(3);
v.push_back(6);
v.push_back(5);
typedef std::vector< int >::iterator iterator;
pair< iterator, iterator > p = min_max_element(v.begin(), v.end());
cout << "min = " << *p.first << ", max = " << *p.second << endl;
return 0;

}� �
File: examples/STL_Extension/min_max_element_example.cpp
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CGAL::Dispatch output iterator<V,O>

Definition

The class Dispatch output iterator<V,O> defines an OutputIterator that contains a tuple of output iterators, and
dispatches among those based on the type of the value type which is put in it. It also inherits from O, which
makes it easy to treat like a tuple.

Parameters

V must be a CGAL::cpp0x::tuple<...> of the types of values to be accepted and dispatched. O must be a
CGAL::cpp0x::tuple<...> of the types of corresponding output iterators.

#include <CGAL/iterator.h>

Is Model for the Concepts

OutputIterator

Inherits From

O

Types

typedef V Value type tuple;
typedef O Iterator tuple;

Creation

Dispatch output iterator<V,O> i( I...o);

Constructor taking all the output iterators.

Iterator tuple i.get iterator tuple() const

returns a reference to the tuple of output iterators.

template < typename... V, typename... O>
Dispatch output iterator<tuple<V...>, tuple<O...> >

dispatch output( O... o)

returns a Dispatch output iterator constructed from the ar-
guments.
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See Also

CGAL::Dispatch or drop output iterator<V,O> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4180
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CGAL::Dispatch or drop output iterator<V,O>

Definition

The class Dispatch or drop output iterator<V,O> defines an OutputIterator that contains a tuple of output
iterators, and dispatches among those based on the type of the value type which is put in it. Other types are also
accepted, and the object is simply discarded in this case. It also inherits from O, which makes it easy to treat
like a tuple.

Parameters

V must be a CGAL::cpp0x::tuple<...> of the types of values to be accepted and dispatched. O must be a
CGAL::cpp0x::tuple<...> of the types of corresponding output iterators.

#include <CGAL/iterator.h>

Is Model for the Concepts

OutputIterator

Inherits From

O

Types

typedef V Value type tuple;
typedef O Iterator tuple;

Creation

Dispatch or drop output iterator<V,O> i( I...o);

Constructor taking all the output iterators.

Iterator tuple i.get iterator tuple() const

returns a reference to the tuple of output iterators.

template < typename... V, typename... O>
Dispatch or drop output iterator<tuple<V...>, tuple<O...> >

dispatch or drop output( O... o)

returns a Dispatch or drop output iterator constructed
from the arguments.
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See Also

CGAL::Dispatch output iterator<V,O> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4178
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CGAL::Emptyset iterator

Definition

The class defines an OutputIterator that ignores everything written to it. One can think of it as being connected
to /dev/null.

#include <CGAL/iterator.h>

Is Model for the Concepts

OutputIterator

Creation

Emptyset iterator i;

default constructor.

See Also

CGAL::Oneset iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
CGAL::Const oneset iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
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CGAL::Oneset iterator<T>

Definition

The class Oneset iterator<T> defines an BidirectionalIterator that always refers to one specific object of type
T . Internally, Oneset iterator<T> stores a pointer to the referred object.

#include <CGAL/iterator.h>

Is Model for the Concepts

BidirectionalIterator

Creation

Oneset iterator<T> i( T& t);

creates an iterator referring to t.

See Also

CGAL::Emptyset iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4182
CGAL::Const oneset iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
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CGAL::Const oneset iterator<T>

Definition

The class Const oneset iterator<T> defines an RandomAccessIterator that always refers to a copy of a specific
object of type T .

#include <CGAL/iterator.h>

Is Model for the Concepts

RandomAccessIterator

Creation

Const oneset iterator<T> i( T& t);

creates an iterator that always refers to some copy of t. The copy is con-
structed by invoking T’s copy constructor and remains constant during i’s
lifetime.

See Also

CGAL::Emptyset iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4182
CGAL::Oneset iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
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CGAL::Counting iterator<Iterator, Value>

Definition

The iterator adaptor Counting iterator<Iterator, Value> adds a counter to the internal iterator of type Iterator
and defines equality of two instances in terms of this counter. It can be used to create finite sequences of possibly
infinite sequences of values from input iterators.

#include <CGAL/iterator.h>

Is Model for the Concepts

InputIterator

Requirements

Iterator is a model for InputIterator.

Creation

Counting iterator<Iterator, Value> i( std::size t n = 0);

initializes the internal counter to n and i has a singular value.

Counting iterator<Iterator, Value> i( Iterator j, std::size t n = 0);

initializes the internal counter to n and i to j.

See Also

CGAL::copy n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4175
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CGAL::Insert iterator<Container>

Definition

The output iterator Insert iterator<Container> is similar to std::insert iterator, but differs in that it calls the
insert() function of the container without the iterator additional argument.

#include <CGAL/iterator.h>

Is Model for the Concepts

OutputIterator

Requirements

Container provides a member function insert(const Container::const reference&).

Creation

Insert iterator<Container> i( Container &c);

initializes the internal container reference to c.

There is also a global function similar to std::inserter:

template < class Container >
Insert iterator<Container>

inserter( Container &x)

Constructs Insert iterator<Container>(x).
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CGAL::N step adaptor<I,int N>

Definition

The adaptor N step adaptor<I,int N> changes the step width of the iterator or circulator class I to N. It is itself
an iterator or circulator respectively. The behavior is undefined if the adaptor is used on a range [i, j) where j− i
is not a multiple of n.

#include <CGAL/iterator.h>

Creation

N step adaptor<I,int N> i( I j); down cast.
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CGAL::Filter iterator<Iterator, Predicate>

Definition

The iterator adaptor Filter iterator<Iterator, Predicate> acts as a filter on a given range. Whenever the iterator
is in– or decremented, it ignores all iterators for which the given Predicate is true. The iterator category is the
same as for Iterator.

Note: Boost also provides the same functionality via the boost::filter iterator class. Unfortunately, the seman-
tics chosen for accepting or rejecting elements based on the predicate’s result are opposite as the semantic chosen
here. What is more, the argument of the predicate is different: the predicate used with boost::filter iterator must
take the value type of the iterator, as argument, and not the iterator itself.

#include <CGAL/iterator.h>

Requirements

• Iterator is a model for ForwardIterator.

• Predicate is a functor: Iterator→ bool.

Creation

Filter iterator<Iterator, Predicate> i;

Filter iterator<Iterator, Predicate> i( Iterator e, Predicate p, Iterator c = e);

creates an iterator which filters values according to p. Initial-
izes by taking the first valid iterator (according to p), starting
at c, and stopping at e if none is found.

There is also a global function to help the use of Filter iterator<Iterator, Predicate>:

template < class Iterator, class Predicate >
inline Filter iterator< Iterator, Predicate >

filter iterator( Iterator e, Predicate p, Iterator c = e)

Constructs Filter iterator<Iterator, Predicate>(e, p, c).
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CGAL::Join input iterator 1<Iterator, Creator>

Definition

The class Join input iterator 1<Iterator, Creator> joins an iterator and a creator function object. The result is
again an iterator (of the same iterator category type as the original iterator) that reads an object from the stream
and applies a creator function object to that object.

#include <CGAL/iterator.h>

Is Model for the Concepts

InputIterator

Types

Join input iterator 1<Iterator, Creator>:: value type

typedef to Creator::result type.

Creation

Join input iterator 1<Iterator, Creator> join( Iterator i, Creator creator);

creates a join iterator from the given iterator i and the functor
creator. Applies creator to each item read from i.

Join input iterator 1<Iterator, Creator> join( Iterator i);

creates a join iterator from the given iterator i and a default
constructed instance of Creator. The latter instance is ap-
plied to each item read from i.

See Also

CGAL::Creator 1<Arg, Result> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4209
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CGAL::Inverse index<IC>

Definition

The class Inverse index<IC> constructs an inverse index for a given range [i, j) of two iterators or circulators of
type IC. The first element I in the range [i, j) has the index 0. Consecutive elements are numbered incrementally.
The inverse index provides a query for a given iterator or circulator k to retrieve its index number. Precondition:
The iterator or circulator must be either of the random access category or the dereference operator must return
stable and distinguishable addresses for the values, e.g. proxies or non-modifiable iterator with opaque values
will not work.

#include <CGAL/iterator.h>

Creation

Inverse index<IC> inverse; invalid index.
Inverse index<IC> inverse( IC i); empty inverse index initialized to start at i.
Inverse index<IC> inverse( IC i, IC j); inverse index initialized with range [i, j).

Operations

std::size t inverse[ IC k] returns inverse index of k.
Precondition: k has been stored in the inverse index.

void inverse.push back( IC k) adds k at the end of the indices.

Implementation

For random access iterators or circulators, it is done in constant time by subtracting i. For other iterator cate-
gories, an STL map is used, which results in a log j− i query time. The comparisons are done using the operator
operator< on pointers.

See Also

CGAL::Random access adaptor<IC> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4191
CGAL::Random access value adaptor<IC,T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4192
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CGAL::Random access adaptor<IC>

Definition

The class Random access adaptor<IC> provides a random access for data structures. Either the data structure
supports random access iterators or circulators where this class maps function calls to the iterator or circulator,
or a STL std::vector is used to provide the random access. The iterator or circulator of the data structure are of
type IC.

#include <CGAL/iterator.h>

Types

Random access adaptor<IC>:: size type size type of the STL std::vector.

Creation

Random access adaptor<IC> random access; invalid index.

Random access adaptor<IC> random access( IC i);

empty random access index initialized to start at i.

Random access adaptor<IC> random access( IC i, IC j);

random access index initialized to the range [i, j).

void

random access.reserve( size type r)

reserve r entries, if a std::vector is used internally.

Operations

IC random access[ size type n] returns iterator or circulator to the n-th item.
Precondition: n < number of items in random access.

void

random access.push back( IC k) adds k at the end of the indices.

See Also

CGAL::Inverse index<IC> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4190
CGAL::Random access value adaptor<IC,T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4192
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CGAL::Random access value adaptor<IC,T>

Definition

The class Random access value adaptor<IC,T> provides a random access for data structures. It is derived
from Random access adaptor<IC>. Instead of returning iterators from the operator[] methods, it returns the
dereferenced value of the iterator. The iterator or circulator of the data structure are of type IC. Their value type
is T .

#include <CGAL/iterator.h>

Operations

Creation and operations see Random access adaptor<IC>, with the exception of:

T& random access[ size type n] returns a reference to the n-th item.
Precondition: n < number of items in random access.

See Also

CGAL::Inverse index<IC> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4190
CGAL::Random access adaptor<IC> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4191
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CGAL::compare to less

Definition

The function compare to less is used to change a functor returning a Comparison result to one which returns a
bool. The returned functor will return true iff the original one returns SMALLER.

#include <CGAL/function objects.h>

template < class F >
Compare to less< F > compare to less( F f)

returns a functor equivalent to f , but which re-
turns a bool instead of a Comparison result.

See Also

CGAL::Compare to less<F> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4194
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CGAL::Compare to less<F>

Definition

The class Compare to less<F> is used to convert a functor which returns a Comparison result to a predicate
(returning bool) : it will return true iff the return value of F is SMALLER. The class is used in conjunction with
the compare to less function; see there for an explanation on how exactly the functors are combined.

#include <CGAL/function objects.h>

Types

Compare to less<F>:: Type type of the composed functor.

See Also

CGAL::compare to less . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4193
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Projection object

Definition

The concept Projection object is modeled after the STL concept UnaryFunction, but takes also care of (const)
references.

Projection object:: argument type argument type.

Projection object:: result type result type.

Creation

Projection object o; default constructor.

Operations

result type& o.operator()( argument type &) const
const result type& o.operator()( const argument type &) const

Has Models

CGAL::Identity<Value> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4196
CGAL::Dereference<Value> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4197
CGAL::Get address<Value> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4198
CGAL::Cast function object<Arg, Result> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4199
CGAL::Project vertex<Node> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4200
CGAL::Project facet<Node> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4201
CGAL::Project point<Node> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4202
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CGAL::Identity<Value>

Definition

The class Identity<Value> represents the identity function on Value.

#include <CGAL/function objects.h>

Is Model for the Concepts

Projection object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4195

Identity<Value>:: argument type typedef to Value.

Identity<Value>:: result type typedef to Value.

Creation

Identity<Value> o; default constructor.

Operations

result type& o.operator()( argument type& x) const

returns x.

const result type& o.operator()( const argument type& x) const

returns x.
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CGAL::Dereference<Value>

Definition

The class Dereference<Value> dereferences a pointer (operator*).

#include <CGAL/function objects.h>

Is Model for the Concepts

Projection object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4195

Dereference<Value>:: argument type typedef to Value*.

Dereference<Value>:: result type typedef to Value.

Creation

Dereference<Value> o; default constructor.

Operations

result type& o.operator()( argument type& x) const

returns *x.

const result type& o.operator()( const argument type& x) const

returns *x.
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CGAL::Get address<Value>

Definition

The class Get address<Value> gets the address of an lvalue (operator&).

#include <CGAL/function objects.h>

Is Model for the Concepts

Projection object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4195

Get address<Value>:: argument type typedef to Value.

Get address<Value>:: result type typedef to Value*.

Creation

Get address<Value> o; default constructor.

Operations

result type& o.operator()( argument type& x) const

returns &x.

const result type& o.operator()( const argument type& x) const

returns &x.
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CGAL::Cast function object<Arg, Result>

Definition

The class Cast function object<Arg, Result> applies a C-style type cast to its argument.

#include <CGAL/function objects.h>

Is Model for the Concepts

Projection object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4195

Cast function object<Arg, Result>:: argument type

typedef to Arg.

Cast function object<Arg, Result>:: result type

typedef to Result.

Creation

Cast function object<Arg, Result> o; default constructor.

Operations

result type& o.operator()( argument type& x) const

returns (Result)x.

const result type& o.operator()( const argument type& x) const

returns (Result)x.
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CGAL::Project vertex<Node>

Definition

The class Project vertex<Node> calls the member function vertex() on an instance of type Node.

#include <CGAL/function objects.h>

Is Model for the Concepts

Projection object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4195

Project vertex<Node>:: argument type typedef to Node.

Project vertex<Node>:: result type typedef to Node::Vertex.

Creation

Project vertex<Node> o; default constructor.

Operations

result type& o.operator()( argument type& n) const

returns n.vertex().

const result type& o.operator()( const argument type& n) const

returns n.vertex().

4200



C
la

ss
F

un
ct

or

CGAL::Project facet<Node>

Definition

The class Project facet<Node> calls the member function facet() on an instance of type Node.

#include <CGAL/function objects.h>

Is Model for the Concepts

Projection object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4195

Project facet<Node>:: argument type typedef to Node.

Project facet<Node>:: result type typedef to Node::Facet.

Creation

Project facet<Node> o; default constructor.

Operations

result type& o.operator()( argument type& n) const

returns n.facet().

const result type& o.operator()( const argument type& n) const

returns n.facet().
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CGAL::Project point<Node>

Definition

The class Project point<Node> calls the member function point() on an instance of type Node.

#include <CGAL/function objects.h>

Is Model for the Concepts

Projection object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4195

Project point<Node>:: argument type typedef to Node.

Project point<Node>:: result type typedef to Node::Point.

Creation

Project point<Node> o; default constructor.

Operations

result type& o.operator()( argument type& n) const

returns n.point().

const result type& o.operator()( const argument type& n) const

returns n.point().
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CGAL::Project normal<Node>

Definition

The class Project normal<Node> calls the member function normal() on an instance of type Node.

#include <CGAL/function objects.h>

Is Model for the Concepts

Projection object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4195

Project normal<Node>:: argument type typedef to Node.

Project normal<Node>:: result type typedef to Node::Normal.

Creation

Project normal<Node> o; default constructor.

Operations

result type& o.operator()( argument type& n) const

returns n.normal().

const result type& o.operator()( const argument type& n) const

returns n.normal().
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CGAL::Project plane<Node>

Definition

The class Project plane<Node> calls the member function plane() on an instance of type Node.

#include <CGAL/function objects.h>

Is Model for the Concepts

Projection object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4195

Project plane<Node>:: argument type typedef to Node.

Project plane<Node>:: result type typedef to Node::Plane.

Creation

Project plane<Node> o; default constructor.

Operations

result type& o.operator()( argument type& n) const

returns n.plane().

const result type& o.operator()( const argument type& n) const

returns n.plane().
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CGAL::Project next<Node>

Definition

The class Project next<Node> calls the member function next() on an instance of type Node.

#include <CGAL/function objects.h>

Is Model for the Concepts

Projection object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4195

Project next<Node>:: argument type typedef to Node*.

Project next<Node>:: result type typedef to Node*.

Creation

Project next<Node> o; default constructor.

Operations

result type& o.operator()( argument type& n) const

returns n->next().

const result type& o.operator()( const argument type& n) const

returns n->next().
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CGAL::Project prev<Node>

Definition

The class Project prev<Node> calls the member function prev() on an instance of type Node.

#include <CGAL/function objects.h>

Is Model for the Concepts

Projection object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4195

Project prev<Node>:: argument type typedef to Node*.

Project prev<Node>:: result type typedef to Node*.

Creation

Project prev<Node> o; default constructor.

Operations

result type& o.operator()( argument type& n) const

returns n->prev().

const result type& o.operator()( const argument type& n) const

returns n->prev().
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CGAL::Project next opposite<Node>

Definition

The class Project next opposite<Node> calls the member functions next()->opposite() on an instance of type
Node.

#include <CGAL/function objects.h>

Is Model for the Concepts

Projection object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4195

Project next opposite<Node>:: argument type typedef to Node*.

Project next opposite<Node>:: result type typedef to Node*.

Creation

Project next opposite<Node> o; default constructor.

Operations

result type& o.operator()( argument type& n) const

returns n->next()->opposite().

const result type& o.operator()( const argument type& n) const

returns n->next()->opposite().

4207



C
la

ss
F

un
ct

or

CGAL::Project opposite prev<Node>

Definition

The class Project opposite prev<Node> calls the member functions opposite()->prev() on an instance of type
Node.

#include <CGAL/function objects.h>

Is Model for the Concepts

Projection object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4195

Project opposite prev<Node>:: argument type

typedef to Node*.

Project opposite prev<Node>:: result type typedef to Node*.

Creation

Project opposite prev<Node> o; default constructor.

Operations

result type& o.operator()( argument type& n) const

returns n->opposite()->prev().

const result type& o.operator()( const argument type& n) const

returns n->opposite()->prev().
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CGAL::Creator 1<Arg, Result>

Definition

The concept Creator 1<Arg, Result> defines types and operations for creating objects from one argument.

#include <CGAL/function objects.h>

Requirements

Arg is convertible to Result.

Creator 1<Arg, Result>:: argument type type of argument.

Creator 1<Arg, Result>:: result type type of object to create.

result type c.operator()( argument type a) const

returns result type(a).
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CGAL::Creator 2<Arg1, Arg2, Result>

Definition

The concept Creator 2<Arg1, Arg2, Result> defines types and operations for creating objects from two argu-
ments.

#include <CGAL/function objects.h>

Requirements

Result defines a corresponding constructor.

Creator 2<Arg1, Arg2, Result>:: argument1 type

type of first argument.

Creator 2<Arg1, Arg2, Result>:: argument2 type

type of second argument.

Creator 2<Arg1, Arg2, Result>:: result type type of object to create.

result type c.operator()( argument type1 a1, argument type2 a2) const

returns result type(a1, a2).
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CGAL::Creator 3<Arg1, Arg2, Arg3, Result>

Definition

The concept Creator 3<Arg1, Arg2, Arg3, Result> defines types and operations for creating objects from three
arguments.

#include <CGAL/function objects.h>

Requirements

Result defines a corresponding constructor.

Creator 3<Arg1, Arg2, Arg3, Result>:: argument1 type

type of first argument.

Creator 3<Arg1, Arg2, Arg3, Result>:: argument2 type

type of second argument.

Creator 3<Arg1, Arg2, Arg3, Result>:: argument3 type

type of third argument.

Creator 3<Arg1, Arg2, Arg3, Result>:: result type

type of object to create.

result type c.operator()( argument type1 a1, argument type2 a2, argument type3 a3) const

returns result type(a1, a2, a3).
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CGAL::Creator 4<Arg1, Arg2, Arg3, Arg4, Result>

Definition

The concept Creator 4<Arg1, Arg2, Arg3, Arg4, Result> defines types and operations for creating objects from
four arguments.

#include <CGAL/function objects.h>

Requirements

Result defines a corresponding constructor.

Creator 4<Arg1, Arg2, Arg3, Arg4, Result>:: argument1 type

type of first argument.

Creator 4<Arg1, Arg2, Arg3, Arg4, Result>:: argument2 type

type of second argument.

Creator 4<Arg1, Arg2, Arg3, Arg4, Result>:: argument3 type

type of third argument.

Creator 4<Arg1, Arg2, Arg3, Arg4, Result>:: argument4 type

type of 4th argument.

Creator 4<Arg1, Arg2, Arg3, Arg4, Result>:: result type

type of object to create.

result type c.operator()(
argument type1 a1,
argument type2 a2,
argument type3 a3,
argument type4 a4) const

returns result type(a1, a2, a3, a4).
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CGAL::Creator 5<Arg1, Arg2, Arg3, Arg4, Arg5, Result>

Definition

The concept Creator 5<Arg1, Arg2, Arg3, Arg4, Arg5, Result> defines types and operations for creating objects
from five arguments.

#include <CGAL/function objects.h>

Requirements

Result defines a corresponding constructor.

Creator 5<Arg1, Arg2, Arg3, Arg4, Arg5, Result>:: argument1 type

type of first argument.

Creator 5<Arg1, Arg2, Arg3, Arg4, Arg5, Result>:: argument2 type

type of second argument.

Creator 5<Arg1, Arg2, Arg3, Arg4, Arg5, Result>:: argument3 type

type of third argument.

Creator 5<Arg1, Arg2, Arg3, Arg4, Arg5, Result>:: argument4 type

type of 4th argument.

Creator 5<Arg1, Arg2, Arg3, Arg4, Arg5, Result>:: argument5 type

type of 5th argument.

Creator 5<Arg1, Arg2, Arg3, Arg4, Arg5, Result>:: result type

type of object to create.

result type c.operator()(
argument type1 a1,
argument type2 a2,
argument type3 a3,
argument type4 a4,
argument type5 a5) const

returns result type(a1, a2, a3, a4, a5).
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CGAL::Creator uniform 2<Arg, Result>

Definition

The concept Creator uniform 2<Arg, Result> defines types and operations for creating objects from two argu-
ments of the same type.

#include <CGAL/function objects.h>

Requirements

Result defines a constructor from two Arg arguments.

Creator uniform 2<Arg, Result>:: argument type

type of arguments; typedef to Arg.

Creator uniform 2<Arg, Result>:: result type type of object to create; typedef to Result.

result type c.operator()( argument type a1, argument type a2) const

returns result type(a1, a2).
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CGAL::Creator uniform 3<Arg, Result>

Definition

The concept Creator uniform 3<Arg, Result> defines types and operations for creating objects from three argu-
ments of the same type.

#include <CGAL/function objects.h>

Requirements

Result defines a constructor from three Arg arguments.

Creator uniform 3<Arg, Result>:: argument type

type of arguments; typedef to Arg.

Creator uniform 3<Arg, Result>:: result type type of object to create; typedef to Result.

result type c.operator()( argument type a1, argument type a2, argument type a3) const

returns result type(a1, a2, a3).
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CGAL::Creator uniform 4<Arg, Result>

Definition

The concept Creator uniform 4<Arg, Result> defines types and operations for creating objects from four argu-
ments of the same type.

#include <CGAL/function objects.h>

Requirements

Result defines a constructor from four Arg arguments.

Creator uniform 4<Arg, Result>:: argument type

type of arguments; typedef to Arg.

Creator uniform 4<Arg, Result>:: result type type of object to create; typedef to Result.

result type c.operator()(
argument type a1,
argument type a2,
argument type a3,
argument type a4) const

returns result type(a1, a2, a3, a4).
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CGAL::Creator uniform 5<Arg, Result>

Definition

The concept Creator uniform 5<Arg, Result> defines types and operations for creating objects from five argu-
ments of the same type.

#include <CGAL/function objects.h>

Requirements

Result defines a constructor from five Arg arguments.

Creator uniform 5<Arg, Result>:: argument type

type of arguments; typedef to Arg.

Creator uniform 5<Arg, Result>:: result type type of object to create; typedef to Result.

result type c.operator()(
argument type a1,
argument type a2,
argument type a3,
argument type a4,
argument type a5) const

returns result type(a1, a2, a3, a4, a5).
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CGAL::Creator uniform 6<Arg, Result>

Definition

The concept Creator uniform 6<Arg, Result> defines types and operations for creating objects from six argu-
ments of the same type.

#include <CGAL/function objects.h>

Requirements

Result defines a constructor from six Arg arguments.

Creator uniform 6<Arg, Result>:: argument type

type of arguments; typedef to Arg.

Creator uniform 6<Arg, Result>:: result type type of object to create; typedef to Result.

result type c.operator()(
argument type a1,
argument type a2,
argument type a3,
argument type a4,
argument type a5,
argument type a6) const

returns result type(a1, a2, a3, a4, a5, a6).
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CGAL::Creator uniform 7<Arg, Result>

Definition

The concept Creator uniform 7<Arg, Result> defines types and operations for creating objects from seven
arguments of the same type.

#include <CGAL/function objects.h>

Requirements

Result defines a constructor from seven Arg arguments.

Creator uniform 7<Arg, Result>:: argument type

type of arguments; typedef to Arg.

Creator uniform 7<Arg, Result>:: result type type of object to create; typedef to Result.

result type c.operator()(
argument type a1,
argument type a2,
argument type a3,
argument type a4,
argument type a5,
argument type a6,
argument type a7) const

returns result type(a1, a2, a3, a4, a5, a6, a7).
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CGAL::Creator uniform 8<Arg, Result>

Definition

The concept Creator uniform 8<Arg, Result> defines types and operations for creating objects from eight argu-
ments of the same type.

#include <CGAL/function objects.h>

Requirements

Result defines a constructor from eight Arg arguments.

Creator uniform 8<Arg, Result>:: argument type

type of arguments; typedef to Arg.

Creator uniform 8<Arg, Result>:: result type type of object to create; typedef to Result.

result type c.operator()(
argument type a1,
argument type a2,
argument type a3,
argument type a4,
argument type a5,
argument type a6,
argument type a7,
argument type a8) const

returns result type(a1, a2, a3, a4, a5, a6, a7, a8).
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CGAL::Creator uniform 9<Arg, Result>

Definition

The concept Creator uniform 9<Arg, Result> defines types and operations for creating objects from nine argu-
ments of the same type.

#include <CGAL/function objects.h>

Requirements

Result defines a constructor from nine Arg arguments.

Creator uniform 9<Arg, Result>:: argument type

type of arguments; typedef to Arg.

Creator uniform 9<Arg, Result>:: result type type of object to create; typedef to Result.

result type c.operator()(
argument type a1,
argument type a2,
argument type a3,
argument type a4,
argument type a5,
argument type a6,
argument type a7,
argument type a8,
argument type a9) const

returns result type(a1, a2, a3, a4, a5, a6, a7, a8, a9).
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CGAL::Creator uniform d<Arg, Result>

Definition

The concept Creator uniform d<Arg, Result> defines types and operations for creating objects from two argu-
ments of the same type.

#include <CGAL/function objects.h>

Requirements

Result defines a constructor from three arguments: one d dimension and two Arg arguments.

Creator uniform d<Arg, Result>:: argument type

type of arguments; typedef to Arg.

Creator uniform d<Arg, Result>:: result type type of object to create; typedef to Result.

result type c.operator()( argument type a1, argument type a2) const

returns result type(d, a1, a2).
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CGAL::Twotuple<T>

This class is deprecated, and will be removed in some future CGAL release. Please use CGAL::cpp0x::array
instead.

deprecated

Definition

The Twotuple<T> class stores a homogeneous (same type) pair of objects of type T . A Twotuple<T> is much
like a container, in that it ”owns” its elements. It is not actually a model of container, though, because it does
not support the standard methods (such as iterators) for accessing the elements of a container.

#include <CGAL/Twotuple.h>

Requirements

T must be Assignable.

Types

typedef T value type;

Variables

T e0; first element
T e1; second element

Creation

Twotuple<T> t; introduces a Twotuple<T> using the default constructor of
the elements.

Twotuple<T> t( T x, T y); constructs a Twotuple<T> such that e0 is constructed from x
and e1 is constructed from y.

deprecated
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CGAL::Threetuple<T>

This class is deprecated, and will be removed in some future CGAL release. Please use CGAL::cpp0x::array
instead.

deprecated

Definition

The Threetuple<T> class stores a homogeneous (same type) triple of objects of type T . A Threetuple<T> is
much like a container, in that it ”owns” its elements. It is not actually a model of container, though, because it
does not support the standard methods (such as iterators) for accessing the elements of a container.

#include <CGAL/Threetuple.h>

Requirements

T must be Assignable.

Types

typedef T value type;

Variables

T e0; first element
T e1; second element
T e2; third element

Creation

Threetuple<T> t; introduces a Threetuple<T> using the default constructor of
the elements.

Threetuple<T> t( T x, T y, T z); constructs a Threetuple<T> such that e0 is constructed from
x, e1 is constructed from y and e2 is constructed from z.

deprecated
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CGAL::Fourtuple<T>

This class is deprecated, and will be removed in some future CGAL release. Please use CGAL::cpp0x::array
instead.

deprecated

Definition

The Fourtuple<T> class stores a homogeneous (same type) fourtuple of objects of type T . A Fourtuple<T> is
much like a container, in that it ”owns” its elements. It is not actually a model of container, though, because it
does not support the standard methods (such as iterators) for accessing the elements of a container.

#include <CGAL/Fourtuple.h>

Requirements

T must be Assignable.

Types

typedef T value type;

Variables

T e0; first element
T e1; second element
T e2; third element
T e3; fourth element

Creation

Fourtuple<T> t; introduces a Fourtuple<T> using the default constructor of
the elements.

Fourtuple<T> t( T x, T y, T z, T t); constructs a Fourtuple<T> such that e0 is constructed from
x, e1 from y, e2 from z and e3 from t.

deprecated
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CGAL::Sixtuple<T>

This class is deprecated, and will be removed in some future CGAL release. Please use CGAL::cpp0x::array
instead.

deprecated

Definition

The Sixtuple<T> class stores a homogeneous (same type) sixtuple of objects of type T . A Sixtuple<T> is much
like a container, in that it ”owns” its elements. It is not actually a model of container, though, because it does
not support the standard methods (such as iterators) for accessing the elements of a container.

#include <CGAL/Sixtuple.h>

Requirements

T must be Assignable.

Types

typedef T value type;

Variables

T e0; first element
T e1; second element
T e2; third element
T e3; fourth element
T e4; fifth element
T e5; sixth element

Creation

Sixtuple<T> t; introduces a Sixtuple<T> using the default constructor of the
elements.

Sixtuple<T> t( T x, T y, T z, T t, T u, T v); constructs a Sixtuple<T> such that e0 is constructed from x,
e1 from y, e2 from z, e3 from t, e4 from u and e5 from v.

deprecated
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CGAL::Triple<T1, T2, T3>

Definition

The Triple class is an extension of std::pair. Triple<T1, T2, T3> is a heterogeneous triple: it holds one object
of type T1, one of type T2, and one of type T3. A Triple<T1, T2, T3> is much like a container, in that it ”owns”
its elements. It is not actually a model of container, though, because it does not support the standard methods
(such as iterators) for accessing the elements of a container.

This class is NOT RECOMMENDED anymore. We recommend that you use CGAL::cpp0x::tuple or
CGAL::cpp0x::array instead for new uses.

#include <CGAL/utility.h>

Requirements

T1, T2 and T3 must be Assignable. Additional operations have additional requirements.

Types

typedef T1 first type;
typedef T2 second type;
typedef T3 third type;

Variables

T1 first; first element. Please access it using get<0>().
T2 second; second element. Please access it using get<1>().
T3 third; third element. Please access it using get<2>().

Creation

Triple<T1, T2, T3> t; introduces a triple using the default constructor of the three
elements.

Triple<T1, T2, T3> t( T1 x, T2 y, T3 z); constructs a triple such that first is constructed from x, second
is constructed from y, and third is constructed from z.

template <class U, class V, class W>
Triple<T1, T2, T3> t( U u, V v, W w); constructs a triple such that first is constructed from u, sec-

ond is constructed from v, and third is constructed from w.
Requirement: Proper conversion operators exist from U to
T1, V to T2, and W to T3.

template <int i>
T t.get() Gives access to first, second or third whenever i is 0, 1 or 2, via

a, potentially const, reference. Note: T stands for T1, T2 or T3
depending on i.
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template <class T1, class T2, class T3>
bool x < y The comparison operator. It uses lexicographic comparison: the

return value is true if the first element of x is less than the first
element of y, and false if the first element of y is less than the first
element of x. If neither of these is the case, then it returns true if
the second element of x is less than the second element of y, and
false if the second element of y is less than the second element
of x. If neither of these is the case, then it returns the result of
comparing the third elements of x and y. This operator may only
be used if T1, T2 and T3 define the comparison operator.

template <class T1, class T2, class T3>
bool x == y The equality operator. The return value is true if and only the first

elements of x and y are equal, the second elements of x and y are
equal, and the third elements of x and y are equal. This operator
may only be used if T1, T2 and T3 define the equality operator.

template <class T1, class T2, class T3>
Triple<T1, T2, T3>

make triple( T1 x, T2 y, T3 z)

Equivalent to Triple<T1, T2, T3>(x, y, z).

template <class T1, class T2, class T3>
Triple<T1, T2, T3>

make tuple( T1 x, T2 y, T3 z)

Equivalent to Triple<T1, T2, T3>(x, y, z).
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CGAL::Quadruple<T1, T2, T3, T4>

Definition

The Quadruple class is an extension of std::pair. Quadruple<T1, T2, T3, T4> is a heterogeneous quadruple: it
holds one object of type T1, one of type T2, one of type T3, and one of type T4. A Quadruple<T1, T2, T3, T4>
is much like a container, in that it “owns” its elements. It is not actually a model of container, though, because
it does not support the standard methods (such as iterators) for accessing the elements of a container.

This class is NOT RECOMMENDED anymore. We recommend that you use CGAL::cpp0x::tuple or
CGAL::cpp0x::array instead for new uses.

#include <CGAL/utility.h>

Requirements

T1, T2, T3 and T4 must be Assignable. Additional operations have additional requirements.

Types

typedef T1 first type;
typedef T2 second type;
typedef T3 third type;
typedef T4 fourth type;

Variables

T1 first; first element. Please access it using get<0>().
T2 second; second element. Please access it using get<1>().
T3 third; third element. Please access it using get<2>().
T4 fourth; fourth element. Please access it using get<3>().

Creation

Quadruple<T1, T2, T3, T4> t; introduces a quadruple using the default constructor of the
four elements.

Quadruple<T1, T2, T3, T4> t( T1 x, T2 y, T3 z, T4 w);

constructs a quadruple such that first is constructed from x,
second is constructed from y, third is constructed from z, and
fourth is constructed from w.
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template <class U, class V, class W, class X>
Quadruple<T1, T2, T3, T4> t( U u, V v, W w, X x);

constructs a quadruple such that first is constructed from u,
second is constructed from v, third is constructed from w,
and fourth is constructed from x.
Requirement: Proper conversion operators exist from U to
T1, V to T2, W to T3, and X to T4.

template <int i>
T t.get() Gives access to first, second, third or fourth whenever i is 0, 1, 2

or 3, via a, potentially const, reference. Note: T stands for T1, T2,
T3 or T4 depending on i.

template <class T1, class T2, class T3, class T4>
bool x < y The comparison operator. It uses lexicographic comparison: the

return value is true if the first element of x is less than the first
element of y, and false if the first element of y is less than the first
element of x. If neither of these is the case, then it returns true if
the second element of x is less than the second element of y, and
false if the second element of y is less than the second element of
x. If neither of these is the case, then it returns true if the third
element of x is less than the third element of y, and false if the
third element of y is less than the third element of x. If neither of
these is the case, then it returns the result of comparing the fourth
elements of x and y. This operator may only be used if T1, T2, T3,
and T4 define the comparison operator.

template <class T1, class T2, class T3, class T4>
bool x == y The equality operator. The return value is true if and only the

first elements of x and y are equal, the second elements of x and y
are equal, the third elements of x and y are equal, and the fourth
elements of x and y are equal. This operator may only be used if
T1, T2, T3, and T4 define the equality operator.

template <class T1, class T2, class T3, class T4>
Quadruple<T1, T2, T3, T4>

make quadruple( T1 x, T2 y, T3 z, T4 w)

Equivalent to Quadruple<T1, T2, T3, T4>(x, y, z, w).

template <class T1, class T2, class T3, class T4>
Quadruple<T1, T2, T3, T4>

make tuple( T1 x, T2 y, T3 z, T4 w)

Equivalent to Quadruple<T1, T2, T3, T4>(x, y, z, w).
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CGAL::Boolean tag<bool value>

Definition

Depending on bool value the class Boolean tag<bool value> indicates that something is true or false respec-
tively.

#include <CGAL/tags.h>

Constants

static const bool value;

See Also

CGAL::Tag true . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4232
CGAL::Tag false . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4233
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CGAL::Tag true

Definition

The typedef Tag true is Boolean tag<true>. It is used to indicate, for example, that a certain feature is available
in a class.

#include <CGAL/tags.h>

static const bool value; is true

See Also

CGAL::Boolean tag<bool value> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4231
CGAL::Tag false . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4233
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CGAL::Tag false

Definition

The typedef Tag false is Boolean tag<false>. It is used to indicate, for example, that a certain feature is not
available in a class.

#include <CGAL/tags.h>

static const bool value; is false

See Also

CGAL::Boolean tag<bool value> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4231
CGAL::Tag true . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4232
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CGAL::Null functor

Definition

Class indicating the absence of a functor.

Is Model for the Concepts

DefaultConstructible

See Also

AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
RealEmbeddableTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 124
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CGAL::Null tag

Definition

General tag indicating that non of any other possible tags is valid.

Is Model for the Concepts

DefaultConstructible

See Also

AlgebraicStructureTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 78
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CGAL::Uncertain<T>

Definition

An object of the class Uncertain<T> represents an uncertainty on the value of type T . This uncertainty is
represented by a non-empty range of values of type T .

The idea is that sometimes you are not sure of the result of a function, and you would like to communicate that
to the caller. Uncertain<T> allows just that.

Uncertain<T> is also meant to be used as a drop-in replacement for T in some template contexts, as much as
possible. This is why it provides overloaded operators and functions to naturally extend the Boolean operations
for Uncertain<bool> for example, or the operations on enumeration types.

Uncertain<T> is used in CGAL as the return type of geometric predicates when the number type used is interval
arithmetic like Interval nt. End users typically do not see it, as it is hidden in the implementation of the filtered
predicates provided by the various filtered kernels, but it is important that providers of predicates that are meant
to be filtered by Filtered predicate, know about it.

Note concerning CGAL assertions: assertions checking an expression of type Uncertain<bool> will trigger an
assertion failure only if the assertion is certainly false. In case of an indeterminate value, the assertion is not
triggered. This means that we assume, in case of doubt, that there is no error.

It can also be used in other contexts as well, as it is a general tool. This can be seen as support for non-
deterministic programming. Finally, note that this class has some common points with boost::tribool.

#include <CGAL/Uncertain.h>

Parameters

The parameter T can either be bool or one of the three-valued (-1, 0, 1) enumeration types: Sign, Comparison
result, Orientation, Oriented side, Bounded side or Angle.

Some functions are defined only when T is bool or alternatively when it is one of the enumeration types listed
previously.

Types

Uncertain<T>:: value type The type T .

Uncertain<T>:: Uncertain conversion exception

The type of the exception thrown for uncertain conversions.
It is a typedef to the type CGAL::Uncertain conversion
exception which derives from std::range error.

Creation

Uncertain<T> u; introduces a certain object with value T().
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Uncertain<T> u( T t); introduces a certain object with value t.

Uncertain& u = T t assigns the certain value t to u.

Uncertain<T> u( T i, T s); introduces an object representing the range with lower
bound i and upper bound s.
Precondition: i <= s.

Access Functions

The following functions are meant to be used very rarely, they provide ways to inspect the content of an Uncer-
tain<T> object.

T u.inf() const returns the lower bound of the range represented by u.
T u.sup() const returns the upper bound of the range represented by u.
bool u.is same( Uncertain u) const

returns true whether u and u are the same range (equality
as sets).

Uncertainty testing and conversion

There are several ways to extract the content of an Uncertain object. The simplest way is to rely on the implicit
conversion from Uncertain<T> to T . In this case, no special code has to be written, apart from an exception
handler (anywhere higher in the call stack) to manage the uncertain case. The more involved one is more
efficient, but requires manual treatment of the uncertain case, such as:� �

Uncertain<bool> b = ...;
if (is_certain(b))

bool cert_b = get_certain(b); // Extract the certain bool it contains
...

else
... // b is indeterminate� �

Another option is :� �
Uncertain<bool> b = ...;
if (certainly(b))

... // b is certainly true
else if (certainly_not(b))

... // b is certainly false
else

... // b is indeterminate� �
There are many other handy functions which can be used for easier usage depending on the context. They are
listed in the sequel.

bool u.is certain() const returns true iff the value is certain, that is, it is unique, the
range is a singleton. That is, u.inf() == u.sup().
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T u.make certain() const if u.is certain(), then returns the certain value which is
represented. Otherwise, throws an exception of type
Uncertain conversion exception. A profile counter of the
number of such exceptions thrown during the execution of
the program is available with CGAL PROFILE.

T T(u) conversion operator to T . It does and returns the same thing
as u.make certain(). Note that relying on the automatic
conversion can throw exceptions, which defeats the pur-
pose of propagating uncertainty. Nevertheless, in many
cases, it is hard to avoid it, for example for the && and ||
operators for bool (see below).

Static member function

static Uncertain<T> Uncertain<T>::indeterminate()

returns an indeterminate range.

Free functions

template <class T>
T inf( Uncertain<T> u) returns u.inf().

template <class T>
T sup( Uncertain<T> u) returns u.sup().

template <class T>
bool is certain( T t) returns true.

template <class T>
bool is certain( Uncertain<T> u)

returns u.is certain().

template <class U>
U indeterminate() returns U::indeterminate() if U is Uncertain<T>, and U()

otherwise.

template <class T>
bool is indeterminate( T u) returns false.

template <class T>
bool is indeterminate( Uncertain<T> u)

returns !is certain(u).

template <class T>
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T get certain( T t) returns t.

template <class T>
T get certain( Uncertain<T> u)

returns u.make certain().
Precondition: u.is certain().

template <class T>
T make certain( T t) returns t.

template <class T>
T make certain( Uncertain<T> u)

returns u.make certain().

template <class T>
Uncertain<T> make uncertain( T t) returns Uncertain<T>(u).

template <class T>
Uncertain<T> make uncertain( Uncertain<T> u)

returns u.

Overloaded operators

The overloaded operators and functions are defined as preserving the set-inclusion property. Similarly to interval
arithmetic, the returned range is guaranteed to contain the result of the operation over all values of the input
range(s). In the following documentation we express this as the extension of the corresponding function over
the type T .

template <class T>
Uncertain<bool> Uncertain<T> u == Uncertain<T> v

returns the extension of the equality operator over u and v.

template <class T>
Uncertain<bool> Uncertain<T> u == T v returns u == make uncertain(v).

template <class T>
Uncertain<bool> T u == Uncertain<T> v returns v == u.

template <class T>
Uncertain<bool> Uncertain<T> u != Uncertain<T> v

returns the extension of the inequality operator over u and
v.

template <class T>
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Uncertain<bool> Uncertain<T> u != T v returns u != make uncertain(v).

template <class T>
Uncertain<bool> T u != Uncertain<T> v returns v != u.

Overloaded operators for Uncertain<bool> only

Uncertain<bool> !Uncertain<bool> u returns the range containing the negated values of u.

Uncertain<bool> Uncertain<bool> u | Uncertain<bool> v

returns the range containing the values computed as logical
or from u and v.

Uncertain<bool> Uncertain<bool> u | bool v

returns u — make uncertain(v).

Uncertain<bool> bool u | Uncertain<bool> v

returns v — u.

Uncertain<bool> Uncertain<bool> u & Uncertain<bool> v

returns the range containing the values computed as logical
and from u and v.

Uncertain<bool> Uncertain<bool> u & bool v

returns u & make uncertain(v).

Uncertain<bool> bool u & Uncertain<bool> v

returns v & u.

Note : the logical operators && and || are not overloaded on purpose. The reason is that, when f() && g() is
evaluated and they return bool, then g() is only evaluated when f() returns true. One could have a dependency
so that g() has an internal precondition that required that f() had returned true. The overloaded operators for
user-defined types can not provide this short-circuiting property, and so, if the overloaded operators where
provided, then g() would be evaluated, no matter the result of f(), which could lead to an unwanted situation,
or a performance loss. The & and | operators do not have this short-circuiting property, and are therefore
overloaded safely.

When translating normal code to use and propagate uncertainty, such as :

4240



� �
// Logical AND
if ( (p.x() == 0) && (p.y() == 0) )

...
else

...

// Logical OR
if ( (q.x() == 0) || (q.y() == 0) )

...
else

...� �
One can do, for example :� �

// Logical AND
Uncertain<bool> tmp = (p.x() == 0);
Uncertain<bool> res = certainly_not(tmp) ? make_uncertain(false) : tmp
& (p.y() == 0);

... // Use res

// Logical OR
Uncertain<bool> tmp = (q.x() == 0);
Uncertain<bool> res = certainly(tmp) ? make_uncertain(true) : tmp |
(q.y() == 0);

... // Use res� �
This ensures that the first expression is not evaluated twice, and that the second is evaluated only if needed.

This behavior can also be emulated through the use of macros, but only using non-standard features (”statement
expressions”, such as provided by GCC). The macros CGAL AND and CGAL OR are provided that perform
the lazy evaluation of these logical operations. On compilers that do not support statement expressions, the
macros simply expand to the && and || operators (which will throw an exception instead of propagating the
uncertainty).� �

// Logical AND
Uncertain<bool> res = CGAL_AND( p.x() == 0 , p.y() == 0 );

... // Use res

// Logical OR
Uncertain<bool> res = CGAL_OR( q.x() == 0 , q.y() == 0 );

... // Use res� �
For convenience, the macros CGAL AND 3 and CGAL OR 3 are also provided to support boolean operations
with 3 arguments instead of 2.

Overloaded operators and functions for Uncertain<enum T> only

template <class T>
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Uncertain<bool> Uncertain<T> u < Uncertain<T> v

returns the extension of the less-than operator over u and v.

template <class T>
Uncertain<bool> Uncertain<T> u < T v returns u < make uncertain(v).

template <class T>
Uncertain<bool> T u < Uncertain<T> v returns make uncertain(u) < v.

template <class T>
Uncertain<bool> Uncertain<T> u > Uncertain<T> v

returns the extension of the greater-than operator over u and
v.

template <class T>
Uncertain<bool> Uncertain<T> u > T v returns u > make uncertain(v).

template <class T>
Uncertain<bool> T u > Uncertain<T> v returns make uncertain(u) > v.

template <class T>
Uncertain<bool> Uncertain<T> u <= Uncertain<T> v

returns the extension of the less-than or equal operator over
u and v.

template <class T>
Uncertain<bool> Uncertain<T> u <= T v returns u <= make uncertain(v).

template <class T>
Uncertain<bool> T u <= Uncertain<T> v returns make uncertain(u) <= v.

template <class T>
Uncertain<bool> Uncertain<T> u >= Uncertain<T> v

returns the extension of the greater-than or equal operator
over u and v.

template <class T>
Uncertain<bool> Uncertain<T> u >= T v returns u > make uncertain(v).

template <class T>
Uncertain<bool> T u >= Uncertain<T> v returns make uncertain(u) >= v.

template <class T>
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Uncertain<T> Uncertain<T> u∗Uncertain<T> v

returns the extension of the multiplication operator over u
and v. This requires T to have a multiplication operator as
well.

template <class T>
Uncertain<T> Uncertain<T> u∗T v returns u * make uncertain(v).

template <class T>
Uncertain<T> T u < Uncertain<T> v returns make uncertain(u) * v.

template <class T>
Uncertain<T> −Uncertain<T> u returns the extension of the unary minus operator over u.

template <class T, class U>
Uncertain<T> enum cast( Uncertain<U> u)

returns the extension of the enum cast<T> function over u.

Other free functions for Uncertain<bool>

bool certainly( Uncertain<bool> u)

returns true iff u.is certain(), and the u.make certain() re-
turns true.

bool certainly( bool u) returns u.

bool possibly( Uncertain<bool> u)

returns true iff u.is certain() returns false, or if u.make
certain() returns true.

bool possibly( bool u) returns u.

bool certainly not( Uncertain<bool> u)

returns true iff u.is certain(), and the u.make certain() re-
turns false.

bool certainly not( bool u) returns !u.

bool possibly not( Uncertain<bool> u)

returns true iff u.is certain() returns false, or if u.make
certain() returns false.

bool possibly not( bool u) returns !u.
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See Also

CGAL::Interval nt<bool>
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CGAL::cpp11::array<T, int>

Definition

An object of the class cpp11::array<T, int> represents an array of elements of type T , the number of which is
specified by the second template argument.

There is actually no class in namespace CGAL::cpp11 with this name, but a using declaration which imports
a class from another namespace. By order of priority: the one in namespace std is used (provided by C++0x),
if not found, then the one in namespace std::tr1 is used (provided by TR1), and finally, the fallback solution is
taken from Boost.

#include <CGAL/array.h>

Parameters

The parameter T is the value type. The second parameter is the dimension of the array.

Construction functions

The array class does not provide a constructor which can be used to initialize data members. CGAL therefore
provides a make array function for this purpose, up to a certain number of arguments.

template <class T>
array<T, 1> make array( T a) returns an array of dimension 1 whose first element is a.

template <class T>
array<T, 2> make array( T a1, T a2)

returns an array of dimension 2 whose first element is a1 and
second element is a2.
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CGAL::cpp11::tuple<...>

Definition

An object of the class cpp11::tuple<...> represents a heterogeneous tuple of elements of the types specified in
parameters, which are in variadic number.

There is actually no class in namespace CGAL::cpp11 with this name, but a using declaration which imports
a class from another namespace. By order of priority: the one in namespace std is used (provided by C++0x),
if not found, then the one in namespace std::tr1 is used (provided by TR1), and finally, the fallback solution is
taken from Boost.

#include <CGAL/tuple.h>

Parameters

The parameters ... are the value types.

Free functions and helper classes

Some free functions part of the standard interface of tuple are also brought in namespace CGAL::cpp11 with
using declarations, these are make tuple, get, tie. Like in C++0x, the get function template is specialized so that
it can take std::pair as argument. Two standard helper classes are also provided for convenience (tuple size and
tuple element).
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CGAL::Fast

Definition

Fast is a tag class. It can be used to parameterize a complexity policy in order to specify a particularly fast
variant of an algorithm. For example, passing Location policy<Fast> as parameter to Delaunay triangulation
3 selects a fast point location at the expense of more memory usage.

#include <CGAL/Complexity tags.h>

Is Model for the Concepts

DefaultConstructible, CopyConstructible

See Also

Location policy
Compact
Compact location
Fast location
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CGAL::Compact

Definition

Compact is a tag class. It can be used to parameterize a complexity policy in order to specify a particularly
memory compact variant of an algorithm. For example, passing Location policy<Compact> as parameter to
Delaunay triangulation 3 selects a slower point location which saves memory.

#include <CGAL/Complexity tags.h>

Is Model for the Concepts

DefaultConstructible, CopyConstructible

See Also

Location policy
Fast
Fast location
Compact location
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CGAL::Location policy<Tag>

Definition

Location policy<Tag> is a policy class which can be used to specify a trade-off between memory usage and
time complexity for the point location strategy used in a data-structure. For example, passing Location policy<
Compact> as parameter to Delaunay triangulation 3 selects a slower point location which saves memory.

#include <CGAL/Location policy.h>

Parameters

Tag can only be either Fast or Compact currently.

Is Model for the Concepts

DefaultConstructible, CopyConstructible

See Also

Compact
Fast
Fast location
Compact location
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CGAL::Fast location

Definition

A typedef to Location policy<Fast>.

#include <CGAL/Location policy.h>

See Also

Compact
Fast
Location policy
Compact location
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CGAL::Compact location

Definition

A typedef to Location policy<Compact>.

#include <CGAL/Location policy.h>

See Also

Compact
Fast
Location policy
Fast location
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CGAL::Default

Definition

Default is a tag class. It can be used to state that one wants to use the default argument of a template parameter
of a class template.

This can be useful in several cases: (a) when one needs a non-default value for another template parameter
coming next (since C++ only supports defaults at the end of lists), (b) when the default is actually a complex
expression, e.g. refering to previous template parameters (in this case, it shortens compiler error messages and
mangled symbol names), (c) when defining the default involves circular dependencies of type instantiations
(there, it breaks the cycle in a nice way).

Using the mechanism is easy : just plug Default as template argument in the place where you would like to use
the default. You should refer to the documentation of the template class you are using in order to know whether
this functionality is offered.

Also beware that the type of the instantiated template class will not be the same when instantiating it using
Default instead of the type of the default argument, even though their interfaces will otherwise be the same.
This may have consequences in some cases.

Is Model for the Concepts

DefaultConstructible, CopyConstructible

advanced

In order to help the template class writer, Default provides a convenient way to extract the desired type for
a template parameter which may be defaulted using Default. It is enough to fetch the type as Default::Get<
Parameter, Type>::type, as in the example program below.

Types

Default:: template <typename Parameter, typename Type> struct Get;

A nested template providing a typedef type which equals
Type if Parameter is Default, and Parameter otherwise.

advanced

Example� �
#include <CGAL/Default.h>

// A is a concrete type
struct A {};

// B is the template class which has 2 template parameters
// with default arguments : A and int.
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template < typename A1_ = A, typename A2 = int >
struct B
{

B()
: a1()

{}

// Note that it is also possible to use CGAL::Default
// instead of A as the default argument for A1_ above.

// Extract the desired type for A1 :
typedef typename CGAL::Default::Get<A1_, A>::type A1;

A1 a1;
};

int main ()
{

B<CGAL::Default, double> b;

A a = b.a1; // It is really of type A.
}� �
File: examples/STL_Extension/Default.cpp
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Chapter 74

CGAL and the Boost Graph Library
Andreas Fabri and Fernando Cacciola and Ron Wein
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Many geometric data structures can be interpreted as graphs, as they consist of vertices, edges and faces. This
is the case for the halfedge data structure, for the polyhedron, for arrangements and for triangulations. With
means of duality one can also interpret faces as vertices and edges between adjacent faces as edges of the dual
graph.

As the scope of CGAL is geometry and not graph algorithms, we provide the necessary classes and functions
that allow to use the algorithms of the Boost Graph Library (BGL) [SLL02] for CGAL data structures.

74.1 A Short Introduction to the Boost Graph Library

The algorithms of the BGL operate on models of the various graph concepts. The traits class boost::graph
traits allows the algorithms to determine the types of vertices and edges. Free functions that operator on graphs
allow the algorithms to obtain, for example, the source vertex of an edge, or all edges incident to a vertex. The
algorithms use property maps to associate information to vertices and edges. The algorithms allow visitors to
register callbacks that will be called during the execution of the algorithms. Finally, the graph algorithms use
the named parameter mechanism, which allows to pass the arguments in arbitrary order.

4255

http://www.boost.org/libs/graph/doc/index.html


Graph Concepts

The BGL introduces several graph concepts, which have different sets of characteristics and requirements, as
for example whether one can enumerate all vertices or all edges, whether one only can get the outgoing edges
of a vertex, or also the ingoing edges, or whether one can add and remove vertices and edges or not.

Graph concepts in the BGL manual: http://www.boost.org/libs/graph/doc/graph_concepts.html

The Graph Traits Class

The algorithms determine types with the help of the traits class boost::graph traits. Such types are the vertex
descriptor which is equivalent to a vertex handle in CGAL data structures, the vertex iterator which is similar
to the vertex iterators in CGAL data structures, and the out edge iterator which is similar to edge circulators,
which allow to enumerate the edges incident to a vertex. The latter two are similar and not equivalent, because
their value type is a vertex descriptor, whereas in CGAL handles, iterators, and cicrulators all have the same
value type, namely the vertex type. Given a graph type G the declaration of a vertex descriptor looks as follows:
boost::graph traits<G>::vertex descriptor vd;.

The graph traits in the BGL manual: http://www.boost.org/libs/graph/doc/graph_traits.html

Free Functions for Exploring a Graph

The algorithms obtain incidence information with the help of global functions like pair<vertex iterator,vertex
iterator> vertices(const Graph& g); for getting an iterator range which allows to enumerate all vertices, or int
num vertices(const Graph&); for getting the number of vertices of a graph, or vertex descriptor source(edge
descriptor, const Graph&, for getting the source vertex of an edge. Note, that the way we have written the types
is a simplification, that is in reality the signature of the first of the above functions is pair<boost::graph traits<
Graph>::vertex iterator,boost::graph traits<Graph>::vertex iterator> vertices(const Graph& g);.

The free functions required for graph concepts: http://www.boost.org/libs/graph/doc/graph_
concepts.html

Property Maps

Another feature used heavily in the BGL is the property map which is offered by the Boost Property Map
Library. Property maps are used to attach information to vertices and edges. It is again a traits class and some
free functions for obtaining the property map from a graph, and for getting and putting properties.

The free functions are get and put. The first one is overloaded. One version allows to obtain a property map
for a given property tag. For example m = get(g, boost::vertex index) gives us a property map that associates
an index in the range [0, num vertices(g)) to each vertex descriptor of the graph. The second version of the get
function allows to read it as follows for a vertex descriptor vd: int vdi = get(m, vd). Just as get allows to read
data, put allows to write them. For example, the Dijksta’s shortest path algorithm writes the predecessor of each
vertex, as well as the distance to the source in such a property map.

The data themselves may be stored in the vertex or edge, or they may be stored in an external data structure, or
they may be computed on the fly. This is an “implementation detail” of the particular property map.

Property maps in the Boost manuals: http://www.boost.org/libs/property_map/doc/property_map.
html
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Visitors

Visitors are ojects that provide functions that get called at specified event points by the algorithm they visit.
The notion of visitors is a design pattern, and also used in CGAL, e.g., the Arr observer<Arrangement> in the
arrangement package.

The functions as well as the event points are library specific. Event points in graph algorithms are, for example,
when a vertex is traversed the first time, or when all outgoing edges of a vertex are traversed.

Visitors in the BGL manual: http://www.boost.org/libs/graph/doc/visitor_concepts.html

Named Parameters

The algorithms of the BGL often have many parameters. Although the default value is most often appropriate,
one has to write them explicitly, if one only wants to deviate from the default for the last one. The solution to
this problem is to first write a tag and then the parameter, which for Dijkstra’s shortest path algorithm, might
look as follows:

std::vector<vertex descriptor> p(num vertices(g));

std::vector<int> d(num vertices(g));

vertex descriptor s = vertex(A, g);

dijkstra shortest paths(g, s, predecessor map(&p[0]).distance map(&d[0]));

The named parameters in the example use the tags predecessor map and distance map and they are concate-
nated with the dot operator.

Named parameters in the BGL manual: http://www.boost.org/libs/graph/doc/bgl_named_params.
html

74.2 Extensions of the BGL

CGAL provides the partial specializations and free functions such that several data structures become model of
some of the BGL graph concepts. Furthermore, we define the new graph concept HalfedgeGraph, a traits class
halfedge graph traits, and free functions for accessing opposite edges as well as the clockwise and counter-
clockwise neighbor of an edge around a given vertex.

These extensions are used by the surface simplification algorithms which follow the design of the BGL as
sketched in the previous section.

74.3 Header Files, Namespaces, and Naming Conventions

As we interface two libraries we have to explain what resides in which namespace, and what naming conventions
we apply to what.

Partial specializations of the boost::graph traits<Graph> for the CGAL package Package are in the namespace
boost and in the headerfile <CGAL/boost/graph/graph traits Package.h>.
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The halfedge graph traits class is in the namespace CGAL, but it is not capitalized as the boost::graph traits
is not. The same holds for the types and enums for vertex and edge properties.

74.4 Polyhedral Surfaces as Model of the Boost Graph Concept

The class Polyhedron 3 is model of the graph concept. Furthermore this chapter introduces a new graph concept,
the HalfedgeGraph.

74.4.1 Example: Minimum Spanning Tree of a Polyhedral Surface

The example code computes the minimum spanning tree on a polyhedral surface. More examples can be found
in Chapter 53 on surface mesh simplification.� �
#include <CGAL/Cartesian.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>
#include <CGAL/boost/graph/graph_traits_Polyhedron_3.h>
#include <CGAL/boost/graph/properties_Polyhedron_3.h>

#include <iostream>
#include <list>

#include <boost/graph/kruskal_min_spanning_tree.hpp>

typedef CGAL::Cartesian<double> Kernel;
typedef Kernel::Vector_3 Vector;
typedef Kernel::Point_3 Point;
typedef CGAL::Polyhedron_3<Kernel> Polyhedron;

typedef boost::graph_traits<Polyhedron>::vertex_descriptor
vertex_descriptor;

typedef boost::graph_traits<Polyhedron>::vertex_iterator
vertex_iterator;

typedef boost::graph_traits<Polyhedron>::edge_descriptor
edge_descriptor;

// The BGL makes heavy use of indices associated to the vertices
// We use a std::map to store the index

typedef std::map<vertex_descriptor,int> VertexIndexMap;
VertexIndexMap vertex_id_map;

// A std::map is not a property map, because it is not lightweight
typedef boost::associative_property_map<VertexIndexMap>

VertexIdPropertyMap;
VertexIdPropertyMap vertex_index_pmap(vertex_id_map);

void
kruskal(const Polyhedron& P)
{
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// associate indices to the vertices
{

vertex_iterator vb, ve;
int index = 0;

// boost::tie assigns the first and second element of the std::pair
// returned by boost::vertices to the variables vit and ve
for(boost::tie(vb,ve)=boost::vertices(P); vb!=ve; ++vb ){

vertex_descriptor vd = *vb;
vertex_id_map[vd]= index++;

}
}

// We use the default edge weight which is the squared length of the
edge

// This property map is defined in graph_traits_Polyhedron_3.h

// In the function call you can see a named parameter: vertex_index_map
std::list<edge_descriptor> mst;

boost::kruskal_minimum_spanning_tree(P,
std::back_inserter(mst),

boost::vertex_index_map(vertex_index_pmap) );

std::cout << "#VRML V2.0 utf8\n"
"Shape {\n"
"appearance Appearance {\n"
"material Material { emissiveColor 1 0 0}}\n"
"geometry\n"
"IndexedLineSet {\n"
"coord Coordinate {\n"
"point [ \n";

vertex_iterator vb, ve;
for(boost::tie(vb,ve) = boost::vertices(P); vb!=ve; ++vb){

std::cout << (*vb)->point() << "\n";
}

std::cout << "]\n"
"}\n"
"coordIndex [\n";

for(std::list<edge_descriptor>::iterator it = mst.begin(); it !=
mst.end(); ++it)
{

edge_descriptor e = *it ;
vertex_descriptor s = boost::source(e,P);
vertex_descriptor t = boost::target(e,P);
std::cout << vertex_id_map[s] << ", " << vertex_id_map[t] << ",

-1\n";
}

std::cout << "]\n"
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"}#IndexedLineSet\n"
"}# Shape\n";

}

int main() {

Polyhedron P;
Point a(1,0,0);
Point b(0,1,0);
Point c(0,0,1);
Point d(0,0,0);

P.make_tetrahedron(a,b,c,d);

kruskal(P);

return 0;
}� �
File: examples/BGL_polyhedron_3/kruskal.cpp

74.4.2 Example: Using Vertices, and Edges with an ID

The following example program shows a call to the BGL Kruskal’s minimum spanning tree algorithm accessing
the id() field stored in a Polyhedron vertex.
The main function illustrates the access to the id() field.� �
#include <CGAL/Cartesian.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/Polyhedron_items_with_id_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>
#include <CGAL/boost/graph/graph_traits_Polyhedron_3.h>
#include <CGAL/boost/graph/properties_Polyhedron_3.h>

#include <iostream>
#include <list>

#include <boost/graph/kruskal_min_spanning_tree.hpp>

typedef CGAL::Cartesian<double>
Kernel;

typedef Kernel::Point_3
Point;

typedef CGAL::Polyhedron_3<Kernel,CGAL::Polyhedron_items_with_id_3>
Polyhedron;

typedef boost::graph_traits<Polyhedron>::vertex_descriptor
vertex_descriptor;

typedef boost::graph_traits<Polyhedron>::vertex_iterator
vertex_iterator;
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typedef boost::graph_traits<Polyhedron>::edge_descriptor
edge_descriptor;

void
kruskal( const Polyhedron& P)
{

// We use the default edge weight which is the squared length of the
edge

// This property map is defined in graph_traits_Polyhedron_3.h

// This function call requires a vertex_index_map named parameter which
// when ommitted defaults to "get(vertex_index,graph)".
// That default works here because the vertex type supports the "id()"
// field which is used by the vertex_index internal property.
std::list<edge_descriptor> mst;
boost::kruskal_minimum_spanning_tree(P,std::back_inserter(mst));

std::cout << "#VRML V2.0 utf8\n"
"Shape {\n"
"appearance Appearance {\n"
"material Material { emissiveColor 1 0 0}}\n"
"geometry\n"
"IndexedLineSet {\n"
"coord Coordinate {\n"
"point [ \n";

vertex_iterator vb, ve;
for(boost::tie(vb,ve) = boost::vertices(P); vb!=ve; ++vb){

std::cout << (*vb)->point() << "\n";
}

std::cout << "]\n"
"}\n"
"coordIndex [\n";

for(std::list<edge_descriptor>::iterator it = mst.begin(); it !=
mst.end(); ++it){
std::cout << boost::source(*it,P)->id()

<< ", " << boost::target(*it,P)->id() << ", -1\n";
}

std::cout << "]\n"
"}#IndexedLineSet\n"
"}# Shape\n";

}

int main() {

Polyhedron P;
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Point a(1,0,0);
Point b(0,1,0);
Point c(0,0,1);
Point d(0,0,0);

P.make_tetrahedron(a,b,c,d);

// associate indices to the vertices using the "id()" field of the
vertex.

vertex_iterator vb, ve;
int index = 0;

// boost::tie assigns the first and second element of the std::pair
// returned by boost::vertices to the variables vit and ve
for(boost::tie(vb,ve)=boost::vertices(P); vb!=ve; ++vb ){

vertex_descriptor vd = *vb;
vd->id() = index++;

}

kruskal(P);
return 0;

}� �
File: examples/BGL_polyhedron_3/kruskal_with_stored_id.cpp

74.5 Triangulations as Models of the Boost Graph Concept

Triangulations have vertices and faces. Edges are pairs of a face and the index of the edge. Particular care has
to be taken with the infinite vertex, and its incident edges. One can either use a boost::filtered graph, which
makes the infinite edges invisible, or one can have a property map that returns an infinite length for these edges.

A classical example for an algorithm that is a combination of computational geometry and graph theory is the
Euclidean Minimum Spanning Tree for a point set in the plane. It can be computed by running the minimum
spanning tree algorithm on a Delaunay triangulation of the point set.

74.5.1 Example: Euclidean Minimum Spanning Tree

In the following example we create a Delaunay triangulation and run Kruskal’s minimum spanning tree algo-
rithm on it. Because the vertex handles of the triangulation are not indices in an array, we have to provide a
property map that maps vertex handles to int’s in the range [0, t.number of vertices()).� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/boost/graph/graph_traits_Delaunay_triangulation_2.h>

#include <boost/graph/kruskal_min_spanning_tree.hpp>
#include <boost/graph/filtered_graph.hpp>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
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typedef K::Point_2 Point;

typedef CGAL::Delaunay_triangulation_2<K> Triangulation;

// As we only consider finite vertices and edges
// we need the following filter

template <typename T>
struct Is_finite {

const T* t_;

Is_finite()
: t_(NULL)

{}

Is_finite(const T& t)
: t_(&t)

{ }

template <typename VertexOrEdge>
bool operator()(const VertexOrEdge& voe) const {

return ! t_->is_infinite(voe);
}

};

typedef Is_finite<Triangulation> Filter;
typedef boost::filtered_graph<Triangulation,Filter,Filter>

Finite_triangulation;
typedef boost::graph_traits<Finite_triangulation>::vertex_descriptor

vertex_descriptor;
typedef boost::graph_traits<Finite_triangulation>::vertex_iterator

vertex_iterator;
typedef boost::graph_traits<Finite_triangulation>::edge_descriptor

edge_descriptor;

// The BGL makes use of indices associated to the vertices
// We use a std::map to store the index
typedef std::map<vertex_descriptor,int> VertexIndexMap;
VertexIndexMap vertex_id_map;

// A std::map is not a property map, because it is not lightweight
typedef boost::associative_property_map<VertexIndexMap>

VertexIdPropertyMap;
VertexIdPropertyMap vertex_index_pmap(vertex_id_map);

int
main(int,char*[])
{

Triangulation t;
Filter is_finite(t);
Finite_triangulation ft(t, is_finite, is_finite);

Point p ;
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while(std::cin >> p){
t.insert(p);

}

vertex_iterator vit, ve;
// Associate indices to the vertices
int index = 0;
// boost::tie assigns the first and second element of the std::pair
// returned by boost::vertices to the variables vit and ve
for(boost::tie(vit,ve)=boost::vertices(ft); vit!=ve; ++vit ){

vertex_descriptor vd = *vit;
vertex_id_map[vd]= index++;
}

// We use the default edge weight which is the squared length of the
edge

// This property map is defined in graph_traits_Triangulation_2.h

// In the function call you can see a named parameter: vertex_index_map
std::list<edge_descriptor> mst;
boost::kruskal_minimum_spanning_tree(t,

std::back_inserter(mst),

vertex_index_map(vertex_index_pmap));

std::cout << "The edges of the Euclidean mimimum spanning tree:" <<
std::endl;

for(std::list<edge_descriptor>::iterator it = mst.begin(); it !=
mst.end(); ++it){
edge_descriptor ed = *it;
vertex_descriptor svd = boost::source(ed,t);
vertex_descriptor tvd = boost::target(ed,t);
Triangulation::Vertex_handle sv = svd;
Triangulation::Vertex_handle tv = tvd;
std::cout << "[ " << sv->point() << " | " << tv->point() << " ] "

<< std::endl;
}

return 0;
}� �
File: examples/BGL_triangulation_2/emst.cpp

74.5.2 Example: Storing the Vertex ID in the Vertex

The algorithms of the BGL extensively use of the indices of vertices. In the previous example we stored the
index in a std::map and turned that map in a property map. This property map was then passed as argument to
the shortest path function.
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If the user does not pass explicitly a property map, the graph algorithms use the property map returned by the
call boost::get(boost::vertex index,ft). This property map assumes that the vertex has a member function id()
that returns a reference to an int. Therefore CGAL offers a class Triangulation vertex base with id 2. It is in
the users responsibility to set the indices properly.

The example further illustrates that the graph traits also works for the Delaunay triangulation.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/Triangulation_vertex_base_with_id_2.h>
#include <CGAL/boost/graph/graph_traits_Delaunay_triangulation_2.h>

#include <climits>
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <boost/graph/filtered_graph.hpp>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_2 Point;

typedef CGAL::Triangulation_vertex_base_with_id_2<K> Tvb;
typedef CGAL::Triangulation_face_base_2<K> Tfb;
typedef CGAL::Triangulation_data_structure_2<Tvb,Tfb> Tds;
typedef CGAL::Delaunay_triangulation_2<K, Tds> Triangulation;

// consider finite vertices and edges.

template <typename T>
struct Is_finite {

const T* t_;

Is_finite()
: t_(NULL)

{}

Is_finite(const T& t)
: t_(&t)

{ }

template <typename VertexOrEdge>
bool operator()(const VertexOrEdge& voe) const {

return ! t_->is_infinite(voe);
}

};

typedef Is_finite<Triangulation> Filter;
typedef boost::filtered_graph<Triangulation,Filter,Filter>

Finite_triangulation;
typedef boost::graph_traits<Finite_triangulation>::vertex_descriptor

vertex_descriptor;
typedef boost::graph_traits<Finite_triangulation>::vertex_iterator

vertex_iterator;

int
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main(int,char*[])
{

Triangulation t;
Filter is_finite(t);
Finite_triangulation ft(t, is_finite, is_finite);

t.insert(Point(0,0));
t.insert(Point(1,0));
t.insert(Point(0.2,0.2));
t.insert(Point(0,1));
t.insert(Point(0,2));

vertex_iterator vit, ve;
// associate indices to the vertices
int index = 0;
for(boost::tie(vit,ve)=boost::vertices(ft); vit!=ve; ++vit ){

vertex_descriptor vd = *vit;
vd->id()= index++;

}

typedef boost::property_map<Triangulation, boost::vertex_index_t>::type
VertexIdPropertyMap;

VertexIdPropertyMap vertex_index_pmap = get(boost::vertex_index, ft);

// Dijkstra’s shortest path needs property maps for the predecessor and
distance

std::vector<vertex_descriptor> predecessor(boost::num_vertices(ft));
boost::iterator_property_map<std::vector<vertex_descriptor>::iterator,
VertexIdPropertyMap>
predecessor_pmap(predecessor.begin(), vertex_index_pmap);

std::vector<double> distance(boost::num_vertices(ft));
boost::iterator_property_map<std::vector<double>::iterator,
VertexIdPropertyMap>
distance_pmap(distance.begin(), vertex_index_pmap);

vertex_descriptor source = *boost::vertices(ft).first;
std::cout << "\nStart dijkstra_shortest_paths at " << source->point()
<< std::endl;

boost::dijkstra_shortest_paths(ft, source ,
distance_map(distance_pmap)
.predecessor_map(predecessor_pmap));

for(boost::tie(vit,ve)=boost::vertices(ft); vit!=ve; ++vit ){
vertex_descriptor vd = *vit;
std::cout << vd->point() << " [" << vd->id() << "] ";
std::cout << " has distance = " << get(distance_pmap,vd) << " and
predecessor ";
vd = get(predecessor_pmap,vd);
std::cout << vd->point() << " [" << vd->id() << "]\n";

}
return 0;

}� �
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File: examples/BGL_triangulation_2/dijkstra_with_internal_properties.cpp

74.6 Arrangements as Models of the Boost Graph Concept

For the arrangements CGAL offers the graph traits for the arrangement itself as well as for its dual graph.

74.6.1 Example for the Arrangement as Graph

Arrangement instances are adapted to boost graphs by specializing the boost:graph traits template for
Arrangement 2 instances. The graph-traits states the graph concepts that the arrangement class models (see
below) and defines the types required by these concepts.

In this specialization the Arrangement 2 vertices correspond to the graph vertices, where two vertices are ad-
jacent if there is at least one halfedge connecting them. More precisely, Arrangement 2::Vertex handle is the
graph-vertex type, while Arrangement 2::Halfedge handle is the graph-edge type. As halfedges are directed,
we consider the graph to be directed as well. Moreover, as several interior-disjoint x-monotone curves (say
circular arcs) may share two common endpoints, inducing an arrangement with two vertices that are connected
with several edges, we allow parallel edges in our boost graph.

Given an Arrangement 2 instance, we can efficiently traverse its vertices and halfedges. Thus, the arrangement
graph is a model of the concepts VertexListGraph and EdgeListGraph introduced by the BGL. At the same
time, we use an iterator adapter of the circulator over the halfedges incident to a vertex (Halfedge around
vertex circulator — see Section 32.2.2), so it is possible to go over the ingoing and outgoing edges of a vertex
in linear time. Thus, our arrangement graph is a model of the concept BidirectionalGraph (this concept refines
IncidenceGraph, which requires only the traversal of outgoing edges).

It is important to notice that the vertex descriptors we use are Vertex handle objects and not vertex indices.
However, in order to gain more efficiency in most BGL algorithm, it is better to have them indexed 0,1, . . . ,(n−
1), where n is the number of vertices. We therefore introduce the Arr vertex index map<Arrangement> class-
template, which maintains a mapping of vertex handles to indices, as required by the BGL. An instance of this
class must be attached to a valid arrangement vertex when it is created. It uses the notification mechanism (see
Section 32.7) to automatically maintain the mapping of vertices to indices, even when new vertices are inserted
into the arrangement or existing vertices are removed.

In most algorithm provided by the BGL, the output is given by property maps, such that each map entry cor-
responds to a vertex. For example, when we compute the shortest paths from a given source vertex s to all
other vertices we can obtain a map of distances and a map of predecessors — namely for each v vertex we
have its distance from s and a descriptor of the vertex that precedes v in the shortest path from s. If the vertex
descriptors are simply indices, one can use vectors to efficiently represent the property maps. As this is not the
case with the arrangement graph, we offer the Arr vertex property map<Arrangement,Type> template allows
for an efficient mapping of Vertex handle objects to properties of type Type. Note however that unlike the
Arr vertex index map class, the vertex property-map class is not kept synchronized with the number of vertices
in the arrangement, so it should not be reused in calls to BGL functions in case the arrangement is modified in
between these calls.

In the following example we construct an arrangement of 7 line segments, as shown in Figure 74.1, then use
Dijkstra’s shortest-paths algorithm from the BGL to compute the graph distance of all vertices from the leftmost
vertex in the arrangement v0. Note the usage of the Arr vertex index map and the Arr vertex property map
classes. The latter one, instantiated by the type double is used to map vertices to their distances from v0.� �
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Figure 74.1: An arrangement of 7 line segments, as constructed by ex bgl primal adapter.cpp and ex bgl dual
adapter.cpp. The breadth-first visit times for the arrangement faces, starting from the unbounded face f0, are
shown is brackets.

#include "arr_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>

#include <climits>
#include <boost/graph/dijkstra_shortest_paths.hpp>

#include <CGAL/graph_traits_Arrangement_2.h>
#include <CGAL/Arr_vertex_index_map.h>

typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;

// A functor used to compute the length of an edge.
class Edge_length_func
{
public:

// Boost property type definitions:
typedef boost::readable_property_map_tag category;
typedef double value_type;
typedef value_type reference;
typedef Arrangement_2::Halfedge_handle key_type;

double operator() (Arrangement_2::Halfedge_handle e) const
{

const double x1 = CGAL::to_double (e->source()->point().x());
const double y1 = CGAL::to_double (e->source()->point().y());
const double x2 = CGAL::to_double (e->target()->point().x());
const double y2 = CGAL::to_double (e->target()->point().y());
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const double diff_x = x2 - x1;
const double diff_y = y2 - y1;

return (std::sqrt (diff_x*diff_x + diff_y*diff_y));
}

};

double get (Edge_length_func edge_length, Arrangement_2::Halfedge_handle
e)

{
return (edge_length (e));

}

/* The folowing is a workaround for a bug in the BGL upto and including
version

* 103400.
*
* Unfortunately some of the calls to the get() function below from the

BGL
* code are qualified with the boost namespace, while others are not. For

The
* qualified calls the compiler naturally looks for the definition of the
* function in boost namespace. For the other calls it searches the CGAL
* namespace according to ADL (Koenig Lookup), as the type of the 1st
* parameter is in CGAL namespace.
*
* One way to get around it is to provide 2 similar functions that do the
* same thing. One in CGAL namespace provided in CGAL/Arr_vertex_map.h,

and
* the other in boost namespace below. The signature of the latter is

slightly
* changed to avoid redefinition. The type of its 1st parameter is

defined in
* boost namespace, and is a simple derivation of the 1st parameter of

the
* CGAL::get() function.
*/

namespace boost {

template <typename Arrangement_2>
class Arr_vertex_index_map_boost :

public CGAL::Arr_vertex_index_map<Arrangement_2>
{
public:
typedef CGAL::Arr_vertex_index_map<Arrangement_2> Base;
/*! Default constructor. */
Arr_vertex_index_map_boost() : Base() {}

/*! Constructor from CGAL index map. */
Arr_vertex_index_map_boost(Base & other) :

CGAL::Arr_vertex_index_map<Arrangement_2>(other)
{}

};

4269



/*!
* Get the index property-map function. Provided so that boost is able to
* access the Arr_vertex_index_map above.
* \param index_map The index map.
* \param v A vertex handle.
* \return The vertex index.
*/

template<class Arrangement>
unsigned int
get(const boost::Arr_vertex_index_map_boost<Arrangement> & index_map,

typename Arrangement::Vertex_handle v)
{

const CGAL::Arr_vertex_index_map<Arrangement> & index_map_tmp =
static_cast<const CGAL::Arr_vertex_index_map<Arrangement>
&>(index_map);

return CGAL::get<Arrangement>(index_map_tmp, v);
}

}

int main ()
{

Arrangement_2 arr;

// Construct an arrangement of seven intersecting line segments.
// We keep a handle for the vertex v_0 that corresponds to the point
(1,1).

Arrangement_2::Halfedge_handle e =
insert_non_intersecting_curve (arr, Segment_2 (Point_2 (1, 1),

Point_2 (7, 1)));
Arrangement_2::Vertex_handle v0 = e->source();
insert (arr, Segment_2 (Point_2 (1, 1), Point_2 (3, 7)));
insert (arr, Segment_2 (Point_2 (1, 4), Point_2 (7, 1)));
insert (arr, Segment_2 (Point_2 (2, 2), Point_2 (9, 3)));
insert (arr, Segment_2 (Point_2 (2, 2), Point_2 (4, 4)));
insert (arr, Segment_2 (Point_2 (7, 1), Point_2 (9, 3)));
insert (arr, Segment_2 (Point_2 (3, 7), Point_2 (9, 3)));

// Create a mapping of the arrangement vertices to indices.
CGAL::Arr_vertex_index_map<Arrangement_2> index_map_tmp(arr);
boost::Arr_vertex_index_map_boost<Arrangement_2>
index_map(index_map_tmp);

// Perform Dijkstra’s algorithm from the vertex v0.
Edge_length_func edge_length;
CGAL::Arr_vertex_property_map<Arrangement_2,

double> dist_map (index_map);

boost::dijkstra_shortest_paths (arr, v0,
boost::vertex_index_map (index_map).
weight_map (edge_length).
distance_map (dist_map));

// Print the results:
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Arrangement_2::Vertex_iterator vit;

std::cout << "The distances of the arrangement vertices from ("
<< v0->point() << ") :" << std::endl;

for (vit = arr.vertices_begin(); vit != arr.vertices_end(); ++vit)
{

std::cout << "(" << vit->point() << ") at distance "
<< dist_map[vit] << std::endl;

}

return (0);
}� �
File: examples/BGL_arrangement_2/primal.cpp

74.6.2 Example for the Dual of an Arrangement as Graph

It is possible to give a dual graph representation for an arrangement instance, such that each arrangement face
corresponds to a graph vertex and two vertices are adjacent iff the corresponding faces share a common edge
on their boundaries. This is done by specializing the boost:graph traits template for Dual<Arrangement 2>
instances, where Dual<Arrangement 2> is a template specialization that gives a dual interpretation to an ar-
rangement instance.

In dual representation, Arrangement 2::Face handle is the graph-vertex type, while Arrangement 2::Halfedge
handle is the graph-edge type. We treat the graph edges as directed, such that a halfedge e is directed from f1,
which is its incident face, to f2, which is the incident face of its twin halfedge. As two arrangement faces may
share more than a single edge on their boundary, we allow parallel edges in our boost graph. As is the case in
the primal graph, the dual arrangement graph is also a model of the concepts VertexListGraph, EdgeListGraph
and BidirectionalGraph (thus also of IncidenceGraph).

Since we use Face handle objects as the vertex descriptors, we define the Arr face index map<Arrangement>
class-template, which maintains an efficient mapping of face handles to indices. We also provide the template
Arr face property map<Arrangement,Type> for associating arbitrary data with the arrangement faces.

In the following example we construct the same arrangement as in example ex bgl primal adapter.cpp (see
Figure 74.1), and perform breadth-first search on the graph faces, starting from the unbounded face. We extend
the DCEL faces with an unsigned integer, marking the discover time of the face and use a breadth-first-search
visitor to obtain these times and update the faces accordingly:� �
#include "arr_rational_nt.h"
#include <CGAL/Cartesian.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arr_extended_dcel.h>
#include <CGAL/Arrangement_2.h>

#include <climits>
#include <boost/graph/dijkstra_shortest_paths.hpp>

#include <CGAL/graph_traits_Dual_Arrangement_2.h>
#include <CGAL/Arr_face_index_map.h>
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#include "arr_print.h"

typedef CGAL::Cartesian<Number_type> Kernel;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef Traits_2::Point_2 Point_2;
typedef Traits_2::X_monotone_curve_2 Segment_2;
typedef CGAL::Arr_face_extended_dcel<Traits_2,

unsigned int> Dcel;
typedef CGAL::Arrangement_2<Traits_2, Dcel> Arrangement_2;
typedef CGAL::Dual<Arrangement_2>

Dual_arrangement_2;

// A BFS visitor class that associates each vertex with its discover
time.

// In our case graph vertices represent arrangement faces.
template <class IndexMap>
class Discover_time_bfs_visitor : public boost::default_bfs_visitor
{
private:

const IndexMap *index_map; // Mapping vertices to indices.
unsigned int time; // The current time stamp.

public:

// Constructor.
Discover_time_bfs_visitor (const IndexMap& imap) :

index_map (&imap),
time (0)

{}

// Write the discover time for a given vertex.
template <typename Vertex, typename Graph>
void discover_vertex (Vertex u, const Graph& )
{

u->set_data (time);
time++;

}
};

int main ()
{

Arrangement_2 arr;

// Construct an arrangement of seven intersecting line segments.
insert (arr, Segment_2 (Point_2 (1, 1), Point_2 (7, 1)));
insert (arr, Segment_2 (Point_2 (1, 1), Point_2 (3, 7)));
insert (arr, Segment_2 (Point_2 (1, 4), Point_2 (7, 1)));
insert (arr, Segment_2 (Point_2 (2, 2), Point_2 (9, 3)));
insert (arr, Segment_2 (Point_2 (2, 2), Point_2 (4, 4)));
insert (arr, Segment_2 (Point_2 (7, 1), Point_2 (9, 3)));
insert (arr, Segment_2 (Point_2 (3, 7), Point_2 (9, 3)));

// Create a mapping of the arrangement faces to indices.
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CGAL::Arr_face_index_map<Arrangement_2> index_map (arr);

// Perform breadth-first search from the unbounded face, and use the
BFS

// visitor to associate each arrangement face with its discover time.
Discover_time_bfs_visitor<CGAL::Arr_face_index_map<Arrangement_2> >

bfs_visitor (index_map);
Arrangement_2::Face_handle uf = arr.unbounded_face();

boost::breadth_first_search (Dual_arrangement_2 (arr), uf,
boost::vertex_index_map (index_map).
visitor (bfs_visitor));

// Print the results:
Arrangement_2::Face_iterator fit;

for (fit = arr.faces_begin(); fit != arr.faces_end(); ++fit)
{

std::cout << "Discover time " << fit->data() << " for ";
if (fit != uf)
{

std::cout << "face ";
print_ccb<Arrangement_2> (fit->outer_ccb());

}
else

std::cout << "the unbounded face." << std::endl;
}

return (0);
}� �
File: examples/BGL_arrangement_2/dual.cpp

4273



4274



CGAL and the Boost Graph Library
Reference Manual
Andreas Fabri, Fernando Cacciola, and Ron Wein

This chapter introduces the concepts and classes that allow to interface CGAL data structures with the algorithms
of the BGL, as well as a new graph concept.

74.7 Classified Reference Pages

Concepts

HalfedgeGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4277

Enums

boost::edge index t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4293
CGAL::edge is border t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4294
CGAL::vertex is border t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4295
CGAL::vertex point t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4296

Classes

boost::graph traits< CGAL::Arrangement 2<Traits,Dcel> > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4280
boost::graph traits< CGAL::Polyhedron 3<Traits> > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4282
CGAL::halfedge graph traits< CGAL::Polyhedron 3<Traits> > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4286
boost::graph traits< CGAL::Triangulation 2<GT, TDS> > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4284
CGAL::Triangulation vertex base with id 2<TriangulationTraits 2, TriangulationVertexBase 2> . page 4287
CGAL::HalfedgeDS vertex max base with id<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4290
CGAL::HalfedgeDS halfedge max base with id<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4288
CGAL::HalfedgeDS face max base with id<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4289
CGAL::Polyhedron items with id 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4291

74.8 Alphabetical List of Reference Pages

edge index t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4293
edge is border t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4294

4275



graph traits< CGAL::Arrangement 2<Traits,Dcel> > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4280
graph traits< CGAL::Polyhedron 3<Traits> > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4282
graph traits< CGAL::Triangulation 2<GT, TDS> > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4284
HalfedgeDS face max base with id<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4289
HalfedgeDS halfedge max base with id<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4288
HalfedgeDS vertex max base with id<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4290
HalfedgeGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4277
halfedge graph traits< CGAL::Polyhedron 3<Traits> > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4286
Polyhedron items with id 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4291
Triangulation vertex base with id 2<TriangulationTraits 2, TriangulationVertexBase 2> . . . . . . . . .page 4287
vertex is border t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4295
vertex point t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4296

4276



C
on

ce
pt

HalfedgeGraph

Definition

The concept HalfedgeGraph describes the requirements for a graph that is structurally equivalent to a polyhedral
surface represented by a halfedge data structure, and it provides an interface for efficient access to the opposite
edge of an edge, and to the successor and predecessor of an edge in the iterator range of the incoming edges
of a vertex. Each vertex has a geometric position in space. As in a halfedge data structure we define the face
adjacent to a halfedge to be to the left of the halfedge.

Requirements

For each directed edge e = (v,w) its opposite edge e′ = (w,v) must be part of the graph.

The incoming edges of a vertex v have a fixed order, that is all calls of in edges(v,g) must return the same
iterator range, modulo a cyclic permutation. The order must be clockwise.

As the HalfedgeGraph is equivalent to a polyhedral surface there must exist an embedding for the vertices and
edges such that the ordered edges do not intersect.

Refines

BidirectionalGraph
PropertyGraph

A model of HalfedgeGraph must have the interior properties edge is border attached to its edges, and it must
have vertex is border and vertex point attached to its vertices.

Associated Types

HalfedgeGraph:: halfedge graph traits<HalfedgeGraph>::Point

The type of the geometric location of a vertex.

Because (directed) edges must come in pairs, there is the additional notion of an undirected edge1 for a pair of
opposite directed edges. The number of undirected edges is exactly half the number of directed edges.

Note that the notion of directed and undirected edges does not imply the existence of two different types.
The type edge descriptor is used for both. An undirected edge must be implicitly handled, and there is no
requirement on which of the directed edges of the undirected edge must be used to represent it.

HalfedgeGraph:: halfedge graph traits<HalfedgeGraph>::undirected edge iterator

An iterator that iterates over one and only one of the directed
edges in each pair of opposite directed edges. The value
type of the iterator is boost::graph traits<HalfedgeGraph>
::edge descriptor.

1 The directed edges are not called halfedges (as in a HalfedgeDS) because from the point of view of this graph, being a refinement of a
BGL graph, each directed edge is an edge in itself. In other words, the unqualified term edge refers to one and only one directed edge and
not to a pair.
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Valid Expressions

Following the BGL design, the following graph operations are defined as free rather than member functions.

template<class Graph>
std::pair<typename halfedge graph traits<HalfedgeGraph>::undirected edge iterator, typename halfedge
graph traits<HalfedgeGraph>::undirected edge iterator>

undirected edges( Graph g)

Returns the undirected edges of g.

An edge e = (v,w) is said to be the opposite edge of edge e′ = (w,v).

template<class Graph>
typename boost::graph traits<Graph const>::edge descriptor

opposite edge( typename boost::graph traits<Graph const>::edge descriptor e,
Graph g)

Returns the opposite edge of e.

An edge e′ = (v,w) is called the clockwise neighbor of edge e = (u,w), and e the counterclockwise neighbor of
e′, iff there exist two iterators it and it ′ in the iterator range in edges(w,g) such that **it == e and **it’ == e’,
and it’ == it++ or it is the last and it’ the first iterator of the iterator range.

template<class Graph>
typename boost::graph traits<Graph const>::edge descriptor

next edge cw( typename boost::graph traits<Graph const>::edge descriptor e,
Graph g)

Returns the clockwise neighbor of e.

template<class Graph>
typename boost::graph traits<Graph const>::edge descriptor

next edge ccw( typename boost::graph traits<Graph const>::edge descriptor e,
Graph g)

Returns the counterclockwise neighbor of e.

A composition of these access functions yields an access function for the edge cycle adjacent to the same face.
An edge e′ = (v,w) is called the successor of edge e = (u,v), and e the predecessor of e′, iff e′ is the clockwise
neighbor of the opposite edge of e.

template<class Graph>
typename boost::graph traits<Graph const>::edge descriptor

next edge( typename boost::graph traits<Graph const>::edge descriptor e, Graph g)

Returns the successor of e.
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template<class Graph>
typename boost::graph traits<Graph const>::edge descriptor

prev edge( typename boost::graph traits<Graph const>::edge descriptor e,
Graph g)

Returns the predecessor of e.

Has Models

CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795
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boost::graph traits< CGAL::Arrangement 2<Traits,Dcel> >

Definition

The class graph traits< CGAL::Arrangement 2<Traits,Dcel> > is a partial specialization of boost::graph traits
for the class Arrangement 2. It provides the types associated to the graph concepts BidirectionalGraph and
EdgeAndVertexListGraph.

#include <CGAL/boost/graph/graph traits Arrangement 2.h>

Types

typename CGAL::Arrangement 2::Vertex handle

vertex descriptor; The vertex descriptor.

typename CGAL::Arrangement 2::Halfedge handle

edge descriptor; The edge descriptor.

graph traits< CGAL::Arrangement 2<Traits,Dcel> >:: vertex iterator

An iterator corresponding to CGAL::Arrangement
2::Vertex iterator, with the difference that its value type is a
vertex descriptor and not CGAL::Arrangement 2::Vertex.

graph traits< CGAL::Arrangement 2<Traits,Dcel> >:: edge iterator

An iterator corresponding to CGAL::Arrangement
2::Halfedge iterator with the difference that its value
type is an edge descriptor and not CGAL::Arrangement
2::Halfedge.

graph traits< CGAL::Arrangement 2<Traits,Dcel> >:: in edge iterator

An edge iterator which only iterates over the incoming edges
around a vertex. It corresponds to a CGAL::Arrangement
2::Halfedge around vertex circulator with the difference
that its value type is an edge descriptor and not
CGAL::Arrangement 2::Halfedge.

graph traits< CGAL::Arrangement 2<Traits,Dcel> >:: out edge iterator

An edge iterator which only iterates over the outgo-
ing halfedges around a vertex. It corresponds to
a CGAL::Arrangement 2::Halfedge around vertex
circulator with the difference that its value type is an
edge descriptor and not CGAL::Arrangement 2::Halfedge.
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boost::sallow parallel edge tag

edge parallel category;

Indicates that this graph does support multiedges.

boost::bidirectional graph tag

traversal category; Indicates that this graph is bidirectional.

typename Arrangement 2::size type

vertices size type; The size type of the vertex list.

typename Arrangement 2::size type

edges size type; The size type of the edge list.

typename Arrangement 2::size type

degree size type; The size type of the adjacency list.

The const specialization, boost::graph traits< CGAL::Arrangement 2<Traits,Dcel> const> is also defined, us-
ing the constant handles in the arrangement.
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boost::graph traits< CGAL::Polyhedron 3<Traits> >

Definition

The class graph traits< CGAL::Polyhedron 3<Traits> > is a partial specialization of boost::graph traits for the
class Polyhedron 3. It provides the types associated to the graph concepts BidirectionalGraph and EdgeAnd-
VertexListGraph.

#include <CGAL/boost/graph/graph traits Polyhedron 3.h>

Types

typename CGAL::Polyhedron 3::Vertex handle

vertex descriptor; The vertex descriptor.

typename CGAL::Polyhedron 3::Halfedge handle

edge descriptor; The edge descriptor.

graph traits< CGAL::Polyhedron 3<Traits> >:: vertex iterator

An iterator corresponding to CGAL::Polyhedron 3::Vertex
iterator, with the difference that its value type is a vertex
descriptor and not CGAL::Polyhedron 3::Vertex.

graph traits< CGAL::Polyhedron 3<Traits> >:: edge iterator

An iterator corresponding to CGAL::Polyhedron
3::Halfedge iterator with the difference that its value type is
an edge descriptor and not CGAL::Polyhedron 3::Halfedge.

graph traits< CGAL::Polyhedron 3<Traits> >:: in edge iterator

An edge iterator which only iterates over the incoming edges
around a vertex. It corresponds to a CGAL::Polyhedron
3::Halfedge around vertex circulator with the difference
that its value type is an edge descriptor and not
CGAL::Polyhedron 3::Halfedge.

graph traits< CGAL::Polyhedron 3<Traits> >:: out edge iterator

An edge iterator which only iterates over the outgo-
ing halfedges around a vertex. It corresponds to a
CGAL::Polyhedron 3::Halfedge around vertex circulator
with the difference that its value type is an edge descriptor
and not CGAL::Polyhedron 3::Halfedge.
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boost::disallow parallel edge tag

edge parallel category;

Indicates that this graph does not support multiedges.

boost::bidirectional graph tag

traversal category; Indicates that this graph is bidirectional.

typename Polyhedron 3::size type

vertices size type; The size type of the vertex list.

typename Polyhedron 3::size type

edges size type; The size type of the edge list.

typename Polyhedron 3::size type

degree size type; The size type of the adjacency list.

The const specialization, boost::graph traits< CGAL::Polyhedron 3<Traits> const> is also defined, using the
constant handles in the polyhedron.
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boost::graph traits< CGAL::Triangulation 2<GT, TDS> >

Definition

The triangulations of CGAL are all models of the concepts BidirectionalGraph and VertexAndEdgeListGraph
of the Boost Graph Library [SLL02].

The class graph traits< CGAL::Triangulation 2<GT, TDS> > is a partial specialization of the class
boost::graph traits<G>.

The mapping between vertices and edges of the triangulation and the graph is rather straightforward, but there
are some subtleties. The value type of the BGL iterators is the vertex or edge descriptor, whereas in CGAL all
iterators and circulators are also handles and hence have as value type Vertex or Edge.

The graph traits class for triangulations does not distinguish between finite and infinite vertices and edges.
As the edge weight computed with the default property map of BGL algorithms (obtained with boost::get(t,
boost::edge weight)) is the length of the edge, the edge weight is not well defined for infinite edges. For
algorithms that make use of the edge weight the user must therefore define a boost::filtered graph or pass a
property map to the algorithm that returns “infinity” for infinite edges.

Note also that when you derive from the class CGAL::Triangulation 2 you must upcast the object in order to
use this partial specialization.

For the user convenience, CGAL provides the partial specializations for all 2D triangulation classes.

#include <CGAL/boost/graph/graph traits Triangulation 2.h>

Types

typedef Triangulation::Vertex handle

vertex descriptor; The vertex descriptor.

graph traits< CGAL::Triangulation 2<GT, TDS> >:: edge descriptor

The edge descriptor. It is constructible from and convertible
to Triangulation::Edge. The edge descriptor is not a simple
typedef, but a proper class, because in an undirected graph
the edges (u,v) and (v,u) must be equal. This is not the case
for the Edge type of the triangulation.

graph traits< CGAL::Triangulation 2<GT, TDS> >:: vertex iterator

The vertex iterator type. Its value type is vertex descriptor.

graph traits< CGAL::Triangulation 2<GT, TDS> >:: edge iterator

The edge iterator type, Its value type is edge descriptor.
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graph traits< CGAL::Triangulation 2<GT, TDS> >:: out edge iterator

An iterator for the outgoing edges incident to a vertex. Its
value type is edge descriptor.

graph traits< CGAL::Triangulation 2<GT, TDS> >:: in edge iterator

An iterator for the incoming edges incident to a vertex. Its
value type is edge descriptor.

graph traits< CGAL::Triangulation 2<GT, TDS> >:: adjacency iterator

An iterator for the vertices adjacent to a vertex. Its value type
is vertex descriptor.

typedef boost::undirected tag

directed category;

typedef boost::disallow parallel edge tag

edge parallel category;
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CGAL::halfedge graph traits< CGAL::Polyhedron 3<Traits> >

Definition

The class halfedge graph traits< CGAL::Polyhedron 3<Traits> > is a partial specialization of
CGAL::halfedge graph traits for Polyhedron 3. It provides the types associated to the HalfedgeGraph
concept.

#include <CGAL/boost/graph/halfedge graph traits Polyhedron 3.h>

Types

halfedge graph traits< CGAL::Polyhedron 3<Traits> >:: undirected edge iterator

An edge iterator that iterates over one of the two opposite
edges forming an undirected edge.
The value type is CGAL::Polyhedron 3::Halfedge const
handle.

typename CGAL::Polyhedron 3<Traits>::Point 3

Point; The point type of the vertex.
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CGAL::Triangulation vertex base with id 2<TriangulationTraits 2,
TriangulationVertexBase 2>

Definition

The class Triangulation vertex base with id 2 is a model of the concept TriangulationVertexBase 2, the base
vertex of a 2D-triangulation. It provides an integer field that can be used to index vertices for BGL algorithms.

Note that the user is in charge to set the index correctly before running a graph algorithm.

#include <CGAL/Triangulation vertex base with id 2.h>

Parameters

The first template argument is the geometric traits class TriangulationTraits 2 which provides the Point 2.

The second template argument is a vertex base class from which Triangulation vertex base with id 2 derives.
It has the default value Triangulation vertex base 2<TriangulationTraits 2>.

Is Model for the Concepts

TriangulationVertexBase 2

Inherits From

TriangulationVertexBase 2

Access Functions

int v.id() const Returns the index.
int& v.id() Returns a reference to the index stored in the vertex.

See Also

CGAL::Triangulation vertex base 2
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CGAL::HalfedgeDS halfedge max base with id<Refs>

Definition

The class HalfedgeDS halfedge max base with id<Refs> is a model of the HalfedgeDSHalfedge concept. Refs
is an instantiation of a HalfedgeDS. It is equivalent to CGAL::HalfedgeDS halfedge base< Refs, CGAL::Tag
true, CGAL::Tag true, CGAL::Tag true> with an added integer field which can be used to index halfedges in
BGL algorithms. The class contains support for the previous, next, opposite, vertex and face pointers and the
required type definitions. It can be used for deriving own halfedges.

Note that the user is in charge to set the index correctly before running a graph algorithm.

#include <CGAL/HalfedgeDS halfedge max base with id.h>

Is Model for the Concepts

HalfedgeDSHalfedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1852

Creation

HalfedgeDS halfedge max base with id<Refs> h;

default constructor.

int h.id() const Returns the index.
int& h.id() Returns a reference to the index stored in the halfedge.

See Also

HalfedgeDS<Traits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1843
HalfedgeDSItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1854
PolyhedronItems 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1818
CGAL::HalfedgeDS min items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1879
CGAL::HalfedgeDS vertex min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1885
CGAL::HalfedgeDS face min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1870
CGAL::HalfedgeDS halfedge base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1871
CGAL::HalfedgeDS vertex max base with id<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4290
CGAL::HalfedgeDS face max base with id<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4289
CGAL::Polyhedron items with id 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4291
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CGAL::HalfedgeDS face max base with id<Refs>

Definition

The class HalfedgeDS face max base with id<Refs> is a model of the HalfedgeDSFace concept. Refs is an
instantiation of a HalfedgeDS. It is equivalent to CGAL::HalfedgeDS face base< Refs, CGAL::Tag true> with
an added integer field which can be used to index faces in BGL algorithms.. The class contains support for the
incident halfedge pointer and the required type definitions. It can be used for deriving own faces.

Note that the user is in charge to set the index correctly before running a graph algorithm.

#include <CGAL/HalfedgeDS face max base with id.h>

Is Model for the Concepts

HalfedgeDSFace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1850

Creation

HalfedgeDS face max base with id<Refs> f ; default constructor.

int f .id() const Returns the index.
int& f .id() Returns a reference to the index stored in the face.

See Also

HalfedgeDS<Traits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1843
HalfedgeDSItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1854
PolyhedronItems 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1818
CGAL::HalfedgeDS min items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1879
CGAL::HalfedgeDS vertex min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1885
CGAL::HalfedgeDS halfedge min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1872
CGAL::HalfedgeDS face base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1868
CGAL::HalfedgeDS vertex max base with id<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4290
CGAL::HalfedgeDS halfedge max base with id<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4288
CGAL::Polyhedron items with id 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4291
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CGAL::HalfedgeDS vertex max base with id<Refs>

Definition

The class HalfedgeDS vertex max base with id<Refs> is a model of the HalfedgeDSVertex concept. Refs is
an instantiation of a HalfedgeDS. It is equivalent to CGAL::HalfedgeDS vertex base< Refs, CGAL::Tag true>
with an added integer field which can be used to index vertices in BGL algorithms.. The class contains support
for the point and the required type definitions. It can be used for deriving own vertices.

Note that the user is in charge to set the index correctly before running a graph algorithm.

#include <CGAL/HalfedgeDS vertex max base with id.h>

Is Model for the Concepts

HalfedgeDSVertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 1856

Creation

HalfedgeDS vertex max base with id<Refs> v; default constructor.

int v.id() const Returns the index.
int& v.id() Returns a reference to the index stored in the vertex.

See Also

HalfedgeDS<Traits,Items,Alloc> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1843
HalfedgeDSItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1854
PolyhedronItems 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1818
CGAL::HalfedgeDS min items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1879
CGAL::HalfedgeDS halfedge min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1872
CGAL::HalfedgeDS face min base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1870
CGAL::HalfedgeDS vertex base<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1883
CGAL::HalfedgeDS halfedge max base with id<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4288
CGAL::HalfedgeDS face max base with id<Refs> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4289
CGAL::Polyhedron items with id 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4291
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CGAL::Polyhedron items with id 3

Definition

The class Polyhedron items with id 3 is a model of the PolyhedronItems 3 concept. It provides definitions for
vertices with points, halfedges, and faces with plane equations, all of them with an additional integer field which
can be used to index the items in a BGL algorithm. The polyhedron traits class must provide the respective types
for the point and the plane equation. Vertices and facets both contain a halfedge handle to an incident halfedge.

#include <CGAL/Polyhedron items with id 3.h>

Is Model for the Concepts

PolyhedronItems 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1818

Types in Polyhedron items with id 3::Vertex wrapper<Refs,Traits>::Vertex

typedef Traits::Point 3 Point;
typedef CGAL::Tag true Supports vertex point;

Types in Polyhedron items with id 3::Face wrapper<Refs,Traits>::Face

typedef Traits::Plane 3 Plane;
typedef CGAL::Tag true Supports face plane;

Additional methods in all three items.

int item.id() const

Returns the index.

int& item.id() Returns a reference to the index stored in the item.

Creation

Polyhedron items with id 3 items; default constructor.

Operations

Supported as required by the PolyhedronItems 3 concept.

See Also

CGAL::Polyhedron 3<Traits> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1795
CGAL::Polyhedron min items 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1822
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boost::edge index t

enum edge index t { edge index};

The constant edge index is a property tag which identifies the index property of an edge of a BGL Graph.
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CGAL::edge is border t

#include <CGAL/boost/graph/properties.h>

enum edge is border t { edge is border};

The constant edge is border is a property tag which refers to the property of an edge of being a border edge.

edge is border is an interior property. That is, a property map for edge is border can be extracted from any
model of a HalfedgeGraph using the BGL PropertyGraph interface:

boost::get(edge is border,graph)

The Boolean flag that indicates if the edge is a border can be directly accessed via:

boost::get(edge is border,graph,edge).
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CGAL::vertex is border t

#include <CGAL/boost/graph/properties.h>

enum vertex is border t { vertex is border};

The constant vertex is border is a property tag which refers to the property of a vertex of being a border vertex.

vertex is border is an interior property, that is, a property map for vertex is border can be extracted from any
model of a HalfedgeGraph using the BGL PropertyGraph interface:

boost::get(vertex is border,graph)

The Boolean flag that indicates if the vertex is a border can be directly accessed via:

boost::get(vertex is border,graph,edge)
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CGAL::vertex point t

#include <CGAL/boost/graph/properties.h>

enum vertex point t { vertex point};

The constant vertex point is a property tag which refers to the geometric embedding property of a vertex of a
HalfedgeGraph.

A vertex point is an interior property, that is, a property map for a vertex point can be extracted from any model
of a HalfedgeGraph using the BGL PropertyGraph interface:

boost::get(vertex point,graph)

A point of a vertex can be directly accessed via:

boost::get(vertex point,graph,vertex)
boost::put(vertex point,graph,vertex,newpoint)
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Chapter 75

CGAL and Boost Property Maps
Andreas Fabri and Laurent Saboret
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75.1 A Short Introduction to the Boost Property Maps Library

The Boost Property Map Library consists mainly of interface specifications in the form of concepts. These
interface specifications are intended for use by implementors of generic libraries in communicating requirements
on template parameters to their users. In particular, the Boost Property Map concepts define a general purpose
interface for mapping key objects to corresponding value objects, thereby hiding the details of how the mapping
is implemented from algorithms. The implementation of types fulfilling the property map interface is up to the
client of the algorithm to provide.

The Boost Property Map Library also contains a few adaptors that convert commonly used data-structures that
implement a mapping operation, such as builtin arrays (pointers), iterators, and std::map, to have the property
map interface.

Free functions get and put allow getting and putting information through a property map. The data themselves
may be stored in the element, or they may be stored in an external data structure, or they may be computed on
the fly. This is an “implementation detail” of the particular property map.

Property maps in the Boost manuals: http://www.boost.org/libs/property_map/doc/property_map.
html
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75.2 CGAL and Boost Property Maps

Some algorithms in CGAL take as input parameters iterator ranges and property maps to access information
attached to elements of the sequence.

For example, the algorithms of chapters Point set processing 3 58 and Surface reconstruction points 3 49
take as input parameters iterator ranges and property maps to access each point’s position and normal. Position
and normal might be represented in various ways, e.g., as a class derived from the CGAL point class, or as a
std::pair<Point 3<K>, Vector 3<K> >, or as a boost::tuple<..,Point 3<K>, ..., Vector 3<K> >.

This component provides property maps to support these cases:
CGAL::Dereference property map<T>
CGAL::First of pair property map<Pair> and CGAL::Second of pair property map<Pair>
CGAL::Nth of tuple property map<N, Tuple>

75.2.1 Example with Dereference property map

The following example reads a point set and removes 5% of the points. It uses CGAL::Dereference property
map<Point 3> as position property map.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/property_map.h>
#include <CGAL/remove_outliers.h>
#include <CGAL/IO/read_xyz_points.h>

#include <vector>
#include <fstream>

// types
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point;

int main(void)
{

// Reads a .xyz point set file in points[].
// The Dereference_property_map property map can be omitted here as it
is the default value.

std::vector<Point> points;
std::ifstream stream("data/oni.xyz");
if (!stream ||

!CGAL::read_xyz_points(stream, std::back_inserter(points),
CGAL::Dereference_property_map<Point>()))

{
std::cerr << "Error: cannot read file data/oni.xyz" << std::endl;
return EXIT_FAILURE;

}

// Removes outliers using erase-remove idiom.
// The Dereference_property_map property map can be omitted here as it
is the default value.

const double removed_percentage = 5.0; // percentage of points to
remove
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const int nb_neighbors = 24; // considers 24 nearest neighbor points
points.erase(CGAL::remove_outliers(points.begin(), points.end(),

CGAL::Dereference_property_map<Point>(),
nb_neighbors, removed_percentage),

points.end());

// Optional: after erase(), use Scott Meyer’s "swap trick" to trim
excess capacity

std::vector<Point>(points).swap(points);

return EXIT_SUCCESS;
}� �
File: examples/Point_set_processing_3/remove_outliers_example.cpp

75.2.2 Example with Pairs

The following example reads a point set from an input file and writes it to a file, both in the xyz format. Position
and normal are stored in pairs and accessed through property maps.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/property_map.h>
#include <CGAL/IO/read_xyz_points.h>
#include <CGAL/IO/write_xyz_points.h>

#include <utility> // defines std::pair
#include <vector>
#include <fstream>

// types
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;

// Point with normal vector stored as a std::pair.
typedef std::pair<Point, Vector> Pwn;

int main(void)
{

// Reads a .xyz point set file in points[].
// Note: read_xyz_points_and_normals() requires an output iterator
// over points and as well as property maps to access each
// point position and normal.
std::vector<Pwn> points;
std::ifstream in("data/oni.xyz");
if (!in ||

!CGAL::read_xyz_points_and_normals(
in,std::back_inserter(points),
CGAL::First_of_pair_property_map<Pwn>(),
CGAL::Second_of_pair_property_map<Pwn>()))

{
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std::cerr << "Error: cannot read file data/oni.xyz" << std::endl;
return EXIT_FAILURE;

}

// Saves point set.
// Note: write_xyz_points_and_normals() requires an output iterator
// over points as well as property maps to access each
// point position and normal.
std::ofstream out("oni_copy.xyz");
if (!out ||

!CGAL::write_xyz_points_and_normals(
out, points.begin(), points.end(),
CGAL::First_of_pair_property_map<Pwn>(),
CGAL::Second_of_pair_property_map<Pwn>()))

{
return EXIT_FAILURE;

}

return EXIT_SUCCESS;
}� �
File: examples/Point_set_processing_3/read_write_xyz_point_set_example.cpp

75.2.3 Example with Tuples

The following example reads a point set in the xyz format and computes the average spacing. Index, position
and color are stored in a tuple and accessed through property maps.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/compute_average_spacing.h>
#include <CGAL/IO/read_xyz_points.h>

#include <vector>
#include <fstream>
#include <boost/tuple/tuple.hpp>

// Types
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::FT FT;
typedef Kernel::Point_3 Point;

// Data type := index, followed by the point, followed by three integers
that

// define the Red Green Blue color of the point.
typedef boost::tuple<int, Point, int, int, int>

IndexedPointWithColorTuple;

int main(void)
{

// Reads a .xyz point set file in points.
// As the point is the second element of the tuple (that is with
index 1)
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// we use a property map that accesses the 1st element of the tuple.
std::vector<IndexedPointWithColorTuple> points;
std::ifstream stream("data/sphere_20k.xyz");
if (!stream ||

!CGAL::read_xyz_points(
stream, std::back_inserter(points),

CGAL::Nth_of_tuple_property_map<1,IndexedPointWithColorTuple>()))
{

std::cerr << "Error: cannot read file data/sphere_20k.xyz" <<
std::endl;

return EXIT_FAILURE;
}

// Initialize index and RGB color fields in tuple.
// As the index and RGB color are respectively the first and
third-fifth elements
// of the tuple we use a get function from the property map that
accesses the 0
// and 2-4th elements of the tuple.
for(unsigned int i = 0; i < points.size(); i++)
{

points[i].get<0>() = i; // set index value of tuple to i

points[i].get<2>() = 0; // set RGB color to black
points[i].get<3>() = 0;
points[i].get<4>() = 0;

}

// Computes average spacing.
const unsigned int nb_neighbors = 6; // 1 ring
FT average_spacing = CGAL::compute_average_spacing(

points.begin(), points.end(),

CGAL::Nth_of_tuple_property_map<1,IndexedPointWithColorTuple>(),
nb_neighbors);

std::cout << "Average spacing: " << average_spacing << std::endl;

return EXIT_SUCCESS;
}� �
File: examples/Point_set_processing_3/average_spacing_example.cpp
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CGAL and Boost Property Maps
Reference Manual
Andreas Fabri and Laurent Saboret

This package provides a framework for interfacing CGAL data structures with algorithms expecting Boost Prop-
erty Maps.

75.3 Classified Reference Pages

Classes

CGAL::Dereference property map<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4304
CGAL::First of pair property map<Pair> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4305
CGAL::Second of pair property map<Pair> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4309
CGAL::Nth of tuple property map<N, Tuple> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4307

75.4 Alphabetical List of Reference Pages

Dereference property map<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4304
First of pair property map<Pair> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4305
Nth of tuple property map<N, Tuple> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4307
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CGAL::Dereference property map<T>

Definition

Property map that converts a T* pointer (or in general an iterator over T elements) to the T object.

#include <CGAL/property map.h>

Parameters

template<typename T>
struct Dereference property map;

Inherits From

boost::put get helper< T& , Dereference property map<T> >

Is Model for the Concepts

Model of boost::LvaluePropertyMap concept.

Types

Dereference property map<T>:: key type typedef to T*
Dereference property map<T>:: value type typedef to T
Dereference property map<T>:: reference typedef to T&
Dereference property map<T>:: category boost::lvalue property map tag

Creation

Dereference property map<T> pmap; Constructor.

Operations

template<class Iter>
reference pmap[ Iter it] Access a property map element.

Template Parameters:
Iter: Type convertible to key type.

Related Functions

Dereference property map<typename value type traits<Iter>::type>

make dereference property map( Iter)

Free function to create a Dereference property map property
map.

Example

See property map.cpp example.
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CGAL::First of pair property map<Pair>

Definition

Property map that accesses the first item of a std::pair.

#include <CGAL/property map.h>

Parameters

template<typename Pair>
struct First of pair property map;

Parameters:
Pair: Instance of std::pair.

Inherits From

boost::put get helper< Pair::first type& , First of pair property map<Pair> >

Is Model for the Concepts

Model of boost::LvaluePropertyMap concept.

Types

First of pair property map<Pair>:: key type typedef to Pair*
First of pair property map<Pair>:: value type

typedef to Pair::first type

First of pair property map<Pair>:: reference typedef to value type&
First of pair property map<Pair>:: category boost::lvalue property map tag

Creation

First of pair property map<Pair> pmap; Constructor.

Operations

template<class Iter>
reference pmap[ Iter pair] Access a property map element.

Template Parameters:
Iter: Type convertible to key type.
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Related Functions

First of pair property map<typename value type traits<Iter>::type>

make first of pair property map( Iter)

Free function to create a First of pair property map prop-
erty map.

See Also

CGAL::Second of pair property map<Pair> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4309

Example

See property map.cpp example.
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CGAL::Nth of tuple property map<N, Tuple>

Definition

Property map that accesses the Nth item of a boost::tuple.

#include <CGAL/property map.h>

Parameters

template<int N, typename Tuple>
struct Nth of tuple property map;

Parameters:
N: Index of the item to access. Tuple: Instance of boost::tuple.

Inherits From

boost::put get helper< boost::tuples::element<N, Tuple>::type& , Nth of tuple property map<N, Tuple> >

Is Model for the Concepts

Model of boost::LvaluePropertyMap concept.

Types

Nth of tuple property map<N, Tuple>:: key type

typedef to Tuple*

Nth of tuple property map<N, Tuple>:: value type

typedef to boost::tuples::element<N, Tuple>::type

Nth of tuple property map<N, Tuple>:: reference

typedef to value type&

Nth of tuple property map<N, Tuple>:: category

boost::lvalue property map tag

Creation

Nth of tuple property map<N, Tuple> pmap; Constructor.
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Operations

template<class Iter>
reference pmap[ Iter tuple] Access a property map element.

Template Parameters:
Iter: Type convertible to key type.

Related Functions

Nth of tuple property map<N, typename value type traits<Iter>::type>

make nth of tuple property map( Iter)

Free function to create a Nth of tuple property map prop-
erty map.

Example

See property map.cpp example.
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CGAL::Second of pair property map<Pair>

Definition

Property map that accesses the second item of a std::pair.

#include <CGAL/property map.h>

Parameters

template<typename Pair>
struct Second of pair property map;

Parameters:
Pair: Instance of std::pair.

Inherits From

boost::put get helper< Pair::second type& , Second of pair property map<Pair> >

Is Model for the Concepts

Model of boost::LvaluePropertyMap concept.

Types

Second of pair property map<Pair>:: key type

typedef to Pair*

Second of pair property map<Pair>:: value type

typedef to Pair::second type

Second of pair property map<Pair>:: reference

typedef to value type&

Second of pair property map<Pair>:: category

boost::lvalue property map tag

Creation

Second of pair property map<Pair> pmap; Constructor.
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Operations

template<class Iter>
reference pmap[ Iter pair] Access a property map element.

Template Parameters:
Iter: Type convertible to key type.

Related Functions

Second of pair property map<typename value type traits<Iter>::type>

make second of pair property map( Iter)

Free function to create a Second of pair property map prop-
erty map.

See Also

CGAL::First of pair property map<Pair> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4305

Example

See property map.cpp example.
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Chapter 76

Handles, Ranges and Circulators
Olivier Devillers, Lutz Kettner, Sylvain Pion, Michael Seel, and Mariette Yvinec
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76.1 Handles

Most data structures in CGAL use the concept of Handle in their user interface to refer to the elements they store.
This concept describes what is sometimes called a trivial iterator. A Handle is akeen to a pointer to an object
providing the dereference operator operator*() and member access operator->() but no increment or decrement
operators like iterators. A Handle is intended to be used whenever the referenced object is not part of a logical
sequence.

Model for a handle A simple pointer T*, an iterator or a circulator with value type T , are also handles.

76.2 Ranges

Most data structures in CGAL use the concept of an iterator range. The Range and ConstRange concepts
encapsulate the access to the first and the past-the-end iterators of an iterator range. STL containers are models
of Range. The Boost.Range library provides good support around this concept as well.
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76.3 Circulators

An introduction to the concept of circulators is given here. A couple of adaptors are presented that convert
between iterators and circulators. Some useful functions for circulators follow. This chapter concludes with a
discussion of the design decisions taken. For the full description of the circulator requirements, the provided
base classes, the circulator tags, and the support for generic algorithms that work for iterators as well as for
circulators please refer to the reference pages. Note that circulators are not part of STL, but of CGAL.

76.3.1 Introduction

The concept of iterators in STL is tailored for linear sequences [C++98, MS96]. In contrast, circular sequences
occur naturally in many combinatorial and geometric structures. Examples are polyhedral surfaces and planar
maps, where the edges emanating from a vertex or the edges around a facet form a circular sequence.

Since circular sequences do not allow for efficient iterators, we have introduced the new concept of circulators.
They share most of the requirements of iterators, while the main difference is the lack of a past-the-end position
in the sequence. Appropriate adaptors are provided between iterators and circulators to integrate circulators
smoothly into the framework of STL. An example of a generic contains function illustrates the use of circu-
lators. As usual for circular structures, a do-while loop is preferable, such that for the specific input, c == d,
all elements in the sequence are reached.� �
template <class Circulator, class T>
bool contains( Circulator c, Circulator d, const T& value) {

if (c != 0) {
do {

if (*c == value)
return true;

} while (++c != d);
}
return false;

}� �
Three circulator categories are defined: forward, bidirectional and random-access circulators. Given a circulator
c, the operation *c denotes the item the circulator refers to. The operation ++c advances the circulator by one
item and --c steps a bidirectional circulator one item backwards. For random-access circulators c+n advances
the circulator n steps. Two circulators can be compared for equality.

Circulators have a different notion of reachability and ranges than iterators. A circulator d is called reachable
from a circulator c if c can be made equal to d with finitely many applications of the operator ++. Due to
the circularity of the sequence this is always true if both circulators refer to items of the same sequence. In
particular, c is always reachable from c. Given two circulators c and d, the range [c,d) denotes all circulators
obtained by starting with c and advancing c until d is reached, but does not include d, for d 6= c. So far it
is the same range definition as for iterators. The difference lies in the use of [c,c) to denote all items in the
circular sequence, whereas for an iterator i the range [i,i) denotes the empty range. As long as c != d the
range [c,d) behaves like an iterator range and could be used in STL algorithms. For circulators however, an
additional test c == NULL is required that returns true if and only if the circular sequence is empty. As for C++,
we recommend the use of 0 instead of NULL.

Besides the conceptual cleanness, the main reason for inventing a new concept with a similar intent as iterators
is efficiency. An iterator is supposed to be a light-weight object – merely a pointer and a single indirection to
advance the iterator. Although iterators could be written for circular sequences, we do not know of an efficient
solution. The missing past-the-end situation in circular sequences can be solved with an arbitrary sentinel in

4312



the cyclic order, but this would destroy the natural symmetry in the structure (which is in itself a bad idea) and
additional bookkeeping in the items and checking in the iterator advance method reduces efficiency. Another
solution may use more bookkeeping in the iterator, e.g. with a start item, a current item, and a kind of winding-
number that is zero for the begin()-iterator and one for the past-the-end situation1. We have introduced the
concept of circulators that allows light-weight implementations and the CGAL support library provides adaptor
classes that convert between iterators and circulators (with the corresponding penalty in efficiency), so as to
integrate this new concept into the framework of STL.

A serious design problem is the slight change of the semantic for circulator ranges as compared to iterator
ranges. Since this semantic is defined by the intuitive operators ++ and ==, which we would like to keep for
circulators as well, circulator ranges can be used in STL algorithms. This is in itself a useful feature, if there
would not be the definition of a full range [c,c) that an STL algorithm will treat as an empty range. However,
the likelihood of a mistake may be overestimated, since for a container C supporting circulators there is no
end() member function, and an expression such as std::sort( C.begin(), C.end()) will fail. It is easy
to distinguish iterators and circulators at compile time, which allows for generic algorithms supporting both as
arguments. It is also possible to protect algorithms against inappropriate arguments using the same technique,
see the reference pages for circulators, specifically the Assert iterator and is empty range functions.

Warning: Please note that the definition of a range is different from that of iterators. An interface of a data
structure must declare whether it works with iterators, circulators, or both. STL algorithms always specify only
iterators in their interfaces. A range [c,d) of circulators used in an interface for iterators will work as expected
as long as c != d. A range [c,c) will be interpreted as the empty range like for iterators, which is different than
the full range that it should denote for circulators.

76.3.2 Forward Circulator

A class Circulator that satisfies the requirements of a forward circulator with the value type T , supports the
following operations. See the reference pages for the full set of requirements. Note that the stated return values
are not required, only a return value that is convertible to the stated type is required. As for C++, we recommend
the use of 0 instead of NULL.

Types

Circulator:: value type the value type T .
Circulator:: reference either reference or const reference to T .
Circulator:: pointer either pointer or const pointer to T .
Circulator:: size type unsigned integral type that can hold the size of the sequence.
Circulator:: difference type signed integral type that can hold the distance between two circulators.
Circulator:: iterator category

circulator category Forward circulator tag.

Creation

Circulator c; a circulator equal to NULL denoting an empty sequence.
Circulator c( d); a circulator equal to d.

1This is currently implemented as the adaptor class which provides a pair of iterators for a given circulator.
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Operations

Circulator& c = d Assignment.
bool c == NULL Test for emptiness.
bool c != NULL Test for non-emptiness, i.e. !(c == NULL).
bool c == d c is equal to d if they refer to the same item.
bool c != d Test for inequality, i.e. !(c == d).

reference ∗c Returns the value of the circulator. If Circulator is mutable *c = t
is valid.
Precondition: c is dereferenceable.

pointer c−> Returns a pointer to the value of the circulator.
Precondition: c is dereferenceable.

Circulator& ++ c Prefix increment operation.
Precondition: c is dereferenceable.
Postcondition: c is dereferenceable.

Circulator c++ Postfix increment operation. The result is the same as that of:
Circulator tmp = c; ++c; return tmp; .

76.3.3 Bidirectional Circulator

A class Circulator that satisfies the requirements of a bidirectional circulator with the value type T , supports the
following operations in addition to the operations supported by a forward circulator.

Types

Circulator:: iterator category

circulator category Bidirectional circulator tag.

Operations

Circulator& −− c Prefix decrement operation.
Precondition: c is dereferenceable.
Postcondition: c is dereferenceable.

Circulator c−− Postfix decrement operation. The result is the same as that of Cir-
culator tmp = c; --c; return tmp; .

76.3.4 Random Access Circulator

A class Circulator that satisfies the requirements of a random access Circulator for the value type T , supports
the following operations in addition to the operations supported by a bidirectional Circulator. In contrast to
random access iterators, no comparison operators are available for random access circulators.
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Types

Circulator:: iterator category

circulator category Random access circulator tag.

Operations

Circulator& c+= difference type n

The result is the same as if the prefix increment operation was
applied n times, but it is computed in constant time.

Circulator c+difference type n Same as above, but returns a new circulator.

Circulator difference type n+ c Same as above.

Circulator& c−= difference type n

The result is the same as if the prefix decrement operation was
applied n times, but it is computed in constant time.

Circulator c−difference type n Same as above, but returns a new circulator.

reference c[ difference type n] Returns *(c + n).

difference type c−Circulator d returns the difference between the two circulators. The value will
be in the interval [1− s,s−1] if s is the size of the total sequence.
The difference for a fixed circulator c (or d) with all other circu-
lators d (or c) is a consistent ordering of the elements in the data
structure. There has to be a minimal circulator dmin for which the
difference c−dmin to all other circulators c is non-negative.

Circulator c.min circulator() const

Returns the minimal circulator cmin in constant time.

76.3.5 Adaptors Between Iterators and Circulators

Algorithms working on iterator ranges can not be applied to circulator ranges in full generality, only to subranges
(see the warning in Section 76.3.1). The following adaptors convert circulators to iterators and vice versa (with
the unavoidable space and time penalty) to reestablish this generality.

#include <CGAL/circulator.h>
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Container from circulator container-like class with iterators built from a circulator
Circulator from iterator circulator over a range of two iterators
Circulator from container circulator for a container

The following example applies the generic std::reverse() algorithm from STL to a sequence given by a
bidirectional circulator c. It uses the Container from circulator adaptor.� �
Circulator c; // c must be at least bidirectional.
CGAL::Container_from_circulator<Circulator> container(c);
std::reverse( container.begin(), container.end());� �
Another example defines a circulator c for a vector of int’s. However, since there are no elements in the vector,
the circulator denotes an empty sequence. If there were elements in the vector, the circulator would implement
a random access modulus the size of the sequence.� �
std::vector<int> v;
typedef CGAL::Circulator_from_iterator<

std::vector<int>::iterator > Circulator;
Circulator c( v.begin(), v.end());� �
76.3.6 Functions on Circulators

A few functions deal with circulators and circulator ranges. The type C denotes a circulator. The type IC
denotes either a circulator or an iterator. More on algorithms that work with circulators as well with iterators
can be found in the reference pages.

#include <CGAL/circulator.h>

circulator size(C c) size of the sequence reachable by c
circulator distance(C c, C d) number of elements in the range [c,d)
iterator distance(IC ic1, IC ic2) number of elements in the range [ic2, ic1)
is empty range( IC ic1, IC ic2) test the range [ic2, ic1) for emptiness
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Handles, Ranges and Circulators
Reference Manual
Olivier Devillers, Lutz Kettner, Sylvain Pion, Michael Seel, and Mariette Yvinec

The concept of iterators in the STL is tailored for linear sequences.

CGAL extends this in several directions. First, it supports the notion of Handle (also sometimes refered to
as the trivial iterator) which is used to document that no traversal operation is needed, only reference to an
element. It also uses the Range and ConstRange concepts which encapsulates the access to both the first and
the past-the-end iterators of an iterator range.

Besides linear sequences, circular sequences also occur naturally in many combinatorial and geometric struc-
tures. Examples are polyhedral surfaces and planar maps, where the edges emanating from a vertex or the edges
around a facet form a circular sequence.

We provide several functions, classes and macros to assist in working with circulators: distance computation,
adaptor classes converting between circulators and iterators, base classes to ease the implementation of circula-
tors, and support for generic algorithms that work with circulators as well as with iterators.

76.4 Classified Reference Pages

Concepts

Handle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4337
Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4338
ConstRange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4340
Circulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4323
Forward circulator
Bidirectional circulator
Random access circulator

Classes

CGAL::Container from circulator<C> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4334
CGAL::Circulator from iterator<I> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4328
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CGAL::Assert circulator

Definition

Each of the following assertions, applicable to an iterator or a circulator or both, checks at compile time if its
argument is of the kind stated in the assertions name, i.e. a circulator, an iterator, or a particular category of
either an iterator or a circulator. Note that neither input nor output circulators exists.

#include <CGAL/circulator.h>

void Assert circulator( C c)
void Assert iterator( I i)
void Assert circulator or iterator( IC i)

void Assert input category( I i)
void Assert output category( I i)
void Assert forward category( IC ic)
void Assert bidirectional category( IC ic)
void Assert random access category( IC ic)

See Also

Circulator tag, Circulator traits, query circulator or iterator, Circulator.
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CGAL::circulator distance

Definition

The distance of a circulator c to a circulator d is the number of elements in the range [c,d). It is defined to be
zero for a circulator on an empty sequence and it returns the size of the data structure when applied to a range
of the form [c,c).

#include <CGAL/circulator.h>

template <class C>
C::difference type circulator distance( C c, C d)

See Also

circulator size, iterator distance, is empty range, Circulator.
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CGAL::circulator size

Definition

The size of a circulator is the size of the data structure it refers to. It is zero for a circulator on an empty
sequence. The size can be computed in linear time for forward and bidirectional circulators, and in constant
time for random access circulators using the minimal circulator. The function circulator size(c) returns the
circulator size. It uses the c.min circulator() function if c is a random access circulator.

#include <CGAL/circulator.h>

template <class C>
C::size type circulator size( C c)

See Also

circulator distance, iterator distance, is empty range, Circulator.
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Circulator

Definition

Note: This specification is a revised version based on the C++ Standard [C++98], which is available now. In
particular, iterator traits are now assumed and required.

Iterators in the STL were tailored for linear sequences. The specialization for circular data structures leads to
slightly different requirements which we will summarize in the circulators concept. The main difference is that
a circular data structure has no natural past-the-end value. As a consequence, a container supporting circulators
will not have an end()-member function. The semantic of a circulator range differs from the semantic of an
iterator range. For a circulator c the range [c,c) denotes the sequence of all elements in the data structure. For
iterators, this range defines the empty sequence. A separate test for an empty sequence has been added to the
circulator requirements: A comparison c == NULL for a circulator c is true for an empty sequence. As for C++,
we recommend the use of 0 instead of NULL.

Similar to STL iterators, we distinguish between forward, bidirectional, and random access circulators2. Most
requirements for circulators are equal to those for iterators. We present the changes, please refer to [MS96,
chapter 18] or [C++98] for the iterator requirements.

Past-the-end value: There is no past-the-end value for circulators.

Singular values: There are no singular values for circulators3

Empty sequence: The comparison c == NULL (or c == 0) for a circulator c is true if c denotes an empty
sequence, and false otherwise.

Dereferenceable values: A circulator that does not denote an empty sequence is dereferenceable.

Reachability: Each dereferenceable circulator can reach itself with a finite and non-empty sequence of appli-
cations of operator++.

Ranges: For any circulator c the range [c,c) is a valid range. If the circulator refers to an empty sequence, the
range [c,c) denotes the empty range. Otherwise the circulator is dereferenceable and the range [c,c) denotes the
sequence of all elements in the data structure. Remark: When a circulator is used in a place of an iterator, as, for
example, with an STL algorithm, it will work as expected with the only exception that, in STL algorithms, the
range [c,c) denotes always the empty range. This is not a requirement, but a consequence of the requirements
stated here and the fact that the STL requirements for iterator ranges are based on the operator++ and the
operator==, which we use for circulators as well. In principle, we face here the difference between a while
loop and a do-while loop.

Types: For a circulator of type C the following local types are required:

C::value type value type the circulator refers to.
C::reference reference type used for the return type of C::operator*().
C::pointer pointer type used for the return type of C::operator->().
C::size type unsigned integral type that can hold the size of a sequence
C::difference type signed integral type that can hold the distance between two circulators.
C::iterator category circulator category.

2Input circulators are a contradiction, since any circulator is supposed to return once to itself. Output circulators are not supported since
they would be indistinguishable from output iterators.

3Since circulators must be implemented as classes anyway, there is no need to allow singular values for them. An un-initalized circulator
does not have a singular value, but is supposed to refer to an empty sequence.
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Forward Circulators

In the following, we assume that a and b are circulators of type C, r is of type C& (is assignable), and T denotes
the value type of C. Let D be the distance type of C. As for C++, we recommend the use of 0 instead of NULL.

C() a circulator equal to NULL denoting an empty sequence.
a == NULL Returns true if a denotes an empty sequence, false otherwise.

For simplicity, NULL == a is not required. The
behavior for comparisons with pointer-like values different than NULL
is undefined. A runtime assertion is recommended.

a != NULL Returns !(a == NULL).
++r Like for forward iterators, but a dereferenceable circulator r will always

be dereferenceable after ++r (no past-the-end value). Precondition: r
does not denote an empty sequence.

r++ Same as for ++r.
C::iterator category circulator category CBP Forward circulator tag.

Bidirectional Circulators

The same requirements as for the forward circulators hold for bidirectional iterators with the following change
of the iterator category:

C::iterator category circulator category CBP Bidirectional circulator tag.

Random Access Circulators

The same requirements as for the bidirectional circulators hold for random access iterators with the following
changes and extensions.

The idea of random access extends naturally to circulators using equivalence classes modulus the length of
the sequence. With this in mind, the additional requirements for random access iterators hold also for random
access circulators. The only exception is that the random access iterator is required to provide a total order on
the sequence, which a circulator cannot provide4.

The difference of two circulators is not unique as for iterators. A reasonable requirement demands that the result
is in a certain range [1− size, size−1], where size is the size of the sequence, and that whenever a circulator a
is fixed that the differences with all other circulators of the sequence form a consistent ordering.

For the adaptor to iterators a minimal circulator dmin is required for which the difference c− dmin to all other
circulators c is non negative.

b - a limited range and consistent ordering as explained above.
a.min circulator() returns the minimal circulator from the range [a,a).
C::iterator category circulator category CBP Random access circulator tag.

4One might define an order by splitting the circle at a fixed point, e.g. the start circulator provided from the data structure. This is what
the adaptor to iterators will do. Nonetheless, we do not require this for circulators.
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Const Circulators

As with iterators, we distinguish between circulators and const circulators. The expression *a = t with t of
type T is valid for mutable circulators. It is invalid for const circulators.

Circulators in Container Classes

For a container x of type X that supports circulators c the following naming convention is recommended:

X::Circulator the type of the mutable circulator.
X::Const circulator the type of the const circulator.
c = x.begin() the start circulator of the sequence. It is of type X::Circulator for a

mutable container or X::Const circulator for a const container. There
must not be an end() member function.

If a container will support iterators and circulators, the member function circulator begin() is proposed.
However, the support of iterators and circulators simultaneously is not recommended, since it would lead to fat
interfaces. The natural choice should be supported, the other concept will be available through adaptors.

Example

A generic contains function accepts a range of circulators and a value. It returns true if the value is contained
in the sequence of items denoted by the range of circulators. As usual for circular structures, a do-while loop
is preferable, such that for the specific input, c == d, all elements in the sequence are reached. Note that
the example simplifies if the sequence is known to be non-empty, which is for example the common case in
polyhedral surfaces where vertices and facets have at least one incident edge.� �
template <class Circulator, class T>
bool contains( Circulator c, Circulator d, const T& value) {

if (c != 0) {
do {

if (*c == value)
return true;

} while (++c != d);
}
return false;

}� �
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CGAL::Circulator from container<C>

Definition

The adaptor Circulator from container<C> provides a circulator for an STL container C of equal category
as the iterator provided by the container. The iterator must be at least of the forward iterator category. The
corresponding non-mutable circulator is called Const circulator from container<C>.

The container type C is supposed to conform to the STL requirements for container (i.e. to have a begin() and an
end() iterator as well as the local types reference, const reference, value type, size type, and difference type).

#include <CGAL/circulator.h>

Types

All types required for circulators are provided.

Creation

Circulator from container<C> c; a circulator c on an empty sequence.

Circulator from container<C> c( C* container);

a circulator c initialized to refer to the first element in con-
tainer, i.e. container.begin(). The circulator c refers to an
empty sequence if the container is empty.

Circulator from container<C> c( C* container, C::iterator i);

a circulator c initialized to refer to the element *i in con-
tainer.
Precondition: *i is dereferenceable and refers to container.

Operations

The adaptor conforms to the requirements of the corresponding circulator category. An additional member
function current iterator() returns the current iterator pointing to the same position as the circulator does.

See Also

Container from circulator, Circulator from iterator, Circulator.

Example

The following program composes two adaptors – from a container to a circulator and back to an iterator. It
applies an STL sort algorithm on a STL vector with three elements. The resulting vector will be [2 5 9] as it
is checked by the assertions. The program is part of the CGAL distribution.
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� �
#include <cassert>
#include <vector>
#include <algorithm>
#include <CGAL/circulator.h>

typedef CGAL::Circulator_from_container< std::vector<int> > Circulator;
typedef CGAL::Container_from_circulator<Circulator> Container;
typedef Container::iterator Iterator;

int main() {
std::vector<int> v;
v.push_back(5);
v.push_back(2);
v.push_back(9);
Circulator c( &v);
Container container( c);
std::sort( container.begin(), container.end());
Iterator i = container.begin();
assert( *i == 2);
i++; assert( *i == 5);
i++; assert( *i == 9);
i++; assert( i == container.end());
return 0;

}� �
File: examples/Circulator/circulator_prog2.cpp
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CGAL::Circulator from iterator<I>

Definition

The adaptor Circulator from iterator<I> converts two iterators of type I, a begin and a past-the-end value, to
a circulator of equal category. The iterator must be at least of the forward iterator category. The circulator
will be mutable or non-mutable according to the iterator. Iterators provide no size type. This adapter assumes
std::size t instead.

#include <CGAL/circulator.h>

Types

typedef I iterator;

In addition all types required for circulators are provided.

Creation

Circulator from iterator<I> c; a circulator c on an empty sequence.

Circulator from iterator<I> c( I begin, I end, I cur = begin);

a circulator c initialized to refer to the element *cur in a range
[begin,end). The circulator c refers to a empty sequence if
begin==end.

Circulator from iterator<I> c( Circulator from iterator<I,T,Size,Dist> d, I cur);

a copy of circulator d referring to the element *cur. The
circulator c refers to a empty sequence if d does so.

Operations

The adaptor conforms to the requirements of the respective circulator category. An additional member function
current iterator() returns the current iterator pointing to the same position as the circulator does.

See Also

Container from circulator, Circulator from container, Circulator.

Example

The following program composes two adaptors – from an iterator to a circulator and back to an iterator. It
applies an STL sort algorithm on a STL vector containing three elements. The resulting vector will be [2 5
9] as it is checked by the assertions. The program is part of the CGAL distribution.
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� �
#include <CGAL/basic.h>
#include <cassert>
#include <vector>
#include <algorithm>
#include <CGAL/circulator.h>

typedef std::vector<int>::iterator I;
typedef CGAL::Circulator_from_iterator<I> Circulator;
typedef CGAL::Container_from_circulator<Circulator> Container;
typedef Container::iterator Iterator;

int main() {
std::vector<int> v;
v.push_back(5);
v.push_back(2);
v.push_back(9);
Circulator c( v.begin(), v.end());
Container container( c);
std::sort( container.begin(), container.end());
Iterator i = container.begin();
assert( *i == 2);
i++; assert( *i == 5);
i++; assert( *i == 9);
i++; assert( i == container.end());
return 0;

}� �
File: examples/Circulator/circulator_prog1.cpp

Another example usage for this adaptor is a random access circulator over the built-in C arrays. Given an array
of type T* with a begin pointer b and a past-the-end pointer e the adaptor Circulator from iterator<T*> c(b,e)
is a random access circulator c over this array.
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CGAL::Circulator tag

Definition

Iterators and circulators as well as different categories of circulators can be distinguished with the use of dis-
criminating functions and the following circulator tags. A couple of base classes simplify the task of writing
own circulators. They declare the appropriate tags and the local types needed for circulators. To use the tags or
base classes only it is sufficient to include:

#include <CGAL/circulator bases.h>
#include <CGAL/circulator.h>

Compile Time Tags

struct Circulator tag {}; any circulator.
struct Iterator tag {}; any iterator.

struct Forward circulator tag {}; derived from forward iterator tag.
struct Bidirectional circulator tag {}; derived from bidirectional iterator tag.
struct Random access circulator tag {}; derived from random access iterator tag.

Base Classes

template < class Category, class T, class Dist = std::ptrdiff t, class Size = std::size t, class Ptr = T*, class Ref
= T& >
struct Circulator base {};

struct Forward circulator base {};
struct Bidirectional circulator base {};
struct Random access circulator base {};

See Also

query circulator or iterator, Circulator traits, Assert circulator,
CGAL For all, is empty range, Circulator.

Example

The above declarations can be used to distinguish between iterators and circulators and between different circu-
lator categories. The assertions can be used to protect a templatized algorithm against instantiations that do not
fulfill the requirements. The following example program illustrates both.� �
#include <cassert>
#include <list>
#include <CGAL/circulator.h>

template <class C> inline int foo( C c, std::forward_iterator_tag) {
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CGAL::Assert_circulator( c);
CGAL::Assert_forward_category( c);
return 1;

}
template <class C> inline int foo( C c,

std::random_access_iterator_tag) {
CGAL::Assert_circulator( c);
CGAL::Assert_random_access_category( c);
return 2;

}
template <class I> inline int foo( I i, CGAL::Iterator_tag) {

CGAL::Assert_iterator( i);
return 3;

}

template <class C> inline int foo( C c, CGAL::Circulator_tag) {
CGAL::Assert_circulator( c);
typedef std::iterator_traits<C> Traits;
typedef typename Traits::iterator_category iterator_category;
return foo( c, iterator_category());

}
template <class IC> inline int foo( IC ic) {

typedef CGAL::Circulator_traits<IC> Traits;
typedef typename Traits::category category;
return foo( ic, category());

}

int main() {
typedef CGAL::Forward_circulator_base<int> F;
typedef CGAL::Random_access_circulator_base<int> R;
F f = F();
R r = R();
std::list<int> l;
assert( foo( f) == 1);
assert( foo( r) == 2);
assert( foo( l.begin()) == 3);
return 0;

}� �
File: examples/Circulator/circulator_prog3.cpp

Implementation

Since not all current compilers can eliminate the space needed for the compile time tags even when deriving
from them, we implement a variant for each base class that contains a protected void* data member called ptr.
Here, the allocated space in the derived classes can be reused.

template <class T, class Dist, class Size>
class Forward circulator ptrbase {}; forward circulator.
template <class T, class Dist, class Size>
class Bidirectional circulator ptrbase {}; bidirectional circulator.
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template <class T, class Dist, class Size>
class Random access circulator ptrbase {}; random access circulator.
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CGAL::Circulator traits<C>

Definition

The circulator traits class distinguishes between circulators and iterators. It defines a local type category that is
identical to the type Circulator tag if the iterator category of the argument C is a circulator category. Otherwise
it is identical to the type Iterator tag.

The local type iterator category gives the corresponding iterator category for circulators, i.e. one of forward
iterator tag, bidirectional iterator tag, or random access iterator tag.

The local type circulator category gives the corresponding circulator category for iterators, i.e. one of Forward
circulator tag, Bidirectional circulator tag, or Random access circulator tag.

#include <CGAL/circulator.h>

Types

Circulator traits<C>:: category either Iterator tag or Circulator tag.

Circulator traits<C>:: iterator category corresponding iterator category for circulators.

Circulator traits<C>:: circulator category corresponding circulator category for iterator

Example

A generic function bar that distinguishes between a call with a circulator range and a call with an iterator range:� �
template <class I>
void bar( I i, I j, CGAL::Iterator_tag) {

CGAL::Assert_iterator(i);
// This function is called for iterator ranges [i,j).

}
template <class C>
void bar( C c, C d, CGAL::Circulator_tag) {

CGAL::Assert_circulator(c);
// This function is called for circulator ranges [c,d).

}
template <class IC>
void bar( IC i, IC j) { // calls the correct function

return bar( i, j, typename CGAL::Circulator_traits<IC>::category());
}� �
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CGAL::Container from circulator<C>

Definition

The adaptor Container from circulator<C> is a class that converts any circulator type C to a kind of container
class, i.e. a class that provides an iterator and a const iterator type and two member functions – begin() and
end() – that return the appropriate iterators. By analogy to STL container classes these member functions return
a const iterator in the case that the container itself is constant and a mutable iterator otherwise.

#include <CGAL/circulator.h>

Types

typedef C Circulator;
Container from circulator<C>:: iterator
Container from circulator<C>:: const iterator
Container from circulator<C>:: value type
Container from circulator<C>:: reference
Container from circulator<C>:: const reference
Container from circulator<C>:: pointer
Container from circulator<C>:: const pointer
Container from circulator<C>:: size type
Container from circulator<C>:: difference type

Creation

Container from circulator<C> container;

any iterator of container will have a singular value.

Container from circulator<C> container( C c);

any iterator of container will have a singular value if the circulator c corresponds to an empty
sequence.

Operations

iterator container.begin() the start iterator.
const iterator container.begin() const the start const iterator.
iterator container.end() the past-the-end iterator.
const iterator container.end() const the past-the-end const iterator.

The iterator and const iterator types are of the appropriate iterator category. In addition to the operations
required for their category, they have a member function current circulator() that returns a circulator pointing
to the same position as the iterator does.
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See Also

Circulator from iterator, Circulator from container, Circulator.

Example

The generic reverse() algorithm from the STL can be used with an adaptor if at least a bidirectional circulator
c is given.� �
Circulator c; // c is assumed to be a bidirectional circulator.
CGAL::Container_from_circulator<Circulator> container(c);
reverse( container.begin(), container.end());� �
Implementation

The iterator adaptor keeps track of the number of rounds a circulator has done around the ring-like data structure
(a kind of winding number). It is used to distinguish between the start position and the end position which will
be denoted by the same circulator internally. This winding number is zero for the begin()-iterator and one for
the end()-iterator. It is incremented whenever the internal circulator passes the begin() position. Two iterators
are equal if their internally used circulators and winding numbers are equal. This is more general than necessary
since an iterator equal to end()-iterator is not supposed to be incremented any more, which is here still possible
in a defined manner.

The implementation is different for random access iterators. The random access iterator has to be able to
compute the size of the data structure in constant time. This is for example needed if the difference of the past-
the-end iterator and the begin iterator is taken, which is exactly the size of the data structure. Therefore, if the
circulator is of the random-access category, the adapter chooses the minimal circulator for the internal anchor
position. The minimal circulator is part of the random access circulator requirements, see Page 4324. For the
random access iterator the adaptor implements a total ordering relation that is currently not required for random
access circulators.
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CGAL For all

Definition

In order to write algorithms that work with iterator ranges as well as with circulator ranges we have to consider
the difference of representing an empty range. For iterators this is the range [i, i), while for circulators it would
be c == NULL, the empty sequence test. The function is empty range provides the necessary generic test which
accepts an iterator range or a circulator range and says whether the range is empty or not.

#include <CGAL/circulator.h>

A macro CGAL For all( i, j) simplifies the writing of such simple loops as the one in the example of the
function is empty range. i and j can be either iterators or circulators. The macro loops through the range [i, j).
It increments i until it reaches j. The implementation looks like:

CGAL For all(i,j) ≡ for ( bool _circ_loop_flag = ! ::CGAL::is_empty_range(i,j);
_circ_loop_flag;
_circ_loop_flag = ((++i) != (j))

)

Note that the macro behaves like a for-loop. It can be used with a single statement or with a statement block.
For bidirectional iterators or circulators, a backwards loop macro CGAL For all backwards( i, j) exists that
decrements j until it reaches i.

See Also

iterator distance, is empty range, Circulator tag, Circulator traits,
Assert circulator or iterator, Circulator.
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Handle

Definition

Most data structures in CGAL use the concept of Handle in their user interface to refer to the elements they store.
This concept describes what is sometimes called a trivial iterator. A Handle is akin to a pointer to an object
providing the dereference operator operator*() and member access operator->() but no increment or decrement
operators like iterators. A Handle is intended to be used whenever the referenced object is not part of a logical
sequence.

Like iterators, the handle can be passed as template argument to std::iterators traits in order to extract its
value type, the type of the element pointed to. The iterator category is void.

Refines

DefaultConstructible, CopyConstructible, Assignable, EqualityComparable

The default constructed object must be unique as far as the equality operator is concerned (this serves the same
purpose as NULL for pointers). (Note that this is not a generally supported feature of iterators of standard
containers.)

Dereference

value type& ∗h returns the object pointed to.
value type* h−> returns a pointer to the object pointed to.

Has Models

pointers
const pointers
iterators
circulators
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Range

Definition

CGAL and the STL heavily use the concepts of iterators and iterator ranges to describe linear sequences of
elements, and algorithms operating on these.

The Range concept aims at encapsulating an iterator range, by providing access to the first and past-the-end
iterators of a range. The advantage is that the syntax for passing ranges is much more concise than passing two
arguments separately.

Ranges come in different categories depending on the category of their iterator : mutable or constant (modifi-
ability of the elements pointed to), and forward, bidirectional or random-access. The category can be queried
using std::iterator traits and the corresponding iterator type. Note that the concepts Range and ConstRange do
not require anything on the category or the value type of the iterator. It must be precised in the documentation
of any model of these concepts. For example, in the case of a vector of points, one would say: This type is a
model of Range concept, its iterator type is random-access and its value type is Point.

Boost also offers the Boost.Range library which provides good support for ranges.

Finally, let us note that ranges, in general (especially in template context) need to be passed and returned by
(const) reference for efficiency. This is a difference with iterators which are typically passed by value.

Refines

ConstRange

Boost’s Range concept

Types

Range:: const iterator The constant iterator type.

Range:: iterator The iterator type. It must be convertible to const iterator.

Range:: size type An unsigned integral type that can represent the size of a
range.

Member functions

const iterator r.begin() const returns the const iterator pointing to the first element.
const iterator r.end() const returns the past-the-end const iterator.
iterator r.begin() returns the iterator pointing to the first element.
iterator r.end() returns the past-the-end iterator.

size type r.size() const returns the size of the range.
bool r.empty() const returns whether the range is empty.
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Has Models

STL containers
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ConstRange

Definition

A constant iterator range. Refer to the Range concept for more details.

Refines

Boost’s Range concept

Types

ConstRange:: const iterator The constant iterator type.

ConstRange:: size type An unsigned integral type that can represent the size of a
range.

Member functions

const iterator r.begin() const returns the const iterator pointing to the first element.
const iterator r.end() const returns the past-the-end const iterator.

size type r.size() const returns the size of the range.
bool r.empty() const returns whether the range is empty.

Has Models

STL containers
boost::iterator range

See Also

Range
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CGAL::is empty range

Definition

In order to write algorithms that work with iterator ranges as well as with circulator ranges we have to consider
the difference of representing an empty range. For iterators this is the range [i, i), while for circulators it would
be c == NULL, the empty sequence test. The function is empty range provides the necessary generic test which
accepts an iterator range or a circulator range and says whether the range is empty or not.

#include <CGAL/circulator.h>

template< class IC>
bool is empty range( IC i, IC j) is true if the range [i, j) is empty, false otherwise.

Precondition: IC is either a circulator or an iterator type. The range [i,
j) is valid.

Example

The following function process all accepts a range [i, j) of an iterator or circulator IC and processes each
element in this range:

template <class IC>
void process_all( IC i, IC j) {

if (! CGAL::is_empty_range( i, j)) {
do {

process(*i);
} while (++i != j);

}
}

See Also

iterator distance, CGAL For all, Circulator tag, Circulator traits,
Assert circulator or iterator, Circulator.
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CGAL::iterator distance

Definition

The following function returns the distance between either two iterators or two circulators.

#include <CGAL/circulator.h>

template <class IC>
iterator traits<IC>::difference type iterator distance( IC ic1, IC ic2)

See Also

circulator size, circulator distance, is empty range, Circulator tag,
Assert circulator or iterator, CGAL For all, Circulator.
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CGAL::query circulator or iterator

Definition

The following function distinguishes between circulators and iterators. It is based on iterator traits [C++98,
Mye95] and Circulator traits.

#include <CGAL/circulator.h>

template <class I>
Iterator tag query circulator or iterator( I i)

if the iterator category of I belongs to an iterator.

template <class C>
Circulator tag query circulator or iterator( C c)

if the iterator category of C belongs to a circulator.

See Also

Circulator tag, Circulator traits, Assert circulator, Circulator.
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Chapter 77

Geometric Object Generators
Olivier Devillers, Susan Hert, Michael Hoffmann, Lutz Kettner, and Sven Schönherr
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77.1 Introduction

A variety of generators for geometric objects are provided in CGAL. They are useful as synthetic test data sets,
e.g. for testing algorithms on degenerate object sets and for performance analysis.

Two kinds of point generators are provided: first, random point generators and second deterministic point gen-
erators. Most random point generators and a few deterministic point generators are provided as input iterators.
The input iterators model an infinite sequence of points. The function CGAL::cpp0x::copy n() can be used to
copy a finite sequence; see Section 73.9. The iterator adaptor Counting iterator can be used to create finite iter-
ator ranges; see Section 73.9. Other generators are provided as functions that write to output iterators. Further
functions add degeneracies or random perturbations.

In 2D, we provide input iterators to generate random points in a disc (Random points in disc 2), in a square
(Random points in square 2), on a circle (Random points on circle 2), on a segment (Random points on
segment), and on a square (Random points on square 2). For generating grid points we provide three functions,
points on segment 2, points on square grid 2 that write to output iterators and an input iterator Points on
segment 2.
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For 3D points, input iterators are provided for random points uniformly distributed in a sphere (Random points
in sphere 3) or cube (Random points in cube 3) or on the boundary of a sphere (Random points on sphere 3).
For generating 3D grid points, we provide the function points on cube grid 3 that writes to an output iterator.

For higher dimensions, input iterators are provided for random points uniformly distributed in a d-dimensional
cube (Random points in cube d) or d-dimensional ball (Random points in ball d) or on the boundary of a
sphere (Random points on sphere d). For generating grid points, we provide the function points on grid d
that writes to an output iterator.

We also provide two functions for generating more complex geometric objects. The function random convex
set 2 computes a random convex planar point set of a given size where the points are drawn from a specific
domain and random polygon 2 generates a random simple polygon from points drawn from a specific domain.

77.1.1 Random Perturbations

Degenerate input sets like grid points can be randomly perturbed by a small amount to produce quasi-degenerate
test sets. This challenges numerical stability of algorithms using inexact arithmetic and exact predicates to
compute the sign of expressions slightly off from zero. For this the function perturb points 2 is provided.

77.1.2 Adding Degeneracies

For a given point set certain kinds of degeneracies can be produced by adding new points. The random
selection() function is useful for generating multiple copies of identical points. The function random collinear
points 2() adds collinearities to a point set.

77.1.3 Support Functions and Classes for Generators

The function random selection chooses n items at random from a random access iterator range which is useful
to produce degenerate input data sets with multiple entries of identical items.

77.2 Example Generating Degenerate Point Sets

We want to generate a test set of 1000 points, where 60% are chosen randomly in a small disc, 20% are from
a larger grid, 10% are duplicates points, and 10% collinear points. A random shuffle removes the construction
order from the test set. See Figure 77.1 for the example output.� �
#include <CGAL/Simple_cartesian.h>
#include <cassert>
#include <vector>
#include <algorithm>
#include <CGAL/point_generators_2.h>
#include <CGAL/algorithm.h>
#include <CGAL/random_selection.h>

using namespace CGAL;

typedef Simple_cartesian<double> R;
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typedef R::Point_2 Point;
typedef Creator_uniform_2<double,Point> Creator;
typedef std::vector<Point> Vector;

int main() {
// Create test point set. Prepare a vector for 1000 points.
Vector points;
points.reserve(1000);

// Create 600 points within a disc of radius 150.
Random_points_in_disc_2<Point,Creator> g( 150.0);
CGAL::cpp0x::copy_n( g, 600, std::back_inserter(points));

// Create 200 points from a 15 x 15 grid.
points_on_square_grid_2( 250.0, 200,
std::back_inserter(points),Creator());

// Select 100 points randomly and append them at the end of
// the current vector of points.
random_selection( points.begin(), points.end(), 100,

std::back_inserter(points));

// Create 100 points that are collinear to two randomly chosen
// points and append them to the current vector of points.
random_collinear_points_2( points.begin(), points.end(), 100,

std::back_inserter( points));

// Check that we have really created 1000 points.
assert( points.size() == 1000);

// Use a random permutation to hide the creation history
// of the point set.
std::random_shuffle( points.begin(), points.end(), default_random);

// Check range of values.
for ( Vector::iterator i = points.begin(); i != points.end(); i++){

assert( i->x() <= 251);
assert( i->x() >= -251);
assert( i->y() <= 251);
assert( i->y() >= -251);

}
return 0;

}� �
File: examples/Generator/random_degenerate_point_set.cpp

77.3 Example Generating Grid Points

The second example demonstrates the point generators with integer points. Arithmetic with doubles is sufficient
to produce regular integer grids. See Figure 77.2 for the example output.
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Figure 77.1: Output of example program for point
generators.

Figure 77.2: Output of example program for point
generators working on integer points.

� �
#include <CGAL/Simple_cartesian.h>
#include <cassert>
#include <vector>
#include <algorithm>
#include <CGAL/point_generators_2.h>
#include <CGAL/algorithm.h>

using namespace CGAL;

typedef Simple_cartesian<int> K;
typedef K::Point_2 Point;
typedef Creator_uniform_2<int,Point> Creator;

int main() {
// Create test point set. Prepare a vector for 400 points.
std::vector<Point> points;
points.reserve(400);

// Create 250 points from a 16 x 16 grid. Note that the double
// arithmetic _is_ sufficient to produce exact integer grid points.
// The distance between neighbors is 34 pixel = 510 / 15.
points_on_square_grid_2( 255.0, 250,
std::back_inserter(points),Creator());

// Lower, left corner.
assert( points[0].x() == -255);
assert( points[0].y() == -255);

// Upper, right corner. Note that 6 points are missing to fill the
grid.
assert( points[249].x() == 255 - 6 * 34);
assert( points[249].y() == 255);
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Figure 77.3: Output of the first example program
for the generic generator.

Figure 77.4: Output of the second example pro-
gram for the generic generator without using in-
termediate storage.

// Create 250 points within a disc of radius 150.
Random_points_in_disc_2<Point,Creator> g( 150.0);
CGAL::cpp0x::copy_n( g, 250, std::back_inserter(points));

// Check that we have really created 500 points.
assert( points.size() == 500);
return 0;

}� �
File: examples/Generator/random_grid.cpp

77.4 Examples Generating Segments

The following two examples illustrate the use of the generic functions from Section 73.9 like Join input
iterator 2 to generate composed objects from other generators – here two-dimensional segments from two
point generators.

We want to generate a test set of 200 segments, where one endpoint is chosen randomly from a horizontal
segment of length 200, and the other endpoint is chosen randomly from a circle of radius 250. See Figure 77.3
for the example output.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <cassert>
#include <vector>
#include <algorithm>
#include <CGAL/Point_2.h>
#include <CGAL/Segment_2.h>
#include <CGAL/point_generators_2.h>
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#include <CGAL/function_objects.h>
#include <CGAL/Join_input_iterator.h>
#include <CGAL/algorithm.h>

using namespace CGAL;

typedef Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_2 Point;
typedef Creator_uniform_2<double,Point> Pt_creator;
typedef K::Segment_2 Segment;
typedef std::vector<Segment> Vector;

int main() {
// Create test segment set. Prepare a vector for 200 segments.
Vector segs;
segs.reserve(200);

// Prepare point generator for the horizontal segment, length 200.
typedef Random_points_on_segment_2<Point,Pt_creator> P1;
P1 p1( Point(-100,0), Point(100,0));

// Prepare point generator for random points on circle, radius 250.
typedef Random_points_on_circle_2<Point,Pt_creator> P2;
P2 p2( 250);

// Create 200 segments.
typedef Creator_uniform_2< Point, Segment> Seg_creator;
typedef Join_input_iterator_2< P1, P2, Seg_creator> Seg_iterator;
Seg_iterator g( p1, p2);
CGAL::cpp0x::copy_n( g, 200, std::back_inserter(segs));

assert( segs.size() == 200);
for ( Vector::iterator i = segs.begin(); i != segs.end(); i++){

assert( i->source().x() <= 100);
assert( i->source().x() >= -100);
assert( i->source().y() == 0);
assert( i->target().x() * i->target().x() +

i->target().y() * i->target().y() <= 251*251);
assert( i->target().x() * i->target().x() +

i->target().y() * i->target().y() >= 249*249);
}
return 0;

}� �
File: examples/Generator/random_segments1.cpp

The second example generates a regular structure of 100 segments; see Figure 77.4 for the example output. It
uses the Points on segment 2 iterator, Join input iterator 2 and Counting iterator to avoid any intermediate
storage of the generated objects until they are used.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
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#include <algorithm>
#include <vector>
#include <CGAL/point_generators_2.h>
#include <CGAL/function_objects.h>
#include <CGAL/Join_input_iterator.h>
#include <CGAL/Counting_iterator.h>

using namespace CGAL;

typedef Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_2 Point;
typedef K::Segment_2 Segment;
typedef Points_on_segment_2<Point> PG;
typedef Creator_uniform_2< Point, Segment> Creator;
typedef Join_input_iterator_2< PG, PG, Creator> Segm_iterator;
typedef Counting_iterator<Segm_iterator,Segment> Count_iterator;
typedef std::vector<Segment> Vector;

int main() {
// Create test segment set. Prepare a vector for 100 segments.
Vector segs;
segs.reserve(100);

// A horizontal like fan.
PG p1( Point(-250, -50), Point(-250, 50),50); // Point generator.
PG p2( Point( 250,-250), Point( 250,250),50);
Segm_iterator t1( p1, p2); // Segment generator.
Count_iterator t1_begin( t1); // Finite range.
Count_iterator t1_end( t1, 50);
std::copy( t1_begin, t1_end, std::back_inserter(segs));

// A vertical like fan.
PG p3( Point( -50,-250), Point( 50,-250),50);
PG p4( Point(-250, 250), Point( 250, 250),50);
Segm_iterator t2( p3, p4);
Count_iterator t2_begin( t2);
Count_iterator t2_end( t2, 50);
std::copy( t2_begin, t2_end, std::back_inserter(segs));

CGAL_assertion( segs.size() == 100);
for ( Vector::iterator i = segs.begin(); i != segs.end(); i++){

CGAL_assertion( i->source().x() <= 250);
CGAL_assertion( i->source().x() >= -250);
CGAL_assertion( i->source().y() <= 250);
CGAL_assertion( i->source().y() >= -250);
CGAL_assertion( i->target().x() <= 250);
CGAL_assertion( i->target().x() >= -250);
CGAL_assertion( i->target().y() <= 250);
CGAL_assertion( i->target().y() >= -250);

}
return 0;

}� �
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File: examples/Generator/random_segments2.cpp

77.5 Example Generating Point Sets in d dimensions

The following example generates points inside a cube in dimension 5 (examples for ball and sphere are available
in the example directory) :� �
#include <iostream>
#include <vector>
#include <CGAL/Cartesian_d.h>
#include <CGAL/point_generators_d.h>

typedef CGAL::Cartesian_d<double> Kd;
typedef Kd::Point_d Point;

int main ()
{

int nb_points = 10;
int dim =5;
double size = 100.0;
std::cout << "Generating "<<nb_points<<" random points in a cube in "

<<dim<<"D, coordinates from "<<-size<<" to "<<size<<std::endl;
std::vector<Point> v;
v.reserve (nb_points);
CGAL::Random_points_in_cube_d<Point> gen (dim, size);
for (int i = 0; i < nb_points; ++i) v.push_back (*gen++);
for (int i = 0; i < nb_points; ++i) std::cout<<" "<<v[i]<<std::endl;
return 0;

}� �
File: examples/Generator/cube_d.cpp

The output of this example looks like:

Generating 10 random points in a cube in 5D, coordinates from -100 to 100
5 32.9521 26.0403 59.3979 -99.2553 15.5102
5 80.3731 30.809 7.32491 -90.2544 94.5635
5 -71.3412 -31.933 -98.0734 79.6493 66.6104
5 -78.5065 -58.2397 -33.9096 81.2196 57.2512
5 21.4093 26.7661 57.6083 23.4958 93.1047
5 10.5895 -21.8914 70.9726 36.756 -42.2667
5 23.9813 54.4519 -26.0894 -85.18 -21.0775
5 -48.7499 59.9873 6.22335 -4.16011 81.0727
5 -11.6615 5.53147 -32.6578 -79.9283 44.5679
5 53.0183 78.3228 -28.5665 83.3503 68.0482

Next example generates grid points in dimension dim = 4. Since the required number of points, 20 is between
2dim and 3dim the supporting grid has 3×3×3×3 points. Since the size parameter is 5, the coordinates are in
{−5,0,5}, but since the number of points verifies 20≤ 3dim−1, all generated points have the same last coordinate
−5.
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� �
#include <iostream>
#include <vector>
#include <CGAL/Cartesian_d.h>
#include <CGAL/point_generators_d.h>
#include <CGAL/constructions_d.h>

typedef CGAL::Cartesian_d<double> Kd;
typedef Kd::Point_d Point;
typedef CGAL::Creator_uniform_d

<std::vector<double>::iterator, Point> Creator_d;

int main ()
{

int nb_points = 20;
int dim = 4;
double size = 5.0;
std::cout << "Generating "<<nb_points<<" grid points in "

<<dim<<"D" << std::endl;
std::vector<Point> v;
v.reserve(nb_points);
CGAL::points_on_cube_grid_d (dim, size, (std::size_t) nb_points,

std::back_inserter(v), Creator_d(dim) );
for (int i = 0; i < nb_points; ++i) std::cout<<" "<<v[i]<<std::endl;
return 0;

}� �
File: examples/Generator/grid_d.cpp

The output of previous example corresponds to the points of this figure depicted in red or pink (pink points are
“inside” the cube). The output is:

Generating 20 grid points in 4D
4 -5 -5 -5 -5
4 0 -5 -5 -5
4 5 -5 -5 -5
4 -5 0 -5 -5
4 0 0 -5 -5
4 5 0 -5 -5
4 -5 5 -5 -5
4 0 5 -5 -5
4 5 5 -5 -5
4 -5 -5 0 -5
4 0 -5 0 -5
4 5 -5 0 -5
4 -5 0 0 -5
4 0 0 0 -5
4 5 0 0 -5
4 -5 5 0 -5
4 0 5 0 -5
4 5 5 0 -5
4 -5 -5 5 -5
4 0 -5 5 -5
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77.6 Design and Implementation History

Lutz Kettner coded generators in 2D and 3D For points in and on sphere, points are generated in a cube up to
the moment the point is inside the sphere, then it is normalized to go on the boundary if needed.

Sven Schnherr implemented the Random class.

Michael Hoffmann coded the random convex polygon,

Geert-Jan Giezeman and Susan Hert coded the random simple polygon.

Olivier Devillers coded generators in high dimensions. For points in ball and on sphere, points are generated
on a sphere/ball boundary as a product of normal distributions, then it is normalized. If needed a random radius
(with relevant distribution) is used to put the point inside the ball.
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This chapter describes the functions and classes provided in CGAL that are useful for generating synthetic test
data sets, e.g., for testing algorithms on degenerate object sets and for performance analysis. These include a
class for generating random numbers and function for selecting random items from a set of objects, generators
for two-dimensional and three-dimensional points sets, a generator for random convex sets and one for simple
polygons. The STL algorithm std::random shuffle is useful with these functions and classes to to achieve
random permutations for otherwise regular generators ( e.g., points on a grid or segment).
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CGAL::default random

Definition

The variable default random is the default random numbers generator used for the generator functions and
classes.

#include <CGAL/Random.h>

Random default random;
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CGAL::perturb points 2

Definition

The function perturb points 2 perturbs each point in a given range of points by a random amount.

#include <CGAL/point generators 2.h>

template <class ForwardIterator>
void perturb points 2(

ForwardIterator first,
ForwardIterator last,
double xeps,
double yeps = xeps,
Random& rnd = default random,
Creator creator = Creator uniform 2<Kernel traits<P>::Kernel::RT,P>)

perturbs the points in the range [first, last) by replacing each
point with a random point from the xeps × yeps rectangle
centered at the original point. Two random numbers are
needed from rnd for each point.

Requirements

• Creator must be a function object accepting two double values x and y and returning an initialized point
(x,y) of type P.

Predefined implementations for these creators like the default are described in Section 73.9.

• The value type of the ForwardIterator must be assignable to P.

• P is equal to the value type of the ForwardIterator when using the default initializer.

• The expressions to double((*first).x()) and to double((*first).y()) must result in the respective coordinate
values.

See Also

CGAL::points on segment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4360
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CGAL::random selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4373
std::random shuffle
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CGAL::points on segment 2

Definition

The function points on segment 2 generates a set of points equally spaced on a segment given the endpoints of
the segment.

#include <CGAL/point generators 2.h>

template <class P, class OutputIterator>
OutputIterator points on segment 2( P p, P q, std::size t n, OutputIterator o)

creates n points equally spaced on the segment from p to q,
i.e. ∀i : 0≤ i < n : o[i] := n−i−1

n−1 p+ i
n−1 q. Returns the value

of o after inserting the n points.

See Also

CGAL::points on segment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4360
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CGAL::Points on segment 2<Point 2>

Definition

The class Points on segment 2<Point 2> is a generator for points on a segment whose endpoints are specified
upon construction. The points are equally spaced

Is Model for the Concepts

PointGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4366

Types

typedef std::input iterator tag iterator category;
typedef Point 2 value type;
typedef std::ptrdiff t difference type;
typedef const Point 2* pointer;
typedef Point 2 reference;

Creation

Points on segment 2<Point 2> g( Point 2 p, Point 2 q, std::size t n, std::size t i = 0);

g is an input iterator creating points of type P equally spaced
on the segment from p to q. n− i points are placed on the
segment defined by p and q. Values of the index parameter i
larger than 0 indicate starting points for the sequence further
from p. Point p has index value 0 and q has index value n−1.
Requirement: The expressions to double(p.x()) and to
double(p.y()) must result in the respective double represen-
tation of the coordinates of p, and similarly for q.

Operations

double g.range() returns the range in which the point coordinates lie, i.e. ∀x : |x| ≤ range() and
∀y : |y| ≤range()

.

Point 2 g.source() returns the source point of the segment.
Point 2 g.target() returns the target point of the segment.

See Also

CGAL::cpp0x::copy n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4174
CGAL::Counting iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page ??
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CGAL::Random points in square 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4385
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CGAL::Random points on segment 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4387
CGAL::Random points on square 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4390
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std::random shuffle

4362



F
un

ct
io

n

CGAL::points on square grid 2

Definition

The function points on square grid 2 generates a given number of points on a square grid whose size is deter-
mined by the number of points to be generated.

#include <CGAL/point generators 2.h>

template <class OutputIterator, Creator creator>
OutputIterator points on square grid 2(

double a,
std::size t n,
OutputIterator o,
Creator creator = Creator uniform 2<Kernel traits<P>::Kernel::RT,P>)

creates the first n points on the regular d
√

ne× d
√

ne grid
within the square [−a,a]× [−a,a]. Returns the value of o
after inserting the n points.

Requirements

• Creator must be a function object accepting two double values x and y and returning an initialized point
(x,y) of type P. Predefined implementations for these creators like the default can be found in Section 73.9.

• The OutputIterator must accept values of type P. If the OutputIterator has a value type the default ini-
tializer of the creator can be used. P is set to the value type in this case.

See Also

CGAL::perturb points 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4359
CGAL::points on segment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4360
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std::random shuffle

4363



F
un

ct
io

n

CGAL::points on cube grid 3

Definition

The function points on cube grid 3 generates a given number of points on a cubic grid whose size is determined
by the number of points to be generated.

#include <CGAL/point generators 3.h>

template <class OutputIterator, Creator creator>
OutputIterator points on cube grid 3(

double a,
std::size t n,
OutputIterator o,
Creator creator = Creator uniform 3<Kernel traits<P>::Kernel::RT,P>)

creates the first n points on the regular dn1/3 e × dn1/3 e ×
dn1/3 e grid within the cube [−a,a]× [−a,a]× [−a,a]. Re-
turns the value of o after inserting the n points.

Requirements

• Creator must be a function object accepting three double values x, y, and z and returning an initialized
point (x,y,z) of type P. Predefined implementations for these creators like the default can be found in
Section 73.9.

• The OutputIterator must accept values of type P. If the OutputIterator has a value type the default ini-
tializer of the creator can be used. P is set to the value type in this case.

CGAL::points on square grid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4363
CGAL::random selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4373
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CGAL::points on cube grid d

Definition

The function points on cube grid d generates a given number of points on a cubic grid in any dimension whose
size is determined by the number of points to be generated.

#include <CGAL/point generators d.h>

template <class OutputIterator, Creator creator>
OutputIterator points on cube grid d(

int dim,
double a,
std::size t n,
OutputIterator o,
Creator creator)

creates the first n points on the regular dn1/dim e×dn1/dim e×
. . .×dn1/dim e grid within the hypercube [−a,a]dim. Returns
the value of o after inserting the n points.

Requirements

• Creator must be a functor accepting an integer (the dimension) and two iterators and returning an ini-
tialized point of type P whose coordinates are given by the iterator. For example: Creator uniform d<
Kernel traits<Point d>::Kernel::RT, Point d>. The dimension of Creator should be dim.

• The OutputIterator must accept values of type P.

CGAL::points on square grid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4363
CGAL::points on cube grid 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4364
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PointGenerator

Definition

The concept PointGenerator defines the requirements for a point generator, which can be used in places where
input iterators are called for.

Refines

InputIterator

Has Models

CGAL::Random points in ball d<Point d,> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page ??
CGAL::Random points in disc 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4383
CGAL::Random points in square 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4385
CGAL::Random points on circle 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4386
CGAL::Random points on segment 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4387
CGAL::Random points on square 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4390
CGAL::Random points in cube 3<Point 3, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4381
CGAL::Random points in cube d<Point d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4382
CGAL::Random points in sphere 3<Point 3, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4384
CGAL::Random points on sphere 3<Point 3, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4388
CGAL::Random points on sphere d<Point d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4389

Types

PointGenerator:: value type the type of point being generated.

Operations

double pg.range() const return an absolute bound for the coordinates of all generated
points.

4366



F
un

ct
io

n

CGAL::random collinear points 2

Definition

#include <CGAL/point generators 2.h>

template <class RandomAccessIterator, class OutputIterator>
OutputIterator random collinear points 2(

RandomAccessIterator first,
RandomAccessIterator last,
std::size t n,
OutputIterator first2,
Random& rnd = default random,
Creator creator = Creator uniform 2<Kernel traits<P>::Kernel::RT,P>)

randomly chooses two points from the range [first, last), cre-
ates a random third point on the segment connecting these
two points, writes it to first2, and repeats this n times, thus
writing n points to first2 that are collinear with points in the
range [first, last). Three random numbers are needed from
rnd for each point. Returns the value of first2 after inserting
the n points.

Requirements

• Creator must be a function object accepting two double values x and y and returning an initialized point
(x,y) of type P. Predefined implementations for these creators like the default can be found in Section 73.9.

• The value type of the RandomAccessIterator must be assignable to P. P is equal to the value type of the
RandomAccessIterator when using the default initializer.

• The expressions to double((*first).x()) and to double((*first).y()) must result in the respective coordinate
values.

See Also

CGAL::perturb points 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4359
CGAL::points on segment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4360
CGAL::points on square grid 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4363
CGAL::random selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4373
std::random shuffle
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CGAL::random convex set 2

Definition

The function random convex set 2 computes a random convex planar point set of given size where the points
are drawn from a specific domain.

#include <CGAL/random convex set 2.h>

template < class OutputIterator, class PointGenerator, class Traits >
OutputIterator random convex set 2(

std::size t n,
OutputIterator o,
PointGenerator pg,
Traits t = Default traits)

computes a random convex n-gon by writing its vertices (ori-
ented counterclockwise) to o. The resulting polygon is scaled
such that it fits into the bounding box as specified by pg.
Therefore we cannot easily describe the resulting distribu-
tion.
Precondition: n≥ 3.

Requirements

1. PointGenerator is a model of the concept PointGenerator

2. Traits is a model of the concept RandomConvexSetTraits 2

3. Point generator::value type is equivalent to Traits::Point 2 and OutputIterator::value type.

4. if Traits is not specified, Point generator::value type must be Point 2< R > for some representation class
R,

The default traits class Default traits is Random convex set traits 2. .

See Also

CGAL::Random points in square 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4385
CGAL::Random points in disc 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4383

Implementation

The implementation uses the centroid method described in [Sch96] and has a worst case running time of O(r ·
n+n · logn), where r is the time needed by pg to generate a random point.
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Example

The following program displays a random convex 500-gon where the points are drawn uniformly from the unit
square centered at the origin.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/random_convex_set_2.h>

#include <iostream>
#include <iterator>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_2 Point_2;
typedef CGAL::Random_points_in_square_2<

Point_2,
CGAL::Creator_uniform_2< double, Point_2 > >

Point_generator;
int main() {

// create 500-gon and write it into a window:
CGAL::random_convex_set_2(

500,
std::ostream_iterator<Point_2>(std::cout, "\n"),
Point_generator( 0.5));

return 0;
}� �
File: examples/Generator/random_convex_set.cpp
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CGAL::random polygon 2

Definition

The function random polygon 2 constructs a random simple polygon from points that are drawn from a spe-
cific domain. Though each simple polygon defined on this set of points has a non-zero probability of being
constructed, some polygons may have higher probabilities than others. The overall distribution of the generated
polygons is not known since it depends on the generated points.

#include <CGAL/random polygon 2.h>

template < class OutputIterator, class PointGenerator, class Traits >
OutputIterator random polygon 2( std::size t n,

OutputIterator result,
PointGenerator pg,
Traits t = Default traits)

computes a random simple polygon by writing its vertices
(oriented counterclockwise) to result. The polygon gener-
ated will have a number of vertices equal to the number of
unique points in the first n points generated by pg.

Requirements

1. Traits is a model of the concept RandomPolygonTraits 2

2. PointGenerator::value type is equivalent to Traits::Point 2 and OutputIterator::value type.

The default traits class Default traits is the kernel in which Traits::Point 2 is defined.

See Also

CGAL::Random points in disc 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4383
CGAL::Random points in square 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4385

Implementation

The implementation is based on the method of eliminating self-intersections in a polygon by using so-called
“2-opt” moves. Such a move eliminates an intersection between two edges by reversing the order of the vertices
between the edges. No more than O(n3) such moves are required to simplify a polygon defined on n points
[vLS82]. Intersecting edges are detected using a simple sweep through the vertices and then one intersection is
chosen at random to eliminate after each sweep. The worse-case running time is therefore O(n4 logn).

Example

The following program displays a random simple polygon with up to 100 vertices, where the vertex coordinates
are drawn uniformly from the unit square centered at the origin.
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� �
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Polygon_2.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/random_polygon_2.h>
#include <CGAL/Random.h>
#include <CGAL/algorithm.h>

#ifdef CGAL_USE_GMP
#include <CGAL/Gmpz.h>
typedef CGAL::Gmpz RT;
#else
// NOTE: the choice of double here for a number type may cause problems
// for degenerate point sets
#include <CGAL/double.h>
typedef double RT;
#endif

#include <fstream>
#include <list>

typedef CGAL::Simple_cartesian<RT> K;
typedef K::Point_2 Point_2;
typedef std::list<Point_2> Container;
typedef CGAL::Polygon_2<K, Container> Polygon_2;
typedef CGAL::Creator_uniform_2<int, Point_2> Creator;
typedef CGAL::Random_points_in_square_2<Point_2, Creator>

Point_generator;

const double RADIUS = 100;
const int MAX_POLY_SIZE = 100;

int main( )
{

Polygon_2 polygon;
std::list<Point_2> point_set;
CGAL::Random rand;

int size = rand.get_int(4, MAX_POLY_SIZE);

// copy size points from the generator, eliminating duplicates, so the
// polygon will have <= size vertices
CGAL::copy_n_unique(Point_generator(RADIUS), size,

std::back_inserter(point_set));

std::ostream_iterator< Point_2 > out( std::cout, " " );
std::cout << "From the following " << point_set.size() << " points "

<< std::endl;
std::copy(point_set.begin(), point_set.end(), out);
std::cout << std::endl;

CGAL::random_polygon_2(point_set.size(), std::back_inserter(polygon),
point_set.begin());

std::cout << "The following simple polygon was made: " << std::endl;
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std::cout << polygon << std::endl;
return 0;

}� �
File: examples/Generator/random_polygon.cpp

4372



F
un

ct
io

n

CGAL::random selection

Definition

random selection chooses n items at random from a random access iterator range which is useful to produce
degenerate input data sets with multiple entries of identical items.

#include <CGAL/random selection.h>

template <class RandomAccessIterator, class Size, class OutputIterator, class Random>
OutputIterator random selection( RandomAccessIterator first,

RandomAccessIterator last,
Size n,
OutputIterator result,
Random& rnd = default random)

chooses a random item from the range [first, last) and writes
it to result, each item from the range with equal probabil-
ity, and repeats this n times, thus writing n items to result.
A single random number is needed from rnd for each item.
Returns the value of result after inserting the n items.
Precondition: Random is a random number generator type as
provided by the STL or by Random.

See Also

CGAL::perturb points 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4359
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CGAL::Random

Definition

The class Random is a random numbers generator. It generates uniformly distributed random bools, ints and
doubles. It can be used as the random number generating function object in the STL algorithm random shuffle.

Instances of can be seen as input streams. Different streams are independent of each other, i.e. the sequence of
numbers from one stream does not depend upon how many numbers were extracted from the other streams. At
each time, an instance has a state that uniquely determines the subsequent numbers being produced.

It can be very useful, e.g. for debugging, to reproduce a sequence of random numbers. This can be done by
either initialising with a fixed seed, or by using the state functions as described below.

#include <CGAL/Random.h>

Types

Random:: State The State type.

Creation

Random random; introduces a variable random of type Random. The seed is
chosen “randomly”, depending on the system time.

Random random( unsigned int seed); introduces a variable random of type Random and initializes
its internal state using seed. Equal values for seed result in
equal sequences of random numbers.

Operations

bool random.get bool() returns a random bool.

template <int b>
int random.get bits() returns a random int value from the interval [0,2 ˆb). This is

supposed to be efficient.

int random.get int( int lower, int upper)

returns a random int from the interval [lower,upper).

double random.get double( double lower = 0.0, double upper = 1.0)

returns a random double from the interval [lower,upper).
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Distributions

The following member functions are a 1-to-1 correspondence to some distributions from the boost random
library.

template <typename IntType>
IntType random.uniform smallint( IntType lower=0, IntType upper=9)

returns a random IntType from the interval [lower,upper].
IntType can be an integral type as int, std::ptrdiff t, std::size
t,etc. Warning: In contrast to get int this function may
return upper.

template <typename IntType>
IntType random.uniform int( IntType lower=0, IntType upper=9)

returns a random IntType from the interval [lower,upper].
IntType can be an integral type as int, std::ptrdiff t, std::size
t,etc. Warning: In contrast to get int this function may
return upper.

template <typename RealType>
Realtype random.uniform real( RealType lower = 0.0, RealType upper = 1.0)

returns a random RealType from the interval [lower,upper).
RealType can be float, double, etc.

template <typename RealType>
RealType random.uniform 01() returns a random RealType from the interval [0,1). RealType

can be float, double, etc.

template <typename IntType>
IntType random( IntType upper)

returns randomuniform int<IntType>( 0, upper-1).

Seed and State Functions

unsigned int random.get seed() const

returns the seed used for initialization.

void random.save state( State& state) const

saves the current internal state in state.

void random.restore state( State state)

restores the internal state from state.
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Equality Test

bool random == random2 returns true, iff random and random2 have equal internal
states.

Implementation

We use the boost random library function boost::rand48 to generate the random numbers.

See Also

CGAL::default random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4358
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RandomConvexSetTraits 2

Definition

The concept RandomConvexSetTraits 2describes the requirements of the traits class for the function random
convex set 2.

Has Models

CGAL::Random convex set traits 2<Kernel> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4379

Types

RandomConvexSetTraits 2:: Point 2 point class.

RandomConvexSetTraits 2:: FT class used for doing computations on point and vector coor-
dinates (has to fulfill field type requirements).

RandomConvexSetTraits 2:: Sum AdaptableBinaryFunction class: Point 2 × Point 2 →
Point 2. It returns the point that results from adding the vec-
tors corresponding to both arguments.

RandomConvexSetTraits 2:: Scale AdaptableBinaryFunction class: Point 2 × FT → Point 2.
Scale(p,k) returns the point that results from scaling the vec-
tor corresponding to p by a factor of k.

RandomConvexSetTraits 2:: Max coordinate AdaptableUnaryFunction class: Point 2 → FT . Max
coordinate(p) returns the coordinate of p with largest abso-
lute value.

RandomConvexSetTraits 2:: Angle less AdaptableBinaryFunction class: Point 2 × Point 2→ bool.
It returns true, iff the angle of the direction corresponding to
the first argument with respect to the positive x-axis is less
than the angle of the direction corresponding to the second
argument.

Operations

Point 2 t.origin() const return origin (neutral element for the Sum operation).

advanced
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RandomPolygonTraits 2

Definition

The concept RandomPolygonTraits 2 describes the requirements for the traits class used by the function
random polygon 2.

Has Models

The CGAL kernels.

Types

RandomPolygonTraits 2:: FT The coordinate type of the points of the polygon (i.e., a field
type)

RandomPolygonTraits 2:: Point 2 The point type of the polygon.

RandomPolygonTraits 2:: Orientation 2 Predicate object type that determines the orientation of three
points. It must provide Orientation operator()(Point 2 p,
Point 2 q, Point 2 r) that returns LEFT TURN, if r lies to the
left of the oriented line l defined by p and q, returns RIGHT
TURN if r lies to the right of l, and returns COLLINEAR if r
lies on l.

RandomPolygonTraits 2:: Less xy 2 Binary predicate object type comparing Point 2s lexico-
graphically. It must provide bool operator()(Point 2 p,
Point 2 q) that returns true iff p <xy q. We have p <xy q,
iff px < qx or px = qx and py < qy, where px and py denote
the x and y coordinates of point p, resp.

Operations

The following two member functions returning instances of the above predicate object types are required.

Less xy 2 t.less xy 2 object()

Orienation 2 t.orientation 2 object()
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CGAL::Random convex set traits 2<Kernel>

Definition

The class Random convex set traits 2<Kernel>serves as a traits class for the function random convex set 2.

#include <CGAL/Random convex set traits 2.h>

Is Model for the Concepts

RandomConvexSetTraits 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4377

Types

typedef Kernel::Point 2

Point 2;
typedef Kernel::FT FT;
Random convex set traits 2<Kernel>:: Sum function object class derived from std::binary function<

Point 2, Point 2, Point 2>

Random convex set traits 2<Kernel>:: Scale function object class derived from std::binary function<
Point 2, Point 2, Point 2>

Random convex set traits 2<Kernel>:: Max coordinate

function object class derived from std::unary function<
Point 2, FT>

Random convex set traits 2<Kernel>:: Angle less

function object class derived from std::binary function<
Point 2, Point 2, bool>

Creation

Random convex set traits 2<Kernel> t; default constructor

Operations

Point 2 t.origin() const returns CGAL::ORIGIN.

advanced
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CGAL::Random points in ball d<Point d>

Definition

The class Random points in ball d<Point d> is an input iterator creating points uniformly distributed in an
open ball in any dimension.

Is Model for the Concepts

InputIterator
PointGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4366

#include <CGAL/point generators d.h>

Types

typedef std::input iterator tag iterator category;
typedef Point d value type;
typedef std::ptrdiff t difference type;
typedef const Point d* pointer;
typedef Point d reference;

Operations

Random points in ball d<Point d> g( int dim, double r);

g is an input iterator creating points of type Point d uni-
formly distributed in the open ball in dimension dim with
radius r, i.e. |∗g|< r . 2 ·dim+1 random numbers are needed
from rnd for each point.

See Also

CGAL::cpp0x::copy n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4174
CGAL::Counting iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page ??
CGAL::Random points in disc 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4383
CGAL::Random points in sphere 3<Point 3, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4384
CGAL::Random points in cube d<Point d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4382
CGAL::Random points on sphere d<Point d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4389
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CGAL::Random points in cube 3<Point 3, Creator>

Definition

The class Random points in cube 3<Point 3, Creator> is an input iterator creating points uniformly distributed
in a half-open cube. The default Creator is Creator uniform 3<Kernel traits<P>::Kernel::RT,P>.

Is Model for the Concepts

InputIterator
PointGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4366

#include <CGAL/point generators 3.h>

Types

typedef std::input iterator tag iterator category;
typedef Point 3 value type;
typedef std::ptrdiff t difference type;
typedef const Point 3* pointer;
typedef Point 3 reference;

Operations

Random points in cube 3<Point 3, Creator> g( double a, Random& rnd = default random);

g is an input iterator creating points of type Point
3 uniformly distributed in the half-open cube with side
length 2a, centered at the origin, i.e. ∀p = ∗g : −a ≤
p.x(), p.y(), p.z() < a . Three random numbers are needed
from rnd for each point.

See Also

CGAL::cpp0x::copy n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4174
CGAL::Counting iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page ??
CGAL::Random points in square 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4385
CGAL::Random points in sphere 3<Point 3, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4384
CGAL::Random points on sphere 3<Point 3, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4388
std::random shuffle
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CGAL::Random points in cube d<Point d>

Definition

The class Random points in cube d<Point d> is an input iterator creating points uniformly distributed in an
half-open cube.

Is Model for the Concepts

InputIterator
PointGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4366

#include <CGAL/point generators d.h>

Types

typedef std::input iterator tag iterator category;
typedef Point d value type;
typedef std::ptrdiff t difference type;
typedef const Point d* pointer;
typedef Point d reference;

Operations

Random points in cube d<Point d> g( int dim, double a, Random& rnd = default random);

g is an input iterator creating points of type Point d uni-
formly distributed in the half-open cube of dimension dim
with side length 2a, centered at the origin. For every point
p = ∗g and for all i < dim we have −a ≤ p[i] < a. dim ran-
dom numbers are needed from rnd for each point.

See Also

CGAL::cpp0x::copy n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4174
CGAL::Counting iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page ??
CGAL::Random points in square 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4385
CGAL::Random points in cube 3<Point 3, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4381
CGAL::Random points in ball d<Point d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4380
CGAL::Random points on sphere d<Point d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4389
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CGAL::Random points in disc 2<Point 2, Creator>

Definition

The class Random points in disc 2<Point 2, Creator> is an input iterator creating points uniformly distributed
in an open disc. The default Creator is Creator uniform 2<Kernel traits<P>::Kernel::RT,P>.

Is Model for the Concepts

InputIterator
PointGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4366

#include <CGAL/point generators 2.h>

Types

typedef std::input iterator tag iterator category;
typedef Point 2 value type;
typedef std::ptrdiff t difference type;
typedef const Point 2* pointer;
typedef Point 2 reference;

Operations

Random points in disc 2<Point 2, Creator> g( double r, Random& rnd = default random);

g is an input iterator creating points of type Point 2 uni-
formly distributed in the open disc with radius r, i.e. |∗g|< r .
Two random numbers are needed from rnd for each point.

See Also

CGAL::cpp0x::copy n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4174
CGAL::Counting iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page ??
CGAL::Points on segment 2<Point 2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4361
CGAL::Random points in square 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4385
CGAL::Random points on circle 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4386
CGAL::Random points on segment 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4387
CGAL::Random points on square 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4390
CGAL::Random points in sphere 3<Point 3, Creator> . . . . . . . . . . . . . . . . . . . . . page 4384 std::random shuffle
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CGAL::Random points in sphere 3<Point 3, Creator>

Definition

The class Random points in sphere 3<Point 3, Creator> is an input iterator creating points uniformly dis-
tributed in an open sphere. The default Creator is Creator uniform 3<Kernel traits<P>::Kernel::RT,P>.

Is Model for the Concepts

InputIterator
PointGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4366

#include <CGAL/point generators 3.h>

Types

typedef std::input iterator tag iterator category;
typedef Point 3 value type;
typedef std::ptrdiff t difference type;
typedef const Point 3* pointer;
typedef Point 3 reference;

Operations

Random points in sphere 3<Point 3, Creator> g( double r, Random& rnd = default random);

g is an input iterator creating points of type Point 3 uni-
formly distributed in the open sphere with radius r, i.e. |∗g|<
r . Three random numbers are needed from rnd for each
point.

See Also

CGAL::cpp0x::copy n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4174
CGAL::Counting iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page ??
CGAL::Random points in disc 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4383
CGAL::Random points in cube 3<Point 3, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4381
CGAL::Random points on sphere 3<Point 3, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4388
std::random shuffle
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CGAL::Random points in square 2<Point 2, Creator>

Definition

The class Random points in square 2<Point 2, Creator> is an input iterator creating points uniformly dis-
tributed in a half-open square. The default Creator is Creator uniform 2<Kernel traits<P>::Kernel::RT,P>.

Is Model for the Concepts

InputIterator
PointGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4366

#include <CGAL/point generators 2.h>

Types

typedef std::input iterator tag iterator category;
typedef Point 2 value type;
typedef std::ptrdiff t difference type;
typedef const Point 2* pointer;
typedef Point 2 reference;

Operations

Random points in square 2<Point 2, Creator> g( double a, Random& rnd = default random);

g is an input iterator creating points of type Point 2 uni-
formly distributed in the half-open square with side length
2a, centered at the origin, i.e. ∀p = ∗g :−a≤ p.x() < a and
−a≤ p.y() < a . Two random numbers are needed from rnd
for each point.

See Also

CGAL::cpp0x::copy n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4174
CGAL::Counting iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page ??
CGAL::Points on segment 2<Point 2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4361
CGAL::Random points in disc 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4383
CGAL::Random points on segment 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4387
CGAL::Random points on square 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4390
CGAL::Random points in cube 3<Point 3, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4381
std::random shuffle
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CGAL::Random points on circle 2<Point 2, Creator>

Definition

The class Random points on circle 2<Point 2, Creator> is an input iterator creating points uniformly dis-
tributed on a circle. The default Creator is Creator uniform 2<Kernel traits<P>::Kernel::RT,P>. The gen-
erated points are computed using floating point arithmetic, whatever the Kernel is, thus they are on the circle/-
sphere only up to rounding errors.

Is Model for the Concepts

InputIterator
PointGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4366

#include <CGAL/point generators 2.h>

Types

typedef std::input iterator tag iterator category;
typedef Point 2 value type;
typedef std::ptrdiff t difference type;
typedef const Point 2* pointer;
typedef Point 2 reference;

Operations

Random points on circle 2<Point 2, Creator> g( double r, Random& rnd = default random);

g is an input iterator creating points of type Point 2 uni-
formly distributed on the circle with radius r, i.e. |∗g|== r .
A single random number is needed from rnd for each point.

See Also

See Also

CGAL::cpp0x::copy n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4174
CGAL::Counting iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page ??
CGAL::Points on segment 2<Point 2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4361
CGAL::Random points in disc 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4383
CGAL::Random points in square 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4385
CGAL::Random points on segment 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4387
CGAL::Random points on square 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4390
CGAL::Random points on sphere 3<Point 3, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4388
std::random shuffle
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CGAL::Random points on segment 2<Point 2, Creator>

Definition

The class Random points on segment 2<Point 2, Creator> is an input iterator creating points uniformly dis-
tributed on a segment. The default Creator is Creator uniform 2<Kernel traits<P>::Kernel::RT,P>.

Is Model for the Concepts

InputIterator
PointGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4366

#include <CGAL/point generators 2.h>

Types

typedef std::input iterator tag iterator category;
typedef Point 2 value type;
typedef std::ptrdiff t difference type;
typedef const Point 2* pointer;
typedef Point 2 reference;

Operations

Random points on segment 2<Point 2, Creator> g( Point 2 p, Point 2 q, Random& rnd = default random);

g is an input iterator creating points of type Point 2 uni-
formly distributed on the segment from p to q (excluding q),
i.e. ∗g == (1−λ) p+λq where 0≤ λ < 1 . A single random
number is needed from rnd for each point.
Requirement: The expressions to double(p.x()) and to
double(p.y()) must result in the respective double represen-
tation of the coordinates of p, and similarly for q.

See Also

CGAL::cpp0x::copy n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4174
CGAL::Counting iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page ??
CGAL::Points on segment 2<Point 2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4361
CGAL::Random points in disc 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4383
CGAL::Random points in square 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4385
CGAL::Random points on circle 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4386
CGAL::Random points on square 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4390
std::random shuffle
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CGAL::Random points on sphere 3<Point 3, Creator>

Definition

The class Random points on sphere 3<Point 3, Creator> is an input iterator creating points uniformly dis-
tributed on a sphere. The default Creator is Creator uniform 3<Kernel traits<P>::Kernel::RT,P>. The gener-
ated points are computed using floating point arithmetic, whatever the Kernel is, thus they are on the circle/-
sphere only up to rounding errors.

Is Model for the Concepts

InputIterator
PointGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4366

#include <CGAL/point generators 3.h>

Types

typedef std::input iterator tag iterator category;
typedef Point 3 value type;
typedef std::ptrdiff t difference type;
typedef const Point 3* pointer;
typedef Point 3 reference;

Operations

Random points on sphere 3<Point 3, Creator> g( double r, Random& rnd = default random);

g is an input iterator creating points of type Point 3 uni-
formly distributed on the boundary of a sphere with radius
r, i.e. |∗g|== r . Two random numbers are needed from rnd
for each point.

See Also

CGAL::cpp0x::copy n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4174
CGAL::Counting iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page ??
CGAL::Random points on circle 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4386
CGAL::Random points in cube 3<Point 3, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4381
CGAL::Random points in sphere 3<Point 3, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4384
std::random shuffle
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CGAL::Random points on sphere d<Point d>

Definition

The class Random points on sphere d<Point d> is an input iterator creating points uniformly distributed on a
sphere.

The generated points are computed using floating point arithmetic, whatever the Kernel is, thus they are on the
sphere only up to rounding errors.

Is Model for the Concepts

InputIterator
PointGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4366

#include <CGAL/point generators d.h>

Types

typedef std::input iterator tag iterator category;
typedef Point d value type;
typedef std::ptrdiff t difference type;
typedef const Point d* pointer;
typedef Point d reference;

Operations

Random points on sphere d<Point d> g( int dim, double r, Random& rnd = default random);

g is an input iterator creating points of type Point d uni-
formly distributed on a sphere in dimension dim with radius
r, i.e. |∗g| == r . 2 · dim random numbers are needed from
rnd for each point.

See Also

CGAL::cpp0x::copy n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4174
CGAL::Counting iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page ??
CGAL::Random points on circle 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4386
CGAL::Random points on sphere 3<Point 3, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4388
CGAL::Random points in cube d<Point d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4382
CGAL::Random points in ball d<Point d> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4380
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CGAL::Random points on square 2<Point 2, Creator>

Definition

The class Random points on square 2<Point 2, Creator> is an input iterator creating points uniformly
distributed in the boundary of a square. The default Creator is Creator uniform 2<Kernel traits<P>
::Kernel::RT,P>.

Is Model for the Concepts

InputIterator
PointGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4366

#include <CGAL/point generators 2.h>

Types

typedef std::input iterator tag iterator category;
typedef Point 2 value type;
typedef std::ptrdiff t difference type;
typedef const Point 2* pointer;
typedef Point 2 reference;

Operations

Random points on square 2<Point 2, Creator> g( double a, Random& rnd = default random);

g is an input iterator creating points of type Point 2 uni-
formly distributed on the boundary of the square with side
length 2a, centered at the origin, i.e. ∀p = ∗g : one coordi-
nate is either a or −a and for the other coordinate c holds
−a ≤ c < a . A single random number is needed from rnd
for each point.

See Also

CGAL::cpp0x::copy n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4174
CGAL::Counting iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page ??
CGAL::Points on segment 2<Point 2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4361
CGAL::Random points in disc 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4383
CGAL::Random points in square 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4385
CGAL::Random points on circle 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4386
CGAL::Random points on segment 2<Point 2, Creator> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4387
std::random shuffle
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78.1 Timers

CGAL provides classes for measuring the user process time and the real time. The class CGAL::Timer is the
version for the user process time and the class CGAL::Real timer is the version for the real time.

Instantiations of both classes are objects with a state. The state is either running or it is stopped. The state of
an object t is controlled with t.start() and t.stop() . The timer counts the time elapsed since its creation or last
reset. It counts only the time where it is in the running state. The time information is given in seconds. The
timer counts also the number of intervals it was running, i.e. it counts the number of calls of the start() member
function since the last reset. If the reset occurs while the timer is running it counts as the first interval.

78.2 Memory Size

CGAL provides access to the memory size used by the program with the CGAL::Memory sizer class. Both
the virtual memory size and the resident size are available (the resident size does not account for swapped out
memory nor for the memory which is not yet paged-in).
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Rep

High_level_interface

delegate( Modifier_base<Rep>& modifier);

Rep  representation;

Modifier_base<Rep>

operator()( Rep&);

operator()( Rep&);

delegate( Modifier_base<Rep>& modifier) {
      modifier( representation);
      // validity check
}

Modifier<Rep>

Figure 78.1: Class diagram for the modifier. It illustrates the safe access to an internal representation through
an high-level interface.

78.3 Profiling

CGAL provides a way to count the number of times a given line of code is executed during the execution of
a program. Such CGAL::Profile counter counters can be added at critical place in the code, and at the end
of the execution of a program, the count is printed on std::cerr. A macro CGAL PROFILER can be used to
conveniently place these counters anywhere. They are disabled by default and activated by the global macro
CGAL PROFILE.

78.4 Unique Hash Map

The class Unique hash map implements an injective mapping between a set of unique keys and a set of data
values. This is implemented using a chained hashing scheme and access operations take O(1) expected time.
Such a mapping is useful, for example, when keys are pointers, handles, iterators or circulators that refer to
unique memory locations. In this case, the default hash function is Handle hash function.

78.5 Union-find

CGAL also provides a class Union find that implements a partition of values into disjoint sets. This is imple-
mented with union by rank and path compression. The running time for m set operations on n elements is
O(nα(m,n)) where α(m,n) is the extremely slowly growing inverse of Ackermann’s function.

78.6 Protected Access to Internal Representations

High level data structures typically maintain integrity of an internal data representation, which they protect
from the user. A minimal while complete interface of the data structure allows manipulations in the domain
of valid representations. Additional operations might benefit from being allowed to access the internal data
representation directly. An example are intermediate steps within an algorithm where the internal representation
would be invalid. We present a general method to accomplish access in a safe manner, such that the high level
data structures can guarantee validity after the possibly compromising algorithm has finished its work. An
example are polyhedral surfaces in the Basic Library, where a construction process like for a file scanner could
be performed more efficiently on the internal halfedge data structure than by using the high-level Euler operators
of the polyhedron.
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The solution provided here is inspired by the strategy pattern [GHJV95], though it serves a different intent, see
Figure 78.1. The abstract base class Modifier base<R> declares a pure virtual member function operator() that
accepts a single reference parameter of the internal representation type. The member function delegate() of the
high-level interface calls this operator() with its internal representation. An actual modifier implements this
virtual function, thus gaining access to the internal representation. Once, the modifier has finished its work,
the member function delegate() is back in control and can check the validity of the internal representation.
Summarizing, a user can implement and apply arbitrary functions based on the internal representation and keeps
the benefit if a protected high-level interface. User provided modifiers must in any case return a valid internal
representation or the checker in the high-level interface is allowed (and supposed) to abort the program. The
indirection via the virtual function invocation is negligible for operations that consists of more than a pointer
update or integer addition.
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Profiling tools, Hash Map, Union-find,
Modifiers
Reference Manual
Lutz Kettner, Sylvain Pion, and Michael Seel

This chapter decribes classes for measuring user process time and real time as well as the memory size. It also
provides a profile counter tool.

A hash map CGAL::Unique hash map is offered that is specialized on unique hash values of type std::size t,
i.e., it is particularly useful for pointers, handles, iterators, and circulators as key values.

Furthermore, a union-find data structure and the modifier base class is documented.

78.7 Classified Reference Pages

Concepts

UniqueHashFunction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4407

Classes

CGAL::Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4402
CGAL::Real timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4401
CGAL::Memory sizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4398
CGAL::Profile counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4400

CGAL::Unique hash map<Key,Data,UniqueHashFunction> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4405
CGAL::Handle hash function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4397

CGAL::Union find<T,A> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4403

CGAL::Modifier base<R> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4399
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CGAL::Handle hash function

Definition

The class Handle hash function is a model for the UniqueHasFunction concept. It is applicable for all key
types with pointer-like functionality, such as handles, iterators, and circulators. Specifically, for a key value the
expression &*key must return a unique address.

#include <CGAL/Handle hash function.h>

Is Model for the Concepts

UniqueHashFunction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4407

Creation

Handle hash function hash; default constructor.

Operations

template <class Handle>
std::size t hash( Handle key) returns unique hash value for any Handle type for which

&*key gives a unique address.
Requirement: The type std::iterator traits<Handle>::value
type has to be defined (which it is already for pointers, han-
dles, iterators, and circulators).

See Also

CGAL::Unique hash map<Key,Data,UniqueHashFunction> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4405

Implementation

Plain type cast of &*key to std::size t and devided by the size of the std::iterator traits<Handle>::value type to
avoid correlations with the internal table size, which is a power of two.
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CGAL::Memory sizer

Definition

The class Memory sizer allows to measure the memory size used by the process. Both the virtual memory
size and the resident size are available (the resident size does not account for swapped out memory nor for the
memory which is not yet paged-in).

#include <CGAL/Memory sizer.h>

Types

typedef std::size t size type;

Creation

Memory sizer m; Default constructor.

Operations

size type

m.virtual size() const

Returns the virtual memory size in bytes.

size type

m.resident size() const

Returns the resident memory size in bytes.

Implementation

Accessing this information requires the use of non-portable code. Currently, there is support for Linux plat-
forms, the Microsoft and Intel compiler on Windows, as well as Mac OS X. If a platform is not supported, the
two member functions return 0.
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CGAL::Modifier base<R>

Definition

Modifier base<R> is an abstract base class providing the interface for any modifier. A modifier is a function
object derived from Modifier base<R> that implements the pure virtual member function operator(), which
accepts a single reference parameter R& on which the modifier is allowed to work. R is the type of the internal
representation that is to be modified.

#include <CGAL/Modifier base.h>

Types

typedef R Representation; the internal representation type.

Operations

virtual void modifier.operator()( R& rep) Postcondition: rep is a valid representation.

Example

The following fragment defines a class A with an internal representation i of type int. It provides a member
function delegate(), which gives a modifier access to the internal variable and checks validity thereafter. The
example modifier sets the internal variable to 42. The example function applies the modifier to an instance of
class A.

class A {
int i; // protected internal representation

public:
void delegate( CGAL::Modifier_base<int>& modifier) {

modifier(i);
CGAL_postcondition( i > 0); // check validity

}
};

struct Modifier : public CGAL::Modifier_base<int> {
void operator()( int& rep) { rep = 42;}

};

void use_it() {
A a;
Modifier m;
a.delegate(m); // a.i == 42 and A has checked that A::i > 0.

}
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CGAL::Profile counter

Definition

#include <CGAL/Profile counter.h>

The class Profile counter provides a way to count the number of times a given line of code is executed during
the execution of a program, and print this number at the end of the execution of the program. Such counters
can be added at critical places in the code, and at the end of the execution of a program, the count is printed on
std::cerr, together with an identification string passed to the constructor. The macro CGAL PROFILER can be
used to conveniently place these counters anywhere. They are disabled by default and activated by the global
macro CGAL PROFILE.

Creation

Profile counter pc( std::string s); The internal counter is initialized to 0, and the string s is stored for further
printing by the destructor.

Profile counter pc; The value of the counter is printed to std::cerr together with the string.

Operations

void ++pc Increments the internal counter.

#define CGAL PROFILER(MSG) If CGAL PROFILE is not defined, then CGAL PROFILER is defined to an
empty statement. Otherwise, it is defined to static CGAL::Profile counter tmp(MSG); ++tmp;.� �
#define CGAL_PROFILE

#include <CGAL/Profile_counter.h>

int main()
{

for (int i=0; i<10; ++i)
{

CGAL_PROFILER("iterations of the for-loop");
}
return 0;

}� �
File: examples/Profiling_tools/Profile_counter.cpp

will print at exit:� �
[CGAL::Profile_counter] 10 iterations of the for-loop� �
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CGAL::Real timer

Definition

#include <CGAL/Real timer.h>

The class Real timer is a timer class for measuring real time. A timer t of type Real timer is an object with a
state. It is either running or it is stopped. The state is controlled with t.start() and t.stop(). The timer counts the
time elapsed since its creation or last reset. It counts only the time where it is in the running state. The time
information is given in seconds. The timer counts also the number of intervals it was running, i.e. it counts the
number of calls of the start() member function since the last reset. If the reset occures while the timer is running
it counts as the first interval.

Creation

Real timer t; state is stopped.

Operations

void t.start() Precondition: state is stopped.
void t.stop() Precondition: state is running.
void t.reset() reset timer to zero. The state is unaffected.
bool t.is running() true if the current state is running.

double t.time() real time in seconds, or 0 if the underlying system call failed.
int t.intervals() number of start/stop-intervals since the last reset.
double t.precision() smallest possible time step in seconds, or -1 if the system call failed.
double t.max() maximal representable time in seconds.

Implementation

The timer class is based in the C function gettimeofday() on POSIX systems and the C function ftime() on MS
Visual C++. The system calls to these timers might fail, in which case a warning message will be issued through
the CGAL error handler and the functions return with the error codes indicated above. The precision method
computes the precision dynamically at runtime at its first invocation.
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CGAL::Timer

Definition

The class Timer is a timer class for measuring user process time. A timer t of type Timer is an object with a
state. It is either running or it is stopped. The state is controlled with t.start() and t.stop(). The timer counts the
time elapsed since its creation or last reset. It counts only the time where it is in the running state. The time
information is given in seconds. The timer counts also the number of intervals it was running, i.e. it counts the
number of calls of the start() member function since the last reset. If the reset occures while the timer is running
it counts as the first interval.

#include <CGAL/Timer.h>

Creation

Timer t; state is stopped.

Operations

void t.start() Precondition: state is stopped.
void t.stop() Precondition: state is running.
void t.reset() reset timer to zero. The state is unaffected.
bool t.is running() true if the current state is running.

double t.time() user process time in seconds, or 0 if the underlying system call failed.
int t.intervals() number of start/stop-intervals since the last reset.
double t.precision() smallest possible time step in seconds, or -1 if the system call failed.
double t.max() maximal representable time in seconds.

Implementation

The timer class is based in the C function std::clock() on PC systems and the C function getrusage() on standard
POSIX systems. The counter for the std::clock() based solution might wrap around (overflow) after only about
36 minutes. This won’t happen on POSIX systems. The system calls to these timers might fail, in which case
a warning message will be issued through the CGAL error handler and the functions return with the error codes
indicated above. The precision method computes the precision dynamically at runtime at its first invocation.
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CGAL::Union find<T,A>

Definition

An instance P of the data type Union find<T,A> is a partition of values of type T into disjoint sets. The template
parameter A has to be a model of the allocator concept as defined in the C++ standard. It has a default argument
CGAL ALLOCATOR(T).

#include <CGAL/Union find.h>

Types

Union find<T,A>:: value type values stored in items (equal to T).

Union find<T,A>:: handle handle to values.

Union find<T,A>:: iterator iterator over values.

There are also constant versions const handle and const iterator.

Union find<T,A>:: allocator allocator.

Creation

Union find<T,A> P; creates an instance P of type Union find<T,A> and initializes
it to the empty partition.

Operations

allocator P.get allocator() the allocator of P.

std::size t P.number of sets() returns the number of disjoint sets of P.

std::size t P.size() returns the number of values of P.

std::size t P.bytes() returns the memory consumed by P.

std::size t P.size( const handle p) returns the size of the set containing p.

void P.clear() reinitializes P to an empty partition.

handle P.make set( T x) creates a new singleton set containing x and returns a handle
to it.

handle P.push back( T x) same as make set(x).
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template <class Forward iterator>
void P.insert( Forward iterator first, Forward iterator beyond)

insert the range of values referenced by [first,beyond).
Requirement: value type of Forward iterator is T .

handle P.find( handle p)
const handle P.find( const handle p) returns a canonical handle of the set that contains p, i.e.,

P.same set(p,q) iff P.find(p) and P.find(q) return the same
handle.
Precondition: p is a handle in P.

void P.unify sets( handle p, handle q)

unites the sets of partition P containing p and q.
Precondition: p and q are in P.

bool P.same set( const handle p, const handle q)

returns true iff p and q belong to the same set of P.
Precondition: p and q are in P.

iterator P.begin() returns an iterator pointing to the first value of P.

iterator P.end() returns an iterator pointing beyond the last value of P.

Implementation

Union find<T,A> is implemented with union by rank and path compression. The running time for m set op-
erations on n elements is O(nα(m,n)) where α(m,n) is the extremely slow growing inverse of Ackermann’s
function.
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CGAL::Unique hash map<Key,Data,UniqueHashFunction>

Definition

An instance map of the parameterized data type Unique hash map<Key,Data,UniqueHashFunction> is an in-
jective mapping from the set of keys of type Key to the set of variables of type Data. New keys can be inserted
at any time, however keys cannot be individually deleted.

An object hash of the type UniqueHashFunction returns a unique integer index hash(key) of type std::size t for
all objects key stored in map. The template parameter has as default the Handle hash function that hashes all
types of pointers, handles, iterators, and circulators.

All variables are initialized to default data, a value of type Data specified in the definition of map.

#include <CGAL/Unique hash map.h>

Types

Unique hash map<Key,Data,UniqueHashFunction>:: Key the Key type.
Unique hash map<Key,Data,UniqueHashFunction>:: Data the Data type.
Unique hash map<Key,Data,UniqueHashFunction>:: Hash function the unique hash function type.

In compliance with STL, the types key type, data type, and hasher are defined as well.

Creation

Unique hash map<Key,Data,UniqueHashFunction> map( Data default = Data(),
std::size t table size = 1,
Hash function fct = Hash function())

creates an injective function map from Key to the set of unused variables of type
Data, sets default data to default, passes the table size as argument to the internal
implementation, and initializes the hash function with fct.

Unique hash map<Key,Data,UniqueHashFunction> map( Key first1,
Key beyond1,
Data first2,
Data default = Data(),
std::size t table size = 1,
Hash function fct = Hash function())

creates an injective function map from Key to the set of unused variables of type
Data, sets default data to default, passes the table size as argument to the internal
implementation, initializes the hash function with fct, and inserts all keys from the
range [first1,beyond1). The data variable for each inserted key is initialized with the
corresponding value from the range [first2, first2 + (beyond1-first1)).
Precondition: The increment operator must be defined for values of type Key and
for values of type Data. beyond1 must be reachable from first1 using increments.
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Operations

Data map.default value() const the current default value.
Hash function map.hash function() const

the current hash function.

bool map.is defined( Key key) returns true if key is defined in map. Note that there can be keys
defined that have not been inserted explicitly. Their variables
are initialized to default value.

void map.clear() resets map to the injective function map from Key to the set of
unused variables of type Data. The default data remains un-
changed.

void map.clear( Data default) resets map to the injective function map from Key to the set of
unused variables of type Data and sets default data to default.

Data& map.operator[]( const Key& key)

returns a reference to the variable map(key). If key has not been
inserted into map before, key is inserted and initialized with
default value.

const Data& map.operator[]( const Key& key) const

returns a const reference to the variable map(key). If key has not
been inserted into map before, a const reference to the default
value is returned. However, key is not inserted into map.

Data map.insert( Key first1, Key beyond1, Data first2)

inserts all keys from the range [first1,beyond1). The data vari-
able for each inserted key is initilized with the corresponding
value from the range [first2, first2 + (beyond1-first1)). Returns
first2 + (beyond1-first1).
Precondition: The increment operator must be defined for val-
ues of type Key and for values of type Data. beyond1 must be
reachable from first1 using increments.

See Also

UniqueHashFunction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4407
CGAL::Handle hash function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4397

Implementation

Unique hash map is implemented via a chained hashing scheme. Access operations map[i] take expected time
O(1). The table size parameter passed to chained hashing can be used to avoid unnecessary rehashing when set
to the number of expected elements in the map. The design is derived from the STL hash map and the LEDA
type map. Its specialization on insertion only and unique hash values allow for a more time- and space-efficient
implementation, see also [MN00, Chapter 5]. This implementation makes also use of sentinels that lead to
defined keys that have not been inserted.
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UniqueHashFunction

Definition

UniqueHashFunction is a concept for a hash function with unique hash values. An instance hash for a model
of the UniqueHashFunction concept is a function object. It maps objects of its domain type Key to the integral
image type std::size t. The image values have to be unique for all keys in the domain type Key.

Refines

STL concept HashFunction.

Types

typedef std::size t result type; type of the hash value.

Creation

UniqueHashFunction hash( hash2); copy constructor.

UniqueHashFunction& hash = hash2 assignment.

Operations

std::size t hash( Key key) returns unique hash value for the key value.

Has Models

CGAL::Handle hash function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4397

See Also

CGAL::Unique hash map<Key,Data,UniqueHashFunction> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4405

4407



4408



Chapter 79

IO Streams
Andreas Fabri, Geert-Jan Giezeman, and Lutz Kettner
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All classes in the CGAL kernel provide input and output operators for IO streams. Classes external to CGAL
are also supported, by means of oformat (Section 79.3). The basic task of such an operator is to produce a
representation of an object that can be written as a sequence of characters on devices as a console, a file, or a
pipe. In CGAL we distinguish between a raw ascii, a raw binary and a pretty printing format.

enum Mode { ASCII = 0, BINARY, PRETTY};

In ASCII mode, objects are written as a set of numbers, e.g. the coordinates of a point or the coefficients of
a line, in a machine independent format. In BINARY mode, data are written in a binary format, e.g. a double
is represented as a sequence of four byte. The format depends on the machine. The mode PRETTY serves
mainly for debugging as the type of the geometric object is written, as well as the data defining the object. For
example for a point at the origin with Cartesian double coordinates, the output would be PointC2(0.0, 0.0). At
the moment CGAL does not provide input operations for pretty printed data. By default a stream is in ASCII
mode.

CGAL provides the following functions to modify the mode of an IO stream.

IO::Mode set mode( std::ios& s, IO::Mode m)

IO::Mode set ascii mode( std::ios& s)
IO::Mode set binary mode( std::ios& s)
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IO::Mode set pretty mode( std::ios& s)

The following functions allow to test whether a stream is in a certain mode.

IO::Mode get mode( std::ios& s)

bool is ascii( std::ios& s)
bool is binary( std::ios& s)
bool is pretty( std::ios& s)

79.1 Output Operator

CGAL defines output operators for classes that are derived from the class ostream. This allows to write to
ostreams as cout or cerr, as well as to strstreams and fstreams. The output operator is defined for all classes in
the CGAL kernel and for the class Color as well. Let os be an output stream.

ostream& ostream& os << Class c Inserts object c in the stream os. Returns os.

Example� �
#include <CGAL/basic.h>
#include <iostream>
#include <fstream>

#include <CGAL/Cartesian.h>
#include <CGAL/Segment_2.h>

typedef CGAL::Point_2< CGAL::Cartesian<double> > Point;
typedef CGAL::Segment_2< CGAL::Cartesian<double> > Segment;

int main()
{

Point p(0,1), q(2,2);
Segment s(p,q);

CGAL::set_pretty_mode(std::cout);
std::cout << p << std::endl << q << std::endl;

std::ofstream f("data.txt");
CGAL::set_binary_mode(f);
f << s << p ;

return 1;
}� �
79.2 Input Operator

CGAL defines input operators for classes that are derived from the class istream. This allows to read from
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istreams as cin, as well as from strstreams and fstreams. The input operator is defined for all classes in the
CGAL kernel. Let is be an input stream.

istream& istream& is >> Class c Extracts object c from the stream is. Returns is.

Example� �
#include <CGAL/basic.h>
#include <iostream>
#include <fstream>

#include <CGAL/Cartesian.h>
#include <CGAL/Segment_2.h>

typedef CGAL::Point_2< CGAL::Cartesian<double> > Point;
typedef CGAL::Segment_2< CGAL::Cartesian<double> > Segment;

int
main()
{

Point p, q;
Segment s;

CGAL::set_ascii_mode(std::cin);
std::cin >> p >> q;

std::ifstream f("data.txt");
CGAL::set_binary_mode(f);
f >> s >> p;

return 1;
}� �
79.3 IO for non-CGAL types

79.3.1 Using Output Formatting

To ensure that non-CGAL types are formatted correctly (i.e., respecting IO::Mode), oformat can be used. For
types with a Output rep specialization, the respective output routine of Output rep will be called by oformat.
Otherwise, the stream output operator will be called.

Example� �
std::cout << CGAL::oformat( myobject );� �
Optional, you can provide a second template parameter F as a formatting tag:
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Example� �
std::cout << CGAL::oformat( myobject, My_formatting_tag() );� �
For a list of formatting tags supported by the type T, please refer to the documentation of the respective type.

79.3.2 Customizing Output Formatting

In some situations, you want to control the output formatting for a type T. For external types (third party libraries
etc.), there might be problems if their stream output operator does not respect IO::Mode. The purpose of
Output rep is to provide a way to control output formatting that works independently of the object’s stream
output operator.

Instead of putting T directly into an output stream, T is wrapped into an output representation Output rep. For
convenience, a function oformat exists which constructs an instance of Output rep.

If you do not specialize Output rep for T, T’s stream output operator is called from within Output rep, by
default. If you want another behaviour for your type T, you have to provide a specialization for that type.
Furthermore, you can provide specializations with a second template parameter (a formatting tag). The second
template parameter defaults to Null tag and means default behaviour.

For example, specializing Output rep for CORE::BigRat (without a formatting tag parameter) could look like
this:

Example� �
template <class F>
class Output_rep< ::CORE::BigRat, F> {

const ::CORE::BigRat& t;
public:

Output_rep( const ::CORE::BigRat& tt) : t(tt) {}

std::ostream& operator()( std::ostream& out) const {
switch (get_mode(out)) {
case IO::PRETTY:{

if(CGAL_CORE_DENOMINATOR(t) == ::CORE::BigRat(1))
return out <<CGAL_CORE_NUMERATOR(t);

else
return out << CGAL_CORE_NUMERATOR(t)

<< "/"
<< CGAL_CORE_DENOMINATOR(t);

break;
}

default:
return out << CGAL_CORE_NUMERATOR(t)

<< "/"
<< CGAL_CORE_DENOMINATOR(t);

}
}

};� �
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79.4 Colors

An object of the class CGAL::Color is a color available for drawing operations in many CGAL output streams.

Each color is defined by a triple of integers (r,g,b) with 0 ≤ r,g,b ≤ 255, the so-called rgb-value of the color.
There are a 11 predefined Color constants available: BLACK, WHITE, GRAY , RED, GREEN, DEEPBLUE,
BLUE, PURPLE, VIOLET , ORANGE, and YELLOW.

79.5 Stream Support

Three classes are provided by CGAL as adaptors to input and output stream iterators. The class Istream
iterator is an input iterator adaptor and is particularly useful for classes that are similar but not compatible
to std::istream. Similarly, the class Ostream iterator is an output iterator adaptor. The class Verbose ostream
can be used as an output stream. The stream output operator << is defined for any type. The class stores in an
internal state a stream and whether the output is active or not. If the state is active, the stream output operator
<< uses the internal stream to output its argument. If the state is inactive, nothing happens.
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IO Streams
Reference Manual
Andreas Fabri, Geert-Jan Giezeman, and Lutz Kettner

All classes in the CGAL kernel provide input and output operators for IO streams. CGAL provides three different
printing mode, defined in the enum Mode, as well as different functions to set and get the printing mode.

79.6 Classified Reference Pages

Enum

CGAL::Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4424

Functions

CGAL::get mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4418
CGAL::is ascii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4420
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CGAL::Color

Definition

An object of the class Color is a color available for drawing operations in many CGAL output streams. Each
color is defined by a triple of unsigned chars (r,g,b) with 0≤ r,g,b≤ 255, the so-called rgb-value of the color.

#include <CGAL/IO/Color.h>

Creation

Color c; creates a color with rgb-value (0,0,0), i.e. black.

Color c( unsigned char red, unsigned char green, unsigned char blue);

creates a color with rgb-value (red,green,blue).

Operations

bool c == q Test for equality: Two colors are equal, iff their rgb-values
are equal.

bool c != q Test for inequality.

unsigned char c.red() const returns the red component of c.
unsigned char c.green() const returns the green component of c.
unsigned char c.blue() const returns the blue component of c.

Constants

The following constants are predefined:

const Color BLACK = Color(0, 0, 0); Black.
const Color WHITE = Color(255, 255, 255); White.
const Color RED = Color(255, 0, 0); Red.
const Color GREEN = Color(0, 255, 0); Green.
const Color BLUE = Color(0, 0, 255); Blue.
const Color VIOLET = Color(255, 0, 255); Violet.
const Color ORANGE = Color(255, 170, 0); Orange.

See Also

CGAL::Qt widget
CGAL::Geomview stream
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CGAL::get mode

Mode get mode( std::ios& s) returns the printing mode of the IO stream s.

See Also
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CGAL::operator>>

Definition

CGAL defines input operators for classes that are derived from the class istream. This allows to read from
istreams as cin, as well as from strstreams and fstreams. The input operator is defined for all classes in the
CGAL kernel.

istream& istream& is >> Class c Extracts object c from the stream is. Returns is.

See Also

CGAL::set mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4433
CGAL::set ascii mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4431
CGAL::set binary mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4432
CGAL::set pretty mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4434
CGAL::get mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4418
CGAL::is ascii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4420
CGAL::is binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4421
CGAL::is pretty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4422
CGAL::operator<< . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4426

Example

#include <CGAL/basic.h>
#include <iostream>
#include <fstream>

#include <CGAL/Cartesian.h>
#include <CGAL/Segment 2.h>

typedef CGAL::Point 2< CGAL::Cartesian<double> > Point;
typedef CGAL::Segment 2< CGAL::Cartesian<double> > Segment;

int
main()
{

Point p, q;
Segment s;

CGAL::set ascii mode(std::cin);
std::cin � p � q;

std::ifstream f("data.txt");
CGAL::set binary mode(f);
f � s � p;

return 1;
}
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CGAL::is ascii

bool is ascii( std::ios& s) checks if the IO stream s is in ASCII mode.

See Also
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CGAL::is binary

bool is binary( std::ios& s) checks if the IO stream s is in BINARY mode.

See Also
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CGAL::is pretty

bool is pretty( std::ios& s) checks if the IO stream s is in PRETTY mode.

See Also
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CGAL::Istream iterator<T,Stream>

Definition

The class Istream iterator<T,Stream> is an input iterator adaptor for the input stream class Stream and value
type T . It is particularly useful for classes that are similar but not compatible to std::istream.

#include <CGAL/IO/Istream iterator.h>

Creation

Istream iterator<T,Stream> i; creates an end-of-stream iterator i. This is a past-the-end it-
erator, and it is useful when constructing a range.

Istream iterator<T,Stream> i( Stream& s); creates an input iterator i reading from s. When s reaches
end of stream, this iterator will compare equal to an end-of-
stream iterator created using the default constructor.

Operations

i fulfills the requirements for an input iterator.
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CGAL::Mode

Definition

All classes in the CGAL kernel provide input and output operators for IOStreams. The basic task of such an
operator is to produce a representation of an object that can be written as a sequence of characters on devices as
a console, a file, or a pipe. The enum Mode distinguish between three different printing formats.

In ASCII mode, numbers e.g. the coordinates of a point or the coefficients of a line, are written in a machine
independent format. In BINARY mode, data are written in a binary format, e.g. a double is represented as a
sequence of four byte. The format depends on the machine. The mode PRETTY serves mainly for debugging
as the type of the geometric object is written, as well as the data defining the object. For example for a point
at the origin with Cartesian double coordinates, the output would be PointC2(0.0, 0.0). At the moment CGAL
does not provide input operations for pretty printed data. By default a stream is in ASCII mode.

enum Mode { ASCII = 0, BINARY, PRETTY};

See Also
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CGAL::Ostream iterator<T,Stream>

Definition

The class Ostream iterator<T,Stream> is an output iterator adaptor for the output stream class Stream and value
type T .

#include <CGAL/IO/Ostream iterator.h>

Creation

Ostream iterator<T,Stream> o( Stream& s); creates an output iterator o writing to s.

Operations

o fulfills the requirements for an output iterator.

Implementation

The operator*() in class Ostream iterator<T,Stream> uses a proxy class.
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CGAL::operator<<

Definition

CGAL defines output operators for classes that are derived from the class ostream. This allows to write to
ostreams as cout or cerr, as well as to strstreams and fstreams. The output operator is defined for all classes in
the CGAL kernel and for the class Color as well. Let os be an output stream.

ostream& ostream& os >> Class c

Inserts object c in the stream os. Returns os.

See Also

CGAL::set mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4433
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CGAL::operator>> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4419

Example

#include <CGAL/basic.h>
#include <iostream>
#include <fstream>

#include <CGAL/Cartesian.h>
#include <CGAL/Segment 2.h>

typedef CGAL::Point 2< CGAL::Cartesian<double> > Point;
typedef CGAL::Segment 2< CGAL::Cartesian<double> > Segment;

int main()
{

Point p(0,1), q(2,2);
Segment s(p,q);

CGAL::set pretty mode(std::cout);
std::cout � p � std::endl � q � std::endl;

std::ofstream f("data.txt");
CGAL::set binary mode(f);
f � s � p ;

return 1;
}
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CGAL::Input rep<T,F>

Definition

The definition of Input rep is completely symmetric to Output rep.
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CGAL::Output rep<T,F>

Definition

The purpose of Output rep is to provide a way to control output formatting that works independently of the
object’s stream output operator.

If you dont specialize Output rep for T, T’s stream output operator is called from within Output rep, by default.
If you want another behaviour for your type T, you have to provide a specialization for that type. Furthermore,
you can provide specializations with a second template parameter (a formatting tag). The second template
parameter defaults to Null tag and means DEFAULT BEHAVIOUR.

Specializations of Output rep should provide the following features:� �
template< class F >
struct Output_rep< Some_type, F > {

Output_rep( const Some_type& t );
std::ostream& operator()( std::ostream& out ) const;

};� �
You can also specialize for a formatting tag F.
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CGAL::iformat

The definition of the function iformat is completely symmetric to oformat.
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CGAL::oformat

Definition

Convenience function to construct an output representation (Output rep) for type T.

template <class T>
Output rep<T>

oformat( T t)

Generic IO for type T .

template <class T, typename F>
Output rep<T,F>

oformat( T t, F)

Generic IO for type T with formatting tag.
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CGAL::set ascii mode

Mode set ascii mode( std::ios& s)

sets the mode of the IO stream s to be the ASCII mode. Returns the previous mode
of s.

See Also

CGAL::Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4424
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CGAL::is pretty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4422
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CGAL::set binary mode

Mode set binary mode( std::ios& s)

sets the mode of the IO stream s to be the BINARY mode. Returns the previous mode
of s.

See Also

CGAL::Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4424
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CGAL::set mode

Mode set mode( std::ios& s, IO::Mode m)

sets the printing mode of the IO stream s.

See Also
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CGAL::set pretty mode

Mode set pretty mode( std::ios& s)

sets the mode of the IO stream s to be the PRETTY mode. Returns the previous mode
of s.

See Also
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CGAL::Verbose ostream

Definition

The class Verbose ostream can be used as an output stream. The stream output operator << is defined for any
type. The class Verbose ostream stores in an internal state a stream and whether the output is active or not. If
the state is active, the stream output operator << uses the internal stream to output its argument. If the state is
inactive, nothing happens.

#include <CGAL/IO/Verbose ostream.h>

Creation

Verbose ostream verr( bool active = false, std::ostream& out = std::cerr);

creates an output stream with state set to active that writes to
the stream out.

Operations

template < class T >
Verbose ostream& verr << T t

Example

The class Verbose ostream can be conveniently used to implement for example the is valid() member function
for triangulations or other complex data structures.

bool is_valid( bool verbose = false, int level = 0) {
Verbose_ostream verr( verbose);
verr << "Triangulation::is_valid( level = " << level << ’)’ << endl;
verr << " Number of vertices = " << size_of_vertices() << endl;
// ...

}
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Andreas Fabri and Sylvain Pion

Contents
80.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4439
80.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4439
80.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4440

Reference Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4443
80.4 Alphabetical List of Reference Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4443

80.1 Definition

This chapter presents the CGAL interface to Geomview1, which is a viewer for three-dimensional objects,
originally developed at the Geometry Center in Minneapolis2.

Note: The functionality described in this chapter is not available on Windows.

An object of the class Geomview stream is a stream in which geometric objects can be inserted and where
geometric objects can be extracted from. The constructor starts Geomview either on the local either on a remote
machine.

Not all but most classes of the CGAL kernel have output operators for the Geomview stream. 2D objects are
embedded in the xy-plane. Input is only provided for points. Polyhedron and 2D and 3D triangulations have
output operators for the Geomview stream.

80.2 Implementation

The constructor forks a process and establishes two pipes between the processes. The forked process is then
overlaid with Geomview. The file descriptors stdin and stdout of Geomview are hooked on the two pipes.

1http://www.geomview.org/
2http://www.geom.umn.edu/
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All insert operators construct expressions in gcl, the Geomview command language, which is a subset of LISP.
These expressions are sent to Geomview via the pipe. The extract operators notify interest for a certain kind of
events. When such an event happens Geomview sends a description of the event in gcl and the extract operator
has to parse this expression.

In order to implement further insert and extract operators you should take a look at the implementation and at
the Geomview manual.

80.3 Example

The following program ouputs successively a 2D Delaunay triangulation (projected), a 3D Delaunay, and a
terrain from the set of points.� �
#include <CGAL/Cartesian.h>
#include <iostream>

#ifndef CGAL_USE_GEOMVIEW
int main()
{

std::cout << "Geomview doesn’t work on Windows, so..." << std::endl;
return 0;

}
#else

#include <fstream>
#include <unistd.h> // for sleep()

#include <CGAL/Projection_traits_xy_3.h>

#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/Delaunay_triangulation_3.h>

#include <CGAL/IO/Geomview_stream.h>
#include <CGAL/IO/Triangulation_geomview_ostream_2.h>
#include <CGAL/IO/Triangulation_geomview_ostream_3.h>

#include <CGAL/intersections.h>

typedef CGAL::Cartesian<double> K;

typedef K::Point_2 Point2;
typedef CGAL::Projection_traits_xy_3<K> Gt3;
typedef Gt3::Point Point3;

typedef CGAL::Delaunay_triangulation_2<K> Delaunay;
typedef CGAL::Delaunay_triangulation_2<Gt3> Terrain;

typedef CGAL::Delaunay_triangulation_3<K> Delaunay3d;

int main()
{
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CGAL::Geomview_stream gv(CGAL::Bbox_3(-100, -100, -100, 600, 600,
600));

gv.set_line_width(4);
// gv.set_trace(true);
gv.set_bg_color(CGAL::Color(0, 200, 200));
// gv.clear();

Delaunay D;
Delaunay3d D3d;
Terrain T;
std::ifstream iFile("data/points3", std::ios::in);
Point3 p;

while ( iFile >> p )
{

D.insert( Point2(p.x(), p.y()) );
D3d.insert( p );
T.insert( p );

}

// use different colors, and put a few sleeps/clear.

gv << CGAL::BLUE;
std::cout << "Drawing 2D Delaunay triangulation in wired mode.\n";
gv.set_wired(true);
gv << D;

#if 1 // It’s too slow ! Needs to use OFF for that.
gv << CGAL::RED;
std::cout << "Drawing its Voronoi diagram.\n";
gv.set_wired(true);
D.draw_dual(gv);

#endif

sleep(5);
gv.clear();

std::cout << "Drawing 2D Delaunay triangulation in non-wired mode.\n";
gv.set_wired(false);
gv << D;
sleep(5);
gv.clear();

std::cout << "Drawing 3D Delaunay triangulation in wired mode.\n";
gv.set_wired(true);
gv << D3d;
sleep(5);
gv.clear();
std::cout << "Drawing 3D Delaunay triangulation in non-wired mode.\n";
gv.set_wired(false);
gv << D3d;
sleep(5);
gv.clear();
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std::cout << "Drawing Terrain in wired mode.\n";
gv.set_wired(true);
gv << T;
sleep(5);
gv.clear();
std::cout << "Drawing Terrain in non-wired mode.\n";
gv.set_wired(false);
gv << T;

std::cout << "Enter a key to finish" << std::endl;
char ch;
std::cin >> ch;

return 0;
}
#endif� �
File: demo/Geomview/gv_terrain.cpp
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Geomview
Reference Manual
Andreas Fabri and Sylvain Pion

This chapter presents the CGAL interface to Geomview3, which is a viewer for three-dimensional objects,
originally developed at the Geometry Center in Minneapolis4.

Geomview 1.8.1 is required.

Classes

CGAL::Geomview stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4444

80.4 Alphabetical List of Reference Pages

Geomview stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4444

3http://www.geomview.org/
4http://www.geom.umn.edu/
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CGAL::Geomview stream

Definition

An object of the class Geomview stream is a stream in which geometric objects can be inserted and where
geometric objects can be extracted from. The constructor starts Geomview either on the local either on a remote
machine.

#include <CGAL/IO/Geomview stream.h>

Creation

Geomview stream gs( Bbox 3 bbox = Bbox 3(0,0,0, 1,1,1),
const char *machine = NULL,
const char *login = NULL)

Introduces a Geomview stream gs with a camera that sees
the bounding box. The command geomview must be in the
user’s PATH. If machine and login are not NULL, Geomview
is started on the remote machine using rsh.

Operations

Output Operators for CGAL Kernel Classes

At the moment not all classes of the CGAL kernel have output operators. 2D objects are embedded in the
xy-plane.

template <class R>
Geomview stream& Geomview stream& G << Point 2<R> p

Inserts the point p into the stream gs.
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template <class R>
Geomview stream& Geomview stream& G << Point 3<R> p

Inserts the point p into the stream gs.

template <class R>
Geomview stream& Geomview stream& G << Segment 2<R> s

Inserts the segment s into the stream gs.

template <class R>
Geomview stream& Geomview stream& G << Segment 3<R> s

Inserts the segment s into the stream gs.

template <class R>
Geomview stream& Geomview stream& G << Ray 2<R> r

Inserts the ray r into the stream gs.

template <class R>
Geomview stream& Geomview stream& G << Ray 3<R> r

Inserts the ray r into the stream gs.

template <class R>
Geomview stream& Geomview stream& G << Line 2<R> l

Inserts the line l into the stream gs.

template <class R>
Geomview stream& Geomview stream& G << Line 3<R> l

Inserts the line l into the stream gs.

template <class R>
Geomview stream& Geomview stream& G << Triangle 2<R> t

Inserts the triangle t into the stream gs.

template <class R>
Geomview stream& Geomview stream& G << Triangle 3<R> t

Inserts the triangle t into the stream gs.

template <class R>
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Geomview stream& Geomview stream& G << Tetrahedron 3<R> t

Inserts the tetrahedron t into the stream gs.

template <class R>
Geomview stream& Geomview stream& G << Sphere 3<R> s

Inserts the sphere s into the stream gs.

Geomview stream& Geomview stream& G << Bbox 2 b

Inserts the bounding box b into the stream gs.

Geomview stream& Geomview stream& G << Bbox 3 b

Inserts the bounding box b into the stream gs.

template < class InputIterator >
void gs.draw triangles( InputIterator begin, InputIterator end)

[begin;end) is an iterator range with value type Triangle 3<
R>. This method uses the OFF format to draw several trian-
gles at once, which is much faster than drawing them one by
one.

Input Operators for CGAL Kernel Classes

At the moment input is only provided for points. The user has to select a point on the pick plane with the right
mouse button. The pick plane can be moved anywhere with the left mouse button, before a point is entered.

template <class R>
Geomview stream& Geomview stream& G >> Point 3<R>& p

Extracts the point p from the stream gs. The point is echoed
by default, and it depends on the stream echo mode status.

Output Operators for CGAL Basic Library Classes

#include <CGAL/IO/Polyhedron geomview ostream.h>

template <class Traits, class HDS>
Geomview stream& Geomview stream &G << Polyhedron 3<Traits,HDS> P

Inserts the polyhedron P into the stream gs.

#include <CGAL/IO/Triangulation geomview ostream 2.h>
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template <class GT, class TDS>
Geomview stream& Geomview stream &G << Triangulation 2<GT,TDS> T

Inserts the 2D triangulation T into the stream gs. The actual
output depends on whether the stream is in wired mode or
not. Also note that in the case of terrains (when GT::Point 2
is Point 3<R>), then the 3D terrain is displayed.

#include <CGAL/IO/Triangulation geomview ostream 3.h>

template <class GT, class TDS>
Geomview stream& Geomview stream &G << Triangulation 3<GT,TDS> T

Inserts the 3D triangulation T into the stream gs. The actual
output depends on whether the stream is in wired mode or
not.

Colors

Geomview distinguishes between edge and face colors. The edge color is at the same time the color of vertices.

Geomview stream& gs << Color c Makes c the color of vertices, edges and faces in subsequent
IO operations.

Color gs.set bg color( Color c)

Changes the background color. Returns the old value.

Color gs.set vertex color( Color c)

Changes the vertex color. Returns the old value.

Color gs.set edge color( Color c)

Changes the edge color. Returns the old value.

Color gs.set face color( Color c)

Changes the face color. Returns the old value.

Miscellaneous

void gs.clear() Deletes all objects.

void gs.pickplane() Creates a pickplane (useful after a clear).

void gs.look recenter() Positions the camera in a way that all objects can be seen.
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int gs.get line width() const

Returns the line width.

int gs.set line width( int w)

Sets the line width to w. Returns the previous value.

double gs.get vertex radius() const

Returns the radius of vertices.

double gs.set vertex radius( double r) const

Sets the radius of vertices to d. Returns the previous value.

string gs.get new id( string s)

Used to obtain unique identifier names passed to Geomview.
On successive calls with the same s value, it will return a
string which is s appended with the numbers 0, then 1, then
2... Note that all counters are reset when clear() is called.

bool gs.set wired( bool b) Sets wired mode. In wired mode, some structures output only
there edges, not there surfaces. Returns the previous value.
By default, wired mode is off.

bool gs.get wired() Returns true iff wired mode is on.

advanced

Advanced and Developers Features

The following functions are helpful if you develop your own insert and extract functions. The following func-
tions allow to pass a string from Geomview and to read data sent back by Geomview.

Geomview stream& gs << string s Inserts string s into the stream.

Geomview stream& gs >> char* s Extracts a string s from the stream.
Precondition: You have to allocate enough memory.

Geomview stream& gs << int i Inserts i into the stream. Puts whitespace around if the stream
is in ascii mode.

Geomview stream& gs << unsigned int i Inserts i into the stream. Puts whitespace around if the stream
is in ascii mode.
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Geomview stream& gs << long i Inserts i into the stream. Puts whitespace around if the stream
is in ascii mode. Currently implemented by converting to int,
so it can be truncated on 64 bit platforms.

Geomview stream& gs << unsigned long i

Inserts i into the stream. Puts whitespace around if the stream
is in ascii mode. Currently implemented by converting to
unsigned int, so it can be truncated on 64 bit platforms.

Geomview stream& gs << double d Inserts double d into the stream. Puts whitespace around if
the stream is in ascii mode.

bool gs.set trace( bool b) Sets tracing on. The data that are sent to Geomview are also
sent to cerr. Returns the previous value. By default tracing
is off.

bool gs.get trace() Returns true iff tracing is on.

bool gs.set raw( bool b) Sets raw mode. In raw mode, kernel points are output with-
out headers and footers, just the coordinates (in binary or
ascii mode). This allows the implementation of the stream
functions for other objects to re-use the code for points inter-
nally, by temporary saving the raw mode to true, and restor-
ing it after. Returns the previous value. By default, raw mode
is off.

bool gs.get raw() Returns true iff raw mode is on.

bool gs.set echo( bool b) Sets echo mode. In echo mode, when you select a point in
Geomview, the point is actually sent back to Geomview. Re-
turns the previous value. By default, echo mode is on.

bool gs.get echo() Returns true iff echo mode is on.

bool gs.set binary mode( bool b = true)

Sets whether we are in binary mode.

bool gs.set ascii mode( bool b = true)

Sets whether we are in ascii mode.

bool gs.get binary mode() Returns true iff gs is in binary mode.

bool gs.get ascii mode() Returns true iff gs is in ascii mode.

advanced
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Implementation

The constructor forks a process and establishes two pipes between the processes. The forked process is then
overlaid with Geomview. The file descriptors stdin and stdout of Geomview are hooked on the two pipes.

All insert operators construct expressions in gcl, the Geomview command language, which is a subset of LISP.
These expressions are sent to Geomview via the pipe. The extract operators notify interest for a certain kind of
events. When such an event happens Geomview sends a description of the event in gcl and the extract operator
has to parse this expression.

In order to implement further insert and extract operators you should take a look at the implementation and at
the Geomview manual.
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Chapter 81

CGAL and the Qt Graphics View
Framework
Andreas Fabri and Laurent Rineau

Qt is a GUI toolkit for cross-platform application development.

81.1 Introduction

This chapter describes classes that help to visualize two dimensional CGAL objects with the Qt Graphics View
Framework.

This framework uses the model view paradigm. QGraphicsItems are stored in a QGraphicsScene and are
displayed in a QGraphicsView. The items have a paint method which is called when an item is in the visible
area of a view. The framework is also responsible for dispatching events from the view via the scene to the
items. The framework is extensible in the sense that users can add classes derived from QGraphicsItem.

Besides visualizing QGraphicsItems users want to enter geometric objects. We provide the input generators for
all 2D CGAL kernel objects.

The package includes also a class for providing zooming, panning, and scrolling to the graphics view.

The following sections describe the interaction between all these classes, We finally describe the internals of a
QGraphicsItem.

81.1.1 Naming Conventions

As Qt and CGAL have different naming conventions, and as this package brings them together we adopted the
following, hybrid naming conventions.

• All header files are in the directory CGAL/Qt/ .

• Class names are concatenated capitalized words, and function names are concatenated capitalized word
with the first word in lowercase. The rationale is that these classes are related to Qt, and that they some-
times are derived classes that have to override member functions adhering to this naming scheme.
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• All classes are in the nested namespace CGAL::Qt.

81.2 Overall Design

In Figure 81.1 you see four classes depicted in grey, that come from the Qt Graphics View Framework. The
QGraphicsScene contains QGraphicsItems, which get displayed in any number of QGraphicsViews. The views
are widgets, that is they take screen space in an application.

The fourth class is the QObject. It plays an important role in Qt for event handling and memory management.
First, it allows to add signals and slots, and to connect them. Second, it allows to install event filters.

81.2.1 Visualizing CGAL Datastructures

In order to visualize for example a CGAL::Delaunay triangulation 2<K>, we provide the graphics item class
CGAL::Qt::TriangulationGraphicsItem<T>. It provides a paint method that draws the edges and vertices of a
triangulation using the drawing primitives of the QPainter. The color of vertices and edges, can be chosen by
setting a user defined QPen.

As this graphics item only stores a pointer to a triangulation, it must be notified about changes like the insertion
of points coming from a file, a process or as input generated with the mouse. We use the signal/slot mechanism
of Qt for that purpose, that is when the triangulation changes the application emits a signal that can get connected
to the modelChanged() slot of the graphics item.

81.2.2 Navigation

We provide a class CGAL::Qt::GraphicsViewNavigation that can be installed as an event filter of a graphics
view and its viewport. As for all Qt widgets, the QGraphicsView is derived from QObject. Events like the
mouse buttons pressed or released, the mouse movemed, keys pressed, are passed to the view which first hands
them over to the event filter. The CGAL::Qt::GraphicsViewNavigation event filter allows to zoom, scroll, and
recenter. Finally, the class emits a signal with the mouse coordinates. This can be used to display the current
mouse position in the status bar of an application.

81.2.3 Generation of Input

Input of CGAL kernel objects, polylines, etc. is generated by classes derived from
CGAL::Qt::GraphicsViewInput. As the navigation class, they are event handler of the graphics view,
because they have to know where the mouse is, when the user clicks in order to enter a point.

Once the input generator has assembled the object, which can involve several mouse clicks, it emits a
CGAL::Object wrapping the input. The emitted input can be connected by the application developer to a
slot. In the 2D demos of CGAL, which use the Graphics View Framework we connect it to the slot Main-
Window::processInput(CGAL::Object). This method unwraps from the CGAL::Object and inserts it in the data
structure. It then typically emits a signal modelChanged() which can be connected to the graphics item repre-
senting the data structure.

All input generators we provide use the left mouse button for entering points. The right click terminates a
sequence of entered points. ’Delete’ and ’backspace’ remove the last entered point. ’Esc’ resets the input
generator. As the ’Ctrl’ key is used by the CGAL::Qt::GraphicsViewNavigation this modifier is not used.
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Figure 81.1: UML Class Diagram with the Qt classes (blue), CGAL classes for using the framework (yellow),
CGAL data structures (red), and application classes (green).
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CGAL and the Qt Graphics View
Framework
Reference Manual
Andreas Fabri and Laurent Rineau

This package provides some classes which allow to use CGAL classes in Qt applications which make use of the
Qt Graphics View Framework.

81.3 Classified Reference Pages

GraphicsItem Classes

CGAL::Qt::GraphicsItem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4465
CGAL::Qt::TriangulationGraphicsItem<T> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4467
CGAL::Qt::ConstrainedTriangulationGraphicsItem<CT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4468
CGAL::Qt::VoronoiGraphicsItem<DT> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 4469

Input Classes

CGAL::Qt::GraphicsViewInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4460
CGAL::Qt::GraphicsViewCircleInput<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4463
CGAL::Qt::GraphicsViewCircularArcInput<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4464
CGAL::Qt::GraphicsViewIsoRectangleInput<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4462
CGAL::Qt::GraphicsViewPolylineInput<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4461

Miscellaneous Classes

CGAL::Qt::Converter<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4457
CGAL::Qt::PainterOstream<K> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4458
CGAL::Qt::GraphicsViewNavigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4470
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81.4 Alphabetical List of Reference Pages
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CGAL::Qt::Converter<K>

Definition

An object of type Converter<K> converts 2D CGAL kernel objects to their equivalent objects in Qt, and the
other way round. Note that some objects have no equivalent. For example the CGAL::Circle 2<K> cannot be
converted to something in Qt, and the unbounded objects CGAL::Ray 2<K> and CGAL::Line 2<K> are clipped.
Note also that CGAL and Qt sometimes also use the same word for different things. For example line denotes
an unbounded line in CGAL, wheras it denotes a bounded segment in Qt.

#include <CGAL/Qt/Converter.h>

Creation

Converter<K> c( QRectF clippingRect); The clipping rect is used for unbounded CGAL objects.

From CGAL to Qt

QRectF c( Bbox 2) Converts a bounding box.

QPointF c( K::Point 2) Converts a point.

QLineF c( K::Segment 2) Converts a segment.

QLineF c( K::Ray 2) Clips the ray and converts the resulting segment.

QLineF c( K::Line 2) Clips the line and converts the resulting segment.

QPolygonF c( K::Triangle 2) Converts a triangle.

QRectF c( K::Iso rectangle 2)

Converts an iso rectangle.

QPolygonF c( std::list<K::Point 2>)

Converts a list of points to a polygon.

From Qt to CGAL

K::Point 2 c( QPointF) Converts a point.

K::Segment 2 c( QLineF) Converts a segment.

K::Iso rectangle 2 c( QRectF) Converts an iso rectangle.

std::list<K::Point 2> c( QPolygonF) Converts a polygon to a list of points.
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CGAL::Qt::PainterOstream<K>

Definition

An object of type PainterOstream<K> provides output operators for CGAL kernel objects. As CGAL has un-
bounded objects the PainterOstream<K> must be constructed with a clipping rectangle. This is typically the
visible area of the widget where the unbounded object is displayed.

#include <CGAL/Qt/PainterOstream.h>

Creation

PainterOstream<K> os( QPainter* qp, QRectF clippingRect);

The clipping rect is used for unbounded CGAL objects.

Operations

PainterOstream<K> os << K::Point 2 Draws a point.

PainterOstream<K> os << K::Segment 2 Draws a segment.

PainterOstream<K> os << K::Ray 2 Draws a clipped ray.

PainterOstream<K> os << K::Line 2 Draws a clipped line.

PainterOstream<K> os << K::Triangle 2 Draws a triangle.

PainterOstream<K> os << K::Iso rectangle 2

Draws an iso rectangle.

PainterOstream<K> os << K::Circle 2 Draws a circle.

PainterOstream<K> os << K::Circular arc 2

Draws a circular arc.

PainterOstream<K> os << std::list<K::Point 2>

Draws a polyline. In order to close it the first and last point
must be equal.
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PainterOstream<K> os << Bbox 2 Draws an iso rectangle.

PainterOstream<K> os << QPen Sets the pen used in the next paint operations.

PainterOstream<K> os << QBrush Sets the brush used in the next paint operations.
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CGAL::Qt::GraphicsViewInput

Definition

An object of type GraphicsViewInput can emit a signal with CGAL::Object as argument.

#include <CGAL/Qt/GraphicsViewInput.h>

Signals

void in.generate( Object) A signal that emits a CGAL::Object.
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CGAL::Qt::GraphicsViewPolylineInput<K>

Definition

An object of type GraphicsViewPolylineInput<K> creates a list of points. A new vertex is inserted every time
the left mouse button is pressed. The list of points is emitted on a right click or when the number of points
specified in the constructor is reached. You can use the ’Del’ or ’Backspace’ key if you want to remove your
last entered point in the polygon, and the ’Esc’ key if you want to remove all points.

The tool can serve at the same time for entering a single point, a polyline with a given number of points, and for
open as well as closed polylines.

For polylines the segment between the last entered point and the current mouse position is only drawn correctly
when mouse tracking is enabled in the graphics view. The same holds for closed polygons.

#include <CGAL/Qt/GraphicsViewPolylineInput.h>

Parameters

The template parameter of GraphicsViewPolylineInput<K> must be a CGAL Kernel.

Inherits From

Qt::GraphicsViewInput

Creation

GraphicsViewPolylineInput<K> in( QObject *p, QGraphicsScene* s, int n = 0, bool closed = true);

p is a parent object. s is the scene where the polyline is generated. n is the
number of points of the polyline to be generated. If c is equal to 0, the default
value, the number of points of the polyline is not limited. When closed is true
the function displays a polygon.

Signals

void in.generate( CGAL::Object o)

The object o contains a std:list<K::Point 2>.
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CGAL::Qt::GraphicsViewIsoRectangleInput<K>

Definition

An object of type GraphicsViewIsoRectangleInput<K> creates an axis parallel rectangle.

#include <CGAL/Qt/GraphicsViewIsoRectangleInput.h>

Parameters

The template parameter of GraphicsViewIsoRectangleInput<K> must be a CGAL Kernel.

Inherits From

GraphicsViewInput

Creation

GraphicsViewIsoRectangleInput<K> in( QObject *p, QGraphicsScene* s);

p is a parent object. s is the scene where the iso rectangle is generated.

Signals

void in.generate( Object o)

The object o contains a K::Iso rectangle 2.
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CGAL::Qt::GraphicsViewCircleInput<K>

Definition

An object of type GraphicsViewCircleInput<K> creates a circle, defined by either center and radius, or two or
three points on the circle. A new vertex is inserted every time the left mouse button is released. The Del key
removes the last entered point. The Esc key removes all entered points.

#include <CGAL/Qt/GraphicsViewCircleInput.h>

Parameters

The template parameter of GraphicsViewCircleInput<K> must be a CGAL Kernel.

Inherits From

Qt::GraphicsViewInput

Creation

GraphicsViewCircleInput<K> in( QObject *p, QGraphicsScene* s, int pointsOnCircle = 1);

p is a parent object. s is the scene where the circle is generated. pointsOnCircle
is the number of points on the circle to be generated, that is the default value 1
corresponds to the case center/radius.

Signals

void in.generate( Object o)

The object o contains a std::pair<K::Point 2, K::FT> for
center and radius, or a std::pair<K::Point 2, K::Point 2> for
two points defining the circle, or CGAL::array<K::Point 2,
3> for three points defining the circle.
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CGAL::Qt::GraphicsViewCircularArcInput<K>

Definition

An object of type GraphicsViewCircularArcInput<K> creates a circular arc, defined by three points on a circle.
A new vertex is inserted every time the left mouse button is released. The Del key removes the last entered
point. The Esc key removes all entered points.

#include <CGAL/Qt/GraphicsViewCircularArcInput.h>

Parameters

The template parameter of GraphicsViewCircularArcInput<K> must be a CGAL CircularKernel.

Inherits From

Qt::GraphicsViewInput

Creation

GraphicsViewCircularArcInput<K> in( QObject *p, QGraphicsScene* s);

p is a parent object. s is the scene where the circular arc is generated.

Signals

void in.generate( Object o)

The object o contains a Circular arc 2<K>.
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CGAL::Qt::GraphicsItem

Definition

The CGAL graphics items hold pointers to CGAL datastructures. When a datastructure changes, a signal is
emitted. An object derived from type GraphicsItem must provide an implementation of the virtual slot mod-
elChanged(). This typically triggers redrawing, as well as recomputation of the bounding box which in turn
may trigger redrawing of overlapping graphics items.

#include <CGAL/Qt/GraphicsItem.h>

Inherits From

QGraphicsItem

Slots

virtual void gi.modelChanged() This slot must be provided by derived classes.
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CGAL::Qt::CircularArcGraphicsItem<CK>

Definition

An object of type CircularArcGraphicsItem<CK> is a graphics item that encapsulates a circular arc.

#include <CGAL/Qt/CircularArcGraphicsItem.h>

Parameters

The template parameter of CircularArcGraphicsItem<CK> must be a CGAL CircularKernel.

Inherits From

Qt::GraphicsItem

Creation

CircularArcGraphicsItem<CK> cagi;

Constructs a graphics item for a circular arc.

Operations

QPen cagi.edgesPen() const

Returns the pen used to draw edges.

void cagi.setEdgesPen() Sets the pen used to draw edges.

void cagi.setArc( Circular arc 2<CK> ca2)

Sets the circular arc.
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CGAL::Qt::TriangulationGraphicsItem<T>

Definition

An object of type TriangulationGraphicsItem<T> is a graphics item that encapsulates a 2D triangulation.

#include <CGAL/Qt/TriangulationGraphicsItem.h>

Parameters

The template parameter of TriangulationGraphicsItem<T> must be a CGAL 2D triangulation class.

Inherits From

Qt::GraphicsItem

Creation

TriangulationGraphicsItem<T> tgi( T* t);

Constructs a graphics item for a triangulation pointed by t.

Operations

QPen tgi.verticesPen() const

Returns the pen used to draw vertices.

void tgi.setVerticesPen() Sets the pen used to draw vertices.

QPen tgi.edgesPen() const Returns the pen used to draw edges.

void tgi.setEdgesPen() Sets the pen used to draw edges.

bool tgi.visibleVertices() Returns true, iff vertices are drawn.

void tgi.setVisibleVertices( bool b)

Sets the property.

bool tgi.visibleEdges() Returns true, iff edges are drawn.

void tgi.setVisibleEdges( bool b)

Sets the property.
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CGAL::Qt::ConstrainedTriangulationGraphicsItem<CT>

Definition

An object of type ConstrainedTriangulationGraphicsItem<CT> is a graphics item that encapsulates a con-
strained triangulation.

#include <CGAL/Qt/ConstrainedTriangulationGraphicsItem.h>

Parameters

The template parameter of ConstrainedTriangulationGraphicsItem<CT> must be a CGAL 2D constrained trian-
gulation class.

Inherits From

Qt::TriangulationGraphicsItem

Creation

ConstrainedTriangulationGraphicsItem<CT> ctgi( CT* ct);

Constructs a graphics item for triangulation ct.

Operations

QPen ctgi.constraintsPen() const

Returns the pen used to draw constraints.

void ctgi.setConstraintsPen()

Sets the pen used to draw constraints.
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CGAL::Qt::VoronoiGraphicsItem<DT>

Definition

An object of type VoronoiGraphicsItem<DT> is a graphics item that encapsulates a Delaunay triangulation in
order to draw its dual, the Voronoi diagram.

#include <CGAL/Qt/VoronoiGraphicsItem.h>

Parameters

The template parameter DT of VoronoiGraphicsItem<DT> must be a CGAL 2D Delaunay triangulation class.

Inherits From

Qt::GraphicsItem

Creation

VoronoiGraphicsItem<DT> vgi( DT* dt);

Constructs a graphics item for the dual of the Delaunay triangulation dt.

Operations

QPen vgi.edgesPen() const Returns the pen used to draw edges.

void vgi.setEdgesPen() Set the pen used to draw edges.

bool vgi.visibleEdges() Returns true, iff edges are drawn.

bool vgi.setVisibleEdges( bool b)

Set the property.
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CGAL::Qt::GraphicsViewNavigation

Definition

An object of type GraphicsViewNavigation can be added as event filter to a Qt::QGraphicsView and its view-
port.

Dragging the left mouse button while holding the ’Ctrl’ key defines a zoom rectangle. Dragging the right mouse
button while holding the ’Ctrl’ key translates the scene. ’Ctrl-Shift’ and a click of the right mouse button
translates what is under the mouse to the center.

#include <CGAL/Qt/GraphicsViewNavigation.h>

Operations

bool nav.eventFilter( QObject *obj, QEvent *event)

The event filter.

Signals

void nav.mouseCoordinates( QPointF p)

Emits the real world mouse coordinates.
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82.1 Introduction

The Ipe extensible drawing editor (http://tclab.kaist.ac.kr/ipe/) [Sch95, Che09] is a tool used by computational
geometry researchers to produce 2D figures for inclusion in articles or presentations. The extensible adjective
sheds a light on an important feature: the possibility for users to write small extensions (called ipelets) to inter-
face any algorithm with Ipe. This feature is especially interesting to produce illustrations in a paper describing
a new algorithm. This package provides one class that eases the writing of ipelets based on CGAL, reducing
the needed knowledge of the API of Ipe. This class is designed to fulfill most of the needs to implement an
ipelet for a 2D CGAL algorithm. In addition, this package comes with more than ten complete examples of
ipelets: alpha-shape, arrangements, Voronoi diagrams, convex hulls, Hilbert curve, k-order Delaunay, 2D mesh,
Minkowski sum, polygon partition, random generators, triangulations . . .

82.2 CGAL Ipelets

The class CGAL::Ipelet base derives from the class Ipelets from Ipe and has one template parameter indicating
which kernel must be used within the ipelet. In practice, we recommend to use either CGAL::Exact predicate
exact constructions kernel or CGAL::Exact predicate inexact construction kernel.

Two main methods are provided by the CGAL::Ipelet base class. The first one, read active objects retrieves all
primitives selected in Ipe when calling an ipelet, and converts them into equivalent CGAL objects. The second
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method, draw in ipe draws CGAL objects in the Ipe window. These functions handle basic objects such as
points, segments, polygons, circles and circular arcs.

The registration of an ipelet into Ipe can be done using the macro CGAL IPELET . CGAL IPELET(ipelet class
name) must follow the definition of the ipelet class, in the same file source file.

82.3 Example

The following example shows how the class CGAL::Ipelet base can be used to easily interface the CGAL 2D
Delaunay triangulation with Ipe.� �
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/CGAL_Ipelet_base.h>

namespace my_triangulation{

typedef CGAL::Exact_predicates_inexact_constructions_kernel
Kernel;

typedef CGAL::Delaunay_triangulation_2<Kernel>
Delaunay;

//Function names of the ipelet
const std::string labels[] = { "Delaunay","Help" };
//Help message associated to the first function
const std::string hmsg[] = {

"Draw a Delaunay triangulation of a set of points"
};

class Triangulation_ipelet
: public CGAL::Ipelet_base<Kernel,2>{

public:
//declare an ipelet called CGAL Delaunay, with 2 functions (including
help message).

Triangulation_ipelet()
:CGAL::Ipelet_base<Kernel,2>("CGAL Delaunay",labels,hmsg){}

void protected_run(int);
};

//function called when using the ipelet.
void Triangulation_ipelet::protected_run(int fn)
{

switch (fn){
case 1:

show_help();//print an help message
return;

default:
std::list<Point_2> pt_lst;

//Recovering points using output iterator of type
//Dispatch_or_drop_output_iterator
read_active_objects(

CGAL::dispatch_or_drop_output<Point_2>(std::back_inserter(pt_lst))
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Figure 82.1: The ipelet of the example in action.

);

if (pt_lst.empty()) {
print_error_message("No mark selected");
return;

}

Delaunay dt;
dt.insert(pt_lst.begin(),pt_lst.end());

//draw the triangulation.
draw_in_ipe(dt);

};
}

}//namespace my_triangulation

//register the ipelet in Ipe
CGAL_IPELET(my_triangulation::Triangulation_ipelet)� �
File: demo/CGAL_ipelets/simple_triangulation.cpp

82.4 Installation of the Demo Ipelets

Some working ipelets can be found within the demo directory of this package. To install them you need to go to
the demo directory of the package and run cmake. The compilation of these demo requires the source tree and

4473



the library of Ipe. If your Ipe installation is not detected you need to set the cmake variables IPE INCLUDE DIR
and IPE LIBRARIES. If you want to install ipelets automatically (using make install for example) you also need
to set the cmake variable IPELET INSTALL DIR, if the ipelet installation path has not already been detected.
These ipelets have been tested with the versions 6.0pre28 to 6.0pre32 of Ipe, as well as with the version 7 (at
least up to version 7.10). These ipelets are a good starting point to design your own ipelet. For more details on
how to compile an ipelet, please refer to the Ipe manual.

82.5 Design and Implementation History

A first draft of the CGAL ipelets has been implemented during the internship of Nicolas Carrez, in 2005, su-
pervised by Olivier Devillers. Since then, the ipelets have been rewritten and extended by Sebastien Loriot as
a stand-alone software with the help of Laurent Rineau. Finally, an enhanced version has been formally con-
tributed to CGAL in 2009 by Sebastien Loriot. Sylvain Pion has participated in the discussion of the overall
design, and contributed the Hilbert sort ipelet demo.
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CGAL::Ipelet base<Kernel,int nbf>

Definition

Ipelet base<Kernel,int nbf> is an abstract base class for defining an ipelet. The only function that needs to
be defined in a derived class is protected run(int i) that contains the code of an ipelet. Note that the name
of the function suggests that the ipelet may throw exceptions that will be caught by a function of the class
Ipelet base<Kernel,int nbf> avoiding Ipe to crash.

Parameters

The Kernel template parameter determines the kernel that will be used in the ipelet. This parameter must be set
according to the algorithm to be used. The integer nbf indicates the number of functions defined by the ipelet.

Types

typedef Kernel Kernel; The kernel used to define internal types.

typedef Kernel::FT FT; The number type of the coordinates.

typedef Kernel::Point 2

Point 2; The point type.

typedef Kernel::Circle 2

Circle 2; The circle type.

typedef CGAL::tuple<Circle 2,Point 2,Point 2,CGAL::Sign>

Circular arc 2; The circular arc type. The CGAL::Sign, equals either to
CGAL::COUNTERCLOCKWISE or CGAL::CLOCKWISE,
indicates if the arc is the set of points on the circle from the
first point to the second point turning clockwise or counter-
clockwise.

typedef CGAL::Weighted point<Point,FT>

Weighted point 2; The weighted point type.

typedef Kernel::Segment 2

Segment 2; The segment type.

typedef Kernel::Line 2

Line 2; The line type.
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typedef Kernel::Ray 2

Ray 2; The ray type.

typedef Kernel::Triangle 2

Triangle 2; The triangle type.

typedef CGAL::Polygon 2<Kernel>

Polygon 2; The polygon type.

typedef Kernel::Iso rectangle 2

Iso rectangle 2; A type to represent bounding boxes.

The set of read objects is defined as the set of objects of type Point 2, Segment 2, Polygon 2, Circular arc 2
or Circle 2. The set of drawable objects is defined as the super set of the set of read objects also including
objects of type Line 2, Ray 2, Triangle 2 and Iso rectangle 2.

template<class output iterator>

Point grabber; Class type providing operators to extract points from seg-
ments and polygons.

template<class output iterator>

Segment grabber; Class type providing operators to extract segments from
polygons.

Creation

Ipelet base<Kernel,int nbf> iplt( const std::string fct names[],
const std::string help msg[],
const std::string name)

initializes an ipelet. The string name is the name given to the
ipelet in the Ipe menu. The string array fct names contains
the names of these functions as they will appear in the sub-
menu of the ipelet. The string array help msg of size one or
nbf-1 contains a help message for each function of the ipelet.
These help messages can be printed using the member func-
tion show help(). This function expects that the last function
defined in the ipelet is dedicated to print the help message. It
is advised that the last function defined is dedicated to show
a help message.

Access Functions

advanced
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IpePage* iplt.get ipe page() returns a pointer to an Ipe object representing the drawing
page. Refer to the Ipe library documentation for more details.

IpeletHelper* iplt.get ipelet helper()

returns a pointer to an Ipe object providing services to
Ipelets. Refer to the Ipe library documentation for more de-
tails.

advanced

Operations

void iplt.show help( bool one per func=true)

Prints in Ipe a pop-up help message constructed from the
string array of the constructor. This function expects that the
last function defined in the ipelet is dedicated to print the help
message. When the boolean one per func is true, one help
message per function is printed (except for the help function
itself) using the nbf-1 strings in the array given to the con-
structor. Otherwise, only one help message is printed using
the first string in the array given to the constructor.

void iplt.print error message( std::string msg)

Prints the string msg as a message in Ipe.

void iplt.protected run( int i) =0

function called when the user selects the CGAL ipelet.

template< class V, class O >
Iso rectangle 2 iplt.read active objects( Dispatch or drop output iterator<V, O> out,

bool deselect all=true,
bool delete selected objects=false)

This function assigns to output iterator out all handled ob-
jects selected in Ipe. Objects read belong to the set of read
objects (even within groups). The output iterator out must
be able to handle all read objects (see CGAL::Dispatch
or drop output iterator<V,O>). In addition, a bounding
box (Iso rectangle 2) of the active objects selected is re-
turned. The two Boolean arguments indicate whether the re-
trieved objects must be deselected and/or removed. Note that
non-retrieved objects (primitives of Ipe not handled or ob-
jects dropped by out) are automatically deselected, and not
deleted. If a non-retrieved object is a sub-path or is inside a
group, the whole path or group will not be deleted.

template<class Output iterator>
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boost::function output iterator<Point grabber<Output iterator> >

iplt.point grabber( Output iterator it)

returns an output iterator which wraps it. Output iterator
must be a model of the output iterator concept accepting
assignments from Point 2. The returned output iterator
will accept assignments from objects of types Polygon 2 or
Segment 2 or Point 2, it decomposes them in objects of type
Point 2 and assigns them to it. For more details on the re-
turned output iterator refer to the Boost library documenta-
tion.

template<class Output iterator>
boost::function output iterator<Segment grabber<Output iterator> >

iplt.segment grabber( Output iterator it)

returns an output iterator which wraps it. Output iterator
must be a model of the output iterator concept accepting
assignments from Segment 2. The returned output iterator
will accept assignments from objects of types Polygon 2 or
Segment 2, it decomposes them in objects of type Segment
2 and assigns them to it. For more details on the returned
output iterator refer to the Boost library documentation.

template<class T>
void iplt.draw in ipe( T object, bool deselect=false)

This function draws in the page of Ipe a given object. T must
be a type inside the set of drawable objects. When object is
of type Line 2 or Ray 2, only the part of the object that is
inside the page of Ipe (if not empty) is drawn. This function
is also able to draw a 2D CGAL triangulation as a group of
segments. If the boolean deselect is set to true, object drawn
is deselected.

template<class T>
void iplt.draw in ipe( T object, Iso rectangle 2 bbox, bool deselect=false)

Same as above, except that objects are clipped to bbox before
been drawn.

template<class Iterator>
void iplt.draw in ipe( Iterator begin,

Iterator end,
bool makegrp=true,
bool deselectall=false)

This function draws in the page of Ipe a set of objects given
by an iterator range. These objects must be of a type inside
the set of drawable objects. If the boolean makegrp is set
to true, objects drawn define a group in Ipe. If the boolean
deselectall is set to true, objects drawn are deselected.
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template<class Iterator>
void iplt.draw in ipe( Iterator begin,

Iterator end,
Iso rectangle 2 bbox,
bool makegrp=true,
bool deselectall=false)

Same as above, except that objects are clipped to bbox before
been drawn.

template<class iterator>
void iplt.draw polyline in ipe( iterator first,

iterator last,
bool setclose=false,
bool deselect=false)

This function draws in the page of Ipe a polyline defined by
an iterator range of points. If the boolean setclose is true,
the polyline drawn is closed. If the boolean deselect is set to
true, polyline drawn is deselected.

template<class Triangulation>
void iplt.draw dual in ipe( Triangulation T,

Iso rectangle 2 bbox,
bool makegrp=true,
bool deselect=false)

This function draws in the page of Ipe the dual of a 2D CGAL
triangulation. The edges of the dual are restricted to the inte-
rior of bbox. If the boolean makegrp is set to true, segments
drawn define a group in Ipe. If the boolean deselect is set to
true, segments drawn are deselected.

template<class Triangulation>
void iplt.draw skeleton in ipe( Triangulation T,

Iso rectangle 2 bbox,
bool makegrp=true,
bool deselect=false)

This function draws in the page of Ipe the Voronoi segment
skeleton from a triangulation of segments. The edges are re-
stricted to the interior of bbox. If the boolean makegrp is set
to true, segments drawn define a group in Ipe. If the boolean
deselect is set to true, segments drawn are deselected.

template <class T>
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std::pair<int,T> iplt.request value from user( std::string msg)

This function induces the creation of a dialog box requesting
a value from the user. The string msg is printed in this dialog
box. Ipe lexer tries to convert the user input into an object
of type T (a simple type such as int, float, etc). If the con-
version is possible, the value is returned within a std::pair.
The integer of the pair returned is -1 if the user input is not
correct, 0 if user input is empty and 1, otherwise. otherwise.
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CGAL IPELET

The registration of a new ipelet can be done using the macro command CGAL IPELET . Taking as a parameter
the name of the class defining the new ipelet, that macro must be placed in the source file after the class
definition.
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[MNS+96] Kurt Mehlhorn, Stefan Näher, Thomas Schilz, Stefan Schirra, Michael Seel, Raimund Seidel, and
Christian Uhrig. Checking geometric programs or verification of geometric structures. In Proc.
12th Annu. ACM Sympos. Comput. Geom., pages 159–165, 1996.
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Kernel::LeftTurn 2, 1019
Kernel::Less coordinate d, 1139
Kernel::Less lexicographically d, 1137
Kernel::Less or equal lexicographically d, 1138
Kernel::LessDistanceToPoint 2, 1020
Kernel::LessDistanceToPoint 3, 1021
Kernel::LessRotateCCW 2, 1022
Kernel::LessSignedDistanceToLine 2, 1023
Kernel::LessSignedDistanceToPlane 3, 1024
Kernel::LessX 2, 1028
Kernel::LessX 3, 1029
Kernel::LessXY 2, 1026
Kernel::LessXY 3, 1027
Kernel::LessXYZ 3, 1025
Kernel::LessY 2, 1031
Kernel::LessY 3, 1032
Kernel::LessYX 2, 1030
Kernel::LessZ 3, 1033
Kernel::Lift to paraboloid d, 1140
Kernel::Linear base d, 1142
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Kernel::Linear rank d, 1143
Kernel::Linearly independent d, 1141
Kernel::Midpoint d, 1144
Kernel::Orientation 2, 1034
Kernel::Orientation 3, 1035
Kernel::Orientation d, 1145
Kernel::Oriented side d, 1146
Kernel::OrientedSide 2, 1036
Kernel::OrientedSide 3, 1037
Kernel::Orthogonal vector d, 1147
Kernel::Point dimension d, 1148
Kernel::Point of sphere d, 1149
Kernel::Point to vector d, 1150
Kernel::Project along d axis d, 1151
Kernel::Side of bounded sphere d, 1152
Kernel::Side of oriented sphere d, 1153
Kernel::SideOfBoundedCircle 2, 1038
Kernel::SideOfBoundedSphere 3, 1039
Kernel::SideOfOrientedCircle 2, 1040
Kernel::SideOfOrientedSphere 3, 1041
Kernel::Squared distance d, 1154
Kernel::Value at d, 1155
Kernel::Vector to point d, 1156
Matrix, 1065
Max, 205
MeshCellCriteria 3, 3177
MeshDomainField 3, 3191
MeshEdgeCriteria 3, 3180
MeshFacetCriteria 3, 3178
Min, 206
Modifier base, 4399
ModularTraits::ModularImage, 238
ModularTraits::ModularImageRepresentative,

239
Monge via jet fitting, 3484
MonotoneMatrixSearchTraits, 462
Multiscale sort, 3783
Poisson reconstruction function, 3109
PolygonConvexDecomposition 2, 1770
PolygonIsValid, 1661
PolynomialTraits d::Canonicalize, 282
PolynomialTraits d::Compare, 292
PolynomialTraits -

d::ConstructCoefficientConstIteratorRange,
272

PolynomialTraits -
d::ConstructInnermostCoefficientConstIteratorRange,
273

PolynomialTraits d::ConstructPolynomial, 267
PolynomialTraits d::Degree, 277
PolynomialTraits d::DegreeVector, 279
PolynomialTraits d::Differentiate, 283
PolynomialTraits d::Evaluate, 284
PolynomialTraits d::EvaluateHomogeneous, 285

PolynomialTraits d::GcdUpToConstantFactor,
301

PolynomialTraits d::GetCoefficient, 269
PolynomialTraits d::GetInnermostCoefficient,

270
PolynomialTraits -

d::InnermostLeadingCoefficient, 281
PolynomialTraits -

d::IntegralDivisionUpToConstantFactor,
302

PolynomialTraits d::Invert, 307
PolynomialTraits d::IsSquareFree, 297
PolynomialTraits d::IsZeroAt, 288
PolynomialTraits d::IsZeroAtHomogeneous,

289
PolynomialTraits d::LeadingCoefficient, 280
PolynomialTraits d::MakeSquareFree, 296
PolynomialTraits d::MonomialRepresentation,

271
PolynomialTraits d::Move, 276
PolynomialTraits d::MultivariateContent, 294
PolynomialTraits d::Negate, 306
PolynomialTraits d::Permute, 274
PolynomialTraits d::PolynomialSubresultants,

314
PolynomialTraits -

d::PolynomialSubresultantsWithCofactors,
316

PolynomialTraits -
d::PrincipalSturmHabichtSequence, 323

PolynomialTraits d::PrincipalSubresultants, 318
PolynomialTraits d::PseudoDivision, 298
PolynomialTraits d::PseudoDivisionQuotient,

299
PolynomialTraits d::PseudoDivisionRemainder,

300
PolynomialTraits d::Resultant, 313
PolynomialTraits d::Scale, 310
PolynomialTraits d::ScaleHomogeneous, 311
PolynomialTraits d::Shift, 305
PolynomialTraits d::SignAt, 290
PolynomialTraits d::SignAtHomogeneous, 291
PolynomialTraits d::SquareFreeFactorize, 295
PolynomialTraits -

d::SquareFreeFactorizeUpToConstantFactor,
304

PolynomialTraits d::SturmHabichtSequence,
319

PolynomialTraits -
d::SturmHabichtSequenceWithCofactors,
321

PolynomialTraits d::Substitute, 286
PolynomialTraits d::SubstituteHomogeneous,

287
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PolynomialTraits d::Swap, 275
PolynomialTraits d::TotalDegree, 278
PolynomialTraits d::Translate, 308
PolynomialTraits d::TranslateHomogeneous,

309
PolynomialTraits d::UnivariateContent, 293
PolynomialTraits -

d::UnivariateContentUpToConstantFactor,
303

Project facet, 4201
Project next, 4205
Project next opposite, 4207
Project normal, 4203
Project opposite prev, 4208
Project plane, 4204
Project point, 4202
Project prev, 4206
Project vertex, 4200
Projection object, 4195
Random, 4375
RealEmbeddableTraits::Abs, 127
RealEmbeddableTraits::Compare, 131
RealEmbeddableTraits::IsNegative, 130
RealEmbeddableTraits::IsPositive, 129
RealEmbeddableTraits::IsZero, 126
RealEmbeddableTraits::Sgn, 128
RealEmbeddableTraits::ToDouble, 132
RealEmbeddableTraits::ToInterval, 133
SphericalKernel::BoundedSide 3, 1298
SphericalKernel::CompareTheta 3, 1290
SphericalKernel::CompareThetaZ 3, 1291
SphericalKernel::CompareX 3, 1285
SphericalKernel::CompareXY 3, 1288
SphericalKernel::CompareXYZ 3, 1289
SphericalKernel::CompareY 3, 1286
SphericalKernel::CompareZ 3, 1287
SphericalKernel::CompareZAtTheta 3, 1292
SphericalKernel::CompareZToRight 3, 1293
SphericalKernel::ComputeApproximateAngle 3,

1308
SphericalKernel::ComputeApproximateSquaredLength

3, 1307
SphericalKernel::ComputeCircularX 3, 1304
SphericalKernel::ComputeCircularY 3, 1305
SphericalKernel::ComputeCircularZ 3, 1306
SphericalKernel::ConstructBbox 3, 1282
SphericalKernel::ConstructCircle 3, 1274
SphericalKernel::ConstructCircularArc 3, 1277
SphericalKernel::ConstructCircularArcPoint 3,

1275
SphericalKernel::ConstructCircularMaxVertex -

3, 1279
SphericalKernel::ConstructCircularMinVertex -

3, 1278

SphericalKernel::ConstructCircularSourceVertex
3, 1280

SphericalKernel::ConstructCircularTargetVertex
3, 1281

SphericalKernel::ConstructLine 3, 1273
SphericalKernel::ConstructLineArc 3, 1276
SphericalKernel::ConstructPlane 3, 1271
SphericalKernel::ConstructSphere 3, 1272
SphericalKernel::DoIntersect 3, 1297
SphericalKernel::DoOverlap 3, 1296
SphericalKernel::Equal 3, 1294
SphericalKernel::GetEquation, 1309
SphericalKernel::HasOn 3, 1295
SphericalKernel::HasOnBoundedSide 3, 1299
SphericalKernel::HasOnUnboundedSide 3, 1300
SphericalKernel::Intersect 3, 1302
SphericalKernel::IsThetaMonotone 3, 1301
SphericalKernel::MakeThetaMonotone 3, 1284
SphericalKernel::Split 3, 1283
Splitter, 3643
StopPredicate, 3295
Straight skeleton converter 2, 1722
StraightSkeletonItemsConverter 2, 1702, 1703
Surface mesh simplification::Count ratio stop

predicate, 3306
Surface mesh simplification::Count stop -

predicate, 3305
Surface mesh simplification::Edge length cost,

3307
Surface mesh simplification::LindstromTurk -

cost, 3309
Surface mesh simplification::LindstromTurk -

placement, 3310
Surface mesh simplification::Midpoint -

placement, 3308
SvdTraits, 3486
UniqueHashFunction, 4407

∗
Aff transformation 2, 611
Aff transformation 3, 642
Aff transformation d, 1098
Circulator, 4314
const, 70, 222, 1063, 1066
Handle, 4337
Matrix, 1066
Nef polyhedron 3, 2018
Residue, 235
Uncertain, 4242, 4243
Vector, 1063
Vector 2, 638, 759
Vector 3, 676, 759
Vector d, 1077, 1078

∗=
IntegralDomainWithoutDivision, 70
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Nef polyhedron 3, 2018
Residue, 235
Sqrt extension, 222
Vector, 1063
Vector d, 1077

+
Bbox 2, 613
Bbox 3, 639
Circulator, 4315
const, 69, 214, 222, 328
difference type, 4315
Line d, 1082
Matrix, 1066
Nef polyhedron 3, 2018
Periodic 3Offset 3, 2793
Point 2, 627, 757
Point 3, 658, 757
Point d, 1073
Ray d, 1084
Residue, 235
Segment d, 1086
Sphere d, 1094
Vector, 1063
Vector 2, 637
Vector 3, 675
Vector d, 1077

++
Circulator, 4314
Gmpz, 175
Profile counter, 4400

+ =
Circulator, 4315
Exponent vector, 328
IntegralDomainWithoutDivision, 70
Nef polyhedron 3, 2018
Periodic 3Offset 3, 2793
Point d, 1073
Residue, 235
RootOf 2, 214
Sqrt extension, 222
Vector, 1063
Vector d, 1077

−
Circulator, 4315
const, 69, 222, 328
Direction 2, 618
Direction 3, 644
Direction d, 1080
Matrix, 1066
Nef polyhedron 3, 2018
Periodic 3Offset 3, 2793
Point 2, 627, 628, 758
Point 3, 657, 658, 758
Point d, 1073

Residue, 235
Uncertain, 4243
Vector, 1063
Vector 2, 637, 638
Vector 3, 676
Vector d, 1078

−−
Circulator, 4314
Gmpz, 175

−=
Circulator, 4315
Exponent vector, 328
IntegralDomainWithoutDivision, 70
Nef polyhedron 3, 2018
Periodic 3Offset 3, 2793
Point d, 1073
Residue, 235
Sqrt extension, 222
Vector, 1063
Vector d, 1078

−>
Circulator, 4314
Handle, 4337

/
const, 74, 222
Interval nt, 195
Residue, 235
Vector 2, 638
Vector 3, 676
Vector d, 1077

/ =
Field, 74
Residue, 235
Sqrt extension, 222
Vector, 1063
Vector d, 1077

<
Circular arc point 2, 1178
Circular arc point 3, 1262
Compact container, 4159
const, 123, 214, 223, 328
Direction 2, 617
In place list, 4149
Interval nt, 196
Multiset, 4162
Nef polyhedron 3, 2017
Periodic 3Offset 3, 2793
Point 2, 627
Point 3, 657
Quadruple, 4230
Triangulation simplex 3, 2689
Triple, 4228
Uncertain, 4241–4243

<<
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Conic x monotone arc 2, 2231
Alpha shape 2, 2810
Alpha shape 3, 2845
Apollonius graph 2, 2939
Apollonius graph hierarchy 2, 2955
Apollonius site 2, 2941
Arrangement 2, 2231
Arrangement with history 2, 2231
Bbox 2, 4446
Bbox 3, 4446
CGAL::General polygon 2, 1560
CGAL::General polygon with holes 2, 1560
CGAL::Nef polyhedron 3, 2012, 2037
CGAL::Polygon with holes 2, 1560
CGAL::Polyhedron 3, 1785, 1793, 1828
Circular arc 2, 1175
Circular arc 3, 1269
Circular arc point 2, 1178
Circular arc point 3, 1262
Class, 4410
Constrained triangulation 2, 2505
Event, 4116
Fixed alpha shape 3, 2859
Geomview stream, 4447–4449
Gmpfi, 191
Gmpfr, 185
Gmpq, 177
Gmpz, 176
Gmpzf , 179
Interval skip list, 3550
Interval skip list interval, 3552
Kd tree rectangle, 3604
Lazy exact nt, 200
Level interval, 3553
Line 2, 4445
Line 3, 4445
Line arc 2, 1177
Line arc 3, 1266
Min annulus d, 3865
Min circle 2, 3806
Min ellipse 2, 3816
Min sphere d, 3850
MP Float, 192
Number type checker, 204
PainterOstream, 4458, 4459
Periodic 3 offset 3, 2793
Periodic 3 triangulation 3, 2775
Plane separator, 3618
Point 2, 4444
Point 3, 4445
Point container, 3622
Polygon 2, 1477
Polyhedron 3, 4446
Polyline 2, 2231

Polynomial, 325
Polytope distance d, 3950
Quadratic program solution, 518
Quotient, 201
Ray 2, 4445
Ray 3, 4445
Segment 2, 4445
Segment 3, 4445
Segment Delaunay graph 2, 2886
Segment Delaunay graph hierarchy 2, 2915
Sphere 3, 4446
Sqrt extension, 223
Tetrahedron 3, 4445
Time, 4135
Triangle 2, 4445
Triangle 3, 4445
Triangulation 2, 2561, 4447
Triangulation 3, 2653, 4447
TriangulationDataStructure 2::Face, 2598
TriangulationDataStructure 2::Vertex, 2603
TriangulationDataStructure 3, 2593, 2729
TriangulationDSCellBase 3, 2736
TriangulationDSVertexBase 3, 2738
TriangulationVertexBase 2, 2545
TriangulationVertexBase 3, 2685
unsigned, 175
Verbose ostream, 4435
Voronoi diagram 2, 2976

<<=
Gmpz, 175

<=
Circular arc point 2, 1178
Circular arc point 3, 1262
Compact container, 4159
const, 123, 223
Direction 2, 617
Interval nt, 196
Nef polyhedron 3, 2017
Point 2, 627
Point 3, 657
Uncertain, 4242

=
Apollonius graph 2, 2934
Apollonius graph filtered traits 2, 2952
Apollonius graph hierarchy 2, 2953
Apollonius graph traits 2, 2951
ApolloniusGraphTraits 2, 2950
Arrangement 2, 2189
Arrangement with history 2, 2371
ArrangementDirectionalXMonotoneTraits 2,

1523
Circulator, 4314
Compact container, 4156
Constrained triangulation plus 2, 2509
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DelaunayTriangulationTraits 2, 2514
EnvelopeTraits 3, 2445
GeneralPolygon 2, 1518
GeneralPolygonSetTraits 2, 1531
GeneralPolygonWithHoles 2, 1520
HalfedgeDS, 1846
In place list, 4149
Largest empty iso rectangle 2, 3924
LargestEmptyIsoRectangleTraits 2, 3926
MeshComplex 3InTriangulation 3, 3159
Multiset, 4161
Object, 4167
Periodic 3 triangulation 3, 2763
Plane separator, 3617
PolyhedronTraits 3, 1823
Projection traits xy 3, 605
RegularTriangulationTraits 2, 2525
SurfaceMeshTriangulation 3, 3082
Triangulation 2, 2550
Triangulation 3, 2638
Triangulation euclidean traits xy 3, 2568
TriangulationDataStructure 2, 2586
TriangulationDataStructure 3, 2717
TriangulationTraits 2, 2542
Uncertain, 4237
UniqueHashFunction, 4407

==
AlgebraicKernelForCircles::const, 1230
Arr consolidated curve data traits 2<Traits,

Data>:: Data container, 2328
Bbox 2, 613
Bbox 3, 639
Circle 2, 615
Circle 3, 664
Circular arc 2, 1175
Circular arc 3, 1269
Circular arc point 2, 1178
Circular arc point 3, 1262
Circulator, 4314
Color, 4417
Compact container, 4159
const, 70, 123, 214, 222, 328, 1226, 1327, 1332
Direction 2, 617
Direction 3, 644
In place list, 4149
Interval, 3551
Interval nt, 196
Iso box d, 1095
Iso cuboid 3, 647
Iso rectangle 2, 620
Line 2, 622
Line 3, 649
Line arc 2, 1177
Line arc 3, 1265

Matrix, 1066
Multiset, 4162
Nef polyhedron 3, 2017
Periodic 3 triangulation 3, 2763
Periodic 3Offset 3, 2793
Plane 3, 652
Point 2, 625
Point 3, 655
Point d, 1073
Polygon 2, 1476
Quadruple, 4230
Random, 4376
Ray 2, 629
Ray 3, 659
Residue, 235
Segment 2, 631
Segment 3, 661
Sphere 3, 667
Sphere point, 1608
Tetrahedron 3, 669
Triangle 2, 633
Triangle 3, 671
Triangulation 3, 2638
Triangulation simplex 3, 2689
Triple, 4228
Uncertain, 4239
Vector 2, 636
Vector 3, 674

>
Circular arc point 2, 1178
Circular arc point 3, 1262
Compact container, 4159
const, 123, 223
Direction 2, 617
Interval nt, 196
Nef polyhedron 3, 2017
Point 2, 627
Point 3, 657
Uncertain, 4242

>=
Circular arc point 2, 1178
Circular arc point 3, 1262
Compact container, 4159
const, 123, 223
Direction 2, 617
Interval nt, 196
Nef polyhedron 3, 2017
Point 2, 627
Point 3, 657
Uncertain, 4242

>>
Apollonius graph 2, 2939
Apollonius graph hierarchy 2, 2955
Apollonius site 2, 2941
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Arrangement 2, 2229
Arrangement with history 2, 2229
CGAL::General polygon 2, 1561
CGAL::General polygon with holes 2, 1561
CGAL::Nef polyhedron 3, 2012, 2038
CGAL::Polygon with holes 2, 1561
CGAL::Polyhedron 3, 1785, 1794, 1829
Circular arc 2, 1175
Circular arc 3, 1269
Circular arc point 2, 1178
Circular arc point 3, 1262
Class, 4411, 4419, 4426
Geomview stream, 4448
Gmpfi, 191
Gmpfr, 185
Gmpq, 177
Gmpz, 176
Gmpzf , 179
is, Constrained triangulation 2, 2505
Lazy exact nt, 200
Line arc 2, 1177
Line arc 3, 1266
Min annulus d, 3865
Min circle 2, 3806
Min ellipse 2, 3816
Min sphere d, 3850
MP Float, 192
Number type checker, 204
Periodic 3 offset 3, 2793
Periodic 3 triangulation 3, 2775
Point 3, 4446
Polygon 2, 1477
Polynomial, 325
Polytope distance d, 3950
Quotient, 202
Segment Delaunay graph 2, 2886
Segment Delaunay graph hierarchy 2, 2915
Sqrt extension, 223
Triangulation 2, 2561
Triangulation 3, 2653
TriangulationDataStructure 2::Face, 2598
TriangulationDataStructure 2::Vertex, 2603
TriangulationDataStructure 3, 2593, 2729
TriangulationDSCellBase 3, 2736
TriangulationDSVertexBase 3, 2738
TriangulationVertexBase 2, 2544
TriangulationVertexBase 3, 2685
unsigned, 175
Voronoi diagram 2, 2976

>>=
Gmpz, 175

[ ]
Arr polyline traits 2<SegmentTraits>::Curve 2,

2289

Circulator, 4315
Dereference property map, 4304
Direction d, 1080
First of pair property map, 4305
Hyperplane d, 1089
Inverse index, 4190
Iso cuboid 3, 647
Iso rectangle 2, 620
Kinetic::ActiveObjectsTable, 4097
Nth of tuple property map, 4308
Periodic 3Offset 3, 2793
Point 2, 626
Point 3, 656
Point d, 1072
Polygon 2, 1476
Polynomial, 325
Random access adaptor, 4191
Random access value adaptor, 4192
Second of pair property map, 4310
Segment 2, 631
Segment 3, 661
Segment d, 1085
Tetrahedron 3, 669
Triangle 2, 633
Triangle 3, 671
Unique hash map, 4406
Vector, 1062, 3414
Vector 2, 637
Vector 3, 675
Vector d, 1076

ˆ
const, 175
Nef polyhedron 3, 2018

ˆ=
Gmpz, 175
Nef polyhedron 3, 2018

|
const, 175
Uncertain, 4240

|=
Gmpz, 175

a
Line 2, 623
Plane 3, 652

a0
Sqrt extension, 221

a1
Sqrt extension, 221

AABB polyhedron segment primitive, 3753
AABB polyhedron triangle primitive, 3752
AABB traits, 3757
AABB tree, 3742–3746
AABBGeomTraits, 3747–3749
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AABBPrimitive, 3750–3751
AABBTraits, 3754–3756
ABORT , 13
abs, 135

Gmpfi, 188
Gmpfr, 183
Sqrt extension, 222

ABSOLUTE INDEXING, 1814
accelerate distance queries

AABB tree, 3745, 3746
access

Approximate min ellipsoid d, 3889
Min annulus d, 3861
Min circle 2, 3803
Min ellipse 2, 3814
Min sphere d, 3847
Min sphere of spheres d, 3869
Polytope distance d, 3945
Width 3, 3937

access coordinates begin d object
Min sphere annulus d traits 2, 3855, 3902
Min sphere annulus d traits 3, 3857, 3904
Min sphere annulus d traits d, 3859, 3906
MinSphereAnnulusDTraits, 3853, 3908
Polytope distance d traits 2, 3954
Polytope distance d traits 3, 3956
Polytope distance d traits d, 3958
PolytopeDistanceDTraits, 3952

access dimension d object
Min sphere annulus d traits 2, 3855, 3902
Min sphere annulus d traits 3, 3857, 3904
Min sphere annulus d traits d, 3859, 3906
MinSphereAnnulusDTraits, 3853, 3908
Polytope distance d traits 2, 3954
Polytope distance d traits 3, 3956
Polytope distance d traits d, 3958
PolytopeDistanceDTraits, 3952

access site 2 object
AdaptationTraits 2, 2989

achieved epsilon
Approximate min ellipsoid d, 3889

active points [123] table handle
Kinetic::SimulationTraits, 4125

ACUTE, 677
Adaptation policy, 2971
adaptation policy

Voronoi diagram 2, 2973
Adaptation traits, 2971
adaptation traits

Voronoi diagram 2, 2973
AdaptationPolicy 2, 2990–2991
AdaptationTraits 2, 2988–2989
add, 183, 188
add coef

Matrix, 3367
add curve

EnvelopeDiagramEdge, 2424
EnvelopeDiagramVertex, 2422

add curves
EnvelopeDiagramEdge, 2424
EnvelopeDiagramVertex, 2422

add face to border
HalfedgeDS decorator, 1862

add facet
Polyhedron incremental builder 3, 1816

add facet to border
Polyhedron 3, 1803

add features
Mesh domain with polyline features 3, 3213

add features and incidences
Mesh domain with polyline features 3, 3214

add hidden site
ApolloniusGraphVertexBase 2, 2945

add hole
ArrangementDcelFace, 2242

add isolated vertex
ArrangementDcelFace, 2242

add polyhedron
Nef nary union 3, 2036

add to complex
MeshComplex 3InTriangulation 3, 3160
MeshComplexWithFeatures 3InTriangulation 3,

3165
SurfaceMeshComplex 2InTriangulation 3, 3072

add vertex
Polyhedron incremental builder 3, 1815

add vertex and facet to border
Polyhedron 3, 1803

add vertex to facet
Polyhedron incremental builder 3, 1815

adjacent vertices
Periodic 3 triangulation 3, 2774
Triangulation 3, 2652
TriangulationDataStructure 3, 2727

adjacent vertices in complex
MeshComplexWithFeatures 3InTriangulation 3,

3167
Aff transformation 2, 609–612
Aff transformation 3, 641–643
Aff transformation d, 1097–1098, 4012
affine rank, 1100
affinely independent, 1099
after add inner ccb

Arr observer, 2356
after add isolated vertex

Arr observer, 2357
after add outer ccb

Arr observer, 2356
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after assign
Arr observer, 2353

after attach
Arr observer, 2354

after clear
Arr observer, 2353

after create boundary vertex
Arr observer, 2354

after create edge
Arr observer, 2354

after create vertex
Arr observer, 2354

after global change
Arr observer, 2353

after merge edge
Arr observer, 2357

after merge face
Arr observer, 2357

after merge fictitious edge
Arr observer, 2357

after merge inner ccb
Arr observer, 2358

after merge outer ccb
Arr observer, 2357

after modify edge
Arr observer, 2355

after modify vertex
Arr observer, 2355

after move inner ccb
Arr observer, 2358

after move isolated vertex
Arr observer, 2358

after move outer ccb
Arr observer, 2358

after remove edge
Arr observer, 2359

after remove inner ccb
Arr observer, 2359

after remove outer ccb
Arr observer, 2359

after remove vertex
Arr observer, 2358

after split edge
Arr observer, 2355

after split face
Arr observer, 2355

after split fictitious edge
Arr observer, 2355

after split inner ccb
Arr observer, 2356

after split outer ccb
Arr observer, 2356

Algebraic kernel d 1, 418–419, 2305
algebraic kernel d 1

Arr rational function traits 2, 2306
Algebraic kernel d 2, 451–452
Algebraic kernel for circles 2 2, 1225
Algebraic kernel for spheres 2 3, 1324
Algebraic kernel rs gmpq d 1, 421
Algebraic kernel rs gmpz d 1, 420
Algebraic real 1, 2305–2307, 2309, 2310, 2312
Algebraic structure traits, 99
AlgebraicKernel d 1, 398–399
AlgebraicKernel d 1::ApproximateAbsolute 1, 416
AlgebraicKernel d 1::ApproximateRelative 1, 417
AlgebraicKernel d 1::BoundBetween 1, 415
AlgebraicKernel d 1::Compare 1, 414
AlgebraicKernel d 1::ComputePolynomial 1, 402
AlgebraicKernel d 1::ConstructAlgebraicReal 1,

400–401
AlgebraicKernel d 1::IsCoprime 1, 407
AlgebraicKernel d 1::Isolate 1, 403
AlgebraicKernel d 1::IsSquareFree 1, 404
AlgebraicKernel d 1::IsZeroAt 1, 413
AlgebraicKernel d 1::MakeCoprime 1, 408
AlgebraicKernel d 1::MakeSquareFree 1, 405
AlgebraicKernel d 1::NumberOfSolutions 1, 411
AlgebraicKernel d 1::SignAt 1, 412
AlgebraicKernel d 1::Solve 1, 409–410
AlgebraicKernel d 1::SquareFreeFactorize 1, 406
AlgebraicKernel d 2, 422–423
AlgebraicKernel d 2::ApproximateAbsoluteX 2, 445
AlgebraicKernel d 2::ApproximateAbsoluteY 2, 446
AlgebraicKernel d 2::ApproximateRelativeX 2, 447
AlgebraicKernel d 2::ApproximateRelativeY 2, 448
AlgebraicKernel d 2::BoundBetweenX 2, 449
AlgebraicKernel d 2::BoundBetweenY 2, 450
AlgebraicKernel d 2::CompareX 2, 442
AlgebraicKernel d 2::CompareXY 2, 444
AlgebraicKernel d 2::CompareY 2, 443
AlgebraicKernel d 2::ComputePolynomialX 2, 426
AlgebraicKernel d 2::ComputePolynomialY 2, 427
AlgebraicKernel d 2::ComputeX 2, 440
AlgebraicKernel d 2::ComputeY 2, 441
AlgebraicKernel d 2::ConstructAlgebraicReal 2,

424–425
AlgebraicKernel d 2::IsCoprime 2, 434
AlgebraicKernel d 2::Isolate 2, 428
AlgebraicKernel d 2::IsolateX 2, 429
AlgebraicKernel d 2::IsolateY 2, 430
AlgebraicKernel d 2::IsSquareFree 2, 431
AlgebraicKernel d 2::IsZeroAt 2, 439
AlgebraicKernel d 2::MakeCoprime 2, 435
AlgebraicKernel d 2::MakeSquareFree 2, 432
AlgebraicKernel d 2::NumberOfSolutions 2, 437
AlgebraicKernel d 2::SignAt 2, 438
AlgebraicKernel d 2::Solve 2, 436
AlgebraicKernel d 2::SquareFreeFactorize 2, 433
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AlgebraicKernelForCircles, 1223–1224
AlgebraicKernelForCircles::CompareX, 1232
AlgebraicKernelForCircles::CompareXY, 1234
AlgebraicKernelForCircles::CompareY, 1233
AlgebraicKernelForCircles::ConstructPolynomial 1

2, 1236
AlgebraicKernelForCircles::ConstructPolynomialForCircles

2 2, 1237
AlgebraicKernelForCircles::Polynomial 1 2, 1228
AlgebraicKernelForCircles::PolynomialForCircles 2

2, 1230
AlgebraicKernelForCircles::RootForCircles 2 2,

1226
AlgebraicKernelForCircles::SignAt, 1235
AlgebraicKernelForCircles::Solve, 1238
AlgebraicKernelForCircles::XCriticalPoints, 1239
AlgebraicKernelForCircles::YCriticalPoints, 1240
AlgebraicKernelForSpheres, 1322–1323
AlgebraicKernelForSpheres::CompareX, 1334
AlgebraicKernelForSpheres::CompareXY, 1337
AlgebraicKernelForSpheres::CompareXYZ, 1338
AlgebraicKernelForSpheres::CompareY, 1335
AlgebraicKernelForSpheres::CompareZ, 1336
AlgebraicKernelForSpheres::ConstructPolynomial 1

3, 1340
AlgebraicKernelForSpheres::ConstructPolynomialForSpheres

2 3, 1341
AlgebraicKernelForSpheres::ConstructPolynomialsForLines

3, 1342
AlgebraicKernelForSpheres::Polynomial 1 3, 1325
AlgebraicKernelForSpheres::PolynomialForSpheres -

2 3, 1327
AlgebraicKernelForSpheres::PolynomialsForCircles

3, 1331
AlgebraicKernelForSpheres::PolynomialsForLines 3,

1329
AlgebraicKernelForSpheres::RootForSpheres 2 3,

1332
AlgebraicKernelForSpheres::SignAt, 1339
AlgebraicKernelForSpheres::Solve, 1343
AlgebraicKernelForSpheres::XCriticalPoints, 1344
AlgebraicKernelForSpheres::YCriticalPoints, 1345
AlgebraicKernelForSpheres::ZCriticalPoints, 1346
AlgebraicStructureTraits, 78–81
AlgebraicStructureTraits::Div, 93
AlgebraicStructureTraits::Divides, 88
AlgebraicStructureTraits::DivMod, 91–92
AlgebraicStructureTraits::Gcd, 90
AlgebraicStructureTraits::IntegralDivision, 87
AlgebraicStructureTraits::Inverse, 95
AlgebraicStructureTraits::IsOne, 83
AlgebraicStructureTraits::IsSquare, 89
AlgebraicStructureTraits::IsZero, 82
AlgebraicStructureTraits::KthRoot, 97

AlgebraicStructureTraits::Mod, 94
AlgebraicStructureTraits::RootOf, 98
AlgebraicStructureTraits::Simplify, 85
AlgebraicStructureTraits::Sqrt, 96
AlgebraicStructureTraits::Square, 84
AlgebraicStructureTraits::UnitPart, 86
all furthest neighbors, 3933
all cells begin

Triangulation 3, 2650
all cells end

Triangulation 3, 2650
All cells iterator, 2637
All Delaunay edges iterator, 2990
all edges begin

Apollonius graph 2, 2935
DelaunayGraph 2, 2986
Segment Delaunay graph 2, 2881
Triangulation 2, 2557
Triangulation 3, 2650

all edges end
Apollonius graph 2, 2935
DelaunayGraph 2, 2986
Segment Delaunay graph 2, 2881
Triangulation 2, 2558
Triangulation 3, 2650

All edges iterator, 2549, 2637, 2880, 2934
all faces begin

Apollonius graph 2, 2935
DelaunayGraph 2, 2986
Segment Delaunay graph 2, 2882
Triangulation 2, 2558

all faces end
Apollonius graph 2, 2935
DelaunayGraph 2, 2986
Segment Delaunay graph 2, 2882
Triangulation 2, 2558

All faces iterator, 2549, 2880, 2934
all facets

Convex hull d, 1438
all facets begin

Triangulation 3, 2650
all facets end

Triangulation 3, 2650
All facets iterator, 2637
all furthest neighbors 2, 3933–3934
all intersected primitives

AABB tree, 3743
all intersections

AABB tree, 3744
all points

Convex hull d, 1438
Delaunay d, 1450

all simplices
Convex hull d, 1438
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Delaunay d, 1449
all vertices

Convex hull d, 1438
Delaunay d, 1449

all vertices begin
Apollonius graph 2, 2935
DelaunayGraph 2, 2986
Regular triangulation 2, 2533
Segment Delaunay graph 2, 2881
Triangulation 2, 2557
Triangulation 3, 2649

all vertices end
Apollonius graph 2, 2935
DelaunayGraph 2, 2986
Regular triangulation 2, 2532
Segment Delaunay graph 2, 2881
Triangulation 2, 2557
Triangulation 3, 2649

All vertices iterator, 2549, 2637, 2880, 2934
AllFurthestNeighborsTraits 2, 3935
Alloc, 1976
alpha begin

Alpha shape 2, 2809
Alpha shape 3, 2844

alpha end
Alpha shape 2, 2809
Alpha shape 3, 2844

alpha find
Alpha shape 2, 2809
Alpha shape 3, 2844

alpha lower bound
Alpha shape 2, 2809
Alpha shape 3, 2844

alpha max
Alpha status, 2848

alpha mid
Alpha status, 2848

alpha min
Alpha status, 2848

Alpha shape 2, 2805–2810
Alpha shape 3, 2839–2845
Alpha shape cell base 3, 2846
alpha shape edges begin

Alpha shape 2, 2808
alpha shape edges end

Alpha shape 2, 2808
Alpha shape face base 2, 2813
Alpha shape vertex base 2, 2818
Alpha shape vertex base 3, 2847
alpha shape vertices begin

Alpha shape 2, 2808
alpha shape vertices end

Alpha shape 2, 2808
Alpha status, 2848–2849

alpha upper bound
Alpha shape 2, 2809
Alpha shape 3, 2844

AlphaShapeCell 3, 2835–2836
AlphaShapeFace 2, 2811–2812
AlphaShapeTraits 2, 2814–2815
AlphaShapeTraits 3, 2837
AlphaShapeVertex 2, 2817
AlphaShapeVertex 3, 2838
Ambient dimension, 1042
ambient dimension, 1971, 1975, 1983

Min annulus d, 3861
Min sphere d, 3847
Polytope distance d, 3945

Angle, 677
angle, 689
angle 2 object

ConformingDelaunayTriangulationTraits 2,
3022

annulus
smallest enclosing, 3860
see also smallest enclosing sphere

antipode
Sphere point, 1608

any intersected primitive
AABB tree, 3743

any intersection
AABB tree, 3744

Apollonius graph 2, 2933–2939
Apollonius graph adaptation traits 2, 2992
Apollonius graph caching degeneracy removal -

policy 2, 3001
Apollonius graph degeneracy removal policy 2,

2997
Apollonius graph filtered traits 2, 2952
Apollonius graph hierarchy 2, 2953–2955
Apollonius graph hierarchy vertex base 2, 2958
Apollonius graph traits 2, 2951
Apollonius graph vertex base 2, 2946
Apollonius site 2, 2941
ApolloniusGraphDataStructure 2, 2942–2943
ApolloniusGraphHierarchyVertexBase 2, 2956–2957
ApolloniusGraphTraits 2, 2947–2950
ApolloniusGraphVertexBase 2, 2944–2945
ApolloniusSite 2, 2940
approx

Lazy exact nt, 199
approx convex partition 2, 1624, 1630–1632

postconditions, 1627, 1655
traits class, 1635

default, 1659
approximate

Arr Bezier curve traits 2<AlgKernel, NtTraits>
::Point 2, 2317
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approximate 2 object
ArrangementLandmarkTraits 2, 2269

approximate absolute x
Arr rational function traits 2<

AlgebraicKernel d 1>::Point 2, 2309
approximate absolute y

Arr rational function traits 2<
AlgebraicKernel d 1>::Point 2, 2309

approximate area
Circle 3, 664

approximate decimal length
Gmpz, 175

approximate division, 192
Approximate kernel, 592
Approximate min ellipsoid d, 3887–3895

creation, 3889
implementation, 3892
member functions, 3889–3892

access, 3889
miscellaneous, 3892
predicates, 3891
validity check, 3892

requirements, 3888
traits class

see also Approximate min ellipsoid d traits 2
see also Approximate min ellipsoid d traits 3
see also Approximate min ellipsoid d traits d

types, 3888
Approximate min ellipsoid d traits 2, 3898
Approximate min ellipsoid d traits 3, 3899
Approximate min ellipsoid d traits d, 3900

traits class
requirements, 3897

approximate relative x
Arr rational function traits 2<

AlgebraicKernel d 1>::Point 2, 2309
approximate relative y

Arr rational function traits 2<
AlgebraicKernel d 1>::Point 2, 2310

approximate sqrt, 193
approximate squared length

Circle 3, 664
approximated inset 2, 1766
approximated offset 2, 1764–1765
ApproximateMinEllipsoid d Traits d, 3896–3897
arcno

Arr algebraic segment traits 2<Coefficient>
::Point 2, 2320

Arr algebraic segment traits 2<Coefficient>
::X monotone curve 2, 2321

are corners parameterized
Parameterization polyhedron adaptor 3, 3391
ParameterizationPatchableMesh 3, 3384

are equal

Periodic 3 triangulation 3, 2769
Triangulation 3, 2642
TriangulationDataStructure 3, 2719

are incident surface patch corner
MeshDomainWithFeatures 3, 3173

are incident surface patch curve segment
MeshDomainWithFeatures 3, 3173

are mergeable 2 object
ArrangementXMonotoneTraits 2, 2274

are ordered along line, 690
are parallel 2 object

SegmentDelaunayGraphTraits 2, 2906
are strictly ordered along line, 691
are strictly ordered along line 2 object

OptimalConvexPartitionTraits 2, 1650
are there incident constraints

Constrained triangulation 2, 2504
area, 692

Iso rectangle 2, 621
Polygon 2, 1475
Triangle 2, 634

area 2, 1461
area divided by pi

Circle 3, 664
argument type, 238, 239, 272, 273, 277–283, 293,

294, 296, 297, 303, 306, 307, 402, 404, 405,
411, 426, 427, 431, 432, 440, 441, 2310,
2312

Arr accessor, 2199–2204
Arr algebraic segment traits 2, 2319–2323
Arr algebraic segment traits 2<Coefficient>

::Construct curve 2, 2321–2322
Arr algebraic segment traits 2<Coefficient>

::Construct point 2, 2322
Arr algebraic segment traits 2<Coefficient>

::Construct x monotone segment 2,
2322–2323

Arr algebraic segment traits 2<Coefficient>
::Curve 2, 2320

Arr algebraic segment traits 2<Coefficient>::Point
2, 2320

Arr algebraic segment traits 2<Coefficient>::X -
monotone curve 2, 2321

Arr Bezier curve traits 2, 2315–2318
Arr Bezier curve traits 2<AlgKernel, NtTraits>

::Curve 2, 2316–2317
Arr Bezier curve traits 2<AlgKernel, NtTraits>

::Point 2, 2317–2318
Arr Bezier curve traits 2<AlgKernel, NtTraits>::X -

monotone curve 2, 2318
ARR BOTTOM BOUNDARY , 2374
Arr circle segment traits 2, 2291–2295
Arr circle segment traits 2<Kernel>::Curve 2,

2292–2294
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Arr circle segment traits 2<Kernel>::Point 2, 2291–
2292

Arr circle segment traits 2<Kernel>::X monotone -
curve 2, 2294–2295

Arr circular arc traits 2, 2296
Arr circular line arc traits 2, 2298
Arr conic traits 2, 2299–2304
Arr conic traits 2<RatKernel, AlgKernel,NtTraits>::

X monotone curve 2, 2304
Arr conic traits 2<RatKernel, AlgKernel,NtTraits>

::Curve 2, 2300–2303
Arr consolidated curve data traits 2, 2327–2329
Arr consolidated curve data traits 2<Traits, Data>::

Data container, 2328–2329
Arr curve data traits 2, 2324–2326
Arr curve data traits 2<Tr, XData,Mrg,CData,Cnv>

::Curve 2, 2325
Arr curve data traits 2<Tr, XData,Mrg,CData,Cnv>

::X monotone curve 2, 2326
Arr curve end, 2253
Arr dcel base, 2245–2246
Arr default dcel, 2247
Arr default overlay traits, 2226
Arr extended dcel, 2249
Arr extended dcel text formatter, 2340
Arr extended face, 2252
Arr extended halfedge, 2251
Arr extended vertex, 2250
Arr face base, 2245–2246
Arr face extended dcel, 2248
Arr face extended text formatter, 2339
Arr face overlay traits, 2227
Arr halfedge base<Curve>, 2245
Arr halfedge direction, 2254
ARR INTERIOR, 2374
Arr landmarks point location, 2349
ARR LEFT BOUNDARY , 2374
ARR LEFT TO RIGHT , 2254
Arr line arc traits 2, 2297
Arr linear traits 2, 2286–2287
Arr linear traits 2<Kernel>::Curve 2, 2286–2287
ARR MAX END, 2253
ARR MIN END, 2253
Arr naive point location, 2345
Arr non caching segment basic traits 2, 2284
Arr non caching segment traits 2, 2285
Arr oblivious side tag, 2381
Arr observer, 2352–2359
Arr open side tag, 2382
Arr parameter space, 2374
Arr polyline traits 2, 2288–2290
Arr polyline traits 2<SegmentTraits>::Curve 2,

2288–2290

Arr polyline traits 2<SegmentTraits>::X monotone -
curve 2, 2290

Arr rational function traits 2, 2305–2314
Arr rational function traits 2<AlgebraicKernel d 1>

::Construct curve 2, 2310–2312
Arr rational function traits 2<AlgebraicKernel -

d 1>::Construct x monotone curve 2,
2312–2314

Arr rational function traits 2<AlgebraicKernel d 1>
::Curve 2, 2306–2307

Arr rational function traits 2<AlgebraicKernel d 1>
::Point 2, 2309–2310

Arr rational function traits 2<AlgebraicKernel d 1>
::X monotone curve 2, 2307–2308

ARR RIGHT BOUNDARY , 2374
ARR RIGHT TO LEFT , 2254
Arr segment traits 2, 2283
Arr surface data traits 3<Tr,

XData,Mrg,CData,Cnv>::Xy monotone -
surface 3, 2449–2450

Arr text formatter, 2338
ARR TOP BOUNDARY , 2374
Arr trapezoid ric point location, 2347–2348
Arr vertex base<Point>, 2245
Arr walk along line point location, 2346
Arr with history text formatter, 2380
arrange offset polygons 2, 1732
arrangement

General polygon set 2, 1512
Arrangement 2, 2187–2198
arrangement type 2 object

SegmentDelaunayGraphTraits 2, 2906
Arrangement with history 2, 2369–2373
ArrangementBasicTraits 2, 2255–2257
ArrangementDcel, 2232–2234
ArrangementDcelFace, 2241–2242
ArrangementDcelHalfedge, 2238–2240
ArrangementDcelHole, 2243
ArrangementDcelIsolatedVertex, 2244
ArrangementDcelVertex, 2236–2237
ArrangementDcelWithRebind, 2235
ArrangementDirectionalXMonotoneTraits 2, 1522–

1523
ArrangementInputFormatter, 2330–2333
ArrangementLandmarkTraits 2, 2269–2270
ArrangementOpenBoundaryTraits 2, 2360–2362
ArrangementOutputFormatter, 2334–2337
ArrangementPointLocation 2, 2341–2342
ArrangementTraits 2, 2279–2280
ArrangementVerticalRayShoot 2, 2343–2344
ArrangementWithHistoryInputFormatter, 2376–2377
ArrangementWithHistoryOutputFormatter, 2378–

2379
ArrangementXMonotoneTraits 2, 2273–2274
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ArrDirectionalTraits::AreMergeable 2, 1526
ArrDirectionalTraits::CompareEndpointsXy 2, 1528
ArrDirectionalTraits::ConstructOpposite 2, 1529
ArrDirectionalTraits::Intersect 2, 1524
ArrDirectionalTraits::Merge 2, 1527
ArrDirectionalTraits::Split 2, 1525
ArrTraits::Approximate 2, 2271
ArrTraits::AreMergeable 2, 2277
ArrTraits::CompareX 2, 2260
ArrTraits::CompareXAtLimit 2, 2366–2367
ArrTraits::CompareXNearLimit 2, 2368
ArrTraits::CompareXy 2, 2261
ArrTraits::CompareYAtX 2, 2265
ArrTraits::CompareYAtXLeft 2, 2266
ArrTraits::CompareYAtXRight 2, 2267
ArrTraits::CompareYNearBoundary 2, 2364
ArrTraits::ConstructMaxVertex 2, 2263
ArrTraits::ConstructMinVertex 2, 2262
ArrTraits::ConstructXMonotoneCurve 2, 2272
ArrTraits::Curve 2, 2281
ArrTraits::Equal 2, 2268
ArrTraits::Intersect 2, 2275
ArrTraits::IsVertical 2, 2264
ArrTraits::MakeXMonotone 2, 2282
ArrTraits::Merge 2, 2278
ArrTraits::ParameterSpaceInX 2, 2363
ArrTraits::ParameterSpaceInY 2, 2365
ArrTraits::Point 2, 2258
ArrTraits::Split 2, 2276
ArrTraits::XMonotoneCurve 2, 2259
ASCII, 4409, 4424
aspect ratio

Sliding fair, 3637
Splitter, 3643

Assert bidirectional category, 4320
Assert circulator, 4320
Assert circulator or iterator, 4320
Assert forward category, 4320
Assert input category, 4320
Assert iterator, 4320
Assert output category, 4320
Assert random access category, 4320
assertion flags

convex hull, 2D, 1353
convex hull, 3D, 1405
polygon, 1459
polygon partitioning, 1627

assign, 4167
Arr extended face, 2252
Arr extended halfedge, 2251
Arr extended vertex, 2250
Arrangement 2, 2189
Arrangement with history 2, 2371
ArrangementDcel, 2232

ArrangementDcelFace, 2241
ArrangementDcelHalfedge, 2238
ArrangementDcelVertex, 2236
Compact container, 4158
GeneralPolygonSetDcel, 1541
GeneralPolygonSetDcelFace, 1544

assign 2 object
ApolloniusGraphTraits 2, 2950
SegmentDelaunayGraphTraits 2, 2906

associated point
Convex hull d, 1434
Delaunay d, 1448

at
Kinetic::ActiveObjectsTable, 4097

attach
Arr observer, 2353
ArrangementPointLocation 2, 2342
ArrangementVerticalRayShoot 2, 2344

attribute
Dart, 1931

Attribute const handle<i>::type, 1938
Attribute handle<i>::type, 1938
attributes

CombinatorialMap, 1923
audit

Event, 4107
audit event

Kinetic::Simulator, 4133
axes lengths begin

Approximate min ellipsoid d, 3890
axes lengths end

Approximate min ellipsoid d, 3891
axis direction cartesian begin

Approximate min ellipsoid d, 3891
axis direction cartesian end

Approximate min ellipsoid d, 3891

b
Line 2, 623
Plane 3, 652

back
Arr consolidated curve data traits 2<Traits,

Data>:: Data container, 2328
In place list, 4149

BAD, 3031
balanced fair

Point container, 3621
balanced sliding fair

Point container, 3621
Bare point, 2528, 2664, 2680
barycenter, 693–695, 3971–3972

Linear cell complex, 1978
Barycentric mapping parameterizer 3, 3350–3351
Base, 2452, 2915, 3633
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base1
Plane 3, 653

base2
Plane 3, 653

Base curve 2, 2324, 2327
Base surface 3, 2448
Base traits 2, 2324, 2327
Base traits 3, 2448
Base x monotone curve 2, 2324, 2327
Base xy monotone surface 3, 2448
basic constraint indices begin

Quadratic program solution, 518
basic constraint indices end

Quadratic program solution, 518
basic variable indices begin

Quadratic program solution, 517
basic variable indices end

Quadratic program solution, 517
BasicMatrix, 464
bbox

AABB tree, 3743
Arr circle segment traits 2<Kernel>::X -

monotone curve 2, 2295
Arr conic traits 2<RatKernel, AlgKer-

nel,NtTraits>::Curve 2, 2303
Arr polyline traits 2<SegmentTraits>::Curve 2,

2289
Box d, 3718
Box with handle d, 3723
Circle 2, 615
Circle 3, 664
Circular arc 2, 1175
Circular arc point 2, 1178
Circular arc point 3, 1262
Iso cuboid 3, 648
Iso rectangle 2, 621
Line arc 2, 1176
Point 2, 627
Point 3, 657
Polygon 2, 1475
Segment 2, 632
Segment 3, 662
Sphere 3, 668
Tetrahedron 3, 670
Triangle 2, 634
Triangle 3, 672
VectorField 2, 3432

Bbox 2, 613
bbox 2, 1462
Bbox 3, 639–640
before add inner ccb

Arr observer, 2356
before add isolated vertex

Arr observer, 2356

before add outer ccb
Arr observer, 2356

before assign
Arr observer, 2353

before attach
Arr observer, 2354

before clear
Arr observer, 2353

before create boundary vertex
Arr observer, 2354

before create edge
Arr observer, 2354

before create vertex
Arr observer, 2354

before detach
Arr observer, 2354

before global change
Arr observer, 2353

before merge edge
Arr observer, 2357

before merge face
Arr observer, 2357

before merge fictitious edge
Arr observer, 2357

before merge inner ccb
Arr observer, 2357

before merge outer ccb
Arr observer, 2357

before modify edge
Arr observer, 2355

before modify vertex
Arr observer, 2355

before move inner ccb
Arr observer, 2358

before move isolated vertex
Arr observer, 2358

before move outer ccb
Arr observer, 2358

before remove edge
Arr observer, 2359

before remove inner ccb
Arr observer, 2359

before remove outer ccb
Arr observer, 2359

before remove vertex
Arr observer, 2358

before split edge
Arr observer, 2355

before split face
Arr observer, 2355

before split fictitious edge
Arr observer, 2355

before split inner ccb
Arr observer, 2356
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before split outer ccb
Arr observer, 2356

begin
Arr consolidated curve data traits 2<Traits,

Data>:: Data container, 2328
Arr polyline traits 2<SegmentTraits>::Curve 2,

2289
Compact container, 4157
ConstRange, 4340
Container from circulator, 4334
In place list, 4149
Incremental neighbor search, 3594
Interval skip list, 3550
K neighbor search, 3596
Kd tree, 3599
Kd tree node, 3602
Kinetic::Delaunay triangulation recent edges -

visitor 2, 4050
Kinetic::Sort, 4074
Largest empty iso rectangle 2, 3924
Matrix, 1066
MeshPolyline 3, 3192
Multiset, 4162
Orthogonal incremental neighbor search, 3614
Orthogonal k neighbor search, 3616
Point container, 3620
Polynomial, 325
Range, 4338
SpatialTree, 3641
Stream lines 2, 3430
Union find, 4404
Vector, 1062

begin facet
Polyhedron incremental builder 3, 1815

begin surface
Polyhedron incremental builder 3, 1815

beta
CombinatorialMap, 1922
Dart, 1930

beta inv
Dart, 1930

Bidirectional circulator, 4323
Bidirectional circulator base, 4330
Bidirectional circulator ptrbase, 4331
Bidirectional circulator tag, 4330
BINARY , 4409, 4424
BIPOLAR, 1270
BisectionGeometricTraits 3, 3181–3183
bisector, 696
bit size

Gmpz, 175
BLACK, 4417
BLUE, 4417
blue

Color, 4417
Boolean tag, 4231
border edges

EdgeProfile, 3294
border edges begin

Polyhedron 3, 1805
border halfedges begin

HalfedgeDS, 1849
Polyhedron 3, 1805

border node
CatmullClark mask 3, 3268
Loop mask 3, 3270
PQQMask 3, 3264
PTQMask 3, 3265

BorderParameterizer 3, 3352
bottom vertex

Polygon 2, 1476
bottom vertex 2, 1463

requirements, 1461, 1463–1466, 1468, 1469,
1479

BOTTOMFRAME, 1586
Bound, 2305, 2309
bound between 1 object

AlgebraicKernel d 1, 399
bound between x 2 object

AlgebraicKernel d 2, 423
BOUND REACHED, 3241
BOUNDARY , 3070
Boundary, 1572, 1604, 2015
boundary

Nef polyhedron 2, 1573
Nef polyhedron 3, 2017
Nef polyhedron S2, 1605

boundary edges begin
SurfaceMeshComplex 2InTriangulation 3, 3073

boundary edges end
SurfaceMeshComplex 2InTriangulation 3, 3073

bounded face
Voronoi diagram 2, 2973

bounded faces begin
Voronoi diagram 2, 2974

bounded faces end
Voronoi diagram 2, 2974

bounded halfedge
Voronoi diagram 2, 2974

bounded halfedges begin
Voronoi diagram 2, 2974

bounded halfedges end
Voronoi diagram 2, 2974

Bounded side, 677
bounded side

Circle 2, 615
Convex hull d, 1436
Iso box d, 1095
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Iso cuboid 3, 648
Iso rectangle 2, 620
Min annulus d, 3863
Min circle 2, 3804
Min ellipse 2, 3814
Min sphere d, 3848
Polygon 2, 1475
Sphere 3, 667
Sphere d, 1093
Tetrahedron 3, 670
Triangle 2, 634

bounded side 2, 1464
bounding volumes

approximate smallest enclosing ellipsoid, 3887
smallest enclosing annulus, 3860
smallest enclosing circle, 3802
smallest enclosing ellipse, 3812
smallest enclosing sphere, 3846
smallest enclosing sphere of spheres, 3867

Bounding box, 3742
bounding box, 3968

Kd tree, 3600
Point container, 3621
SpatialTree, 3642

bounding sphere, 3094
Poisson reconstruction function, 3109

Box d, 3717–3719
Box d::dimension, 3718
box intersection all pairs d, 3707–3708
box intersection d, 3688, 3689, 3703–3706
box self intersection all pairs d, 3712–3713
box self intersection d, 3709–3711
Box traits d, 3720
Box with handle d, 3721–3723
Box with handle d::dimension, 3723
BoxIntersectionBox d, 3714
BoxIntersectionBox d::dimension, 3714
BoxIntersectionTraits d, 3715–3716
BoxIntersectionTraits d::dimension, 3715
BoxIntersectionTraits d::id, 3715
BoxIntersectionTraits d::max coord, 3715
BoxIntersectionTraits d::min coord, 3715
bucket size

Sliding fair, 3637
Sliding midpoint, 3639
Splitter, 3643

build
AABB tree, 3743

built coordinate
Point container, 3620

bytes
HalfedgeDS, 1846
Polyhedron 3, 1798
Union find, 4403

bytes reserved
HalfedgeDS, 1846
Polyhedron 3, 1798

c
Line 2, 623
Plane 3, 652

cached number of components
SurfaceMeshVertexBase 3, 3088

cached number of incident facets
SurfaceMeshVertexBase 3, 3088

canonicalize, 340
CANT IMPROVE ANYMORE, 3241
capacity

Compact container, 4157
capacity of faces

HalfedgeDS, 1846
capacity of facets

Polyhedron 3, 1798
capacity of halfedges

HalfedgeDS, 1846
Polyhedron 3, 1798

capacity of vertices
HalfedgeDS, 1846
Polyhedron 3, 1798

Cartesian, 588
cartesian

Aff transformation 2, 611
Aff transformation 3, 643
Kernel::Component accessor d, 1128
Point 2, 626
Point 3, 656
Point d, 1072
Vector 2, 637
Vector 3, 675
Vector d, 1076

cartesian begin
ApproximateMinEllipsoid d Traits d, 3896
Point 2, 626
Point 3, 657
Point d, 1072
Vector 2, 637
Vector 3, 675
Vector d, 1077

Cartesian const iterator, 3629
Cartesian const iterator d, 3625, 3627, 3631, 3633
Cartesian converter, 589–590
Cartesian d, 1069
cartesian end

Point 2, 627
Point 3, 657
Point d, 1072
Vector 2, 637
Vector 3, 675
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Vector d, 1077
cartesian to homogeneous, 591
Cast function object, 4199
catenate

Multiset, 4165
CatmullClark mask 3, 3268–3269
CatmullClark subdivision, 3262
ccb

Face, 2982
Halfedge, 2208, 2979

Ccb halfedge circulator, 2199, 2352
ccb halfedges

Voronoi diagram 2, 2975
ccw, 2743

Triangulation 2, 2560
Triangulation cw ccw 2, 2563
TriangulationDataStructure 2, 2592
TriangulationDataStructure 2::Face, 2598

ccw permute
ConstrainedTriangulationFaceBase 2, 2493
TriangulationDSFaceBase 2, 2595

CELL, 2637, 2700, 2763, 2797
Cell, 2730–2731
Cell, 2636, 2761
cell

TriangulationDSVertexBase 3, 2737
Vertex, 2732

Cell attribute, 1939
Cell attribute with point, 1984
Cell circulator, 2637, 2688, 2762
Cell criteria, 3199
cell criteria object

MeshCriteria 3, 3175
Cell handle, 2637, 2688, 2730, 2732, 2734, 2737,

2762, 3070, 3158
Cell iterator, 2762
Cell range, 2739
CellAttribute, 1932–1933
CellAttributeWithPoint, 1974
cells

Triangulation data structure 3, 2740
cells begin

Periodic 3 triangulation 3, 2770
TriangulationDataStructure 3, 2726

cells end
Periodic 3 triangulation 3, 2770
TriangulationDataStructure 3, 2726

cells in complex begin
MeshComplex 3InTriangulation 3, 3161, 3162

cells in complex end
MeshComplex 3InTriangulation 3, 3162

center
rectangular, 3838

center

Circle 2, 614
Circle 3, 664
Circular arc 2, 1174
Circular arc 3, 1269
Min annulus d, 3862
Min sphere d, 3847
Sphere 3, 667
Sphere d, 1093

center cartesian begin
Approximate min ellipsoid d, 3890
Min sphere of points d traits 2, 3882
Min sphere of points d traits d, 3886
Min sphere of spheres d, 3869
Min sphere of spheres d traits 2, 3876
Min sphere of spheres d traits 3, 3878, 3884
Min sphere of spheres d traits d, 3880
MinSphereOfSpheresTraits, 3874

center cartesian end
Approximate min ellipsoid d, 3890
Min sphere of spheres d, 3869

center coordinates begin
Min annulus d, 3863

center coordinates end
Min annulus d, 3863

center of sphere, 1101
center vertex

Halfedge, 2022
SFace, 2031

centroid, 697, 3969–3970
certainly, 4243
certainly not, 4243
CertificateGenerator, 4103
CGAL

getting, 21
cgal

cmake-vars-components, 38
general-config-cmake-extra-flags, 38
general-config-cmake-flags, 38
general-config-cmake-vars-dep, 39
general-config-cmake-vars-dep-boost, 39
general-config-cmake-vars-dep-eigen, 43
general-config-cmake-vars-dep-esbtl, 44
general-config-cmake-vars-dep-gmp-mpfr, 40
general-config-cmake-vars-dep-leda, 41
general-config-cmake-vars-dep-mpfi, 42
general-config-cmake-vars-dep-ntl, 43
general-config-cmake-vars-dep-qglviewer, 43
general-config-cmake-vars-dep-qt3, 40
general-config-cmake-vars-dep-qt4, 41
general-config-cmake-vars-dep-rs, 42
general-config-cmake-vars-exe, 39
general-config-cmake-vars-misc, 39
libraries, 25
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cgal configuration cmake variables - additional flags,
38

cgal configuration cmake variables - dependencies, 39
cgal configuration cmake variables - dependencies -

boost, 39
cgal configuration cmake variables - dependencies -

eigen, 43
cgal configuration cmake variables - dependencies -

esbtl, 44
cgal configuration cmake variables - dependencies -

gmp, mpfr, 40
cgal configuration cmake variables - dependencies -

leda, 41
cgal configuration cmake variables - dependencies -

mpfi, 42
cgal configuration cmake variables - dependencies -

ntl, 43
cgal configuration cmake variables - dependencies -

qglviewer, 43
cgal configuration cmake variables - dependencies -

qt3, 40
cgal configuration cmake variables - dependencies -

qt4, 41
cgal configuration cmake variables - dependencies - rs,

42
cgal configuration cmake variables - flags, 38
cgal configuration cmake variables - for programs

only, 39
cgal configuration cmake variables - miscellaneous, 39
cgal configuration variables - components , 38
cgal libraries, 25
CGAL::is finite, 162–164
cgal create cmake script, 37
cgal create CMakeLists.txt, 36

CGAL CH CHECK EXPENSIVE, 1353, 1405

CGAL For all, 4336
CGAL For all backwards, 4336

CGAL HALFEDGEDS DEFAULT , 1867

CGAL IPELET , 4482

CGAL VERSION macro, 15
CGAL VERSION NR macro, 15
CGAL VERSION NUMBER macro, 16
CGAL VERSION STR macro, 15
ch akl toussaint, 1356–1357
ch bykat, 1358–1359
ch e point, 1362
ch eddy, 1350, 1360–1361
ch graham andrew, 1350, 1363–1364
ch graham andrew scan, 1351, 1365–1366
ch jarvis, 1350, 1367–1368

ch jarvis march, 1351, 1369–1370
ch melkman, 1350, 1371–1372
ch n point, 1375
ch ns point, 1374
ch nswe point, 1373
ch s point, 1376
ch w point, 1378
ch we point, 1377
change vertex

Kinetic::DelaunayTriangulationVisitor 2, 4051
Kinetic::DelaunayTriangulationVisitor 3, 4052
Kinetic::SortVisitor, 4077

check integrity and topological planarity
Nef polyhedron S2, 1606
Topological explorer, 1582

check parameterize postconditions
Fixed border parameterizer 3, 3364

check parameterize preconditions
Fixed border parameterizer 3, 3363

check unconnected vertices
Polyhedron incremental builder 3, 1816

ChullTraits, 3936, 3940
Circle, 3531
circle

smallest enclosing, 3802
see also smallest enclosing ellipse
see also smallest enclosing sphere
see also smallest enclosing sphere of spheres

circle, 3809
Min circle 2, 3804
SHalfedge, 1616, 2027
SHalfloop, 1617, 2029

Circle 2, 614–616, 4476
Circle 3, 663–665
Circle type, 1270
Circular arc 2, 1169, 1174–1175, 4476
Circular arc 3, 1259, 1268–1269
Circular arc point 2, 1169, 1178–1179
Circular arc point 3, 1259, 1262–1263
Circular border arc length parameterizer 3, 3353–

3354
Circular border parameterizer 3, 3355–3356
Circular border uniform parameterizer 3, 3357
Circular kernel 2, 1169
CircularArcGraphicsItem, 4466
CircularKernel, 1166–1168
CircularKernel::BoundedSide 2, 1204
CircularKernel::CircularArc 2, 1171
CircularKernel::CircularArcPoint 2, 1173
CircularKernel::CompareX 2, 1191
CircularKernel::CompareXY 2, 1193
CircularKernel::CompareY 2, 1192
CircularKernel::CompareYatX 2, 1194
CircularKernel::CompareYtoRight 2, 1195
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CircularKernel::ComputeCircularX 2, 1212
CircularKernel::ComputeCircularY 2, 1213
CircularKernel::ConstructBbox 2, 1190
CircularKernel::ConstructCircle 2, 1181
CircularKernel::ConstructCircularArc 2, 1184–1185
CircularKernel::ConstructCircularArcPoint 2, 1182
CircularKernel::ConstructCircularMaxVertex 2, 1187
CircularKernel::ConstructCircularMinVertex 2, 1186
CircularKernel::ConstructCircularSourceVertex 2,

1188
CircularKernel::ConstructCircularTargetVertex 2,

1189
CircularKernel::ConstructLine 2, 1180
CircularKernel::ConstructLineArc 2, 1183
CircularKernel::DoIntersect 2, 1203
CircularKernel::DoOverlap 2, 1202
CircularKernel::Equal 2, 1200
CircularKernel::GetEquation, 1211
CircularKernel::HasOn 2, 1201
CircularKernel::HasOnBoundedSide 2, 1205
CircularKernel::HasOnUnboundedSide 2, 1206
CircularKernel::Intersect 2, 1198
CircularKernel::InXRange 2, 1207
CircularKernel::IsVertical 2, 1208
CircularKernel::IsXMonotone 2, 1209
CircularKernel::IsYMonotone 2, 1210
CircularKernel::LineArc 2, 1172
CircularKernel::MakeXMonotone 2, 1196
CircularKernel::MakeXYMonotone 2, 1197
CircularKernel::Split 2, 1199
Circulator, 4323–4325
Circulator, 4313–4315, 4334
Circulator base, 4330
circulator distance, 4321
Circulator from container, 4326–4327
Circulator from iterator, 4328–4329
circulator size, 4322
Circulator tag, 4330–4332
Circulator traits, 4333
circumcenter, 698–699

Triangulation 2, 2561
Triangulation cell base with circumcenter 3,

2695
TriangulationCellBase 3, 2684

Classification type, 2806, 2840, 2856
classify, 1321

Alpha shape 2, 2808, 2809
Alpha shape 3, 2842, 2843
Fixed alpha shape 3, 2857, 2858

cleanup cache
Arr rational function traits 2, 2306

clear
AABB tree, 3742
AdaptationPolicy 2, 2991

Alpha shape 2, 2807
Alpha shape 3, 2841
Apollonius graph 2, 2939
Apollonius graph hierarchy 2, 2955
Arr consolidated curve data traits 2<Traits,

Data>:: Data container, 2329
Arr polyline traits 2<SegmentTraits>::Curve 2,

2290
Arrangement 2, 2189
Arrangement with history 2, 2371
CombinatorialMap, 1926
Compact container, 4158
Convex hull d, 1436
Delaunay d, 1448
DelaunayGraph 2, 2987
Fixed alpha shape 3, 2857
General polygon 2, 1533
General polygon set 2, 1513
Geomview stream, 4447
HalfedgeDS, 1848
Interval skip list, 3550
Kd tree, 3599
Kinetic::ActiveObjectsTable, 4097, 4098
Largest empty iso rectangle 2, 3925
Min annulus d, 3864
Min circle 2, 3805
Min ellipse 2, 3815
Min sphere d, 3848
Min sphere of spheres d, 3870
Multiset, 4163
Nef polyhedron 2, 1573
Nef polyhedron 3, 2018
Nef polyhedron S2, 1604
Periodic 3 triangulation 3, 2763
Polygon 2, 1474
Polyhedron 3, 1804
Polytope distance d, 3948
Segment Delaunay graph 2, 2886
SurfaceMeshTriangulation 3, 3082
Triangulation 2, 2550
Triangulation 3, 2638
TriangulationDataStructure 2, 2587
TriangulationDataStructure 3, 2717
Union find, 4403
Unique hash map, 4406
Voronoi diagram 2, 2977

clear curves
EnvelopeDiagramEdge, 2424
EnvelopeDiagramVertex, 2422

clear flags, 183
clear hidden sites container

ApolloniusGraphVertexBase 2, 2945
clear offset

Periodic 3TriangulationDSVertexBase 3, 2790
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clear seeds
Delaunay mesher 2, 3026

CLOCKWISE, 680
close tip

HalfedgeDS items decorator, 1876
CLOSED HALFSPACE, 2015
closest point

AABB tree, 3744, 3746
closest point and primitive

AABB tree, 3744, 3746
closest point object

AABBTraits, 3756
closure

Nef polyhedron 2, 1573
Nef polyhedron 3, 2017
Nef polyhedron S2, 1605

code optimization, 16
Coefficient, 2305
coefficient

Hyperplane d, 1089
coefficients begin

Hyperplane d, 1089
coefficients end

Hyperplane d, 1089
Coercion traits, 68
COLLINEAR, 681
collinear, 700
collinear are ordered along line, 701
collinear are ordered along line 2 object

OptimalConvexPartitionTraits 2, 1650
collinear are strictly ordered along line, 702
collinear has on

Ray 2, 630
Segment 2, 632

Color, 4417
column

Matrix, 1065
column begin

Matrix, 1065
column dimension

Matrix, 1065, 3367
column end

Matrix, 1066
Combinatorial map, 1936–1937
Combinatorial map min items, 1940
CombinatorialMap, 1919–1929
CombinatorialMapItems, 1934–1935
CombinatorialMapItems::Dart wrapper<CMap>,

1934
common endpoint, 1086
comp

tree interval traits, 3681
tree point traits, 3683

Compact, 4248

Compact container, 4155–4159
Compact container base, 4153
Compact container traits, 4154
Compact location, 4251
compare, 139, 196, 350

Gmpfi, 190
Sqrt extension, 222

compare concurrent
Event, 4107

compare dihedral angle, 708–709
Compare distance 2, 4014
compare distance 2 object

DelaunayTriangulationTraits 2, 2514
Triangulation euclidean traits xy 3, 2568

compare distance 3 object
DelaunayTriangulationTraits 3, 2675
Periodic 3DelaunayTriangulationTraits 3, 2787

compare distance object
AABBTraits, 3756

compare distance to point, 703
compare endpoints xy 2 object

ArrangementDirectionalXMonotoneTraits 2,
1523

compare lexicographically, 704, 1102
compare non strictly

Sorted matrix search traits adaptor, 469
SortedMatrixSearchTraits, 470

compare power distance 2 object
RegularTriangulationTraits 2, 2525

compare power distance 3 object
Regular triangulation euclidean traits 3, 2682

compare signed distance to line, 705
compare signed distance to plane, 706
compare slopes, 707
compare squared distance, 710
compare squared radius, 711
compare squared radius 3 object

FixedAlphaShapeTraits 3, 2852
compare strictly

Sorted matrix search traits adaptor, 469
SortedMatrixSearchTraits, 470

compare theta, 1311
compare theta 3 object

SphericalKernel, 1257
compare theta z, 1312
compare theta z 3 object

SphericalKernel, 1257
Compare to less, 4194
compare to less, 4193
compare weight 2 object

ApolloniusGraphTraits 2, 2950
compare weighted squared radius 3 object

FixedWeightedAlphaShapeTraits 3, 2862
Regular triangulation euclidean traits 3, 2682
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compare x, 712–713
ExtendedKernelTraits 2, 1588

Compare x 2, 4015
compare x 2 object

ApolloniusGraphTraits 2, 2950
ArrangementBasicTraits 2, 2256
LargestEmptyIsoRectangleTraits 2, 3927
PartitionTraits 2, 1656
PolygonTraits 2, 1471
SegmentDelaunayGraphTraits 2, 2906
SnapRoundingTraits 2, 2399
Triangulation euclidean traits xy 3, 2568
TriangulationTraits 2, 2542

compare x at limit 2 object
ArrangementOpenBoundaryTraits 2, 2361

compare x at y, 717–718
compare x at y 2 object

YMonotonePartitionTraits 2, 1668
compare x near limit 2 object

ArrangementOpenBoundaryTraits 2, 2362
compare xy, 714–715

ExtendedKernelTraits 2, 1588
compare xy 2 object

ArrangementBasicTraits 2, 2256
compare xyz, 716
compare xyz 3 object

Periodic 3DelaunayTriangulationTraits 3, 2787
TriangulationTraits 3, 2673

compare y, 719–720
ExtendedKernelTraits 2, 1588

Compare y 2, 4015
compare y 2 object

ApolloniusGraphTraits 2, 2950
LargestEmptyIsoRectangleTraits 2, 3927
PartitionTraits 2, 1656
PolygonTraits 2, 1471
SegmentDelaunayGraphTraits 2, 2906
SnapRoundingTraits 2, 2399
Triangulation euclidean traits xy 3, 2568
TriangulationTraits 2, 2542

compare y at x, 721–722
compare y at x 2 object

ArrangementBasicTraits 2, 2256
compare y at x left 2 object

ArrangementBasicTraits 2, 2256
compare y at x right 2 object

ArrangementBasicTraits 2, 2256
compare y near boundary 2 object

ArrangementOpenBoundaryTraits 2, 2361
compare y to right, 1219
compare yx, 723
compare z, 724
compare z at theta 3 object

SphericalKernel, 1257

compare z at xy 3 object
EnvelopeTraits 3, 2445

compare z at xy above 3 object
EnvelopeTraits 3, 2445

compare z at xy below 3 object
EnvelopeTraits 3, 2445

compare z to right 3 object
SphericalKernel, 1257

Comparison result, 678
compilers

optimization, 44
supported, 22
workarounds, 44

complement, 1545–1546
General polygon set 2, 1513
Nef polyhedron 2, 1573
Nef polyhedron 3, 2017
Nef polyhedron S2, 1605
Sphere segment, 1609

COMPLETE, 1572, 1604, 2015
comply wrt given normal

Monge form, 3483
compute

Umbilic approximation, 3459
Compute area 2, 4014
compute area 2 object

DelaunayMeshTraits 2, 3024
PolygonTraits 2, 1471

compute average spacing, 3505
compute bbox object

AABBTraits, 3756
compute closest point 3 object

AABBGeomTraits, 3748
compute crest ridges, 3447

Ridge approximation, 3452
compute critical squared radius 3 object

Regular triangulation euclidean traits 3, 2683
compute edge length

Circular border arc length parameterizer 3,
3353

Circular border parameterizer 3, 3356
Circular border uniform parameterizer 3, 3357
Square border arc length parameterizer 3,

3401
Square border parameterizer 3, 3404
Square border uniform parameterizer 3, 3405

compute implicit function, 3094
Poisson reconstruction function, 3109

compute intersection points, 2388
compute max ridges, 3448

Ridge approximation, 3452
compute min k gon

Extremal polygon area traits 2, 3918
Extremal polygon perimeter traits 2, 3920
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ExtremalPolygonTraits 2, 3921
compute min ridges, 3449

Ridge approximation, 3452
compute normal of cell 0, 1988
compute normal of cell 0<LCC>, 1988
compute normal of cell 2, 1989
compute normal of cell 2<LCC>, 1989
compute outer frame margin, 1742–1743
compute power product 3 object

Regular triangulation euclidean traits 3, 2682
compute roots of 2, 219
compute roots of 2<RT, OutputIterator>, 219
compute scalar product 3 object

BisectionGeometricTraits 3, 3183
ImplicitSurfaceTraits 3, 3059

compute squared distance 2 object
AllFurthestNeighborsTraits 2, 3935
ConformingDelaunayTriangulationTraits 2,

3022
ConstrainedTriangulationTraits 2, 2496
Triangulation euclidean traits xy 3, 2568

compute squared distance 3 object
BisectionGeometricTraits 3, 3183
ImplicitSurfaceTraits 3, 3059

Compute squared distance d, 4003, 4012
compute squared distance d object

InterpolationTraits, 4001
compute squared radius 2 object

AlphaShapeTraits 2, 2814
compute squared radius 3 object

AABBGeomTraits, 3748
AlphaShapeTraits 3, 2837
BisectionGeometricTraits 3, 3183
ImplicitSurfaceTraits 3, 3059

compute squared radius smallest orthogonal -
sphere 3 object

Regular triangulation euclidean traits 3, 2683
WeightedAlphaShapeTraits 3, 2850

compute subcurves, 2389
compute umbilics, 3450
compute w ij

Barycentric mapping parameterizer 3, 3351
Discrete authalic parameterizer 3, 3359
Discrete conformal map parameterizer 3, 3361
Fixed border parameterizer 3, 3363
Mean value coordinates parameterizer 3, 3370

concentric spheres
see also annulus

condition number
Monge via jet fitting, 3485

ConformingDelaunayTriangulationTraits 2, 3021–
3022

connect holes, 1559
Const circulator from container<C>, 4326

Const oneset iterator, 4184
Constrained Delaunay triangulation 2, 2497–2501
Constrained triangulation 2, 2502–2506
Constrained triangulation face base 2, 2507
Constrained triangulation plus 2, 2508–2512
ConstrainedDelaunayTriangulationTraits 2, 2492
ConstrainedTriangulationFaceBase 2, 2493–2494
ConstrainedTriangulationGraphicsItem, 4468
ConstrainedTriangulationTraits 2, 2495–2496
Constraint, 2503
constraint index by name

Quadratic program from mps, 529
constraint name by index

Quadratic program from mps, 529
constraints begin

Constrained triangulation plus 2, 2511
constraints end

Constrained triangulation plus 2, 2511
constraintsPen

ConstrainedTriangulationGraphicsItem, 4468
ConstRange, 4340
construct anchor point 3 object

SkinSurfaceTraits 3, 3120
construct Apollonius site 2 object

ApolloniusGraphTraits 2, 2950
construct Apollonius vertex 2 object

ApolloniusGraphTraits 2, 2950
construct bisector 2 object

DelaunayTriangulationTraits 2, 2514
Construct cartesian const iterator, 3629
Construct Cartesian const iterator d, 3631
Construct cartesian const iterator d, 3625, 3627
construct center 3 object

BisectionGeometricTraits 3, 3183
ImplicitSurfaceTraits 3, 3059

Construct center d, 3626, 3627
construct circular arc 2 object

CircularKernel, 1168
construct circular arc 3 object

SphericalKernel, 1257
construct circumcenter 2 object

DelaunayMeshTraits 2, 3024
DelaunayTriangulationTraits 2, 2514
TriangulationTraits 2, 2542

construct circumcenter 3 object
DelaunayTriangulationTraits 3, 2675
Periodic 3DelaunayTriangulationTraits 3, 2787

construct construct cartesian const iterator d
object

SearchTraits, 3623
construct curve 2 object

Arr algebraic segment traits 2, 2323
Arr rational function traits 2, 2306

construct curves 2 object
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GeneralPolygonSetTraits 2, 1531
construct direction

ExtendedKernelTraits 2, 1588
construct direction 2 object

DelaunayTriangulationTraits 2, 2514
construct holes object

GeneralPolygonSetTraits 2, 1531
construct initial points object

MeshDomain 3, 3169
SurfaceMeshTraits 3, 3078

construct intersection object
MeshDomain 3, 3170

construct is unbounded object
GeneralPolygonSetTraits 2, 1531

Construct iso box d, 3625
construct iso rectangle 2 above left point 2 object

Rectangular p center default traits 2, 3842
RectangularPCenterTraits 2, 3845

construct iso rectangle 2 above right point 2
object

Rectangular p center default traits 2, 3842
RectangularPCenterTraits 2, 3845

construct iso rectangle 2 below left point 2 object
Rectangular p center default traits 2, 3842
RectangularPCenterTraits 2, 3845

construct iso rectangle 2 below right point 2
object

Rectangular p center default traits 2, 3842
RectangularPCenterTraits 2, 3845

construct iso rectangle 2 object
Rectangular p center default traits 2, 3842
RectangularPCenterTraits 2, 3844
SnapRoundingTraits 2, 2399

construct line 2 object
ConstrainedTriangulationTraits 2, 2495
Triangulation euclidean traits xy 3, 2568
YMonotonePartitionTraits 2, 1668

construct max vertex 2 object
ArrangementBasicTraits 2, 2256

Construct max vertex d, 3626, 3628, 3630, 3631
construct midpoint 2 object

ConformingDelaunayTriangulationTraits 2,
3022

construct midpoint 3 object
BisectionGeometricTraits 3, 3183
ImplicitSurfaceTraits 3, 3059

construct min vertex 2 object
ArrangementBasicTraits 2, 2256

Construct min vertex d, 3626, 3628, 3629, 3631
Construct null matrix d, 4012
construct null matrix d object

GradientFittingTraits, 4011
construct object 2 object

ApolloniusGraphTraits 2, 2950

SegmentDelaunayGraphTraits 2, 2906
construct object 3 object

DelaunayTriangulationTraits 3, 2675
RegularTriangulationTraits 3, 2679

construct offset contours
Polygon offset builder 2, 1739

construct opposite 2 object
ArrangementDirectionalXMonotoneTraits 2,

1523
Construct opposite plane 3, 1824, 1826
construct opposite plane 3 object

Polyhedron traits 3, 1824
Polyhedron traits with normals 3, 1826
PolyhedronTraits 3, 1823

construct opposite point
ExtendedKernelTraits 2, 1587

construct outer boundary object
GeneralPolygonSetTraits 2, 1531

Construct outer product d, 4012
construct outer product d object

GradientFittingTraits, 4011
construct perpendicular line object

DelaunayTriangulationTraits 3, 2675
RegularTriangulationTraits 3, 2679

construct plane 3 object
DelaunayTriangulationTraits 3, 2675
RegularTriangulationTraits 3, 2679

construct point
ExtendedKernelTraits 2, 1586

construct point 2 object
Arr algebraic segment traits 2, 2323

construct point d object
Kernel d, 1122
Min sphere annulus d traits 2, 3855, 3902
Min sphere annulus d traits 3, 3857, 3904
Min sphere annulus d traits d, 3859, 3906
MinSphereAnnulusDTraits, 3853, 3908
Polytope distance d traits 2, 3954
Polytope distance d traits 3, 3956
Polytope distance d traits d, 3958
PolytopeDistanceDTraits, 3952

construct point on 3 object
BisectionGeometricTraits 3, 3183
ImplicitSurfaceTraits 3, 3059

construct point on curve segment
MeshDomainWithFeatures 3, 3171

construct polygon 2 object
GeneralPolygonSetTraits 2, 1531

construct polygon with holes 2 object
GeneralPolygonSetTraits 2, 1531

construct projected boundary 2 object
EnvelopeTraits 3, 2445

construct projected intersections 2 object
EnvelopeTraits 3, 2445
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construct radical axis 2 object
RegularTriangulationTraits 2, 2525

Construct ray 2, 4014
construct ray 2 object

DelaunayTriangulationTraits 2, 2514
OptimalConvexPartitionTraits 2, 1650

construct ray 3 object
DelaunayTriangulationTraits 3, 2675
RegularTriangulationTraits 3, 2679

construct scaled vector 2 object
ConformingDelaunayTriangulationTraits 2,

3022
construct scaled vector 3 object

BisectionGeometricTraits 3, 3183
ImplicitSurfaceTraits 3, 3059

Construct scaled vector d, 4003, 4012
construct scaled vector d object

GradientFittingTraits, 4011
InterpolationTraits, 4001

Construct scaling matrix d, 4012
construct segment

ExtendedKernelTraits 2, 1588
construct segment 2 object

OptimalConvexPartitionTraits 2, 1650
PolygonTraits 2, 1471
SnapRoundingTraits 2, 2399
Triangulation euclidean traits xy 3, 2568
TriangulationTraits 2, 2542

construct segment 3 object
BisectionGeometricTraits 3, 3183
ImplicitSurfaceTraits 3, 3059
Periodic 3DelaunayTriangulationTraits 3, 2787
TriangulationTraits 3, 2673

construct site 2
SegmentDelaunayGraphSite 2, 2888

construct skeleton
Straight skeleton builder 2, 1727

construct sphere 3 object
AABBGeomTraits, 3748

Construct squared radius d, 3626, 3628
construct storage site 2

SegmentDelaunayGraphStorageSite 2, 2893,
2894

Construct sum matrix d, 4012
construct sum matrix d object

GradientFittingTraits, 4011
construct svd vertex 2 object

SegmentDelaunayGraphTraits 2, 2906
construct tetrahedron 3 object

Periodic 3DelaunayTriangulationTraits 3, 2787
TriangulationTraits 3, 2673

construct translated point 2 object
ConformingDelaunayTriangulationTraits 2,

3022

construct translated point 3 object
BisectionGeometricTraits 3, 3183
ImplicitSurfaceTraits 3, 3059

Construct triangle 2, 4014
construct triangle 2 object

Triangulation euclidean traits xy 3, 2568
TriangulationTraits 2, 2542

construct triangle 3 object
Periodic 3DelaunayTriangulationTraits 3, 2787
TriangulationTraits 3, 2673

construct vector 2 object
ConformingDelaunayTriangulationTraits 2,

3022
Kernel, 587
Min quadrilateral default traits 2, 3833
MinQuadrilateralTraits 2, 3836

construct vector 3 object
BisectionGeometricTraits 3, 3183
ImplicitSurfaceTraits 3, 3059

Construct vector d, 4003, 4012
construct vector d object

GradientFittingTraits, 4011
InterpolationTraits, 4001

construct vertex 2 object
Rectangular p center default traits 2, 3842
RectangularPCenterTraits 2, 3844
SnapRoundingTraits 2, 2399

construct Voronoi point 2 object
AdaptationTraits 2, 2989

Construct weighted circumcenter 2, 4015
construct weighted circumcenter 2 object

RegularTriangulationTraits 2, 2525
construct weighted circumcenter 3 object

Regular triangulation euclidean traits 3, 2682
RegularTriangulationTraits 3, 2679

construct x monotone curve 2 object
Arr rational function traits 2, 2306
ArrangementLandmarkTraits 2, 2269

construct x monotone segment 2 object
Arr algebraic segment traits 2, 2323

ConstructFunction, 4104
Construction kernel, 2911, 2913
Construction traits method tag, 2911, 2913
contained

GeneralPolygonSetDcelFace, 1544
contained in affine hull, 1103
contained in boundary

Nef polyhedron 2, 1575
Nef polyhedron S2, 1606

contained in linear hull, 1104
contained in simplex, 1105
container

Polygon 2, 1476
Container from circulator, 4334–4335
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contains
Delaunay d, 1448
ExtendedKernelTraits 2, 1589
Fuzzy iso box, 3589
Fuzzy sphere, 3590
FuzzyQueryItem, 3587
Interval, 3551
Kinetic::Delaunay triangulation recent edges -

visitor 2, 4050
Kinetic::EventQueue, 4106
Nef polyhedron 2, 1575
Nef polyhedron S2, 1606

contains interval
Interval, 3551

Content, 1572, 1604, 2015
Context, 2509
context

Constrained triangulation plus 2, 2511
Context iterator, 2509
contexts begin

Constrained triangulation plus 2, 2511
contexts end

Constrained triangulation plus 2, 2511
CONTINUE, 13
contour list

Umbilic, 3458
control point

Arr Bezier curve traits 2<AlgKernel, NtTraits>
::Curve 2, 2316

CONVERGENCE REACHED, 3241
Convert, 2325, 2448
convert straight skeleton 2, 1724
convert straight skeleton 2<TgtSs, SrcSs,ItemsCvt>,

1724
convert to 1 sheeted covering

Periodic 3 triangulation 3, 2765
convert to 27 sheeted covering

Periodic 3 triangulation 3, 2765
convert to polyhedron

Nef polyhedron 3, 2018
Converter, 4457
convex hull, 1349, 1353, 1405, 1427, 1429
convex hull, 2D, 1379–1380

Akl-Toussaint algorithm, 1356–1357
assertion flags, 1353
Bykat’s algorithm, 1350
Bykat algorithm, 1358–1359
Eddy algorithm, 1360–1361
gift-wrapping, 1367, 1369
Graham-Andrew scan, 1363–1366
Jarvis march, 1367, 1369
Melkman algorithm, 1371–1372
of polyline or polygon, 1350, 1371–1372
postcondition, 1352

quickhull, 1350, 1361
traits class

default, 1390
requirements, 1381
see also Convex hull constructive traits 2
see also Convex hull projective xy traits 2
see also Convex hull projective xz traits 2
see also Convex hull projective yz traits 2
see also Convex hull traits 2

convex hull, 3D, 1397–1403, 1408–1412
assertion flags, 1405
dynamic, 1401
incremental, 1400, 1411–1412
quickhull, 1398, 1408–1410
static, 1398

convex hull, dD, 1427–1428
convex polygon

function object, 1643
convex decomposition 3, 2045–2046
convex hull 2, 1350, 1379–1380
convex hull 3, 1398, 1408–1410

postcondition, 1398, 1423
traits class

default, 1420
convex hull 3 to polyhedron 3, 1422
Convex hull constructive traits, 1351
Convex hull constructive traits 2, 1383
Convex hull d, 1433–1439

traits class
default, 1440

convex hull d to polyhedron 3, 1439
convex hull incremental 3, 1400, 1411–1412
Convex hull projective xy traits 2, 1384–1385
Convex hull projective xz traits 2, 1386–1387
Convex hull projective yz traits 2, 1388–1389
Convex hull traits 2, 1351, 1390
convex partition is valid 2, 1633–1634

preconditions, 1633
traits class, 1635

default, 1633
ConvexHullPolyhedron 3, 1416–1417
ConvexHullPolyhedronFacet 3, 1413
ConvexHullPolyhedronHalfedge 3, 1414
ConvexHullPolyhedronVertex 3, 1415
ConvexHullTraits 2, 1381–1382

model, 1383, 1384, 1386, 1388, 1390
ConvexHullTraits 3, 1408, 1418–1419
ConvexHullTraits d, 1431–1432, 1434
convexity checking, 2D, 1352, 1391–1392
ConvexPartitionIsValidTraits 2, 1630, 1633, 1635,

1646
model, 1659

COPLANAR, 682
coplanar, 725
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coplanar 3 orientation 3 object
Periodic 3DelaunayTriangulationTraits 3, 2787

coplanar orientation, 726
coplanar orientation 3 object

TriangulationTraits 3, 2673
coplanar side of bounded circle, 727
coplanar side of bounded circle 3 object

DelaunayTriangulationTraits 3, 2675
Periodic 3DelaunayTriangulationTraits 3, 2787

copy n, 4175
copy parallelogram vertices 2

Min quadrilateral default traits 2, 3833
MinQuadrilateralTraits 2, 3836

copy rectangle vertices 2
Min quadrilateral default traits 2, 3832
MinQuadrilateralTraits 2, 3836

copy strip lines 2
Min quadrilateral default traits 2, 3833
MinQuadrilateralTraits 2, 3836

copy tds
TriangulationDataStructure 2, 2586
TriangulationDataStructure 3, 2717

CORE::BigFloat, 167
CORE::BigInt, 165
CORE::BigRat, 166
CORE::Expr, 168
Corner index, 3194, 3213
corner index

MeshComplexWithFeatures 3InTriangulation 3,
3166

MeshDomainWithFeatures 3, 3173
corner node

DooSabin mask 3, 3271
DQQMask 3, 3266

count
Multiset, 4163

count facet vertices
Parameterization mesh patch 3, 3381
Parameterization polyhedron adaptor 3, 3390
ParameterizationMesh 3, 3374

count mesh facets
Parameterization mesh patch 3, 3380
Parameterization polyhedron adaptor 3, 3389
ParameterizationMesh 3, 3373

count mesh halfedges
Parameterization mesh patch 3, 3381
Parameterization polyhedron adaptor 3, 3389
ParameterizationMesh 3, 3373

count mesh vertices
Parameterization mesh patch 3, 3380
Parameterization polyhedron adaptor 3, 3389
ParameterizationMesh 3, 3372

COUNTERCLOCKWISE, 680
counterclockwise in between

Direction 2, 618
Counting iterator, 4185
Covering sheets, 2761
cpp0x::copy n, 4174
cpp0x::next, 4170
cpp0x::prev, 4171
cpp11::array, 4245
cpp11::tuple, 4246
create attribute

CombinatorialMap, 1925
create cell

Kinetic::DelaunayTriangulationVisitor 3, 4052
TriangulationDataStructure 3, 2725

create center vertex
HalfedgeDS decorator, 1864
Polyhedron 3, 1801

create dart
CombinatorialMap, 1925
Linear cell complex, 1977

create edge
OverlayTraits, 2224

create exterior skeleton and offset polygons 2,
1736–1737

create exterior skeleton and offset polygons with -
holes 2, 1736

create exterior straight skeleton 2, 1715–1716
create face

Kinetic::DelaunayTriangulationVisitor 2, 4051
OverlayTraits, 2224
TriangulationDataStructure 2, 2592

create interior skeleton and offset polygons 2,
1733–1735

create interior skeleton and offset polygons with -
holes 2, 1734

create interior straight skeleton 2, 1713–1714
create loop

HalfedgeDS decorator, 1860
create offset polygons 2, 1731
create segment

HalfedgeDS decorator, 1860
create vertex

Arr accessor, 2201
OverlayTraits, 2223, 2224
TriangulationDataStructure 2, 2592
TriangulationDataStructure 3, 2725

create vertex attribute
Linear cell complex, 1978

Creator 1, 4209
Creator 2, 4210
Creator 3, 4211
Creator 4, 4212
Creator 5, 4213
Creator uniform 2, 4214
Creator uniform 3, 4215
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Creator uniform 4, 4216
Creator uniform 5, 4217
Creator uniform 6, 4218
Creator uniform 7, 4219
Creator uniform 8, 4220
Creator uniform 9, 4221
Creator uniform d, 4222
Cropped voronoi diagram, 2467
cross product, 728
crossing site

SegmentDelaunayGraphSite 2, 2889
SegmentDelaunayGraphStorageSite 2, 2895

current dimension
Convex hull d, 1434
Delaunay d, 1447

current event number
Kinetic::Simulator, 4134

current time
Kinetic::Simulator, 4132

curve
Arr algebraic segment traits 2<Coefficient>

::Point 2, 2320
Arr algebraic segment traits 2<Coefficient>

::X monotone curve 2, 2321
ArrangementDcelHalfedge, 2239
EnvelopeDiagramEdge, 2423
Halfedge, 2208

Curve 2, 2370, 2376, 2378
Curve data, 2325
curve end

Arr algebraic segment traits 2<Coefficient>
::X monotone curve 2, 2321

Curve segment index, 3194, 3213
curve segment index

MeshComplexWithFeatures 3InTriangulation 3,
3166

MeshDomainWithFeatures 3, 3173
curves begin

Arrangement with history 2, 2371
EnvelopeDiagramEdge, 2423
EnvelopeDiagramVertex, 2421
GeneralPolygon 2, 1518

curves end
Arrangement with history 2, 2371
EnvelopeDiagramEdge, 2423
EnvelopeDiagramVertex, 2421
GeneralPolygon 2, 1518

cutting dimension
Plane separator, 3617
SpatialSeparator, 3640

cutting value
Plane separator, 3617
SpatialSeparator, 3640

cw, 2743

Triangulation 2, 2560
Triangulation cw ccw 2, 2563
TriangulationDataStructure 2, 2592
TriangulationDataStructure 2::Face, 2598

cw permute
ConstrainedTriangulationFaceBase 2, 2493
TriangulationDSFaceBase 2, 2596

cyclic adj pred
SHalfedge, 1616, 2027
Topological explorer, 1580

cyclic adj succ
SHalfedge, 1616, 2027
Topological explorer, 1579

d, 262
Plane 3, 652

d2 map, 1451
d3 surface map, 1439
Dart, 1930–1931
Dart, 1936, 1938, 1976
dart

CellAttribute, 1932
Dart const handle, 1938, 1939, 1984
Dart handle, 1938, 1939, 1984
dart handle

CombinatorialMap, 1922
darts

CombinatorialMap, 1923
darts of cell

CombinatorialMap, 1924
darts of orbit

CombinatorialMap, 1923
data

Arr curve data traits 2<Tr,
XData,Mrg,CData,Cnv>::Curve 2, 2325

Arr curve data traits 2<Tr,
XData,Mrg,CData,Cnv>::X monotone
curve 2, 2326

Arr extended face, 2252
Arr extended halfedge, 2251
Arr extended vertex, 2250
Arr surface data traits 3<Tr,

XData,Mrg,CData,Cnv>::Xy monotone -
surface 3, 2450

Env surface data traits 3<Traits, Xy-
Data,SData,Cnv>::Surface 3, 2449

LabeledImage 3, 3186
Data access, 4000
Data kernel, 3484
Data structure, 2879, 2933
data structure

Apollonius graph 2, 2934
Segment Delaunay graph 2, 2881

Data type, 4000
DataKernel, 3479
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Datum, 3752, 3753
datum

AABBPrimitive, 3750
dD Kernel

traits class
see also Linear algebraCd
see also Linear algebraHd

decompose, 2351
decrease dimension

TriangulationDataStructure 3, 2724
DEFAULT , 1574
Default, 4252–4253
default random, 4358
default value

Unique hash map, 4406
defining contour edge

StraightSkeletonHalfedge 2, 1699
defining contour halfedges begin

StraightSkeletonVertex 2, 1697
defining matrix

Approximate min ellipsoid d, 3890
defining scalar

Approximate min ellipsoid d, 3890
defining vector

Approximate min ellipsoid d, 3890
degeneracies

adding to input, 4346
Min annulus d, 3860, 3864
Min circle 2, 3802, 3805
Min ellipse 2, 3812, 3815
Min sphere d, 3848
Polytope distance d, 3944, 3948

DEGENERATE, 682
degree, 335

Periodic 3 triangulation 3, 2774
Polynomial, 325
Triangulation 3, 2652
TriangulationDataStructure 2, 2593
TriangulationDataStructure 3, 2728
Vertex, 2205, 2980

degree size type, 4281, 4283
degree vector, 337
Delaunay triangulation, dD, 1428, 1446–1451
Delaunay d, 1428, 1446–1451
Delaunay edge, 2971, 2978, 2988, 2990
Delaunay edge circulator, 2990
Delaunay face handle, 2971, 2980, 2988, 2990
Delaunay geom traits, 2971
Delaunay graph, 2971
Delaunay mesh criteria 2, 3028
Delaunay mesh face base 2, 3029
Delaunay mesh size criteria 2, 3030
Delaunay mesher 2, 3025–3027
Delaunay triangulation 2, 2516–2521

Delaunay triangulation 3, 2654–2661
Delaunay triangulation adaptation traits 2, 2993
Delaunay triangulation caching degeneracy -

removal policy 2, 3002
Delaunay triangulation degeneracy removal policy

2, 2998
Delaunay vertex handle, 2971, 2978, 2980, 2982,

2988, 2990
Delaunay voronoi kind, 1446
DelaunayGraph 2, 2984–2987
DelaunayLiftedTraits d, 1441–1443, 1447
DelaunayMeshFaceBase 2, 3023
DelaunayMeshTraits 2, 3024
DelaunayTraits d, 1444–1445, 1447
DelaunayTriangulationTraits 2, 2513–2515
DelaunayTriangulationTraits 3, 2674–2676
delegate

Polyhedron 3, 1806
delete cell

TriangulationDataStructure 3, 2725
delete cells

TriangulationDataStructure 3, 2726
delete edge

ArrangementDcel, 2233
EnvelopeDiagram 1, 2420
GeneralPolygonSetDcel, 1542

delete event
Kinetic::Simulator, 4133

delete face
ArrangementDcel, 2233
GeneralPolygonSetDcel, 1543
TriangulationDataStructure 2, 2592

delete hole
ArrangementDcel, 2233
GeneralPolygonSetDcel, 1543

delete isolated vertex
ArrangementDcel, 2234
GeneralPolygonSetDcel, 1543

delete vertex
ArrangementDcel, 2233
EnvelopeDiagram 1, 2420
GeneralPolygonSetDcel, 1542
TriangulationDataStructure 2, 2592
TriangulationDataStructure 3, 2725

delete vertices
TriangulationDataStructure 3, 2726

delta
Direction 2, 617
Direction 3, 644
Direction d, 1080

deltas begin
Direction d, 1080

deltas end
Direction d, 1080

4528



denominator
Arr rational function traits 2<

AlgebraicKernel d 1>::Curve 2, 2306
Arr rational function traits 2<

AlgebraicKernel d 1>::Point 2, 2309
Arr rational function traits 2<

AlgebraicKernel d 1>::X monotone -
curve 2, 2307

Gmpq, 177
Quotient, 201
Rational traits, 211

Dereference, 4197
Dereference property map, 4304
destroy

In place list, 4149
destroy cell

Kinetic::DelaunayTriangulationVisitor 3, 4052
destroy face

Kinetic::DelaunayTriangulationVisitor 2, 4051
detach

Arr observer, 2353
ArrangementPointLocation 2, 2342
ArrangementVerticalRayShoot 2, 2344

detect features
Polyhedral mesh domain with features 3, 3211

determinant, 729
LinearAlgebraTraits d, 1059, 1060

diametral sphere
Circle 3, 664
Circular arc 3, 1269

difference, 1547–1548
General polygon set 2, 1515
Nef polyhedron 2, 1574
Nef polyhedron 3, 2017
Nef polyhedron S2, 1605

difference type, 2548, 2637, 2762, 4361, 4380–4390
differentiate, 341
dim down

TriangulationDataStructure 2, 2591
dimension, 1919, 1930

Aff transformation d, 1098
Apollonius graph 2, 2934
Approximate min ellipsoid d, 3890
ApproximateMinEllipsoid d Traits d, 3896
Bbox 2, 613
Bbox 3, 639
Convex hull d, 1434
Delaunay d, 1447
DelaunayGraph 2, 2985
Direction d, 1080
Hyperplane d, 1089
Kd tree rectangle, 3604
Kernel::Component accessor d, 1128
Line d, 1081

Matrix, 1065
Point 2, 627
Point 3, 657
Point container, 3620
Point d, 1072
Ray d, 1083
Segment d, 1085
Segment Delaunay graph 2, 2881
Sphere d, 1092
SurfaceMeshTriangulation 3, 3082
Triangulation 2, 2550
Triangulation 3, 2639
Triangulation simplex 3, 2689
TriangulationDataStructure 2, 2587
TriangulationDataStructure 3, 2717
TriangulationDSFaceBase 2, 2595
Vector, 1062, 3414
Vector 2, 637
Vector 3, 675
Vector d, 1076

Dimension tag, 1044
directed category, 4285
direction

ArrangementDcelHalfedge, 2238
Halfedge, 2207
Line 2, 624
Line 3, 650
Line d, 1082
Ray 2, 629
Ray 3, 660
Ray d, 1083
Segment 2, 631
Segment 3, 662
Segment d, 1086
Vector 2, 637
Vector 3, 675
Vector d, 1077

Direction 2, 617–618
Direction 3, 644–645
Direction d, 1079–1080
direction of time

Kinetic::Simulator, 4134
directories

config/testfiles, 44
structure, 22

Discrete authalic parameterizer 3, 3358–3359
Discrete conformal map parameterizer 3, 3360–

3361
discriminant

Min sphere of spheres d, 3869
dispatch or drop output, 4180
Dispatch or drop output iterator, 4180–4181
dispatch output, 4178
Dispatch output iterator, 4178–4179
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display characteristics
CombinatorialMap, 1923

Distance, 2528, 3593, 3595, 3613, 3615
distance, 1053

squared, 1053
distance, 566

of polytopes, 3944
squared, 566

Distance for point adapter, 3635–3636
distance sign along cycle

MeshDomainWithFeatures 3, 3172
div, 117
div mod, 116
do curves intersect, 2390
do intersect, 730–731, 1106, 1549–1550, 2218

AABB tree, 3743
General polygon set 2, 1516

do intersect 3 object
AABBGeomTraits, 3748
IntersectionGeometricTraits 3, 3184

do intersect object
AABBTraits, 3756

do intersect surface object
MeshDomain 3, 3169

do overlap, 732
Gmpfi, 190
Interval nt, 195

does simplex intersect dual support 3 object
Regular triangulation euclidean traits 3, 2682

domain
Periodic 3 triangulation 3, 2764

DooSabin mask 3, 3271
DooSabin subdivision, 3262
double, 163
double coefficients

Min ellipse 2 traits 2, 3819
down

ApolloniusGraphHierarchyVertexBase 2, 2956
Halfedge, 2979
SegmentDelaunayGraphHierarchyVertexBase 2,

2916
TriangulationHierarchyVertexBase 2, 2540
TriangulationHierarchyVertexBase 3, 2690

DQQ, 3262
DQQMask 3, 3266
draw dual

Apollonius graph 2, 2938
Delaunay triangulation 2, 2520
Delaunay triangulation 3, 2660
Periodic 3 Delaunay triangulation 3, 2780
Regular triangulation 2, 2533
Regular triangulation 3, 2671
Segment Delaunay graph 2, 2885

draw dual edge

Apollonius graph 2, 2939
Segment Delaunay graph 2, 2885, 2886

draw dual in ipe
Ipelet base, 4480

draw in ipe
Ipelet base, 4479, 4480

draw polyline in ipe
Ipelet base, 4480

draw primal
Apollonius graph 2, 2938

draw primal edge
Apollonius graph 2, 2938

draw skeleton
Segment Delaunay graph 2, 2885

draw skeleton in ipe
Ipelet base, 4480

draw triangles
Geomview stream, 4446

dual
Apollonius graph 2, 2938
Delaunay triangulation 2, 2519, 2520
Delaunay triangulation 3, 2660
Face, 2982
Halfedge, 2979
Periodic 3 Delaunay triangulation 3, 2779,

2780
Regular triangulation 2, 2533
Regular triangulation 3, 2670, 2671
SurfaceMeshTriangulation 3, 3082
Vertex, 2980
Voronoi diagram 2, 2973

dual centroid
Periodic 3 Delaunay triangulation 3, 2780

dual support
Delaunay triangulation 3, 2660

dual volume
Periodic 3 Delaunay triangulation 3, 2780

Dummy straight skeleton builder 2 visitor, 1730
dx

Direction 2, 617
Direction 3, 644

dy
Direction 2, 617
Direction 3, 644

Dynamic dimension tag, 1045
Dynamic matrix, 460–461
dz

Direction 3, 644

e0, 4223–4226
e1, 4223–4226
e2, 4224–4226
e3, 4225, 4226
e4, 4226
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e5, 4226
EDGE, 2522, 2549, 2637, 2700, 2763, 2797
Edge, 1707, 1710, 2548, 2586, 2636, 2688, 2716,

2761, 2879, 2933, 2984, 3070, 3081, 3158
edge

Polygon 2, 1476
Edge circulator, 2880, 2934
edge collapse, 3300
Edge criteria, 3199
edge criteria object

MeshCriteriaWithFeatures 3, 3176
edge descriptor, 3293, 4280, 4282
edge index, 4293
edge index t, 4293
edge is border, 4294
edge is border t, 4294
Edge iterator, 2688, 2762
edge node

CatmullClark mask 3, 3268
Loop mask 3, 3270
PQQMask 3, 3264
PTQMask 3, 3265

edge parallel category, 4281, 4283, 4285
edge rejector object

AdaptationPolicy 2, 2991
EdgeCollapsableMesh, 3289–3290
EdgeCollapseSimplificationVisitor, 3298–3299
EdgeProfile, 3293–3294
edges begin

Arrangement 2, 2190
Periodic 3 triangulation 3, 2770
Polygon 2, 1474
Polyhedron 3, 1799
SurfaceMeshComplex 2InTriangulation 3, 3073
TriangulationDataStructure 2, 2588
TriangulationDataStructure 3, 2726
Voronoi diagram 2, 2974

edges circulator
Polygon 2, 1475

edges clear
HalfedgeDS, 1848

edges end
Arrangement 2, 2190
Periodic 3 triangulation 3, 2770
Polygon 2, 1475
Polyhedron 3, 1799
SurfaceMeshComplex 2InTriangulation 3, 3073
TriangulationDataStructure 2, 2588
TriangulationDataStructure 3, 2726
Voronoi diagram 2, 2974

edges erase
HalfedgeDS, 1848

edges in complex begin

MeshComplexWithFeatures 3InTriangulation 3,
3166, 3167

edges in complex end
MeshComplexWithFeatures 3InTriangulation 3,

3166, 3167
edges pop back

HalfedgeDS, 1848
edges pop front

HalfedgeDS, 1848
edges push back

HalfedgeDS, 1847
edges size type, 4281, 4283
edgesPen

CircularArcGraphicsItem, 4466
TriangulationGraphicsItem, 4467
VoronoiGraphicsItem, 4469

EdgeTriple, 1707, 1710
Eigen solver traits, 3410–3411
Eigen sparse matrix, 3407
Eigen sparse symmetric matrix, 3408
Eigen svd, 3480
Eigen vector, 3409
ellipse

approximate smallest enclosing, 3887
smallest enclosing, 3812
see also smallest enclosing circle

ellipse, 3821
Min ellipse 2, 3814

ELLIPTIC UMBILIC, 3461
emplace

Compact container, 4158
EMPTY , 1572, 1604, 2015, 2763, 2797
empty

AABB tree, 3743
Compact container, 4157
ConstRange, 4340
Delaunay d, 1448
In place list, 4149
Kinetic::EventQueue, 4105
Kinetic::RootStack, 4123
Kinetic::Simulator, 4133
Multiset, 4162
Object, 4167
Point container, 3622
Polyhedron 3, 1798
Range, 4338

Emptyset iterator, 4182
enclosing query

Segment tree d, 3673
Segment tree k, 3675
Tree anchor, 3684

end
Arr consolidated curve data traits 2<Traits,

Data>:: Data container, 2328
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Arr polyline traits 2<SegmentTraits>::Curve 2,
2289

Compact container, 4157
ConstRange, 4340
Container from circulator, 4334
In place list, 4149
Incremental neighbor search, 3594
Interval skip list, 3550
K neighbor search, 3596
Kd tree, 3599
Kd tree node, 3602
Kinetic::Delaunay triangulation recent edges -

visitor 2, 4050
Kinetic::Sort, 4074
Largest empty iso rectangle 2, 3924
Matrix, 1066
MeshPolyline 3, 3192
Multiset, 4162
Orthogonal incremental neighbor search, 3614
Orthogonal k neighbor search, 3616
Point container, 3620
Polynomial, 325
Range, 4338
SpatialTree, 3641
Stream lines 2, 3430
Union find, 4404
Vector, 1062

end facet
Polyhedron incremental builder 3, 1815

end surface
Polyhedron incremental builder 3, 1816

end time
Kinetic::Simulator, 4132

enter contour
Straight skeleton builder 2, 1726

enum, 1814
enum cast, 733, 4243
Env plane traits 3, 2451
Env sphere traits 3, 2447
Env surface data traits 3, 2448–2450
Env surface data traits 3<Traits, Xy-

Data,SData,Cnv>::Surface 3, 2449
Env triangle traits 3, 2446
Envelope diagram 1, 2425
Envelope diagram 2, 2452–2454
Envelope diagram 2<EnvTraits>::Face, 2454
Envelope diagram 2<EnvTraits>::Halfedge, 2453–

2454
Envelope diagram 2<EnvTraits>::Vertex, 2453
EnvelopeDiagram 1, 2419–2420
EnvelopeDiagramEdge, 2423–2424
EnvelopeDiagramVertex, 2421–2422
EnvelopeTraits 3, 2443–2445
EQUAL, 678

equal 2 object
ArrangementBasicTraits 2, 2257
PolygonTraits 2, 1470
SegmentDelaunayGraphTraits 2, 2906

equal as sets, 1612
equal range

Multiset, 4164
equidistant line, 734
erange flag, 183
erase

Arr consolidated curve data traits 2<Traits,
Data>:: Data container, 2329

Compact container, 4158
In place list, 4150
Kinetic::ActiveObjectsTable, 4097
Kinetic::Delaunay triangulation 2, 4043
Kinetic::EventQueue, 4105
Kinetic::Sort, 4074
Multiset, 4163
Polygon 2, 1474

erase attribute
CombinatorialMap, 1925

erase center vertex
HalfedgeDS decorator, 1864
Polyhedron 3, 1801

erase connected component
HalfedgeDS decorator, 1861
Polyhedron 3, 1804

erase dart
CombinatorialMap, 1925

erase face
HalfedgeDS decorator, 1861

erase facet
Polyhedron 3, 1803

erase hole
ArrangementDcelFace, 2242

erase isolated vertex
ArrangementDcelFace, 2242

erase vertex attribute
Linear cell complex, 1978

error
Polyhedron incremental builder 3, 1816

ERROR BORDER TOO SHORT , 3394, 3396
ERROR CANNOT SOLVE LINEAR SYSTEM, 3394,

3396
Error code, 3394, 3396
ERROR EMPTY MESH, 3394, 3396
ERROR NO 1 TO 1 MAPPING, 3394, 3396
ERROR NO TOPOLOGICAL DISC, 3394, 3396
ERROR NON CONVEX BORDER, 3394, 3396
ERROR NON TRIANGULAR MESH, 3394, 3396
ERROR OUT OF MEMORY , 3394, 3396
ERROR WRONG PARAMETER, 3394, 3396
Euclidean distance, 3582–3583
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Euclidean distance sphere point, 3584–3585
Euclidean ring tag, 103
EuclideanRing, 73
Euler integrator 2, 3423
evaluate, 342
evaluate homogeneous, 343
Event, 4107–4108
event

Kinetic::Simulator, 4133
event time

Kinetic::Simulator, 4133
eventFilter

GraphicsViewNavigation, 4470
events begin

Kinetic::EventLogVisitor, 4059
events end

Kinetic::EventLogVisitor, 4059
exact

Lazy exact nt, 199
Exact circular kernel 2, 1170
Exact kernel, 592, 2911, 2913
Exact predicates exact constructions kernel, 606
Exact predicates exact constructions kernel with -

sqrt, 607
Exact predicates inexact constructions kernel, 608
Exact spherical kernel 3, 1260
Exact traits method tag, 2911, 2913
EXCLUDED, 1572, 1604, 2015
EXIT , 13
EXIT WITH SUCCESS, 13
ExplicitInteroperable, 66
Explorer, 1583–1584
explorer

Nef polyhedron 2, 1575
Exponent vector, 327–328
extend

Box d, 3718
Box with handle d, 3722

extended kernel, 2D
traits class

requirements, 1585
Extended cartesian, 1590
Extended homogeneous, 1591
EXTENDED INTERNAL, 3601
ExtendedKernelTraits 2, 1585–1589

model, 1590–1592
EXTERIOR, 2806, 2840, 2856
extract all even rows

Dynamic matrix, 461
MonotoneMatrixSearchTraits, 462

extremal polygon 2, 3916
Extremal polygon area traits 2, 3917–3918
Extremal polygon perimeter traits 2, 3919–3920
ExtremalPolygonTraits 2, 3921–3922

extreme point, 1349, 1353, 1405, 1427, 1429
extreme points, 2D

between two points, 1369
in coordinate directions, 1351, 1362, 1373–1378
right of line, 1365–1366
traits class

default, 1390
requirements, 1381

exude mesh 3, 3136, 3223–3224

FACE, 2549
Face, 1818, 2209–2210, 2548, 2880, 2933, 2982–

2983
face

ApolloniusGraphVertexBase 2, 2944
ArrangementDcelHalfedge, 2239
ArrangementDcelHole, 2243
ArrangementDcelIsolatedVertex, 2244
Halfedge, 2207, 2978
HalfedgeDSHalfedge, 1853
SegmentDelaunayGraphVertexBase 2, 2901
Topological explorer, 1580
TriangulationDataStructure 2::Vertex, 2602
Vertex, 2205

Face circulator, 2880, 2934
Face const handle, 2334
face cycle

Topological explorer, 1581
Face handle, 2199, 2330, 2352, 2549, 2594, 2600,

2880, 2933
face handle

Level interval, 3553
Face range, 2604
face rejector object

AdaptationPolicy 2, 2991
Face status, 3070
face status

SurfaceMeshComplex 2InTriangulation 3, 3072
faces

Triangulation data structure 2, 2604
faces begin

Arrangement 2, 2190
ArrangementDcel, 2233
GeneralPolygonSetDcel, 1542
HalfedgeDS, 1847
Topological explorer, 1580
TriangulationDataStructure 2, 2588
Voronoi diagram 2, 2974

faces clear
HalfedgeDS, 1848

faces end
Arrangement 2, 2190
ArrangementDcel, 2233
GeneralPolygonSetDcel, 1542
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HalfedgeDS, 1847
Topological explorer, 1580
TriangulationDataStructure 2, 2588
Voronoi diagram 2, 2974

faces erase
HalfedgeDS, 1848
HalfedgeDS decorator, 1861

faces pop back
HalfedgeDS, 1848
HalfedgeDS decorator, 1861

faces pop front
HalfedgeDS, 1848
HalfedgeDS decorator, 1861

faces push back
HalfedgeDS, 1847
HalfedgeDS decorator, 1860

faces splice
HalfedgeDS list, 1880

FACET , 2522, 2637, 2700, 2763, 2797
Facet, 1807–1808, 2636, 2688, 2716, 2761, 3070,

3081, 3158
facet

ConvexHullPolyhedronHalfedge 3, 1414
Halfedge, 1811
SHalfedge, 2027
SHalfloop, 2030
TriangulatedSurfaceMesh, 3457

facet begin
ConvexHullPolyhedronFacet 3, 1413
ConvexHullPolyhedronHalfedge 3, 1414
Facet, 1807, 1808
Halfedge, 1810

Facet circulator, 2637, 2688, 2762
Facet criteria, 3199
facet criteria object

MeshCriteria 3, 3175
facet cycles begin

Halffacet, 2024
facet cycles end

Halffacet, 2024
facet degree

Facet, 1808
Halfedge, 1811

Facet handle, 1814
Facet iterator, 2688, 2762
facet node

CatmullClark mask 3, 3268
PQQMask 3, 3264
Sqrt3 mask 3, 3272
Sqrt3Mask 3, 3267

facet surface center
MeshCellBase 3, 3188

facet vertices begin
Parameterization mesh patch 3, 3381

Parameterization polyhedron adaptor 3, 3389
ParameterizationMesh 3, 3373

FACET VERTICES ON SAME SURFACE PATCH,
3242

FACET VERTICES ON SAME SURFACE PATCH
WITH ADJACENCY CHECK, 3242

FACET VERTICES ON SURFACE, 3242
facets begin

Convex hull d, 1437
Periodic 3 triangulation 3, 2770
Polyhedron 3, 1798
SurfaceMeshComplex 2InTriangulation 3, 3073
TriangulatedSurfaceMesh, 3456
TriangulationDataStructure 3, 2726

facets end
Convex hull d, 1437
Periodic 3 triangulation 3, 2770
Polyhedron 3, 1798
SurfaceMeshComplex 2InTriangulation 3, 3073
TriangulatedSurfaceMesh, 3456
TriangulationDataStructure 3, 2726

facets in complex begin
MeshComplex 3InTriangulation 3, 3162

facets in complex end
MeshComplex 3InTriangulation 3, 3162

facets visible from
Convex hull d, 1436

Failure behaviour, 13
failure time

Kinetic::Certificate, 4102
Fair, 3586
farin c1 interpolation, 3996–3997
Fast, 4247
Fast location, 4250
Feature dimension, 1043
fictitious face

Arrangement 2, 2191
Field, 74
Field tag, 104
Field with kth root tag, 106
Field with root of tag, 107
Field with sqrt tag, 105
FieldNumberType, 149
FieldWithKthRoot, 76
FieldWithRootOf, 77
FieldWithSqrt, 75
file input

Apollonius graph 2, 2939
Apollonius graph hierarchy 2, 2955
Segment Delaunay graph 2, 2886
Voronoi diagram 2, 2976

file output
Apollonius graph 2, 2939
Apollonius graph hierarchy 2, 2955
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Segment Delaunay graph 2, 2886
Voronoi diagram 2, 2976

files
compiler config.h, 44
config.h, 44

fill hole
HalfedgeDS decorator, 1862
Polyhedron 3, 1803

Filter iterator, 4188
filter iterator, 4188
Filtered extended homogeneous, 1592
Filtered kernel, 592–593
Filtered kernel adaptor, 594
Filtered predicate, 595–596
Filtering kernel, 2911, 2913
Filtering traits method tag, 2911, 2913
filtration

Alpha shape 3, 2844
find

Arr consolidated curve data traits 2<Traits,
Data>:: Data container, 2328

Multiset, 4163
Union find, 4404

find conflicts
Delaunay triangulation 3, 2658, 2659
Periodic 3 Delaunay triangulation 3, 2779
Regular triangulation 3, 2669
SurfaceMeshTriangulation 3, 3082

find intervals
Interval skip list, 3550

find lower
Multiset, 4164

find optimal alpha
Alpha shape 2, 2810
Alpha shape 3, 2845

find prev
HalfedgeDS items decorator, 1876

find prev around vertex
HalfedgeDS items decorator, 1876

finite adjacent vertices
Triangulation 3, 2652

finite cells begin
Triangulation 3, 2649

finite cells end
Triangulation 3, 2649

Finite cells iterator, 2688
Finite Delaunay edges iterator, 2990
finite edge interior conflict 2 object

ApolloniusGraphTraits 2, 2950
SegmentDelaunayGraphTraits 2, 2906

finite edges begin
Apollonius graph 2, 2935
DelaunayGraph 2, 2985
Segment Delaunay graph 2, 2881

SurfaceMeshTriangulation 3, 3083
Triangulation 2, 2557
Triangulation 3, 2649

finite edges end
Apollonius graph 2, 2935
DelaunayGraph 2, 2985
Segment Delaunay graph 2, 2881
SurfaceMeshTriangulation 3, 3083
Triangulation 2, 2557
Triangulation 3, 2649

Finite edges iterator, 2688
finite faces begin

Apollonius graph 2, 2935
DelaunayGraph 2, 2985
Segment Delaunay graph 2, 2881
Triangulation 2, 2557

finite faces end
Apollonius graph 2, 2935
DelaunayGraph 2, 2985
Segment Delaunay graph 2, 2881
Triangulation 2, 2557

finite facets begin
SurfaceMeshTriangulation 3, 3083
Triangulation 3, 2649

finite facets end
SurfaceMeshTriangulation 3, 3083
Triangulation 3, 2649

Finite facets iterator, 2688
finite incident cells

Triangulation 3, 2651
finite incident edges

Triangulation 3, 2652
finite incident facets

Triangulation 3, 2651
finite vertex

Apollonius graph 2, 2935
DelaunayGraph 2, 2985
Segment Delaunay graph 2, 2881
Triangulation 2, 2550

finite vertices begin
Apollonius graph 2, 2935
DelaunayGraph 2, 2985
Regular triangulation 2, 2532
Segment Delaunay graph 2, 2881
SurfaceMeshTriangulation 3, 3083
Triangulation 2, 2557
Triangulation 3, 2649

finite vertices end
Apollonius graph 2, 2935
DelaunayGraph 2, 2985
Regular triangulation 2, 2532
Segment Delaunay graph 2, 2881
SurfaceMeshTriangulation 3, 3083
Triangulation 2, 2557
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Triangulation 3, 2649
Finite vertices iterator, 2688
first, 4227, 4229
first argument type, 145, 146, 269, 270, 284, 292,

299–302, 305, 308, 310, 313, 403, 407,
412–417, 429, 430, 434, 437–439, 442–450,
2310, 2312

First of pair property map, 4305–4306
first out edge

Topological explorer, 1579
first pair closer than second

ExtendedKernelTraits 2, 1589
first type, 4227, 4229
Fixed alpha shape 3, 2856–2859
Fixed alpha shape cell base 3, 2860
Fixed alpha shape vertex base 3, 2861
Fixed border parameterizer 3, 3362–3364
FixedAlphaShapeCell 3, 2854
FixedAlphaShapeTraits 3, 2852–2853
FixedAlphaShapeVertex 3, 2855
FixedWeightedAlphaShapeTraits 3, 2862
flip

Constrained Delaunay triangulation 2, 2500
Triangulation 2, 2552
Triangulation 3, 2645
TriangulationDataStructure 2, 2589
TriangulationDataStructure 3, 2720

flip edge
HalfedgeDS items decorator, 1877
Polyhedron 3, 1801

flip flippable
Triangulation 3, 2645, 2646
TriangulationDataStructure 3, 2720

float, 162
for compact container

Compact container base, 4153
TriangulationDSCellBase 3, 2736
TriangulationDSFaceBase 2, 2596
TriangulationDSVertexBase 2, 2601
TriangulationDSVertexBase 3, 2738

force ieee double precision, 226
Forward circulator, 4323
Forward circulator base, 4330
Forward circulator ptrbase, 4331
Forward circulator tag, 4330
fourth, 4229
fourth order coefficients

Monge form, 3482
fourth type, 4229
Fourtuple, 4225
FPU CW t, 196
FPU get and set cw, 197
FPU get cw, 197
FPU set cw, 197

Fraction, 142
Fraction traits, 147
FractionTraits, 143
FractionTraits::CommonFactor, 146
FractionTraits::Compose, 145
FractionTraits::Decompose, 144
Frederickson/Johnson matrix search, 465
free mark

CombinatorialMap, 1928
FromDoubleConstructible, 65
FromIntConstructible, 64
front

Arr consolidated curve data traits 2<Traits,
Data>:: Data container, 2328

In place list, 4149
FT , 588, 597, 602, 603, 1169, 1259, 1472, 1976, 2805,

2856, 3076, 3202, 3203, 3205, 3206, 3425,
3429, 3431, 3453, 3459, 3462, 3482, 3484,
3582, 3584, 3586, 3588, 3590, 3595, 3598,
3601, 3603, 3605, 3613, 3615, 3619, 3625,
3627, 3631, 3633, 3635, 3637, 3644, 3742,
4003, 4012, 4014, 4379, 4476

Function, 4112
function kernel object

Kinetic::Kernel, 4117
Kinetic::SimulationTraits, 4125
Kinetic::Simulator, 4132

FURTHEST , 1446
furthest

all neighbors, 3933
Fuzzy iso box, 3588–3589
Fuzzy sphere, 3590–3591
FuzzyQueryItem, 3587

gcd, 115
gcd up to constant factor, 359
GENERAL, 2806, 2840
General polygon 2, 1533, 1536
General polygon set 2, 1511–1517
General polygon with holes 2, 1536
GeneralDistance, 3592
GeneralPolygon 2, 1518–1519
GeneralPolygonSetDcel, 1541–1543
GeneralPolygonSetDcelFace, 1544
GeneralPolygonSetTraits 2, 1530–1532
GeneralPolygonWithHoles 2, 1520–1521
generate

GraphicsViewCircleInput, 4463
GraphicsViewCircularArcInput, 4464
GraphicsViewInput, 4460
GraphicsViewIsoRectangleInput, 4462
GraphicsViewPolylineInput, 4461

generator
2D point, 4345
3D point, 4345
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convex set, 4368
dD point, 4346
segment, 4349–4352
simple polygon, 4370

generator classes, requirements, 4366
geodesic distance

MeshDomainWithFeatures 3, 3172
Geom traits, 2548, 2636, 2879, 2897, 2933, 3025,

3429
geom traits

Apollonius graph 2, 2934
DelaunayGraph 2, 2985
Periodic 3 triangulation 3, 2764
Segment Delaunay graph 2, 2880
SurfaceMeshTriangulation 3, 3082
Triangulation 2, 2550
Triangulation 3, 2639

Geometric traits, 2761
Geomview stream, 4444–4450
get

Kinetic::EventQueue, 4105
Quadruple, 4230
Triple, 4227

get a, 3942
LinearProgram, 507
NonnegativeLinearProgram, 510
NonnegativeQuadraticProgram, 504
QuadraticProgram, 501
Width default traits 3, 3940

get adapted mesh
Parameterization polyhedron adaptor 3, 3388

Get address, 4198
get all build directions

Width 3, 3937
get allocator

Compact container, 4157
HalfedgeDS, 1846
In place list, 4149
Polyhedron 3, 1798
Union find, 4403

get alpha
Alpha shape 2, 2807
Alpha shape 3, 2842
AlphaShapeCell 3, 2835
AlphaShapeFace 2, 2812
Fixed alpha shape 3, 2857

get alpha shape cells
Alpha shape 3, 2843
Fixed alpha shape 3, 2858

get alpha shape edges
Alpha shape 3, 2843
Fixed alpha shape 3, 2858

get alpha shape facets
Alpha shape 3, 2843

Fixed alpha shape 3, 2858
get alpha shape vertices

Alpha shape 3, 2843
Fixed alpha shape 3, 2858

get alpha status
AlphaShapeVertex 3, 2838

get ascii mode
Geomview stream, 4449

get auto validation
Quadratic program options, 549

get b, 3942
LinearProgram, 507
NonnegativeLinearProgram, 510
NonnegativeQuadraticProgram, 504
QuadraticProgram, 501
Width default traits 3, 3940

get binary mode
Geomview stream, 4449

get bits
Random, 4374

get bool
Random, 4374

get border
Parameterization mesh patch 3, 3380
Parameterization polyhedron adaptor 3, 3389
ParameterizationMesh 3, 3373

get border parameterizer
Fixed border parameterizer 3, 3364

get borders
Parameterization mesh feature extractor, 3375

get boundary of conflicts
Constrained Delaunay triangulation 2, 2500
Delaunay triangulation 2, 2519
Regular triangulation 2, 2531

get boundary of conflicts and hidden vertices
Regular triangulation 2, 2531

get bounding box
Largest empty iso rectangle 2, 3924

get build direction
Width 3, 3937

get c, 3942
LinearProgram, 508
NonnegativeLinearProgram, 510
NonnegativeQuadraticProgram, 504
QuadraticProgram, 502
Width default traits 3, 3940

get c0
LinearProgram, 508
NonnegativeLinearProgram, 510
NonnegativeQuadraticProgram, 504
QuadraticProgram, 502

get certain, 4238, 4239
get classification type

FixedAlphaShapeCell 3, 2854
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FixedAlphaShapeVertex 3, 2855
get coef

Matrix, 3367
get coefficient, 330
get conflicts

Constrained Delaunay triangulation 2, 2500
Delaunay triangulation 2, 2519
Regular triangulation 2, 2531

get conflicts and boundary
Constrained Delaunay triangulation 2, 2499
Delaunay triangulation 2, 2518
Regular triangulation 2, 2530

get conflicts and boundary and hidden vertices
Regular triangulation 2, 2530

get conflicts and hidden vertices
Regular triangulation 2, 2531

get corners
MeshDomainWithFeatures 3, 3172

get corners index
Parameterization polyhedron adaptor 3, 3391
ParameterizationPatchableMesh 3, 3384

get corners tag
Parameterization polyhedron adaptor 3, 3391
ParameterizationPatchableMesh 3, 3384

get corners uv
Parameterization polyhedron adaptor 3, 3391
ParameterizationPatchableMesh 3, 3384

get criteria
Delaunay mesher 2, 3026

get current prime
Residue, 234

get curve segments
MeshDomainWithFeatures 3, 3172

get d, 3943
NonnegativeQuadraticProgram, 504
QuadraticProgram, 502
Width default traits 3, 3941

get decorated mesh
Parameterization mesh patch 3, 3379

get default precision, 182
Gmpfi, 188

get default rndmode, 182
get dimension

Regular grid 2, 3425
get double

Random, 4374
get echo

Geomview stream, 4449
get error

Quadratic program from mps, 529
Quadratic program solution, 519

get error message
Parameterizer traits 3, 3394

get face

HalfedgeDS items decorator, 1876
get face halfedge

HalfedgeDS items decorator, 1876
get facet classification type

FixedAlphaShapeCell 3, 2854
get facet status

AlphaShapeCell 3, 2835
get facet surface center

SurfaceMeshCellBase 3, 3068
get field

VectorField 2, 3432
get fl

LinearProgram, 507
QuadraticProgram, 501

get fu
LinearProgram, 507
QuadraticProgram, 502

get genus
Parameterization mesh feature extractor, 3376

get halfedge
Parameterization polyhedron adaptor 3, 3388

get halfedge seaming
Parameterization polyhedron adaptor 3, 3390
ParameterizationPatchableMesh 3, 3383

get hidden vertices
Regular triangulation 2, 2532

get hw, 3942
Width default traits 3, 3940

get hx, 3942
Width default traits 3, 3940

get hy, 3942
Width default traits 3, 3940

get hz, 3942
Width default traits 3, 3940

get inner point, 3094
Poisson reconstruction function, 3109

get innermost coefficient, 331
get int

Random, 4374
get integration step

VectorField 2, 3432
get ipe page

Ipelet base, 4477
get ipelet helper

Ipelet base, 4478
get iterator tuple

Dispatch or drop output iterator, 4180
Dispatch output iterator, 4178

get key
tree point traits, 3683

get l
LinearProgram, 507
QuadraticProgram, 501

get largest empty iso rectangle
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Largest empty iso rectangle 2, 3924
get left

tree interval traits, 3681
tree point traits, 3683

get left bottom right top
Largest empty iso rectangle 2, 3924

get left win
tree interval traits, 3681

get line width
Geomview stream, 4448

get linear algebra traits
Fixed border parameterizer 3, 3364

get longest border
Parameterization mesh feature extractor, 3376

get m
LinearProgram, 507
NonnegativeLinearProgram, 510
NonnegativeQuadraticProgram, 504
QuadraticProgram, 501

get mode, 4410, 4418
Alpha shape 2, 2808
Alpha shape 3, 2842

get n
LinearProgram, 507
NonnegativeLinearProgram, 510
NonnegativeQuadraticProgram, 504
QuadraticProgram, 501

get nb borders
Parameterization mesh feature extractor, 3375

get nb connex components
Parameterization mesh feature extractor, 3376

get new id
Geomview stream, 4448

get new mark
CombinatorialMap, 1927

get nth alpha
Alpha shape 2, 2807
Alpha shape 3, 2842

get number of optimal solutions
Width 3, 3937

get offset flag
Periodic 3TriangulationDSVertexBase 3, 2790

get plane coefficients, 3943
Width default traits 3, 3941

get point coordinates, 3942
Width default traits 3, 3940

get precision
Gmpfi, 188
Gmpfr, 182

get prev
HalfedgeDS items decorator, 1876

get pricing strategy
Quadratic program options, 549

get r

LinearProgram, 507
NonnegativeLinearProgram, 510
NonnegativeQuadraticProgram, 504
QuadraticProgram, 501

get range
AlphaShapeVertex 2, 2817

get ranges
AlphaShapeFace 2, 2811

get raw
Geomview stream, 4449

get relative precision of to double
Lazy exact nt, 200

get right
tree interval traits, 3681
tree point traits, 3683

get right win
tree interval traits, 3681

get saturation ratio
Stream lines 2, 3430

get seed
Random, 4375

get separating distance
Stream lines 2, 3430

get size
Regular grid 2, 3425

get sphere map
Nef polyhedron 3, 2017

get squared width
Width 3, 3937

get trace
Geomview stream, 4449

get traits
Arrangement 2, 2189

get u
LinearProgram, 507
QuadraticProgram, 502

get union
Nef nary union 3, 2036

get value
Residue, 235

get verbosity
Quadratic program options, 548

get vertex
HalfedgeDS items decorator, 1876

get vertex halfedge
HalfedgeDS items decorator, 1876

get vertex index
Parameterization mesh patch 3, 3381
Parameterization polyhedron adaptor 3, 3390
ParameterizationMesh 3, 3374

get vertex position
Parameterization mesh patch 3, 3381
Parameterization polyhedron adaptor 3, 3390
ParameterizationMesh 3, 3374
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get vertex radius
Geomview stream, 4448

get vertex seaming
Parameterization polyhedron adaptor 3, 3390
ParameterizationPatchableMesh 3, 3383

get vertex tag
Parameterization mesh patch 3, 3381
Parameterization polyhedron adaptor 3, 3390
ParameterizationMesh 3, 3374

get vertex uv
Parameterization mesh patch 3, 3381
Parameterization polyhedron adaptor 3, 3390
ParameterizationMesh 3, 3374

get width coefficients
Width 3, 3937

get width planes
Width 3, 3937

get wired
Geomview stream, 4448

GetCost, 3296
GetPlacement, 3297
getting CGAL, 21
Gmpfi, 187–191
Gmpfr, 181–186
Gmpq, 177–178
Gmpz, 175–176
Gmpzf , 179–180
Gps circle segment traits 2, 1538
Gps default dcel, 1540
Gps segment traits 2, 1537
Gps traits 2, 1539
GpsTraitsGeneralPolygon 2, 1562
GpsTraitsGeneralPolygonWithHoles 2, 1563
GradientFittingTraits, 4008, 4010–4011

model, 4012
graph traits, 4280–4285
GraphicsItem, 4465
GraphicsViewCircleInput, 4463
GraphicsViewCircularArcInput, 4464
GraphicsViewInput, 4460
GraphicsViewIsoRectangleInput, 4462
GraphicsViewNavigation, 4470
GraphicsViewPolylineInput, 4461
Gray level image 3, 3054
GREEN, 4417
green

Color, 4417
greene approx convex partition 2, 1624, 1636–1638

postconditions, 1627, 1655
traits class, 1635

default, 1659
Greene convex decomposition 2, 1774
grid simplify point set, 3506

Halfedge, 1809–1811, 2021–2022, 2207–2208, 2978–
2979

halfedge
ArrangementDcelFace, 2241
ArrangementDcelVertex, 2236
ConvexHullPolyhedronFacet 3, 1413
Face, 2982
Facet, 1807
HalfedgeDSFace, 1850
HalfedgeDSVertex, 1856
Topological explorer, 1580
TriangulatedSurfaceMesh, 3457
Vertex, 1813, 2980

halfedge around vertex begin
StraightSkeletonVertex 2, 1697

halfedge collapse, 3289
Halfedge const handle, 2334
halfedge distance

Arr accessor, 2200
halfedge graph traits, 4286
Halfedge handle, 1814, 2199, 2330, 2352, 3453, 3458
HalfedgeDS, 1843–1849
HalfedgeDS::face handle, 1845
HalfedgeDS::halfedge handle, 1845
HalfedgeDS::vertex handle, 1845
HalfedgeDS const decorator, 1858–1860
HalfedgeDS decorator, 1860–1866
HalfedgeDS default, 1867
HalfedgeDS face base, 1868–1869
HalfedgeDS face max base with id, 4289
HalfedgeDS face min base, 1870
HalfedgeDS halfedge base, 1871
HalfedgeDS halfedge max base with id, 4288
HalfedgeDS halfedge min base, 1872
HalfedgeDS items 2, 1873–1874
HalfedgeDS items decorator, 1875–1878
HalfedgeDS list, 1880–1881
HalfedgeDS min items, 1879
HalfedgeDS vector, 1882
HalfedgeDS vertex base, 1883–1884
HalfedgeDS vertex max base with id, 4290
HalfedgeDS vertex min base, 1885
HalfedgeDSFace, 1850–1851
HalfedgeDSHalfedge, 1852–1853
HalfedgeDSItems, 1854–1855
HalfedgeDSVertex, 1856–1857
HalfedgeGraph, 4277–4279
halfedges begin

Arrangement 2, 2190
ArrangementDcel, 2233
GeneralPolygonSetDcel, 1542
HalfedgeDS, 1846
Nef polyhedron 3, 2016
Polyhedron 3, 1798
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Topological explorer, 1580
Voronoi diagram 2, 2974

halfedges end
Arrangement 2, 2190
ArrangementDcel, 2233
GeneralPolygonSetDcel, 1542
HalfedgeDS, 1846
Nef polyhedron 3, 2016
Polyhedron 3, 1798
Topological explorer, 1580
Voronoi diagram 2, 2974

halfedges splice
HalfedgeDS list, 1880

Halffacet, 2023–2024
Halffacet cycle iterator, 2033
halffacets begin

Nef polyhedron 3, 2016
halffacets end

Nef polyhedron 3, 2016
Handle, 4337
handle

Box with handle d, 3723
Handle hash function, 4397
has audit time

Kinetic::Simulator, 4132
has certificates

Kinetic::Delaunay triangulation 3, 4045
has current time as nt

Kinetic::Simulator, 4132
Has features, 3168, 3171
Has filtered predicates, 581
has in relative interior

Sphere segment, 1610
has in x range, 1220
Has inserter, 2996–3004
has larger distance to point, 735
has larger signed distance to line, 736
has larger signed distance to plane, 737
Has nearest site 2, 2992–2995
has neigbor

TriangulationDSFaceBase 2, 2595
has neighbor

Cell, 2730, 2731
TriangulationDataStructure 2::Face, 2598
TriangulationDSCellBase 3, 2735
TriangulationDSFaceBase 2, 2595

has null curve
ArrangementDcelHalfedge, 2239

has null point
ArrangementDcelVertex, 2236

has on, 1218
Circle 3, 664
Hyperplane d, 1090
Line 2, 623

Line 3, 650
Line d, 1082
Plane 3, 653
Ray 2, 630
Ray 3, 660
Ray d, 1084
Segment 2, 632
Segment 3, 662
Segment d, 1086
Sphere 3, 668
Sphere circle, 1611
Sphere segment, 1610
Triangle 3, 671

has on boundary
Circle 2, 615
Hyperplane d, 1090
Iso box d, 1095
Iso cuboid 3, 648
Iso rectangle 2, 621
Min annulus d, 3864
Min circle 2, 3804
Min ellipse 2, 3814
Min sphere d, 3848
Polygon 2, 1476
Sphere 3, 667
Sphere d, 1093
Tetrahedron 3, 670
Triangle 2, 634

has on bounded side
Circle 2, 615
Iso box d, 1095
Iso cuboid 3, 648
Iso rectangle 2, 621
Min annulus d, 3863
Min circle 2, 3804
Min ellipse 2, 3814
Min sphere d, 3848
Polygon 2, 1476
Sphere 3, 667
Sphere d, 1094
Tetrahedron 3, 670
Triangle 2, 634

has on bounded side 3 object
AABBGeomTraits, 3748
BisectionGeometricTraits 3, 3183
ImplicitSurfaceTraits 3, 3059

has on negative side
Circle 2, 615
Hyperplane d, 1090
Line 2, 623
Plane 3, 653
Polygon 2, 1476
SpatialSeparator, 3640
Sphere 3, 667

4541



Sphere d, 1093
Tetrahedron 3, 670
Triangle 2, 634

has on positive side
Circle 2, 615
Hyperplane d, 1090
Line 2, 623
Plane 3, 653
Polygon 2, 1476
Sphere 3, 667
Sphere d, 1093
Tetrahedron 3, 670
Triangle 2, 634

has on unbounded side
Circle 2, 615
Iso box d, 1095
Iso cuboid 3, 648
Iso rectangle 2, 621
Min annulus d, 3864
Min circle 2, 3804
Min ellipse 2, 3815
Min sphere d, 3848
Polygon 2, 1476
Sphere 3, 668
Sphere d, 1094
Tetrahedron 3, 670
Triangle 2, 634

has outer ccb
Face, 2209

has shalfloop
Nef polyhedron S2, 1607

has smaller distance to point, 738
has smaller signed distance to line, 739
has smaller signed distance to plane, 740
has source

Halfedge, 2979
Has static filters, 592
has target

Halfedge, 2979
has vertex

Cell, 2730
Periodic 3 triangulation 3, 2769
Triangulation 3, 2642
TriangulationDataStructure 2::Face, 2597
TriangulationDataStructure 3, 2718, 2719
TriangulationDSCellBase 3, 2735
TriangulationDSFaceBase 2, 2595

hash function
Unique hash map, 4406

Hertel Mehlhorn convex decomposition 2, 1773
hidden points begin

RegularTriangulationCellBase 3, 2691
hidden points end

RegularTriangulationCellBase 3, 2691

hidden sites begin
Apollonius graph 2, 2936
ApolloniusGraphVertexBase 2, 2944

hidden sites end
Apollonius graph 2, 2936
ApolloniusGraphVertexBase 2, 2945

hidden vertices begin
Regular triangulation 2, 2532

hidden vertices end
Regular triangulation 2, 2532

hide point
RegularTriangulationCellBase 3, 2692

high value
Kd tree node, 3602

highest nonfree dimension
Dart, 1931

Hilbert policy, 3786
hilbert sort, 3774
Hilbert sort 2, 3777
Hilbert sort 3, 3780
Hilbert sort d, 3782
Hilbert sort median policy, 3787
Hilbert sort middle policy, 3788
hm

Aff transformation 2, 611
Aff transformation 3, 643

hole
ArrangementDcelHalfedge, 2239

Hole iterator, 2243
holes begin

ArrangementDcelFace, 2241
Face, 2210
GeneralPolygonWithHoles 2, 1521
Topological explorer, 1581

holes end
ArrangementDcelFace, 2241
Face, 2210
GeneralPolygonWithHoles 2, 1521
Topological explorer, 1581

Homogeneous, 597, 1070
homogeneous

Aff transformation 2, 611
Aff transformation 3, 643
Kernel::Component accessor d, 1128
Point 2, 626
Point 3, 656
Point d, 1072
Vector 2, 636
Vector 3, 675
Vector d, 1076

homogeneous begin
Point d, 1072
Vector d, 1077

Homogeneous converter, 598
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homogeneous end
Point d, 1072
Vector d, 1077

homogeneous linear solver
LinearAlgebraTraits d, 1061

homogeneous to cartesian, 599
homogeneous to quotient cartesian, 600
hull points begin

Convex hull d, 1438
hull points end

Convex hull d, 1438
hull vertices begin

Convex hull d, 1438
hull vertices end

Convex hull d, 1438
hw

Point 2, 626
Point 3, 656
Vector 2, 636
Vector 3, 674

hx
Point 2, 626
Point 3, 656
Vector 2, 636
Vector 3, 674

hy
Point 2, 626
Point 3, 656
Vector 2, 636
Vector 3, 674

HYPERBOLIC UMBILIC, 3461
Hyperplane d, 1088–1091
hyperplane supporting

Convex hull d, 1436
hz

Point 3, 656
Vector 3, 674

ID, 3717, 3722
Id, 3752, 3753
id

AABBPrimitive, 3750
Box d, 3718
Box with handle d, 3723
BoxIntersectionBox d, 3714
HalfedgeDS face max base with id, 4289
HalfedgeDS halfedge max base with id, 4288
HalfedgeDS vertex max base with id, 4290
Polyhedron items with id 3, 4291
StraightSkeletonFace 2, 1701
StraightSkeletonVertex 2, 1696
Triangulation vertex base with id 2, 4287

Identity, 4196
Identity policy 2, 2996

Identity transformation, 686
iformat, 4429
IMPERATIVELY BAD, 3031
Implicit mesh domain 3, 3207–3208
Implicit surface 3, 3056
ImplicitFunction, 3055
ImplicitInteroperable, 67
ImplicitSurfaceTraits 3, 3057–3059
import from plane graph, 1985
import from plane graph<LCC>, 1985
import from polyhedron 3, 1987
import from polyhedron 3<LCC, Polyhedron>, 1987
import from triangulation 3, 1986
import from triangulation 3<LCC, Triangulation>,

1986
in

ArrangementInputFormatter, 2330
in dimension

MeshComplex 3InTriangulation 3, 3161
MeshVertexBase 3, 3189

in inner facet cycle
SHalfedge, 2028

in inner sface cycle
SHalfedge, 1616, 2027

in outer facet cycle
SHalfedge, 2028

in outer sface cycle
SHalfedge, 1616, 2027

In place list, 4148–4152
In place list base, 4147
in smallest orthogonal sphere 3 object

Regular triangulation euclidean traits 3, 2682
incident cell

Triangulation simplex 3, 2689
incident cells

Periodic 3 triangulation 3, 2773
SurfaceMeshTriangulation 3, 3083, 3084
Triangulation 3, 2650, 2651
TriangulationDataStructure 3, 2726, 2727

incident constraints
Constrained triangulation 2, 2504

incident edges
Apollonius graph 2, 2936, 2937
DelaunayGraph 2, 2986
Periodic 3 triangulation 3, 2774
Segment Delaunay graph 2, 2882, 2883
Triangulation 2, 2559, 2560
Triangulation 3, 2651
TriangulationDataStructure 2, 2588
TriangulationDataStructure 3, 2727

incident faces
Apollonius graph 2, 2936
DelaunayGraph 2, 2986
Segment Delaunay graph 2, 2882, 2883
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Triangulation 2, 2559
TriangulationDataStructure 2, 2588

incident facets
Periodic 3 triangulation 3, 2773, 2774
SurfaceMeshComplex 2InTriangulation 3, 3073
Triangulation 3, 2650, 2651
TriangulationDataStructure 3, 2727

incident halfedges
Vertex, 2205, 2981
Voronoi diagram 2, 2975

incident sface
Halfedge, 2022
SHalfedge, 1616, 2027
SHalfloop, 1618, 2030
SVertex, 1613

incident vertices
Apollonius graph 2, 2936
DelaunayGraph 2, 2986
Segment Delaunay graph 2, 2882, 2883
Triangulation 2, 2559, 2560
TriangulationDataStructure 2, 2588

incident volume
Halffacet, 2024

INCLUDED, 1572, 1604, 2015
includes edge

Triangulation 2, 2551
incremental algorithm

Min circle 2, 3806
Min ellipse 2, 3816
Min sphere d, 3850

Incremental neighbor search, 3593–3594
independent columns

LinearAlgebraTraits d, 1061
indeterminate, 4238
Index, 3194, 3206
index

Cell, 2730
Convex hull d, 1435
Delaunay d, 1448
MeshComplex 3InTriangulation 3, 3161
MeshVertexBase 3, 3189
TriangulationDataStructure 2::Face, 2597
TriangulationDSCellBase 3, 2735
TriangulationDSFaceBase 2, 2595

index from corner index
MeshDomainWithFeatures 3, 3173

index from curve segment index
MeshDomainWithFeatures 3, 3173

index from subdomain index
MeshDomain 3, 3170

index from surface patch index
MeshDomain 3, 3170

index mesh vertices
Parameterization mesh patch 3, 3380

Parameterization polyhedron adaptor 3, 3389
ParameterizationMesh 3, 3373

index of vertex in opposite facet
Convex hull d, 1435

index of vertex in opposite simplex
Convex hull d, 1435
Delaunay d, 1448

induced edges begin
Arrangement with history 2, 2371

induced edges end
Arrangement with history 2, 2371

inex flag, 183
inf , 4238

Gmpfi, 188
Interval, 3551
Interval nt, 195
Uncertain, 4237

inf closed
Interval skip list interval, 3552

inf distance 2 object
Rectangular p center default traits 2, 3842
RectangularPCenterTraits 2, 3844

infeasibility certificate begin
Quadratic program solution, 521

infeasibility certificate end
Quadratic program solution, 522

infinite cell
Triangulation 3, 2639

infinite edge interior conflict 2 object
ApolloniusGraphTraits 2, 2950
SegmentDelaunayGraphTraits 2, 2906

infinite face
Apollonius graph 2, 2935
DelaunayGraph 2, 2985
Segment Delaunay graph 2, 2881
Triangulation 2, 2550

infinite vertex
Apollonius graph 2, 2935
DelaunayGraph 2, 2985
Segment Delaunay graph 2, 2881
Triangulation 2, 2550
Triangulation 3, 2639

Info, 1939, 2570, 2574, 2694, 2697
info

CellAttribute, 1933
Parameterization polyhedron adaptor 3, 3388
Triangulation cell base with info 3, 2694
Triangulation face base with info 2, 2570
Triangulation vertex base with info 2, 2574
Triangulation vertex base with info 3, 2697
TriangulationVertexBaseWithInfo 2, 2546
TriangulationVertexBaseWithInfo 3, 2687

init
Box d, 3718
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Box with handle d, 3722
Delaunay mesher 2, 3027
Extremal polygon area traits 2, 3917
Extremal polygon perimeter traits 2, 3920
ExtremalPolygonTraits 2, 3921
GeneralPolygon 2, 1519

init Delaunay
Triangulation conformer 2, 3038

init Gabriel
Triangulation conformer 2, 3038

initialize system from mesh border
Fixed border parameterizer 3, 3363

inline, 16
inlining, 16
inner range intersects

Fuzzy iso box, 3589
Fuzzy sphere, 3591
FuzzyQueryItem, 3587

inner support points begin
Min annulus d, 3862

inner support points end
Min annulus d, 3862

innermost leading coefficient, 339
input

Min annulus d, 3865
Min circle 2, 3806
Min ellipse 2, 3816
Min sphere d, 3850

Input rep, 4427
input sites begin

Segment Delaunay graph 2, 2882
input sites end

Segment Delaunay graph 2, 2882
insert, 2212–2213

AABB tree, 3743
Apollonius graph 2, 2937
Apollonius graph hierarchy 2, 2954
Arr consolidated curve data traits 2<Traits,

Data>:: Data container, 2328
Compact container, 4158
Constrained Delaunay triangulation 2, 2498
Constrained triangulation 2, 2504
Constrained triangulation plus 2, 2510
Convex hull d, 1436
Delaunay d, 1448
Delaunay triangulation 2, 2517
Delaunay triangulation 3, 2655, 2656
Fixed alpha shape 3, 2857
General polygon set 2, 1513
In place list, 4150
Interval skip list, 3549
Kd tree, 3599
Kinetic::Delaunay triangulation 2, 4043
Kinetic::EventQueue, 4105

Kinetic::Sort, 4074
Largest empty iso rectangle 2, 3924
Min annulus d, 3864
Min circle 2, 3805
Min ellipse 2, 3815
Min sphere d, 3849
Min sphere of spheres d, 3870
Multiset, 4162
Periodic 3 Delaunay triangulation 3, 2777
Polygon 2, 1473, 1474
Polytope distance d, 3949
Regular triangulation 2, 2529
Regular triangulation 3, 2665, 2666
Segment Delaunay graph 2, 2883, 2884
Triangulation 2, 2553
Triangulation 3, 2646
Union find, 4404
Unique hash map, 4406
Voronoi diagram 2, 2976

insert after
Multiset, 4163

insert at vertices
Arrangement 2, 2193, 2195

insert at vertices ex
Arr accessor, 2201

insert barycenter in cell
Linear cell complex, 1978

insert before
Multiset, 4163

insert cell 0 in cell 1, 1949
insert cell 0 in cell 1<CMap>, 1949
insert cell 0 in cell 2, 1950
insert cell 0 in cell 2<CMap>, 1950
insert cell 1 in cell 2, 1951
insert cell 1 in cell 2<CMap>, 1951
insert cell 2 in cell 3, 1953
insert cell 2 in cell 3<CMap, InputIterator>, 1953
insert constraint

Constrained Delaunay triangulation 2, 2499
Constrained triangulation 2, 2504, 2505
Constrained triangulation plus 2, 2510

insert dangling cell 1 in cell 2, 1952
Linear cell complex, 1979

insert dangling cell 1 in cell 2<CMap>, 1952
insert degree 2

ApolloniusGraphDataStructure 2, 2942
Triangulation data structure 2, 2605

insert dim up
TriangulationDataStructure 2, 2589

insert first
Triangulation 2, 2554
TriangulationDataStructure 2, 2589

insert from left vertex
Arrangement 2, 2192, 2193
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insert from right vertex
Arrangement 2, 2192, 2194

insert from vertex ex
Arr accessor, 2201

insert halfedge
HalfedgeDS items decorator, 1877

insert in cell
Triangulation 3, 2646
TriangulationDataStructure 3, 2720

insert in edge
Triangulation 2, 2554
Triangulation 3, 2647
TriangulationDataStructure 2, 2589
TriangulationDataStructure 3, 2721

insert in face
Triangulation 2, 2554
TriangulationDataStructure 2, 2589

insert in face interior
Arrangement 2, 2191, 2193

insert in face interior ex
Arr accessor, 2201

insert in facet
Triangulation 3, 2647
TriangulationDataStructure 3, 2720

insert in hole
Regular triangulation 3, 2666
SurfaceMeshTriangulation 3, 3085
Triangulation 3, 2648
TriangulationDataStructure 3, 2721

insert increase dimension
TriangulationDataStructure 3, 2721

insert isolated vertex
Arr accessor, 2202

Insert iterator, 4186
insert non intersecting curve, 2214
insert non intersecting curves, 2215
insert object

Kinetic::ActiveObjectsTable, 4097
insert outside affine hull

Triangulation 2, 2556
Triangulation 3, 2647

insert outside convex hull
Triangulation 2, 2556
Triangulation 3, 2647

insert p
Polytope distance d, 3949

insert point, 2216
insert point in cell

Linear cell complex, 1978
insert q

Polytope distance d, 3949
insert second

Triangulation 2, 2554
TriangulationDataStructure 2, 2589

insert tip
HalfedgeDS items decorator, 1876

inserter, 4186
inset polygon 2, 1769
inside out

HalfedgeDS decorator, 1865
Polyhedron 3, 1805

instantaneous kernel object
Kinetic::SimulationTraits, 4124

int, 158
integer grid point 2 object

SnapRoundingTraits 2, 2399
integral division, 114
integral division up to constant factor, 360
Integral domain tag, 101
Integral domain without division tag, 100
IntegralDomain, 71
IntegralDomainWithoutDivision, 69–70
Integrator 2, 3424
INTERIOR, 2806, 2840, 2856
interior

Nef polyhedron 2, 1573
Nef polyhedron 3, 2017
Nef polyhedron S2, 1605

INTERNAL, 3601
Interpolation

regular neighbor coordinates 2, 4006–4007
surface neighbor coordinates 3, 4016–4019
surface neighbors 3, 4020–4023

Interpolation gradient fitting traits 2, 4012
Interpolation traits 2, 4003
InterpolationTraits, 3994, 4001–4002

model, 4003, 4012
intersect 2 object

ArrangementXMonotoneTraits 2, 2274
ConstrainedTriangulationTraits 2, 2495
Triangulation euclidean traits xy 3, 2568

intersect 3 object
AABBGeomTraits, 3748
IntersectionGeometricTraits 3, 3184
SurfaceMeshTraits 3, 3078

intersect object
AABBTraits, 3756

Intersection, 3168
intersection, 1053
intersection, 566

all pairs, 3707, 3712
iso-oriented boxes, 3703, 3707, 3712
self-intersection, 3709

intersection, 741–745, 1107–1108, 1553–1554, 1557
ExtendedKernelTraits 2, 1588
General polygon set 2, 1514, 1515
Nef polyhedron 2, 1573
Nef polyhedron 3, 2017, 2018
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Nef polyhedron S2, 1605
Intersection mode, 2015
Intersection tag, 2503, 2508
IntersectionGeometricTraits 3, 3184–3185
Intersections tag, 2908–2910, 2912
Interval, 3551
Interval, 3663, 3664, 3668, 3670, 3671, 3674, 3677,

3678
interval

Lazy exact nt, 199
Interval nt, 194–198
Interval nt advanced, 196
Interval skip list, 3549–3550
Interval skip list interval, 3552
intervals

Real timer, 4401
Timer, 4402

invalidate c2t3 cache
SurfaceMeshVertexBase 3, 3088

inverse, 119
Aff transformation 2, 611
Aff transformation 3, 643
Aff transformation d, 1098
LinearAlgebraTraits d, 1059

Inverse index, 4190
inverse of transformed distance

Euclidean distance, 3583
Euclidean distance sphere point, 3585
GeneralDistance, 3592
Manhattan distance iso box point, 3605
OrthogonalDistance, 3612
Weighted Minkowski distance, 3645

invert, 365
Ipelet base, 4476–4481
is

Object, 4167
is anchor

Range tree d, 3667
Segment tree d, 3673
Tree anchor, 3684

is ascii, 4410, 4420
is at open boundary

Vertex, 2205
is bad

SurfaceMeshFacetsCriteria 3, 3075
is bad object

MeshingCriteria 2, 3034
is binary, 4410, 4421
is bisector

Halfedge, 2979
StraightSkeletonHalfedge 2, 1699

is bivalent
Halfedge, 1811
Vertex, 1813

is border
ConvexHullPolyhedronHalfedge 3, 1414
Halfedge, 1810
HalfedgeDSHalfedge, 1853

is border convex
BorderParameterizer 3, 3352
Circular border parameterizer 3, 3356
Square border parameterizer 3, 3403
Two vertices parameterizer 3, 3412

is border edge
Halfedge, 1810
TriangulatedSurfaceMesh, 3457

is c2t3 cache valid
SurfaceMeshVertexBase 3, 3088

is ccw strongly convex 2, 1391
is cell

Periodic 3 triangulation 3, 2768, 2769
Triangulation 3, 2642
TriangulationDataStructure 3, 2718

is certain, 4238
Uncertain, 4237

is circle
Min ellipse 2 traits 2, 3819

is circular
Arr circle segment traits 2<Kernel>::Curve 2,

2294
Arr circle segment traits 2<Kernel>::X -

monotone curve 2, 2295
is clockwise oriented

Polygon 2, 1476
is closed

Polyhedron 3, 1799
is collinear oriented

Polygon 2, 1476
is conforming Delaunay

Triangulation conformer 2, 3038
is conforming done

Triangulation conformer 2, 3038
is conforming Gabriel

Triangulation conformer 2, 3038
is constrained

Constrained triangulation 2, 2504
ConstrainedTriangulationFaceBase 2, 2493

is contained
Interval skip list, 3550

is continuous
Arr rational function traits 2<

AlgebraicKernel d 1>::Curve 2, 2306
is contour

StraightSkeletonVertex 2, 1697
is convex

Polygon 2, 1475
Is convex 2, 1643, 1647
is convex 2, 1465
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is convex 2 object
ConvexPartitionIsValidTraits 2, 1635

is counterclockwise oriented
Polygon 2, 1476

is cw strongly convex 2, 1392
is cycle

MeshDomainWithFeatures 3, 3172
is defined

SegmentDelaunayGraphSite 2, 2889
SegmentDelaunayGraphStorageSite 2, 2894
Unique hash map, 4406

is degenerate
Circle 2, 615
Direction d, 1080
ExtendedKernelTraits 2, 1588
Iso box d, 1095
Iso cuboid 3, 648
Iso rectangle 2, 620
Line 2, 623
Line 3, 650
Min annulus d, 3864
Min circle 2, 3805
Min ellipse 2, 3815
Min sphere d, 3848
Plane 3, 653
Polytope distance d, 3948
Ray 2, 630
Ray 3, 660
Segment 2, 632
Segment 3, 662
Segment d, 1086
Sphere 3, 667
Sphere d, 1093
Sphere segment, 1610
Tetrahedron 3, 669
Triangle 2, 633
Triangle 3, 671

is degenerate edge 2 object
ApolloniusGraphTraits 2, 2950

is dimension jump
Convex hull d, 1436

is directed right
Arr circle segment traits 2<Kernel>::X -

monotone curve 2, 2295
is edge

Periodic 3 triangulation 3, 2767
SurfaceMeshTriangulation 3, 3084
Triangulation 2, 2551
Triangulation 3, 2641
TriangulationDataStructure 2, 2587
TriangulationDataStructure 3, 2717, 2718

is editing
Kinetic::ActiveObjectsTable, 4097

is empty

Arrangement 2, 2189
CombinatorialMap, 1921
EnvelopeDiagramEdge, 2423
General polygon 2, 1533
General polygon set 2, 1512
Min annulus d, 3864
Min circle 2, 3805
Min ellipse 2, 3815
Min sphere d, 3848
Min sphere of spheres d, 3870
Nef polyhedron 2, 1573
Nef polyhedron 3, 2017
Nef polyhedron S2, 1605
Polygon 2, 1476

is empty range, 4341
is even

Aff transformation 2, 611
Aff transformation 3, 643

is exact
Arr Bezier curve traits 2<AlgKernel, NtTraits>

::Point 2, 2317
is extended

Sqrt extension, 221
is extensible triangulation in 1 sheet h1

Periodic 3 triangulation 3, 2764
is extensible triangulation in 1 sheet h2

Periodic 3 triangulation 3, 2764
is face

Triangulation 2, 2551
TriangulationDataStructure 2, 2588

is facet
Periodic 3 triangulation 3, 2767
Triangulation 3, 2641
TriangulationDataStructure 3, 2718

is facet on surface
MeshCellBase 3, 3187
SurfaceMeshCellBase 3, 3067

is facet visited
MeshCellBase 3, 3188
SurfaceMeshCellBase 3, 3067

is feasible
Sorted matrix search traits adaptor, 469
SortedMatrixSearchTraits, 470

is fictitious
Face, 2209
Halfedge, 2207

is finite, 202
Polytope distance d, 3948

is flipable
Constrained Delaunay triangulation 2, 2500

is frame edge
Explorer, 1584

is free
Dart, 1931
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is full
Arr circle segment traits 2<Kernel>::Curve 2,

2293
is full conic

Arr conic traits 2<RatKernel, AlgKer-
nel,NtTraits>::Curve 2, 2303

is full dimensional
Approximate min ellipsoid d, 3891

is Gabriel
Alpha status, 2848
Delaunay triangulation 3, 2659, 2660
Periodic 3 Delaunay triangulation 3, 2779
Regular triangulation 3, 2670

is halfcircle
Sphere segment, 1610

is halfedge on ccb
Face, 2982

is hidden
RegularTriangulationVertexBase 2, 2526

is hidden 2 object
ApolloniusGraphTraits 2, 2950

is horizontal
Line 2, 623
Ray 2, 630
Segment 2, 632

is horizontal 2 object
YMonotonePartitionTraits 2, 1669

is in complex
MeshComplex 3InTriangulation 3, 3161
MeshComplexWithFeatures 3InTriangulation 3,

3166
SurfaceMeshComplex 2InTriangulation 3,

3072, 3073
is in domain

DelaunayMeshFaceBase 2, 3023
VectorField 2, 3432

is in domain object
MeshDomain 3, 3169

is incident edge
Vertex, 2981

is incident face
Vertex, 2981

is indeterminate, 4238
is inf

Gmpfi, 190
Gmpfr, 185

is infeasible
Quadratic program solution, 516

is infinite
Apollonius graph 2, 2937
DelaunayGraph 2, 2986, 2987
Segment Delaunay graph 2, 2883
SurfaceMeshTriangulation 3, 3084
Triangulation 2, 2551

Triangulation 3, 2641
is inner bisector

StraightSkeletonHalfedge 2, 1699
is input

SegmentDelaunayGraphSite 2, 2889
SegmentDelaunayGraphStorageSite 2, 2894

is insertable cell 1 in cell 2, 1947
is insertable cell 1 in cell 2<CMap>, 1947
is insertable cell 2 in cell 3, 1948
is insertable cell 2 in cell 3<CMap, InputIterator>,

1948
is inside

Range tree d, 3667
Segment tree d, 3673
Tree anchor, 3684

is inside new face
Arr accessor, 2200

is isolated
ArrangementDcelVertex, 2236
Halfedge, 2021
SVertex, 1613
Topological explorer, 1579
Vertex, 2205

is leaf
Kd tree node, 3602

is left to right
Arr rational function traits 2<

AlgebraicKernel d 1>::X monotone -
curve 2, 2308

is legal
Sphere d, 1093

is line
Arr linear traits 2<Kernel>::Curve 2, 2287

is linear
Arr circle segment traits 2<Kernel>::Curve 2,

2294
Arr circle segment traits 2<Kernel>::X -

monotone curve 2, 2295
Quadratic program, 526
Quadratic program from mps, 529

is long
Sphere segment, 1610

is marked
CombinatorialMap, 1928

is mesh triangular
Parameterization mesh patch 3, 3381
Parameterization polyhedron adaptor 3, 3389
ParameterizationMesh 3, 3373

is nan
Gmpfi, 190
Gmpfr, 185

is negative, 138
Gmpfi, 190

is new
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Kinetic::ActiveObjectsTable, 4097
is nonnegative

Quadratic program, 526
Quadratic program from mps, 529

is null
Periodic 3Offset 3, 2793

is number
Gmpfi, 190
Gmpfr, 185

is odd
Aff transformation 2, 611
Aff transformation 3, 643

is on chull
Alpha status, 2848
FixedAlphaShapeVertex 3, 2855

is on hole
ArrangementDcelHalfedge, 2238

is on inner boundary
Arr accessor, 2201

is on outer boundary
Arr accessor, 2201

is one, 109
Gmpfi, 190
Gmpfr, 185

is one to one mapping
Barycentric mapping parameterizer 3, 3351
Fixed border parameterizer 3, 3364
Mean value coordinates parameterizer 3, 3370

is optimal
Quadratic program solution, 516

is plane
General polygon set 2, 1512
Nef polyhedron 2, 1573

is point
Arr linear traits 2<Kernel>::Curve 2, 2287
Gmpfi, 190
Interval nt, 195
SegmentDelaunayGraphSite 2, 2889
SegmentDelaunayGraphStorageSite 2, 2894

is positive, 137
Gmpfi, 190

is pretty, 4410, 4422
is pure bivalent

Polyhedron 3, 1799
is pure quad

Polyhedron 3, 1799
is pure triangle

Polyhedron 3, 1799
is pure trivalent

Polyhedron 3, 1799
is quad

Facet, 1808
Halfedge, 1811

is rational

Arr Bezier curve traits 2<AlgKernel, NtTraits>
::Point 2, 2318

is ray
Arr linear traits 2<Kernel>::Curve 2, 2287
Halfedge, 2979

is refinement done
Delaunay mesher 2, 3027

is regular or boundary for vertices
SurfaceMeshComplex 2InTriangulation 3, 3073

is removable, 1945
is removable<CMap, i>, 1945
is reserved

CombinatorialMap, 1928
is running

Real timer, 4401
Timer, 4402

is same
Gmpfi, 190
Interval nt, 195
Uncertain, 4237

is segment
Arr linear traits 2<Kernel>::Curve 2, 2287
Halfedge, 2979
SegmentDelaunayGraphSite 2, 2889
SegmentDelaunayGraphStorageSite 2, 2894

is set
Kinetic::ActiveObjectsTable, 4097

is sewable
CombinatorialMap, 1923

is shalfedge
Halffacet cycle iterator, 2033
SFace cycle iterator, 1620, 2034

is shalfloop
Halffacet cycle iterator, 2033
SFace cycle iterator, 1620, 2034

is short
Sphere segment, 1609

is simple
Nef polyhedron 3, 2016
Polygon 2, 1475

is simple 2, 1466
is simplex of furthest

Delaunay d, 1447
is simplex of nearest

Delaunay d, 1447
is skeleton

StraightSkeletonVertex 2, 1697
is solvable

LinearAlgebraTraits d, 1061
is space

Nef polyhedron 3, 2017
is sphere

Nef polyhedron S2, 1605
is square, 111
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Gmpfr, 185
is square free, 355
is standard

Explorer, 1584
ExtendedKernelTraits 2, 1587

is strongly convex 3, 1398, 1423
is svertex

SFace cycle iterator, 1620, 2034
is tetrahedron

Polyhedron 3, 1799
is theta monotone, 1310
is theta monotone 3 object

SphericalKernel, 1257
is triangle

Facet, 1808
Halfedge, 1811
Polyhedron 3, 1799

is triangulation in 1 sheet
Periodic 3 triangulation 3, 2765

is trivalent
Halfedge, 1811
Vertex, 1813

is unbounded
ArrangementDcelFace, 2241
Face, 2209, 2982
GeneralPolygonWithHoles 2, 1521
Halfedge, 2979
Quadratic program solution, 516

Is vacuously valid, 1644
Is valid, 207
is valid, 202, 210, 328, 2211

AdaptationPolicy 2, 2991
Apollonius graph 2, 2939
Apollonius graph hierarchy 2, 2955
ApolloniusGraphVertexBase 2, 2945
Approximate min ellipsoid d, 3892
Arr conic traits 2<RatKernel, AlgKer-

nel,NtTraits>::Curve 2, 2303
Arrangement 2, 2197
Cell, 2731
CombinatorialMap, 1921
Constrained Delaunay triangulation 2, 2500
Constrained triangulation 2, 2505
ConstrainedTriangulationFaceBase 2, 2494
Convex hull d, 1437
Delaunay triangulation 2, 2520
Delaunay triangulation 3, 2660, 2661
DelaunayGraph 2, 2987
Face, 2983
General polygon set 2, 1517
Halfedge, 2979
HalfedgeDS const decorator, 1859
HalfedgeDS decorator, 1865
Key, 4116

Linear cell complex, 1977
Min annulus d, 3865
Min circle 2, 3805
Min ellipse 2, 3816
Min sphere d, 3849
Min sphere of spheres d, 3870
Nef polyhedron 3, 2016
Number type checker, 204
Parameterization mesh patch 3, 3379
Parameterization polyhedron adaptor 3, 3388
ParameterizationMesh 3, 3372
Periodic 3 Delaunay triangulation 3, 2780
Periodic 3 triangulation 3, 2775
Polyhedron 3, 1805
Polytope distance d, 3950
Quadratic program from mps, 529
Quadratic program solution, 519
Range tree d, 3666
Regular triangulation 2, 2534
Regular triangulation 3, 2671
Segment Delaunay graph 2, 2886
Segment tree d, 3673
SegmentDelaunayGraphVertexBase 2, 2901
Tree anchor, 3684
Triangulation 2, 2561
Triangulation 3, 2652, 2653
TriangulationDataStructure 2, 2593
TriangulationDataStructure 2::Face, 2598
TriangulationDataStructure 2::Vertex, 2602
TriangulationDataStructure 3, 2728
TriangulationDSCellBase 3, 2736
TriangulationDSFaceBase 2, 2596
TriangulationDSVertexBase 3, 2738
Vertex, 2733
Vertex, 2981
Voronoi diagram 2, 2976

is valid object
Partition is valid traits 2, 1657
PartitionIsValidTraits 2, 1654

is vertex
Periodic 3 triangulation 3, 2767
SurfaceMeshTriangulation 3, 3084
Triangulation 3, 2641
TriangulationDataStructure 2, 2587
TriangulationDataStructure 3, 2717

is vertex on border
Parameterization mesh patch 3, 3381
Parameterization polyhedron adaptor 3, 3390
ParameterizationMesh 3, 3374

is vertex on main border
Parameterization mesh patch 3, 3381
Parameterization polyhedron adaptor 3, 3390
ParameterizationMesh 3, 3374

is vertex parameterized
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Parameterization mesh patch 3, 3381
Parameterization polyhedron adaptor 3, 3390
ParameterizationMesh 3, 3374

is vertical
Line 2, 623
Line arc 2, 1176
Line arc 3, 1265
Ray 2, 630
Segment 2, 632

is vertical 2 object
ArrangementBasicTraits 2, 2256

is void
Quadratic program solution, 516

is without boundary
CombinatorialMap, 1922

is x monotone
Arr conic traits 2<RatKernel, AlgKer-

nel,NtTraits>::Curve 2, 2303
Circular arc 2, 1175

is y monotone
Arr conic traits 2<RatKernel, AlgKer-

nel,NtTraits>::Curve 2, 2303
Circular arc 2, 1175

Is y monotone 2, 1645
is y monotone 2, 1639–1641

preconditions, 1639
traits class, 1642

default, 1639
is y monotone 2 object

YMonotonePartitionIsValidTraits 2, 1667
is zero, 108

Gmpfi, 190
Gmpfr, 185
Polytope distance d, 3948
Sqrt extension, 221
Vector, 1062
Vector d, 1078

is zero at, 345
is zero at homogeneous, 348
iso-oriented boxes

intersection, 3703
Iso box d, 1095–1096, 3625, 3627, 3629
Iso cuboid, 2761
Iso cuboid 3, 646–648
Iso rectangle 2, 619–621, 3923, 4477
isolated vertex

ArrangementDcelVertex, 2236
Isolated vertex iterator, 2244
isolated vertices begin

ArrangementDcelFace, 2242
Face, 2210
Topological explorer, 1581

isolated vertices end
ArrangementDcelFace, 2242

Face, 2210
Topological explorer, 1581

IsStronglyConvexTraits 3, 1424–1425
Istream iterator, 4423
IsYMonotoneTraits 2, 1639, 1642
Items, 1976
Items converter, 1722
iterator, 4328

ArrangementDcelHole, 2243
ArrangementDcelIsolatedVertex, 2244

iterator category, 1867, 1880, 1882, 4361, 4380–
4390

iterator distance, 4342
Iterator tag, 4330
iterator to

Compact container, 4157
Iterator tuple, 4178, 4180
Iterator type, 2763, 2796

jet estimate normals, 3507
jet smooth point set, 3508
join, 1555–1556

General polygon set 2, 1514, 1515
Nef polyhedron 2, 1574
Nef polyhedron 3, 2017
Nef polyhedron S2, 1605

join face
HalfedgeDS decorator, 1863

join facet
Polyhedron 3, 1800

Join input iterator 1, 4189
Join input iterator 2, 4349, 4350
join loop

HalfedgeDS decorator, 1865
Polyhedron 3, 1802

join vertex
HalfedgeDS decorator, 1863
Polyhedron 3, 1801

join vertices
SegmentDelaunayGraphDataStructure 2, 2898
Triangulation data structure 2, 2604, 2605

K neighbor search, 3595–3596
Kd tree, 3598–3600
Kd tree node, 3601–3602
Kd tree rectangle, 3603–3604
kds

Event, 4107
keep largest connected components

HalfedgeDS decorator, 1861
Polyhedron 3, 1804

Kernel, 581–587
Kernel, 601, 2892, 2908, 2909, 2911, 2913, 4476
Kernel::Affine rank d, 1124
Kernel::Affinely independent d, 1123
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Kernel::Angle 2, 809
Kernel::Angle 3, 810
Kernel::AreOrderedAlongLine 2, 811
Kernel::AreOrderedAlongLine 3, 812
Kernel::AreParallel 2, 813
Kernel::AreParallel 3, 814
Kernel::AreStrictlyOrderedAlongLine 2, 815
Kernel::AreStrictlyOrderedAlongLine 3, 816
Kernel::Assign 2, 817
Kernel::Assign 3, 818
Kernel::BoundedSide 2, 819
Kernel::BoundedSide 3, 820
Kernel::CartesianConstIterator 2, 982
Kernel::CartesianConstIterator 3, 983
Kernel::CartesianConstIterator d, 1125
Kernel::Center of sphere d, 1126
Kernel::Circle 2, 783
Kernel::Circle 3, 784
Kernel::Collinear 2, 826
Kernel::Collinear 3, 827
Kernel::CollinearAreOrderedAlongLine 2, 821
Kernel::CollinearAreOrderedAlongLine 3, 822
Kernel::CollinearAreStrictlyOrderedAlongLine 2,

823
Kernel::CollinearAreStrictlyOrderedAlongLine 3,

824
Kernel::CollinearHasOn 2, 825
Kernel::Compare lexicographically d, 1127
Kernel::CompareAngleWithXAxis 2, 828
Kernel::CompareDihedralAngle 3, 829–830
Kernel::CompareDistance 2, 831
Kernel::CompareDistance 3, 832
Kernel::CompareSlope 2, 833
Kernel::CompareSquaredDistance 2, 834
Kernel::CompareSquaredDistance 3, 835
Kernel::CompareSquaredRadius 3, 836
Kernel::CompareX 2, 842
Kernel::CompareX 3, 843
Kernel::CompareXAtY 2, 837–838
Kernel::CompareXY 2, 840
Kernel::CompareXY 3, 841
Kernel::CompareXYZ 3, 839
Kernel::CompareY 2, 846
Kernel::CompareY 3, 847
Kernel::CompareYAtX 2, 844–845
Kernel::CompareYX 2, 848
Kernel::CompareZ 3, 849
Kernel::Component accessor d, 1128
Kernel::Compute coordinate d, 1129
Kernel::ComputeA 2, 850
Kernel::ComputeApproximateArea 3, 853
Kernel::ComputeApproximateSquaredLength 3, 854
Kernel::ComputeArea 2, 855
Kernel::ComputeArea 3, 856

Kernel::ComputeAreaDividedByPi 3, 857
Kernel::ComputeB 2, 851
Kernel::ComputeC 2, 852
Kernel::ComputeDeterminant 2, 858
Kernel::ComputeDeterminant 3, 859
Kernel::ComputeDx 2, 860
Kernel::ComputeDy 2, 861
Kernel::ComputeHx 2, 862
Kernel::ComputeHy 2, 863
Kernel::ComputeScalarProduct 2, 864
Kernel::ComputeScalarProduct 3, 865
Kernel::ComputeSquaredArea 3, 866
Kernel::ComputeSquaredDistance 2, 867
Kernel::ComputeSquaredDistance 3, 868
Kernel::ComputeSquaredLength 2, 869
Kernel::ComputeSquaredLength 3, 870
Kernel::ComputeSquaredLengthDividedByPiSquare

3, 871
Kernel::ComputeSquaredRadius 2, 872
Kernel::ComputeSquaredRadius 3, 873
Kernel::ComputeVolume 3, 874
Kernel::ComputeX 2, 875
Kernel::ComputeX 3, 876
Kernel::ComputeXmax 2, 882
Kernel::ComputeXmin 2, 880
Kernel::ComputeY 2, 877
Kernel::ComputeY 3, 878
Kernel::ComputeYAtX 2, 884
Kernel::ComputeYmax 2, 883
Kernel::ComputeYmin 2, 881
Kernel::ComputeZ 3, 879
Kernel::ConstructBarycenter 2, 885–886
Kernel::ConstructBarycenter 3, 887–888
Kernel::ConstructBaseVector 3, 889
Kernel::ConstructBbox 2, 890
Kernel::ConstructBbox 3, 891
Kernel::ConstructBisector 2, 892
Kernel::ConstructBisector 3, 893
Kernel::ConstructCartesianConstIterator 2, 894
Kernel::ConstructCartesianConstIterator 3, 895
Kernel::ConstructCartesianConstIterator d, 1130
Kernel::ConstructCenter 2, 896
Kernel::ConstructCenter 3, 897
Kernel::ConstructCentroid 2, 898
Kernel::ConstructCentroid 3, 899
Kernel::ConstructCircle 2, 900
Kernel::ConstructCircle 3, 901–902
Kernel::ConstructCircumcenter 2, 903
Kernel::ConstructCircumcenter 3, 904
Kernel::ConstructCrossProductVector 3, 905
Kernel::ConstructDifferenceOfVectors 2, 906
Kernel::ConstructDifferenceOfVectors 3, 907
Kernel::ConstructDirection 2, 908
Kernel::ConstructDirection 3, 909
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Kernel::ConstructDividedVector 2, 910
Kernel::ConstructDividedVector 3, 911
Kernel::ConstructEquidistantLine 3, 912
Kernel::ConstructIsoCuboid 3, 913
Kernel::ConstructIsoRectangle 2, 914
Kernel::ConstructLiftedPoint 3, 915
Kernel::ConstructLine 2, 916
Kernel::ConstructLine 3, 917
Kernel::ConstructMaxVertex 2, 918
Kernel::ConstructMaxVertex 3, 919
Kernel::ConstructMidpoint 2, 920
Kernel::ConstructMidpoint 3, 921
Kernel::ConstructMinVertex 2, 922
Kernel::ConstructMinVertex 3, 923
Kernel::ConstructNormal 3, 924
Kernel::ConstructObject 2, 925
Kernel::ConstructObject 3, 926
Kernel::ConstructOppositeCircle 2, 927
Kernel::ConstructOppositeDirection 2, 928
Kernel::ConstructOppositeDirection 3, 929
Kernel::ConstructOppositeLine 2, 930
Kernel::ConstructOppositeLine 3, 931
Kernel::ConstructOppositePlane 3, 932
Kernel::ConstructOppositeRay 2, 933
Kernel::ConstructOppositeRay 3, 934
Kernel::ConstructOppositeSegment 2, 935
Kernel::ConstructOppositeSegment 3, 936
Kernel::ConstructOppositeSphere 3, 937
Kernel::ConstructOppositeTriangle 2, 938
Kernel::ConstructOppositeVector 2, 939
Kernel::ConstructOppositeVector 3, 940
Kernel::ConstructOrthogonalVector 3, 941
Kernel::ConstructPerpendicularDirection 2, 942
Kernel::ConstructPerpendicularLine 2, 943
Kernel::ConstructPerpendicularLine 3, 944
Kernel::ConstructPerpendicularPlane 3, 945
Kernel::ConstructPerpendicularVector 2, 946
Kernel::ConstructPlane 3, 947–948
Kernel::ConstructPoint 2, 951
Kernel::ConstructPoint 3, 952
Kernel::ConstructPointOn 2, 949
Kernel::ConstructPointOn 3, 950
Kernel::ConstructProjectedPoint 2, 953
Kernel::ConstructProjectedPoint 3, 954
Kernel::ConstructProjectedXYPoint 2, 955
Kernel::ConstructRadicalLine 2, 956
Kernel::ConstructRadicalPlane 3, 957
Kernel::ConstructRay 2, 958
Kernel::ConstructRay 3, 959
Kernel::ConstructScaledVector 2, 960
Kernel::ConstructScaledVector 3, 961
Kernel::ConstructSecondPoint 2, 962
Kernel::ConstructSegment 2, 963
Kernel::ConstructSegment 3, 964

Kernel::ConstructSource 2, 965
Kernel::ConstructSphere 3, 966–967
Kernel::ConstructSumOfVectors 2, 968
Kernel::ConstructSumOfVectors 3, 969
Kernel::ConstructSupportingPlane 3, 970
Kernel::ConstructTarget 2, 971
Kernel::ConstructTetrahedron 3, 972
Kernel::ConstructTranslatedPoint 2, 973
Kernel::ConstructTranslatedPoint 3, 974
Kernel::ConstructTriangle 2, 975
Kernel::ConstructTriangle 3, 976
Kernel::ConstructUnitNormal 3, 977
Kernel::ConstructVector 2, 978
Kernel::ConstructVector 3, 979
Kernel::ConstructVertex 2, 980
Kernel::ConstructVertex 3, 981
Kernel::Contained in affine hull d, 1131
Kernel::Contained in linear hull d, 1132
Kernel::Contained in simplex d, 1133
Kernel::Coplanar 3, 986
Kernel::CoplanarOrientation 3, 984
Kernel::CoplanarSideOfBoundedCircle 3, 985
Kernel::CounterclockwiseInBetween 2, 987
Kernel::Direction 2, 785
Kernel::Direction 3, 786
Kernel::DoIntersect 2, 988
Kernel::DoIntersect 3, 989
Kernel::Equal 2, 996
Kernel::Equal 3, 997
Kernel::Equal d, 1134
Kernel::EqualX 2, 991
Kernel::EqualX 3, 992
Kernel::EqualXY 3, 990
Kernel::EqualY 2, 993
Kernel::EqualY 3, 994
Kernel::EqualZ 3, 995
Kernel::Has on positive side d, 1135
Kernel::HasOn 2, 1008
Kernel::HasOn 3, 1009–1010
Kernel::HasOnBoundary 2, 998
Kernel::HasOnBoundary 3, 999
Kernel::HasOnBoundedSide 2, 1000
Kernel::HasOnBoundedSide 3, 1001
Kernel::HasOnNegativeSide 2, 1002
Kernel::HasOnNegativeSide 3, 1003
Kernel::HasOnPositiveSide 2, 1004
Kernel::HasOnPositiveSide 3, 1005
Kernel::HasOnUnboundedSide 2, 1006
Kernel::HasOnUnboundedSide 3, 1007
Kernel::Intersect 2, 1011
Kernel::Intersect 3, 1012–1013
Kernel::Intersect d, 1136
Kernel::IsDegenerate 2, 1014
Kernel::IsDegenerate 3, 1015–1016
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Kernel::IsHorizontal 2, 1017
Kernel::IsoCuboid 3, 787
Kernel::IsoRectangle 2, 788
Kernel::IsVertical 2, 1018
Kernel::LeftTurn 2, 1019
Kernel::Less coordinate d, 1139
Kernel::Less lexicographically d, 1137
Kernel::Less or equal lexicographically d, 1138
Kernel::LessDistanceToPoint 2, 1020
Kernel::LessDistanceToPoint 3, 1021
Kernel::LessRotateCCW 2, 1022
Kernel::LessSignedDistanceToLine 2, 1023
Kernel::LessSignedDistanceToPlane 3, 1024
Kernel::LessX 2, 1028
Kernel::LessX 3, 1029
Kernel::LessXY 2, 1026
Kernel::LessXY 3, 1027
Kernel::LessXYZ 3, 1025
Kernel::LessY 2, 1031
Kernel::LessY 3, 1032
Kernel::LessYX 2, 1030
Kernel::LessZ 3, 1033
Kernel::Lift to paraboloid d, 1140
Kernel::Line 2, 789
Kernel::Line 3, 790
Kernel::Linear base d, 1142
Kernel::Linear rank d, 1143
Kernel::Linearly independent d, 1141
Kernel::Midpoint d, 1144
Kernel::Object 2, 791
Kernel::Object 3, 792
Kernel::Orientation 2, 1034
Kernel::Orientation 3, 1035
Kernel::Orientation d, 1145
Kernel::Oriented side d, 1146
Kernel::OrientedSide 2, 1036
Kernel::OrientedSide 3, 1037
Kernel::Orthogonal vector d, 1147
Kernel::Plane 3, 793
Kernel::Point 2, 794–795
Kernel::Point 3, 796–797
Kernel::Point dimension d, 1148
Kernel::Point of sphere d, 1149
Kernel::Point to vector d, 1150
Kernel::Project along d axis d, 1151
Kernel::Ray 2, 798
Kernel::Ray 3, 799
Kernel::Segment 2, 800
Kernel::Segment 3, 801
Kernel::Side of bounded sphere d, 1152
Kernel::Side of oriented sphere d, 1153
Kernel::SideOfBoundedCircle 2, 1038
Kernel::SideOfBoundedSphere 3, 1039
Kernel::SideOfOrientedCircle 2, 1040

Kernel::SideOfOrientedSphere 3, 1041
Kernel::Sphere 3, 802
Kernel::Squared distance d, 1154
Kernel::Tetrahedron 3, 803
Kernel::Triangle 2, 804
Kernel::Triangle 3, 805
Kernel::Value at d, 1155
Kernel::Vector 2, 806
Kernel::Vector 3, 807
Kernel::Vector to point d, 1156
Kernel d, 1121–1122
Kernel traits, 601
Key, 4116
Key, 3663, 3664, 3668, 3670, 3671, 3674, 3677, 3678
key comp

Multiset, 4162
tree point traits, 3683

Key type, 4000
Kinetic::Active objects listener, 4095
Kinetic::Active objects vector, 4099
Kinetic::ActiveObjectsTable, 4096–4098
Kinetic::Cartesian, 4100–4101
Kinetic::Certificate, 4102
Kinetic::Default instantaneous kernel, 4113–4114
Kinetic::Default simulator, 4128
Kinetic::Delaunay triangulation 2, 4042–4043
Kinetic::Delaunay triangulation 3, 4044–4045
Kinetic::Delaunay triangulation cell base 3, 4046
Kinetic::Delaunay triangulation event log visitor 2,

4047
Kinetic::Delaunay triangulation event log visitor 3,

4048
Kinetic::Delaunay triangulation face base 2, 4049
Kinetic::Delaunay triangulation recent edges -

visitor 2, 4050
Kinetic::Delaunay triangulation visitor base 2,

4054
Kinetic::Delaunay triangulation visitor base 3,

4055
Kinetic::DelaunayTriangulationVisitor 2, 4051
Kinetic::DelaunayTriangulationVisitor 3, 4052–4053
Kinetic::Enclosing box 2, 4056
Kinetic::Enclosing box 3, 4057
Kinetic::Erase event, 4058
Kinetic::EventLogVisitor, 4059
Kinetic::EventQueue, 4105–4106
Kinetic::FunctionKernel, 4109–4111
Kinetic::Insert event, 4060
Kinetic::InstantaneousKernel, 4115
Kinetic::Kernel, 4117
Kinetic::Qt moving points 2, 4061
Kinetic::Qt triangulation 2, 4062
Kinetic::Qt widget 2, 4063–4064
Kinetic::Regular triangulation 3, 4065–4066
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Kinetic::Regular triangulation cell base 3, 4067
Kinetic::Regular triangulation event log visitor 3,

4068
Kinetic::Regular triangulation instantaneous kernel,

4069
Kinetic::Regular triangulation vertex base 3, 4070
Kinetic::Regular triangulation visitor base 3, 4072
Kinetic::RegularTriangulationVisitor 3, 4071
Kinetic::RootStack, 4123
Kinetic::SimulationTraits, 4124–4125
Kinetic::Simulator, 4131–4134
Kinetic::Simulator listener, 4129
Kinetic::Simulator objects listener, 4130
Kinetic::Sort, 4074–4075
Kinetic::Sort event log visitor, 4073
Kinetic::Sort visitor base, 4076
Kinetic::SortVisitor, 4077
kinetic kernel object

Kinetic::SimulationTraits, 4125
kth root, 121
kthroot

Gmpfi, 189
Gmpfr, 184

Labeled image mesh domain 3, 3212
LabeledImage 3, 3186
LARGER, 678
largest inscribed polygon, 3912, 3914
Largest empty iso rectangle 2, 3923–3925
LargestEmptyIsoRectangleTraits 2, 3926–3927
last out edge

Topological explorer, 1579
Lazy exact nt, 199–200
lcoeff

Polynomial, 325
leading coefficient, 338
LEAF, 3601
leda bigfloat, 171
leda integer, 169
leda rational, 170
leda real, 172
left

Arr Bezier curve traits 2<AlgKernel, NtTraits>
::X monotone curve 2, 2318

Arr circle segment traits 2<Kernel>::X -
monotone curve 2, 2295

Arr conic traits 2<RatKernel, AlgKer-
nel,NtTraits>:: X monotone curve 2,
2304

Arr rational function traits 2<
AlgebraicKernel d 1>::X monotone -
curve 2, 2308

Circular arc 2, 1175
EnvelopeDiagramEdge, 2423
EnvelopeDiagramVertex, 2421

Halfedge, 2979
Line arc 2, 1176

left face exits
EdgeProfile, 3294

left parameter space in x
Arr rational function traits 2<

AlgebraicKernel d 1>::Curve 2, 2307
Arr rational function traits 2<

AlgebraicKernel d 1>::X monotone -
curve 2, 2308

left parameter space in y
Arr rational function traits 2<

AlgebraicKernel d 1>::X monotone -
curve 2, 2308

LEFT TURN, 681
left turn, 746

ExtendedKernelTraits 2, 1588
left turn 2 object

PartitionIsValidTraits 2, 1654
PartitionTraits 2, 1656

left vertex
Polygon 2, 1475

left vertex 2, 1467
requirements, 1467

left x
Arr rational function traits 2<

AlgebraicKernel d 1>::Curve 2, 2307
Arr rational function traits 2<

AlgebraicKernel d 1>::X monotone -
curve 2, 2308

LEFTFRAME, 1586
leftmost

EnvelopeDiagram 1, 2420
less x 2 object

LargestEmptyIsoRectangleTraits 2, 3927
less xy 2 object

AllFurthestNeighborsTraits 2, 3935
Extremal polygon area traits 2, 3918
Extremal polygon perimeter traits 2, 3920
ExtremalPolygonTraits 2, 3922
PartitionIsValidTraits 2, 1654
PartitionTraits 2, 1656
PolygonTraits 2, 1471
RandomPolygonTraits 2, 4378

less y 2 object
LargestEmptyIsoRectangleTraits 2, 3927

less yx 2 object
IsYMonotoneTraits 2, 1642
PartitionTraits 2, 1656
PolygonTraits 2, 1471

Level interval, 3553
lexicographically smaller, 1109
lexicographically smaller or equal, 1110
lexicographically xy larger, 749
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lexicographically xy larger or equal, 750
lexicographically xy smaller, 751
lexicographically xy smaller or equal, 752
lexicographically xyz smaller, 747
lexicographically xyz smaller or equal, 748
lift to paraboloid, 1111
lifting map, dD, 1428
Line, 2528, 2654
line

Arr linear traits 2<Kernel>::Curve 2, 2287
Ridge line, 3453

Line 2, 604, 622–624, 2286, 2566, 4014, 4476
Line 3, 649–650, 3757
Line arc 2, 1169, 1176–1177
Line arc 3, 1259, 1265–1266
Line d, 1081–1082
line type

Ridge line, 3453
line walk

Triangulation 2, 2558
linear program

Min annulus d, 3866
Linear algebraCd, 1067
Linear algebraHd, 1068
linear base, 1113
Linear cell complex, 1975–1981
Linear cell complex min items, 1982
Linear cell complex traits, 1983
linear interpolation, 3993
linear least squares fitting 2, 3973–3974
linear least squares fitting 3, 3975–3976
Linear program from iterators, 534–535

creation, 534
linear rank, 1114
linear solver

LinearAlgebraTraits d, 1060
SparseLinearAlgebraTraits d, 3400

LinearAlgebraTraits d, 1059–1061
model, 1067, 1068

LinearCellComplexItems, 1973
LinearCellComplexTraits, 1971–1972
linearly independent, 1112
LinearProgram, 506–508
link

EdgeProfile, 3294
link beta

CombinatorialMap, 1927
Listener, 4118–4120
lloyd optimize mesh 3, 3135, 3227–3228
LMWT , 1574
Local kernel, 3484
LocalKernel, 3481
locate, 2350

ArrangementPointLocation 2, 2341

Delaunay d, 1449
General polygon set 2, 1516
Nef polyhedron 2, 1575
Nef polyhedron 3, 2016
Nef polyhedron S2, 1606
Periodic 3 triangulation 3, 2769, 2770
SurfaceMeshTriangulation 3, 3084, 3085
Triangulation 2, 2551, 2552
Triangulation 3, 2643
Voronoi diagram 2, 2976

locate around vertex
Arr accessor, 2200

Locate result, 2972
Locate type, 2522, 2549, 2637, 2700, 2763, 2797
Location mode, 1574
Location policy, 2654, 4249
long double, 164
long int, 160
long long int, 161
look recenter

Geomview stream, 4447
lookup

Delaunay d, 1449
Point set 2, 3532

Loop mask 3, 3270
Loop subdivision, 3262
low value

Kd tree node, 3602
lower

Kd tree node, 3602
lower hull, 2D, 1393–1394
lower bound

Multiset, 4164
lower envelope 2, 2415
lower envelope 3, 2439
lower envelope x monotone 2, 2417
lower envelope xy monotone 3, 2441
lower hull points 2, 1351, 1393–1394
LSCM parameterizer 3, 3365–3366

m
Aff transformation 2, 611
Aff transformation 3, 643

m mesh adaptor, 3379
make alpha shape

Alpha shape 2, 2807
Alpha shape 3, 2841

make array, 4245
make certain, 4239

Uncertain, 4237
make combinatorial hexahedron, 1944
make combinatorial hexahedron<CMap>, 1944
make combinatorial polygon, 1942
make combinatorial polygon<CMap>, 1942
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make combinatorial tetrahedron, 1943
make combinatorial tetrahedron<CMap>, 1943
make conforming Delaunay

Triangulation conformer 2, 3037
make conforming Delaunay 2, 3032
make conforming Gabriel

Triangulation conformer 2, 3037
make conforming Gabriel 2, 3033
make dereference property map, 4304
make edge, 1941
make edge<CMap>, 1941
make first of pair property map, 4306
make hexahedron, 1980
make hole

HalfedgeDS decorator, 1862
Polyhedron 3, 1803
TriangulationDataStructure 2, 2592

make linear program from iterators, 541
make mesh 3, 3131, 3217–3219
make nonnegative linear program from iterators,

543
make nonnegative quadratic program from -

iterators, 542
make nth of tuple property map, 4308
make object, 4167
make plane, 3943

Width default traits 3, 3941
make point, 3943

Width default traits 3, 3941
make quadrangle

Linear cell complex, 1980
make quadratic program from iterators, 540
make quadruple, 4230
make rational

Rational traits, 211
make root of 2, 217
make root of 2<RT>, 217
make second of pair property map, 4310
make segment

Linear cell complex, 1979
make set

Union find, 4403
make skin surface mesh 3, 3113
make skin surface mesh 3<Polyhedron 3>, 3124
make skin surface mesh 3<SkinSurface 3,

Polyhedron 3>, 3125
make sqrt, 218
make sqrt<RT>, 218
make square free, 354
make surface mesh, 3043, 3060–3061
make tetrahedron

Linear cell complex, 1980
Polyhedron 3, 1798

make theta monotone 3 object

SphericalKernel, 1257
make tree

Range tree d, 3666
Range tree k, 3668
Segment tree d, 3673
Segment tree k, 3674

make triangle
Linear cell complex, 1979
Polyhedron 3, 1798

make triple, 4228
make tuple, 4228, 4230
make uncertain, 4239
make vector, 3943

Width default traits 3, 3941
make x monotone, 1221
make x monotone 2 object

ArrangementTraits 2, 2279
make xy monotone, 1222
make xy monotone 3 object

EnvelopeTraits 3, 2445
Manhattan distance iso box point, 3605–3606
Manifold tag, 3062
Manifold with boundary tag, 3063
mark

CombinatorialMap, 1928
Halfedge, 2021
Halffacet, 2024
SFace, 1619, 2031
SHalfedge, 1616, 2027
SHalfloop, 1617, 2029
SVertex, 1613
Topological explorer, 1581, 1582
Vertex, 2020
Volume, 2025

Matrix, 1064–1066, 3367–3368
matrix

monotone, 458
searching, 458, 465
sorted, 465

matrix
Aff transformation d, 1098

Max, 205
max, 208

Bbox 2, 613
Bbox 3, 639
Iso box d, 1095
Iso cuboid 3, 647
Iso rectangle 2, 620
Line arc 3, 1265
Real timer, 4401
Segment 2, 631
Segment 3, 661
Segment d, 1086
Timer, 4402
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max coord
Box d, 3718
Box with handle d, 3723
BoxIntersectionBox d, 3714
Iso cuboid 3, 648
Iso rectangle 2, 620
Kd tree rectangle, 3603

MAX CREST RIDGE, 3455
max distance to rectangle

Euclidean distance, 3582
Euclidean distance sphere point, 3584
GeneralDistance, 3592
Manhattan distance iso box point, 3606
OrthogonalDistance, 3611
Weighted Minkowski distance, 3645

MAX ELLIPTIC RIDGE, 3455
MAX HYPERBOLIC RIDGE, 3455
MAX ITERATION NUMBER REACHED, 3241
max size

Compact container, 4157
In place list, 4149
Multiset, 4162

max span
Kd tree rectangle, 3604

max span coord
Kd tree rectangle, 3604
Point container, 3620

max span lower
Point container, 3620

max span upper
Point container, 3620

max span upper without dim
Point container, 3620

max spread
Point container, 3621

max tight span coord
Point container, 3620

max tight span coord balanced
Point container, 3621

max tight span lower
Point container, 3620

max tight span upper
Point container, 3621

max tight spread
Point container, 3621

max vertex, 753
maximal principal direction

Monge form, 3482
maximum area inscribed k gon 2, 3912–3913
maximum perimeter inscribed k gon 2, 3914–3915
Mean value coordinates parameterizer 3, 3369–

3370
Median, 3784
median

Point container, 3621
Median of max spread, 3607
Median of rectangle, 3608
Memory sizer, 4398
Merge, 2325
merge

ArrTraits::Merge 2, 2278
Compact container, 4159
In place list, 4151

merge 2 object
ArrangementXMonotoneTraits 2, 2274

merge concurrent
Event, 4107

merge edge
Arrangement 2, 2197
Arrangement with history 2, 2372

Mesh 2::Face badness, 3031
Mesh cell base 3, 3198
Mesh cell criteria 3, 3202
Mesh complex 3 in triangulation 3, 3194–3195
Mesh constant domain field 3, 3206
Mesh criteria 3, 3199–3201
Mesh domain with polyline features 3, 3213–3214
Mesh edge criteria 3, 3205
Mesh facet criteria 3, 3203–3204
Mesh facet topology, 3242
mesh facets begin

Parameterization mesh patch 3, 3380
Parameterization polyhedron adaptor 3, 3389
ParameterizationMesh 3, 3373

mesh facets end
Parameterization mesh patch 3, 3380
Parameterization polyhedron adaptor 3, 3389
ParameterizationMesh 3, 3373

mesh main border vertices begin
Parameterization mesh patch 3, 3380
Parameterization polyhedron adaptor 3, 3389
ParameterizationMesh 3, 3373

mesh main border vertices end
Parameterization mesh patch 3, 3380
Parameterization polyhedron adaptor 3, 3389
ParameterizationMesh 3, 3373

Mesh optimization return code, 3241
Mesh polyhedron 3, 3215
mesh skin surface 3, 3114

SkinSurface 3, 3119
mesh skin surface 3<Polyhedron 3>, 3124
Mesh triangulation 3, 3196
Mesh vertex base 3, 3197
mesh vertices begin

Parameterization mesh patch 3, 3379, 3380
Parameterization polyhedron adaptor 3, 3388
ParameterizationMesh 3, 3372

mesh vertices end
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Parameterization mesh patch 3, 3380
Parameterization polyhedron adaptor 3, 3388,

3389
ParameterizationMesh 3, 3372

MeshCellBase 3, 3187–3188
MeshCellCriteria 3, 3177
MeshComplex 3InTriangulation 3, 3158–3163
MeshComplexWithFeatures 3InTriangulation 3,

3164–3167
MeshCriteria 3, 3175
MeshCriteriaWithFeatures 3, 3176
MeshDomain 3, 3168–3170
MeshDomainField 3, 3191
MeshDomainWithFeatures 3, 3171–3174
MeshEdgeCriteria 3, 3180
MeshFacetCriteria 3, 3178–3179
meshing info

MeshVertexBase 3, 3189
MeshingCriteria 2, 3034–3035
MeshPolyline 3, 3192
MeshVertexBase 3, 3189–3190
Method tag, 2908, 2909, 2911, 2913
Middle, 3785
midpoint, 754, 1115
Midpoint of max spread, 3609
Midpoint of rectangle, 3610
Min, 206
min, 209

Bbox 2, 613
Bbox 3, 639
Iso box d, 1095
Iso cuboid 3, 647
Iso rectangle 2, 620
Line arc 3, 1265
Segment 2, 631
Segment 3, 661
Segment d, 1086

Min annulus d, 3860–3866
creation, 3861
global functions, 3865

input, 3865
output, 3865

implementation, 3866
member functions, 3861–3865

access, 3861
miscellaneous, 3865
modifiers, 3864
predicates, 3863
validity check, 3865

requirements, 3860
traits class

requirements, 3853, 3908
see also Min sphere annulus d traits 2
see also Min sphere annulus d traits 3

see also Min sphere annulus d traits d
see also Polytope distance d traits d

types, 3860
Min circle 2, 3802–3807

creation, 3803
example, 3806
global functions, 3806

input, 3806
output, 3806

implementation, 3806
member functions, 3803–3805

access, 3803
miscellaneous, 3805
modifiers, 3805
predicates, 3804
validity check, 3805

requirements, 3802
traits class

requirements, 3809
see also Min circle 2 traits 2

types, 3802
Min circle 2 traits 2, 3808
min circulator

Circulator, 4315
min coord

Box d, 3718
Box with handle d, 3723
BoxIntersectionBox d, 3714
Iso cuboid 3, 647
Iso rectangle 2, 620
Kd tree rectangle, 3603

MIN CREST RIDGE, 3455
min distance to rectangle

Euclidean distance, 3582
Euclidean distance sphere point, 3584
GeneralDistance, 3592
Manhattan distance iso box point, 3606
OrthogonalDistance, 3611
Weighted Minkowski distance, 3645

Min ellipse 2, 3812–3818
creation, 3812
example, 3817, 3892
global functions, 3816

input, 3816
output, 3816

implementation, 3816
member functions, 3814–3816

access, 3814
miscellaneous, 3816
modifiers, 3815
predicates, 3814
validity check, 3815

requirements, 3812
traits class
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requirements, 3821
see also Min ellipse 2 traits 2

types, 3812
Min ellipse 2 traits 2, 3819–3820
MIN ELLIPTIC RIDGE, 3455
MIN HYPERBOLIC RIDGE, 3455
min k

Extremal polygon area traits 2, 3917
Extremal polygon perimeter traits 2, 3920
ExtremalPolygonTraits 2, 3921

min max element, 4176–4177
min parallelogram 2, 3826–3827
Min quadrilateral default traits 2, 3830–3833
min rectangle 2, 3824–3825
Min sphere annulus d traits 2, 3854–3855, 3901–

3902
Min sphere annulus d traits 3, 3856–3857, 3903–

3904
Min sphere annulus d traits d, 3858–3859, 3905–

3906
Min sphere d, 3846–3851

creation, 3846
global functions, 3850

input, 3850
output, 3850

implementation, 3850
member functions, 3847–3850

access, 3847
miscellaneous, 3849
modifiers, 3848
predicates, 3848
validity check, 3849

requirements, 3846
traits class

requirements, 3853, 3908
see also Min sphere annulus d traits 2
see also Min sphere annulus d traits 3
see also Min sphere annulus d traits d
see also Polytope distance d traits d

types, 3846
Min sphere of points d traits 2, 3881–3882
Min sphere of points d traits d, 3885–3886
Min sphere of spheres d, 3867–3872

creation, 3868
implementation, 3871
member functions, 3869–3870

access, 3869
miscellaneous, 3870
modifiers, 3870
predicates, 3870
validity check, 3870

requirements, 3867
types, 3867

Min sphere of spheres d traits 2, 3875–3876

Min sphere of spheres d traits 3, 3877–3878, 3883–
3884

Min sphere of spheres d traits d, 3879–3880
min strip 2, 3828–3829
min vertex, 756
MinCircle2Traits, 3809
MinEllipse2Traits, 3821
minimal principal direction

Monge form, 3482
minimum enclosing

see also smallest enclosing
minimum spanning

see also smallest enclosing
minkowski sum 2, 1763
minkowski sum 3, 2053–2054
minkowski sum with pixel 2 object

SnapRoundingTraits 2, 2399
MinQuadrilateralTraits 2, 3834–3837
MinSphereAnnulusDTraits, 3852–3853, 3907–3908
MinSphereOfSpheresTraits, 3873–3874
mirror edge

Triangulation 2, 2560
TriangulationDataStructure 2, 2589

mirror facet
Periodic 3 triangulation 3, 2774
SurfaceMeshTriangulation 3, 3084
Triangulation 3, 2652
TriangulationDataStructure 3, 2728

mirror index
Periodic 3 triangulation 3, 2774
Triangulation 2, 2560
Triangulation 3, 2652
TriangulationDataStructure 2, 2589
TriangulationDataStructure 3, 2728

mirror vertex
Periodic 3 triangulation 3, 2774
Triangulation 2, 2560
Triangulation 3, 2652
TriangulationDataStructure 2, 2588
TriangulationDataStructure 3, 2728

miscellaneous
Approximate min ellipsoid d, 3892
Min annulus d, 3865
Min circle 2, 3805
Min ellipse 2, 3816
Min sphere d, 3849
Min sphere of spheres d, 3870
Polytope distance d, 3950

mod, 118
Mode, 2806, 2840, 4409, 4424
modelChanged

GraphicsItem, 4465
Modifier base, 4399
modifiers
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Min annulus d, 3864
Min circle 2, 3805
Min ellipse 2, 3815
Min sphere d, 3848
Min sphere of spheres d, 3870
Polytope distance d, 3948

modify edge
Arrangement 2, 2196

modify edge ex
Arr accessor, 2203

modify vertex
Arrangement 2, 2196

modify vertex ex
Arr accessor, 2203

Modular traits, 240
Modularizable, 236
ModularTraits, 237
ModularTraits::ModularImage, 238
ModularTraits::ModularImageRepresentative, 239
Monge form, 3482–3483
Monge via jet fitting, 3484–3485
monotone matrix search, 458
monotone matrix search, 458–459
MonotoneMatrixSearchTraits, 462–463
mouseCoordinates

GraphicsViewNavigation, 4470
move, 334

Delaunay triangulation 2, 2518
Delaunay triangulation 3, 2656
Triangulation 2, 2553

move-to-front heuristic
Min circle 2, 3806
Min ellipse 2, 3816
Min sphere d, 3850

move hole
Arr accessor, 2202

move if no collision
Delaunay triangulation 2, 2518
Delaunay triangulation 3, 2656
Triangulation 2, 2553

move isolated vertex
Arr accessor, 2202

move point
Periodic 3 Delaunay triangulation 3, 2777

MP Float, 192–193
mpq class, 174
MPSFormat, 511–513
mpz class, 173
mst orient normals, 3509–3510
Multi listener, 4121
Multiscale sort, 3783
Multiset, 4160–4166
multivariate content, 352

n1

Number type checker, 203
n2

Number type checker, 203
N step adaptor, 4187
NAIVE, 1574
nan flag, 183
natural neighbor coordinates 2, 4004

Interpolation traits 2, 4004–4005
NB MARKS, 1919
NE

ExtendedKernelTraits 2, 1587
NEAREST , 1446
nearest neighbor, 3535

Apollonius graph 2, 2938
Apollonius graph hierarchy 2, 2954
Delaunay d, 1449
Point set 2, 3532
Segment Delaunay graph 2, 2884, 2885

nearest neighbors, 3536–3537
Point set 2, 3532

nearest power vertex
Regular triangulation 2, 2532
Regular triangulation 3, 2669

nearest power vertex in cell
Regular triangulation 3, 2669

nearest site 2 object
AdaptationTraits 2, 2989

nearest vertex
Delaunay triangulation 2, 2518
Delaunay triangulation 3, 2658
Periodic 3 Delaunay triangulation 3, 2778

nearest vertex in cell
Delaunay triangulation 3, 2658
Periodic 3 Delaunay triangulation 3, 2778

NECORNER, 1586
Nef polyhedron, 2D

traits class
see also Extended cartesian
see also Extended homogeneous
see also Filtered extended homogeneous

Nef nary union 3, 2036
Nef polyhedron 2, 1572–1577
Nef polyhedron 3, 2013–2019
Nef polyhedron S2, 1603–1607
negate, 364
negate mark

CombinatorialMap, 1928
NEGATIVE, 678
neighbor

all furthest, 3933
neighbor

Cell, 2730
SurfaceMeshComplex 2InTriangulation 3, 3074
TriangulationDataStructure 2::Face, 2597
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TriangulationDSCellBase 3, 2735
TriangulationDSFaceBase 2, 2595

new distance
Euclidean distance, 3583
OrthogonalDistance, 3612
Weighted Minkowski distance, 3645

new edge
ArrangementDcel, 2233
EnvelopeDiagram 1, 2420
GeneralPolygonSetDcel, 1542

new event
Kinetic::Simulator, 4133

new face
ArrangementDcel, 2233
GeneralPolygonSetDcel, 1542

new final event
Kinetic::Simulator, 4133

new hole
ArrangementDcel, 2233
GeneralPolygonSetDcel, 1542

new isolated vertex
ArrangementDcel, 2233
GeneralPolygonSetDcel, 1542

new notification
Listener, 4119

new vertex
ArrangementDcel, 2233
EnvelopeDiagram 1, 2420
GeneralPolygonSetDcel, 1542

next
ArrangementDcelHalfedge, 2238
ConvexHullPolyhedronHalfedge 3, 1414
Halfedge, 1810, 2207, 2978
HalfedgeDSHalfedge, 1853
SHalfedge, 2027
Topological explorer, 1580
TriangulatedSurfaceMesh, 3457

next around edge, 2743
next edge, 4278
next edge ccw, 4278
next edge cw, 4278
next event time

Kinetic::Simulator, 4132
next link, 4147
next on vertex

Halfedge, 1810
next priority

Kinetic::EventQueue, 4105
next time reprsentable as nt

Kinetic::Simulator, 4132
Node const handle, 3601
Node handle, 3601
Node type, 3601
non const handle

Arrangement 2, 2191
NON GENERIC UMBILIC, 3461
Non manifold tag, 3064
Nonnegative linear program from iterators, 538–

539
creation, 538

Nonnegative quadratic program from iterators,
536–537

creation, 536
NonnegativeLinearProgram, 509–510
NonnegativeQuadraticProgram, 503–505
NORMAL, 1270
normal, 755
normal direction

Monge form, 3482
normalize border

HalfedgeDS, 1848
Polyhedron 3, 1804

normalized border is valid
HalfedgeDS const decorator, 1859
HalfedgeDS decorator, 1865
Polyhedron 3, 1805

NOT BAD, 3031
NOT IN COMPLEX, 3070
notifier

Listener, 4119
notify after global change

Arr accessor, 2200
notify before global change

Arr accessor, 2200
NT , 3410, 3593, 3629
Nth of tuple property map, 4307–4308
null dart handle, 1919
null event

Kinetic::Simulator, 4133
Null functor, 4234
Null tag, 4235
NULL VECTOR, 683
Null vector, 683
Numb type, 3531
number of alphas

Alpha shape 2, 2807
Alpha shape 3, 2842

number of attributes
CombinatorialMap, 1922

number of basic constraints
Quadratic program solution, 518

number of basic variables
Quadratic program solution, 518

number of cells
MeshComplex 3InTriangulation 3, 3160
Periodic 3 triangulation 3, 2765
Triangulation 3, 2639
TriangulationDataStructure 3, 2717
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number of columns
BasicMatrix, 464
Dynamic matrix, 460
MonotoneMatrixSearchTraits, 462
SvdTraits, 3486

number of connected components
Nef polyhedron S2, 1606
Topological explorer, 1582
Voronoi diagram 2, 2973

number of control point
Arr Bezier curve traits 2<AlgKernel, NtTraits>

::Curve 2, 2316
number of corners

MeshComplexWithFeatures 3InTriangulation 3,
3165, 3166

number of curves
Arrangement with history 2, 2371
EnvelopeDiagramEdge, 2423
EnvelopeDiagramVertex, 2421

number of darts
CombinatorialMap, 1922

number of edges
Arrangement 2, 2190
MeshComplexWithFeatures 3InTriangulation 3,

3165
Nef polyhedron 3, 2016
Periodic 3 triangulation 3, 2765
Topological explorer, 1582
Triangulation 3, 2640
TriangulationDataStructure 2, 2587
TriangulationDataStructure 3, 2717

number of enclosing constraints
Constrained triangulation plus 2, 2511

number of face cycles
Topological explorer, 1582

number of faces
Apollonius graph 2, 2935
Arrangement 2, 2190
DelaunayGraph 2, 2985
Segment Delaunay graph 2, 2881
Topological explorer, 1582
Triangulation 2, 2550
TriangulationDataStructure 2, 2587
Voronoi diagram 2, 2973

number of facets
Convex hull d, 1437
MeshComplex 3InTriangulation 3, 3160
Nef polyhedron 3, 2016
Periodic 3 triangulation 3, 2765
SurfaceMeshComplex 2InTriangulation 3, 3072
Triangulation 3, 2639
TriangulationDataStructure 3, 2717

number of finite cells
Triangulation 3, 2640

number of finite edges
Triangulation 3, 2640

number of finite facets
Triangulation 3, 2640

number of full dim faces
TriangulationDataStructure 2, 2587

number of halfedges
Arrangement 2, 2190
Nef polyhedron 3, 2016
Topological explorer, 1582
Voronoi diagram 2, 2973

number of halffacets
Nef polyhedron 3, 2016

number of hidden sites
Apollonius graph 2, 2934
ApolloniusGraphVertexBase 2, 2944

number of hidden vertices
Regular triangulation 2, 2532

number of holes
ArrangementDcelFace, 2241

number of induced edges
Arrangement with history 2, 2371

number of inner support points
Min annulus d, 3861

number of input sites
Segment Delaunay graph 2, 2881

number of intersected primitives
AABB tree, 3743

number of isolated vertices
Arrangement 2, 2189
ArrangementDcelFace, 2241

number of iterations
Quadratic program solution, 516

number of marked darts
CombinatorialMap, 1928

number of originating curves
Arrangement with history 2, 2371

number of outer support points
Min annulus d, 3862

number of output sites
Segment Delaunay graph 2, 2881

number of points
Approximate min ellipsoid d, 3889
Min annulus d, 3861
Min circle 2, 3803
Min ellipse 2, 3814
Min sphere d, 3847
Polytope distance d, 3945

number of points p
Polytope distance d, 3946

number of points q
Polytope distance d, 3946

number of polygons with holes
General polygon set 2, 1512
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number of real roots, 377–378
number of rows

BasicMatrix, 464
Dynamic matrix, 460
MonotoneMatrixSearchTraits, 462
SvdTraits, 3486

number of sedges
Nef polyhedron S2, 1605

number of sets
Union find, 4403

number of sface cycles
Nef polyhedron S2, 1606

number of sfaces
Nef polyhedron S2, 1605

number of shalfedges
Nef polyhedron S2, 1605

number of shalfloops
Nef polyhedron S2, 1605

number of sheets
Periodic 3 triangulation 3, 2764

number of simplices
Convex hull d, 1437

number of sloops
Nef polyhedron S2, 1605

number of solid components
Alpha shape 2, 2810
Alpha shape 3, 2845

number of stored cells
Periodic 3 triangulation 3, 2765

number of stored edges
Periodic 3 triangulation 3, 2765

number of stored facets
Periodic 3 triangulation 3, 2765

number of stored vertices
Periodic 3 triangulation 3, 2765

number of support points
Min annulus d, 3861
Min circle 2, 3803
Min ellipse 2, 3814
Min sphere d, 3847
Polytope distance d, 3946

number of support points p
Polytope distance d, 3946

number of support points q
Polytope distance d, 3946

number of surfaces
Envelope diagram 2<EnvTraits>::Face, 2454
Envelope diagram 2<EnvTraits>::Halfedge,

2453
Envelope diagram 2<EnvTraits>::Vertex, 2453

number of svertices
Nef polyhedron S2, 1605

number of unbounded faces
Arrangement 2, 2190

number of unmarked darts
CombinatorialMap, 1928

number of vertex attributes
Linear cell complex, 1977

number of vertices
Apollonius graph 2, 2934
Arrangement 2, 2189
Convex hull d, 1437
DelaunayGraph 2, 2985
Nef polyhedron 3, 2016
Periodic 3 triangulation 3, 2765
Regular triangulation 2, 2532
Segment Delaunay graph 2, 2881
Topological explorer, 1582
Triangulation 2, 2550
Triangulation 3, 2639
TriangulationDataStructure 2, 2587
TriangulationDataStructure 3, 2717
Voronoi diagram 2, 2973

number of vertices at infinity
Arrangement 2, 2189

number of visible sites
Apollonius graph 2, 2934

number of volumes
Nef polyhedron 3, 2016

Number type checker, 203–204
numerator

Arr rational function traits 2<
AlgebraicKernel d 1>::Curve 2, 2306

Arr rational function traits 2<
AlgebraicKernel d 1>::Point 2, 2309

Arr rational function traits 2<
AlgebraicKernel d 1>::X monotone -
curve 2, 2307

Gmpq, 177
Quotient, 201
Rational traits, 211

NW
ExtendedKernelTraits 2, 1587

NWCORNER, 1586

Object, 2654, 4167–4169
Object 2, 604
Object and primitive id, 3742, 3754
object cast, 4168
objective value

Quadratic program solution, 516
objective value denominator

Quadratic program solution, 516
objective value numerator

Quadratic program solution, 516
OBTUSE, 677
odt optimize mesh 3, 3135, 3229–3230
OFF to nef 3, 2011, 2035
Offset, 2761
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offset
Periodic 3TriangulationDSCellBase 3, 2789
Periodic 3TriangulationDSVertexBase 3, 2790

offset polygon 2, 1767–1768
oformat, 4430
OK, 3394, 3396
on algorithm finished

StraightSkeletonBuilder 2 Visitor, 1706
on anihiliation event processed

StraightSkeletonBuilder 2 Visitor, 1705
ON BOUNDARY , 677
ON BOUNDED SIDE, 677
on cleanup finished

StraightSkeletonBuilder 2 Visitor, 1705
on cleanup started

StraightSkeletonBuilder 2 Visitor, 1705
on contour edge entered

StraightSkeletonBuilder 2 Visitor, 1704
on contour vertex processed

StraightSkeletonBuilder 2 Visitor, 1704
on edge event created

StraightSkeletonBuilder 2 Visitor, 1704
on edge event processed

StraightSkeletonBuilder 2 Visitor, 1705
on error

StraightSkeletonBuilder 2 Visitor, 1706
on initialization finished

StraightSkeletonBuilder 2 Visitor, 1704
on initialization started

StraightSkeletonBuilder 2 Visitor, 1704
On merge, 1939
ON NEGATIVE SIDE, 679
ON ORIENTED BOUNDARY , 679
ON POSITIVE SIDE, 679
on propagation finished

StraightSkeletonBuilder 2 Visitor, 1705
on propagation started

StraightSkeletonBuilder 2 Visitor, 1705
on pseudo split event created

StraightSkeletonBuilder 2 Visitor, 1704
on pseudo split event processed

StraightSkeletonBuilder 2 Visitor, 1705
On split, 1939
on split event created

StraightSkeletonBuilder 2 Visitor, 1704
on split event processed

StraightSkeletonBuilder 2 Visitor, 1705
ON UNBOUNDED SIDE, 677
on vertex processed

StraightSkeletonBuilder 2 Visitor, 1705
OnCollapsing

EdgeCollapseSimplificationVisitor, 3299
OnCollected

EdgeCollapseSimplificationVisitor, 3298

one dart per cell
CombinatorialMap, 1924

one dart per incident cell
CombinatorialMap, 1924

Oneset iterator, 4183
OnFinished

EdgeCollapseSimplificationVisitor, 3298
OnNonCollapsable

EdgeCollapseSimplificationVisitor, 3299
OnSelected

EdgeCollapseSimplificationVisitor, 3298
OnStarted

EdgeCollapseSimplificationVisitor, 3298
OnStopConditionReached

EdgeCollapseSimplificationVisitor, 3298
OPEN HALFSPACE, 2015
operation

Extremal polygon area traits 2, 3918
Extremal polygon perimeter traits 2, 3920
ExtremalPolygonTraits 2, 3921

operator*, 759
operator+, 757
operator-, 758
operator<<, 1560, 1828, 2037, 2231, 4426
operator>>, 1561, 1829, 2038, 2229, 4419
opposite, 760

ArrangementDcelHalfedge, 2238
Circle 2, 615
ConvexHullPolyhedronHalfedge 3, 1414
Dart, 1931
Direction d, 1080
Halfedge, 1810, 2978
HalfedgeDSHalfedge, 1853
Line 2, 624
Line 3, 650
Line d, 1081
Plane 3, 652
Ray 2, 630
Ray 3, 660
Ray d, 1084
Segment 2, 632
Segment 3, 662
Segment d, 1086
Sphere 3, 668
Sphere circle, 1611
Sphere d, 1094
Sphere segment, 1609
Triangle 2, 634
TriangulatedSurfaceMesh, 3457

opposite edge, 4278
opposite facet

Convex hull d, 1435
opposite simplex

Convex hull d, 1435
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Delaunay d, 1448
optimal distances

distance of polytopes, 3944
width of 3D point set, 3936

Optimal convex decomposition 2, 1772
optimal convex partition 2, 1624, 1646–1648

postconditions, 1627, 1655
traits class, 1635, 1649–1650

default, 1659
OptimalConvexPartitionTraits 2, 1646, 1649–1650

model, 1659
optimality certifcate begin

Quadratic program solution, 520
optimality certifcate numerators begin

Quadratic program solution, 521
optimality certificate end

Quadratic program solution, 520
optimality certificate numerators end

Quadratic program solution, 521
optimization compiler flags, 44
ORANGE, 4417
Orientation, 679
orientation, 762, 1116

Arr circle segment traits 2<Kernel>::Curve 2,
2294

Arr circle segment traits 2<Kernel>::X -
monotone curve 2, 2295

Arr conic traits 2<RatKernel, AlgKer-
nel,NtTraits>::Curve 2, 2303

Circle 2, 615
ExtendedKernelTraits 2, 1588
General polygon 2, 1533
Min circle 2 traits 2, 3808
MinCircle2Traits, 3809
Polygon 2, 1475
Sphere 3, 667
Sphere d, 1093
Tetrahedron 3, 670
Triangle 2, 633

Orientation 2, 4015
orientation 2, 1468
orientation 2 object

AllFurthestNeighborsTraits 2, 3935
ApolloniusGraphTraits 2, 2950
Extremal polygon area traits 2, 3918
Extremal polygon perimeter traits 2, 3920
ExtremalPolygonTraits 2, 3922
PartitionIsValidTraits 2, 1654
PartitionTraits 2, 1656
PolygonTraits 2, 1471
RandomPolygonTraits 2, 4378
SegmentDelaunayGraphTraits 2, 2906
Triangulation euclidean traits xy 3, 2568
TriangulationTraits 2, 2542

orientation 3 object
Periodic 3DelaunayTriangulationTraits 3, 2787
TriangulationTraits 3, 2673

orientation d object
Kernel d, 1122

Oriented side, 679
oriented side, 1551–1552

Circle 2, 615
General polygon set 2, 1516, 1517
Hyperplane d, 1090
Line 2, 623
Plane 3, 653
Polygon 2, 1475
Sphere 3, 667
Sphere d, 1093
Tetrahedron 3, 670
Triangle 2, 633
Triangulation 2, 2552

oriented side 2, 1469
oriented side 2 object

SegmentDelaunayGraphTraits 2, 2906
oriented side of bisector test 2 object

ApolloniusGraphTraits 2, 2950
SegmentDelaunayGraphTraits 2, 2906

ORIGIN, 684–685
Origin, 684
origin

Monge form, 3482
Random convex set traits 2, 4379
RandomConvexSetTraits 2, 4377

originating curves begin
Arrangement with history 2, 2371

originating curves end
Arrangement with history 2, 2372

orthogonal direction
Hyperplane d, 1090
Plane 3, 652

Orthogonal incremental neighbor search, 3613–
3614

Orthogonal k neighbor search, 3615–3616
orthogonal pole

Sphere circle, 1611
orthogonal transform

Circle 2, 615
Sphere 3, 668

orthogonal vector, 761
Hyperplane d, 1089
Plane 3, 652

OrthogonalDistance, 3611–3612
Ostream iterator, 4425
other extremity

Dart, 1931
out

ArrangementOutputFormatter, 2335
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out edges
Topological explorer, 1580

out sedge
Halfedge, 2022
SVertex, 1613

outer boundary
GeneralPolygonWithHoles 2, 1521

outer ccb
Face, 2209

outer range contains
Fuzzy iso box, 3589
Fuzzy sphere, 3591
FuzzyQueryItem, 3587

outer support points begin
Min annulus d, 3862

outer support points end
Min annulus d, 3862

output
Min annulus d, 3865
Min circle 2, 3806
Min ellipse 2, 3816
Min sphere d, 3850
Polytope distance d, 3950

output identifier
ExtendedKernelTraits 2, 1589

Output rep, 4428
output sites begin

Segment Delaunay graph 2, 2882
output sites end

Segment Delaunay graph 2, 2882
output surface facets to polyhedron, 3090
output to medit

Mesh complex 3 in triangulation 3, 3195
OUTSIDE AFFINE HULL, 2522, 2549, 2637, 2700
OUTSIDE CONVEX HULL, 2522, 2549, 2637, 2700
overflow flag, 183
overlay, 2221–2222
OverlayTraits, 2223–2225
owns

Compact container, 4158
owns dereferencable

Compact container, 4159

p0
EdgeProfile, 3293

p1
EdgeProfile, 3293

PainterOstream, 4458–4459
parallel, 763, 1082, 1084, 1086
parallelogram

smallest enclosing, 3826
parameter range

Arr Bezier curve traits 2<AlgKernel, NtTraits>
::X monotone curve 2, 2318

parameter space in x
ArrangementDcelVertex, 2236
Vertex, 2206

parameter space in x 2 object
ArrangementOpenBoundaryTraits 2, 2361

parameter space in y
ArrangementDcelVertex, 2237
Vertex, 2206

parameter space in y 2 object
ArrangementOpenBoundaryTraits 2, 2361

Parameterization mesh feature extractor, 3375–
3376

Parameterization mesh patch 3, 3377–3382
Parameterization polyhedron adaptor 3, 3386–3392
ParameterizationMesh 3, 3371–3374
ParameterizationPatchableMesh 3, 3383–3384
parameterize, 3314, 3317, 3398–3399

Fixed border parameterizer 3, 3363
LSCM parameterizer 3, 3366
Parameterizer traits 3, 3394
ParameterizerTraits 3, 3397

parameterize border
BorderParameterizer 3, 3352
Circular border parameterizer 3, 3355
Square border parameterizer 3, 3403
Two vertices parameterizer 3, 3412

Parameterizer traits 3, 3393–3395
ParameterizerTraits 3, 3396–3397
parameters::exude, 3233
parameters::features, 3231
parameters::lloyd, 3237
parameters::no exude, 3234
parameters::no features, 3232
parameters::no lloyd, 3238
parameters::no odt, 3240
parameters::no perturb, 3236
parameters::odt, 3239
parameters::perturb, 3235
partition, 1623, 1627

valid, 1627
partition is valid 2, 1651–1652

traits class, 1657–1658
default, 1651

Partition is valid traits 2, 1657–1658
Partition traits 2, 1659–1660
PartitionIsValidTraits 2, 1651, 1653–1654

model, 1657
PartitionTraits 2, 1630, 1649, 1650, 1655–1656, 1668

model, 1659
pca basis

Monge via jet fitting, 3485
pca estimate normals, 3511
Periodic 3 Delaunay triangulation 3, 2776–2781
Periodic 3 offset 3, 2795
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Periodic 3 triangulation 3, 2761–2775
Iterator type, 2796
Locate type, 2797

Periodic 3 triangulation ds cell base 3, 2791
Periodic 3 triangulation ds vertex base 3, 2792
Periodic 3 triangulation hierarchy 3, 2782
Periodic 3 triangulation traits 3, 2788
Periodic 3DelaunayTriangulationTraits 3, 2783–

2787
Periodic 3Offset 3, 2793–2794
Periodic 3TriangulationDSCellBase 3, 2789
Periodic 3TriangulationDSVertexBase 3, 2790
Periodic point, 2761
periodic point

Periodic 3 triangulation 3, 2766
periodic points begin

Periodic 3 triangulation 3, 2771
periodic points end

Periodic 3 triangulation 3, 2771
Periodic segment, 2761
periodic segment

Periodic 3 triangulation 3, 2766
periodic segments begin

Periodic 3 triangulation 3, 2771
periodic segments end

Periodic 3 triangulation 3, 2771
periodic tetrahedra begin

Periodic 3 triangulation 3, 2771
periodic tetrahedra end

Periodic 3 triangulation 3, 2773
Periodic tetrahedron, 2761
periodic tetrahedron

Periodic 3 triangulation 3, 2766
Periodic triangle, 2761
periodic triangle

Periodic 3 triangulation 3, 2766
periodic triangles begin

Periodic 3 triangulation 3, 2771
periodic triangles end

Periodic 3 triangulation 3, 2771
permute, 332
perpendicular

Line 2, 624
Vector 2, 637

perpendicular line
Plane 3, 652

perpendicular plane
Line 3, 650

perturb mesh 3, 3135, 3225–3226
perturb points 2, 4359
pickplane

Geomview stream, 4447
Plane, 1820, 2654, 4291
plane

ConvexHullPolyhedronFacet 3, 1413
Face, 1818
Facet, 1807
HalfedgeDS face base, 1868
Halffacet, 2024
Sphere circle, 1611

Plane 3, 651–654, 1824, 1826, 3936, 3940
PLANE ONLY , 2015
Plane separator, 3617–3618
planes begin

Polyhedron 3, 1799
planes end

Polyhedron 3, 1799
Point, 1820, 1822, 1976, 1984, 2548, 2575, 2636,

2696, 2761, 3293, 3296–3298, 3531, 3742,
4286, 4291

point, 1977, 2701
ApolloniusSite 2, 2940
Arr linear traits 2<Kernel>::Curve 2, 2287
ArrangementDcelVertex, 2236
CellAttributeWithPoint, 1974
ConvexHullPolyhedronVertex 3, 1415
EnvelopeDiagramVertex, 2421
Explorer, 1584
Halfedge, 2021
HalfedgeDS vertex base, 1883
Line 2, 623
Line 3, 649
Line d, 1081
Periodic 3 triangulation 3, 2766
Plane 3, 652
Ray 2, 629
Ray 3, 659
Ray d, 1083
Segment 2, 631
Segment 3, 661
Segment d, 1085
SegmentDelaunayGraphSite 2, 2889
SegmentDelaunayGraphStorageSite 2, 2895
Sphere d, 1092
StraightSkeletonVertex 2, 1696
SVertex, 1613
Topological explorer, 1581
TriangulatedSurfaceMesh, 3457
Triangulation 3, 2640
TriangulationDataStructure 2::Vertex, 2602
TriangulationVertexBase 2, 2544
TriangulationVertexBase 3, 2685
Vertex, 1818, 2732
Vertex, 1812, 2020, 2205, 2980
Weighted point, 2575

point, 2D
generator, 4345

point, 3D
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generator, 4345
point, dD

generator, 4346
point set

3D width of, 3936
Point 2, 604, 625–628, 1472, 2187, 2199, 2286, 2307,

2330, 2334, 2352, 2369, 2419, 2566, 2879,
2933, 2971, 3425, 3429, 3431, 3789, 3923,
4014, 4379, 4476

Point 3, 655–658, 1824, 1826, 3206, 3482, 3757,
3790, 3936, 3940

Point and primitive id, 3742, 3754
Point container, 3619–3622
point container

Segment Delaunay graph 2, 2881
Point d, 1071–1074, 3582, 3584, 3588, 3590, 3593,

3595, 3598, 3601, 3605, 3613, 3615, 3619,
3625, 3627, 3629, 3631, 3633, 3635, 3644,
3791, 4003, 4012

Point d iterator, 3601
Point grabber, 4477
point grabber

Ipelet base, 4478
Point handle, 2879, 2893
point is in

Arr accessor, 2200
point of facet

Convex hull d, 1435
point of simplex

Convex hull d, 1435
Delaunay d, 1448

point property map
Distance for point adapter, 3636
Search traits adapter, 3634
Spatial sort traits adapter 2, 3789
Spatial sort traits adapter 3, 3790
Spatial sort traits adapter d, 3791

Point set 2, 3531–3533
Point type, 1586
Point with transformed distance, 3593, 3595, 3613,

3615
pointer, 4361, 4380–4390

Compact container traits, 4154
PointGenerator, 4366
points

Arr polyline traits 2<SegmentTraits>::Curve 2,
2289

points begin
Convex hull d, 1438
Delaunay d, 1450
Min annulus d, 3862
Min circle 2, 3804
Min ellipse 2, 3814
Min sphere d, 3847

Polyhedron 3, 1799
Sphere d, 1092
TriangulatedSurfaceMesh, 3456
Triangulation 2, 2557
Triangulation 3, 2650

points end
Convex hull d, 1438
Delaunay d, 1450
Min annulus d, 3862
Min circle 2, 3804
Min ellipse 2, 3814
Min sphere d, 3847
Polyhedron 3, 1799
Sphere d, 1092
TriangulatedSurfaceMesh, 3456
Triangulation 2, 2557
Triangulation 3, 2650

points on cube grid 3, 4364
points on cube grid d, 4365
Points on segment 2, 4350, 4361–4362
points on segment 2, 4360
points on square grid 2, 4363
points p begin

Polytope distance d, 3946
points p end

Polytope distance d, 3946
points q begin

Polytope distance d, 3946
points q end

Polytope distance d, 3946
PointSetTraits, 3534
Poisson reconstruction function, 3094, 3108–3109
POLAR, 1270
polygon

largest inscribed, 3912, 3914
strongly convex, 1352, 1391–1392
valid, 1644

polygon convex
see also convex polygon

polygon partitioning, 1627
assertion flags, 1627
convex, 1624

approximately optimal, 1624, 1630, 1636
optimal, 1624, 1646
valid, 1633, 1651

valid, 1644, 1651, 1661
y-monotone, 1623, 1639, 1662

valid, 1651, 1665
polygon y-monotone

see also y-monotone polygon
Polygon 2, 1472–1478, 1537, 4477
polygon area 2, 1479
Polygon offset builder 2, 1739–1741
Polygon offset builder traits 2, 1738
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Polygon set 2, 1535
Polygon with holes 2, 1534
PolygonConvexDecomposition 2, 1770
PolygonIsValid, 1661

model, 1643–1645
PolygonOffsetBuilderTraits 2, 1710–1711
polygons

assertion flags, 1459
polygons with holes

General polygon set 2, 1512
PolygonTraits 2, 1461–1471, 1479–1481
Polyhedral mesh domain 3, 3209
Polyhedral mesh domain with features 3, 3210–

3211
polyhedron

strongly convex, 1423
see also width of 3D point set

Polyhedron 3, 1795–1806
Polyhedron 3>, 3125–3126
Polyhedron incremental builder 3, 1814–1817
Polyhedron items 3, 1820–1821
Polyhedron items with id 3, 4291–4292
Polyhedron min items 3, 1822
Polyhedron traits 3, 1824–1825
Polyhedron traits with normals 3, 1826–1827
PolyhedronItems 3, 1818–1819
PolyhedronTraits 3, 1823
PolyhedronTraitsWithKernel 3, 3385
Polynomial, 324–325
polynomial

Arr algebraic segment traits 2<Coefficient>
::Curve 2, 2320

Polynomial 1, 2305–2307, 2309, 2310, 2312
Polynomial 1 2, 1229
Polynomial 1 3, 1326
Polynomial d, 261
Polynomial for circles 2 2, 1231
Polynomial for spheres 2 3, 1328
polynomial subresultants, 371
polynomial subresultants with cofactors, 372
Polynomial traits d, 326
Polynomial type generator, 329
Polynomials for lines 3, 1330
PolynomialTraits d, 262–266
PolynomialTraits d::Canonicalize, 282
PolynomialTraits d::Compare, 292
PolynomialTraits d::ConstructCoefficientConstIteratorRange,

272
PolynomialTraits d::ConstructInnermostCoefficientConstIteratorRange,

273
PolynomialTraits d::ConstructPolynomial, 267–268
PolynomialTraits d::Degree, 277
PolynomialTraits d::DegreeVector, 279
PolynomialTraits d::Differentiate, 283

PolynomialTraits d::Evaluate, 284
PolynomialTraits d::EvaluateHomogeneous, 285
PolynomialTraits d::GcdUpToConstantFactor, 301
PolynomialTraits d::GetCoefficient, 269
PolynomialTraits d::GetInnermostCoefficient, 270
PolynomialTraits d::InnermostLeadingCoefficient,

281
PolynomialTraits d::IntegralDivisionUpToConstantFactor,

302
PolynomialTraits d::Invert, 307
PolynomialTraits d::IsSquareFree, 297
PolynomialTraits d::IsZeroAt, 288
PolynomialTraits d::IsZeroAtHomogeneous, 289
PolynomialTraits d::LeadingCoefficient, 280
PolynomialTraits d::MakeSquareFree, 296
PolynomialTraits d::MonomialRepresentation, 271
PolynomialTraits d::Move, 276
PolynomialTraits d::MultivariateContent, 294
PolynomialTraits d::Negate, 306
PolynomialTraits d::Permute, 274
PolynomialTraits d::PolynomialSubresultants, 314–

315
PolynomialTraits d::PolynomialSubresultantsWithCofactors,

316–317
PolynomialTraits d::PrincipalSturmHabichtSequence,

323
PolynomialTraits d::PrincipalSubresultants, 318
PolynomialTraits d::PseudoDivision, 298
PolynomialTraits d::PseudoDivisionQuotient, 299
PolynomialTraits d::PseudoDivisionRemainder, 300
PolynomialTraits d::Resultant, 312–313
PolynomialTraits d::Scale, 310
PolynomialTraits d::ScaleHomogeneous, 311
PolynomialTraits d::Shift, 305
PolynomialTraits d::SignAt, 290
PolynomialTraits d::SignAtHomogeneous, 291
PolynomialTraits d::SquareFreeFactorize, 295
PolynomialTraits d::SquareFreeFactorizeUpToConstantFactor,

304
PolynomialTraits d::SturmHabichtSequence, 319–

320
PolynomialTraits d::SturmHabichtSequenceWithCofactors,

321–322
PolynomialTraits d::Substitute, 286
PolynomialTraits d::SubstituteHomogeneous, 287
PolynomialTraits d::Swap, 275
PolynomialTraits d::TotalDegree, 278
PolynomialTraits d::Translate, 308
PolynomialTraits d::TranslateHomogeneous, 309
PolynomialTraits d::UnivariateContent, 293
PolynomialTraits d::UnivariateContentUpToConstantFactor,

303
polytope

distance of polytopes, 3944
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Polytope distance d, 3944–3950
creation, 3945
global functions, 3950

output, 3950
implementation, 3950
member functions, 3945–3950

access, 3945
miscellaneous, 3950
modifiers, 3948
predicates, 3948
validity check, 3949

requirements, 3944
traits class

requirements, 3952
see also Min sphere annulus d traits 3
see also Polytope distance d traits 2
see also Polytope distance d traits 3
see also Polytope distance d traits d

types, 3944
Polytope distance d traits 2, 3953–3954
Polytope distance d traits 3, 3955–3956
Polytope distance d traits d, 3957–3958
PolytopeDistanceDTraits, 3951–3952
pop

Kinetic::RootStack, 4123
pop back

In place list, 4150
pop failure time

Kinetic::Certificate, 4102
pop front

In place list, 4150
POSITIVE, 678
possibly, 4243
possibly not, 4243
post edge flip

Kinetic::DelaunayTriangulationVisitor 3, 4052
post facet flip

Kinetic::DelaunayTriangulationVisitor 3, 4053
post flip

Kinetic::DelaunayTriangulationVisitor 2, 4051
post insert vertex

Kinetic::DelaunayTriangulationVisitor 2, 4051
Kinetic::DelaunayTriangulationVisitor 3, 4052
Kinetic::SortVisitor, 4077

post move
Kinetic::RegularTriangulationVisitor 3, 4071

post remove vertex
Kinetic::DelaunayTriangulationVisitor 2, 4051
Kinetic::DelaunayTriangulationVisitor 3, 4052
Kinetic::SortVisitor, 4077

post swap
Kinetic::SortVisitor, 4077

Power diagram, 2670
power diagram, 2469, 2533

power test
Regular triangulation 2, 2534

Power test 2, 4015
power test 2 object

RegularTriangulationTraits 2, 2525
power test 3 object

Regular triangulation euclidean traits 3, 2682
RegularTriangulationTraits 3, 2679

PQQ, 3261
PQQMask 3, 3264
pre edge flip

Kinetic::DelaunayTriangulationVisitor 3, 4052
pre facet flip

Kinetic::DelaunayTriangulationVisitor 3, 4053
pre flip

Kinetic::DelaunayTriangulationVisitor 2, 4051
pre insert vertex

Kinetic::DelaunayTriangulationVisitor 2, 4051
Kinetic::DelaunayTriangulationVisitor 3, 4052
Kinetic::SortVisitor, 4077

pre move
Kinetic::RegularTriangulationVisitor 3, 4071

pre remove vertex
Kinetic::DelaunayTriangulationVisitor 2, 4051
Kinetic::DelaunayTriangulationVisitor 3, 4052
Kinetic::SortVisitor, 4077

pre swap
Kinetic::SortVisitor, 4077

precision
Real timer, 4401
Timer, 4402

predecessor, 4172
predicates

Approximate min ellipsoid d, 3891
Min annulus d, 3863
Min circle 2, 3804
Min ellipse 2, 3814
Min sphere d, 3848
Min sphere of spheres d, 3870
Polytope distance d, 3948

PRETTY , 4409, 4424
prev

ArrangementDcelHalfedge, 2238
ConvexHullPolyhedronHalfedge 3, 1414
Halfedge, 1810, 2207
HalfedgeDSHalfedge, 1853
SHalfedge, 2027
TriangulatedSurfaceMesh, 3457

prev edge, 4279
prev link, 4147
prev on vertex

Halfedge, 1810
previous

Halfedge, 2978
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Topological explorer, 1580
primary bisector

StraightSkeletonVertex 2, 1696
Primitive, 3742
principal curvatures

Monge form, 3482
principal sturm habicht sequence, 376
principal subresultants, 373
print, 179
print error message

Ipelet base, 4478
print linear program, 553
print nonnegative linear program, 555
print nonnegative quadratic program, 554
print quadratic program, 552
print statistics

Convex hull d, 1437
Nef polyhedron S2, 1606
Topological explorer, 1582

print stream lines
Stream lines 2, 3430

priority
Kinetic::EventQueue, 4105

process
Event, 4107

process next
Kinetic::EventQueue, 4106

Profile counter, 4400
project along d axis, 1117
Project facet, 4201
Project next, 4205
Project next opposite, 4207
Project normal, 4203
Project opposite prev, 4208
Project plane, 4204
Project point, 4202
Project prev, 4206
Project vertex, 4200
projection

Line 2, 623
Line 3, 649
Line d, 1082
Plane 3, 652

Projection object, 4195
Projection traits xy 3, 604–605
propagating flip

Constrained Delaunay triangulation 2, 2500
Protect FPU rounding, 227–228
protected run

Ipelet base, 4478
pseudo division, 356
pseudo division quotient, 357
pseudo division remainder, 358
PTQ, 3261

PTQMask 3, 3265
push back

Arr polyline traits 2<SegmentTraits>::Curve 2,
2289

Constrained Delaunay triangulation 2, 2498,
2499

Constrained triangulation 2, 2504, 2505
Constrained triangulation plus 2, 2510
Delaunay triangulation 2, 2517
In place list, 4150
Inverse index, 4190
Largest empty iso rectangle 2, 3924
Polygon 2, 1474
Random access adaptor, 4191
Regular triangulation 2, 2529
Triangulation 2, 2553
Union find, 4403
VertexContainer 2, 1712

push front
In place list, 4150

Qt widget Nef 3, 2039–2040
Qt widget Nef S2, 1621–1622
quadratic program

Polytope distance d, 3950
quadratic interpolation, 3998–3999
Quadratic program, 525–527

creation, 526
Quadratic program from iterators, 532–533

creation, 532
Quadratic program from mps, 528–531

creation, 529
Quadratic program options, 548–549

creation, 548
Quadratic program pricing strategy, 550–551
Quadratic program solution, 514–523

creation, 515
Quadratic program status, 524
QuadraticProgram, 500–502
Quadruple, 4229–4230
query circulator or iterator, 4343
Query item, 3582, 3593, 3595, 3605, 3613, 3615,

3635
quickhull, 2D, 1361
quickhull, 3D, 1398, 1408–1410
Quotient, 201–202
quotient cartesian to homogeneous, 764

r
Arr conic traits 2<RatKernel, AlgKer-

nel,NtTraits>::Curve 2, 2303
radical line, 766
radical plane, 765
radius

Min sphere of points d traits 2, 3882
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Min sphere of points d traits d, 3886
Min sphere of spheres d, 3869
Min sphere of spheres d traits 2, 3876
Min sphere of spheres d traits 3, 3878, 3884
Min sphere of spheres d traits d, 3880
MinSphereOfSpheresTraits, 3874

Random, 4374–4376
random convex set, 4368
random perturbations, 4346
random simple polygon, 4370
Random access adaptor, 4191
Random access circulator, 4323
Random access circulator base, 4330
Random access circulator ptrbase, 4332
Random access circulator tag, 4330
Random access value adaptor, 4192
random collinear points 2, 4367
random convex set

preconditions, 4368
traits class, 4379

default, 4368
traits requirements, 4377

random convex set 2, 4368–4369
Random convex set traits 2, 4379
Random points in ball d, 4380
Random points in cube 3, 4381
Random points in cube d, 4382
Random points in disc 2, 4383
Random points in sphere 3, 4384
Random points in square 2, 4385
Random points on circle 2, 4386
Random points on segment 2, 4387
Random points on sphere 3, 4388
Random points on sphere d, 4389
Random points on square 2, 4390
random polygon 2, 4370–4372

traits class
default, 4370

traits requirements, 4378
random selection, 4373
random simplify point set, 3512
RandomConvexSetTraits 2, 4377

model, 4379
randomization

Min circle 2, 3806
Min ellipse 2, 3816

RandomPolygonTraits 2, 4378
Range, 4338–4339
range

PointGenerator, 4366
Points on segment 2, 4361

range search, 3538–3542
Delaunay d, 1449
Point set 2, 3532, 3533

Range segment tree traits set 2, 3663
Range segment tree traits set 3, 3664
Range tree d, 3665–3667
Range tree k, 3668–3669
Range tree traits map 2, 3670
Range tree traits map 3, 3671
RangeSearchTraits, 3624
RangeSegmentTreeTraits k, 3661–3662
rank

LinearAlgebraTraits d, 1061
rational rotation approximation, 767
Rational traits, 211
raw cells begin

TriangulationDataStructure 3, 2726
raw cells end

TriangulationDataStructure 3, 2726
Ray, 2528, 2654
ray

Arr linear traits 2<Kernel>::Curve 2, 2287
Explorer, 1584

Ray 2, 629–630, 2286, 4014, 4476
Ray 3, 659–660, 3757
Ray d, 1083–1084
ray shoot

Nef polyhedron 2, 1575
Nef polyhedron S2, 1607

ray shoot down
ArrangementVerticalRayShoot 2, 2344

ray shoot to boundary
Nef polyhedron 2, 1575
Nef polyhedron S2, 1607

ray shoot up
ArrangementVerticalRayShoot 2, 2343

rbegin
Arr polyline traits 2<SegmentTraits>::Curve 2,

2289
Compact container, 4157
Multiset, 4162

read, 2228
read active objects

Ipelet base, 4478
read arrangement begin

ArrangementInputFormatter, 2331
read arrangement end

ArrangementInputFormatter, 2331
read ccb halfedges begin

ArrangementInputFormatter, 2333
read ccb halfedges end

ArrangementInputFormatter, 2333
read curve

ArrangementWithHistoryInputFormatter, 2376
read curve begin

ArrangementWithHistoryInputFormatter, 2376
read curve end
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ArrangementWithHistoryInputFormatter, 2376
read curves begin

ArrangementWithHistoryInputFormatter, 2376
read curves end

ArrangementWithHistoryInputFormatter, 2376
read edge begin

ArrangementInputFormatter, 2332
read edge end

ArrangementInputFormatter, 2332
read edges begin

ArrangementInputFormatter, 2331
read edges end

ArrangementInputFormatter, 2331
read face begin

ArrangementInputFormatter, 2332
read face data

ArrangementInputFormatter, 2333
read face end

ArrangementInputFormatter, 2332
read faces begin

ArrangementInputFormatter, 2331
read faces end

ArrangementInputFormatter, 2331
read halfedge index

ArrangementInputFormatter, 2332
read halfegde data

ArrangementInputFormatter, 2332
read holes begin

ArrangementInputFormatter, 2332
read holes end

ArrangementInputFormatter, 2332
read induced edges begin

ArrangementWithHistoryInputFormatter, 2376
read induced edges end

ArrangementWithHistoryInputFormatter, 2376
read inner ccb begin

ArrangementInputFormatter, 2332
read inner ccb end

ArrangementInputFormatter, 2333
read isolated vertices begin

ArrangementInputFormatter, 2333
read isolated vertices end

ArrangementInputFormatter, 2333
read off points, 3513–3514
read off points and normals, 3513
read outer ccb begin

ArrangementInputFormatter, 2332
read outer ccb end

ArrangementInputFormatter, 2332
read point

ArrangementInputFormatter, 2331
read size

ArrangementInputFormatter, 2331
read vertex begin

ArrangementInputFormatter, 2331
read vertex data

ArrangementInputFormatter, 2331
read vertex end

ArrangementInputFormatter, 2331
read vertex index

ArrangementInputFormatter, 2331
read vertices begin

ArrangementInputFormatter, 2331
read vertices end

ArrangementInputFormatter, 2331
read x monotone curve

ArrangementInputFormatter, 2332
read xyz points, 3515–3516
read xyz points and normals, 3515
Real embeddable traits, 134
Real timer, 4401
RealEmbeddable, 123
RealEmbeddableTraits, 124–125
RealEmbeddableTraits::Abs, 127
RealEmbeddableTraits::Compare, 131
RealEmbeddableTraits::IsNegative, 130
RealEmbeddableTraits::IsPositive, 129
RealEmbeddableTraits::IsZero, 126
RealEmbeddableTraits::Sgn, 128
RealEmbeddableTraits::ToDouble, 132
RealEmbeddableTraits::ToInterval, 133
realizing point p

Polytope distance d, 3947
realizing point p coordinates begin

Polytope distance d, 3947
realizing point p coordinates end

Polytope distance d, 3947
realizing point q

Polytope distance d, 3947
realizing point q coordinates begin

Polytope distance d, 3947
realizing point q coordinates end

Polytope distance d, 3947
rebuild

AABB tree, 3742
recompute tight bounding box

Point container, 3620
rectangle

smallest enclosing, 3824
rectangular centers, 3838
rectangular p center 2, 3838–3839
Rectangular p center default traits 2, 3840–3842
RectangularPCenterTraits 2, 3843–3845
rectilinear centers, 3838
RED, 4417
red

Color, 4417
Ref counted, 4122
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reference, 4361, 4380–4390
reference point

AABBPrimitive, 3750
refine Delaunay mesh 2, 3036
refine mesh

Delaunay mesher 2, 3026
refine mesh 3, 3132, 3220–3222
Reflection, 686
REGULAR, 2806, 2840, 2856, 3070
Regular grid 2, 3425–3426
regular neighbor coordinates 2, 4006–4007
Regular triangulation 2, 2527–2534
Regular triangulation 3, 2664–2671
Regular triangulation adaptation traits 2, 2994
Regular triangulation caching degeneracy removal

policy 2, 3003
Regular triangulation cell base 3, 2699
Regular triangulation degeneracy removal policy 2,

2999
Regular triangulation euclidean traits 2, 2535
Regular triangulation euclidean traits 3, 2680–2683
Regular triangulation face base 2, 2537
Regular triangulation filtered traits 2, 2536
Regular triangulation filtered traits 3, 2702
Regular triangulation vertex base 2, 2538
regularization

Nef polyhedron 2, 1573
Nef polyhedron 3, 2017
Nef polyhedron S2, 1605

REGULARIZED, 2806, 2840
RegularTriangulationCellBase 3, 2691–2692
RegularTriangulationFaceBase 2, 2523
RegularTriangulationTraits 2, 2524–2525

model, 4014
RegularTriangulationTraits 3, 2677–2679
RegularTriangulationVertexBase 2, 2526
RELATIVE INDEXING, 1814
relocate holes in new face

Arr accessor, 2203
relocate in new face

Arr accessor, 2202
relocate isolated vertices in new face

Arr accessor, 2203
remove

Apollonius graph 2, 2937
Apollonius graph hierarchy 2, 2954
Constrained Delaunay triangulation 2, 2499
Constrained triangulation 2, 2505
Delaunay triangulation 2, 2518
Delaunay triangulation 3, 2656, 2657
Fixed alpha shape 3, 2857
In place list, 4151
Interval skip list, 3549
Largest empty iso rectangle 2, 3925

Periodic 3 Delaunay triangulation 3, 2778
Regular triangulation 2, 2530
Regular triangulation 3, 2667
Triangulation 2, 2553

remove cell, 1946
remove cell<CMap, i>, 1946
remove cluster

Delaunay triangulation 3, 2657
remove constrained edge

Constrained triangulation 2, 2505
remove constraint

Constrained Delaunay triangulation 2, 2499
Constrained triangulation plus 2, 2510

remove curve, 2375
remove decrease dimension

TriangulationDataStructure 3, 2722
remove degree 2

ApolloniusGraphDataStructure 2, 2943
Triangulation data structure 2, 2605

remove degree 3
Triangulation 2, 2556
TriangulationDataStructure 2, 2590

remove dim down
TriangulationDataStructure 2, 2590

remove edge, 2219
Arrangement 2, 2197
Arrangement with history 2, 2372

remove edge ex
Arr accessor, 2204

remove first
Triangulation 2, 2556
TriangulationDataStructure 2, 2590

remove from complex
MeshComplex 3InTriangulation 3, 3160
MeshComplexWithFeatures 3InTriangulation 3,

3165
SurfaceMeshComplex 2InTriangulation 3, 3072

remove from maximal dimension simplex
TriangulationDataStructure 3, 2722

remove halfedge
HalfedgeDS items decorator, 1877

remove incident constraints
Constrained Delaunay triangulation 2, 2499
Constrained triangulation 2, 2505

remove isolated vertex
Arrangement 2, 2196

remove outliers, 3517
remove second

Triangulation 2, 2556
TriangulationDataStructure 2, 2590

remove tip
HalfedgeDS items decorator, 1876

remove unconnected vertices
Polyhedron incremental builder 3, 1816
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remove vertex, 2220
rend

Arr polyline traits 2<SegmentTraits>::Curve 2,
2289

Compact container, 4157
Multiset, 4162

reorient
ConstrainedTriangulationFaceBase 2, 2493
TriangulationDataStructure 3, 2724
TriangulationDSFaceBase 2, 2595

replace
Multiset, 4164

replace column
Dynamic matrix, 460
MonotoneMatrixSearchTraits, 462

Representation, 4399
request value from user

Ipelet base, 4480
reserve

Compact container, 4156
HalfedgeDS, 1846
Polyhedron 3, 1797
Random access adaptor, 4191

reset
Real timer, 4401
Timer, 4402

resident size
Memory sizer, 4398

Residue, 234–235
restore state

Random, 4375
result type, 145, 146, 238, 239, 267, 269, 270, 272–

285, 288–294, 296–303, 305–311, 313, 400,
402–405, 407, 408, 411, 415–417, 424,
426–432, 434, 435, 437, 440, 441, 445–450,
595, 2310, 2312, 3296, 3297, 4407

resultant, 370
reverse

In place list, 4151
reverse orientation

General polygon 2, 1533
Polygon 2, 1474

Ridge approximation, 3451–3452
Ridge halfhedge, 3453
Ridge line, 3453
Ridge order, 3454
Ridge order 3, 3454
Ridge order 4, 3454
Ridge type, 3455
RIGHT , 677
right

Arr Bezier curve traits 2<AlgKernel, NtTraits>
::X monotone curve 2, 2318

Arr circle segment traits 2<Kernel>::X -
monotone curve 2, 2295

Arr conic traits 2<RatKernel, AlgKer-
nel,NtTraits>:: X monotone curve 2,
2304

Arr rational function traits 2<
AlgebraicKernel d 1>::X monotone -
curve 2, 2308

Circular arc 2, 1175
EnvelopeDiagramEdge, 2423
EnvelopeDiagramVertex, 2421
Halfedge, 2979
Line arc 2, 1176

right face exits
EdgeProfile, 3294

right parameter space in x
Arr rational function traits 2<

AlgebraicKernel d 1>::Curve 2, 2307
Arr rational function traits 2<

AlgebraicKernel d 1>::X monotone -
curve 2, 2308

right parameter space in y
Arr rational function traits 2<

AlgebraicKernel d 1>::X monotone -
curve 2, 2308

RIGHT TURN, 681
right turn, 768
right vertex

Polygon 2, 1475
right vertex 2, 1480

requirements, 1480
right x

Arr rational function traits 2<
AlgebraicKernel d 1>::Curve 2, 2307

Arr rational function traits 2<
AlgebraicKernel d 1>::X monotone -
curve 2, 2308

RIGHTFRAME, 1586
rightmost

EnvelopeDiagram 1, 2420
RingNumberType, 148
rollback

Polyhedron incremental builder 3, 1816
root

Kd tree, 3600
SpatialTree, 3642
Sqrt extension, 221

Root for circles 2 2, 1227
Root for spheres 2 3, 1333
root of , 122
Root of 2, 224
Root of traits, 216
RootOf 2, 214–215
rotating caliper, 3824, 3826, 3828
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Rotation, 687
round

Gmpfi, 188
Gmpfr, 182

row
Matrix, 1065

row begin
Matrix, 1065

row dimension
Matrix, 1065, 3367

row end
Matrix, 1065

RT , 588, 597, 602, 603, 1169, 1259, 2701, 3936, 3940
Runge kutta integrator 2, 3427

s
Arr conic traits 2<RatKernel, AlgKer-

nel,NtTraits>::Curve 2, 2303
s iterator to

Compact container, 4157
same set

Union find, 4404
save state

Random, 4375
scale, 368
scale homogeneous, 369
Scaling, 687
scripts

cgal create CMakeLists, 36
cgal create cmake script, 37

SE
ExtendedKernelTraits 2, 1587

search
Kd tree, 3599
Kd tree node, 3602
SpatialTree, 3641

Search traits, 3631–3632
Search traits 2, 3625–3626
Search traits 3, 3627–3628
Search traits adapter, 3633–3634
Search traits d, 3629–3630
searching

in monotone matrices, 458
in sorted matrices, 465

SearchTraits, 3623
second, 4227, 4229
second argument type, 145, 146, 269, 270, 284, 292,

299–302, 305, 308, 310, 313, 403, 407,
412–417, 429, 430, 434, 437–439, 442–450,
2310, 2312

Second of pair property map, 4309–4310
second type, 4227, 4229
SECORNER, 1586
seeds begin

Delaunay mesher 2, 3026

seeds end
Delaunay mesher 2, 3026

Segment, 2548, 2636, 2761, 3531
segment

Arr linear traits 2<Kernel>::Curve 2, 2287
Periodic 3 triangulation 3, 2766
SegmentDelaunayGraphSite 2, 2889
Triangulation 2, 2560
Triangulation 3, 2640

Segment 2, 604, 631–632, 1472, 2286, 2566, 4014,
4476

Segment 3, 661–662, 3757
Segment d, 1085–1087
Segment Delaunay graph 2, 2879–2887
Segment Delaunay graph adaptation traits 2, 2995
Segment Delaunay graph caching degeneracy -

removal policy 2, 3004
Segment Delaunay graph degeneracy removal -

policy 2, 3000
Segment Delaunay graph filtered traits 2, 2910–

2911
Segment Delaunay graph filtered traits without -

intersections 2, 2912–2913
Segment Delaunay graph hierarchy 2, 2914–2915
Segment Delaunay graph hierarchy vertex base 2,

2917
Segment Delaunay graph site 2, 2892
Segment Delaunay graph storage site 2, 2897
Segment Delaunay graph traits 2, 2908
Segment Delaunay graph traits without -

intersections 2, 2909
Segment Delaunay graph vertex base 2, 2902
Segment grabber, 4477
segment grabber

Ipelet base, 4479
Segment tree d, 3672–3673
Segment tree k, 3674–3676
Segment tree traits map 2, 3677
Segment tree traits map 3, 3678
SegmentDelaunayGraphDataStructure 2, 2898–2899
SegmentDelaunayGraphHierarchyVertexBase 2,

2916
SegmentDelaunayGraphSite 2, 2888–2891
SegmentDelaunayGraphStorageSite 2, 2893–2896
SegmentDelaunayGraphTraits 2, 2903–2907
SegmentDelaunayGraphVertexBase 2, 2900–2901
Segments in hierarchy tag, 2915
Self , 1936, 1976, 2187, 2369, 2452
self-intersection

iso-oriented boxes, 3709
Separator, 3601
separator

Kd tree node, 3602
set
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Kinetic::ActiveObjectsTable, 4097
Kinetic::EventQueue, 4105
Min annulus d, 3864
Min sphere d, 3848
Min sphere of spheres d, 3870
Polygon 2, 1473
Polytope distance d, 3948
SvdTraits, 3486

set a
Quadratic program, 526
Quadratic program from mps, 529

set alpha
Alpha shape 2, 2807
Alpha shape 3, 2841
AlphaShapeCell 3, 2836
AlphaShapeFace 2, 2812

set alpha max
Alpha status, 2848

set alpha mid
Alpha status, 2848

set alpha min
Alpha status, 2848

set ascii mode, 4409, 4431
Geomview stream, 4449

set attribute
CombinatorialMap, 1925

set auto validation
Quadratic program options, 549

set b
Quadratic program, 526
Quadratic program from mps, 530

set bad faces
Delaunay mesher 2, 3026

set bg color
Geomview stream, 4447

set binary mode, 4409, 4432
Geomview stream, 4449

set boundary
ArrangementDcelVertex, 2237

set c
Quadratic program, 527
Quadratic program from mps, 530

set c0
Quadratic program, 527
Quadratic program from mps, 530

set cell
TriangulationDSVertexBase 3, 2738
Vertex, 2732

set classification type
FixedAlphaShapeCell 3, 2854
FixedAlphaShapeVertex 3, 2855

set coef
Matrix, 3367

set constraint

ConstrainedTriangulationFaceBase 2, 2493
set constraints

ConstrainedTriangulationFaceBase 2, 2493
set contained

GeneralPolygonSetDcelFace, 1544
set corners index

Parameterization polyhedron adaptor 3, 3391
ParameterizationPatchableMesh 3, 3384

set corners parameterized
Parameterization polyhedron adaptor 3, 3391
ParameterizationPatchableMesh 3, 3384

set corners tag
Parameterization polyhedron adaptor 3, 3391
ParameterizationPatchableMesh 3, 3384

set corners uv
Parameterization polyhedron adaptor 3, 3391
ParameterizationPatchableMesh 3, 3384

set criteria
Delaunay mesher 2, 3026

set current event number
Kinetic::Simulator, 4134

set current prime
Residue, 234

set current time
Kinetic::Simulator, 4132

set curve
ArrangementDcelHalfedge, 2240

set cutting dimension
Plane separator, 3617
SpatialSeparator, 3640

set cutting value
Plane separator, 3617
SpatialSeparator, 3640

set d
Quadratic program, 527
Quadratic program from mps, 530

set dart
CellAttribute, 1932

set data
Arr curve data traits 2<Tr,

XData,Mrg,CData,Cnv>::Curve 2, 2325
Arr curve data traits 2<Tr,

XData,Mrg,CData,Cnv>::X monotone
curve 2, 2326

Arr extended face, 2252
Arr extended halfedge, 2251
Arr extended vertex, 2250
Arr surface data traits 3<Tr,

XData,Mrg,CData,Cnv>::Xy monotone -
surface 3, 2450

Env surface data traits 3<Traits, Xy-
Data,SData,Cnv>::Surface 3, 2449

set default precision, 182
Gmpfi, 188
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set default rndmode, 182
set dimension

MeshComplex 3InTriangulation 3, 3160
MeshVertexBase 3, 3189
TriangulationDataStructure 2, 2587
TriangulationDataStructure 3, 2717

set direction
ArrangementDcelHalfedge, 2239

set direction of time
Kinetic::Simulator, 4134

set domain
Periodic 3 triangulation 3, 2764
Periodic 3DelaunayTriangulationTraits 3, 2787

set down
ApolloniusGraphHierarchyVertexBase 2, 2956
SegmentDelaunayGraphHierarchyVertexBase 2,

2916
TriangulationHierarchyVertexBase 2, 2540
TriangulationHierarchyVertexBase 3, 2690

set echo
Geomview stream, 4449

set edge color
Geomview stream, 4447

set end priority
Kinetic::EventQueue, 4106

set error behaviour, 13
set error handler, 15
set event

Kinetic::Simulator, 4134
set face

ApolloniusGraphVertexBase 2, 2945
ArrangementDcelHalfedge, 2239
ArrangementDcelHole, 2243
ArrangementDcelIsolatedVertex, 2244
HalfedgeDS items decorator, 1877
HalfedgeDSHalfedge, 1853
SegmentDelaunayGraphVertexBase 2, 2901
TriangulationDataStructure 2::Vertex, 2602

set face color
Geomview stream, 4447

set face halfedge
HalfedgeDS items decorator, 1877

set face in face loop
HalfedgeDS items decorator, 1877

set facet classification type
FixedAlphaShapeCell 3, 2854

set facet on surface
SurfaceMeshCellBase 3, 3067

set facet status
AlphaShapeCell 3, 2836

set facet surface center
MeshCellBase 3, 3188
SurfaceMeshCellBase 3, 3068

set facet visited

MeshCellBase 3, 3188
SurfaceMeshCellBase 3, 3067

set halfedge
ArrangementDcelFace, 2242
ArrangementDcelVertex, 2237
Facet, 1808
HalfedgeDSFace, 1850
HalfedgeDSVertex, 1856
Vertex, 1813

set halfedge seaming
Parameterization polyhedron adaptor 3, 3391
ParameterizationPatchableMesh 3, 3383

set has certificates
Kinetic::Delaunay triangulation 3, 4045

set hidden
RegularTriangulationVertexBase 2, 2526

set hole
ArrangementDcelHalfedge, 2239

Set ieee double precision, 225–226
set in

ArrangementInputFormatter, 2330
set in domain

DelaunayMeshFaceBase 2, 3023
set index

MeshComplex 3InTriangulation 3, 3160
MeshVertexBase 3, 3189

set infinite vertex
Triangulation 2, 2561

set interval
Kinetic::Simulator, 4132

set is editing
Kinetic::ActiveObjectsTable, 4097

set is Gabriel
Alpha status, 2848

set is on chull
Alpha status, 2848

set isolated vertex
ArrangementDcelVertex, 2237

set iterator
ArrangementDcelHole, 2243
ArrangementDcelIsolatedVertex, 2244

set l
Quadratic program, 526
Quadratic program from mps, 530

set left
EnvelopeDiagramEdge, 2424
EnvelopeDiagramVertex, 2422

set leftmost
EnvelopeDiagram 1, 2420

set line width
Geomview stream, 4448

set lower bound
Kd tree rectangle, 3603

set mesh uv from system
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Fixed border parameterizer 3, 3364
set meshing info

MeshVertexBase 3, 3189
set mode, 4409, 4433

Alpha shape 2, 2807
Alpha shape 3, 2841

set neighbor
Cell, 2731
TriangulationDataStructure 2::Face, 2598
TriangulationDSCellBase 3, 2735
TriangulationDSFaceBase 2, 2595

set neighbors
Cell, 2731
TriangulationDataStructure 2::Face, 2598
TriangulationDSCellBase 3, 2735
TriangulationDSFaceBase 2, 2595

set next
ArrangementDcelHalfedge, 2239
HalfedgeDSHalfedge, 1853

set offset
Periodic 3TriangulationDSVertexBase 3, 2790

set offsets
Periodic 3TriangulationDSCellBase 3, 2789

set opposite
ArrangementDcelHalfedge, 2239
HalfedgeDSHalfedge, 1853

set out
ArrangementOutputFormatter, 2334

set p
Polytope distance d, 3948

set point
ArrangementDcelVertex, 2237
EnvelopeDiagramVertex, 2422
TriangulationDataStructure 2::Vertex, 2602
TriangulationVertexBase 2, 2544
TriangulationVertexBase 3, 2685
Vertex, 2732

set pretty mode, 4410, 4434
set prev

ArrangementDcelHalfedge, 2239
HalfedgeDS items decorator, 1877
HalfedgeDSHalfedge, 1853

set pricing strategy
Quadratic program options, 549

set q
Polytope distance d, 3948

set r
Quadratic program, 526
Quadratic program from mps, 530

set range
AlphaShapeVertex 2, 2817

set ranges
AlphaShapeFace 2, 2812

set raw

Geomview stream, 4449
set relative precision of to double

Lazy exact nt, 199
set right

EnvelopeDiagramEdge, 2424
EnvelopeDiagramVertex, 2422

set rightmost
EnvelopeDiagram 1, 2420

set saturation ratio
Stream lines 2, 3429

set seeds
Delaunay mesher 2, 3026

set separating distance
Stream lines 2, 3429

set site
ApolloniusGraphVertexBase 2, 2945
SegmentDelaunayGraphVertexBase 2, 2901

set size
Mesh constant domain field 3, 3206

set source
Arr conic traits 2<RatKernel, AlgKer-

nel,NtTraits>::Curve 2, 2303
set subdomain index

MeshCellBase 3, 3187
set surface patch index

MeshCellBase 3, 3188
set target

Arr conic traits 2<RatKernel, AlgKer-
nel,NtTraits>::Curve 2, 2303

set time
Kinetic::InstantaneousKernel, 4115

set trace
Geomview stream, 4449

set u
Quadratic program, 527
Quadratic program from mps, 530

set unbounded
ArrangementDcelFace, 2242

set up
ApolloniusGraphHierarchyVertexBase 2, 2956
SegmentDelaunayGraphHierarchyVertexBase 2,

2916
TriangulationHierarchyVertexBase 2, 2540
TriangulationHierarchyVertexBase 3, 2690

set upper bound
Kd tree rectangle, 3603

set verbosity
Quadratic program options, 548

set vertex
ArrangementDcelHalfedge, 2239
Cell, 2731
HalfedgeDS items decorator, 1877
HalfedgeDSHalfedge, 1853
TriangulationDataStructure 2::Face, 2598
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TriangulationDSCellBase 3, 2735
TriangulationDSFaceBase 2, 2595

set vertex attribute
Linear cell complex, 1978

set vertex color
Geomview stream, 4447

set vertex halfedge
HalfedgeDS items decorator, 1877

set vertex in vertex loop
HalfedgeDS items decorator, 1877

set vertex index
Parameterization mesh patch 3, 3381
Parameterization polyhedron adaptor 3, 3390
ParameterizationMesh 3, 3374

set vertex parameterized
Parameterization mesh patch 3, 3381
Parameterization polyhedron adaptor 3, 3390
ParameterizationMesh 3, 3374

set vertex radius
Geomview stream, 4448

set vertex seaming
Parameterization polyhedron adaptor 3, 3390
ParameterizationPatchableMesh 3, 3383

set vertex tag
Parameterization mesh patch 3, 3381
Parameterization polyhedron adaptor 3, 3390
ParameterizationMesh 3, 3374

set vertex uv
Parameterization mesh patch 3, 3381
Parameterization polyhedron adaptor 3, 3390
ParameterizationMesh 3, 3374

set vertices
Cell, 2731
TriangulationDataStructure 2::Face, 2598
TriangulationDSCellBase 3, 2735
TriangulationDSFaceBase 2, 2595

set visited
GeneralPolygonSetDcelFace, 1544

set warning behaviour, 14
set warning handler, 15
set wired

Geomview stream, 4448
set xy

Regular grid 2, 3425
setArc

CircularArcGraphicsItem, 4466
setConstraintsPen

ConstrainedTriangulationGraphicsItem, 4468
setEdgesPen

CircularArcGraphicsItem, 4466
TriangulationGraphicsItem, 4467
VoronoiGraphicsItem, 4469

setup inner vertex relations
Fixed border parameterizer 3, 3363

setVerticesPen
TriangulationGraphicsItem, 4467

setVisibleEdges
TriangulationGraphicsItem, 4467
VoronoiGraphicsItem, 4469

setVisibleVertices
TriangulationGraphicsItem, 4467

sew
CombinatorialMap, 1926

SFace, 1619, 2031–2032
sface cycle begin

SFace, 1619, 2031
sface cycle end

SFace, 1619, 2031
SFace cycle iterator, 1620, 2034
SHalfedge, 1615–1616, 2026–2028
SHalfloop, 1617–1618, 2029–2030
shalfloop

Nef polyhedron S2, 1607
sharpness

Ridge line, 3453
shells begin

Volume, 2025
shells end

Volume, 2025
shift, 363
short int, 159
show help

Ipelet base, 4478
shrink factor

SkinSurfaceTraits 3, 3120
shrink to quadratic size

Dynamic matrix, 461
MonotoneMatrixSearchTraits, 462

sibson c1 interpolation, 3994–3995
sibson c1 interpolation square, 3995
sibson gradient fitting, 4008–4009
sibson gradient fitting nn 2, 4008
sibson gradient fitting rn 2, 4009
side of bounded circle, 769
side of bounded circle 2 object

AlphaShapeTraits 2, 2815
side of bounded orthogonal sphere 3 object

Regular triangulation euclidean traits 3, 2682
side of bounded sphere, 770, 1118
side of bounded sphere 3 object

Periodic 3DelaunayTriangulationTraits 3, 2787
side of cell

Periodic 3 triangulation 3, 2770
Triangulation 3, 2644

side of circle
Delaunay triangulation 3, 2657, 2658

side of edge
Triangulation 3, 2644
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side of facet
Triangulation 3, 2644

side of oriented circle, 771
Delaunay triangulation 2, 2520
Triangulation 2, 2552

side of oriented circle 2 object
DelaunayTriangulationTraits 2, 2514
Triangulation euclidean traits xy 3, 2568
TriangulationTraits 2, 2542

side of oriented sphere, 772, 1119
side of oriented sphere 3 object

DelaunayTriangulationTraits 3, 2675
Periodic 3DelaunayTriangulationTraits 3, 2787

side of power circle
Regular triangulation 3, 2668

side of power segment
Regular triangulation 3, 2668

side of power sphere
Regular triangulation 3, 2667

side of sphere
Delaunay triangulation 3, 2657
Periodic 3 Delaunay triangulation 3, 2778

Sign, 678
sign, 136, 196

Gmpfi, 190
Gmpfr, 185
Gmpz, 175
Sqrt extension, 221

sign at, 346
sign at homogeneous, 349
sign of determinant

LinearAlgebraTraits d, 1060
signed inf distance 2 object

Rectangular p center default traits 2, 3842
RectangularPCenterTraits 2, 3844

Simple cartesian, 602
Simple homogeneous, 603
simplest rational in interval, 212
Simplex, 2637, 2688
simplex

Convex hull d, 1435
Delaunay d, 1448

simplices begin
Convex hull d, 1437
Delaunay d, 1450

simplices end
Convex hull d, 1437
Delaunay d, 1450

simplify, 112
Sqrt extension, 221

simulator handle
Kinetic::SimulationTraits, 4125

SINGULAR, 2806, 2840, 2856, 3070
site

ApolloniusGraphVertexBase 2, 2944
SegmentDelaunayGraphStorageSite 2, 2895
SegmentDelaunayGraphVertexBase 2, 2901
Vertex, 2981

Site 2, 2879, 2933, 2971
site inserter object

AdaptationPolicy 2, 2991
sites begin

Apollonius graph 2, 2935
Voronoi diagram 2, 2975

sites end
Apollonius graph 2, 2936
Voronoi diagram 2, 2975

Sixtuple, 4226
Size, 2187, 2330, 2334
size

AABB tree, 3743
Arr consolidated curve data traits 2<Traits,

Data>:: Data container, 2328
Arr polyline traits 2<SegmentTraits>::Curve 2,

2289
Compact container, 4157
ConstRange, 4340
General polygon 2, 1533
Gmpz, 175
In place list, 4149
Kd tree, 3600
Kd tree node, 3602
Multiset, 4162
Point container, 3622
Polygon 2, 1476
Range, 4338
SpatialTree, 3642
SvdTraits, 3486
Union find, 4403
VertexContainer 2, 1712

size of border edges
HalfedgeDS, 1849
Polyhedron 3, 1805

size of border halfedges
HalfedgeDS, 1849
Polyhedron 3, 1804

size of faces
ArrangementDcel, 2233
GeneralPolygonSetDcel, 1542
HalfedgeDS, 1846

size of facets
Polyhedron 3, 1798

size of halfedges
ArrangementDcel, 2232
GeneralPolygonSetDcel, 1542
HalfedgeDS, 1846
Polyhedron 3, 1798

size of holes
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ArrangementDcel, 2233
GeneralPolygonSetDcel, 1542

size of isolated vertices
ArrangementDcel, 2233
GeneralPolygonSetDcel, 1542

size of vertices
ArrangementDcel, 2232
GeneralPolygonSetDcel, 1542
HalfedgeDS, 1846
Polyhedron 3, 1798

size type, 2548, 2637, 2762, 2879, 2934, 2971, 3070,
3158, 4398

sizing field
MeshEdgeCriteria 3, 3180

Skin surface 3, 3113, 3121
Skin surface traits 3, 3123
SkinSurface 3, 3119
SkinSurfaceTraits 3, 3120
Sliding fair, 3637–3638
Sliding midpoint, 3639
Small side angle bisector decomposition 2, 1771
SMALLER, 678
smallest enclosing

annulus, 3860
circle, 3802
ellipse, 3812
parallelogram, 3826
rectangle, 3824
sphere, 3846
sphere of spheres, 3867
strip, 3828

snap 2 object
SnapRoundingTraits 2, 2399

snap rounding 2, 2396–2397
Snap rounding traits 2, 2401
SnapRoundingTraits 2, 2398–2400
snext

SHalfedge, 1616, 2027
solve

SvdTraits, 3486
solve linear program, 545
solve nonnegative linear program, 547
solve nonnegative quadratic program, 546
solve quadratic program, 544
solver

Eigen solver traits, 3410
solves linear program

Quadratic program solution, 519
solves nonnegative linear program

Quadratic program solution, 519
solves nonnegative quadratic program

Quadratic program solution, 519
solves quadratic program

Quadratic program solution, 519

sort
In place list, 4151

sorted matrix search, 465
sorted matrix search, 465–467
Sorted matrix search traits adaptor, 468–469
SortedMatrixSearchTraits, 470–471
source

Arr Bezier curve traits 2<AlgKernel, NtTraits>
::X monotone curve 2, 2318

Arr circle segment traits 2<Kernel>::Curve 2,
2293

Arr circle segment traits 2<Kernel>::X -
monotone curve 2, 2295

Arr conic traits 2<RatKernel, AlgKer-
nel,NtTraits>::Curve 2, 2303

Arr linear traits 2<Kernel>::Curve 2, 2287
Arr rational function traits 2<

AlgebraicKernel d 1>::X monotone -
curve 2, 2308

Circular arc 2, 1174
Circular arc 3, 1269
ExtendedKernelTraits 2, 1587
Halfedge, 2022, 2207, 2979
Line arc 2, 1176
Line arc 3, 1265
Points on segment 2, 4361
Ray 2, 629
Ray 3, 659
Ray d, 1083
Segment 2, 631
Segment 3, 661
Segment d, 1085
SegmentDelaunayGraphSite 2, 2889
SHalfedge, 1616, 2027
Sphere segment, 1609
Topological explorer, 1579

source of crossing site
SegmentDelaunayGraphSite 2, 2890
SegmentDelaunayGraphStorageSite 2, 2895

source of supporting site
SegmentDelaunayGraphSite 2, 2890
SegmentDelaunayGraphStorageSite 2, 2895

source parameter space in x
Arr rational function traits 2<

AlgebraicKernel d 1>::X monotone -
curve 2, 2307

source parameter space in y
Arr rational function traits 2<

AlgebraicKernel d 1>::X monotone -
curve 2, 2307

source site
SegmentDelaunayGraphSite 2, 2890
SegmentDelaunayGraphStorageSite 2, 2895

Source skeleton, 1722
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source x
Arr rational function traits 2<

AlgebraicKernel d 1>::X monotone -
curve 2, 2308

SparseLinearAlgebraTraits d, 3400
spatial sort, 3773
Spatial sort traits adapter 2, 3789
Spatial sort traits adapter 3, 3790
Spatial sort traits adapter d, 3791
SpatialSeparator, 3640
SpatialSortingTraits 2, 3775
SpatialSortingTraits 3, 3778
SpatialSortingTraits d, 3781
SpatialTree, 3641–3642
sphere

smallest enclosing, 3846
smallest enclosing sphere of spheres, 3867
see also smallest enclosing annulus
see also smallest enclosing circle

Sphere 3, 666–668
Sphere circle, 1611–1612
sphere circle

Sphere segment, 1609
Sphere d, 1092–1094, 3584, 3625, 3627, 3629
Sphere point, 1608
Sphere segment, 1609–1610
Spherical kernel 3, 1259
SphericalKernel, 1255–1258
SphericalKernel::BoundedSide 3, 1298
SphericalKernel::CircularArc 3, 1267
SphericalKernel::CircularArcPoint 3, 1261
SphericalKernel::CompareTheta 3, 1290
SphericalKernel::CompareThetaZ 3, 1291
SphericalKernel::CompareX 3, 1285
SphericalKernel::CompareXY 3, 1288
SphericalKernel::CompareXYZ 3, 1289
SphericalKernel::CompareY 3, 1286
SphericalKernel::CompareZ 3, 1287
SphericalKernel::CompareZAtTheta 3, 1292
SphericalKernel::CompareZToRight 3, 1293
SphericalKernel::ComputeApproximateAngle 3,

1308
SphericalKernel::ComputeApproximateSquaredLength

3, 1307
SphericalKernel::ComputeCircularX 3, 1304
SphericalKernel::ComputeCircularY 3, 1305
SphericalKernel::ComputeCircularZ 3, 1306
SphericalKernel::ConstructBbox 3, 1282
SphericalKernel::ConstructCircle 3, 1274
SphericalKernel::ConstructCircularArc 3, 1277
SphericalKernel::ConstructCircularArcPoint 3, 1275
SphericalKernel::ConstructCircularMaxVertex 3,

1279

SphericalKernel::ConstructCircularMinVertex 3,
1278

SphericalKernel::ConstructCircularSourceVertex 3,
1280

SphericalKernel::ConstructCircularTargetVertex 3,
1281

SphericalKernel::ConstructLine 3, 1273
SphericalKernel::ConstructLineArc 3, 1276
SphericalKernel::ConstructPlane 3, 1271
SphericalKernel::ConstructSphere 3, 1272
SphericalKernel::DoIntersect 3, 1297
SphericalKernel::DoOverlap 3, 1296
SphericalKernel::Equal 3, 1294
SphericalKernel::GetEquation, 1309
SphericalKernel::HasOn 3, 1295
SphericalKernel::HasOnBoundedSide 3, 1299
SphericalKernel::HasOnUnboundedSide 3, 1300
SphericalKernel::Intersect 3, 1302–1303
SphericalKernel::IsThetaMonotone 3, 1301
SphericalKernel::LineArc 3, 1264
SphericalKernel::MakeThetaMonotone 3, 1284
SphericalKernel::Split 3, 1283
splice

In place list, 4150, 4151
split

Kd tree rectangle, 3604
Multiset, 4165
Point container, 3619

split 2 object
ArrangementXMonotoneTraits 2, 2274

split edge
Arrangement 2, 2196
Arrangement with history 2, 2372
Polyhedron 3, 1801

split edge ex
Arr accessor, 2203

split face
HalfedgeDS decorator, 1863

split facet
Polyhedron 3, 1800

split loop
HalfedgeDS decorator, 1865
Polyhedron 3, 1802

split primitives along x axis object
AABBTraits, 3755

split primitives along y axis object
AABBTraits, 3756

split primitives along z axis object
AABBTraits, 3756

split vertex
HalfedgeDS decorator, 1863
Polyhedron 3, 1800
SegmentDelaunayGraphDataStructure 2, 2899
Triangulation data structure 2, 2605
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Splitter, 3643
sprev

SHalfedge, 1616, 2027
sqrt, 120, 195, 202

Gmpfi, 189
Gmpfr, 183

Sqrt3, 3262
Sqrt3 mask 3, 3272
Sqrt3 subdivision, 3262
Sqrt3Mask 3, 3267
Sqrt extension, 220–223
square, 110

Gmpfi, 189
Gmpfr, 184

Square border arc length parameterizer 3, 3401–
3402

Square border parameterizer 3, 3403–3404
Square border uniform parameterizer 3, 3405–3406
square free factorize, 353
square free factorize up to constant factor, 362
squared area, 773

Triangle 3, 672
squared distance, 774, 1120

AABB tree, 3744, 3746
Polytope distance d, 3947

squared distance denominator
Polytope distance d, 3947

squared distance numerator
Polytope distance d, 3947

squared inner radius
Min annulus d, 3862

squared inner radius numerator
Min annulus d, 3863

squared length
Segment 2, 631
Segment 3, 662
Segment d, 1086
Vector 2, 638
Vector 3, 676
Vector d, 1077

squared length divided by pi square
Circle 3, 664

squared outer radius
Min annulus d, 3863

squared outer radius numerator
Min annulus d, 3863

squared radii denominator
Min annulus d, 3863

squared radius, 775–776
Circle 2, 614
Circle 3, 664
Circular arc 2, 1174
Circular arc 3, 1269
Min sphere d, 3847

Sphere 3, 667
Sphere d, 1093

STANDARD, 1586
standard line

ExtendedKernelTraits 2, 1587
standard point

ExtendedKernelTraits 2, 1587
standard ray

ExtendedKernelTraits 2, 1587
star hole

Triangulation 2, 2556
TriangulationDataStructure 2, 2591

start
Real timer, 4401
Timer, 4402

static object
Kinetic::InstantaneousKernel, 4115

statistics
Incremental neighbor search, 3594
K neighbor search, 3596
Kd tree, 3600
Orthogonal incremental neighbor search, 3614
Orthogonal k neighbor search, 3616

status
Quadratic program solution, 516

step by step conforming Delaunay
Triangulation conformer 2, 3038

step by step conforming Gabriel
Triangulation conformer 2, 3038

step by step refine mesh
Delaunay mesher 2, 3027

stop
Real timer, 4401
Timer, 4402

StopPredicate, 3295
storage site

SegmentDelaunayGraphVertexBase 2, 2901
STORED, 2763, 2796
STORED COVER DOMAIN, 2763, 2796
Straight skeleton 2, 1717
Straight skeleton builder 2, 1726–1729
Straight skeleton builder traits 2, 1725
Straight skeleton converter 2, 1722–1723
Straight skeleton face base 2, 1720
Straight skeleton halfedge base 2, 1719
Straight skeleton items converter 2, 1721
Straight skeleton vertex base 2, 1718
StraightSkeleton 2, 1695
StraightSkeletonBuilder 2 Visitor, 1704–1706
StraightSkeletonBuilderTraits 2, 1707–1709
StraightSkeletonFace 2, 1701
StraightSkeletonHalfedge 2, 1699–1700
StraightSkeletonItemsConverter 2, 1702–1703
StraightSkeletonVertex 2, 1696–1698
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Stream lines 2, 3429–3430
StreamLinesTraits 2, 3428
strength

Ridge line, 3453
strictly ordered along line

ExtendedKernelTraits 2, 1589
strictly ordered ccw

ExtendedKernelTraits 2, 1589
strip

smallest enclosing, 3828
strongly convex, 1349, 1392, 1397, 1427

polygon, 1391–1392
polyhedron, 1423

sturm habicht sequence, 374
sturm habicht sequence with cofactors, 375
subconstraints begin

Constrained triangulation plus 2, 2511
subconstraints end

Constrained triangulation plus 2, 2511
subdivide skin surface mesh 3, 3114

SkinSurface 3, 3119
subdivide skin surface mesh 3<SkinSurface 3,

Polyhedron 3>, 3126
Subdivision method 3, 3261–3263
Subdomain index, 3194
subdomain index

MeshCellBase 3, 3187
MeshComplex 3InTriangulation 3, 3161
MeshDomain 3, 3170

Sublayer, 3679
substitute, 344
substitute homogeneous, 347
successor, 4173
sup, 4238

Gmpfi, 188
Interval, 3551
Interval nt, 195
Uncertain, 4237

sup closed
Interval skip list interval, 3552

support set
Min annulus d, 3860, 3861
Min circle 2, 3802–3804
Min ellipse 2, 3812–3814
Min sphere d, 3847
Polytope distance d, 3944, 3946

support begin
Min sphere of spheres d, 3869

support end
Min sphere of spheres d, 3869

support point
Min circle 2, 3804
Min ellipse 2, 3814

support points begin

Min annulus d, 3862
Min circle 2, 3804
Min ellipse 2, 3814
Min sphere d, 3847

support points end
Min annulus d, 3862
Min circle 2, 3804
Min ellipse 2, 3814
Min sphere d, 3847

support points p begin
Polytope distance d, 3946

support points p end
Polytope distance d, 3946

support points p indices begin
Polytope distance d, 3946

support points p indices end
Polytope distance d, 3946

support points q begin
Polytope distance d, 3946

support points q end
Polytope distance d, 3946

support points q indices begin
Polytope distance d, 3946

support points q indices end
Polytope distance d, 3946

supported compilers, 22
supporting circle

Arr circle segment traits 2<Kernel>::Curve 2,
2294

Arr circle segment traits 2<Kernel>::X -
monotone curve 2, 2295

Circular arc 2, 1174
Circular arc 3, 1269

supporting curve
Arr Bezier curve traits 2<AlgKernel, NtTraits>

::X monotone curve 2, 2318
supporting line

Arr circle segment traits 2<Kernel>::Curve 2,
2294

Arr circle segment traits 2<Kernel>::X -
monotone curve 2, 2295

Arr linear traits 2<Kernel>::Curve 2, 2287
Line arc 2, 1176
Line arc 3, 1265
Ray 2, 630
Ray 3, 660
Ray d, 1083
Segment 2, 632
Segment 3, 662
Segment d, 1086

supporting plane
Circle 3, 664
Circular arc 3, 1269
Triangle 3, 671
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supporting site
SegmentDelaunayGraphSite 2, 2889
SegmentDelaunayGraphStorageSite 2, 2894,

2895
Supports cell dart, 1939
Supports face plane, 1820, 1822, 4291
Supports removal, 1867, 1880, 1882
Supports vertex point, 1820, 1822, 4291
surface

Envelope diagram 2<EnvTraits>::Face, 2454
Envelope diagram 2<EnvTraits>::Halfedge,

2454
Envelope diagram 2<EnvTraits>::Vertex, 2453

Surface 3, 3065
Surface data, 2448
Surface mesh cell base 3, 3066
Surface mesh complex 2 in triangulation 3, 3069
Surface mesh default criteria 3, 3076
Surface mesh default triangulation 3, 3077
Surface mesh simplification::Count ratio stop -

predicate, 3306
Surface mesh simplification::Count stop predicate,

3305
Surface mesh simplification::edge collapse, 3300–

3302
Surface mesh simplification::Edge collapse visitor -

base, 3303
Surface mesh simplification::Edge length cost, 3307
Surface mesh simplification::Edge profile, 3304
Surface mesh simplification::LindstromTurk cost,

3309
Surface mesh simplification::LindstromTurk -

placement, 3310
Surface mesh simplification::Midpoint placement,

3308
Surface mesh traits generator 3, 3080
Surface mesh vertex base 3, 3087
surface neighbor coordinates 3, 4016, 4018

Voronoi intersection 2 traits 3, 4016–4019
surface neighbor coordinates certified 3, 4017, 4018
surface neighbors 3, 4020–4023
surface neighbors certified 3, 4020, 4021
Surface patch index, 3194
surface patch index

MeshCellBase 3, 3187
MeshComplex 3InTriangulation 3, 3161
MeshDomain 3, 3170

SurfaceMeshCellBase 3, 3067–3068
SurfaceMeshComplex 2InTriangulation 3, 3070–

3074
SurfaceMeshFacetsCriteria 3, 3075
SurfaceMeshTraits 3, 3078–3079
SurfaceMeshTriangulation 3, 3081–3086
SurfaceMeshVertexBase 3, 3088–3089

surfaces begin
Envelope diagram 2<EnvTraits>::Face, 2454
Envelope diagram 2<EnvTraits>::Halfedge,

2454
Envelope diagram 2<EnvTraits>::Vertex, 2453

surfaces end
Envelope diagram 2<EnvTraits>::Face, 2454
Envelope diagram 2<EnvTraits>::Halfedge,

2454
Envelope diagram 2<EnvTraits>::Vertex, 2453

SvdTraits, 3486–3487
SVertex, 1613–1614
SW

ExtendedKernelTraits 2, 1587
swap, 333

AdaptationPolicy 2, 2991
Apollonius graph 2, 2939
Apollonius graph hierarchy 2, 2955
Compact container, 4156
Constrained triangulation plus 2, 2509
DelaunayGraph 2, 2987
In place list, 4149
MeshComplex 3InTriangulation 3, 3159
Multiset, 4162, 4164
Periodic 3 triangulation 3, 2763
Point container, 3620
Segment Delaunay graph 2, 2886
Triangulation 2, 2550
Triangulation 3, 2638
TriangulationDataStructure 2, 2587
TriangulationDataStructure 3, 2717
Voronoi diagram 2, 2977

swap columns
Matrix, 1065

swap rows
Matrix, 1065

SWCORNER, 1586
symmetric difference, 1557–1558

General polygon set 2, 1515, 1516
Nef polyhedron 2, 1574
Nef polyhedron 3, 2018
Nef polyhedron S2, 1605

t
Arr conic traits 2<RatKernel, AlgKer-

nel,NtTraits>::Curve 2, 2303
Tag 3, 3451
Tag 4, 3451
Tag false, 4233
Tag order, 3451
Tag true, 4232
target

Arr Bezier curve traits 2<AlgKernel, NtTraits>
::X monotone curve 2, 2318
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Arr circle segment traits 2<Kernel>::Curve 2,
2293

Arr circle segment traits 2<Kernel>::X -
monotone curve 2, 2295

Arr conic traits 2<RatKernel, AlgKer-
nel,NtTraits>::Curve 2, 2303

Arr linear traits 2<Kernel>::Curve 2, 2287
Arr rational function traits 2<

AlgebraicKernel d 1>::X monotone -
curve 2, 2308

Circular arc 2, 1175
Circular arc 3, 1269
ExtendedKernelTraits 2, 1588
Halfedge, 2022, 2207, 2979
Line arc 2, 1176
Line arc 3, 1265
Points on segment 2, 4361
Segment 2, 631
Segment 3, 661
Segment d, 1085
SegmentDelaunayGraphSite 2, 2889
SHalfedge, 1616, 2027
Sphere segment, 1609
Topological explorer, 1579

target of crossing site
SegmentDelaunayGraphSite 2, 2890
SegmentDelaunayGraphStorageSite 2, 2896

target of supporting site
SegmentDelaunayGraphSite 2, 2890
SegmentDelaunayGraphStorageSite 2, 2895

target parameter space in x
Arr rational function traits 2<

AlgebraicKernel d 1>::X monotone -
curve 2, 2308

target parameter space in y
Arr rational function traits 2<

AlgebraicKernel d 1>::X monotone -
curve 2, 2308

target site
SegmentDelaunayGraphSite 2, 2890
SegmentDelaunayGraphStorageSite 2, 2895

Target skeleton, 1722
target x

Arr rational function traits 2<
AlgebraicKernel d 1>::X monotone -
curve 2, 2308

tds
Apollonius graph 2, 2934
DelaunayGraph 2, 2985
Periodic 3 triangulation 3, 2764
Segment Delaunay graph 2, 2881
Triangulation 2, 2550
Triangulation 3, 2639

tds.file input, 2593

tds.file output, 2593
TDS data, 2734
tds data

TriangulationDSCellBase 3, 2736
test facet

Polyhedron incremental builder 3, 1816
Tetrahedron, 2636, 2761
tetrahedron

Periodic 3 triangulation 3, 2767
Triangulation 3, 2640

Tetrahedron 3, 669–670
theta extremal point, 1316
theta extremal points, 1320
third, 4227, 4229
third order coefficients

Monge form, 3482
third type, 4227, 4229
THREADED, 1270
Threetuple, 4224
THROW EXCEPTION, 13
tight bounding box

Point container, 3621
Time, 4135
time

Kinetic::InstantaneousKernel, 4115
Real timer, 4401
StraightSkeletonVertex 2, 1696
Timer, 4402

time as nt
Kinetic::InstantaneousKernel, 4115

time is nt
Kinetic::InstantaneousKernel, 4115

TIME LIMIT REACHED, 3241
Timer, 4402
to 2d

Plane 3, 653
to 3d

Plane 3, 653
to double, 140, 195, 202, 4135

Arr algebraic segment traits 2<Coefficient>
::Point 2, 2320

Arr rational function traits 2<
AlgebraicKernel d 1>::Point 2, 2309

Gmpfr, 184
Gmpz, 176

to double exp
Gmpfi, 189
Gmpfr, 184

to integer exp
Gmpfr, 184

to interval, 141, 4135
Gmpfi, 189
Gmpfr, 184

to interval exp
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Gmpfi, 189
Gmpfr, 184

to rational, 213
to vector

Line 2, 624
Line 3, 650
Ray 2, 630
Ray 3, 660
Segment 2, 631
Segment 3, 662

top
Kinetic::RootStack, 4123

top vertex
Polygon 2, 1475

top vertex 2, 1481
requirements, 1481

TOPFRAME, 1586
Topological explorer, 1578–1582
total degree, 336
Traits, 1976, 3923
traits

Approximate min ellipsoid d, 3890
General polygon set 2, 1512
Kd tree, 3600
Kinetic::Sort, 4074
Largest empty iso rectangle 2, 3924
Min annulus d, 3865
Min circle 2, 3805
Min ellipse 2, 3816
Min sphere d, 3849
Min sphere of spheres d, 3870
Polyhedron 3, 1799
Polytope distance d, 3950

transform, 1477
Aff transformation 2, 611
Aff transformation 3, 642
Direction 2, 618
Direction 3, 644
Direction d, 1080
Hyperplane d, 1090
Iso cuboid 3, 648
Iso rectangle 2, 621
Line 2, 624
Line 3, 650
Line d, 1082
Nef polyhedron 3, 2018
Plane 3, 654
Point 2, 627
Point 3, 657
Point d, 1073
Ray 2, 630
Ray 3, 660
Ray d, 1084
Segment 2, 632

Segment 3, 662
Segment d, 1086
Tetrahedron 3, 670
Triangle 2, 634
Triangle 3, 672
Vector 2, 637
Vector 3, 675
Vector d, 1077

transformed distance
Euclidean distance, 3582, 3583
Euclidean distance sphere point, 3584, 3585
GeneralDistance, 3592
Manhattan distance iso box point, 3605
OrthogonalDistance, 3611, 3612
Weighted Minkowski distance, 3645

translate, 366
translate homogeneous, 367
Translation, 688
transpose

LinearAlgebraTraits d, 1059
traversal category, 4281, 4283
Tree, 3594, 3596, 3614, 3616
Tree anchor, 3684
tree interval traits, 3680–3681
tree items

Kd tree node, 3602
tree point traits, 3682–3683
Triangle, 2548, 2636, 2761
triangle

largest inscribed, 3912, 3914
triangle

Periodic 3 triangulation 3, 2767
TriangleAccessor 3, 3193
Triangulation 2, 2560
Triangulation 3, 2640

Triangle 2, 604, 633–634, 2566, 4014, 4477
Triangle 3, 671–672, 3216
Triangle accessor 3, 3216
Triangle handle, 3216
Triangle iterator, 3216
TriangleAccessor 3, 3193
triangles begin

TriangleAccessor 3, 3193
triangles end

TriangleAccessor 3, 3193
Triangular field 2, 3431
TriangulatedSurfaceMesh, 3456–3457
Triangulation, 2508
triangulation

Kinetic::Delaunay triangulation 2, 4043
Kinetic::Delaunay triangulation 3, 4044
MeshComplex 3InTriangulation 3, 3159
SurfaceMeshComplex 2InTriangulation 3, 3072

Triangulation 2, 2547–2562
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Triangulation 2<Traits, Tds>
Locate type, 2522

Triangulation 3, 2636–2653
Locate type, 2700

Triangulation cell base 3, 2693
Triangulation cell base with circumcenter 3, 2695
Triangulation cell base with info 3, 2694
Triangulation conformer 2, 3037–3039
Triangulation cw ccw 2, 2563–2564
Triangulation data structure, 2548, 2594, 2600,

2636, 2730, 2732, 2734, 2737, 2761, 2879,
2933

Triangulation data structure 2, 2604–2605
Triangulation data structure 3, 2739–2740
Triangulation ds cell base 3, 2741
Triangulation ds face base 2, 2607
Triangulation ds vertex base 2, 2608
Triangulation ds vertex base 3, 2742
Triangulation euclidean traits 2, 2565
Triangulation euclidean traits xy 3, 2566–2568
Triangulation face base 2, 2569
Triangulation face base with info 2, 2570
Triangulation hierarchy 2, 2571
Triangulation hierarchy 3, 2662–2663
Triangulation hierarchy vertex base 2, 2572
Triangulation hierarchy vertex base 3, 2698
Triangulation simplex 3, 2688–2689
Triangulation utils 3, 2743
Triangulation vertex base 2, 2573
Triangulation vertex base 3, 2696
Triangulation vertex base with id 2, 4287
Triangulation vertex base with info 2, 2574
Triangulation vertex base with info 3, 2697
TriangulationCellBase 3, 2684
TriangulationDataStructure 2, 2585–2593
TriangulationDataStructure 2::Face, 2597–2599
TriangulationDataStructure 2::Vertex, 2602–2603
TriangulationDataStructure 3, 2715–2729
TriangulationDSCellBase 3, 2734–2736
TriangulationDSFaceBase 2, 2594–2596
TriangulationDSVertexBase 2, 2600–2601
TriangulationDSVertexBase 3, 2737–2738
TriangulationFaceBase 2, 2539
TriangulationGraphicsItem, 4467
TriangulationHierarchyVertexBase 2, 2540
TriangulationHierarchyVertexBase 3, 2690
TriangulationTraits 2, 2541–2543
TriangulationTraits 3, 2672–2673
TriangulationVertexBase 2, 2544–2545
TriangulationVertexBase 3, 2685–2686
TriangulationVertexBaseWithInfo 2, 2546
TriangulationVertexBaseWithInfo 3, 2687
Triple, 4227–4228
twin

Halfedge, 2022, 2207, 2978
Halffacet, 2024
SHalfedge, 1616, 2027
SHalfloop, 1617, 2029
SVertex, 1613
Topological explorer, 1579

Two vertices parameterizer 3, 3412–3413
Twotuple, 4223
type, 1270

ExtendedKernelTraits 2, 1587
Object, 4167

u
Arr conic traits 2<RatKernel, AlgKer-

nel,NtTraits>::Curve 2, 2303
Umbilic, 3458
Umbilic approximation, 3459–3460
Umbilic type, 3461
umbilic type

Umbilic, 3458
unbounded face

Arrangement 2, 2190
Voronoi diagram 2, 2973

unbounded faces begin
Arrangement 2, 2190
Voronoi diagram 2, 2974

unbounded faces end
Arrangement 2, 2191
Voronoi diagram 2, 2974

unbounded halfedge
Voronoi diagram 2, 2974

unbounded halfedges begin
Voronoi diagram 2, 2974

unbounded halfedges end
Voronoi diagram 2, 2974

unboundedness certificate begin
Quadratic program solution, 522

unboundedness certificate end
Quadratic program solution, 522

Uncertain, 4236–4244
Uncertain<T>::indeterminate, 4238
underflow flag, 183
undirected edges, 4278
uniform 01

Random, 4375
uniform int

Random, 4375
uniform real

Random, 4375
uniform smallint

Random, 4375
unify sets

Union find, 4404
Union find, 4403–4404
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Union of balls 3, 3114, 3122
UNIQUE, 2763, 2796
unique

In place list, 4151
UNIQUE COVER DOMAIN, 2763, 2796
Unique factorization domain tag, 102
Unique hash map, 4405–4406
unique vertices begin

Periodic 3 triangulation 3, 2771
unique vertices end

Periodic 3 triangulation 3, 2771
UniqueFactorizationDomain, 72
UniqueHashFunction, 4407
unit normal, 777
unit part, 113
univariate content, 351
univariate content up to constant factor, 361
unlink beta

CombinatorialMap, 1927
unmark

CombinatorialMap, 1928
unmark all

CombinatorialMap, 1928
unsafe comparison, 194
unsew

CombinatorialMap, 1926
up

ApolloniusGraphHierarchyVertexBase 2, 2956
Halfedge, 2979
SegmentDelaunayGraphHierarchyVertexBase 2,

2916
TriangulationHierarchyVertexBase 2, 2540
TriangulationHierarchyVertexBase 3, 2690

update
Stream lines 2, 3430

upper
Kd tree node, 3602

upper hull, 2D, 1395–1396
upper bound

Multiset, 4164
upper envelope 2, 2416
upper envelope 3, 2440
upper envelope x monotone 2, 2418
upper envelope xy monotone 3, 2442
upper hull points 2, 1351, 1395–1396

v
Arr conic traits 2<RatKernel, AlgKer-

nel,NtTraits>::Curve 2, 2303
v0

EdgeProfile, 3293
v0 v1

EdgeProfile, 3293
v0 vR

EdgeProfile, 3293
v1

EdgeProfile, 3293
v1 v0

EdgeProfile, 3293
v 1vL

EdgeProfile, 3293
validity check

Approximate min ellipsoid d, 3892
Min annulus d, 3865
Min circle 2, 3805
Min ellipse 2, 3815, 3892
Min sphere d, 3849
Min sphere of spheres d, 3870
Polytope distance d, 3949

Value, 470, 3549, 3553
value, 1042–1044, 3094, 4231–4233
value comp

Multiset, 4162
value type, 194, 4223–4226, 4361, 4380–4390
Value type tuple, 4178, 4180
variable index by name

Quadratic program from mps, 529
variable name by index

Quadratic program from mps, 529
variable numerators begin

Quadratic program solution, 517
variable numerators end

Quadratic program solution, 517
variable values begin

Quadratic program solution, 517
variable values end

Quadratic program solution, 517
variables common denominator

Quadratic program solution, 517
Vector, 1062–1063, 3414
Vector, 1976, 3410
vector

Direction 2, 618
Direction 3, 644
Direction d, 1080
Segment d, 1086
SvdTraits, 3486

Vector 2, 635–638, 3425, 3429, 3431, 4014
Vector 3, 673–676, 3462, 3482, 3484, 3936, 3940
Vector d, 1075–1078, 4003, 4012
VectorField 2, 3432
Verbose ostream, 4435
verify determinant

LinearAlgebraTraits d, 1060
VERTEX, 2522, 2549, 2637, 2700, 2763, 2797
Vertex, 2732–2733
Vertex, 1707, 1710, 1812–1813, 1818, 2020, 2205–

2206, 2548, 2636, 2761, 2879, 2933, 2980–
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2981
vertex

ArrangementDcelHalfedge, 2239
Cell, 2730
ConvexHullPolyhedronHalfedge 3, 1414
Halfedge, 1811
HalfedgeDSHalfedge, 1853
Iso cuboid 3, 647
Iso rectangle 2, 620
Polygon 2, 1476
Polyhedron incremental builder 3, 1816
Segment 2, 631
Segment 3, 661
Segment d, 1085
Tetrahedron 3, 669
Triangle 2, 633
Triangle 3, 671
TriangulatedSurfaceMesh, 3457
TriangulationDataStructure 2::Face, 2597
TriangulationDSCellBase 3, 2735
TriangulationDSFaceBase 2, 2595
Umbilic, 3458

Vertex2Data Property Map with std map, 3462
Vertex2FT map, 3462
Vertex2FT property map, 3462
Vertex2FTPropertyMap, 3463
Vertex2Vector map, 3462
Vertex2Vector property map, 3462
Vertex2VectorPropertyMap, 3464
vertex attribute, 1977
vertex attributes

Linear cell complex, 1976
vertex begin

Halfedge, 1810
Vertex, 1813

Vertex circulator, 2880, 2933
Vertex cmp, 3462
vertex conflict 2 object

ApolloniusGraphTraits 2, 2950
SegmentDelaunayGraphTraits 2, 2906

Vertex const handle, 2334
vertex degree

Halfedge, 1811
Vertex, 1813

vertex descriptor, 3293, 4280, 4282, 4284
Vertex handle, 1814, 2199, 2330, 2352, 2549, 2594,

2600, 2636, 2688, 2730, 2732, 2734, 2737,
2762, 2880, 2933, 3070, 3158, 3458, 3462

vertex is border, 4295
vertex is border t, 4295
Vertex iterator, 2762
Vertex list, 2523
vertex list

RegularTriangulationFaceBase 2, 2523

vertex node
CatmullClark mask 3, 3268
Loop mask 3, 3270
PQQMask 3, 3264
PTQMask 3, 3265
Sqrt3 mask 3, 3272
Sqrt3Mask 3, 3267

vertex of facet
Convex hull d, 1435

vertex of simplex
Convex hull d, 1434
Delaunay d, 1448

vertex point, 4296
vertex point t, 4296
Vertex range, 2604, 2739
vertex triple index

SurfaceMeshTriangulation 3, 3084
VertexContainer 2, 1712
vertices

Triangulation data structure 2, 2604
Triangulation data structure 3, 2740

vertices around vertex begin
Parameterization mesh patch 3, 3381
Parameterization polyhedron adaptor 3, 3390
ParameterizationMesh 3, 3374

vertices begin
Arrangement 2, 2189
ArrangementDcel, 2233
Convex hull d, 1437
GeneralPolygonSetDcel, 1542
HalfedgeDS, 1846
Nef polyhedron 3, 2016
Periodic 3 triangulation 3, 2770
Polygon 2, 1474
Polyhedron 3, 1798
SurfaceMeshComplex 2InTriangulation 3, 3073
Topological explorer, 1580
TriangulationDataStructure 2, 2588
TriangulationDataStructure 3, 2726
Voronoi diagram 2, 2975

vertices circulator
Polygon 2, 1474

vertices clear
HalfedgeDS, 1848

vertices end
Arrangement 2, 2189
ArrangementDcel, 2233
Convex hull d, 1437
GeneralPolygonSetDcel, 1542
HalfedgeDS, 1846
Nef polyhedron 3, 2016
Periodic 3 triangulation 3, 2770
Polygon 2, 1474
Polyhedron 3, 1798
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SurfaceMeshComplex 2InTriangulation 3, 3073
Topological explorer, 1580
TriangulationDataStructure 2, 2588
TriangulationDataStructure 3, 2726
Voronoi diagram 2, 2975

vertices erase
HalfedgeDS, 1847
HalfedgeDS decorator, 1861

vertices in complex begin
MeshComplexWithFeatures 3InTriangulation 3,

3167
vertices in complex end

MeshComplexWithFeatures 3InTriangulation 3,
3167

vertices in conflict
Delaunay triangulation 3, 2659
Periodic 3 Delaunay triangulation 3, 2779
Regular triangulation 3, 2669

vertices in constraint begin
Constrained triangulation plus 2, 2511

vertices in constraint end
Constrained triangulation plus 2, 2511

vertices inside conflict zone
Regular triangulation 3, 2670

vertices on conflict zone boundary
Delaunay triangulation 3, 2659
Regular triangulation 3, 2670

vertices pop back
HalfedgeDS, 1847
HalfedgeDS decorator, 1861

vertices pop front
HalfedgeDS, 1847
HalfedgeDS decorator, 1861

vertices push back
HalfedgeDS, 1847
HalfedgeDS decorator, 1860

vertices size type, 4281, 4283
vertices splice

HalfedgeDS list, 1880
verticesPen

TriangulationGraphicsItem, 4467
VIOLET , 4417
virtual size

Memory sizer, 4398
visible sites begin

Apollonius graph 2, 2936
visible sites end

Apollonius graph 2, 2936
visibleEdges

TriangulationGraphicsItem, 4467
VoronoiGraphicsItem, 4469

visibleVertices
TriangulationGraphicsItem, 4467

visit all facets

Convex hull d, 1438
visit shell objects

Nef polyhedron 3, 2018
visited

GeneralPolygonSetDcelFace, 1544
visitor

Kinetic::Delaunay triangulation 2, 4043
Kinetic::Delaunay triangulation 3, 4045
Kinetic::Sort, 4074

vL
EdgeProfile, 3293

vL v0
EdgeProfile, 3293

Volume, 2025
volume, 778

Iso box d, 1096
Iso cuboid 3, 648
SFace, 2031
Tetrahedron 3, 670

volumes begin
Nef polyhedron 3, 2016

volumes end
Nef polyhedron 3, 2016

Voronoi diagram, 2467, 2519, 2660, 2779
Voronoi diagram 2, 2971–2977
Voronoi intersection 2 traits 3, 4014
VoronoiGraphicsItem, 4469
vR

EdgeProfile, 3293
vR v1

EdgeProfile, 3293
vx

LabeledImage 3, 3186
vy

LabeledImage 3, 3186
vz

LabeledImage 3, 3186

w
Arr conic traits 2<RatKernel, AlgKer-

nel,NtTraits>::Curve 2, 2303
weak equality, 1082, 1086, 1090, 1094
Weight, 2575, 4014
weight, 2701

ApolloniusSite 2, 2940
Weighted point, 2575

Weighted Alpha Shapes 2, 2802
Weighted alpha shape euclidean traits 2, 2816
Weighted alpha shape euclidean traits 3, 2851
Weighted alpha shapes 2, 2805
Weighted alpha shapes 3, 2839, 2856
weighted circumcenter

Regular triangulation 2, 2533
Weighted Minkowski distance, 3644–3645
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Weighted point, 2528, 2575, 2664
Weighted point 2, 4476
Weighted point 3, 2680
WeightedAlphaShapeTraits 3, 2850
WeightedPoint, 2701
WHITE, 4417
width

of 3D point set, 3936
Width 3, 3936–3939

creation, 3936
example, 3938
implementation, 3938
member functions, 3937

access, 3937
requirements, 3936
traits class

requirements, 3943
see also Width default traits 3

types, 3936
Width default traits 3, 3940–3941
WidthTraits 3, 3942–3943
will fail

Kinetic::Certificate, 4102
window query

Range tree d, 3666
Range tree k, 3669
Segment tree d, 3673
Segment tree k, 3675
Tree anchor, 3684

with guarantees
Arr trapezoid ric point location, 2347

workaround flags, 44
write, 2230

Event, 4107
write arrangement begin

ArrangementOutputFormatter, 2335
write arrangement end

ArrangementOutputFormatter, 2335
write ccb halfedges begin

ArrangementOutputFormatter, 2337
write ccb halfedges end

ArrangementOutputFormatter, 2337
write curve

ArrangementWithHistoryOutputFormatter, 2378
write curve begin

ArrangementWithHistoryOutputFormatter, 2378
write curve end

ArrangementWithHistoryOutputFormatter, 2378
write curves begin

ArrangementWithHistoryOutputFormatter, 2378
write curves end

ArrangementWithHistoryOutputFormatter, 2378
write edge begin

ArrangementOutputFormatter, 2336

write edge end
ArrangementOutputFormatter, 2336

write edges begin
ArrangementOutputFormatter, 2335

write edges end
ArrangementOutputFormatter, 2335

write eps
Approximate min ellipsoid d, 3892

write face begin
ArrangementOutputFormatter, 2336

write face data
ArrangementOutputFormatter, 2337

write face end
ArrangementOutputFormatter, 2336

write faces begin
ArrangementOutputFormatter, 2335

write faces end
ArrangementOutputFormatter, 2335

write halfedge index
ArrangementOutputFormatter, 2336

write halfegde data
ArrangementOutputFormatter, 2336

write holes begin
ArrangementOutputFormatter, 2336

write holes end
ArrangementOutputFormatter, 2337

write induced edges begin
ArrangementWithHistoryOutputFormatter, 2378

write induced edges end
ArrangementWithHistoryOutputFormatter, 2378

write isolated vertices begin
ArrangementOutputFormatter, 2337

write isolated vertices end
ArrangementOutputFormatter, 2337

write off points, 3518–3519
write off points and normals, 3518
write outer ccb begin

ArrangementOutputFormatter, 2336
write outer ccb end

ArrangementOutputFormatter, 2336
write point

ArrangementOutputFormatter, 2336
write size

ArrangementOutputFormatter, 2335
write vertex begin

ArrangementOutputFormatter, 2335
write vertex data

ArrangementOutputFormatter, 2336
write vertex end

ArrangementOutputFormatter, 2335
write vertex index

ArrangementOutputFormatter, 2336
write vertices begin

ArrangementOutputFormatter, 2335
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write vertices end
ArrangementOutputFormatter, 2335

write x monotone curve
ArrangementOutputFormatter, 2336

write xyz points, 3520–3521
write xyz points and normals, 3520

x
Arr algebraic segment traits 2<Coefficient>

::Point 2, 2320
Arr algebraic segment traits 2<Coefficient>

::X monotone curve 2, 2321
Arr Bezier curve traits 2<AlgKernel, NtTraits>

::Point 2, 2317
Arr circle segment traits 2<Kernel>::Point 2,

2292
Arr rational function traits 2<

AlgebraicKernel d 1>::Point 2, 2309
Circular arc point 2, 1178
Circular arc point 3, 1262
Periodic 3Offset 3, 2793
Point 2, 626
Point 3, 656
Sphere point, 1608
Vector 2, 636
Vector 3, 674

x at y
Line 2, 623

x equal, 779
x extremal point, 1214, 1313
x extremal points, 1216, 1317
X monotone curve 2, 2187, 2199, 2330, 2334, 2352,

2369, 2419
X monotone curve data, 2325
xdim

LabeledImage 3, 3186
xmax

Bbox 2, 613
Bbox 3, 639
Iso cuboid 3, 647
Iso rectangle 2, 620

xmin
Bbox 2, 613
Bbox 3, 639
Iso cuboid 3, 647
Iso rectangle 2, 620

Xy monotone surface data, 2448

y
Arr algebraic segment traits 2<Coefficient>

::Point 2, 2320
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