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General Introduction






Chapter 1

Introduction

CGAL Editorial Board

The goal of the CGAL Open Source Project is to provide easy access to efficient and reliable geometric algo-
rithms in the form of a C++ library.

The Computational Geometry Algorithms Library offers data structures and algorithms like triangulations,
Voronoi diagrams, Boolean operations on polygons and on polyhedra, arrangements of curves, mesh gener-
ation, geometry processing, convex hull algorithms, to name just a few.

All these data structures and algorithms operate on geometric objects like points and segments, and perform
geometric tests on them. These objects and predicates are regrouped in CGAL Kernels.

Finally, the CGAL Support Library offers geometric object generators and spatial sorting functions, as well as
a matrix search framework and a solver for linear and quadratic programs. It further offers interfaces to third
party software such as the GUT libraries Qt, Geomview, and the Boost Graph Library.

1.1 Organization of the Manual

This manual is organized in several parts covering the many domains of computational geometry. Each part
consists of several chapters, and each chapter is split into a user manual and a reference manual. The user
manual gives the general idea and comes with examples. The reference manual presents the API of the various
classes and functions.

The manual has a table of contents, and an index, as well as a package overview, which gives a short paragraph

what the package is about, what license it has, and on which other packages it depends. It further provides links
to precompiled demo programs for the Windows platform.

1.2 Demos and Examples

In the distribution of the library you find the two directories demo and examples. They contain subdirectories
for the CGAL packages. The demos use third party libraries for the graphical user interface. The examples don’t
have this dependency and most examples are refered to in the user manual.
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1.3 Hello World

In this section we will take a closer look at three CGAL example programs, all of them computing the 2D convex
hull of a set of points.

1.3.1 Points in a built-in array

In the first example we have an array of five points. As the convex hull of these points is a subset of the input it

is safe to provide an array for storing the result which has the same size.
-

#include <iostream>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/convex_hull 2.h>

typedef CGAL: :Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_2 Point_2;

int main|()

{
Point_2 points[5] = { Point_2(0,0), Point_2(10,0), Point_2(10,10),
Point_2(6,5), Point_2(4,1) };
Point_2 result[5];
Point_2 xptr = CGAL::convex_hull_2( points, points+5, result );
std::cout << ptr - result << " points on the convex hull" <<
std: :endl;
return O0;
}
-

File: examples/Convex_hull_2/array_convex_hull_2.cpp

All CGAL header files are in the subdirectory “include/CGAL”. All CGAL classes and functions are in the
namespace “CGAL”. The geometric primitives, like the point type, are defined in a kernel. CGAL comes with
several kernels, and as the convex hull algorithm only makes comparisons of coordinates and orientation tests
of input points, we can choose a kernel that provides exact predicates, but no exact geometric construction.

The convex hull function takes three arguments, the start and past-the-end pointer for the input, and the start
pointer of the array for the result. The function returns the pointer into the result array just behind the last
convex hull point written, so the pointer difference tells us how many points are on the convex hull.

1.3.2 Points in a STL vector

In the second example we replace the built-in array by a std::vector of the Standard Template Library.

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/convex_hull 2.h>

#include <vector>




typedef CGAL: :Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_2 Point_2;
typedef std::vector<Point_2> Points;

int main()

{
Points points, result;
points.push_back (Point_2(0,0));
points.push_back (Point_2(10,0));
points.push_back (Point_2(10,10));
points.push_back (Point_2(6,5));
points.push_back (Point_2(4,1));

CGAL: :convex_hull_2( points.begin(), points.end(),
std: :back_inserter (result) );

std::cout << result.size() << " points on the convex hull" <<
std: :endl;

return 0;

File: examples/Convex_hull_2/vector_convex_hull_2.cpp

We put some points in the vector calling the push_back() method of the std::vector class.

We then call the convex hull function. The first two arguments, points.begin() and points.end() are iterators,
which are a generalization of pointers: they can be dereferenced and incremented. The convex hull function is
generic in the sense that it takes as input whatever can be dereferenced and incremented.

The third argument is where the result gets written to. In the previous example we provided a pointer to
allocated memory. The generalization of such a pointer is the output iterator, which allows to increment and
assign a value to the dereferenced iterator. In this example we start with an empty vector which grows as
needed. Therefore, we cannot simply pass it result.begin(), but an output iterator generated by the helper
function std::back_inserter(result). This output iterator does nothing when incremented, and calls result.push_
back(..) on the assignment.

1.3.3 Points in Streams

The last example program reads a sequence of points from standard input std::cin and writes the points on the
convex hull to standard output std::cout.

Instead of storing the points in a container such as an std::vector, and passing the begin/end iterator of the vector
to the convex hull function, we use helper classes that turn file pointers into iterators.

f#include <iostream>

#include <iterator>

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/convex_hull_2.h>

typedef CGAL: :Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_2 Point_2;




int main ()

{
std::istream iterator< Point_2 > input_begin( std::cin );
std: :istream iterator< Point_2 > input_end;
std: :ostream_iterator< Point_2 > output( std::cout, "\n" );
CGAL: :convex_hull_ 2( input_begin, input_end, output );
return 0;

File: examples/Convex_hull_2/iostream_convex_hull_2.cpp

In the example code you see input and output stream iterators templated with the point type. A std::istream_
iterator<Point_2> hence allows to traverse a sequence of objects of type Point_2, which come from standard
input as we pass std::cin to the constructor of the iterator. The variable input_end denotes end-of-file.

A std::ostream_iterator<Point_2> is an output iterator, that is an iterator to which, when dereferenced, we can
assign a value. When such an assignment to the output iterator happens somewhere inside the convex hull
function, the iterator just writes the assigned point to standard output, because the iterator was constructed with
std::cout.

The call to the convex hull function takes three arguments, the input iterator range, and the output iterator to
which the result gets written.

If you know the STL, the Standard Template Library, the above makes perfect sense, as this is the way the STL

decouples algorithms from containers. If you don’t know the STL, you maybe better first familiarize yourself
with its basic ideas.

1.4 Further Reading
We also recommend the standard text books by Josuttis [ ], or Austern [ | for the STL and its notion
of concepts and models.

Other resources for CGAL are the tutorials at http://www.cgal.org/Tutorials/ and the user support page
athttp://www.cgal.org/.
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Chapter 2

Preliminaries

CGAL Editorial Board

This chapter lists the licenses under which the CGAL datastructures and algorithms are distributed. The chapter
further explains how to control inlining, thread safety, code deprecation, checking of pre- and postconditions,
and how to alter the failure behavior.

2.1 License Issues
CGAL is distributed under a dual license scheme, that is under the GPL/LGPL open source license, as well as
under commercial licenses.

CGAL consists of different parts covered by different open source licenses. In this section we explain the essence
of the different licenses, as well as the rationale why we have chosen them.

The fact that CGAL is Open Source software does not mean that users are free to do whatever they want with

the software. Using the software means to accept the license, which has the status of a contract between the user
and the owner of the CGAL software.

2.1.1 GPL

The GPL is an Open Source license that, if you distribute your software based on GpLed CGAL data struc-
tures,you are obliged to distribute the source code of your software under the GPL.

The exact license terms can be found at the Free Software Foundation web site: http://www.gnu.org/
copyleft/gpl.html.

2.1.2 LGPL

The LGPL is an Open Source license that obliges you to distribute modifications you make on CGAL software
accessible to the users. In contrast to the GPL , there is no obligation to make the source code of software you
build on top of LGPLed CGAL data structures



The exact license terms can be found at the Free Software Foundation web site: http://www.gnu.org/
copyleft/lesser.html.

2.1.3 Rationale of the License Choice

We have chosen the GPL and the LGPL as they are well known and well understood open source licenses. The
former restricts commercial use, and the latter allows to promote software as de facto standard so that people
can build new higher level data structures on top.

Therefore, the packages forming a foundation layer are distributed under the LGPL, and the higher level pack-
ages under the GPL. The package overview states for each package under which license it is distributed.

2.1.4 Commercial Licenses

Users who cannot comply to the Open Source license terms can buy individual data structures under various
commercial licenses from GeometryFactory: http://www.geometryfactory.com/. License fees paid by
commercial customers are reinvested in R&D performed by the CGAL project partners, as well as in evolutive
maintenance.

2.2 Marking of Special Functionality

In this manual you will encounter sections marked as follows.

2.2.1 Advanced Features

Some functionality is considered more advanced, for example because it is relatively low-level, or requires
special care to be properly used.

advanced

Such functionality is identified this way in the manual.

I— advanced ——

2.2.2 Debugging Support Features

Usually related to advanced features that for example may not guarantee class invariants, some functionality is
provided that helps debugging, for example by performing invariants checks on demand.

debugging support

Such functionality is identified this way in the manual.

I— debugging support ——
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2.2.3 Deprecated Code

Sometimes, the CGAL project decides that a feature is deprecated. This means that it still works in the current
release, but it will be removed in the next, or a subsequent release. This can happen when we have found a
better way to do something, and we would like to reduce the maintenance cost of CGAL at some point in the
future. There is a trade-off between maintaining backward compatibility and implementing new features more
easily.

In order to help users manage the changes to apply to their code, we attempt to make CGAL code emit warnings
when deprecated code is used. This can be done using some compiler specific features. Those warnings can
be disabled by defining the macro CGAL_NO_DEPRECATION_WARNINGS. On top of this, we also provide a
macro, CGAL_NO_DEPRECATED_CODE, which, when defined, disables all deprecated features. This allows
users to easily test if their code relies on deprecated features.

deprecated

Such functionality is identified this way in the manual.

I— deprecated ———

2.3 Namespace CGAL

All names introduced by CGAL, especially those documented in these manuals, are in a namespace called CGAL,
which is in global scope. A user can either qualify names from CGAL by adding CGAL::, e.g., CGAL::Point_2<
CGAL::Exact_predicates_inexact_constructions_kernel >, make a single name from CGAL visible in a scope via
a using statement, e.g., using CGAL::Point_2;, and then use this name unqualified in this scope, or even make
all names from namespace CGAL visible in a scope with using namespace CGAL;. The latter, however, is likely
to give raise to name conflicts and is therefore not recommended.

2.4 Inclusion Order of Header Files

Not all compilers fully support standard header names. CGAL provides workarounds for these problems in
CGAL/basic.h. Consequently, as a golden rule, you should always include CGAL/basic.h first in your programs
(or CGAL/Cartesian.h, or CGAL/Homogeneous.h, since they include CGAL/basic.h first).

2.5 Thread Safety

CGAL is progressively being made thread-safe. The guidelines which are followed are:

¢ it should be possible to use different objects in different threads at the same time (of the same type or not),

e it is not safe to access the same object from different threads at the same time, unless otherwise specified
in the class documentation.

If the macro CGAL_HAS_THREADS is not defined, then CGAL assumes it can use any thread-unsafe code
(such as static variables). By default, this macro is not defined, unless BOOST_HAS_THREADS or _.OPENMP
is defined. It is possible to force its definition on the command line, and it is possible to prevent its default
definition by setting CGAL_HAS_NO_THREADS from the command line.
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2.6 C++11 Support

CGAL is based on the C++ standard released in 1998 (and later refined in 2003). A new major version of this
standard has been released, and is refered to as C++11. Some compilers and standard library implementations
already provide some of the functionality of this new standard. For example, g++ provides a command-line
switch (-std=c++0x or -std=c++11 depending on the compiler version) which enables some of those features.

CGAL attempts to support this mode progressively, and already makes use of some of these features if they are
available, although no extensive support has been implemented yet.

2.7 Functor Return Types

CGAL functors support the result_of protocol. If a functor F has the same return type across all overloads of
operator(), the nested type F::result_type is defined to be that type. Otherwise the return type of calling the
functor with an argument of type Arg can be accessed through boost::result_of <F(Arg)>::type.

2.8 Checks

Much of the CGAL code contains checks. For example, all checks used in the kernel code are prefixed by
CGAL_KERNEL. Other packages have their own prefixes, as documented in the corresponding chapters. Some
are there to check if the kernel behaves correctly, others are there to check if the user calls kernel routines in an
acceptable manner.

There are five types of checks. The first three are errors and lead to a halt of the program if they fail. The fourth
only leads to a warning, and the last one is compile-time only.

Preconditions check if the caller of a routine has called it in a proper fashion. If such a check fails it is the
responsibility of the caller (usually the user of the library).

Postconditions check if a routine does what it promises to do. If such a check fails it is the fault of this routine,
so of the library.

Assertions are other checks that do not fit in the above two categories.
Warnings are checks for which it is not so severe if they fail.

Static assertions are compile-time assertions, used e.g. to verify the values of compile-time constants or com-
pare types for (in)equality.

By default, all of these checks are performed. It is however possible to turn them off through the use
of compile time switches. For example, for the checks in the kernel code, these switches are the follow-
ing: CGAL_KERNEL_NO_PRECONDITIONS, CGAL_KERNEL_NO_POSTCONDITIONS, CGAL_KERNEL_
NO_ASSERTIONS and CGAL_KERNEL_NO_WARNINGS. So, in order to compile the file foo.cpp with the
postcondition checks off, you can do:

CC -DCGAL_KERNEL_NO_POSTCONDITIONS foo.cpp

This is also preferably done by modifying your makefile by adding -DCGAL_KERNEL _NO_
POSTCONDITIONS to the CXXFLAGS variable.
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http://www.boost.org/doc/libs/release/libs/utility/utility.htm#result_of

The name KERNEL in the macro name can be replaced by a package specific name in order to control assertions
done in a given package. This name is given in the documentation of the corresponding package, in case it exists.

Note that global macros can also be used to control the behavior over the whole CGAL library:

o CGAL_NO_PRECONDITIONS,
o CGAL_NO_POSTCONDITIONS,
o CGAL_NO_ASSERTIONS,

o CGAL_NO_WARNINGS and

o CGAL_NDEBUG.

Setting the macro CGAL_NDEBUG disables all checks. Note that the standard flag NDEBUG sets CGAL_
NDEBUG, but it also affects the standard assert macro. This way, adding -DCGAL_NDEBUG to your com-
pilation flags removes absolutely all checks. This is the default recommended setup for performing timing
benchmarks for example.

Not all checks are on by default. The first four types of checks can be marked as expensive or exactness checks
(or both). These checks need to be turned on explicitly by supplying one or both of the compile time switches
CGAL_KERNEL_CHECK_EXPENSIVE and CGAL_KERNEL_CHECK_EXACTNESS.

Expensive checks are, as the word says, checks that take a considerable time to compute. Considerable is an
imprecise phrase. Checks that add less than 10 percent to the execution time of the routine they are in are
not expensive. Checks that can double the execution time are. Somewhere in between lies the border line.
Checks that increase the asymptotic running time of an algorithm are always considered expensive. Exactness
checks are checks that rely on exact arithmetic. For example, if the intersection of two lines is computed, the
postcondition of this routine may state that the intersection point lies on both lines. However, if the computation
is done with doubles as number type, this may not be the case, due to round off errors. So, exactness checks
should only be turned on if the computation is done with some exact number type.

By definition, static assertions are both inexpensive and unaffected by precision management. Thus, the cate-
gories do not apply for static assertions.

2.8.1 Altering the Failure Behavior

As stated above, if a postcondition, precondition or assertion is violated, an exception is thrown, and if nothing
is done to catch it, the program will abort. This behavior can be changed by means of the following function.

#include <CGAL/assertions_behaviour.h>

Failure_behaviour  set_error_behaviour( Failure_behaviour eb)

The parameter should have one of the following values.
enum Failure_behaviour { ABORT, EXIT, EXIT_WITH_SUCCESS, CONTINUE, THROW_EXCEPTION};

The THROW_EXCEPTION value is the default, which throws an exception.

If the EXIT value is set, the program will stop and return a value indicating failure, but not dump the core. The
CONTINUE value tells the checks to go on after diagnosing the error. Note that since CGAL 3.4, CONTINUE
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has the same effect as THROW_EXCEPTION for errors (but it keeps its meaning for warnings), it is not possible
anymore to let assertion failures simply continue (except by totally disabling them).

advanced

If the EXIT_WITH_SUCCESS value is set, the program will stop and return a value corresponding to successful
execution and not dump the core.

I— advanced ——

The value that is returned by set_error_behaviour is the value that was in use before.

For warnings there is a separate routine, which works in the same way. The only difference is that for warnings
the default value is CONTINUE.

Failure_behaviour  set_warning_behaviour( Failure_behaviour eb)

2.8.2 Control at a Finer Granularity

The compile time flags as described up to now all operate on the whole library. Sometimes you may want to
have a finer control. CGAL offers the possibility to turn checks on and off with a bit finer granularity, namely
the module in which the routines are defined. The name of the module is to be appended directly after the
CGAL prefix. So, the flag CGAL_KERNEL_NO_ASSERTIONS switches off assertions in the kernel only, the
flag CGAL_CH_CHECK_EXPENSIVE turns on expensive checks in the convex hull module. The name of a
particular module is documented with that module.

li advanced ——

2.8.3 Customizing how Errors are Reported

Normally, error messages are written to the standard error output. It is possible to do something different with
them. To that end you can register your own handler. This function should be declared as follows.

void my_failure_function(
const char *type,
const char *expression,
const char *file,
int line,
const char *explanation)

Your failure function will be called with the following parameters. fype is a string that contains one of the words
precondition, postcondition, assertion or warning. The parameter expression contains the expression that was
violated. file and line contain the place where the check was made. The explanation parameter contains an
explanation of what was checked. It can be NULL, in which case the expression is thought to be descriptive
enough.

There are several things that you can do with your own handler. You can display a diagnostic message in a
different way, for instance in a pop up window or to a log file (or a combination). You can also implement a
different policy on what to do after an error. For instance, you can throw an exception or ask the user in a dialog
whether to abort or to continue. If you do this, it is best to set the error behavior to CONTINUE, so that it does
not interfere with your policy.
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You can register two handlers, one for warnings and one for errors. Of course, you can use the same function
for both if you want. When you set a handler, the previous handler is returned, so you can restore it if you want.

#include <CGAL/assertions.h>

Failure_function set_error_handler( Failure_function handler)
Failure_function set_warning_handler( Failure_function handler)
Example

#include <CGAL/assertions.h>

void my_failure_handler (
const char x*type,
const char *expr,
const charx file,
int line,
const char* msq)

A report the error in some way. %/

void foo()
{
CGAL: :Failure_function prev;
prev = CGAL::set_error_handler (my_failure_handler);
A call some routines. */
CGAL: :set_error_handler (prev);

}

I— advanced ——

2.9 Identifying the Version of CGAL

#include <CGAL/config.h>

Every release of CGAL defines the following preprocessor macros:

CGAL_VERSION - a textual description of the current release (e.g., or 3.3 or 3.2.1 or 3.2.1-I-15), and

CGAL_VERSION_STR —same as CGAL_VERSION but as a string constant token, and

CGAL_VERSION_NR - anumerical description of the current release such that more recent releases have higher
number.

More precisely, it is defined as IMMmmbiiii, where MM is the major release number (e.g. 03), mm is the

number (e.g. 0001). For public releases, the latter is defined as 1000. Examples: for the public release
3.2.4 this number is 1030241000; for internal release 3.2-1-1, it is 1030200001. Note that this scheme
was modified around 3.2-1-30.
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CGAL_VERSION NUMBER (M, m,b) — a function macro computing the version number macro from the
M.m.b release version. Note that the internal release number is dropped here.  Example:
CGAL_VERSION_NUMBER (3, 2, 4) is equal to 1030241000.

li advanced ——

2.10 Compile-time Flags to Control Inlining

Making functions inlined can, at times, improve the efficiency of your code. However this is not always the case
and it can differ for a single function depending on the application in which it is used. Thus CGAL defines a set
of compile-time macros that can be used to control whether certain functions are designated as inlined functions

or not. The following table lists the macros and their default values, which are set in one of the CGAL include
files.

macro name default
CGAL_KERNEL_INLINE inline
CGAL_KERNEL_MEDIUM_INLINE
CGAL_KERNEL_LARGE_INLINE
CGAL_MEDIUM_INLINE inline
CGAL_LARGE_INLINE
CGAL_HUGE_INLINE

If you wish to change the value of one or more of these macros, you can simply give it a new value when compil-
ing. For example, to make functions that use the macro CGAL_KERNEL_MEDIUM _INLINE inline functions,
you should set the value of this macro to inline instead of the default blank.

Note that setting inline manually is very fragile, especially in a template context. It is usually better to let the
compiler select by himself which functions should be inlined or not.

I— advanced ——

16



Preliminaries
Reference Manual

CGAL Editorial Board

This chapter contains no Reference Manual pages.

17



18



Chapter 3

Installation

Eric Berberich, Joachim Reichel, and Fernando Cacciola

Contents
30 Introduction . . .. ..o v i ittt it i e e e e e e 20
32 PrerequiSites . . . v . v v i i e e e e e e e e e e e e e e e e e e e e 20
33 OS-shipped CGAL « v v v v v v vttt ettt et o e oo oo oo oo e aeeeas 21
331 CGALOonMACOS X . . . . . 21
332 CGALONLINUX . . . . . oo i e e e e e e e e e e 21
34 Downloading CGAL + v v v v v v v vt vttt et et e e oo oo oo oo oo s s ooeeeas 21
3.5 Supported Compilers . . . . . . v v v vttt ittt e e e e e e e e e e e e e 22
3.6 Configuring CGALwithCMake . ... ... ...ttt t ittt 23
3.6.1 Configuring CGAL with the CMake GUI . . . . . ... ... ... ... 23
3.6.2 Configuring CGAL with the cmake command-linetool . . . . .. ... ... ..... 23
37 CGALLIbraries . . . . . o v i i ittt ittt i it ittt ittt et 24
37.1 Debugvs.Release . .. ... ... ... ... 25
3.7.2 Static vs. Shared Libraries . . . . . . . . . ... 25
3.8 Essential Third Party Libraries . . ... ... ...ttt ittt 25
3.8.1 Standard Template Library (STL) . . . . . .. ... ... ... ... 25
382 BOOST . . o oo 26
383 GMPand MPFR . . . . ... ... 26
384 ZLIB. . . e 26
385 OPENGL . . . .. ... 27
386 QT3and QT4 . . . . . . . e e e 27
39 CGALExamplesandDemos. . . . . . v v v v v v vttt ot ottt e e 27
3.10 Optional Third Party Libraries. . . . . . . . . o v v v it i ittt i ettt e e nn 27
3.10.1 LEDA . . . oot 27
3102 MPEL . .o 28
3103 Rsand Rs3 . . . . . o oo e e e e 28
3104 NTL . . ottt e e e e e 28
3105 EIGEN . . oo o 28
3.10.6 LIbQGLVIEWEr . . . . . . o vt e e 29
3.10.7 COIN3D . . . o e 29
3108 ESTBL . o v v v o o e e 29
301 Building CGAL . . & v v v v i it e e e e e e e et e e e e e e e 29
32 Installing CGAL & v v v v v i e it e e e e ettt e ettt ettt et e 30



3.13 Example Configuration . . . .. ... ...ttt ittt ittt ittt eeennan 31

3.14 Multiple Variants of makefiles (out-of-source build) . .................... 35
3.15 Configuring and Building Programs Using CGAL . . . . . v v v v v v v v v v vt v v v oo 35
3.15.1 Creating a cmake script for a program using CGAL . . . . . . .. .. ... ... ... 36
3.15.2 Custom flags in the programs using CGAL . . . . . . . . . . . oo v v v 37
3.16 Summary of CGAL’s Configuration Variables . . . . ... ... ... 38
3.16.1 Componentselection . . . . . . . . ... L L e e e 38
3.16.2 Compiler and Linker Flags . . . . . . . . .. .. .. . 38
3.16.3 Miscellaneous Variables . . . . . . . . .. ... L 39
3.16.4 Variables providing information about 3rd-party libraries . . . . . . . ... ... ... 39
3.17 Compiler Workarounds . . . . .« v v v v v v v it it e ettt et e e e e 44
3.18 Compiler Optimizations . . . . . . . v o v v v v i i ittt ittt e et e e et ae e 44
Reference Manual . . . . . . o o i i i i i i ittt it 45

3.1 Introduction

This document describes how to install CGAL on Windows, Unix-like systems, and MacOS X.

Ideally, setting up CGAL amounts to:

cd CGAL-4.1 # go to CGAL directory
cmake . # configure CGAL
make # build the CGAL libraries

Compiling an example shipped with CGAL is similar simple:

cd examples/Straight_skeleton_2 # go to an example directory
cmake -DCGAL_DIR=SHOME/CGAL-4.1 . # configure the examples
make # build the examples

Compiling an own non-shipped program is also close:

cd /path/to/program
cgal_create_CMakeLists -s executable
cmake -DCGAL_DIR=S$SHOME/CGAL-4.1

make

where the second line creates a CMakeLists.txt file (check its options in Section 3.15.1 for various details).

In a less ideal world, you probably have to install CMake, a makefile generator, and third party libraries. That
is what this manual is about.

3.2 Prerequisites

Installing CGAL requires a few components to be installed ahead: a supported compiler (see Section 3.5, CMake,
BOOST, and at least GMP, and MPFR; see Section 3.8 for more details on essential third party software.
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3.3 OS-shipped CGAL

Some operating systems with package managers offer CGAL and its essential third party software through the
manager, for instance, Mac OS X, or some Linux distribution (e.g. Debian).

3.3.1 CGALon MACOSX

For instance, use macports in the following way:
sudo port install cgal
or if Qt4 demos are desired
sudo port install cgal +qt4 +universal +demos

The setup is similar for homebrew.

3.3.2 CGAL on Linux
For instance in debian/Ubuntu, use apt-get in the following way:
sudo apt-get install libcgal-dev
To get the demos use
sudo apt-get install libcgal-demo
Check the CGAL-FAQ for source repository of newest releases.
On other distributions, please consult your package manager documentation.
3.4 Downloading CGAL
You can obtain the CGAL library from http://www.cgal.org/download.html and install it yourself.
After you have downloaded the file CGAL-4.1.tar.gz containing the CGAL sources, you have to unpack it.

Under a Unix-like shell, use the command:

tar xzf CGAL-4.l1.tar.gz
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When you are on Windows you may download and run CGAL-4.1-Setup.exe. Itis a self extracting executable
that installs the CGAL source, and that allows you to select and download some precompiled third party libraries.

In both cases the directory CGAL-4.1 will be created. This directory contains the following subdirectories:

directory contents

auxiliary precompiled GMPand MPFR for Windows

cmake/modules | modules for finding and using libraries

config configuration files for install script

demo demo programs (most of them need QT, geomview or other third-party products)
doc_html documentation (HTML)

examples example programs

include header files

scripts some useful scripts (e.g. for creating CMakeLists.txt files)

src source files

The directories include/CGAL/CORE and src/CGALCore contain a distribution of the CORE library' version 1.7
for dealing with algebraic numbers. CORE is not part of CGAL and has its own license.

The directory include/CGAL/OpenNL contains a distribution of the Open Numerical Library which provides
solvers for sparse linear systems, especially designed for the Computer Graphics community. OPENNL is not

part of CGAL and has its own license.

The only documentation shipped with CGAL sources is the present installation manual. The CGAL manual must
be downloaded separately from http://www.cgal.org/download.html.

3.5 Supported Compilers

In order to build the CGAL libraries, you need a C++ compiler. CGAL 4.1 is supported for the following
compilers/operating systems:

compiler operating system
GNU g++ 3.4 or later! Linux / MacOS X
MS Windows 95/98/2000/XP/NT4
INTEL C++ 11.0 or later? Linux
MS Visual C++ 9.0, 10.0 (VISUAL STUDIO 2008 AND 2010)° | MS Windows 95/98/2000/XP/NT4/Vista/7

Thttp://www.cs.nyu.edu/exact/
http://gce.gnu.org/
Zhttp://software.intel.com/en-us/intel-compilers/
3http://msdn.microsoft.com/en-us/vstudio/
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3.6 Configuring CGAL with CMake

In order to configure, build, and install the CGAL libraries, examples and demos, you need CMake,
a cross-platform “makefile generator”. If CMake is not installed already you can obtain it from
http://www.cmake.org/. CMake version 2.6.2 or higher is required. On Windows, CMake version 2.8.6
or higher is required, for a proper support of DLL’s generation. This manual explains only those fea-
tures of CMake which are needed in order to build CGAL. Please refer to the CMake documentation at
http://www.cmake.org/ for further details.

Before building CGAL you have to choose the compiler/linker, set compiler and linker flags, specify which
third-party libraries you want to use and where they can be found, and which CGAL libraries you want to build.
Gathering all this information is called configuration. The end of the process is marked by the generation of a
makefile or a Visual C++ solution and project file that you can use to build CGAL.

3.6.1 Configuring CGAL with the CMake GUI

The simplest way to start the configuration is to run the graphical user interface of CMake. We recommend to
use cmake-gui. It is available on many platforms as of CMake version 2.6. You must pass as argument the root
directory of CGAL. For example:

cd CGAL-4.1
cmake-gui . # Notice the dot to indicate the current directory.

After cmake-gui opens, press 'Configure’. A dialog will pop up and you will have to choose what shall gets
generated. After you have made your choice and pressed ’Finish’, you will see the output of configuration tests
in the lower portion of the application. When these tests are done, you will see many red entries in the upper
portion of the application. Just ignore them and press *Configure’. By now CMake should have found many
libraries and have initialized variables. If you still find red entries, you have to provide the necessary informa-
tion. This typically happens if you have installed software at non-standard locations. Providing information and
pressing *Configure’ goes on until all entries are grayed. You are now ready to press 'Generate’. Once this is
done, you can quit cmake-gui.

3.6.2 Configuring CGAL with the cmake command-line tool

Alternatively, you can run the command-line tool called cmake. You pass as argument the root directory of
CGAL. For example:

cd CGAL-4.1
cmake . # Notice the dot to indicate the current directory.

The very first thing CMake does is to detect the compiler to use. This detection is performed by a special
CMake module called a generator. A CMake generator understands the build requirements for a particular
compiler/linker and generates the necessary files for that. For example, the UNIX Makefiles generator under-
stands the GNU chain of tools (g++, 1d etc.) and produces makefiles, which can be used to build a target by a
simple call to make. Likewise, the Visual Studio 2010 generator produces solution and project files and can be
manually launched in the VS IDE to build the target.
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Each platform has a default generator, so you only need to select one when the default is not what you want. For
example, under Windows, it is possible to generate NMakefiles instead of Visual Studio project files in order to
build the library with nmake. Running cmake with no parameters in a command-line prints the list of available
generators supported by your platform and CMake version. If the generator you need is not listed there, you can
try a newer CMake version, as generators are hardcoded into CMake, and additional generators are added with
each release.

Since the choice of the generator determines the type of build files to generate, in some cases you choose
a particular generator as a mean to choose a specific compiler (because they use different build files). For
example, the following generates solution files for use in Visual C++ 11.0 on a 64bit machine:

cd CGAL-4.1
cmake -G"Visual Studio 11 Win64"

In other cases, however, the generator doesn’t directly identify a specific compiler but a chain of tools. For exam-
ple, the UNIX Makefiles generator produces makefiles that call some auto-detected command-line compiler,
like g++. If you need the makefiles to use a different compiler, you need to specify the desired compiler in the
call to CMake, as in this example:

cd CGAL-4.1
cmake -DCMAKE_CXX_COMPILER:FILEPATH=g++-4.7

CMake maintains configuration parameters in so-called cmake variables, like the CMAKE_CXX_COMPILER in the
example above. These variables are not environment variables but CMake variables. Some of the CMake
variables represent user choices, such as WITH_examples or CMAKE_BUILD_TYPE=Release, while others in-
dicate the details of a third-party library, such as Boost_INCLUDE_DIR or the compiler flags to use, such as
CMAKE_CXX_FLAGS.

The command line tool cmake accepts CMake variables as arguments of the form -D<VAR>:<TYPE>=<VALUE>,
as in the example above, but this is only useful if you already know which variables need to be explicitly defined.

advanced

CMake keeps the variables that a user can manipulate in a so-called CMake cache, a simple text file named
CMakeCache.txt, whose entries are of the form VARIABLE:TYPE=VALUE. Advanced users can manually
edit this file, instead of going through the interactive configuration session.

I— advanced ——

The configuration process not only determines the location of the required dependencies, it also dynamically
generates a compiler_config.h file, which encodes the properties of your system and a special file named
CGALConfig.cmake, which is used to build programs using CGAL. The purpose of this file is explained below.

3.7 CGAL Libraries

CGAL is split into five libraries. During configuration, you can select the libraries that you would like to build
by setting a CMake variable of the form WITH_<library>. By default all are switched ON. All activated libraries
are build after configuration; see 3.11

We next list the libraries and essential 3rd party software (see 3.8) for each library:
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library CMake variable functionality dependencies

CGAL none Main library GMP, MPFR, BOOST (headers)
and Boost.Thread (library)

CGAL_Core WITH_CGAL_Core The CORE library for algebraic numbers. !> GMP and MPFR

CGAL_ImageIO | WITH.CGAL_ImageIO | Utilities to read and write image files OPENGL, ZLIB, VTK(optional)

CGAL_Qt3 WITH_CGAL_Qt3 CGAL::Qt_widget used by QT3-based demos Q13 and OPENGL

CGAL_Qt4 WITH_CGAL_Qt4 OGraphicsView support for QT4-based demos | QT4 and OPENGL

3.7.1 Debug vs. Release

The CMake variable CMAKE_BUILD_TYPE indicates how to build the libraries. It accepts the values Release or
Debug. The default is Release and should be kept, unless you want to debug your program.

This is not an issue for solution/project files, as there the user selects the build type from within the IDE.

3.7.2 Static vs. Shared Libraries

Shared libraries, also called dynamic-link libraries, are built by default (.d11 on Windows, .so on Linux,
.dylib on MacOS). You can choose to produce static libraries instead by setting the CMake variable
BUILD_SHARED_LIBS to FALSE. If you use cmake-gui, a tick box for that variable is available to set it.

These setting affect the variants of third-party libraries (see next section) selected whenever the choice is avail-
able.

3.8 Essential Third Party Libraries

The focus of CGAL is on geometry, and we rely on other highly specialized libraries and software for non-
geometric issues, for instance, for numeric solvers, or visualization. We first list software that is essential to
build (all) libraries of CGAL, that is, this software must be found during the configuration of CGAL for an
actived library of CGAL (i.e. WITH_<1ibrary>=0N); see 3.16.4 to specify the location of 3rd party software.

The libraries STL (shipped with any compiler) and BOOST are essential to all components (i.e. ibCGAL,
libCGAL _Core, libCGAL_imagelO, libCGAL_Qt3 and libCGAL_Qt4).

3.8.1 Standard Template Library (STL)

CGAL heavily uses the STL, and in particular adopted many of its design ideas. You can find online
documentation for the STL at various web sites, for instance, http://www.sgi.com/tech/stl/, http://
www.cplusplus.com/reference/,orhttp://msdn.microsoft.com/en-us/library/1fe2x6kt (VS.100)
.aspx.

ISCGAL_Core is not part of CGAL, it is a custom version the CORE library distributed by CGAL for the user convenience and it has it’s
own license.
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The STL comes with the compiler, so there is nothing to install.

3.8.2 BoosT

The BOOST libraries are a set of portable C++ source libraries. Most of BOOST libraries are header-only, but a
few of them need to be compiled or installed as binaries.

CGAL requires the BOOST libraries. In particular the header files and the threading library (Boost . Thread and
Boost.System binaries). Version 1.39 (or higher) are needed.

On Windows, as auto-linking is used, you also need the binaries of Boost.Serialization and
Boost .DateTime, but the dependency is artificial and used only at link-time: the CGAL libraries do not depend
on the DLL’s of those two libraries.

In CGAL some demos and examples depend on Boost .Program_options.

In case the BOOST libraries are not installed on your system already, you can obtain
them from http://www.boost.org/. For Windows you can download an installer from
http://www.boostpro.com/download/. Since Boost.Thread is required, make sure to either install
the precompiled libraries for your compiler or build 1ibboost-thread and 1ibboost-system.

As on Windows there is no canonical directory for where to find BOOST, we recommend that you define the

environment variable BOOST_ROOT and set it to where you have installed BOOST, e.g., C: \boost\boost_1_
41_0.

3.8.3 GMP and MPFR

The components libCGAL, 1ibCGAL _Core, libCGAL_Qt3 and libCGAL_Qt4 require GMP and MPFR which
are libraries for multi precision integers and rational numbers, and for multi precision floating point numbers.

CGAL combines floating point arithmetic with exact arithmetic, in order to be efficient and reliable. CGAL has
a built-in number type for that, but GMP and MPFR provide a faster solution, and we recommend to use them.

Having GMP version 4.2 or higher and MPFR version 2.2.1 or higher installed is recommended. These libraries
can be obtained from http://gmplib.org/ and http://www.mpfr.org/, respectively.

As Visual C++ is not properly supported by the GMP and MPFR projects, we provide precompiled versions of
GMP and MPFR, which can be downloaded with the installer CGAL-4.1-Setup.exe.

384 7ZLIB

ZLIB is a data compression library, and is essential for the component libCGAL _ImagelO.
In CGAL this library is used in the examples of the Surface Mesh Generation (Page ??) package.

If it is not already on your system, for instance, on Windows, you can download it from
http://www.zlib.net/.
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3.8.5 OPENGL

OPENGL (Open Graphics Library) provides an API for applications that produce 2D and 3D computer graphics.

In CGAL the library is essential for the components libCGAL_Qt3 and libCGAL_Qt4, as well as 1libC-
GAL _ImagelO and for various demos.

Typically, OPENGL is preinstalled on systems; if not, it can be downloaded from http://www.opengl.org/.

3.8.6 QT3 and QT4

Qt is a cross-platform application and UI framework.
The component libCGAL_Qt3 requires QT3 installed on your system, while the component libCGAL_Qt4 re-
quires QT4 installed on your system. In case QT is not yet installed on your system, you can download it from

http://qt.nokia.com/.

Older demos of CGALuse 1ibCGAL_Qt3 and QT3, while newer and newly developed demos require libC-
GAL_Qt4 and QT4.

Having QT4 version 4.3.0 or higher is recommended.

3.9 CacAL Examples and Demos
CGAL is distributed with a large collection of examples and demos. By default, these are not configured along
with the CGAL libraries, unless you set the variables WITH_examples=0N and/or WITH_demos=0N.

Nevertheless, even when configured with CGAL, they are not automatically built along with the libraries. You
must build the examples or demos targets (or IDE projects) explicitly.

If you do not plan to compile any demos, you might skip some of the essential libraries (as QT or OPENGL), as
the corresponding CGAL-libraries are not linked. But for your own demos you might need these CGAL-libraries.

3.10 Optional Third Party Libraries

Optional 3rd party software can be used by CGAL for various reasons: Usually certain optional libraries are
required to build examples and demos shipped with CGAL or to build your own project using CGAL. Another
reason is to speed up basic tasks. In order to support these goals, all optional libraries can be prepared to be
used with CGAL while configuring CGAL, just in the same way as essential libraries are configured. Whenever
building an example or a demo (or your own executable), these preconfigured libraries are available when using
CGAL.

3.10.1 LEDpA

LEDA is a library of efficient data structures and algorithms. Like CORE, LEDA offers a real number data type.
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In CGAL this library is optional, and its number types can be used as an alternative to GMP, MPFR, and CORE.

Free and commercial editions of LEDA are available from http://www.algorithmic-solutions.com/leda/index.html.

3.10.2 MPFI

MPFI provide arbitrary precision interval arithmetic with intervals represented using MPFR reliable floating-
point numbers. It is based on the GMP library and on the MPFR library. In the setting of CGAL it is mainly used
in sync with Rs. The library is optional and needed in certain algebraic kernels.

MPFI can be downloaded from http://mpfi.gforge.inria.fr/. Version 1.4 or higher is recommended.

3.10.3 Rsand Rs3

Rs (Real Solutions) is devoted to the study of the real roots of polynomial systems with a finite number of
complex roots (including univariate polynomials).

In CGAL, Rs is used by one model of the Algebraic Kernel (Page ??).
Rs is freely distributable for non-commercial use. You can download it from http://vegas.loria.fr/rs/.
The library Rs needs MPFI, which can be downloaded from http://mpfi.gforge.inria.fr/. Version 1.4 or

higher is recommended.

The successor of Rs is called Rs3. It less restrictive when it comes to licencing and also contains improved and
more efficient interfaces. Mainly parts in CGAL’s algebraic kernel require Rs3.

3.104 NTL

NTL provides data structures and algorithms for signed, arbitrary length integers, and for vectors, matrices, and
polynomials over the integers and over finite fields. The optional library NTL is used by CGAL to speed up
operations of the Polynomial package, such as GCDs. It is recommended to install NTL with support from
GMmP.

NTL can be downloaded from http://www.shoup.net/nt1l/. Version 5.1 or higher is recommended.

3.10.5 EIGEN

EIGEN is a C++ template library for linear algebra. EIGEN supports all matrix sizes, various matrix decomposi-
tion methods and sparse linear solvers.

In CGAL, EIGEN provides sparse linear solvers in the Surface Reconstruction from Point Sets (Page ??) and the
Planar Parameterization of Triangulated Surface Meshes (Page ??) packages.

In addition, EIGEN also provides singular value decomposition for the Estimation of Local Differential Proper-
ties (Page ??) and the Approximation of Ridges and Umbilics (Page ??) packages.

The EIGEN web site is http://eigen.tuxfamily.org.
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3.10.6 libQGLViewer

libQGLViewer is a 3D widget based on QT 4’s QGLWidget.
In CGAL some 3D demos are based on libQGLViewer.

It can be downloaded from http://www.libgglviewer.com/.

3.10.7 CoIN3D

COIN3D is an implementation of Open Inventor.
In CGAL, COIN3D is used in the demo of the Kinetic Data Structures (Page ??) package.

You can download it from http://www.coin3d.org/.

3.10.8 ESTBL

The ESTBL (Easy Structural Biology Template Library) is a library that allows the handling of PDB data.
In CGAL the ESTBL is used in an example of the 3D Skin Surface Meshing (Page ??) package.

It can be downloaded from http://esbtl.sourceforge.net/.

3.11 Building CGAL

The results of a successful configuration are build files that control the build step. The nature of the build files
depends on the generator used during configuration, but in all cases they contain several targets, one per library,
and a default global target corresponding to all the libraries.

For example, in a UNIX-like environment the default generator produces makefiles. You can use the make
command-line tool for the succeeding build step as follows:

cd CGAL-4.1
# build all the selected libraries at once

make

The resulting libraries are placed in the subdirectory 1ib under <CMAKE_BINARY DIR> (which is CGAL-4.1 in
case you run an in-source-configuration).

With generators other than UNIX Makefiles the resulting build files are solution and project files which should

be launched in an IDE, such as Visual Studio or KDevelop3. They will contain the targets described above,
which you can manually build as with any other solution/project within your IDE.
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Alternatively, you can build it with the command line version of the VISUAL STUDIO IDE:

devenv CGAL.sln /Build Debug

The ”Debug” argument is needed because CMake creates solution files for all four configurations, and you need
to explicitly choose one when building (the other choices are Release, RelWithDebInfo and MinSizeRel).

advanced

The build files produced by CMake are autoconfigured. That is, if you change any of the dependencies, the build
step automatically goes all the way back to the configuration step. This way, once the target has been configured
the very first time by invoking cmake, you don’t necessarily need to invoke cmake again. Rebuilding will call
itself cmake and re-generate the build file whenever needed. Keep this in mind if you configure CGAL for the
Visual Studio IDE since a build could then change the solution/project file in-place and VS will prompt you to
reload it.

advanced

If you have turned on the configuration of examples (-DWITH_examples=0N) and/or demos (-DWITH_demos=0N),
there will be additional targets named examples and demos, plus one target for each example and each demo
in the build files. None of these targets are included by default, so you need to build them explicitly after the
CGAL libraries have been successfully built. The targets examples and demos include themselves all the targets
for examples and demos respectively.

# build all examples at once
make examples

# build all demos at once
make demos

# build only the Straight Skeleton demo
make Straight_skeleton_2_demo

advanced

When using UNIX Makefiles you can find out the exact name of the example or demo target of a particular
package by typing make help | grep <package>.

advanced

3.12 [Installing CGAL

On many platforms, library pieces such as headers, docs and binaries are expected to be placed in specific
locations. A typical example being /usr/include and /usr/1lib on UNIX-like operating systems or C:/
Program Files/ on Windows. The process of placing or copying the library elements into its standard location
is sometimes referred to as Installation and it is a postprocessing step after the build step.
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CMake carries out the installation by producing a build target named install. The following example shows a
typical session from configuration to installation in a UNIX-like environment:

cd CGAL-4.1
cmake . # configure
make # compile

make install # install

If you use a generator that produces IDE files (for Visual Studio for instance) there will be an optional INSTALL
project, which you will be able to “build” to execute the installation step.

advanced

The files are copied into a directory tree relative to the installation directory determined by the CMake variable
CMAKE_INSTALL_PREFIX. This variable defaults to /usr/local under UNIX-like operating systems and C:\
Program Files under Windows. If you want to install to a different location, you must override that CMake
variable explicitly at the configuration time and not when executing the install step.

advanced

The file CGALConfig.cmake is installed by default in SCMAKE_INSTALLED PREFIX/1ib/CGAL-4.1.

3.13 Example Configuration

Below is an example output on a linux machine with g++4.4 installed, using CMake 2.8.5, and the following
command-line call to cmake:

cmake -DWITH_examples=0FF -DWITH_demos=0OFF -DCMAKE_BUILD_TYPE=Release
/path/to/unpacked/CGAL-tarball/

—-— The CXX compiler identification is GNU

-- The C compiler identification is GNU

—-- Check for working CXX compiler: /usr/bin/g++-4.4

-— Check for working CXX compiler: /usr/bin/g++-4.4 -- works
—-- Detecting CXX compiler ABI info

—-- Detecting CXX compiler ABI info - done

—-— Check for working C compiler: /usr/bin/gcc-4.4

—-- Check for working C compiler: /usr/bin/gcc-4.4 -- works
-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

== Setting paths ==

== Build CGAL from release: CGAL-4.1 ==

-- Packagenames: CGAL-4.1

== Setting paths (DONE) ==

== Generate version files ==
-- CGAL_MAJOR_VERSION=4
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CGAL_MINOR_VERSI
CGAL_BUGFIX_VERS
CGAL_SONAME_VERS
CGAL_SOVERSION

ON=1

ION=0

ION=10
=10.0.0

CGAL_REFERENCE_CACHE_DIR=

Building shared

libraries

Targetting Unix Makefiles

Using /usr/bin/g
USING CMake vers
System: Linux

++-4.4 compiler.
ion: 2.8.5

USING GCC_VERSION = "4.4.5'

Using gcc versio
Generate version

Detect external
Build type: Rele
USING CXXFLAGS =
USING LDFLAGS =
External librari
Preconfiguring 1
GMP has been pre
CGAL_UseGMP-fi
GMP include:
GMP libraries:
GMP definition

n 4 or later. Adding -frounding-math

files (DONE) ==
libraries ==
ase

" -frounding-math -03 -DNDEBUG’

r r

es supported: GMP;GMPXX;MPFR;zlib;OpenGL; LEDA; MPFI;RS;RS3;O0penNL; TAUCS; EIGEN3; BLAS; LAF

ibrary: GMP
confiqured:
le:
/usr/include/
/usr/lib/libgmp.so
N

USING GMP_VERSION = "4.3.2'

Preconfiguring 1
GMPXX has been p
CGAL_UseGMPXX-
GMPXX include:
GMPXX librarie
GMPXX definiti
Preconfiguring 1
MPFR has been pr
CGAL_UseMPFR-f
MPFR include:
MPFR libraries
MPFR definitio
USING MPFR_VERST
Boost version: 1
Found the follow
thread
Boost include:
Boost libraries:
Boost definition
USING BOOST_VERS
Detect external

Write compiler_c
Performing Test
Performing Test
Performing Test
Performing Test
Performing Test

ibrary: GMPXX ...
reconfiqured:
file:

/usr/include
S: /usr/lib/libgmpxx.so
ons:
ibrary: MPEFR ...
econfigured:
ile:

/usr/include/
: /usr/lib/libmpfr.so
ns:
ON = 73.0.0"
.39.0
ing Boost libraries:

/usr/include/boost_1_39_0/include/boost-1_39
/usr/lib/libboost_thread-mt.so;pthread

S:

ION = "1.39.0'

libraries (DONE) ==

onfig.h ==

CGAL_CFG_ARRAY_MEMBER_INITIALIZATION_BUG - Success
CGAL_CFG_DENORMALS_COMPILE_BUG - Success
CGAL_CFG_FPU_ROUNDING_MODE_UNWINDING_VC_BUG - Success
CGAL_CFG_IEEE_754_BUG - Success
CGAL_CFG_ISTREAM_INT_BUG - Success
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Performing Test CGAL_CFG_LONGNAME_ BUG - Success

Performing Test CGAL_CFG_MATCHING_BUG_5 - Success

Performing Test CGAL_CFG_MATCHING_BUG_6 - Success

Performing Test CGAL_CFG_NESTED_CLASS_FRIEND_DECLARATION_BUG - Success
Performing Test CGAL_CFG_NO_CPPOX_ARRAY - Failed

Performing Test CGAL_CFG_NO_CPPOX_AUTO - Failed

Performing Test CGAL_CFG_NO_CPPOX COPY_N - Failed

Performing Test CGAL_CFG_NO_CPPOX_DECLTYPE - Failed

Performing Test CGAL_CFG_NO_CPPOX_DEFAULT_TEMPLATE_ARGUMENTS_FOR_FUNCTION_TEMPLATES - Failed
Performing Test CGAL_CFG_NO_CPPOX_DELEGATING_CONSTRUCTORS - Failed
Performing Test CGAL_CFG_NO_CPPOX_DELETED_AND_DEFAULT_FUNCTIONS - Success
Performing Test CGAL_CFG_NO_CPPOX_INITIALIZER_LISTS - Failed
Performing Test CGAL_CFG_NO_CPPOX_ISFINITE - Success

Performing Test CGAL_CFG_NO_CPPOX_LAMBDAS - Failed

Performing Test CGAL_CFG_NO_CPP0X_LONG_LONG - Success

Performing Test CGAL_CFG_NO_CPPOX_NEXT_PREV - Failed

Performing Test CGAL_CFG_NO_CPPOX_ RVALUE_REFERENCE - Failed
Performing Test CGAL_CFG_NO_CPPOX_STATIC_ASSERT - Failed

Performing Test CGAL_CFG_NO_CPPOX_TUPLE - Failed

Performing Test CGAL_CFG_NO_CPPOX_VARIADIC_TEMPLATES - Failed
Performing Test CGAL_CFG_NO_LIMITS - Success

Performing Test CGAL_CFG_NO_LOGICAL_OPERATORS_ALTERNATIVES - Success
Performing Test CGAL_CFG_NO_MESSAGE_PRAGMA BUG - Success

Performing Test CGAL_CFG_NO_NEXTAFTER - Success

Performing Test CGAL_CFG_NO_STATEMENT_EXPRESSIONS - Success

Performing Test CGAL_CFG_NO_STL - Success

Performing Test CGAL_CFG_NO_TR1_ARRAY - Success

Performing Test CGAL_CFG_NO_TR1_TUPLE - Success

Performing Test CGAL_CFG_NO_WARNING_CPP_DIRECTIVE_BUG - Success
Performing Test CGAL_CFG_NUMERIC_LIMITS_BUG - Success

Performing Test CGAL_CFG_OUTOFLINE_MEMBER_DEFINITION_BUG - Success
Performing Test CGAL_CFG_TEMPLATE_IN_DEFAULT_PARAMETER_BUG - Success
Performing Test CGAL_CFG_TYPENAME_BEFORE_DEFAULT_ARGUMENT_ BUG - Success
Performing Test CGAL_CFG_USING_BASE_MEMBER_BUG_2 - Success

Write compiler_config.h (DONE) ==

Generating build files ==

Configure 1ibCGAL

GMP include: /usr/include/

GMP definitions:

GMP libraries: /usr/lib/libgmp.so
Configured GMP in standard way

MPFR include: /usr/include/

MPFR definitions:

MPFR libraries: /usr/1lib/libmpfr.so
Configured MPFR in standard way
1ibCGAL is configured

Sources for CGAL component library ’Core’ detected
Configure 1ibCGALCore

GMP include: /usr/include/

GMP definitions:

GMP libraries: /usr/lib/libgmp.so
Configured GMP in standard way

MPFR include: /usr/include/
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MPFR definitions:
MPFR libraries: /u
Configured MPFR in standard way

1ibCGALCore is configured

Sources for CGAL component library 'Qt3’ detected
Sources for CGAL component library 'Qt4’ detected
Configure 1ibCGALQt4

Looking
Looking
Looking
Looking
Looking
Looking
Looking
Looking
Looking
Looking
Looking
Looking
Looking
Looking
Looking
Looking
Looking
Looking
Looking
Looking

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

Found X11:
USING QT4_VERSION =
OpenGL include:
OpenGL libraries:
OpenGL definitions:

Qt4 include:

Q_WS_X11
Q_WS_X11
Q_WS_WIN
Q_WS_WIN
Q_WS_QWS
Q_WS_OWS
Q_WS_MAC
Q_WS_MAC

sr/lib/libmpfr.so

- found
- not found.
- not found.

- not found.

XOpenDisplay in /usr/lib/libX11l.so;/usr/lib/libXext.so
XOpenDisplay in /usr/lib/l1ibX1l.so;/usr/lib/libXext.so - found
gethostbyname

gethostbyname - found

connect
connect
remove
remove -
shmat
shmat -
IceConne
IceConne

Qt4 libraries:

Qt4 definitions:
moc executable:
uic executable:

GMP include:

/us

GMP definitions:

GMP libraries:

- found
found
found

ctionNumber in ICE
ctionNumber in ICE - found

/usr/1ib/1ibX11.so

"4.6.37
/usr/include
/usr/1ib/1ibGLU.so; /usr/1lib/1ibGL.so; /usr/1lib/1ibSM.so; /usr/1ib/11ibICE.so; /usr/1ik

/usr/include/qt4
/usr/1ib/1ibQtOpenGL.so; /usr/1ib/1ibQtGui.so; /usr/1ib/1ibQtCore.so

/usr/bin/moc-qt4
/usr/bin/uic-qt4
r/include/

/usr/lib/libgmp.so

Configured GMP in standard way
MPFR include: /u
MPFR definitions:
MPFR libraries: /u
Configured MPFR in standard way

1ibCGALQt4 is configured

Sources for CGAL component library 'ImagelIO’ detected
Configure 1ibCGALImageIO

Found OpenGL: /usr/lib/libGL.so

Found ZLIB: /usr/lib/libz.so (found version "1.2.3.4")
OpenGL include:
OpenGL libraries:
USING ZLIB_VERSION = '1.2.3.4'
1ibCGALImageIO is configured

sr/include/

sr/lib/libmpfr.so

/usr/include
/usr/1ib/1ibGLU.so; /usr/1lib/1ibGL.so; /usr/1lib/1ibSM.so; /usr/1lib/11ibICE.so; /usr/1lik
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-- Sources for CGAL component libraries ’CGAL;Core;ImagelO;Qt3;0t4’ detected
== Generating build files (DONE) ==

-- Configuring done
-- Generating done
-- Build files have been written to: /home/user/CGAL/4.1/

3.14 Multiple Variants of makefiles (out-of-source build)

While you can choose between release or debug builds, and shared or static libraries, it is not possible to generate
different variants during a single configuration. You need to run CMake in a different directory for each variant
you are interested in, each with its own selection of configuration parameters.

CMake stores the resulting makefiles and project files, along with several temporary and auxiliary files such as
the variables cache, in the directory where it is executed, called CMAKE_BINARY DIR, but it takes the source files
and configuration scripts from CMAKE_SOURCE_DIR.

The binary and source directories do not need to be the same. Thus, you can configure multiple variants by
creating a distinct directory for each configuration and by running CMake from there. This is known in CMake
terminology as out-of-source configuration, as opposite to an in-source configuration, as showed in the previous
sections.

You can, for example, generate  subdirectories CGAL-4.1/cmake/platforms/debug and
CGAL-4.1/cmake/platforms/release for two configurations, respectively:

mkdir CGAL-4.1/cmake/platforms/debug
cd CGAL-4.1/cmake/platforms/debug
cmake -DCMAKE_BUILD_TYPE=Debug ../../..

mkdir CGAL-4.1/cmake/platforms/release

cd CGAL-4.1/cmake/platforms/release
cmake -DCMAKE_BUILD_TYPE=Release ../../..

3.15 Configuring and Building Programs Using CGAL

Ideally, configuring and compiling a demo/example/program amounts to

cd CGAL-4.1/examples/Straight_skeleton_2
cmake -DCGAL_DIR=$HOME/CGAL-4.1
make

In this ideal world, as for all shipped examples and demos of CGAL, the required CMakeLists.txt is already
provided.
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CMake can also be used to configure and build user programs via such CMake-scripts. In this less ideal world,
one has to provide the CMakeLists.txt script either manually, or with the help of a shell-script that is intro-
duced below.

For a user program executable. cpp, the ideal world looks like this:

cd /path/to/program
cgal_create_CMakeLists -s executable
cmake -DCGAL_DIR=$HOME/CGAL-4.1

make

In both examples we specify the CGAL_DIR: During configuration of the CGAL libraries a file named
CGALConfig.cmake is generated in CGAL’s root directory (in contrast to CGAL’s source directory that has
been used for installation). This file contains the definitions of several CMake variable that summarize the con-
figuration of CGAL. In order to configure a program, you need to indicate the location of that config file in the
CMake variable CGAL_DIR (as indicated in the example above). CGAL_DIR can also be an environment variable.
Setting CGAL_DIR makes particular sense if having multiple out-of-source builds of CGAL as in Section 3.14.

If you have installed CGAL, CGAL_DIR must afterwards be set to $CMAKE_INSTALLED_PREFIX/1ib/CGAL. Note
that CGAL is recommended to be installed in release mode when using it to build programs.

3.15.1 Creating a cmake script for a program using CGAL

For compiling a non-shipped program, it is recommended, to also rely on a CMake-supported configuration
using a CMakeLists.txt used for configuration.

Use the following Bourne-shell script for programs that are relatively simple to configure:

cgal create CMakelists

The Bourne-shell script cgal_create CMakelLists.txt resides in the CGAL-4.1/scripts directory.
It can be used to create CMakeLists.txt files for compiling CGAL applications. Executing
cgal_create_CMakeLists.txt in an application directory creates a CMakeLists.txt containing rules to build
the contained application(s). Three command line options determine details of the configuration.

—-s source If this parameter is given the script will create a single executable for ’source’ linked with com-
pilations of all other source files (* . cpp). This behaviour is usually needed for (graphical) demos.
If the parameter is not given, the script creates one executable for each given source file.

—c coml:com2: ... Lists components (“coml”, “com2”) of CGAL to which the executable(s) should be
linked. Valid components are CGAL’s libraries (i.e. “Core”, “ImagelO”, “Qt3” and “Qt4”; note that it
only make sense to either pick “Qt3” or “Qt4”) and all preconfigured 3rd party software, such as “MPFI”
or “RS3” ). An example is -c Core:GMP:RS3:MPFI

-b boostl:boost2:... Lists components (“boostl”, “boost2””) of BOOST to which the executable(s)
should be linked. Valid options are, for instance, “filesystem” or “program_options”.

This options should suffice to create CMakeLists.txt script for most directories containing programs. How-
ever, in some special cases, it might still be required to create the script manually, for instance, if some source
files/executables need a different linking than other source files.
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li deprecated ——

cgal_create_cmake_script

For backward-compatibility we still provide the Bourne-shell script cgal_create_cmake_script that is con-
tained in the CGAL-4.1/scripts directory. It can be used to create CMakeLists. txt files for compiling CGAL
applications. Executing cgal_create_cmake_script in an application directory creates a CMakeLists.txt
containing rules for every *.cpp file there. The script is deprecated, as it only works for applications with a
single course file that only need libCGAL and libCGAL_Core.

I— deprecated ——

Such a shell-script simply creates a CMake script. Processing it with CMake, searches for CGAL using
find_package. If found, the variable CGAL_USE_FILE is set to a compilation environment CMake file. In-
cluding this file within a CMake script sets up include paths and libraries to link with CGAL and essential
third party libraries. Beyond, find_package can demand for COMPONENTS of CGAL, that is, all CGAL libraries
libCGAL_Core (“Core”), libCGAL_imagelO (“ImagelO”) , libCGAL_Qt3 (“Qt3”) and libCGAL_Qt4 (“Qt4”)
or optional 3rd party software such as “MPFI” or “RS3”. A user is free to create the CMakeLists.txt without
calling the script (manual creation).

3.15.2 Custom flags in the programs using CGAL

Normally, programs linked with CGAL must be compiled with the same flags used by the compilation of CGAL
libraries. For this reason, the very first time a program is configured, all the flags given by the CMake variables
CMAKE_*_FLAGS are locked in the sense that the values recorded in CGALConfig.cmake are used to override any
values given by CMake itself or yourself.

This does not apply to the additional flags that can be given via CGAL_* _FLAGS.

Such inherited values are then recorded in the current CMake cache for the program. The flags are then unlocked
in the sense that at any subsequent configuration you can provide your own flags and this time they will not be

overridden.

When using the interactive cmake-gui the first press on Configure unlocks the flags, so that you can edit them
as needed.

advanced

The locking of flags is controlled by the variable CGAL_DONT_OVERRIDE_CMAKE_FLAGS which starts out FALSE
and is toggled right after the flags have been loaded from CGALConfig.cmake.

If you use the command line tool you can specify flags directly by setting the controlling variable right up front:

cd CGAL-4.1
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_FLAGS=-g .
cd CGAL-4.1/examples/Straight_skeleton_2

cmake -DCGAL_DIR=CGAL-4.1 -DCMAKE_BUILD_TYPE=Debug -DCMAKE_CXX_FLAGS=-02 -DCGAL_DONT_OVERRIDE_CMAKE_FLAGS
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Ii advanced ——

3.16 Summary of CGAL’s Configuration Variables

Most configuration variables are not environment variables but CMake variables. They are given in the com-
mand line to CMake via the -D option, or passed from the interactive interface of cmake-gui. Unless indicated
differently, all the variables summarized below are CMake variables.

3.16.1 Component selection

The following boolean variables indicate which CGAL components to configure and build. Their values can be
ON or OFF.

Variable Default value
WITH_examples OFF
WITH_demos OFF
WITH_CGAL_Core ON
WITH_CGAL_Qt3 ON
WITH_CGAL_Qt4 ON
WITH.CGAL_ImageIO | ON

3.16.2 Compiler and Linker Flags

The following variables specify compiler and linker flags. Each variable holds a space-separated list of
command-line switches for the compiler and linker and their default values are automatically defined by CMake
based on the target platform.

Have in mind that these variables specify a list of flags, not just one single flag. If you provide your own
definition for a variable, you will entirely override the list of flags chosen by CMake for that particular variable.

The variables that correspond to both debug and release builds are always used in conjunction with those for the
specific build type.

Program Both Debug and Release Release only Debug Only

C++ Compiler

CMAKE_CXX_FLAGS

CMAKE_CXX_FLAGS_RELEASE

CMAKE_CXX_FLAGS_DEBUG

Linker (shared libs)

CMAKE_SHARED_LINKER_FLAGS

CMAKE_SHARED_LINKER_FLAGS_RELEASE

CMAKE_SHARED_LINKER_FLAGS_DEBUG

Linker (static libs)

CMAKE_MODULE_LINKER_FLAGS

CMAKE_MODULE_LINKER_FLAGS_RELEASE

CMAKE_MODULE_LINKER_FLAGS_DEBUG

Linker (programs)

CMAKE_EXE_LINKER_FLAGS

CMAKE_EXE_LINKER_FLAGS_RELEASE

CMAKE_EXE_LINKER_FLAGS_DEBUG

Additional Compiler and Linker Flags

The following variables can be used to add flags without overriding the ones defined by cmake.
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Program Both Debug and Release Release only Debug Only

C++ Compiler CGAL_CXX_FLAGS CGAL_CXX_FLAGS_RELEASE CGAL_CXX_FLAGS_DEBUG

Linker (shared libs) | CGAL_SHARED_LINKER_FLAGS | CGAL_SHARED_LINKER_FLAGS_RELEASE | CGAL_SHARED_LINKER_FLAGS_DEBUG

Linker (static libs) CGAL_MODULE_LINKER_FLAGS | CGAL_-MODULE_LINKER_FLAGS_RELEASE | CGAL_MODULE_LINKER_FLAGS_DEBUG

Linker (programs) CGAL_EXE_LINKER_FLAGS CGAL_EXE_LINKER_FLAGS_RELEASE CGAL_EXE_LINKER_FLAGS_DEBUG

3.16.3 Miscellaneous Variables

’ Variable ‘ Description Type Default value
CMAKE_BUILD_TYPE Indicates type of build. Possible values are "Debug’ or 'Release’ CMake Release
CMAKE_CXX_COMPILER | Full-path to the executable corresponding to the C++ compiler to use. | CMake platform-dependent
CXX Idem Environment | Idem

Variables used only when building programs (such as demos or examples)

’ Variable ‘ Description ‘ Type ‘ Default value ‘

’ CGALDIR ‘ Full-path to the binary directory where CGAL was configured ‘ Either CMake or Environment ‘ none ‘

3.16.4 Variables providing information about 3rd-party libraries

The following variables provide information about the availability and location of the 3rd party libraries used
by CGAL. CMake automatically searches for dependencies so you need to specify these variables if CMake was
unable to locate something. This is indicated by a value ending in NOTFOUND.

Since 3rd-party libraries are system wide, many of the CMake variables listed below can alternatively be given
as similarly-named environment variables instead. Keep in mind that you must provide one or the other but
never both.

BOOST libraries

In most cases, if BOOST is not automatically found, setting the BOOST_ROOT variable is enough. If it is not, you
can specify the header and library directories individually. You can also provide the full pathname to a specific
compiled library if it cannot be found in the library directory or its name is non-standard.

By default, when BOOST binary libraries are needed, the shared versions are used if present. You can set the
variable CGAL_Boost _USE_STATIC_LIBS to ON if you want to link with static versions explicitly.

On Windows, if you link with BOOST shared libraries, you must ensure that the .d11 files are found by the

dynamic linker, at run time. For example, you can add the path to the BOOST .d11 to the PATH environment
variable.

39



Variable Description Type

BOOST_ROOT!® Root directory of your BOOST installation Either CMake or Environment
Boost_INCLUDE_DIR Directory containing the boost /version.hpp file CMake

BOOST_INCLUDEDIR Idem Environment
Boost_LIBRARY_DIRS Directory containing the compiled BOOST libraries CMake

BOOST_LIBRARYDIR Idem Environment

Boost._ (xyz)_LIBRARY_RELEASE | Full pathname to a release build of the compiled *xyz’ BOOST library | CMake

Boost. (xyz) _LIBRARY_DEBUG Full pathname to a debug build of the compiled "xyz” BOOST library | CMake

GMP and MPFR libraries

Under Windows, auto-linking is used, so only the directory containing the libraries is needed and you would
specify GMP |[MPFR_LIBRARY DIR rather than GMP | MPFR_LIBRARIES. On the other hand, under Linux the actual
library filename is needed. Thus you would specify GMP | MPFR_LIBRARIES. In no case you need to specify both.

CGAL uses both GMP and MPFR so both need to be supported. If either of them is unavailable the usage of
GMP and of MPFR will be disabled.

Variable Description Type
WITH_GMP Indicates whether to search and use GMPMPFR or not | CMake
GMP_DIR Directory of GMP default installation Environment
GMP_INCLUDE_DIR Directory containing the gmp . h file CMake
GMP_INC_DIR Idem Environment
GMP_LIBRARIES_DIR Directory containing the compiled GMP library CMake
GMP_LIB_DIR Idem Environment
GMP_LIBRARIES Full pathname of the compiled GMP library CMake
MPFR_INCLUDE_DIR Directory containing the mpfr.h file CMake
MPFR_INC_DIR Idem Environment
MPFR_LIBRARIES_DIR | Directory containing the compiled MPFR library CMake
MPFR_LIB_DIR Idem Environment
MPFR_LIBRARIES Full pathname of the compiled MPFR library CMake

Under Linux, the GMPXX is also searched for, and you may specify the following variables:

Variable Description Type
GMPXX_DIR Directory of GMPXX default installation Environment
GMPXX_INCLUDE_DIR | Directory containing the gmpxx.h file CMake
GMPXX_LIBRARIES Full pathname of the compiled GMPXX library | CMake

QT3 library

In most cases, if QT3 is not automatically found, setting the QTDIR environment variable is sufficient. If it is
not, you can specify the directory containing the header files and the full pathnames of the QT3 libraries.

16The environment variable can be spelled either BOOST_ROOT or BOOSTROOT
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Variable Description Type

QTDIR Root directory of the QT3 library Environment
QT3_INCLUDE_DIR Directory containing the gt .h file CMake
QT3_QT_LIBRARY Full pathname to the qt library of QT3 CMake
QT3_QTMAIN_LIBRARY Full pathname to the qtmain library of QT3 CMake
QT3_QASSISTANTCLIENT_LIBRARY | Full pathname to the qassistantclient library of QT3 | CMake
QT3_MOC_EXECUTABLE Full pathname to the moc executable of QT3 CMake
QT3_UIC_EXECUTABLE Full pathname to the uic executable of QT3 CMake
Q14 library

The CMake scripts that search for QT4 can use the introspection feature of the tool gmake included in QT4
distributions. If QT4 is not automatically found, it is sufficient to set the PATH environment variable, so that
QT4 gmake tool is in the path, and before QT3 gmake if that one exists. One can alternatively set the CMake
variable QT_QMAKE_EXECUTABLE. The following variables should be then assigned automatically by CMake.

’ Variable ‘ Description ‘ Type ‘
QT_INCLUDE_DIR Directory containing the QtCore/qglobal.h file CMake
QT_LIBRARY.DIR Directory containing the compiled QT4 libraries CMake
QT- (xyz) _LIBRARY Full pathname to the compiled ’xyz’ QT4 library!” | CMake
QT_QMAKE_EXECUTABLE | Full pathname to the gmake executable of QT4 CMake
QT_MOC_EXECUTABLE Full pathname to the moc executable of QT4 CMake
QT_UIC_EXECUTABLE Full pathname to the uic executable of QT4 CMake

LEDA library

When the LEDA libraries are not automatically found, yet they are installed on the system with base names ’leda’
and ’ledaD’ (for the release and debug versions resp.), it might be sufficient to just indicate the library directory
via the LEDA_LIBRARY_DIRS variable. If that doesn’t work because, for example, the names are different, you
can provide the full pathnames of each variant via LEDA_LIBRARY_RELEASE and LEDA_LIBRARY_DEBUG.

The variables specifying definitions and flags can be left undefined if they are not needed by LEDA.

7If  both release and debug versions are available, this variable contains a list of the following form:
’optimized;<fullpath-to-release-1ib>;debug; <fullpath-to-debug-1lib>’, where the ’optimized’ and ’debug’ tags should
appear verbatim.
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Variable Description Type
WITH_LEDA Indicates whether to search and use LEDA or not CMake
LEDADIR Directory of LEDA default installation Environment
LEDA_INCLUDE_DIR Directory containing the file LEDA/system/basic.h | CMake
LEDA_LIBRARIES Directory containing the compiled LEDA libraries CMake
LEDA_INC_DIR Directory containing the file LEDA/system/basic.h | Environment
LEDA_LIB.DIR Directory containing the compiled LEDA libraries Environment
LEDA_LIBRARY_RELEASE | Full pathname to a release build of the LEDA library | Either CMake
LEDA_LIBRARY_DEBUG Full pathname to a debug build of the LEDA library Either CMake
LEDA_DEFINITIONS Preprocessor definitions Either CMake
LEDA_CXX_FLAGS Compiler flags Either CMake
LEDA_LINKER_FLAGS Linker flags Either CMake

MPFI library

CGAL provides a number type based on this library, but the CGAL library itself does not depend on MPFI. This
means that this library must be configured when compiling an application that uses the above number type.

When MPFI files are not on the standard path, the locations of the headers and library files must be specified by
using environment variables.

Variable Description Type
MPFI_DIR Directory of MPFI default installation Environment
MPFI_INCLUDE_DIR Directory containing the mpfi.h file CMake
MPFI_INC_DIR Idem Environment
MPFI_LIBRARIES.DIR | Directory containing the compiled MPFI library | CMake
MPFI_LIB_DIR Idem Environment
MPFI_LIBRARIES Full pathname of the compiled MPFI library CMake

Rs and Rs3 library

As said before, only the CGAL univariate algebraic kernel depends on the library Rs. As the algebraic kernel is
not compiled as a part of the CGAL library, this library is not detected nor configured at installation time.

CMake will try to find Rs in the standard header and library directories. When it is not automatically detected,
the locations of the headers and library files must be specified using environment variables.

Rs needs GMP 4.2 or later and MPFI 1.3.4 or later. The variables related to the latter library may also need to
be defined.
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Variable Description Type
RS_DIR Directory of Rs default installation Environment
RS_INCLUDE_DIR Directory containing the rs_exports.h file CMake
RS_INC_DIR Idem Environment
RS_LIBRARIES.DIR | Directory containing the compiled Rs library | CMake
RS_LIB.DIR Idem Environment
RS_LIBRARIES Full pathname of the compiled Rs library CMake
Similar variables exist for Rs3.
Variable Description Type
RS3.DIR Directory of Rs3 default installation Environment
RS3_INCLUDE_DIR Directory containing the rs_exports.h file | CMake
RS3_INCDIR Idem Environment
RS3_LIBRARIES.DIR | Directory containing the compiled Rs library | CMake
RS3_LIB.DIR Idem Environment
RS3_LIBRARIES Full pathname of the compiled Rs library CMake

NTL library

Some polynomial computations in CGAL’s algebraic kernel are speed up when NTL is available. As the al-
gebraic kernel is not compiled as a part of the CGAL library, this library is not detected nor configured at

installation time.

CMake will try to find NTL in the standard header and library directories. When it is not automatically detected,
the locations of the headers and library files must be specified using environment variables.

Variable Description Type
NTL_DIR Directory of NTL default installation Environment
NTL_INCLUDE_DIR Directory containing the NTL/ZZX.h file CMake
NTL_INC_DIR Idem Environment
NTL_LIBRARIES_DIR | Directory containing the compiled NTL library | CMake
NTL_LIB_DIR Idem Environment
NTL_LIBRARIES Full pathname of the compiled NTL library CMake

EIGEN library

EIGEN is a header-only template library. Only the directory containing the header files of EIGEN 3.1 (or greater)

is needed.
Variable Description Type
EIGEN3_DIR Directory of EIGEN default installation Environment
EIGEN3_INCLUDE.DIR | Directory containing the file signature_of_eigen3matrix_library | CMake
EIGEN3_INC_DIR Idem Environment
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QGLViewer library

Some demos require the GLViewer library.

In most cases, if QGLViewer is not automatically found, setting the QGLVIEWERROOT environment variable is
sufficient. If it is not, you can specify the directory containing the header files and the full pathnames of the
release and debug libraries

Variable Description Type
QGLVIEWERROOT Root directory of the QGLViewer library Environment
QGLVIEWER_INCLUDE_DIR Directory containing the QGLViewer/gglviewer.h file CMake

QGLVIEWER_LIBRARY_RELEASE | Full pathname to a release build of the QGLViewer library | CMake

QGLVIEWER_LIBRARY_DEBUG Full pathname to a debug build of the QGLViewer library | CMake

ESBTL library

One skin surface example requires the ESBTL library in order to read PDB files.

If ESBTL is not automatically found, setting the ESBTL_INC_DIR environment variable is sufficient.

Variable Description Type
ESBTL_DIR Directory of ESTBL default installation Environment
ESBTL_INC_DIR Directory containing the ESBTL/default.h file | Environment
ESBTL_INCLUDE_DIR | Directory containing the ESBTL/default.h file | CMake

3.17 Compiler Workarounds

A number of boolean flags are used to workaround compiler bugs and limitations. They all start with the
prefix CGAL_CFG. These flags are used to work around compiler bugs and limitations. For example, the flag
CGAL_CFG_NO_CPPOX_LONG_LONG denotes that the compiler does not know the type long long.

For each installation a file <CGAL/compiler_config.h> is defined, with the correct settings of all flags. This
file is generated automatically by CMake, and it is located in the include directory of where you run CMake.
For an in-source configuration this means CGAL-x.y/include.

The test programs used to generate the compiler_config.h file can be found in config/testfiles. Both
compiler_config.h and the test programs contain a short description of the problem. In case of trouble with

one of the CGAL_CFG flags, it is a good idea to take a look at it.

The file CGAL/compiler_config.his included from <CGAL/config.h>. which is included by all CGAL header
files.

3.18 Compiler Optimizations

By default CMake generates makefiles for Release mode, with optimization flags switched on, and vcproj files
for Release and Debug modes.
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This chapter contains no Reference Manual pages.
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4.1 Introduction

CGAL is targeting towards exact computation with non-linear objects, in particular objects defined on algebraic
curves and surfaces. As a consequence types representing polynomials, algebraic extensions and finite fields
play a more important role in related implementations. This package has been introduced to stay abreast of
these changes. Since in particular polynomials must be supported by the introduced framework the package
avoids the term number type. Instead the package distinguishes between the algebraic structure of a type and
whether a type is embeddable on the real axis, or real embeddable for short. Moreover, the package introduces

the notion of interoperable types which allows an explicit handling of mixed operations.

4.2 Algebraic Structures

The algebraic structure concepts introduced within this section are motivated by their well known counterparts
in traditional algebra, but we also had to pay tribute to existing types and their restrictions. To keep the interface
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minimal, it was not desirable to cover all known algebraic structures, e.g., we did not introduce concepts for
such basic structures as groups or exceptional structures as skew fields.

Integral DomainWithoutDivision
A

IntegralDomain
Field UniqueFactorizationDomain
A A
FieldWithSgrt EuclideanRing

A

FieldwithKthRoot

FieldwithRootOf

Figure 4.1: Concept Hierarchy of Algebraic Structures

Figure 4.1 shows the refinement relationship of the algebraic structure concepts. IntegralDomain, UniqueFac-
torizationDomain, EuclideanRing and Field correspond to the algebraic structures with the same name. Field-
WithSqrt, FieldWithKthRoot and FieldWithRootOf are fields that in addition are closed under the operations
’sqrt’, "k-th root’ and ’real root of a polynomial’, respectively. The concept IntegralDomainWithoutDivision
also corresponds to integral domains in the algebraic sense, the distinction results from the fact that some im-
plementations of integral domains lack the (algebraically always well defined) integral division. Note that Field
refines IntegralDomain. This is because most ring-theoretic notions like greatest common divisors become triv-
ial for Fields. Hence we see Field as a refinement of IntegralDomain and not as a refinement of one of the more
advanced ring concepts. If an algorithm wants to rely on gcd or remainder computation, it is trying to do things
it should not do with a Field in the first place.

The main properties of an algebraic structure are collected in the class Algebraic_structure_traits. In particular
the (most refined) concept each concrete model AS fulfills is encoded in the tag Algebraic _structure_traits<AS>
::Algebraic_category. An algebraic structure is at least Assignable, CopyConstructible, DefaultConstructible
and EqualityComparable. Moreover, we require that it is constructible from int. For ease of use and since their
semantic is sufficiently standard to presume their existence, the usual arithmetic and comparison operators are
required to be realized via C++ operator overloading. The division operator is reserved for division in fields. All
other unary (e.g., sqrt) and binary functions (e.g., gcd, div) must be models of the well known STL-concepts
AdaptableUnaryFunction or AdaptableBinaryFunction concept and local to the traits class (e.g., Algebraic_
structure_traits<AS>::Sqrt()(x)). This design allows us to profit from all parts in the STL and its programming
style and avoids the name-lookup and two-pass template compilation problems experienced with the old design
using overloaded functions. However, for ease of use and backward compatibility all functionality is also
accessible through global functions defined within namespace CGAL, e.g., CGAL::sqrt(x). This is realized
via function templates using the according functor of the traits class. For an overview see Section 4.8 in the
reference manual.
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4.2.1 Tags in Algebraic Structure Traits
Algebraic Category

For a type AS, Algebraic_structure_traits<AS> provides several tags. The most important tag is the Algebraic_
category tag, which indicates the most refined algebraic concept the type AS fulfills. The tag is one of;
Integral_domain_without_division_tag, Integral_domain_tag, Field_tag, Field_with_sqrt_tag, Field_with_kth_
root_tag, Field_with_root_of_tag, Unique_factorization_domain_tag, Euclidean_ring_tag, or even Null_tag in
case the type is not a model of an algebraic structure concept. The tags are derived from each other such that
they reflect the hierarchy of the algebraic structure concept, e.g., Field_with_sqrt_tag is derived from Field_tag.

Exact and Numerical Sensitive

Moreover, Algebraic_structure_traits<AS> provides the tags Is_exact and Is_numerical_sensitive, which are both
Boolean_tags.

An algebraic structure is considered exact, if all operations required by its concept are computed such that a
comparison of two algebraic expressions is always correct.

An algebraic structure is considered as numerically sensitive, if the performance of the type is sensitive to the
condition number of an algorithm. Note that there is really a difference among these two notions, e.g., the
fundamental type int is not numerical sensitive but considered inexact due to overflow. Conversely, types as
leda_real or CORE::Expr are exact but sensitive to numerical issues due to the internal use of multi precision
floating point arithmetic. We expect that Is_numerical_sensitive is used for dispatching of algorithms, while
Is_exact is useful to enable assertions that can be check for exact types only.

Tags are very useful to dispatch between alternative implementations. The following example illustrates a
dispatch for Fields using overloaded functions. The example only needs two overloads since the algebraic
category tags reflect the algebraic structure hierarchy.

-
#include <CGAL/basic.h>
#include <CGAL/IO/io.h>
#include <CGAL/Algebraic_structure_traits.h>

template< typename NT > NT unit_part (const NT& x);

template< typename NT >

NT unit_part_(const NT& x, CGAL::Field tag);

template< typename NT >

NT unit_part_(const NT& x, CGAL::Integral_domain_without_division_tag);

template< typename NT >

NT unit_part (const NT& x) {
// the unit part of 0 is defined as 1.
if (x == 0 ) return NT(1l);

typedef CGAL::Algebraic_structure_traits<NT> AST;
typedef typename AST::Algebraic_category Algebraic_category;
return unit_part_(x,Algebraic_category());

template< typename NT >
NT unit_part_(const NT& x, CGAL::Integral_domain_without_division_tag) {
// For many other types the only units are just -1 and +1.
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return NT (int (CGAL: :sign(x)));

template< typename NT >

NT unit_part_(const NT& x, CGAL: :Field_tag) {
// For Fields every x != 0 is a unit.
// Therefore, every x != 0 is its own unit part.
return x;

int main() {
// Function call for a model of EuclideanRing, i.e. int.

std: :cout<< "int: unit_part (-3 ): " << unit_part(-3 ) <<
std: :endl;

// Function call for a model of FieldWithSqrt, i.e. double
std: :cout<< "double: unit_part(-3.0): " << unit_part(-3.0) <<
std: :endl;

return 0;

// Note that this is just an example

// This implementation for unit part won’t work for some types, e.g.,

// types that are not RealEmbeddable or types representing structures
that have

// more units than just -1 and +1. (e.g. MP_Float representing Z[1/2])

// From there Algebraic structure traits provides the functor Unit_part.

File: examples/Algebraic_foundations/algebraic_structure_dispatch.cpp

4.3 Real Embeddable

Most number types represent some subset of the real numbers. From those types we expect functionality to
compute the sign, absolute value or double approximations. In particular we can expect an order on such a type
that reflects the order along the real axis. All these properties are gathered in the concept RealComparable. The
concept is orthogonal to the algebraic structure concepts, i.e., it is possible that a type is a model of RealEm-
beddable only, since the type may just represent values on the real axis but does not provide any arithmetic
operations.

As for algebraic structures this concept is also traits class oriented. The main functionality related to RealEm-
beddable is gathered in the class Real_embeddable_traits. In particular, it porivdes the boolean tag Is_real_
embeddable indicating whether a type is a model of RealEmbeddable. The comparison operators are required
to be realized via C++ operator overloading. All unary functions (e.g. sign, to_double) and binary functions
(e.g. compare ) are models of the STL-concepts AdaptableUnaryFunction and AdaptableBinaryFunction and
are local to Real_embeddable _traits.

In case a type is a model of IntegralDomainWithoutDivision and RealEmbeddable the number represented by
an object of this type is the same for arithmetic and comparison. It follows that the ring represented by this type
is a superset of the integers and a subset of the real numbers and hence has characteristic zero. In case the type
is a model of Field and RealEmbeddable it is a superset of the rational numbers.
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4.4 Real Number Types

Every CGAL Kernel comes with two real number types (number types embeddable into the real numbers). One
of them is a FieldNumberType, and the other a RingNumberType. The coordinates of the basic kernel objects
(points, vectors, etc.) come from one of these types (the FieldNumberType in case of Cartesian kernels, and the
RingNumberType for Homogeneous kernels).

The concept FieldNumberType combines the requirements of the concepts Field and RealEmbeddable, while
RingNumberType combines IntegralDomainWithoutDivision and RealEmbeddable. Algebraically, the real num-
ber types do not form distinct structures and are therefore not listed in the concept hierarchy of Figure 4.1.

4.5 Interoperability

This section introduces two concepts for interoperability of types, namely Implicitinteroperable and Explicitin-
teroperable. While ExplicitInteroperable is the base concept, we start with ImplicitInteroperable since it is the
more intuitive one.

In general mixed operations are provided by overloaded operators and functions or just via implicit constructor
calls. This level of interoperability is reflected by the concept Implicitinteroperable. However, within template
code the result type, or so called coercion type, of a mixed arithmetic operation may be unclear. Therefore,
the package introduces CGAL::Coercion_traits giving access to the coercion type via CGAL::Coercion_traits<
A,B>::Type for two interoperable types A and B.

Some trivial example are int and double with coercion type double or CGAL::Gmpz and CGAL::Gmpq with
coercion type CGAL::Gmpqg. However, the coercion type is not necessarily one of the input types, e.g. the
coercion type of a polynomial with integer coefficients that is multiplied by a rational type is supposed to be a
polynomial with rational coefficients.

CGAL::Coercion_traits is also required to provide a functor CGAL::Coercion_traits<A,B>::Cast(), that converts
from an input type into the coercion type. This is in fact the core of the more basic concept Explicitinteroperable.
ExplicitInteroperable has been introduced to cover more complex cases for which it is hard or impossible to
guarantee implicit interoperability. Note that this functor can be useful for Implicitinteroperable types as well,
since it can be used to void redundant type conversions.

In case two types A and B are ExplicitInteroperable with coercion type C they are valid argument types for all
binary functors provided by Algebraic_structure_traits and Real_embeddable_traits of C. This is also true for
the according global functions.

4.5.1 Examples

The following example illustrates how two write code for Explicitinteroperable types.

p
#include <CGAL/basic.h>
#include <CGAL/Coercion_traits.h>
#include <CGAL/IO/io.h>

// this is an implementation for ExplicitInteroperable types
// the result type is determined via Coercion traits<A,B>
template <typename A, typename B>

typename CGAL: :Coercion_traits<A,6B>::Type
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binary func(const A& a , const B& b) {
typedef CGAL: :Coercion_traits<A,B> CT;

// check for explicit interoperability
CGAL_static_assertion((CT: :Are_explicit_interoperable: :value));

// CT::Cast is used to to convert both types into the coercion type
typename CT::Cast cast;

// all operations are performed in the coercion type

return cast (a) xcast (b);

int main() {
// Function call for the interoperable types
std: :cout<< binary_ func(double(3), int(5)) << std::endl;
// Note that Coercion traits is symmetric
std: :cout<< binary func(int (3), double(5)) << std::endl;
return 0;

File: examples/Algebraic_foundations/interoperable.cpp

The following example illustrates a dispatch for Implicitinteroperable and Explicitinteroperable types. The
binary function (that just multiplies its two arguments) is supposed to take two ExplicitInteroperable arguments.
For Implicitinteroperable types a variant that avoids the explicit cast is selected.

#include <CGAL/basic.h>

#include <CGAL/Coercion_traits.h>
#include <CGAL/Quotient.h>
#include <CGAL/Sqrt_extension.h>
#include <CGAL/IO/io.h>

// this is the implementation for ExplicitInteroperable types
template <typename A, typename B>
typename CGAL: :Coercion_traits<A,6 B>::Type
binary_ function_(const A& a , const B& b, CGAL::Tag_ false) {
std::cout << "Call for ExplicitInteroperable types: " << std::endl;
typedef CGAL: :Coercion_traits<A,B> CT;
typename CT::Cast cast;
return cast (a) xcast (b);

}

// this is the implementation for ImplicitInteroperable types
template <typename A, typename B>
typename CGAL: :Coercion_traits<A,6 B>::Type
binary_ function_(const A& a , const B& b, CGAL::Tag_true) {
std::cout << "Call for ImpicitInteroperable types: " << std::endl;
return axb;

// this function selects the correct implementation
template <typename A, typename B>
typename CGAL: :Coercion_traits<A,6B>::Type
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binary func(const A& a , const B& b) {
typedef CGAL: :Coercion_traits<A,B> CT;
typedef typename CT::Are_implicit_interoperable
Are_implicit_interoperable;
return binary function_(a,b,Are_implicit_interoperable());

int main () {
CGAL: :set_pretty_mode (std: :cout);

// Function call for ImplicitInteroperable types
std: :cout<< binary_func(double(3), int(5)) << std::endl;

// Function call for ExplicitInteroperable types

CGAL: :Quotient<int> rational (1, 3); // == 1/3

CGAL: : Sqrt_extension<int, int> extension(1,2,3); // == 1+2#sqrt(3)
CGAL: : Sgrt_extension<CGAL: :Quotient<int>, int> result =

binary_ func(rational, extension);

std: :cout<< result << std::endl;

return 0;

File: examples/Algebraic_foundations/implicit_interoperable_dispatch.cpp

4.6 Fractions

Beyond the need for performing algebraic operations on objects as a whole, there are also number types which
one would like to decompose into numerator and denominator. This does not only hold for rational numbers as
Quotient, Gmpq, mpq_class or leda_rational, but also for compound objects as Sqrt_extension or Polynomial
which may decompose into a (scalar) denominator and a compound numerator with a simpler coefficient type
(e.g. integer instead of rational). Often operations can be performed faster on these denominator-free multiples.
In case a type is a Fraction the relevant functionality as well as the numerator and denominator type are provided
by CGAL::Fraction_traits. In particular CGAL::Fraction_traits provides a tag Is_fraction that can be used for
dispatching.

A related class is CGAL::Rational_traits which has been kept for backward compatibility reasons. However,
we recommend to use Fraction_traits since it is more general and offers dispatching functionality.

4.6.1 Examples

The following example show a simple use of Fraction_traits:

-
#include <CGAL/basic.h>
#include <CGAL/Fraction_ traits.h>
#include <CGAL/IO/io.h>

#ifdef CGAL_USE_GMP
#include <CGAL/Gmpz.h>
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#include <CGAL/Gmpqg.h>

int main () {
typedef CGAL: :Fraction_traits<CGAL: :Gmpqg> FT;
typedef FT::Numerator_type Numerator_type;
typedef FT::Denominator_type Denominator_type;

CGAL_static_assertion((boost::is_same<Numerator_type, CGAL: :Gmpz>: :value
CGAL_static_assertion((boost::is_same<Denominator_type, CGAL: :Gmpz>: :valj
Numerator_ type numerator;
Denominator_type denominator;
CGAL: :Gmpgq fraction(4,5);

FT: :Decompose () (fraction, numerator, denominator);

CGAL: :set_pretty mode (std: :cout);
std: :cout << "decompose fraction: "<< std::endl;

std::cout << "fraction : " << fraction << std::endl;
std: :cout << "numerator : " << numerator<< std::endl;
std: :cout << "denominator: " << denominator << std::endl;

std: :cout << "re-compose fraction: "<< std::endl;
fraction = FT: :Compose () (numerator,denominator);
std::cout << "fraction : " << fraction << std::endl;
}
#else
int main(){ std::cout << "This examples needs GMP" << std::endl; }

D)

ue)) ;

#endif
-

File: examples/Algebraic_foundations/fraction_traits.cpp

The following example illustrates the integralization of a vector, i.e., the coefficient vector of a polynomial.
Note that for minimizing coefficient growth Fraction_traits<Type>::Common_factor is used to compute the
’least” common multiple of the denominators.

-
#include <CGAL/basic.h>

#include <CGAL/Fraction_traits.h>
#include <CGAL/IO/io.h>
#include <vector>

template <class Fraction>
std: :vector<typename CGAL: :Fraction traits<Fraction>::Numerator_ type >
integralize (
const std::vector<Fraction>& vec,
typename CGAL: :Fraction_traits<Fraction>::Denominator_type& d
) {
typedef CGAL::Fraction_ traits<Fraction> FT;
typedef typename FT::Numerator_ type Numerator_type;
typedef typename FT::Denominator_ type Denominator_type;
typename FT::Decompose decompose;

std: :vector<Numerator_type> num(vec.size());
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std: :vector<Denominator_type> den(vec.size());

// decompose each coefficient into integral part and denominator
for (unsigned int i = 0; i < vec.size(); i++) {
decompose (vec[i], num[i], den[i]);

// compute ’‘least’ common multiple of all denominator
// We would like to use gcd, so let’s think of Common_factor as gcd.
typename FT::Common_factor gcd;
d =1;
for (unsigned int i = 0; i < vec.size(); i++) {
d x= CGAL: :integral_division(den[i], gcd(d, den[i]));

// expand each (numerator, denominator) pair to common denominator
for (unsigned int i = 0; i1 < vec.size(); i++) {

// For simplicity ImplicitInteroperability is expected in this
example

num[i] *= CGAL::integral_division(d, den[i]);
}

return num;

#ifdef CGAL_USE_GMP

#include <CGAL/Gmpz.h>
#include <CGAL/Gmpq.h>

int main () {
std: :vector<CGAL: :Gmpg> vec(3);
vec[0]=CGAL: :Gmpqg (1, 4);
vec[1l]=CGAL: :Gmpqg (1, 6) ;
vec[2]=CGAL: :Gmpqg(1,10);
std: :cout<< "compute an integralized vector" << std::endl;
std: :cout<<"input vector: ["
<< vec[0] << "," << vec[l] << "," << vec[2] << "]" <<
std: :endl;
CGAL: :Gmpz d;
std: :vector<CGAL: :Gmpz> integral_vec = integralize (vec,d);
std: :cout<<"output wvector: ["
<< integral_vec[0] << ", "
<< integral_vec[1l] << ", "
<< integral_vec[2] << "]" << std::endl;
std: :cout<<'"denominator : "<< d <<std::endl;
}
#telse
int main(){ std::cout << "This examples needs GMP" << std::endl; }
#endif

.

File: examples/Algebraic_foundations/integralize.cpp
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4.7 Design and Implementation History

The package is part of CGAL since release 3.3. Of course the package is based on the former Number type
support of CGAL. This goes back to Stefan Schirra and Andreas Fabri. But on the other hand the package is
to a large extend influenced by the experience with the number type support in EXACUS [ ], which in
the main goes back to Lutz Kettner, Susan Hert, Arno Eigenwillig and Michael Hemmer. However, the package
abstracts from the pure support for number types that are embedded on the real axis which allows the support
of polynomials, finite fields, and algebraic extensions as well. See also related subsequent chapters.
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Concept

FromIntConstructible

Definition

A model of the concept FromIntConstructible is required to be constructible from int.

Creation

FromIntConstructible type( ints i);

Has Models
int

long
double
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FromDoubleConstructible

Definition
A model of the concept FromDoubleConstructible is required to be constructible from the type double.

In case the type is a model of RealEmbeddable too, for any double d the identity: d == CGAL::to_double(T(d)),
is guaranteed.

Creation

FromDoubleConstructible type( double d); conversion constructor from double.
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Concept

ExplicitInteroperable

Definition

Two types A and B are a model of the Explicitinteroperable concept, if it is possible to derive a superior type
for A and B, such that both types are embeddable into this type. This type is Coercion_traits<A,B>::Type.

In this case Coercion_traits<A,B>::Are_explicit_interoperable is Tag_true.

A and B are valid argument types for all binary functors in Algebraic_structure_traits<Type> and Real_
embeddable_traits<Type>. This is also the case for the respective global functions.

See Also

CGAL::Coercion_traits<A,B> . ... ..ottt e e e e page 68
ImplicitInteroperable . . . . ... ..o page 67
AlgebraicStructureTTaits . . . ..o vttt et e e e e e page 78
RealEmbeddableTraits . . .. ..ottt ettt e et e e e page 124
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ImplicitInteroperable

Definition

Two types A and B are a model of the concept Implicitinteroperable, if there is a superior type, such that binary
arithmetic operations involving A and B result in this type. This type is Coercion_traits<A,B>::Type.

The type Coercion_traits<A,B>::Type is required to be implicit constructible from A and B.

In this case Coercion_traits<A,B>::Are_implicit_interoperable is Tag_true.

Refines

ExplicitInteroperable

See Also

CGAL::Coercion_traits<A,B> . .. . ..o e e e e page 68
ExplicitInteroperable . . . . ... ..o page 66
AlgebraicStructureTTails . . .. ..ottt page 78
RealEmbeddableTraits . . .. ...ttt ettt e e e e page 124
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Class

CGAL::Coercion_traits<A,B>

Definition

An instance of Coercion_traits<A,B> reflects the type coercion of the types A and B, it is symmetric in the two

template arguments.

#include <CGAL/Coercion_traits.h>

Types

Coercion_traits<A,B>::

Coercion_traits<A,B>::

Coercion_traits<A,B>::

Coercion_traits<A,B>::

See Also

Explicitnteroperable
ImplicitInteroperable

Type

Cast

Are_explicit_interoperable

Tag indicating whether the two types A and B are a model of
Explicitinteroperable
This is either CGAL::Tag_true or CGAL::Tag_false.

Are_implicit_interoperable

Tag indicating whether the two types A and B are a model of
ImplicitInteroperable
This is either CGAL::Tag_true or CGAL::Tag_false.

The coercion type of A and B.
In case A and B are not ExplicitInteroperable this is unde-
fined.

A model of the AdaptableFunctor concept, providing the
conversion of A or B to Type.

In case A and B are not Explicitinteroperable this is unde-
fined.
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IntegralDomainWithoutDivision

Definition
This is the most basic concept for algebraic structures considered within CGAL.

A model IntegralDomainWithoutDivision represents an integral domain, i.e. commutative ring with 0, 1, +, *
and unity free of zero divisors.
Note: A model is not required to offer the always well defined integral division.

It refines Assignable, CopyConstructible, DefaultConstructible and FromIntConstructible.

It refines EqualityComparable, where equality is defined w.r.t. the ring element being represented.

The operators unary and binary plus +, unary and binary minus -, multiplication * and their compound forms
+=, -=, *= are required and implement the respective ring operations.

Moreover, CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision > is a model of AlgebraicStruc-
tureTraits providing:

- CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Algebraic_type derived from Integral
domain_without_division_tag

- CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Is_zero

- CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Is_one

- CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Square

- CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Simplify

- CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Unit_part

Refines

Assignable
CopyConstructible
DefaultConstructible
EqualityComparable

FromIntConstructible

Operations

IntegralDomainWithoutDivision

+a unary plus
IntegralDomainWithoutDivision

—a unary minus
IntegralDomainWithoutDivision

a+b
IntegralDomainWithoutDivision

a—>b
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IntegralDomainWithoutDivision

axb
IntegralDomainWithoutDivision

at+=>b
IntegralDomainWithoutDivision

a—=>b
IntegralDomainWithoutDivision

ax=>b
Equality comparable:
result_type a==b>b The result_type is convertible to bool.
result_type al=>b The result_type is convertible to bool.
See Also
IntegralDomainWithoutDiVISION . . ... ... e e page 69
IntegralDOMQIN . . . . ... .t e e page 71
UniqueFactorizationDOMQIN . . .. ... e page 72
EuclideanRing . .. ..... ...ttt et e e e page 73
Field . . .. page 74
FieldWIthSqQre . . .. ..o e page 75
FieldWiIthKtRROOL . . . ... ..ot e e e e et e e page 76
FieldWIthRoOtOf . . . . ..t e e e e et e et e i page 77
AlGebraicSIrUCIUTETTAILS . ..o oottt e e et e e et e e page 78
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IntegralDomain

Definition

IntegralDomain refines IntegralDomainWithoutDivision by providing an integral division.

Note: The concept does not require the operator / for this operation. We intend to reserve the operator syntax
for use with a Field.

Moreover, CGAL::Algebraic_structure_traits< IntegralDomain > is a model of AlgebraicStructureTraits

providing:

- CGAL::Algebraic_structure_traits< IntegralDomain >::Algebraic_type derived from Integral_domain_tag
- CGAL::Algebraic_structure_traits< IntegralDomain >::Integral_division
- CGAL::Algebraic_structure_traits< IntegralDomain >::Divides

Refines

IntegralDomainWithoutDivision

See Also

IntegralDomainWithoutDiVISION . . ... .......oio o page 69
IntegralDOmMQAIN . . . ...ttt e et e e page 71
UniqueFactorizationDOMQIN . . .. ... e page 72
EuclideanRing . . . ... ... e page 73
Field . ... page 74
FieldWIthSqQre . . ... .o e e page 75
FieldWiIthKtRROOT . . . ... ..ot e e e e e et page 76
FieldWIthRoOtOf . . . . ..t e e et e e e e e e e page 77
AlGebraicStrUCIUTETTAILS . .. oottt e et e e e e page 78
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Concept

UniqueFactorizationDomain

Definition

A model of UniqueFactorizationDomain is an IntegralDomain with the additional property that the ring it
represents is a unique factorization domain (a.k.a. UFD or factorial ring), meaning that every non-zero non-
unit element has a factorization into irreducible elements that is unique up to order and up to multiplication by
invertible elements (units). (An irreducible element is a non-unit ring element that cannot be factored further
into two non-unit elements. In a UFD, the irreducible elements are precisely the prime elements.)

In a UFD, any two elements, not both zero, possess a greatest common divisor (gcd).

Moreover, CGAL::Algebraic_structure_traits< UniqueFactorizationDomain > is a model of AlgebraicStruc-
tureTraits providing:

- CGAL::Algebraic_structure_traits< UniqueFactorizationDomain >::Algebraic_type derived from Unique_
factorization_domain_tag

- CGAL::Algebraic_structure_traits< UniqueFactorizationDomain >::Gcd

Refines

IntegralDomain

See Also

IntegralDomainWithOUtDIVISTOT . . . ... ..o vttt e ettt e et ettt page 69
IntegralDOMaAIN . . .. ... e page 71
UniqueFactorizationDOMQIN . . ........ ... i page 72
EuclideanRing . ... ....... .t e page 73
Field . ... page 74
FieldWIthSqre . . . ... e e e e e e e page 75
FieldWIthKIRROOT . . .. ...t e e e e et e e e e e e e page 76
FieldWithRootOf .. ... ... e e e e e page 77
AlGebraicStructureTIails . .. ... e e page 78
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EuclideanRing

Definition

A model of EuclideanRing represents an euclidean ring (or Euclidean domain). It is an UniqueFactorization-
Domain that affords a suitable notion of minimality of remainders such that given x and y # 0 we obtain an
(almost) unique solution to x = gy + r by demanding that a solution (g, ) is chosen to minimize r. In particular,
r is chosen to be 0 if possible.

Moreover, CGAL::Algebraic_structure _traits< EuclideanRing > is a model of AlgebraicStructureTraits provid-

ing:

- CGAL::Algebraic_structure_traits< EuclideanRing >::Algebraic_type derived from Unique_factorization_
domain_tag

- CGAL::Algebraic_structure_traits< EuclideanRing >::Mod

- CGAL::Algebraic_structure_traits< EuclideanRing >::Div

- CGAL::Algebraic_structure_traits< EuclideanRing >::Div_mod

Remarks

The most prominent example of a Euclidean ring are the integers. Whenever both x and y are positive, then it is
conventional to choose the smallest positive remainder r.

Refines

UniqueFactorizationDomain

See Also

IntegralDomainWithoutDivVISION . . ... ... e page 69
IntegralDOmMAIN . . . ...ttt e et e e e e page 71
UniqueFactorizationDOMQIN . . ... ... e page 72
EuclideanRing . . . ... ..o page 73
Field . ... page 74
FieldWIthSqQre . . .. . o e page 75
FieldWiIthKtRROOL . . . ... ..ot e e e e page 76
FieldWIthRoOtOf . . . . ..t e e et et e e et e e page 77
AlGebraicSIrUCIUTETTAILS . .. oo ottt e e e e e e e e page 78
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Concept

Field

Definition

A model of Field is an IntegralDomain in which every non-zero element has a multiplicative inverse. Thus, one
can divide by any non-zero element. Hence division is defined for any divisor != 0. For a Field, we require this

division operation to be available through operators / and /=.

Moreover, CGAL::Algebraic_structure_traits< Field > is a model of AlgebraicStructureTraits providing:

- CGAL::Algebraic_structure_traits< Field >::Algebraic_type derived from Field_tag
- CGAL::Algebraic_structure_traits< FieldWithSqrt >::Inverse

Refines

IntegralDomain

Operations

Field a/b
Field a/=>b

See Also

IntegralDomainWithoutDivViSIONn . . . .......... ... ..ciiiiiiiiiiiiiniiennn..
IntegralDOmain . . . ......... ... e
UniqueFactorizationDOMQin . . .......... ... i,
EuclideanRing . ......... ..ottt e
Field ... ...
FieldWithSqrt ... ... e e e
FieldWithKthROOL . . . ... ..o e e e
FieldWIthRoOtOf .. ... ... e e
AlgebraicStructureTraits . ......c.. oo e
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FieldWithSqrt

Definition
A model of FieldWithSqrt is a Field that has operations to take square roots.

Moreover, CGAL::Algebraic_structure _traits< FieldWithSqrt > is a model of AlgebraicStructureTraits provid-
ing:

- CGAL::Algebraic_structure_traits< FieldWithSqrt >::Algebraic_type derived from Field_with_sqrt_tag

- CGAL::Algebraic_structure_traits< FieldWithSqrt >::Sqrt

Refines

Field

See Also

IntegralDomainWithoutDivVISION . . . ... ...t e page 69
IntegralDOMQIN . . .. ... ..o . e e page 71
UniqueFactorizationDOMQIN . . .. ... page 72
EuclideanRing . . . ... ..o e page 73
Field . . .. e page 74
FieldWItRSQIt . . ... ..o o e e e page 75
FieldWiIthKtRROOL . . . ... ..ot et e et page 76
FieldWIthRoOTtOf . . . . ..t e e et e et e et e e i page 77
AlGebraicSIrUCIUTETTAILS . .. oo ottt et e et e e et e e e page 78
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Concept

FieldWithKthRoot

Definition
A model of FieldWithKthRoot is a FieldWithSqrt that has operations to take k-th roots.

Moreover, CGAL::Algebraic_structure_traits< FieldWithKthRoot > is a model of AlgebraicStructureTraits
providing:

- CGAL::Algebraic_structure_traits< FieldWithKthRoot >::Algebraic_type derived from Field_with_kth_root_
tag

- CGAL::Algebraic_structure_traits< FieldWithKthRoot >::Kth_root

Refines

FieldWithSqrt

See Also

IntegralDomainWithoutDivViSION . . .. . ......oiuu o page 69
IntegralDOMAIN . . .. ... et e et e page 71
UniqueFactorizationDOMQIN . . .. ... e page 72
EuclideanRing . ... ........ .. page 73
Field . . .. page 74
FieldWIthSqQre . . ... ..o e e e page 75
FieldWIthKIRROOT . . . ... et e e e e e e e et e e e e page 76
FieldWIthRootOf . . . ...ttt e e et e e e page 77
AlgebraicStructureTraits . . ... ..o page 78
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FieldWithRootOf

Definition

A model of FieldWithRootOf is a FieldWithKthRoot with the possibility to construct it as the root of a univariate
polynomial.

Moreover, CGAL::Algebraic_structure_traits< FieldWithRootOf > is a model of AlgebraicStructureTraits
providing:

- CGAL::Algebraic_structure_traits< FieldWithRootOf >::Algebraic_type derived from Field_with_kth_root_tag
- CGAL::Algebraic_structure_traits< FieldWithRootOf >::Root_of

Refines

FieldWithKthRoot

See Also

IntegralDomainWithoutDivViSION . . ... ......oiuu o page 69
IntegralDOMAIN . . .. ... et e et e page 71
UniqueFactorizationDOMQIN . . .. ... e page 72
EuclideanRing . ... ........ .. page 73
Field . . .. page 74
FieldWIthSqQre . . ... ..o e e e page 75
FieldWIthKIRROOT . . . ... et e e e e e e e et e e e e page 76
FieldWIthRootOf . . . ...ttt e e et e e e page 77
AlgebraicStructureTraits . . ... ..o page 78
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Concept

AlgebraicStructureTraits

Definition

A model of AlgebraicStructureTraits reflects the algebraic structure of an associated type Type.

Depending on the concepts that Type fulfills, it contains various functors and descriptive tags. Moreover it gives

access to the several possible algebraic operations within that structure.

Types

A model of AlgebraicStructureTraits is supposed to provide:

AlgebraicStructureTraits:: Type

The associated type.

AlgebraicStructureTraits:: Algebraic_category

Tag indicating the algebraic structure of the associated type.

Tag is:

Type is model of:

CGAL:
CGAL:
CGAL:
CGAL:
CGAL::
CGAL::
CGAL::
CGAL::
CGAL:

:Null_tag
:Integral_domain_without_division_tag
:Integral_domain_tag
:Unique_factorization_domain_tag

Euclidean_ring_tag
Field_tag

Field with_sqrt_tag
Field_with_kth_root_tag

:Field_with_root_of_tag

no algebraic concept
IntegralDomainWithoutDivision
IntegralDomain
UniqueFactorizationDomain
EuclideanRing

Field

FieldWithSqrt
FieldWithKthRoot
FieldWithRootOf

AlgebraicStructureTraits:: Is_exact

Tag indicating whether Type is exact.
This is either CGAL::Tag_true or CGAL::Tag false.

An algebraic structure is considered exact, if all operations required by its concept are

computed such that a comparison of two algebraic expressions is always correct.

exactness covers only those operations that are required by the algebraic structure concept.

e.g. an exact Field may have a Sgrt functor that is not exact.

AlgebraicStructureTraits:: Is_numerical_sensitive

Tag indicating whether Type is numerical sensitive.
This is either CGAL::Tag_true or CGAL::Tag false.

An algebraic structure is considered as numerically sensitive, if the performance of the type

is sensitive to the condition number of an algorithm.
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AlgebraicStructureTraits:: Boolean

This type specifies the return type of the predicates provided by this traits. The type must be
convertible to bool and typically the type indeed maps to bool. However, there are also cases
such as interval arithmetic, in which it is Uncertain<bool> or some similar type.

Functors

In case a functor is not provided, it is set to CGAL::Null_functor.

AlgebraicStructureTraits:: Is_zero

A model of AlgebraicStructureTraits::IsZero.
Required by the concept IntegralDomainWithoutDivision. In case Type is also model of
RealEmbeddable this is a model of RealEmbeddableTraits::IsZero.

AlgebraicStructureTraits:: Is_one

A model of AlgebraicStructureTraits::IsOne.

Required by the concept IntegralDomainWithoutDivision.
AlgebraicStructureTraits:: Square

A model of AlgebraicStructureTraits::Square.

Required by the concept IntegralDomainWithoutDivision.
AlgebraicStructureTraits:: Simplify

A model of AlgebraicStructureTraits: :Simplify.

Required by the concept IntegralDomainWithoutDivision.
AlgebraicStructureTraits:: Unit_part

A model of AlgebraicStructureTraits::UnitPart.

Required by the concept IntegralDomainWithoutDivision.
AlgebraicStructureTraits:: Integral_division

A model of AlgebraicStructureTraits::IntegralDivision.

Required by the concept IntegralDomain.
AlgebraicStructureTraits:: Divides

A model of AlgebraicStructureTraits::Divides.

Required by the concept IntegralDomain.
AlgebraicStructureTraits:: Is_square

A model of AlgebraicStructureTraits::IsSquare.
Required by the concept IntegralDomainWithoutDivision.
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AlgebraicStructureTraits:: Ged

A model of AlgebraicStructureTraits::Ged.

Required by the concept UniqueFactorizationDomain.

AlgebraicStructureTraits:: Mod

A model of AlgebraicStructureTraits::Mod.

Required by the concept EuclideanRing.
AlgebraicStructureTraits:: Div

A model of AlgebraicStructureTraits::Div.

Required by the concept EuclideanRing.
AlgebraicStructureTraits:: Div_mod

A model of AlgebraicStructureTraits::DivMod.

Required by the concept EuclideanRing.
AlgebraicStructureTraits:: Inverse

A model of AlgebraicStructureTraits::Inverse.

Required by the concept Field.
AlgebraicStructureTraits:: Sqrt

A model of AlgebraicStructureTraits::Sqrt.

Required by the concept FieldWithSqrt.
AlgebraicStructureTraits:: Kth_root

A model of AlgebraicStructureTraits::KthRoot.

Required by the concept FieldWithKthRoot.
AlgebraicStructureTraits:: Root_of

A model of AlgebraicStructureTraits::RootOf .
Required by the concept FieldWithRootOf .

See Also

IntegralDomainWithoutDivViSIONn . . ... ... ... .. it
IntegralDOMAIN . . .. ...ttt et e
UniqueFactorizationDOMQIN . . . ...,
EuclideanRing . ....... ...ttt
Field . . . ... ..



FieldWIthSqre . . ... ..o e e page 75

FieldWIthKIRROOY . . .. ...ttt page 76
FieldWiIthROOIOf . . . ..o e page 77
CGAL::Integral_domain_without _diviSION_tAZ .. ........ ... e page 100
CGAL::Integral domain_tag . ................ .. o uai it page 101
CGAL::Unique_factorization_domain_tag . ......................cuiuiaiiiiiaaiaiiianonn.. page 102
CGAL::Euclidean_ring _1ag . . .. ........o. ot page 103
CGAL::Field 1ag . . . ... e page 104
CGAL::Field With_SQUT_TAZ . . .. oo vttt et e e et e e ettt e page 105
CGAL::Field With_Kth_100t_1ag . . ... ..o e e e page 106
CGAL::Field With_root_of 1ag .. ... ... e e page 107
Has Models

CGAL::Algebraic_structure _traits<T> .. ... ..o e page 99
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AlgebraicStructureTraits::IsZero

Definition

AdaptableUnaryFunction, returns true in case the argument is the zero element of the ring.

Refines

AdaptableUnaryFunction

Types

AlgebraicStructureTraits::IsZero:: result_type s AlgebraicStructureTraits::Boolean.

AlgebraicStructureTraits: :IsZero:: argument_type

Is AlgebraicStructureTraits:: Type.

Operations

result_type is_zero( argument_type Xx)

returns true in case x is the zero element of the ring.

See Also

AlgebraicStructureTraits ................ page 78 RealEmbeddableTraits::IsZero ................ page 126
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AlgebraicStructureTraits::IsOne

Definition

AdaptableUnaryFunction, returns true in case the argument is the one of the ring.

Refines

AdaptableUnaryFunction

Types

AlgebraicStructureTraits: :IsOne:: result_type Is AlgebraicStructureTraits::Boolean.

AlgebraicStructureTraits::IsOne:: argument_type

Is AlgebraicStructureTraits:: Type.

Operations
result_type is_one( argument_type x)
returns true in case x is the one of the ring.
See Also
AlgebraicStructureTraIlS . ... ...t e page 78
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AlgebraicStructureTraits::Square

Definition

AdaptableUnaryFunction, computing the square of the argument.

Refines

AdaptableUnaryFunction

Types

AlgebraicStructureTraits: :Square:: result_type

Is AlgebraicStructureTraits:: Type.

AlgebraicStructureTraits::Square:: argument_type

Is AlgebraicStructureTraits:: Type.

Operations

result_type square( argument_type x)

returns the square of x.

See Also

AlGebraicSIrUCIUTETTAILS . ..o oottt e et et e e et e e
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AlgebraicStructureTraits::Simplify

Definition

This AdaptableUnaryFunction may simplify a given object.

Refines

AdaptableUnaryFunction

Types

AlgebraicStructureTraits: :Simplify:: result_type

Is void.

AlgebraicStructureTraits::Simplify:: argument_type

Is AlgebraicStructureTraits:: Type.

Operations

result_type simplify( argument_type x)

may simplify x.

See Also

AlGebraicSIrUCIUTETTAILS . .. oo vttt et e e e e et e e page 78
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AlgebraicStructureTraits::UnitPart

Definition

This AdaptableUnaryFunction computes the unit part of a given ring element.

The mathematical definition of unit part is as follows: Two ring elements a and b are said to be associate if there
exists an invertible ring element (i.e. a unit) u such that @ = ub. This defines an equivalence relation. We can
distinguish exactly one element of every equivalence class as being unit normal. Then each element of a ring
possesses a factorization into a unit (called its unit part) and a unit-normal ring element (called its unit normal
associate).

For the integers, the non-negative numbers are by convention unit normal, hence the unit-part of a non-zero
integer is its sign. For a Field, every non-zero element is a unit and is its own unit part, its unit normal associate
being one. The unit part of zero is, by convention, one.

Refines

AdaptableUnaryFunction

Types

AlgebraicStructureTraits::UnitPart:: result_type

Is AlgebraicStructureTraits:: Type.

AlgebraicStructureTraits: :UnitPart:: argument_type

Is AlgebraicStructureTraits:: Type.

Operations

result_type unit_part( argument_type x)

returns the unit part of x.

See Also

AlgebraicStructureTraits .. ... ... o page 78

86



AlgebraicStructureTraits::IntegralDivision

Definition

AdaptableBinaryFunction providing an integral division.

Integral division (a.k.a. exact division or division without remainder) maps ring elements (x,y) to ring element
z such that x = yz if such a z exists (i.e. if x is divisible by y). Otherwise the effect of invoking this operation is
undefined. Since the ring represented is an integral domain, z is uniquely defined if it exists.

Refines

AdaptableBinaryFunction

Types

AlgebraicStructureTraits: :IntegralDivision:: result_type

Is AlgebraicStructureTraits:: Type.

AlgebraicStructureTraits::IntegralDivision:: first_argument

Is AlgebraicStructureTraits:: Type.

AlgebraicStructureTraits::IntegralDivision:: second_argument

Is AlgebraicStructureTraits:: Type.

Operations

result_type integral_division( first_argument_type x, second_argument_type y)

returns x/y, this is an integral division.

template <class NT1, class NT2>
result_type integral_division( NT1 x, NT2 y)

This operator is defined if NT1 and NT2 are Explicitinteroperable with coercion
type AlgebraicStructureTraits:: Type.

See Also
AlGebraicStrUCtUreTTaILS . . ..ottt e e e e e page 78
AlgebraicStructureTraits::DivIdes . . ...... ... e page 88

87




AlgebraicStructureTraits::Divides

Definition
AdaptableBinaryFunction, returns true if the first argument divides the second argument.

Integral division (a.k.a. exact division or division without remainder) maps ring elements (n,d) to ring element
¢ such that n = dc if such a c exists. In this case it is said that d divides n.

This functor is required to provide two operators. The first operator takes two arguments and returns true if the
first argument divides the second argument. The second operator returns ¢ via the additional third argument.
Refines

AdaptableBinaryFunction

Types

AlgebraicStructureTraits::Divides:: result_type

Is AlgebraicStructureTraits::Boolean.

AlgebraicStructureTraits::Divides:: first_argument

Is AlgebraicStructureTraits:: Type.

AlgebraicStructureTraits::Divides:: second_argument

Is AlgebraicStructureTraits:: Type.

Operations

result_type divides( first_argument_type d, second_argument_type n)

Computes whether d divides n.

result_type divides( first_argument_type d, second_argument_type n, AlgebraicStructureTraits::Types c)

Computes whether d divides n. Moreover it computes c if d divides n, otherwise
the value of c is undefined.

See Also
AlgebraicSIructureTIaILS . . ... ..o page 78
AlgebraicStructureTraits: :IntegralDiVISION . ... ... et page 87
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AlgebraicStructureTraits::IsSquare

Definition

AdaptableBinaryFunction that computes whether the first argument is a square. If the first argument is a square
the second argument, which is taken by reference, contains the square root. Otherwise, the content of the second
argument is undefined.

A ring element x is said to be a square iff there exists a ring element y such that x = yxy. In case the ring is a
UniqueFactorizationDomain, y is uniquely defined up to multiplication by units.

Refines

AdaptableBinaryFunction

Types

AlgebraicStructureTraits: :IsSquare:: result_type

Is AlgebraicStructureTraits::Boolean.

AlgebraicStructureTraits: :IsSquare:: first_argument

Is AlgebraicStructureTraits:: Type.

AlgebraicStructureTraits: :IsSquare:: second_argument

Is AlgebraicStructureTraits:: Types.

Operations

result_type is_square( first_argument_type x, second_argument_type y)

returns true in case x is a square, i.e. x =y*y.
Postcondition: unit_part(y) ==

result_type is_square( first_argument_type x)

returns true in case x is a square.

See Also

AlGebraicSIrUCIUrETTaILS . . ..ot e et e e et e e page 78
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AlgebraicStructureTraits::Ged

Definition
AdaptableBinaryFunction providing the gcd.
The greatest common divisor (gcd) of ring elements x and y is the unique ring element d (up to a unit) with the

property that any common divisor of x and y also divides d. (In other words: d is the greatest lower bound of x
and y in the partial order of divisibility.) We demand the gcd to be unit-normal (i.e. have unit part 1).

gcd(0,0) is defined as 0, since 0 is the greatest element with respect to the partial order of divisibility. This
is because an element a € R is said to divide b € R, iff 3r € R such that a-r = b. Thus, 0 is divided by every
element of the Ring, in particular by itself.

Refines

AdaptableBinaryFunction

Types

AlgebraicStructureTraits::Ged:: result_type Is AlgebraicStructureTraits:: Type.
AlgebraicStructureTraits::Ged:: first_argument

Is AlgebraicStructureTraits:: Type.

AlgebraicStructureTraits::Ged:: second_argument

Is AlgebraicStructureTraits:: Type.

Operations

result_type ged( first_argument_type x, second_argument_type y)

returns ged(x,y).

template <class NTI, class NT2>
result_type ged( NTI x, NT2 y)

This operator is defined if NT1 and NT2 are Explicitinteroperable with coercion
type AlgebraicStructureTraits:: Type.

See Also

AlgebraicStructureTraits .. ... ... page 78
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AlgebraicStructureTraits::DivMod

Definition

AdaptableFunctor computes both integral quotient and remainder of division with remainder. The quotient g
and remainder r are computed such that x = g*y+r and |r| < |y| with respect to the proper integer norm of the
represented ring. ! In particular, r is chosen to be 0 if possible. Moreover, we require g to be minimized with
respect to the proper integer norm.

Note that the last condition is needed to ensure a unique computation of the pair (¢,7). However, an other
option is to require minimality for |r|, with the advantage that a mod(x,y) operation would return the unique
representative of the residue class of x with respect to y, e.g. mod(2,3) should return —1. But this conflicts
with nearly all current implementation of integer types. From there, we decided to stay conform with common
implementations and require g to be computed as x/y rounded towards zero.

The following table illustrates the behavior for integers:

x|y | q/|r x|y | q/|r
313 110 3 (1-3]-1]0
2131012 2131012
1 {3]0]1 i 1 |-3]0]1
0|3]0]0 0|-3]0]0
-1 310 -1 -1 ]300 -1
213102 20131012
313 (-110 31031110

Refines

AdaptableFunctor

Types

AlgebraicStructureTraits::DivMod.:: result_type

Is void.

AlgebraicStructureTraits: :DivMod.:: first_argument_type

Is AlgebraicStructureTraits:: Type.

AlgebraicStructureTraits::DivMod:: second_argument_type

Is AlgebraicStructureTraits:: Type.

AlgebraicStructureTraits::DivMod.:: third_argument_type

Is AlgebraicStructureTraits:: Types.

AlgebraicStructureTraits::DivMod:: fourth_argument_type

Is AlgebraicStructureTraits:: Types.

! For integers this norm is the absolute value.
For univariate polynomials this norm is the degree.
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Operations

result_type div_mod.operator()( first_argument_type Xx,
second_argument_type y,
third_argument_type q,
fourth_argument_type r)

computes the quotient g and remainder r, such that x = g *y -+ r and r minimal
with respect to the Euclidean Norm on Type.

template <class NTI, class NT2>
result_type div_mod( NTI x, NT2 y, third_argument_type q, fourth_argument_type r)

This operator is defined if NT1 and NT2 are ExplicitInteroperable with coercion
type AlgebraicStructureTraits:: Type.

See Also

AlgebraicStructureTraits . . ... ..o page 78
AlgebraicStructureTraits::Mod . . . ... ... .. page 94
AlgebraicStructureTraits::Div. . ... ... e page 93
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AlgebraicStructureTraits::Div

Definition

AdaptableBinaryFunction computes the integral quotient of division with remainder.

Refines

AdaptableBinaryFunction

Types

AlgebraicStructureTraits::Div:: result_type Is AlgebraicStructureTraits:: Type.
AlgebraicStructureTraits::Div:: first_argument

Is AlgebraicStructureTraits:: Type.

AlgebraicStructureTraits::Div:: second_argument

Is AlgebraicStructureTraits:: Type.

Operations

result_type div( first_argument_type x, second_argument_type y)

template <class NTI, class NT2>
result_type div( NTI x, NT2 y)

This operator is defined if NT1 and NT2 are Explicitinteroperable with coercion
type AlgebraicStructureTraits:: Type.

See Also

AlgebraicStructureTraits .. ... ... page 78
AlgebraicStructureTraits::Mod . . . ....... ... . page 94
AlgebraicStructureTraits::DIivMod . . ....... ... . page 91
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AlgebraicStructureTraits::Mod

Definition

AdaptableBinaryFunction computes the remainder of division with remainder.

Refines

AdaptableBinaryFunction

Types

AlgebraicStructureTraits::Mod.:: result_type Is AlgebraicStructureTraits:: Type.
AlgebraicStructureTraits::Mod:: first_argument

Is AlgebraicStructureTraits:: Type.

AlgebraicStructureTraits::Mod:: second_argument

Is AlgebraicStructureTraits:: Type.

Operations

result_type mod( first_argument_type x, second_argument_type y)

template <class NTI, class NT2>
result_type mod( NTI x, NT2 y)

This operator is defined if NT1 and NT2 are Explicitinteroperable with coercion
type AlgebraicStructureTraits:: Type.

See Also

AlgebraicStructureTraits .. ... ... page 78
AlgebraicStructureTraits::Div. . ... ... e page 93
AlgebraicStructureTraits::DIivMod . . ....... ... . page 91

94



AlgebraicStructureTraits::Inverse

Definition

AdaptableUnaryFunction providing the inverse element with respect to multiplication of a Field.

Refines

AdaptableUnaryFunction

Types

AlgebraicStructureTraits::Inverse:: result_type

Is AlgebraicStructureTraits:: Type.

AlgebraicStructureTraits: :Inverse:: argument_type

Is AlgebraicStructureTraits:: Type.

Operations
result_type inverse( argument_type X)
returns the inverse element of x with respect to multiplication.
Precondition: x # 0
See Also
AlgebraicStructureTraits .. ... ... page 78
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AlgebraicStructureTraits::Sqrt
Definition
AdaptableUnaryFunction providing the square root.

Refines

AdaptableUnaryFunction

Types

AlgebraicStructureTraits::Sqrt:: result_type Is AlgebraicStructureTraits:: Type.

AlgebraicStructureTraits::Sqrt:: argument_type

Is AlgebraicStructureTraits:: Type.

Operations

result_type sqrt( argument_type x)

returns /x.

See Also

AlGebraicStrUCtureTrailS . ... ...ttt et e e e
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AlgebraicStructureTraits::KthRoot

Definition

AdaptableBinaryFunction providing the k-th root.

Refines

AdaptableBinaryFunction

Types

AlgebraicStructureTraits::KthRoot:: result_type

Is AlgebraicStructureTraits:: Type.

AlgebraicStructureTraits::KthRoot:: first_argument

Is int.

AlgebraicStructureTraits::KthRoot:: second_argument

Is AlgebraicStructureTraits:: Type.

Operations

result_type kth_root( int k, second_argument_type x)

returns the k-th root of x.
Precondition: k> 1

See Also
FieldWiIthRoOtOf . . . . .ot e e e e page 77
AlgebraicStructureT aIlS .. ... ..o page 78
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AlgebraicStructureTraits::RootOf

Definition

AdaptableFunctor computes a real root of a square-free univariate polynomial.

Refines

AdaptableFunctor

Types

AlgebraicStructureTraits::RootOf :: result_type

Is AlgebraicStructureTraits:: Type.

Operations

template<class Inputlterator>
result_type root_of ( int k, Inputlterator begin, Inputlterator end)

returns the k-th real root of the univariate polynomial, which
is defined by the iterator range, where begin refers to the con-
stant term.

Precondition: The polynomial is square-free.

Precondition: The value type of the Inputlterator is Alge-
braicStructureTraits:: Type

See Also
FieldWiIthROOIOf .. .. .o e e e page 77
AlgebraicStructureTIaILS .. ... ..ot e page 78
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CGAL::Algebraic_structure_traits<T>

Definition

An instance of Algebraic_structure_traits<T> is a model of AlgebraicStructureTraits, where T is the associated
type.

#include <CGAL/Algebraic_structure_traits.h>

Is Model for the Concepts

AlgebraicStructureTTalls . . .. ..ottt et e page 78
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Class

CGAL::Integral_domain_without_division_tag
Definition
Tag indicating that a type is a model of the IntegralDomainWithoutDivision concept.

Is Model for the Concepts

DefaultConstructible

See Also

IntegralDomainWithoUutDiVISION. . . ... ..ot e e
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CGAL::Integral_domain_tag

Definition

Tag indicating that a type is a model of the IntegralDomain concept.

Inherits From

Integral_domain_without_division_tag

Is Model for the Concepts

DefaultConstructible

See Also

IntegralDOMAin . . . . ..ottt e et e e e page 71
AlgebraicStructureTTalls . . .. ..ottt e page 78
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Class

CGAL::Unique_factorization_domain_tag

Definition

Tag indicating that a type is a model of the UniqueFactorizationDomain concept.

Inherits From

Integral_domain_tag

Is Model for the Concepts

DefaultConstructible

See Also

UniqueFactorizationDomain . .. ......... o e

AlgebraicStructureTraits

102



CGAL::Euclidean_ring_tag

Definition

Tag indicating that a type is a model of the EuclideanRing concept.

Inherits From

Unique _factorization_domain_tag

Is Model for the Concepts

DefaultConstructible

See Also

EuclideanRing . . .. ... page 73
AlgebraicStructureTTalls . . .. ..ottt e page 78
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Class

CGAL::Field_tag

Definition

Tag indicating that a type is a model of the Field concept.

Inherits From

Integral_domain_tag

Is Model for the Concepts

DefaultConstructible

See Also
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CGAL::Field_with_sqrt_tag

Definition

Tag indicating that a type is a model of the FieldWithSqrt concept.

Inherits From

Field_tag

Is Model for the Concepts

DefaultConstructible

See Also

FileldWithSqrt . . ..ot e page 75
AlgebraicStructureTTalls . . .. ..ottt e page 78
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Class

CGAL::Field_with_kth_root_tag

Definition

Tag indicating that a type is a model of the FieldWithKthRoot concept.

Inherits From

Field_with_sqrt_tag

Is Model for the Concepts

DefaultConstructible

See Also

FieldWithKthRoot . . ...
AlgebraicStructureTraits
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CGAL::Field_with_root_of_tag

Definition

Tag indicating that a type is a model of the FieldWithRootOf concept.

Inherits From

Field_with_kth_root_tag

Is Model for the Concepts

DefaultConstructible

See Also

FieldWithRoOtOf . . . ..o e e page 77
AlgebraicStructureTTalls . . .. ..ottt e page 78
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Function

CGAL::is_zero

Definition
The function is_zero determines if a value is equal to O or not.
The function is defined if the argument type is a model of the RealEmbeddable or of the IntegralDomainWith-

outDivision concept.

#include <CGAL/number_utils.h>

template <class NT>

result_type is_zero( NT x) The result_type is convertible to bool.

See Also

RealEmbeddable. . ... ... page 123
RealEmbeddableTraits::ISZero . . . ...ttt e e e e e page 126
IntegralDomainWithOUtDIVISION. . . .. ..ottt e e e page 69
AlgebraicStructureTraits::ISZero ... ... ... page 82
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CGAL::is_one

Definition

The function is_one determines if a value is equal to 1 or not.
The function is defined if the argument type is a model of the IntegralDomainWithoutDivision concept.

#include <CGAL/number_utils.h>
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template <class NT>

result_type is_one( NT x) The result_type is convertible to bool.

See Also

IntegralDomainWithoutDiviSIOn. . . ... ..o e page 69
AlgebraicStructureTraits::ISONE . . . .. ..ot page 83
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CGAL::square

Definition

The function square returns the square of a number.
The function is defined if the argument type is a model of the IntegralDomainWithoutDivision concept.

#include <CGAL/number_utils.h>
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template <class NT>

NT square( NT x)

See Also

IntegralDomainWithoutDiviSIOn. . . ... e page 69
AlgebraicStructureTraitS:iSQUAIe . . . . ..ottt e e e page 84
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CGAL::is_square

Definition

An ring element x is said to be a square iff there exists a ring element y such that x = y *y. In case the ring is a
UniqueFactorizationDomain, y is uniquely defined up to multiplication by units.

The function is_square is available if Algebraic_structure_traits::Is_square is not the CGAL::Null_functor.

#include <CGAL/number_utils.h>

template <class NT>
result_type is_square( NT x) The result_type is convertible to bool.

template <class NT>
result_type is_square( NT x, NTs y)

The result_type is convertible to bool.

See Also
UniqueFactorizationDomain . ........ ... . e page 72
AlgebraicStructureTraits::ISSquare .. ... ... e page 89
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CGAL::simplify

Definition
The function simplify may simplify a given object.
The function is defined if the argument type is a model of the IntegralDomainWithoutDivision concept.

#include <CGAL/number_utils.h>

template <class NT>

void simplify( NT x)

See Also

IntegralDomainWithOUtDiVISION. . . . ...ttt e e e page 69
AlgebraicStructureTraits::SImplify .. ... e page 85

112



CGAL::unit_part

Definition
The function unit_part computes the unit part of a given ring element.

The function is defined if the argument type is a model of the IntegralDomainWithoutDivision concept.
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#include <CGAL/number_utils.h>

template <class NT>

NT unit_part( NT x)

See Also

IntegralDomainWithOUtDiVISION. . . . ...ttt e e e page 69
AlgebraicStructureTraits::UnitPart. . . ... e page 86
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Function

CGAL::integral_division

Definition

The function integral_division (a.k.a. exact division or division without remainder) maps ring elements (x,y) to
ring element z such that x = yz if such a z exists (i.e. if x is divisible by y). Otherwise the effect of invoking this
operation is undefined. Since the ring represented is an integral domain, z is uniquely defined if it exists.

In case the argument types NT1 and NT2 differ, the result_type is determined via Coercion_traits.

Thus, the result_type is well defined if NT1 and NT2 are a model of Explicitinteroperable.

The actual integral_division is performed with the semantic of that type.

The function is defined if result_type is a model of the IntegralDomain concept.

#include <CGAL/number_utils.h>

template <class NTI, class NT2>

result_type integral _division( NT1 x, NT2 y)

See Also

IntegralDomain . . ... ..ottt e e s page 71
AlgebraicStructureTraits:: IntegralDiviSion ... ...ttt e page 87
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CGAL::gcd

Definition
The function gecd computes the greatest common divisor of two values.
In case the argument types NT1 and NT2 differ, the result_type is determined via Coercion_traits.

Thus, the result_type is well defined if NT1 and NT2 are a model of Explicitinteroperable.
The actual ged is performed with the semantic of that type.
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The function is defined if result_type is a model of the UniqueFactorizationDomain concept.

#include <CGAL/number_utils.h>

template <class NTI, class NT2>

result_type ged( NTI x, NT2 y)

See Also

UniqueFactorizatioNDOMaIn . . .. ..ottt ettt e ettt et e e page 72
AlgebraicStructureTraits:iGCd. . . ...t page 90
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Function

CGAL::div_mod

Definition
The function div_mod computes the integral quotient and remainder of division with remainder.

In case the argument types NT1 and NT2 differ, the result_type is determined via Coercion_traits.
Thus, the result_type is well defined if NT1 and NT2 are a model of Explicitinteroperable.
The actual div_mod is performed with the semantic of that type.

The function is defined if result_type is a model of the EuclideanRing concept.

#include <CGAL/number_utils.h>

template <class NTI, class NT2>
void div_mod( NTI x, NT2 y, result_types q, result_types r)

computes the quotient ¢ and remainder r, such that x = g *
y+r and r minimal with respect to the Euclidean Norm of
the result_type.

See Also

EuclideanRing . . .. ... page 73
AlgebraicStructureTraits::DIivIMOd . . . .. .. e page 91
CGAL::MOA . . .o oo e e e page 118
CGAL::IV < oo e page 117
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CGAL::div

Definition

The function div computes the integral quotient of division with remainder.

In case the argument types NT1 and NT2 differ, the result_type is determined via Coercion_traits.
Thus, the result_type is well defined if NT1 and NT2 are a model of Explicitinteroperable.

The actual div is performed with the semantic of that type.

The function is defined if result_type is a model of the EuclideanRing concept.

#include <CGAL/number_utils.h>

template< class NTI, class NT2>
result_type div( NT1 x, NT2 y)

See Also

BuclideanRing . . .. ...t e

AlgebraicStructureTraits::Div . . ... ..
CGAL::MOd . . . . .. e
CGAL::diV_mOd . . . ... e e e et e e
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Function

CGAL::mod

Definition

The function mod computes the remainder of division with remainder.

In case the argument types NT1 and NT2 differ, the result_type is determined via Coercion_traits.
Thus, the result_type is well defined if NT1 and NT2 are a model of Explicitinteroperable.

The actual mod is performed with the semantic of that type.

The function is defined if result_type is a model of the EuclideanRing concept.

#include <CGAL/number_utils.h>

template< class NTI, class NT2>

result_type mod( NTI x, NT2 y)

See Also

BuclideanRing . . .. ... page 73
AlgebraicStructureTraits::DIivIMOd. . . .. .. e page 91
CGAL::div_mod . . ... ... e e page 116
CGAL::IV < oo e page 117
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CGAL::inverse

Definition
The function inverse returns the inverse element with respect to multiplication.
The function is defined if the argument type is a model of the Field concept.

#include <CGAL/number_utils.h>

template <class NT>

NT inverse( NT x) Precondition: x # 0

See Also

FReld. oo e page 74
AlgebraicStructure Traits: :INVerSe . . . ..o vt e e page 95
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CGAL::sqrt

Definition

The function sgrt returns the square root of a value.

The function is defined if the argument type is a model of the FieldWithSqrt concept.

#include <CGAL/number_utils.h>

template <class NT>

NT sqrt( NT x)

See Also

FieldWithSqrt . ..............

AlgebraicStructureTraits::Sqrt
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CGAL::kth_root

Definition
The function kth_root returns the k-th root of a value.

The function is defined if the second argument type is a model of the FieldWithKthRoot concept.
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#include <CGAL/number_utils.h>

template <class NT>

NT kth_root( int k, NT x)

See Also

FieldWithKthROOL . . . ... e e e e e page 76
AlgebraicStructureTraits::KthROOL. . . ... e page 97
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Function

CGAL::root_of

Definition

The function root_of computes a real root of a square-free univariate polynomial.

The function is defined if the value type, NT, of the iterator range is a model of the FieldWithRootOf concept.

#include <CGAL/number_utils.h>

template <class Inputlterator>

NT root_of{ int k, Inputlterator begin, Inputlterator end)

See Also

FieldWithRootOf ...............

AlgebraicStructureTraits::RootOf

returns the k-th real root of the univariate polynomial, which
is defined by the iterator range, where begin refers to the con-
stant term.

Precondition: The polynomial is square-free.
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RealEmbeddable

Definition

A model of this concepts represents numbers that are embeddable on the real axis. The type obeys the algebraic
structure and compares two values according to the total order of the real numbers.

Moreover, CGAL::Real_embeddable_traits< RealEmbeddable > is a model of RealEmbeddableTraits
with:

- CGAL::Real_embeddable_traits< RealEmbeddable >::Is_real_embeddable set to Tag_true
and functors :

- CGAL::Real_embeddable_traits< RealEmbeddable >::Is_zero

- CGAL::Real_embeddable_traits< RealEmbeddable >::Abs

- CGAL::Real_embeddable_traits< RealEmbeddable >::Sgn

- CGAL::Real_embeddable_traits< RealEmbeddable >::Is_positive

- CGAL::Real_embeddable_traits< RealEmbeddable >::Is_negative

- CGAL::Real_embeddable_traits< RealEmbeddable >::Compare

- CGAL::Real_embeddable_traits< RealEmbeddable >::To_double

- CGAL::Real_embeddable_traits< RealEmbeddable >::To_interval

Remark:
If a number type is a model of both IntegralDomainWithoutDivision and RealEmbeddable, it follows that the
ring represented by such a number type is a sub-ring of the real numbers and hence has characteristic zero.

Refines

Equality Comparable

LessThanComparable

Operations

bool a==

bool al=>b

bool a<b

bool a<=b

bool a>b

bool a>=b

See Also

RealEmbeddableTrails . ......... ..o e page 124
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Concept

RealEmbeddableTraits

Definition

A model of RealEmbeddableTraits is associated to a number type Type and reflects the properties of this type

with respect to the concept RealEmbeddable.

Types

A model of RealEmbeddableTraits is supposed to provide:

RealEmbeddableTraits:: Type

RealEmbeddableTraits:: Is_real_embeddable

RealEmbeddableTraits:: Boolean

RealEmbeddableTraits:: Sign

RealEmbeddableTraits:: Comparison_result

Functors

The associated number type.

Tag indicating whether the associated type is real embed-
dable.
This is either CGAL::Tag_true or CGAL::Tag_false.

This type specifies the return type of the predicates provided
by this traits. The type must be convertible to bool and typ-
ically the type indeed maps to bool. However, there are also
cases such as interval arithmetic, in which it is Uncertain<
bool> or some similar type.

This type specifies the return type of the Sgn functor. The
type must be convertible to CGAL::Sign and typically the
type indeed maps to CGAL::Sign. However, there are also
cases such as interval arithmetic, in which it is Uncertain<
CGAL::Sign> or some similar type.

This type specifies the return type of the Compare functor.
The type must be convertible to CGAL::Comparison_result
and typically the type indeed maps to CGAL::Comparison_
result. However, there are also cases such as interval arith-
metic, in which it is Uncertain<CGAL::Comparison_result>
or some similar type.

In case the associated type is RealEmbeddable all functors are provided.
In case a functor is not provided, it is set to CGAL::Null_functor.

RealEmbeddableTraits:: Is_zero

RealEmbeddableTraits:: Abs

A model of RealEmbeddableTraits::IsZero In case Type
is also model of IntegralDomainWithoutDivision this is a
model of AlgebraicStructureTraits::IsZero.

A model of RealEmbeddableTraits::Abs

124



RealEmbeddableTraits::

RealEmbeddableTraits::

RealEmbeddableTraits: :

RealEmbeddableTraits: :

RealEmbeddableTraits: :

RealEmbeddableTraits::

Has Models

Sgn

Is_positive

Is_negative

Compare

To_double

To_interval

CGAL::Real_embeddable_traits<T>

A model of RealEmbeddableTraits::

A model of RealEmbeddableTraits::

A model of RealEmbeddableTraits::

A model of RealEmbeddableTraits:

A model of RealEmbeddableTraits::

A model of RealEmbeddableTraits:
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IsPositive

IsNegative

:Compare

ToDouble
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RealEmbeddableTraits::IsZero

Definition

AdaptableUnaryFunction, returns true in case the argument is 0.

Refines

AdaptableUnaryFunction

Types

RealEmbeddableTraits::IsZero:: result_type Type convertible to bool.

RealEmbeddableTraits::IsZero:: argument_type

Is RealEmbeddableTraits:: Type.

Operations
result_type is_zero( argument_type x)
returns true in case x is the zero element of the ring.
See Also
RealEmbeddableTraits ................ page 124 AlgebraicStructureTraits::IsZero
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RealEmbeddableTraits::Abs

Definition

AdaptableUnaryFunction computes the absolute value of a number.

Refines

AdaptableUnaryFunction

Types

RealEmbeddableTraits::Abs:: result_type Is RealEmbeddableTraits:: Type.

RealEmbeddableTraits::Abs:: argument_type Is RealEmbeddableTraits:: Type.

Operations

result_type abs( argument_type x)

computes the absolute value of x.

See Also

RealEmbeddableTrails . ......... ..ot e page 124
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RealEmbeddableTraits::Sgn

Definition

This AdaptableUnaryFunction computes the sign of a real embeddable number.

Refines

AdaptableUnaryFunction

Types

RealEmbeddableTraits::Sgn:: result_type Type convertible to CGAL::Sign.

RealEmbeddableTraits::Sgn:: argument_type Is RealEmbeddableTraits:: Type.

Operations

result_type sign( argument_type Xx)

Computes the sign of x.

See Also

RealEmbeddableTraits . ........ ...
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RealEmbeddableTraits::IsPositive

Definition

AdaptableUnaryFunction, returns true in case the argument is positive.

Refines

AdaptableUnaryFunction

Types

RealEmbeddableTraits::IsPositive:: result_type

Type convertible to bool.

RealEmbeddableTraits::IsPositive:: argument_type

Is RealEmbeddableTraits:: Type.

Operations
result_type is_positive( argument_type x)
returns true in case x is positive.
See Also
RealEmbeddableTrails . .. .......... e et et e page 124
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RealEmbeddableTraits::IsNegative

Definition

AdaptableUnaryFunction, returns true in case the argument is negative.

Refines

AdaptableUnaryFunction

Types

RealEmbeddableTraits::IsNegative:: result_type

Type convertible to bool.

RealEmbeddableTraits::IsNegative:: argument_type

Is RealEmbeddableTraits:: Type.

Operations
result_type is_negative( argument_type x)
returns true in case x is negative.
See Also
RealEmbeddableTrails . ....... ... e e
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RealEmbeddableTraits::Compare

Definition

AdaptableBinaryFunction compares two real embeddable numbers.

Refines

AdaptableBinaryFunction

Types

RealEmbeddableTraits::Compare:: result_type

Type convertible to CGAL::Comparison_result.

RealEmbeddableTraits::Compare:: first_argument_type

Is RealEmbeddableTraits:: Type.

RealEmbeddableTraits::Compare:: second_argument_type

Is RealEmbeddableTraits:: Type.

Operations

result_type compare( first_argument_type x, second_argument_type y)

compares x with respect to y.

template <class NTI, class NT2>
result_type compare( NTI x, NT2 y)

This operator is defined if N7/ and NT2 are Explicitlnteroperable with coercion
type RealEmbeddableTraits:: Type.

See Also

RealEmbeddableTrails . ......... ... ot page 124
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RealEmbeddableTraits:: ToDouble

Definition
AdaptableUnaryFunction computes a double approximation of a real embeddable number.

Remark: In order to control the quality of approximation one has to resort to methods that are specific to NT.
There are no general guarantees whatsoever.

Refines

AdaptableUnaryFunction

Types
RealEmbeddableTraits::ToDouble:: result_type

Is double.

RealEmbeddableTraits: : ToDouble:: argument_type

Is RealEmbeddableTraits:: Type.

Operations

result_type to_double( argument_type x)

computes a double approximation of a real embeddable number.

See Also

RealEmbeddableTrails . ....... ...t page 124
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RealEmbeddableTraits:: Tolnterval

Definition

AdaptableUnaryFunction computes for a given real embeddable number x a double interval containing x. This
interval is represented by std::pair<double,double>.

Refines

AdaptableUnaryFunction

Types

RealEmbeddableTraits:: Tolnterval:: result_type

Is std::pair<double,double>.

RealEmbeddableTraits:: Tolnterval:: argument_type

Is RealEmbeddableTraits: : Type.

Operations

result_type to_interval( argument_type x)

computes a double interval containing x.

See Also

RealEmbeddableTrails . ......... ... e e page 124
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Class

CGAL::Real_embeddable_traits<T>

Definition

An instance of Real_embeddable_traits<T> is a model of RealEmbeddableTraits, where T is the associated
type.

#include <CGAL/Real_embeddable_traits.h>

Is Model for the Concepts

RealEmbeddableTraits . ... .....oui e e page 124
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CGAL::abs

Definition
The template function abs returns the absolute value of a number.

The function is defined if the argument type is a model of the RealEmbeddable concept.

-
O
)

O

-

)
LL

#include <CGAL/number_utils.h>

template <class NT>

NT abs( NT x)

See Also

RealEmbeddable. . ... ... page 123
RealEmbeddableTraits:iADS . . . ..o ottt et e e e page 127
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CGAL::sign

Definition
The template function sign returns the sign of a number.
The function is defined if the argument type is a model of the RealEmbeddable concept.

#include <CGAL/number_utils.h>

template <class NT>
result_type sign( NT x) returns the sign of the argument. The result_type is convert-
ible to CGAL::Sign.

See Also
RealEmbeddable. . . .. ... page 123
RealEmbeddableTraits:iSEn . . ..ot e page 128
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CGAL::is_positive

Definition

The template function is_positive determines if a value is positive or not. The function is defined if the argument
type is a model of the RealEmbeddable concept.

#include <CGAL/number_utils.h>
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result_type is_positive( NT x) The result_type is convertible to bool.

See Also

RealEmbeddable. . . .. ... page 123
RealEmbeddableTraits::ISPOSItIVE . . ... ..ot e page 129
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CGAL::is_negative

Definition

The template function is_negative determines if a value is negative or not. The function is defined if the argument
type is a model of the RealEmbeddable concept.

#include <CGAL/number_utils.h>
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result_type is_negative( NT x) The result_type is convertible to bool.

See Also

RealEmbeddable. . . .. ... page 123
RealEmbeddableTraits::ISNe@ative . . . ... ..ottt e page 130
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CGAL::compare

Definition

The template function compare compares the first argument with respect to the second, i.e. it returns
CGAL::LARGER if x is larger then y.

In case the argument types N7/ and NT2 differ, compare is performed with the semantic of the type determined
via Coercion_traits. The function is defined if this type is a model of the RealEmbeddable concept.

#include <CGAL/number_utils.h>

template <class NTI, class NT2>

result_type compare( NT x, NTy)  The result_type is convertible to CGAL::Comparison _result.
RealEmbeddable. . . .. ... page 123
RealEmbeddableTraits::COmMPATe . . . . . ..o vuut ettt et ettt e page 131
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Function

CGAL::to_double

Definition

The template function fo_double returns an double approximation of a number. The function is defined if the
argument type is a model of the RealEmbeddable concept.

Remark: In order to control the quality of approximation one has to resort to methods that are specific to NT.
There are no general guarantees whatsoever.

#include <CGAL/number_utils.h>

template <class NT>

double to_double( NT x)

See Also

RealEmbeddable. . . ... ... e page 123
RealEmbeddableTraits::ToDouble . . . ... e page 132
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CGAL::to_interval

Definition

The template function fo_interval computes for a given real embeddable number x a double interval containing
x. This interval is represented by a std::pair<double,double>. The function is defined if the argument type is a
model of the RealEmbeddable concept.

-
O
)

O

-

)
LL

#include <CGAL/number_utils.h>

template <class NT>
std: :pair<double,double>

to_interval( NT x)

See Also
RealEmbeddable. . . ... ... o e page 123
RealEmbeddableTraits::Tolnterval . .......... . page 133
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Concept

Fraction

Definition
A type is considered as a Fraction, if there is a reasonable way to decompose it into a numerator and denom-

inator. In this case the relevant functionality for decomposing and re-composing as well as the numerator and
denominator type are provided by CGAL::Fraction_traits.

See Also

FractionTrails . .. ... ..ot e e e page 143
CGAL::Fraction_traits<T>
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FractionTraits

Definition
A model of FractionTraits is associated with a type Type.

In case the associated type is a Fraction, a model of FractionTraits provides the relevant functionality for
decomposing and re-composing as well as the numerator and denominator type.

#include <CGAL/Fraction_traits.h>

Types

FractionTraits:: Type the associated type

FractionTraits:: Is_fraction Tag indicating whether the associated type is a fraction and
can be decomposed into a numerator and denominator.
This is either CGAL::Tag_true or CGAL::Tag false.

FractionTraits:: Numerator_type The type to represent the numerator. This is undefined in
case the associated type is not a fraction.

FractionTraits:: Denominator_type The (simpler) type to represent the denominator. This is un-
defined in case the associated type is not a fraction.

Functors

In case Type is not a Fraction all functors are Null_functor.

FractionTraits:: Decompose A model of FractionTraits::Decompose.

FractionTraits:: Compose A model of FractionTraits::Compose.

FractionTraits:: Common_factor A model of FractionTraits::CommonFactor.

Has Models

CGAL::Fraction_traitsS<T> . ... e e e e page 147
See Also

FractionTraits::DEeCOMPOSE . . . . ..ottt ettt e et e e page 144
FractionTraits: iCOMPOSE . . . vttt ettt ettt et et e e ettt et et e et e e page 145
FractionTraits::CommonFactor. . .. ... e page 146

143




FractionTraits::Decompose

Definition

Functor decomposing a Fraction into its numerator and denominator.

Types
Operations
void decompose.operator()( FractionTraits::Type f,

FractionTraits::Numerator_type & n,

FractionTraits:: Denominator_type & d)

decompose f into numerator n and denominator d.

See Also
FraCtion . . o e page 142
FractionTrails . . . ..ottt et et e e e page 143
FractionTraits: iCOMPOSE . . . .. v vttt ettt ettt ettt e ettt e ettt e et e page 145
FractionTraits::CommonFactor. . .. ... e e page 146
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FractionTraits::Compose

Definition

AdaptableBinaryFunction, returns the fraction of its arguments.

Refines

AdaptableBinaryFunction

Types

typedef FractionTraits:: Type

result_type;

typedef FractionTraits::Numerator_type

first_argument_type;

typedef FractionTraits::Denominator_type

second_argument_type;

Operations
result_type compose( first_argument_type n, second_argument_type d)

return the fraction n/d.
See Also
FraCtion. . o oo page 142
FractionTraits . . ... oottt e et e e et e e e page 143
FractionTraits::DecOmMPOSE . . . . ... .ttt e page 144
FractionTraits::CommoOnFactor. . . ... ... . e page 146
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FractionTraits::CommonFactor

Definition
AdaptableBinaryFunction, finds great common factor of denominators.

This can be considered as a relaxed version of AlgebraicStructureTraits::Ged, this is needed because it is not
guaranteed that FractionTraits::Denominator_type is a model of UniqueFactorizationDomain.

Refines

AdaptableBinaryFunction

Types

typedef FractionTraits::Denominator_type

result_type;

typedef FractionTraits::Denominator_type

first_argument_type;

typedef FractionTraits::Denominator_type

second_argument_type;

Operations
result_type common _factor( first_argument_type dl, second_argument_type d2)

return a great common factor of d1 and d2.

Note: operator () (0,0) =0
See Also
FraCtion . . .o e page 142
FractionTrails . . . ..ottt e et e ettt e e page 143
FractionTraits::DEeCOMPOSE . . . . ..ottt et ettt e e e page 144
FractionTraits: iCOMPOSE . . . ... v ettt ettt e ettt e e et e e ettt e e page 145
AlgebraicStructureTraits::GCd. . . .. ...t e page 90
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CGAL::Fraction_traits<T>

Definition
An instance of Fraction_traits<T> is a model of FractionTraits, where T is the associated type.

#include <CGAL/Fraction_traits.h>

Is Model for the Concepts

FractionTraits . . . ..ottt et et e et et e e e page 143
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Concept

RingNumberType

Definition

The concept RingNumberType combines the requirements of the concepts IntegralDomainWithoutDivision and
RealEmbeddable. A model of RingNumberType can be used as a template parameter for Homogeneous kernels.

Refines

IntegralDomainWithoutDivision
RealEmbeddable

Has Models

C++ built-in number types
CGAL::Gmpg

CGAL::Gmpz

CGAL::Interval _nt
CGAL::Interval_nt_advanced
CGAL::Lazy_exact_nt<RingNumberType>
CGAL::MP_Float

CGAL::Gmpzf
CGAL::Quotient<RingNumberType>
leda_integer

leda_rational

leda_bigfloat

leda_real

See Also

FieldNumberType . . . ..o e e e e page 149
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FieldNumberType

Definition

The concept FieldNumberType combines the requirements of the concepts Field and RealEmbeddable. A model
of FieldNumberType can be used as a template parameter for Cartesian kernels.

Refines

Field
RealEmbeddable

Has Models

float
double

CGAL::Gmpq

CGAL::Interval_nt
CGAL::Interval_nt_advanced
CGAL::Lazy_exact_nt<FieldNumberType>
CGAL::Quotient<RingNumberType>
leda_rational

leda_bigfloat

leda_real
See Also
RingNUMbEITYPE. . . . oot e e page 148
Kernel . . e page 581
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Chapter 5

Number Types

Michael Hemmer, Susan Hert, Sylvain Pion, and Stefan Schirra
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5.1 Introduction

This chapter gives an overview of the number types supported by CGAL. Number types must fulfill certain
syntactical and semantic requirements, such that they can be successfully used in CGAL code. In general they
are expected to be a model of an algebraic structure concepts and in case they model a subring of the real
numbers they are also a model of RealEmbeddable. For an overview of the algebraic structure concepts see
Section 4.8.

5.2 Built-in Number Types

The built-in number types float, double and long double have the required arithmetic and comparison operators.
They lack some required routines though which are automatically included by CGAL. !

! The functions can be found in the header files CGAL/int .h, CGAL/float .h, CGAL/double.h and CGAL/long_long.h.
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All built-in number types of C++ can represent a discrete (bounded) subset of the rational numbers only. We as-
sume that the floating-point arithmetic of your machine follows IEEE floating-point standard. Since the floating-
point culture has much more infrastructural support (hardware, language definition and compiler) than exact
computation, it is very efficient. Like with all number types with finite precision representation which are used
as approximations to the infinite ranges of integers or real numbers, the built-in number types are inherently
potentially inexact. Be aware of this if you decide to use the efficient built-in number types: you have to cope
with numerical problems. For example, you can compute the intersection point of two lines and then check
whether this point lies on the two lines. With floating point arithmetic, roundoff errors may cause the answer of
the check to be false. With the built-in integer types overflow might occur.

5.3 Number Types Provided by CGAL

CGAL provides several number types that can be used for exact computation. These include the Quotient class
that can be used to create, for example, a number type that behaves like a rational number when parameterized
with a number type which can represent integers.

The number type MP_Float is able to represent multi-precision floating point values, a generalization of integers
scaled by a (potentially negative) power of 2. It allows to deal with ring operations over floating-point values
with requiring rational numbers. By plugging it in Quotient, one obtains rational numbers. Note that MP_Float
may not be as efficient as the integer types provided by GMP or LEDA, but it has the advantage to make more
parts of CGAL independent on these external libraries for handling robustness issues.

The templated number type Lazy_exact_nt<NT> is able to represent any number that NT is able to represent, but
because it first tries to use an approximate value to perform computations it can be faster than NT.

A number type for doing interval arithmetic, Interval_nt, is provided. This number type helps in doing arithmetic
filtering in many places such as Filtered_predicate.

CGAL::Sqrt_extension is a number type that allows to represent algebraic numbers of degree 2 as well as nested
forms. A generic function CGAL::make_root_of_2 allows to build this type generically.

A debugging helper Number_type_checker<NT1,NT2,Comparator> is also provided which allows to compare
the behavior of operations over two number types.

5.4 Number Types Provided by GMP

CGAL provides wrapper classes for number types defined in the GNU Multiple Precision arithmetic li-
brary [Gra]. The file CGAL/Gmpz . h provides the class Gmpz, a wrapper class for the arbitrary-precision integer
type mpz_t, which is compliant with the CGAL number type requirements. The file CGAL/Gmpg. h provides the
class Gmpgq, a wrapper class for the arbitrary-precision rational type mpq_t, which is compliant with the CGAL
number type requirements.

The file CGAL/Gmpzf.h provides the class Gmpzf, an exact arbitrary-precision floating-point type. Hence, It
does not support operators like / to guarantee exactness of the operations. The arithmetic operations on this
type are restricted to +, -, * and CGAL::integral_division.

The file CGAL/Gmp£fr.h provides the class Gmpfr, a fixed-precision floating-point number type. Since the pre-
cision (number of bits used to represent the mantissa of the number) is fixed for each object, the result of each
operation is rounded when necessary. Though not necessary at first, the user will take full advantage of this
number type by understanding the ideas behind floating-point arithmetic, such as precision and rounding, and

152



understanding the flags set by this library after each operation. For more details, the reader should refer to
[ ] and the Gmpfr reference manual.

In addition, it is possible to directly use the C++ number types provided by GMP : mpz_class, mpq_class (note
that support for mpf_class is incomplete). The file CGAL/gmpxx.h provides the necessary functions to make
these classes compliant to the CGAL number type requirements.

To use these classes, GMP and MPFR must be installed.

5.5 Number Types Provided by LEDA

LEDA provides number types that can be used for exact computation with both Cartesian and homogeneous
representations. If you are using homogeneous representation with the built-in integer types short, int, and
long as ring type, exactness of computations can be guaranteed only if your input data come from a sufficiently
small integral range and the depth of the computations is sufficiently small. LEDA provides the number type
leda_integer for integers of arbitrary length. (Of course the length is somehow bounded by the resources of
your computer.) It can be used as ring type in homogeneous kernels and leads to exact computation as long as
all intermediate results are rational. For the same kind of problems, Cartesian representation with number type
leda_rational leads to exact computation as well. The number type leda_bigfloat in LEDA is a variable precision
floating-point type. Rounding mode and precision (i.e. mantissa length) of leda_bigfloat can be set.

The most sophisticated number type in LEDA is the number type called leda_real. Like in Pascal, where the
name real is used for floating-point numbers, the name leda_real does not describe the number type precisely,
but intentionally. leda_reals are a subset of real algebraic numbers. Any integer is leda_real and leda_reals are
closed under the operations +, —, *, / and k-th root computation. For LEDA version 5.0 and or later leda_real is
also able to represent real roots of polynomials. leda_reals guarantee that all comparisons between expressions
involving leda_reals produce the exact result.

The files CGAL/leda_integer.h, CGAL/leda_rational.h, CGAL/leda_bigfloat.h and CGAL/leda_real.h
provide the necessary functions to make these classes compliant to the CGAL number type requirements.

5.6 Number Types Provided by CORE

In principle CORE [ ] provides the same set of number types as LEDA. The type CORE::Biglnt represent
integers and CORE::BigRat represent rationals of arbitrary length. The number type CORE::BigFloat is a
variable precision floating-point type. It is also possible to interpret it as an interval type, since it also carries the
error of a computed value. As for LEDA, the most sophisticated number type in CORE is CORE::Expr, which
is in its functionality equivalent to leda_real.

The files CGAL/CORE_BigInt .h, CGAL/CORE_BigRat .h, CGAL/CORE_BigFloat .h and CGAL/CORE_Expr.h pro-
vide the necessary functions to make these classes compliant to the CGAL number type requirements.

CORE version 1.7 or later is required.
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5.7 Interval arithmetic

Interval arithmetic is very important for geometric programming. It is a fundamental tool for filtering predicates.
For many problems, intervals of machine double-precision numbers are sufficient, but it is not always enough.
For example, one approach for determining the sign of an expression is to evaluate its sign using interval
arithmetic and to repeatedly increase the precision of the bounds of the intervals until either the interval does
not contain zero or its width is less than the separation bound of the polynomial.

For intervals of machine double-precision numbers, CGAL provides the class Interval_nt. For intervals of
floating-point arbitrary-precision numbers, the class Gmpfi is provided in the file CGAL/Gmp£fi.h.

Endpoints of Gmpfi intervals are represented as Gmpfr numbers. Each interval has an associated precision,
which is the maximum precision (number of bits used to represent the mantissa) of its endpoints. The result
of the operations is guaranteed to be always contained in the returned interval. Since the interval arithmetic is
implemented on top of Gmpfr, the global flags and the default precision are inherited from the Gmpfr interface.
See [ ] and the Gmpfi reference manual for details.

To use the Gmpfi class, MPFI must be installed.

5.8 User-supplied Number Types

In order to use your own number type it must be a model of the according algebraic structure concept, in
particular you must provide a specialization of CGAL::Algebraic_structure _traits and also of Real_embeddable_
traits in case it is a sub ring of the real numbers. If you even want to provide a related ensemble of number types
you should also provide specializations for CGAL::Coercion_traits in order to reflect their interoperability.

5.9 Design and Implementation History

This package was naturally one of the first packages implemented in CGAL. It initially contained the Quotient,
Gmpz and Gmpgq classes, together with the interfaces to the number types provided by LEDA, which were
implemented by Stefan Schirra and Andreas Fabri.

Later, around 1998-2002, Sylvain Pion implemented Interval_nt MP_Float and Lazy_exact_nt, together with the
interfaces to the mpz_class and mpq_class types from GMP.

Number type concepts were then refined, notably by Lutz Kettner and Susan Hert, who also contributed utility
algorithms.

The work on concepts was further extended within the EXACUS project, and was finally contributed to CGAL
by Michael Hemmer in 2006, as what is now the separate Algebraic Foundations package 4, together with a
rewritten interface to operations on number types.

The class Sqrt_extension was contributed by Michael Hemmer and Ron Wein around 2006. In 2010 it went
through a considerable reinvestigation by Sébastien Loriot, Michael Hemmer, and Monique Teillaud. As a result
it got further improved and now replaces several similar types such as Root_of-2, which had been contributed
by Pedro M. M. de Castro, Sylvain Pion and Monique Teillaud, and is deprecated since CGAL-3.8.

In 2008-2010, Bernd Gértner added the Gmpzf class, while Luis Pefiaranda and Sylvain Lazard contributed the
Gmpfi and Gmpfr classes.
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Number Types
Reference Manual

Michael Hemmer, Susan Hert, Sylvain Pion, and Stefan Schirra
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Class

int

Definition
The fundamental type int is an RealEmbeddable EuclideanRing. Due to overflow int is considered as not exact.

#include <CGAL/int.h> 1Is Model for the Concepts

EuclideanRing
RealEmbeddable
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short int

Definition

The fundamental type short int is an RealEmbeddable EuclideanRing. Due to overflow short int is considered
as not exact.

#include <CGAL/int.h> 1Is Model for the Concepts

EuclideanRing
RealEmbeddable
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Class

long int

Definition

The fundamental type long int is an RealEmbeddable EuclideanRing. Due to overflow long int is considered as
not exact.

#include <CGAL/int.h> 1Is Model for the Concepts

EuclideanRing
RealEmbeddable
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long long int

Definition

The fundamental type long long int is an RealEmbeddable EuclideanRing. Due to overflow long long int is
considered as not exact.

#include <CGAL/long_long.h> Is Model for the Concepts

EuclideanRing
RealEmbeddable
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Class

float

Definition

The fundamental type float is an RealEmbeddable FieldWithSqrt. Due to rounding errors and overflow float is
considered as not exact.

#include <CGAL/float.h> 1s Model for the Concepts

FieldWithSqrt
RealEmbeddable

Query Functions

bool CGAL::is_finite( x) Determines whether the argument represents a value in R.
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double

Definition

The fundamental type double is an RealEmbeddable Field. Due to rounding errors and overflow double is
considered as not exact.

#include <CGAL/double.h> Is Model for the Concepts

FieldWithSqrt
RealEmbeddable

Query Functions

bool CGAL::is_finite( x) Determines whether the argument represents a value in R.
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Class

long double

Definition

The fundamental type long double is an RealEmbeddable FieldWithSqrt. Due to rounding errors and overflow
long double is considered as not exact.

#include <CGAL/long_double.h> Is Model for the Concepts

FieldWithSqrt
RealEmbeddable

Query Functions

bool CGAL::is_finite( x) Determines whether the argument represents a value in R.
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CORE::Biglnt

Definition

The class CORE::Biglnt provides exact computation in Z. Operations and comparisons between objects of this
type are guaranteed to be exact. This number type is provided by the CORE library [ ].

CGAL defines the necessary functions so that this class complies to the requirements on number types.

#include <CGAL/CORE _BigInt.h>

Is Model for the Concepts
EuclideanRing

RealEmbeddable
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Class

CORE::BigRat

Definition

The class CORE::BigRat provides exact computation in R. Operations and comparisons between objects of this
type are guaranteed to be exact. This number type is provided by the CORE library [ ].

CGAL defines the necessary functions so that this class complies to the requirements on number types.

#include <CGAL/CORE_BigRat.h>

Is Model for the Concepts

Field

RealEmbeddable

Fraction
FromDoubleConstructible
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CORE::BigFloat

Definition

The class CORE::BigFloat is a variable precision floating-point type. Rounding mode and precision (i.e. man-
tissa length) of CORE::BigFloat can be set. Since it also carries the error of a computed value.

This number type is provided by the CORE library [ ].

CGAL defines the necessary functions so that this class complies to the requirements on number types.

#include <CGAL/CORE_BigFloat.h>

Is Model for the Concepts

FieldWithKthRoot
RealEmbeddable
FromDoubleConstructible
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Class

CORE::Expr

Definition

The class CORE::Expr provides exact computation over the subset of real numbers that contains integers, and
which is closed by the operations +, —, X, /, v and kth_root. Operations and comparisons between objects of
this type are guaranteed to be exact. This number type is provided by the CORE library [ 1.

CGAL defines the necessary functions so that this class complies to the requirements on number types.

#tinclude <CGAL/CORE_Expr.h>

Is Model for the Concepts

FieldWithRootOf
RealEmbeddable
FromDoubleConstructible
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leda_integer

Definition

The class leda_integer provides exact computation in Z. The class leda_integer is a wrapper class that provides
the functions needed to use the number type leda::integer, representing exact multiprecision integers provided
by LEDA.

#include <CGAL/leda_integer.h>

Is Model for the Concepts
EuclideanRing
RealEmbeddable

For more details on the number types of LEDA we refer to the LEDA manual [ ].
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Class

leda_rational

Definition
The class leda_rational provides exact computation in R. The class leda_rational is a wrapper class that pro-
vides the functions needed to use the number type rational, representing exact multiprecision rational numbers

provided by LEDA.

#include <CGAL/leda_rational.h>

Is Model for the Concepts

Field

RealEmbeddable

Fraction
FromDoubleConstructible

For more details on the number types of LEDA we refer to the LEDA manual [ 1.
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leda_bigfloat

Definition

The class leda_bigfloat is a wrapper class that provides the functions needed to use the number type bigfloat.
bigfloat Rounding mode and precision (i.e. mantissa length) of leda_bigfloat can be set.

For more details on the number types of LEDA we refer to the LEDA manual [ 1.

#include <CGAL/leda_bigfloat.h>

Is Model for the Concepts

FieldWithKthRoot
RealEmbeddable
FromDoubleConstructible
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Class

leda_real

Definition

The class leda_real is a wrapper class that provides the functions needed to use the number type real, represent-
ing exact real numbers numbers provided by LEDA. The class leda_real provides exact computation over the
subset of real numbers that contains integers, and which is closed by the operations +,—, X, /, Vv and kth_root.
For LEDA version 5.0 or later leda_real is also able to represent real roots of polynomials. Operations and
comparisons between objects of this type are guaranteed to be exact.

#include <CGAL/leda_real h>
Is Model for the Concepts
FieldWithRootOf

RealEmbeddable
FromDoubleConstructible

For more details on the number types of LEDA we refer to the LEDA manual [ ].
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mpz_class

Definition

The class mpz_class is an exact multiprecision integer number type, provided by GMP. CGAL provides the
necessary functions to make it compliant to the number type concept.

#include <CGAL/gmpxx.h>

Is Model for the Concepts
EuclideanRing
RealEmbeddable

See the GMP documentation for additional details.
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Class

mpq_class

Definition

The class mpg_class is an exact multiprecision rational number type, provided by GMP. CGAL provides the
necessary functions to make it compliant to the number type concept.

#include <CGAL/gmpxx.h>

Is Model for the Concepts

Field
RealEmbeddable
Fraction

See the GMP documentation for additional details.
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CGAL::Gmpz

Definition

An object of the class Gmpz is an arbitrary precision integer based on the GNU Multiple Precision Arithmetic
Library.

#include <CGAL/Gmpz.h>

Is Model for the Concepts

EuclideanRing

RealEmbeddable

Creation

Gmpz z; creates an uninitialized multiple precision integer z.

Gmpz z( inti); creates a multiple-precision integer initialized with i.

Gmpz z( double d); creates a multiple-precision integer initialized with the integral part of d.

Operations

Gmpz & ++z prefix increment.

Gmpz z++ postfix increment.

Gmpz & ——z prefix decrement.

Gmpz z—— postfix decrement.

Gmpz a >> unsigned long i rightshift by i.

Gmpz a << unsigned long i leftshift by i.

Gmpz & z>>=long i rightshift by i, where i >= 0.

Gmpz & 7<<=longi leftshift by i, where i >= 0.

Gmpz asb bitwise AND.

Gmpz alb bitwise IOR.

Gmpz a’b bitwise XOR.

Gmpz & 7&=0b bitwise AND.

Gmpz & z|=>b bitwise IOR.

Gmpz & 2"=b bitwise XOR.

Sign z.sign() const Returns the sign of z.

size_t z.bit_size() const Returns the bit-size (that is, the number of bits needed to rep-
resent the mantissa) of z.

size_t z.size() const Returns the size in limbs of z. A limb is the type used by GMP

to represent the integer (usually long).
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size_t z.approximate_decimal_length() const

double z.to_double() const
std::ostreams std::ostreams out << z
std::istreams std::istreams in >> & z
Implementation

Gmpzs are reference counted.

Returns the approximate number of decimal digits needed to
represent z. Approximate means either a correct result, either
the correct result plus one.

Returns a double approximation of z. The integer is truncated if
needed. If the exponent of the conversion is too big, the result
is system dependent (returning infinity where it is supported).

writes z to the ostream out.
reads an integer from in, then converts it to a Gmpz.
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CGAL::Gmpq

Definition

An object of the class Gmpq is an arbitrary precision rational number based on the GNU Multiple Precision
Arithmetic Library.

#include <CGAL/Gmpq.h>

Is Model for the Concepts

Field

RealEmbeddable

Fraction

Creation

Gmpq q; creates an uninitialized Gmpgq q.

Gmpq q( int i), creates a Gmpgq initialized with i.

Gmpq q( Gmpz n); creates a Gmpgq initialized with n.

Gmpq q( Gmpfr f); creates a Gmpgq initialized with f.

Gmpq q( intn, intd); creates a Gmpq initialized with n/d.

Gmpq q( signed long n, unsigned long d); creates a Gmpq initialized with n/d.

Gmpq q( unsigned long n, unsigned long d); creates a Gmpgq initialized with n/d.

Gmpq q( Gmpz n, Gmpz d); creates a Gmpgq initialized with n/d.

Gmpq q( double d); creates a Gmpgq initialized with d.

Gmpq q( std::string str); creates a Gmpgq initialized with str, which can be an integer
like 741> or a fraction like ”41/152”. White space is allowed
in the string, and ignored.

Gmpq q( std::string str, int base); creates a Gmpq initialized with str in base base, which is
an integer between 2 and 62. White space in the string is
ignored.

Operations

std::ostreams std::ostreams out << q writes ¢ to the ostream out, in the form n/d.

std::istreams std::istreams in >> & q reads a number from in, then converts it to a Gmpg. The num-
ber may be an integer, a rational number in the form n/d, or a

floating-point number.

There are two access functions, namely to the numerator and the denominator of a rational. Note that these
values are not uniquely defined. It is guaranteed that g.numerator() and q.denominator() return values nt_num
and nt_den such that g = nt_num/nt_den, only if g.numerator() and g.denominator() are called consecutively
wrt. g, i.e. ¢ is not involved in any other operation between these calls.

Gmpz

g.numerator() const returns the numerator of q.
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Gmpz q.denominator() const returns the denominator of g.

Implementation

Gmpags are reference counted.
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CGAL::Gmpzf

Definition

This is an multiple-precision floating-point type; it can represent numbers of the form m * 2¢, where m is an
arbitrary precision integer based on the GNU Multiple Precision Arithmetic Library, and e is of type long. This
type can be considered exact, even if the exponent is not a multiple-precision number. This number type offers
functionality very similar to MP_Float but is generally faster.

#include <CGAL/Gmpzf-h>

Is Model for the Concepts

EuclideanRing
RealEmbeddable
Creation
Gmpzf f; creates a Gmpzf initialized with 0.
Gmpzf f(inti); creates a Gmpzf initialized with i.
Gmpzf f( longintl); creates a Gmpzf initialized with L.
Gmpzf f( Gmpz i), creates a Gmpzf initialized with i.
Gmpzf f( Gmpfrf); creates a Gmpzf initialized with f.
Gmpzf f( double d); creates a Gmpzf initialized with d.
Operations
std::ostreams std::ostreams out << f
writes a double approximation of f to the ostream out.
std::ostreams print( std::ostreams out, f)
writes an exact representation of f to the ostream out.
std::istreams std::istreamé& in >> & f

reads a double from in, then converts it to a Gmpzf.
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Implementation

The significand m of a Gmpzf is a Gmpz and is reference counted. The exponent e of a Gmpzf is a long.
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CGAL::Gmpfr

Definition

An object of the class Gmpfr is a fixed precision floating-point number, based on the MPFR library. This type is
inexact, due to the fact that the mantissa of each number is represented by a fixed amount of bits (this amount is
called precision). If an operation needs more bits than the precision of the result number, the results are rounded
following different possible criteria (called rounding modes).

Currently, MPFR supports four rounding modes: round to nearest, round toward zero, round down (or toward
—oo) and round up (or toward +c0). When not specified explicitly, the operations use the default rounding mode,
which is in practice a variable local to each execution thread. The default rounding mode can be set to any of
the four rounding modes (initially, it is set to nearest). To specify rounding modes for operations, the type used

is std: :float_round_style.

This type is ImplicitInteroperable with Gmpz, long, unsigned long, int, double and long double.

#include <CGAL/Gmpfr.h>

Is Model for the Concepts

FieldWithKthRoot
RealEmbeddable

Types

Gmpfr:: Precision_type

Creation
Gmpfr f;

Gmpfr f( n);

Gmpfr f( long si);

Gmpfr f( unsigned long ui);

Gmpfr f(inti);

Gmpfr f( double d);

Gmpfr f( long double Id);

Gmpfr f( Gmpz z);

Type representing the precision (number of bits used to rep-
resent the mantissa) of a number.

Creates an uninitialized Gmpfr f.

Copy constructor. The copied object inherits the precision of
n, and thus it is not rounded.

Creates Gmpfr, initialized with the value of si.

Creates a Gmpfr, initialized with the value of ui.

Creates a Gmpfr, initialized with the value of i.

Creates a Gmpfr, initialized with the value of d.

Creates a Gmpfr, initialized with the value of /d.

Creates a Gmpfr, initialized with the value of z.
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Gmpfr f( Gmpzf zf); Creates a Gmpfr, initialized with the value of zf.

Gmpfr f( std::pair<Gmpz,long> ie); Creates a Gmpfr, initialized with the value of ie.first x

2ie.xecnnd

Note that all constructors can be called with two optional parameters. One can specify as second parameter the
rounding mode desired for the conversion from the source number and as a third parameter the precision with
which this Gmpfr will be created. If only one optional parameter is specified, it can be either the rounding mode
or the precision. If no optional parameters are specified, the precision of the created object is chosen in such a
way that the conversion is exact (i.e., no rounding is performed).

These optional parameters, along with other functions which will be explained below, allow users to control the
rounding and precision. For example, being z a Gmpz, Gmpfr g(z,53,std::round_toward_neg_infinity)
will construct a Gmpfr g having as value the biggest 53-bit floating-point number that is equal or smaller than
to z.

Operations

Each Gmpfr object has a precision associated to it. The precision is the amount of bits needed to represent the
mantissa. MPFR has a default precision value, which can be controlled by static functions of the Gmpfr class
(in practice, this default value is a variable local to each execution thread). There are also functions to get and
set the precision of each Gmpfr object.

static Precision_type get_default_precision() This returns the current precision used in Gmpfr cre-
ation by default.

static Precision_type set_default_precision( Precision_type p)

This function sets the default MPFR precision to p,
and returns the old one.

Precision_type f.get_precision() const Returns the precision of f.

Gmpfr f.round( Precision_type p, std::float_round_style r) const
Returns the value of f, rounded with precision p in
the direction r.

static std::float_round_style

get_default_rndmode() This function returns the current rounding mode used
by MPFR.

static std::float_round_style
set_default_rndmode( std::float_round_style r)

This function sets the MPFR rounding mode to » and
returns the old one.

MPEFR provides some flags to know whether performed operations were exact or not, or they incurred in overflow
or underflow, if the exponent is out of range, or the result was NaN (not-a-number). One can clear the flags
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before a set of operations and inspect them afterward, in order to see if something unexpected happened during
the operations. The static functions used to handle flags are:

static void clear_flags() Clears all the flags set by MPFR(they are not cleared
automatically).

static bool underflow_flag() Shows whether an operation incurred in underflow.

static bool overflow_flag() Shows whether an operation incurred in overflow.

static bool nan_flag() Shows whether the result of an operation was NaN.

static bool inex_flag() Shows whether an operation was inexact.

static bool erange_flag() Returns true iff a range error occurred. Such an ex-

ception occurs when some function which does not
return a Gmpfr has an invalid result. For example,
this flag will be set if one of the operands of a com-
parison is NaN.

Arithmetic operators + , -, * and / are overloaded, but special care must be taken when applying them. The
precision of an operation between two Gmpfrs is defined as the maximum of the operands precision and the
default precision.

The second operand of the former operations can be a Gmpfr, int, long, unsigned, unsigned long, or Gmpz.
The precision of an operation between a Gmpfr and a number of another type is defined as the maximum
between the number’s precision and the default precision.

To specify the rounding mode and/or the precision to perform an operation, this class provides the four static
functions add, sub, mul and div. Only one of them is shown here, since their interfaces are similar:

static Gmpfr add( a, b)

static Gmpfr add( a, b, std::float_round_style r)

static Gmpfr add( a, b, Precision_type p)

static Gmpfr add( a, b, Precision_type p, std.::float_round_style r)

When the precision is not specified in this family of functions, it is defined as in the overloaded operators. When
the rounding mode is not specified, the default is used.

Other arithmetic functions provided by the class are:

Gmpfr f.abs( Precision_type p, std.:float_round_style r=get_default_rndmode())

Returns the absolute value of f, rounded with preci-
sion p in the direction r. If p is not specified, the
precision used is the maximum between f’s precision
and the default.
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Gmpfr

Gmpfr

Gmpfr

double

f.sqrt( Precision_type p, std::float_round_style r=get_default_rndmode())

Returns the square root of f, rounded with precision
p in the direction r. If p is not specified, the precision
used is the maximum between f’s precision and the
default.

f.kthroot( int k, Precision_type p, std::float_round_style r=get_default_rndmode())

Returns the k-th root of f, rounded with precision p
in the direction r. If p is not specified, the precision
used is the maximum between f’s precision and the
default.

f.square( Precision_type p, std::float_round_style r=get_default_rndmode())

Returns the square of f, rounded with precision p in
the direction r. If p is not specified, the precision
used is the maximum between f’s precision and the
default.

f.to_double( std::float_round_style r=get_default_rndmode())

std::pair<double,double>

std::pair<double,long>

f.to_interval()

Returns a double precision approximation of f using
the rounding mode r.

Returns an interval of doubles which contains f. If a
rounded endpoint does not fit in a double, the double
is set to plus or minus infinity and the overflow or
underflow flag.

f.to_double_exp( std::float_round_style r=get_default_rndmode())

std: :pair<std::pair<double,double>,long>

f-to_interval_exp()
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Returns the pair (d,e) such that 0.5 < |d| < 1 and
d x 2¢ equals f rounded to double precision, using
the rounding mode r. If f is NaN or infinity, then the
corresponding double is returned, leaving the expo-
nent undefined and setting the appropriate error flag.

Returns ((m,M),e) such that m x 2¢ < f <M x 2¢. If
f is NaN or infinity, then the corresponding doubles
are returned, leaving the exponent undefined and set-
ting the appropriate error flag.



std::pair<Gmpz,long>

Comparisons

f-to_integer_exp()

Returns a pair of integers (m, ¢), such that f = m x 2°.
Note that the returned value of m is not necessarily
the smallest possible value of m (that is, it might be
that 2|m).

Comparison operators ==, !=, >, <, >= and <= are also overloaded. A Gmpfr can be compared with other
Gmpfr, as well as with a Gmpz, long, unsigned long, int, double or long double. It is worth noting
that the numbers are never converted nor rounded before comparison. In the case where one of the compared
numbers is NaN, the erange flag is set.

Query Functions

Sign

bool

bool

bool

bool

bool

bool

bool

Input/Output

std::istreams

std::ostreams

f.sign()

f.is_zero()

f.is_one()

f.is_nan()

f.is_inf()

f.is_number()

f.is_square()

f.is_square('y)

std::istreams in >> & f

std::ostreams out << f
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Returns the sign of f.

Returns true iff f is zero.

Returns true iff f is one.

Returns true iff f is NaN (not-a-number).

Returns frue iff f is plus or minus infinity.

Returns frue iff f is a valid number.

Returns true iff f is the square of a number repre-
sentable by an object of this type.

Returns true iff f is the square of a number repre-
sentable by an object of this type, computing and
storing it in y.

Reads a floating-point number from in. The number
M x 2E must be in the form MeE, where the mantissa
M and the exponent E are integers in base 10.

If the ostream out is in pretty-print mode, writes a
decimal approximation of f to out. Otherwise, writes
f to out in the form MeE, where M is its mantissa and
E is its exponent, both in base 10.



Implementation
Since the MPFR library can be compiled to be thread-safe, this interface is designed to keep the thread-safety.

Gmpfrs are reference counted. This behavior may be changed, by setting the flag CGAL_GMPFR_NO_REFCOUNT. A
non-reference-counted class is slightly more efficient in case the implementation does not need to copy numbers
(this is not usually the case). Nevertheless, setting this flag may be useful for debugging purposes.

See Also
RealEmbeddable. . ... ....... ... e e page 123
FieldWIthKIRROOT . . ... .ot et e e e e e e e e e e e e page 76
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CGAL::Gmpfi

Definition

An object of the class Gmpfi is a closed interval, with endpoints represented as Gmpfr floating-point numbers.
An interval can have finite or infinite endpoints and its meaning is straightforward. It can also have one (or both)
NaN endpoint(s): this indicates that an invalid operation has been performed and that the resulting interval has
no mathematical meaning.

All the operations of Gmpfi were designed in such a way that the mathematical correct result is always contained
in the resulting interval.

This type is Implicitinteroperable with Gmpfr, Gmpz, Gmpq, long, unsigned long, int, double and
long double.

#include <CGAL/Gmpfi.h>

Is Model for the Concepts

FieldWithKthRoot

RealEmbeddable

Types

Gmpfi:: Precision_type Type representing the precision (number of bits used to rep-
resent the mantissa) of a number.

Creation

All the constructors accept an optional last argument: a precision (a Precision_type, which can be used to specify
the precision of the Gmpfr endpoints. If none is specified, the default precision will be used. As the endpoints
are represented with a fixed number of bits, they may need to be rounded. In this case, the number from which
the Gmpfi was constructed is guaranteed to be included in the constructed interval.

Gmpfi i( Precision_type p=get_default_precision());

creates an uninitialized Gmpfi interval i.

template <class T>
Gmpfi i( Tt, Precision_type p=get_default_precision());

creates a Gmpfi initialized with the value of . T is Gmpfr,
Gmpgq, or any type from which Gmpfr can be constructed
from. The rounding of the endpoints will guarantee that ¢ is
included in i.

Gmpfi i( Gmpfr left, Gmpfr right, Precision_type p=get_default_precision());

creates a Gmpfi initialized with endpoints left and right. The
rounding of the endpoints will guarantee that [left, right] is
included in i.
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template<class L, class R>
Gmpfi i( std::pair<L,R> endpoints, Precision_type p=get_default_precision());

Operations

Gmpfr

Gmpfr

static Precision_type

static Precision_type

Precision_type

Gmpfi

creates a Gmpfi initialized with endpoints endpoints.first and
endpoints.second. L and R are types from which Gmpfr can
be constructed from. The rounding of the endpoints will
guarantee that [endpoints first,endpoints.second) is included

ini.
i.inf() const Returns the smallest (or inferior) Gmpfr endpoint of i.
i.sup() const Returns the largest (or superior) Gmpfr endpoint of i.

i.get_default_precision()

Returns the default precision.

i.set_default_precision( Precision_type prec)

Sets the default precision to prec and returns the old value.

i.get_precision() const

Returns the precision of i.

i.round( Precision_type p) const

Returns the value of the number, rounded with precision p.

Arithmetic operators +, -, * and / are overloaded, but special care must be taken when applying them. The
precision of an operation between two Gmpfis is defined as the maximum of the operands precision and the

default precision.

The second operand of the former operations can be a Gmpfi, Gmpfr, int, long, unsigned, unsigned long,
Gmpz or Gmpg. The precision of an operation between a Gmpfi and a number of another type is defined as the
Gmpfi’s precision (even when operating with a Gmpfr).

To specify the rounding mode and/or the precision to perform an operation, this class provides the four static
functions add, sub, mul and div. Only one of them is shown here, since their interfaces are similar:

static Gmpfi

add( a, b, Precision_type p=0)

When the precision is not specified in this family of functions, it is defined as in the overloaded operators.

Other arithmetic functions provided by the class are:
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Gmpfi

Gmpfi

Gmpfi

Gmpfi

i.abs( Precision_type p) const

Returns the absolute value of i, with precision p. If p is not
specified, the precision used is the maximum between i’s pre-
cision and the default.

i.sqrt( Precision_type p) const

Returns the square root of i, with precision p. If p is not spec-
ified, the precision used is the maximum between i’s preci-
sion and the default.

i.kthroot( int k, Precision_type p) const

Returns the k-th root of i, with precision p. If p is not speci-
fied, the precision used is the maximum between i’s precision
and the default.

i.square( Precision_type p) const
Returns the square of i, with precision p. If p is not specified,

the precision used is the maximum between i’s precision and
the default.

std: :pair<double,double>

std::pair<double,long>

i.to_interval() const Returns an interval of doubles which contains i. If a rounded
endpoint does not fit in a double, sets its value to plus or
minus infinity and the overflow or underflow flag.

i.to_double_exp() const

Returns (m,e) such that m x 2¢ is the center of i, rounded to
nearest. If one of the endpoints of i is NaN or infinity, then
the corresponding double is returned, leaving the exponent
undefined and setting the appropriate error flag.

std::pair<std::pair<double,double>,long>

i.to_interval_exp() const

Returns ((my,my),e), such that [m; X 2¢,my x 2¢] contains i.
If one of the endpoints of i is NaN or infinity, then the cor-
responding doubles are returned, leaving the exponent unde-
fined and setting the appropriate error flag.
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Comparisons

The semantics of the comparison operators is the same than on Interval_nt<Protected>. The result of the com-
parison is always an Uncertain<bool> (this type is convertible to bool, but may throw an exception). If compared
intervals have no common points, the result is frue or false; otherwise, Uncertain<bool>::indeterminate() will

be returned.

In the same way, we can explain the semantics of Uncertain<Comparison_result> and Uncertain<Sign>.

With the semantics described above, this class provides comparisons between Gmpfi and Gmpfi, Gmpfr, long,
unsigned long, int, double, Gmpz and Gmpq. Comparison operators ==, !=, >, <, >= and <= are overloaded.

The class provides also functions to test efficiently some special kinds of comparisons:

bool

bool

i.is_same( j) const

i.do_overlap( j) const

Uncertain<Comparison_result>

Query Functions

bool
bool

bool

bool

Uncertain<bool>

Uncertain<bool>

Uncertain<Sign>

Uncertain<bool>

Uncertain<bool>

i.compare( j) const

i.is_point() const
i.is_nan() const

i.is_inf() const

i.is_number() const

i.is_zero() const

i.is_one() const

i.sign() const

i.is_positive() const

i.is_negative() const

Returns true iff left endpoints of i and j are equal and right
endpoints of them are also equal. Note that this does not
mean equality between i and j.

Returns true iff i and j overlap, i.e., iff they have points in
common.

If i and j do not overlap, this function returns the result of the
comparison. Otherwise, it returns indeterminate.

Returns true iff both endpoints are equal.
Returns true iff at least one of the endpoints is NaN.

Returns true iff at least one of the endpoints is plus or minus
infinity.

Returns frue iff i is a bounded interval, i.e. its endpoints are
neither invalid nor infinite.

Returns true if both endpoints are zero, false if the interval
does not contain zero and indeterminate otherwise.

Returns frue if both endpoints are one, false if the interval
does not contain one and indeterminate otherwise.

If all numbers contained in the interval have the same sign,
this function returns it. Otherwise it returns indeterminate.

Returns frue if all numbers contained in the interval are pos-
itive, false if all of them are negative or zero and indetermi-
nate otherwise.

Returns frue if all numbers contained in the interval are nega-

tive, false if all of them are positive or zero and indeterminate
otherwise.

190



Input/Output

std::istreams std::istream &is >> i Reads i from is. is must have the form [inf,sup], where inf
and sup have valid Gmpfr input formats.

std::ostreams std::ostream &os << i

Writes i to os, in the form [i.inf{),i.sup()]. The endpoints are
written according to the Gmpfr formatting.

Implementation

All interval operations are performed by the MPFI library. The class Gmpfi is not reference counted, but its
members are.

See Also

GNP e e e e page ??
Interval_nt<Protected> . ........ ... e page ??
Uncertain<T'> . ... .. e page ??
RealEmbeddable. . .. ...... ... . page 123
FieldWiIthKtRROOT . . . ... ..ot e e e e e e e page 76
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Class

CGAL::MP_Float

Definition

An object of the class MP_Float is able to represent a floating point value with arbitrary precision. This num-
ber type has the property that additions, subtractions and multiplications are computed exactly, as well as the
construction from float, double and long double.

Division and square root are not enabled by default since CGAL release 3.2, since they are computed approxi-
mately. We suggest that you use rationals like Quotient<MP_Float> when you need exact divisions.

Note on the implementation : although the mantissa length is basically only limited by the available memory,
the exponent is currently represented by a (integral valued) double, which can overflow in some circumstances.

We plan to also have a multiprecision exponent to fix this issue.

#include <CGAL/MP _Float.h>

Is Model for the Concepts

EuclideanRing.
RealEmbeddable
Creation
MP_Float m; introduces an uninitialized variable m.
MP_Float m( MP_Float); copy constructor.
MP _Float m( inti); introduces the integral value i.
MP_Float m( float d); introduces the floating point value d (exact conversion).
MP_Float m( double d); introduces the floating point value d (exact conversion).
MP_Float m( long double d); introduces the floating point value d (exact conversion).
Operations
std::ostreams std::ostreams out << m

writes a double approximation of m to the ostream out.
std::istreamé std::istreams in >> & m

reads a double from in, then converts it to an MP_Float.
MP_Float approximate_division( a, b)

computes an approximation of the division by converting the
operands to double, performing the division on double, and
converting back to MP_Float.
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MP_Float approximate_sqrt( a) computes an approximation of the square root by converting
the operand to double, performing the square root on double,
and converting back to MP_Float.

Implementation
The implementation of MP_Float is simple but provides a quadratic complexity for multiplications. This can be

a problem for large operands. For faster implementations of the same functionality with large integral values,
you may want to consider using GMP or LEDA instead.
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Class

CGAL::Interval_nt<Protected>

Definition

This section describes briefly what interval arithmetic is, its implementation in CGAL, and its possible use by
geometric programs. The main reason for having interval arithmetic in CGAL is its integration into the filtered
robust and fast predicates scheme, but we also provide a number type so that you can use it separately if you
find any use for it, such as interval analysis, or to represent data with tolerance...

The purpose of interval arithmetic is to provide an efficient way to bound the roundoff errors made by floating
point computations. You can choose the behavior of your program depending on these errors. You can find
more theoretical information on this topic in [ ].

Interval arithmetic is a large concept and we will only consider here a simple arithmetic based on intervals whose
bounds are doubles. So each variable is an interval representing any value inside the interval. All arithmetic

operations (+, -, *, /, Vo square(), min(), max() and abs()) on intervals preserve the inclusion. This property can
be expressed by the following formula (x and y are real, X and Y are intervals, O is an arithmetic operation):

VxeX,VyeY,(x OPy) e (X OPY)

For example, if the final result of a sequence of arithmetic operations is an interval that does not contain zero,
then you can safely determine its sign.

#include <CGAL/Interval_nt.h>

Parameters

The template parameter Protected is a Boolean parameter, which defaults to true. It provides a way to select
faster computations by avoiding rounding mode switches, at the expense of more care to be taken by the user
(see below). The default value, true, is the safe way, and takes care of proper rounding mode changes. When

specifying false, the user has to take care about setting the rounding mode towards plus infinity before doing
any computations with the interval class. He can do so using the Protect_FPU _rounding class for example.

Is Model for the Concepts
FieldWithSqrt

RealEmbeddable

Types

The class Interval_nt defines the following types: typedef double value_type; The type of the bounds of the in

typedef Uncertain_conversion_exception

unsafe_comparison; The type of the exceptions raised when uncertain compar-
isons are performed.
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Interval_nt<Protected>:: Protector

Creation

Interval_nt<Protected> 1( inti);

Interval_nt<Protected> I( double d);
Interval_nt<Protected> I( double i, double s);

A type whose default constructor and destructor allow to pro-
tect a block of code from FPU rounding modes necessary for
the computations with Interval_nt<false>. It does nothing
for Interval_nt<true>. It is implemented as Protect_FPU_
rounding<!Protected>.

introduces the interval [i;i].
introduces the interval [d;d].
introduces the interval [i;s].

Interval_nt<Protected> I( std::pair<double, double> p);

Operations

introduces the interval [p.first;p.second].

All functions required by a class to be considered as a CGAL number type (see 5) are present, as well as the
utility functions, sometimes with a particular semantic which is described below. There are also a few additional

functions.

Interval_nt

Interval_nt

double

double

double

bool

bool

bool

I /Interval_nt J

sqrt( Interval_nt I)

to_double( Interval_nt I)

Linf()

1.sup()

Lis_point()

Lis_same( Interval_nt J)

returns [—oo;4o0] when the denominator contains 0.

returns [0;+/upper_bound(I)] when only the lower bound is

negative (expectable case with roundoff errors), and is un-
specified when the upper bound also is negative (unexpected
case).

returns the middle of the interval, as a double approximation
of the interval.

returns the lower bound of the interval.
returns the upper bound of the interval.

returns whether both bounds are equal.

returns whether both intervals have the same bounds.

1.do_overlap( Interval_nt J)

returns whether both intervals have a non empty intersection.
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The comparison operators (<, >, <=, >=, ==, | =, sign() and compare()) have the following semantic: it
is the intuitive one when for all couples of values in both intervals, the comparison is identical (case of non-
overlapping intervals). This can be expressed by the following formula (x and y are real, X and Y are intervals,
O is a comparison operator):

(VxeX,VyeY,(x OPy) =true) = (X OPY) =true

and
(VxeX,VyeY,(x OPy) = false) = (X OPY) = false

Otherwise, the comparison is not safe, and we specify this by returning a type encoding this uncertainty, namely
using Uncertain<bool> or Uncertain<Sign>, which can be probed for uncertainty explicitly, and which has a
conversion to the normal type (e.g. bool) which throws an exception when the conversion is not certain. Note
that each failed conversion increments a profiling counter (see CGAL_PROFILE), and then throws the exception
of type unsafe_comparison.

Uncertain<bool> Interval_nt i < Interval_nt j
Uncertain<bool> Interval_nt i > Interval_nt j
Uncertain<bool> Interval_nt i <= Interval_nt j
Uncertain<bool> Interval_nt i >= Interval_nt j
Uncertain<bool> Interval_nt i == Interval_nt j
Uncertain<bool> Interval_nt i | = Interval_nt j

Uncertain<Comparison_result>

compare( Interval_nt i, Interval_nt j)
Uncertain<Sign> sign( Interval_nt i)

typedef Interval_nt<false>
Interval_nt_advanced;
This typedef (at namespace CGAL scope) exists for backward

compatibility, as well as removing the need to remember the
Boolean value for the template parameter.

li advanced ——

Implementation

The operations on Interval_nt with the default parameter true, are automatically protected against rounding
modes, and are thus slower than those on Interval_nt_advanced, but easier to use. Users that need performance
are encouraged to use Interval_nt_advanced instead.

Changing the rounding mode affects all floating point computations, and might cause problems with parts of
your code, or external libraries (even CGAL), that expect the rounding mode to be the default (round to the
nearest).

We provide two interfaces to change the rounding mode. The first one is to use a protector object whose default
constructor and destructor will take care of changing the rounding mode. The protector is implemented using

Protect_FPU _rounding.

The second one is the following detailed set of functions :
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typedef int FPU_CW_t; The type used by the following functions to deal with round-
ing modes. This is usually an int.

void FPU _set_cw( FPU_CW_tR)

sets the rounding mode to R.

FPU_CW_t FPU _get_cw( void) returns the current rounding mode.

FPU_CW_t FPU _get_and_set_cw( FPU_CW_t R)

sets the rounding mode to R and returns the old one.

The macros CGAL_FE_TONEAREST, CGAL_FE_TOWARDZERO, CGAL_FE_UPWARD and CGAL_FE_
DOWNWARD are the values corresponding to the rounding modes.

Example

Protecting an area of code that uses operations on the class Interval_nt_advanced can be done in the following
way:

Interval_nt_advanced::Protector P;
. // The code to be protected.

The basic idea is to use the directed rounding modes specified by the IEEE 754 standard, which are implemented
by almost all processors nowadays. It states that you have the possibility, concerning the basic floating point
operations (+,—, %, /, \/) to specify the rounding mode of each operation instead of using the default, which
is set to ‘round to the nearest’. This feature allows us to compute easily on intervals. For example, to add the
two intervals [a.i;a.s] and [b.i;b.s], compute c.i = a.i + b.i rounded towards minus infinity, and c.s = a.s + b.s
rounded towards plus infinity, and the result is the interval [c.i;c.s]. This method can be extended easily to the
other operations.

The problem is that we have to change the rounding mode very often, and the functions of the C library doing
this operation are slow and not portable. That’s why assembly versions are used as often as possible. Another
trick is to store the opposite of the lower bound, instead of the lower bound itself, which allows us to never
change the rounding mode inside simple operations. Therefore, all basic operations, which are in the class
Interval_nt_advanced assume that the rounding mode is set to ‘round to infinity’, and everything works with
this correctly set.

So, if the user needs the speed of Interval_nt_advanced, he must take care of setting the rounding mode to ’round
to infinity’ before each block of operations on this number type. And if other operations might be affected by

this, he must take care to reset it to "round to the nearest’ before they are executed.

Notes:

e On Intel platforms (with any operating system and compiler), due to a misfeature of the floating point unit,
which does not handle exactly IEEE compliant operations on doubles, we are forced to use a workaround
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which slows down the code, but is only useful when the intervals can overflow or underflow. If you know
that the intervals will never overflow nor underflow for your code, then you can disable this workaround
with the flag CGAL_IA_NO_X86_OVER_UNDER_FLOW_PROTECT. Other platforms are not affected by
this flag.

e When optimizing, compilers usually propagate the value of variables when they know it’s a constant. This
can break the interval routines because the compiler then does some floating point operations on these
constants with the default rounding mode, which is wrong. This kind of problem is avoided by stopping
constant propagation in the interval routines. However, this solution slows down the code and is rarely
useful, so you can disable it by setting the flag CGAL_IA_DONT_STOP_CONSTANT_PROPAGATION.

Ii advanced ——
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CGAL::Lazy_exact_nt<NT>

Definition
An object of the class Lazy_exact_nt<NT> is able to represent any real embeddable number which NT is able
to represent. The idea is that Lazy_exact_nt<NT> works exactly like NT, except that it is expected to be faster

because it tries to only compute an approximation of the value, and only refers to N7 when needed. The goal is
to speed up exact computations done by any exact but slow number type NT.

NT must be a model of concept RealEmbeddable.
NT must be at least model of concept IntegralDomainWithoutDivision.

Note that some filtering mechanism is available at the predicate level using Filtered_predicate and Filtered_
kernel.

#include <CGAL/Lazy_exact_nt.h>

Is Model for the Concepts

IntegralDomainWithoutDivision — same as NT

RealEmbeddable
Fraction if NT is a Fraction
Creation
Lazy_exact_nt<NT> m; introduces an uninitialized variable m.
Lazy_exact_nt<NT> m( int i); introduces the integral value i.
Lazy_exact_nt<NT> m( double d); introduces the floating point value d (works only if NT has a
constructor from a double too).
Lazy_exact_nt<NT> m( NT n); introduces the value n.

template <class NTI>
Lazy_exact_nt<NT> m( Lazy_exact_nt<NTI> n);

introduces the value n. NTI needs to be convertible to NT
(and this conversion will only be done if necessary).

Operations

NT m.exact() returns the corresponding NT value.
Interval_nt<true> m.approx() returns an interval containing the exact value.
Interval_nt<false> m.interval() returns an interval containing the exact value.
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static void m.set_relative_precision_of_to_double( double d)
specifies the relative precision that fo_double() has to fulfill.

The default value is 1072,
Precondition: d;0 and dj1.

static double m.get_relative_precision_of_to_double()
returns the relative precision that to_double() currently ful-
fills.

std::ostreams std::ostreams out << m

writes m to ostream out in an interval format.

std::istreams std::istreams in >> & m

reads a NT from in, then converts it to a Lazy_exact_nt<NT>.

Example

#include <CGAL/Cartesian.h>
#include <CGAL/MP_Float.h>
#include <CGAL/Lazy_exact_nt.h>
#include <CGAL/Quotient.h>

typedef CGAL::Lazy_exact_nt<CGAL::Quotient<CGAL: :MP_Float> > NT;
typedef CGAL::Cartesian<NT> K;
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CGAL::Quotient<NT>

Definition

An object of the class Quotient<NT> is an element of the field of quotients of the integral domain type NT. If NT
behaves like an integer, Quotient<NT> behaves like a rational number. LEDA’s class rational (see Section 5.5)
has been the basis for Quotient<NT>. A Quotient<NT> q is represented as a pair of NT's, representing numerator
and denominator.

NT must be at least model of concept IntegralDomainWithoutDivision.

NT must be a model of concept RealEmbeddable.

#include <CGAL/Quotient.h>

Is Model for the Concepts

Field

RealEmbeddable

Fraction

Creation

Quotient<NT> q; introduces an uninitialized variable q.

template <class T>

Quotient<NT> q( Tt); introduces the quotient #//. NT needs to have a constructor
from T.

template <class T>

Quotient<NT> q( Quotient<T> t); introduces the quotient NT(t.numerator())/NT(t.denominator()).
NT needs to have a constructor from T.

Quotient<NT> q( NT n, NT d); introduces the quotient n/d.

Precondition: d # 0.

Operations
There are two access functions, namely to the numerator and the denominator of a quotient. Note that these
values are not uniquely defined. It is guaranteed that g.numerator() and q.denominator() return values nt_num

and nt_den such that g = nt_num/nt_den, only if g.numerator() and q.denominator() are called consecutively wrt
g, i.e. g is not involved in any other operation between these calls.

NT g.numerator() const returns a numerator of g.
NT q.denominator() const

returns a denominator of g.

The stream operations are available as well. They assume that corresponding stream operators for type NT exist.
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std::ostreams std::ostreams out << q
writes g to ostream out in format “n/d”, where
n==q.numerator() and d==q.denominator().

std::istreams std::istreams in >> & q
reads ¢ from istream in. Expected format is “n/d”, where n

and d are of type NT. A single n which is not followed by a
/ is also accepted and interpreted as n/1.

The following functions are added to fulfill the CGAL requirements on number types.

double to_double( q) returns some double approximation to g.

bool is_valid( q) returns true, if numerator and denominator are valid.

bool is_finite( q) returns true, if numerator and denominator are finite.
Quotient<NT> sqrt( q) returns the square root of g. This is supported if and only if

NT supports the square root as well.
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CGAL::Number_type_checker<NT1,NT2,Comparator>

Definition
Number_type_checker is a number type whose instances store two numbers of types NT1 and NT2. It for-
wards all arithmetic operations to them, and calls the binary predicate Comparator to check the equality of the

instances after each modification, as well as for each comparison.

This is a debugging tool which is useful when dealing with number types.

Parameters

NTI must be a model of some algebraic structure concept. N72 must be a model of the same algebraic structure
concept. NT1 and NT2 must be FromDoubleConstructible. Comparator has to be a model of a binary predicate
taking NT1 as first argument, and N72 as second. The Comparator parameter has a default value which is a
functor calling operator== between the two arguments.

#include <CGAL/Number _type_checker.h>

Is Model for the Concepts

IntegralDomainWithoutDivision (same as NT1)
RealEmbeddable Creation

Number_type_checker<NT1,NT2,Comparator> c;

introduces an uninitialized variable c.

Number_type_checker<NT1,NT2,Comparator> c( int i);

introduces the integral value i.

Number_type_checker<NTI1,NT2,Comparator> c( double d);

introduces the floating point value d.

Number_type_checker<NT1,NT2,Comparator> c( NTI nl, NT2 n2);

introduces a variable storing the pair nl, n2.

Operations

Some operations have a particular behavior documented here.

NTI c.nl() const returns a const reference to the object of type NT1.
NT2 c.n2() const returns a const reference to the object of type NT2.
NTIs c.nl() returns a reference to the object of type NT1.
NT2& c.n2() returns a reference to the object of type NT2.
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bool

std: :ostreams

std::istreams

c.is_valid() const calls the Comparator binary predicate on the two stored ob-
jects and returns its result.

std::ostreams out << Number_type_checker c

writes c.nl() to the ostream out.

std::istreams in >> Number_type_checkers c

reads an NT1 from in, then converts it to an N72, so a con-
version from NT1 to NT2 is required here.
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CGAL::Max<T,Less>

Definition

The function object class Max<T,Less> returns the larger of two values. The order is induced by the second
template argument Less. The default value for Less is std::less.

Note that T must be a model of LessThanComparable in case std.::less is used.

#include <CGAL/utils_classes.h>

Is Model for the Concepts

AdaptableFunctor............... ... . ...

Creation

Max<T,Less> max;
Max<T,Less> max( Less c);

Operations

T operator()( Tx, Ty)

default constructor.
The constructed object will use ¢ to compare the arguments.

returns the larger of x and y, with respect to the order induced
by Less.
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CGAL::Min<T,Less>

Definition

The function object class Min<T,Less> returns the smaller of two values. The order is induced by the second
template argument Less. The default value for Less is std::less.

Note that T must be a model of LessThanComparable in case std.::less is used.

#include <CGAL/utils_classes.h>

Is Model for the Concepts

AdaptableFunctor............... ... ... ..

Creation

Min<T,Less> min,
Min<T,Less> min( Less c);
Operations

T operator()( Tx, Ty)

default constructor.
The constructed object will use ¢ to compare the arguments.

returns the larger of x and y, with respect to the order induced
by Less.
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CGAL::Is_valid<T>

Definition

Not all values of a type need to be valid. The function object class Is_valid<T> checks this.

For example, an expression like NT(0)/NT(0) can result in an invalid number. Routines may have as a precondi-
tion that all values are valid.

#include <CGAL/utils_classes.h>

Is Model for the Concepts

AdaptableFUNCIOr . . . . .o page ??

bool operator()( T x) returns if the argument is valid.
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CGAL::max

Definition

The function max returns the larger of two values.

#include <CGAL/utils.h>

T max(Tx, Ty)
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CGAL::min

Definition -
©
The function min returns the smaller of two values. -
@)
#include <CGAL/utils.h> %
T min(Tx, Ty) LL
See Also
Min. . e e page ??
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CGAL::is_valid

Definition

Not all values of a type need to be valid. The function is_valid returns whether the argument is valid.

#include <CGAL/utils.h>

bool

is_valid( T x)

See Also

Is_valid
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CGAL::Rational_traits<NT>

Definition

The class Rational_traits<NT> can be used to determine the type of the numerator and denominator of a rational
number type as Quotient, Gmpq, mpq_class or leda_rational.

#include <CGAL/Rational_traits.h>

Types
Rational_traits<NT>:: RT the type of the numerator and denominator.
Operations
RT t.numerator( NT r) const
returns the numerator of r.
RT t.denominator( NT r) const
returns the denominator of r.
NT t.make_rational( RT n, RT d) const
constructs a rational number.
NT t.make_rational( NT n, NT d) const

constructs a rational number.
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Function

CGAL::simplest_rational_in_interval

Definition

The function simplest_rational_in_interval computes the simplest rational number in an interval of two double
values.

#include <CGAL/simplest_rational_in_interval.h>

Rational simplest_rational_in_interval( double d1, double d2)

computes the rational number with the smallest denominator
in the interval [d1,d2].

Implementation

See Knuth, ”Seminumerical algorithms”, page 654, answer to exercise 4.53-39.

See Also

Rational CGAL: :to_rational<Rational>(double d).
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CGAL::to_rational

Definition

The function to_rational computes the rational number representing a given double precision floating point
number.

#include <CGAL/to_rational.h>

-
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Rational to_rational( double d)  computes the rational number that equals d.

Implementation

See Also

CGAL::simplest_rational_in_interval<Rational>(double d1, double d2).
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Concept

RootOf 2

Definition
Concept to represent algebraic numbers of degree up to 2 over a RealEmbeddable IntegralDomain RT.

A model of this concept is associated to this RT via CGAL::Root_of _traits<RT>, which provides Root_of_2 as
a public type. Moreover, CGAL::Root_of _traits<RT> provides the public type Root_of_1, which is the quotient
field of RT. We refer to Root_of_1 as FT (for field type).

The model of RootOf_2 is a RealEmbeddable IntegralDomain, which is ImplicitInteroperable with RT, FT. In
particular, it provides the comparison operators ==, /=, <, >, <=, >= as well as the sign and compare functions
needed to compare elements of types RootOf_2, RT and FT. It also provides all arithmetic operators +,-, %/
among elements of type RootOf_2 as well as mixed forms with RT and FT.

However, it is important to note that arithmetic operations among elements of RootOf-2 are only allowed in the
special case when they have been constructed from equations having the same discriminant, that is, if they are
defined in the same algebraic extension of degree 2.

Besides construction from int, RT and FT the following functions provide special construction for extensions
of degree 2:

- make_root_of 2

- make_sqrt

Refines

DefaultConstructible
CopyConstructible
FromlIntConstructible
Implicitinteroperable with RT
Implicitinteroperable with FT

Operations

RootOf_2 & +=a Precondition: *this and a are defined in the same extension.
RootOf_2 a+b Precondition: a and b are defined in the same extension.
bool a==

bool a<b

Same for operator -, *, /, !=,<=,>,>= as well as mixed forms with RT and FT.

Has Models

double (not exact)
CGAL::Sqrt_extension
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See Also

CGAL::make_root_of 2<RT> .. ... e page 217
CGAL::make_sqQri<RT> . . . .t e e e et e page 218
CGAL::compute_roots_of 2<RT,Outputlterator> . . ..........ou e uii i page 219
CGAL::Ro0t_of traits<RT> . . ... e e e page 216
AlgebraicKernelForCircles::PolynomialForCircles 2 2. ....... ... . ..., page 1230
AlgebraicKernelForCircles . . ... ..o e page 1223
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Class

CGAL::Root_of _traits<RT>

Definition

For a RealEmbeddable IntegralDomain RT, the class template Root_of_traits<RT> associates a type Root_of-
2, which represents algebraic numbers of degree 2 over RT. Moreover, the class provides Root_of_1, which
represents the quotient field of RT.

#include <CGAL/Root_of _traits.h>

Types

Root_of _traits<RT>:: Root_of_1 A RealEmbeddable Field representing the quotient field of
RT.

Root_of _traits<RT>:: Root_of 2 Model of RootOf_2.

See Also

ROOTOS 2 . e e e e page 214

CGAL::compute_roots_of 2<RT,Outputlterator> . ...........uu et page 219

CGAL::make_root_0f 2<RT> ... ..ot e e e e e e e e page 217
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CGAL::make_root_of 2<RT>

Definition
The function make_root_of _2<RT> constructs an algebraic number of degree 2 over a ring number type.

#tinclude <CGAL/Root_of _traits.h>

template <typename RT>
Root_of _traits<RT>::Root_of_2

make_root_of_2( RT a, RT b, RT c, bool s)

Returns the smallest real root of the polynomial aX? 4 bX +c
if s is true, and the largest root is s is false.

Precondition: RT is an IntegralDomainWithoutDivision.
Precondition: The polynomial has at least one real root.

template <typename RT>
Root_of _traits<RT>::Root_of 2

make_root_of 2( RT alpha, RT beta, RT gamma)
Constructs the number o+ /7.

Precondition: RT is an IntegralDomainWithoutDivision.
Precondition: y> 0

See Also

RoOtOf 2 . page 214
CGAL::Ro0t_of traits<RT> . . ... e e page 216
CGAL::make_sqri<RT> . . . ..ot e e e e e e et e page 218
CGAL::compute_roots_of 2<RT,Outputlterator> .. ..........uu e e e page 219
CGAL::Sqrt_extension<NT,ROOT> . .. ... e page 220
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Function

CGAL::make_sqrt<RT>

Definition

The function make_sqrt<RT> constructs a square root of a given value of type RT. Depending on the type RT
the square root may be returned in a new type that can represent algebraic extensions of degree 2.

#include <CGAL/Root_of _traits.h>

template <typename RT>
Root_of _traits<RT>::Root_of 2

make_sqri( RT x) Returns /x.
Precondition: RT is a RealEmbeddable IntegralDomain.
Precondition: x <0

See Also

RoOOtOf 2 . e page 214
CGAL::make_root_of 2<RT> .. ... ... e e e page 217
CGAL::Ro0t_Of traits<RT> . . ..o e e e page 216
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CGAL::compute_roots_of_2<RT,Outputlterator>

Definition

The function compute_roots_of_2<RT,Outputlterator> solves a univariate polynomial as it is defined by the
coefficients given to the function. The solutions are written into the given Outputlterator.

#include <CGAL/Root_of _traits.h>

template <typename RT, typename Outputlterator>
Outputlterator compute_roots_of_2( RT a, RT b, RT c, Outputlterator oit)

Writes the real roots of the polynomial aX? + bX + ¢ into oit
in ascending order.

Outputlterator is required to accept Root_of traits<RT>
::Root_of 2.

Multiplicities are not reported.

Precondition: RT is an IntegralDomainWithoutDivision.
Precondition: a # 0 or b # 0.

See Also

RoOOtOf 2 e page 214
CGAL::R0Ot_Of traits<RT> . . .. oo e e e page 216
CGAL::make_root_of 2<RT> ... ... e e e page 217
CGAL::make_sqri<RT> . ... ..o e page 218
CGAL::Sqrt_extension<NT,ROOT> . . . . . ..ottt ettt page 220
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Class

CGAL::Sqgrt_extension<NT,ROOT>

In addition, Sqrt_extension has another two default template arguments:
- DifferentExtensionComparable = ::CGAL::Tag _false

- FilterPredicates = ::CGAL::Tag _false

See below for more details.

Definition

An instance of this class represents an extension of the type NT by one square root of the type ROOT.
NT is required to be constructible from ROOT.

NT is required to be an IntegralDomainWithoutDivision.

Sqrt_extension<NT,ROOT> is RealEmbeddable if NT is RealEmbeddable.

For example, let Integer be some type representing Z, then Sqrt_extension<Integer,Integer> is able to represent
Z[\/root] for some arbitrary Integer root.> The value of root is set at construction time, or set to zero if it is not
specified.

Arithmetic operations among different extensions, say Z[y/a] and Z[+/b], are not supported. The result would be
in Z[\/a,/b], which is not representable by Sqrt_extension<Integer,Integer>. The user is responsible to check
that arithmetic operations are carried out for elements from the same extensions only. This is not tested by
Sqrt_extension<NT,ROOT> for efficiency reasons. A violation of the precondition leads to undefined behavior.
Be aware that for efficiency reasons the given root is stored as it is given to the constructor. In particular, an
extension by a square root of a square is considered as an extension.

Since elements of Sgrt_extension<NT,ROOT> that lie in different extensions are not interoperable with respect
to any arithmetic operations, the full value range of Sqrt_extension<NT,ROOT> does not represent an algebraic
structure. However, each subset of the value range that represents the extension of NT by a particular square
root is a valid algebraic structure, since this subset is closed under all provided arithmetic operations. From
there, Sqrt_extension<NT,ROOT> can be used as if it were a model of an algebraic structure concept, with the
following correspondence:

NT Sqrt_extension<NT,ROOT>

IntegralDomainWithoutDivision  IntegralDomainWithoutDivision

IntegralDomain IntegralDomain
UniqueFactorizationDomain IntegralDomain
EuclideanRing IntegralDomain
Field Field

The extension of a UniqueFactorizationDomain or EuclideanRing is just an IntegralDomain, since the extension
in general destroys the unique factorization property. For instance consider Z[+/10], the extension of Z by 1/10:
in Z[v/10] the element 10 has two different factorizations +/10- /10 and 2 - 5. In particular, the factorization is
not unique.

If NT is a model of RealEmbeddable the type Sqrt_extension is also considered as RealEmbeddable. How-
ever, by default it is not allowed to compare values from different extensions for efficiency reasons. In case
such a comparison becomes necessary, use the member function compare with the according Boolean flag. If
such a comparison is a very frequent case, override the default of DifferentExtensionComparable by giving
::CGAL::Tag_true as third template parameter. This effects the behavior of compare functions as well as the
compare operators.

2R[a] denotes the extension of a ring R by an element a. See also: http://mathworld.wolfram.com/ExtensionRing.html
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The fourth template argument, FilterPredicates, triggers an internal filter that may speed up comparisons and
sign computations. In case FilterPredicates is set to CGAL::Tag_true the type first computes a double interval
containing the represented number and tries to perform the comparison or sign computation using this interval.
Once computed, this interval is stored by the corresponding Sgrt_extension object for further usage. Note
that this internal filter is switched off by default, since it may conflict with other filtering methods, such as
CGAL::Lazy_exact_nt<Sqrt_extension>.

In case NT is not RealEmbeddable, DifferentExtensionComparable as well as FilterPredicates have no effect.

Is Model for the Concepts

Assignable

CopyConstructible
DefaultConstructible
EqualityComparable
Implicitinteroperable  with int
Implicitinteroperable ~ with NT

Fraction if NT is a Fraction

RootOf_2
Creation
Sqrt_extension<NT,ROOT> ext; Introduces an variable initialized with O.
Sqrt_extension<NT,ROOT> ext( Sqrt_extension x); Copy constructor.
Sqrt_extension<NT,ROOT> ext( int i); Introduces an variable initialized with i.
Sqrt_extension<NT,ROOT> ext( NT x); Introduces an variable initialized with x.
Sqrt_extension<NT,ROOT> ext( int a0, int al, int r); Constructor from int: ext= a0+ al - sqrt(r).

Precondition: r # 0

Sqrt_extension<NT,ROOT> ext( NT a0, NT al, ROOT r); General constructor: ext= a0+ al - sqrt(r).
Precondition: r # 0

Operations

An object of type Sqrt_extension represent an expression of the form: a0+ al * sqrt(root).

NT ext.al() const Const access operator for a0
NT ext.al() const Const access operator for al
ROOT ext.root() const Const access operator for root
bool ext.is_extended() const

Returns true in case root of ext is not zero.
Note that al == 0 does not imply root == 0.

void ext.simplify() Simplifies the representation, in particular root is set to zero
if al is zero, that is, ext becomes not extended.
Moreover, it propagates the simplify command to members
of ext. see also: AlgebraicStructureTraits::Simplify.

bool ext.is_zero() const returns true if ext represents the value zero.
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CGAL::Sign ext.sign() const Determines the sign of ext by (repeated) squaring.
Precondition: Sqrt_extension is RealEmbeddable.

Sqrt_extension ext.abs() const returns the absolute value of ext.
Precondition: Sqrt_extension is RealEmbeddable.

CGAL::Comparison_result

ext.compare( Sqrt_extension y,
bool in_same_extension = !DifferentExtensionComparable::value) const

Compares ext with y.
The optional bool in_same_extension indicates whether ext
and y are in the same extension of NT.

Sqrt_extension operator+( Sqrt_extension a, Sqrt_extension b)

Precondition: (a.root()==0 or b.root()==0 or a.root() ==
b.root())

Sqrt_extension operator-( Sqrt_extension a, Sqrt_extension b)

Precondition: (a.root()==0 or b.root()==0 or a.root() ==
b.root())

Sqrt_extension operator*( Sqrt_extension a, Sqrt_extension b)

Precondition: (a.root()==0 or b.root()==0 or a.root() ==
b.root())

Sqrt_extensioné ext.operator+=( Sqrt_extension a)

Precondition: (this->root()==0 or a.root()==0 or this->
root() == a.root())

Sqrt_extensions ext.operator-=( Sqrt_extension a)

Precondition: (this->root()==0 or a.root()==0 or this->
root() == a.root())

Sqrt_extensions ext.operator*=( Sqrt_extension a)

Precondition: (this->root()==0 or a.root()==0 or this->
root() == a.root())
In case NT is only an IntegralDomain operator/ implements integral division. In case NT is a Field operator/
implements the field division.

Sqrt_extension operator/( Sqrt_extension a, Sqrt_extension b)

Precondition: (a.root()==0 or b.root()==0 or a.root() ==
b.root())

Sqrt_extensioné ext.operator/=( Sqrt_extension a)

Precondition: (this->root()==0 or a.root()==0 or this->
root() == a.root())

bool operator==( Sqrt_extension a, Sqrt_extension b)

Precondition: (a.root()==0 or b.root()==0 or a.root() ==

b.root())
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bool operator!=( Sqrt_extension a, Sqrt_extension b)

Precondition: (a.root()==0 or b.root()==0 or a.root() ==
b.root())
In case Sqrt_extension is RealEmbeddable:

bool operator<( Sqrt_extension a, Sqrt_extension b)

Precondition: (a.root()==0 or b.root()==0 or a.root() ==
b.root())

bool operator<=( Sqrt_extension a, Sqrt_extension b)

Precondition: (a.root()==0 or b.root()==0 or a.root() ==
b.root())

bool operator>( Sqrt_extension a, Sqrt_extension b)

Precondition: (a.root()==0 or b.root()==0 or a.root() ==
b.root())

bool operator>=( Sqrt_extension a, Sqrt_extension b)

Precondition: (a.root()==0 or b.root()==0 or a.root() ==
b.root())
The stream operations are available as well. They assume that corresponding stream operators for type NT and
ROOT exist.

std::ostreams operator<<( std::ostreams os, ext)

writes ext to ostream os. The format depends on the
CGAL::10::MODE of os.

In case the mode is CGAL::10::ASCII the format is
EXT[a0,al, root].

In case the mode is CGAL::10::PRETTY the format is
human readable.

std::istreamé operator>>( std::istreams is, ext)

reads ext from istream is in format EXT [a0, al, root], the
output format in mode CGAL::10::ASCII

See Also

IntegralDomainWithoutDivVISION . . ... .......oiu o e page 69
IntegralDOMQIN . . . . ...t e page 71
Fleld . . ... page 74
RealEmbeddable. . ... ....... ... e page 123
Implicitinteroperable . . . ......... ... e page 67
Fraction ... ... e page 142
ROOtO 2 page 214
CGAL::TAG ITUE . . o o oot ettt e e e e e e et e e e e et e ettt e page 4232
CGAL::TAG fAISE . . ... e e e e e et e e page 4233
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Class

CGAL::Root_of 2<RT>

deprecated

This class is deprecated since CGAL-3.8. It is replaced by Sgrt_extension.

deprecated

CGAL::Sqrt_extension<NT,ROOT> . . .. ..o e
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CGAL::Set_ieee_double_precision

Definition

The IEEE754 standard specifies that the precision of double precision floating-point numbers should be 53 bits,
with 11 bits for the exponent range.

Some processors violate this rule by providing excess precision during some computations (when values are
in registers). This is the case of the x86 Intel processor and compatible processors (note that the SSE2 more
recent alternative FPU is fortunately not affected by this issue). The effect of such excess precision can be a
problem for some computations, since it can produce so-called double rounding effects, where actually less
precision is actually provided! It can also be the root of non-deterministic computations depending on compiler
optimizations or not (since this affects how long variables are kept in registers), for example numerical floating-
point values get computed with slightly different results. Finally, it affects code that carefully makes use of
cancellation properties, like Residue.

The class Set_ieee_double_precision provides a mechanism to set the correct 53 bits precision for a block of
code. It does so by having a default constructor that sets a particular mode on the FPU which corrects the
problem, and have its destructor reset the mode to its previous state.

Note that nothing can be done for the excess range of the exponent, which affects underflow and overflow cases,
fortunately less frequent.

Note also that in the process of setting the correct precision, the rounding mode is also set to the nearest.
Moreover, some compilers provide a flag that performs this setting at the time of program startup. For example,
GCC provides the option -mpc64 since release 4.3 which does exactly this. Other compilers may have similar
options.

Similarly, some third-party libraries may do the same thing as part of their startup process, and this is notably
the case of LEDA (at least some versions of it). CGAL does not enforce this at startup as it would impact

computations with long double performed by other codes in the same program.

Note that this property is notably required for proper functionning of the Residue class that performs modular
arithmetic using efficient floating-point operations.

Note concerning Visual C++ 64-bit: due to a compiler bug, the stack unwinding process happenning when
an exception is thrown does not correctly execute the restoring operation when the Set_ieee_double_precision
object is destroyed. Therefore, for this configuration, some explicit code has to be added if you care about the
state being restored.

#include <CGAL/FPU.h>

Creation

If the platform is not affected by the excess precision problem, this class becomes an empty class doing nothing.

Set_ieee_double_precision P; Sets the precision of operations on double to 53bits. Note
that the rounding mode is set to the nearest in the same pro-
cess.
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void “Set_ieee_double_precision()

The precision and rounding modes are reset to the values they
held before the constructor was called.

Also note that the following free function is also provided that does the same thing as the default constructor of
Set_ieee_double_precision except that it does not perform the save and restore of the previous state.

void force_ieee_double_precision()

Sets the precision of operations on double to 53bits. Note
that the rounding mode is set to the nearest in the same pro-

cess.
See Also
CGAL::Protect_FPU _rounding<Protected> ............. ... .o uuuiiiiiiiiiiiiiininaan. page 227
CGAL:IReESIAUE . . ..o oo e e e page 234
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CGAL::Protect_FPU_rounding<Protected>

Definition

Floating-point arithmetic, as specified by the IEEE-754 standard, allows to use so-called directed rounding for
the following arithmetic operations: addition, subtraction, multiplication, division and square root. The default
behavior is that the result of such an arithmetic operation is the closest floating-point number to the exact real
result of the operation (rounding to the nearest). The other rounding modes are: round towards plus infinity,
round towards minus infinity, and round towards zero.

Interval arithmetic uses such directed rounding modes to offer guaranteed enclosures for the evaluation of real
functions, such as with CGAL’s Interval_nt class.

In order to efficiently evaluate sequences of interval arithmetic operations, such as a geometric predicate com-
puting for example a determinant, it is advised to reduce the number of rounding mode changes, which otherwise
are performed for each arithmetic operation. CGAL exploits the fact that it is possible to compute a sequence of
interval arithmetic operations by doing only one rounding mode change around the whole function evaluation
in order to benefit from this optimization.

The class Protect_FPU_rounding allows to easily benefit from this. Its constructor saves the current rounding
mode in the object, and then sets the current rounding mode to the value provided as argument to the constructor.
The destructor sets the rounding mode back to the saved value. This allows to protect a block of code determined
by a C++ scope, and have the destructor take care of restoring the value automatically.

The related class Set_ieee_double_precision allows to similarly protect a block of code from excess precision
on some machines (x86 typically with the traditional FPU, not the more recent SSE2). Note that Protect_FPU_
rounding_mode, when changing rounding modes, also sets the precision to the correct 64 bit precision, hence
providing a similar effect to Set_ieee_double_precision. This notably affects the Residue class.

Note for Visual C++ 64-bit users: due to a compiler bug, the stack unwinding process happenning when an
exception is thrown does not correctly execute the rounding mode restoration when the Protect_FPU _rounding
object is destroyed. Therefore, for this configuration, some explicit code has to be added.

#include <CGAL/FPU.h>

Parameters

The template parameter Protected is a Boolean parameter, which defaults to true. It follows the same parameter
of the Interval_nt class. When it is false, the constructor and the destructor of the class do nothing (this is meant
to be used in a context where you know that the rounding mode change has been taken care of at a higher level
in the call stack.

What follows describes the behavior when the parameter has its default value, true.

Creation

Protect_FPU _rounding<Protected> P( FPU_CW_tr = CGAL_FE_UPWARD);

The current rounding mode is saved in the object, and
rounding mode is set to r which can be any of CGAL_
FE_TONEAREST, CGAL_FE_TOWARDZERO, CGAL_FE_
UPWARD (the default) and CGAL_.FE_DOWNWARD.
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void “Protect_FPU _rounding()

See Also

CGAL::Set_ieee_double_precision

The rounding mode is restored to the saved value.
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Chapter 6

Modular Arithmetic

Michael Hemmer and Sylvain Pion

6.1 Introduction

Modular arithmetic is a fundamental tool in modern algebra systems. In conjunction with the Chinese remainder
theorem it serves as the workhorse in several algorithms computing the gcd, resultant etc. Moreover, it can serve
as a very efficient filter, since it is often possible to exclude that some value is zero by computing its modular
correspondent with respect to one prime only.

First of all, this package introduces a type CGAL::Residue. It represents Z Y/ for some prime p. The prime
number p is stored in a static member variable. The class provides static member functions to change this value.
Note that changing the prime invalidates already existing objects of this type. However, already existing
objects do not lose their value with respect to the old prime and can be reused after restoring the old prime.
Since the type is based on double arithmetic the prime is restricted to values less than 22°. The initial value of
pis 67111067.

Please note that the implementation of class CGAL::Residue requires a mantissa precision according to the IEEE
Standard for Floating-Point Arithmetic (IEEE 754). However, on some processors the traditional FPU uses an
extended precision. Hence, it is indispensable that the proper mantissa length is enforced before performing any
arithmetic operations. Moreover, it is required that numbers are rounded to the next nearest value. This can be
ensured using CGAL::Protect_FPU _rounding with CGAL_FE_TONEAREST, which also enforces the required
precision as a side effect.

advanced

In case the flag CGAL_HAS_THREADS is undefined the prime is just stored in a static member of the class,
that is, CGAL::Residue is not thread-safe in this case. In case CGAL_HAS_THREADS the implementation of
the class is thread safe using boost: :thread_specific_ptr. However, this may cause some performance penalty.
Hence, it may be advisable to configure CGAL with CGAL_HAS_NO_THREADS.

advanced

Moreover, the package introduces the concept Modularizable. An algebraic structure 7 is considered as Mod-
ularizable if there is a mapping from 7 into an algebraic structure that is based on the type CGAL::Residue.
For scalar types, e.g. Integers, this mapping is just the canonical homomorphism into Z 1/ represented by
CGAL::Residue. For compound types, e.g. Polynomials, the mapping is applied to the coefficients of the
compound type. The mapping is provided by the class CGAL::Modular_traits<T>. The class CGAL::Modular_
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traits<T> is designed such that the concept Modularizable can be considered as optional, i.e., CGAL::Modular_
traits<T> provides a tag that can be used for dispatching.

6.1.1 Example

In the following example modular arithmetic is used as a filter.

/* Modular arithmetic can be used as a filter, in this example modular
arithmetic is used to avoid unnecessary gcd computations of
polynomials.

A gcd computation can be very costly due to coefficient growth within
the
Euclidean algorithm.

The general idea is that firstly the gcd is computed with respect
to one prime only. If this modular gcd is constant we can (in most
cases)

conclude that the actual gcd is constant as well.

For this purpose the example introduces the function

may_have common_factor.

Note that there are two versions of this function, namely for the case
that the coefficient type is Modularizable and that it is not.

If the type is not Modularizable the filter is just not applied and
the

function returns true.

*/
#include <CGAL/basic.h>
#ifdef CGAL_USE_GMP

#include <CGAL/Gmpz.h>
#include <CGAL/Polynomial.h>

// Function in case Polynomial is Modularizable
template< typename Polynomial >
bool may_ have_common_factor (
const Polynomial& pl, const Polynomial& p2, CGAL::Tag_true) {
std: :cout<< "The type is modularizable" << std::endl;

// Enforce IEEE double precision and rounding mode to nearest
// before useing modular arithmetic
CGAL: :Protect_FPU_rounding<true> pfr (CGAL_FE_TONEAREST) ;

// Use Modular traits to convert to polynomials with modular
coefficients

typedef CGAL: :Modular_ traits<Polynomial> MT;

typedef typename MT::Residue_type MPolynomial;

typedef typename MT: :Modular_image Modular_image;

MPolynomial mpl = Modular_image () (pl);

MPolynomial mp2 = Modular_image () (p2);
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// check for unlucky primes, the polynomials should not lose a degree
typename CGAL: :Polynomial_ traits_d<Polynomial>::Degree degree;
typename CGAL: :Polynomial_traits_d<MPolynomial>: :Degree mdegree;

if ( degree(pl) != mdegree (mpl)) return true;

if ( degree(p2) != mdegree (mp2)) return true;

// compute gcd for modular images
MPolynomial mg = CGAL: :gcd (mpl,mp2);

// if the modular gcd is not trivial: return true
if ( mdegree(mg) > 0 ){
std::cout << "The gcd may be non trivial" << std::endl;
return true;
}else({
std::cout << "The gcd is trivial" << std::endl;
return false;

// This function returns true, since the filter is not applicable
template< typename Polynomial >
bool may have_common_factor (
const Polynomial&, const Polynomialé&, CGAL: :Tag_false) {
std: :cout<< "The type is not modularizable" << std::endl;
return true;

template< typename Polynomial >
Polynomial modular_filtered gcd(const Polynomial& pl, const Polynomialé&
p2) {
typedef CGAL: :Modular_traits<Polynomial> MT;
typedef typename MT::Is_modularizable Is_modularizable;

// Try to avoid actual gcd computation

if (may_have_common_factor (pl,p2, Is_modularizable())) {
// Compute gcd, since the filter indicates a common factor
return CGAL: :gcd(pl,p2);

}else({
typename CGAL: :Polynomial traits_d<Polynomial>::Univariate_content
content;
typename CGAL: :Polynomial_traits_d<Polynomial>::Construct_polynomial
construct;

return construct (CGAL: :gcd (content (pl),content (p2))); // return
trivial gcd

}

int main() {
CGAL: :set_pretty mode(std: :cout);
typedef CGAL: :Gmpz NT;

typedef CGAL: :Polynomial<NT> Poly;
CGAL: :Polynomial_traits_d<Poly>::Construct_polynomial construct;
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Poly fl=construct (NT(2), NT(6), NT(4));
Poly f2=construct (NT(12), NT(4), NT(8));
Poly f3=construct (NT(3), NT(4));

std::cout << "fl : " << fl << std::endl;

std: :cout << "f2 : " << £2 << std::endl;

std: :cout << "compute modular filtered gcd(£fl,£f2): " << std::endl;
Poly gl = modular_filtered gcd(fl, £2);

std::cout << "gcd(fl,£f2): " << gl << std::endl;

std: :cout << std::endl;
Poly pl = £f1x£3;
Poly p2 = £f2x£3;

std::cout << "f£3 : " << £3 << std::endl;
std::cout << "pl=flxf3 : " << pl << std::endl;
std::cout << "p2=£f2x£f3 : " << p2 << std::endl;
std: :cout << "compute modular filtered gcd(pl,p2): " << std::endl;
Poly g2 = modular_ filtered gcd(pl,p2);
std::cout << "gcd(pl,p2): " << g2 << std::endl;
}
#telse

int main () {
std::cout << " This examples needs GMP! " << std::endl;

}

#endif

File: examples/Modular_arithmetic/modular_filter.cpp

6.2 Design and Implementation History
The class CGAL::Residue is based on the C-code of Sylvain Pion et. al. as it was presented in [ 1.

The remaining part of the package is the result of the integration process of the NumeriX library of EXACUS
[ ] into CGAL.
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Modular Arithmetic
Reference Manual

Michael Hemmer

6.3 Classified Reference Pages

Concepts

Modularizable . . . . ..o e page 236
ModUlarTTaits . . . ..ot e page 237
ModularTraits:ModularImage . . ... ... .o page 238
ModularTraits::ModularImageRepresentative . . . ...t page 239
Types

CGAL:IRESIAUE . . ..o oottt e e e e e e e e e e et e e page 234
CGAL::Modular_traits<T> . ...t e et e e page 240

6.4 Alphabetical List of Reference Pages

Modularizable . .. ... ... ..o e page 236
ModularTraits::ModularlmageRepreSentative . .. ...... ... et page 239
ModularTraits::Modularlmage.. . . ........ ... . page 238
ModUularTraits . . . ... ...t e e e page 237
Modular_traits<T>. ... ... page 240
ReSIAUE . . .. .o page 234
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Class

CGAL::Residue

Definition

The class Residue represents a finite field Z/pZ, for some prime number p.

The prime number p is stored in a static member variable. The class provides static member functions to change
this value. Note that changing the prime invalidates already existing objects of this type. However, already
existing objects do not lose their value with respect to the old prime and can be reused after restoring the old
prime. Since the type is based on double arithmetic the prime is restricted to values less than 226, The initial
value of p is 67111067.

Please note that the implementation of class CGAL::Residue requires a mantissa precision according to the IEEE
Standard for Floating-Point Arithmetic (IEEE 754). However, on some processors the traditional FPU uses an
extended precision. Hence, it is indispensable that the proper mantissa length is enforced before performing any
arithmetic operations. Moreover, it is required that numbers are rounded to the next nearest value. This can be
ensured using CGAL::Protect_FPU _rounding with CGAL_FE_TONEAREST, which also enforces the required
precision as a side effect.

In case the flag CGAL_HAS_THREADS is undefined the prime is just stored in a static member of the class,
that is, Residue is not thread-safe in this case. In case CGAL_HAS_THREADS the implementation of the class
is thread safe using boost::thread_specific_ptr. However, this may cause some performance penalty. Hence, it
may be advisable to configure CGAL with CGAL_HAS_NO_THREADS.

#include <CGAL/Residue.h>

Is Model for the Concepts

Field
Creation
Residue x; introduces a variable x, which is initialized with zero;
Residue x( m); copy constructor;
Residue x( inti); introduces a variable x, which is initialized with i%p;
Residue x( long i); introduces a variable x, which is initialized with i%p;
Operations
static int x.set_current_prime( int p)
Static member function;
sets current prime to the given value and returns the old
prime.
static int x.get_current_prime()  Static member function;

returns the value of the current prime.
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int

Residue
Residue
Residue
Residue
Residue
Residue
Residue &
Residue &
Residue &
Residue &
Residue
Residue

x.get_value() const

+a
—a
a+b
a—>b
axb
a/b
X+=a
xX—=a
xX*=a
x/=a
a==b
al=>b

Returns the unique representative of xwithin the range
[—p/2,p/2], where p is the current prime.
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Concept

Modularizable

Definition

An algebraic structure is called Modularizable, if there is a suitable mapping into an algebraic structure which is
based on the type CGAL::Residue. For scalar types, e.g. Integers, this mapping is just the canonical homomor-
phism into the type CGAL::Residue with respect to the current prime. For compound types, e.g. Polynomials,
the mapping is applied to the coefficients of the compound type.

The mapping is provided via CGAL::Modular_traits<Modularizable>, being a model of ModularTraits.

Note that types representing rationals, or types which do have some notion of denominator, are not Modulariz-
able. This is due to the fact that the denominator may be zero modulo the prime, which can not be represented.

Has Models

177 P page 158
LOMg oo page ??
CORE::BigInt . .. ... e e e e e e e page 165
CGAL::GMPZ . oo oo e e e page 175
Leda::integer ... ... page ??
IMPZ_CLASS < o oo page 173

CGAL::Sqrt_extension<NT,ROOT > . .. ..o e page 220
CGAL::Polynomial<Coeff> . . . ..ot et et e et i page 324
See Also

CGAL::ResSIAUE . . .. ... .o page 234
CGAL::Modular_traits<T> .. ... ..o e e e page 240
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ModularTraits

Definition
A model of ModularTraits is associated to a specific Type. In case this associated type is Modularizable, this

is indicated by the boolean tag Is_modularizable. The mapping into the Residue_type is provided by the functor
Modular_image.

Types

A model of ModularTraits is supposed to provide:

ModularTraits:: Type The associated type.

ModularTraits:: Is_modularizable Tag indicating whether the associated type is modularizable.
This is either CGAL::Tag_true or CGAL::Tag_false.

ModularTraits:: Residue_type The type of the modular image.

In case the type is not Modularizable this is undefined.

Functors

In case the associated type is Modularizable all functors are provided.
In case a functor is not provided, it is set to CGAL::Null_functor.

ModularTraits:: Modular_image A model of ModularTraits::Modularlimage
ModularTraits:: Modular_image_representative

A model of ModularTraits::ModularImageRepresentative

Has Models

CGAL::Modular_traits<T> . ... . e e et e e page 240
See Also

CGALRESIAUE . . . ..ot e page 234
Modularizable . . . . ... page 236
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ModularTraits::ModularImage

Definition

This AdaptableUnaryFunction computes the modular image of the given value with respect to a homomorphism
¢ from the ModularTraits:: Type into the ModularTraits::Residue_type.

The homomorphism preserves the mapping of inf into both types , i.e., (Type(i)) == Residue_type(i).

Types

typedef ModularTraits::Residue_type

result_type;

typedef ModularTraits:: Type

argument_type;

result_type fo( argument_type x) computes @(x).

Refines

AdaptableUnaryFunction

See Also

MoOAUIAITTAILS . . . o o ettt et e e et et e e e e e e e e e e page 237
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ModularTraits::ModularImageRepresentative

Definition

This AdaptableUnaryFunction returns a representative in the original type of a given modular image. More
precisely, it implements the rightinverse of a proper restriction of the homomorphism ¢, which is implemented
by ModularTraits::Modularlmage.

Types

typedef ModularTraits:: Type

result_type;

typedef ModularTraits::Residue_type

argument_type;

result_type fo( argument_type x) computes ¢! (x).

Refines

AdaptableUnaryFunction

See Also

ModUularTraits . . . ..ot page 237
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Class

CGAL::Modular_traits<T>

Definition

An instance of Modular_traits<T> is a model of ModularTraits, where T is the associated type.

#include <CGAL/Modular_traits.h>

Is Model for the Concepts

ModularTraits
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Chapter 7

Polynomial

Michael Hemmer

7.1 Fundamentals

Note that this is just a very brief introduction to polynomials. For a quick reference we refer to the Wikipedia
or for a more elaborate introduction to any class book on elementary algebra.

A polynomial is either zero, or can be written as the sum of one or more non-zero terms. The number of terms
is finite. A term consist of a constant coefficient and a monomial, that is, the product of zero or more variables.
Each variable may have an exponent that is a non-negative integer. The exponent on a variable in a term is equal
to the degree of that variable in that term. A term with no variables is called a constant term. The degree of a
constant term is 0.

For example, 77x3y is a term. The coefficient is —7, the monomial is x3y, comprised of the variables x and y,
the degree of x is three, and the degree of y is one. The total degree of the entire term is the sum of the degrees
in each variable. In the example above, the degree is 3+ 1 =4.

A one-variable (univariate) polynomial f of degree n has the following form:

f=ax"+ap 1 X" '+ 4w +aix+ao

The coefficient ag is called the constant coefficient, a, is called the leading coefficient. If f is not the zero
polynomial the leading coefficient is not zero. The polynomial is called monic if a,, = 1. In case the coefficient
domain of f possess a greatest common divisor (gcd) the content of f is the gcd of all coefficients of f. For
instance, the content of 12x> +6 is 6.

A multivariate polynomial is a polynomial in more than one variable. According to the number of variables
it is possible to further classify multivariate polynomials as bivariate, trivariate etc. In contrast to univariate
polynomials the terms of a multivariate polynomial are not completely ordered by their total degree. However,
given a certain order on the variables it is possible to define a lexicographic order on the terms. Given this order
the leading coefficient of a multivariate polynomial is defined as the coefficient of the highest term. For instance
the leading coefficient of the multivariate polynomial p = 5x>y +7xy? is 7, given that y has an higher order than
X.

However, it is also possible to interpret a multivariate polynomial as a univariate polynomial in that variable.
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For instance the trivariate polynomial
g=x+7y' 22 +13x1y22? € Z[x, y,7]
may be interpreted as a univariate polynomial in z, that is, ¢ is interpreted as an element of R|z], with R = Z|[x, y].
g=(13x'y? + 7%y + X% € R[Z]

In this case the leading coefficient of ¢ with respect to z is 13x'y? + 7x?y! and x> becomes the *constant’ term.

A homogeneous polynomial is a polynomial whose terms do all have the same total degree. For example,
h = x> +7x*y' 22 + 13x'y?z? is a homogeneous polynomial of degree 5, in three variables.

7.2 General Design

The package introduces a concept Polynomial_d, a concept for multivariate polynomials in d variables. Though
the concept is written for an arbitrary number of variables, the number of variables is considered as fixed for a
particular model of Polynomial_d. The concept also allows univariate polynomials.

First of all a model of Polynomial_d is considered as an algebraic structure, that is, the ring operations {+, —, -}
are provided due to the fact that Polynomial_d refines at least the concept IntegralDomainWithoutDivision.
However, a model of Polynomial_d has to be accompanied by a traits class CGAL::Polynomial_traits_d<
Polynomial_d> being a model of PolynomialTraits_d. In principal the traits class provides all further func-
tionalities on polynomials.

Given a d-variate polynomial over some base ring R there are at least two different possible views on such a
polynomial.

e The recursive or univariate view: In this view, a polynomial is considered as an element of
R[xo,...,x4—2][xq—1]. That is, the polynomial is treated as a univariate polynomial over the ring
Rlxo,...,x4-2]-

e The symmetric or multivariate view: This view is almost symmetric with respect to all variables. It
considers the polynomial as an element of Rxy,...,xs—1].

According to these two different views the traits class is required to provide two different coefficient types:

e CGAL::Polynomial_traits_d<Polynomial_d>::Coefficient_type representing R[xo, . ..,X4_2].

o CGAL::Polynomial_traits_d<Polynomial_d>::Innermost_coefficient_type representing the base ring R.

Another important type which is introduced by this package is CGAL::Exponent_vector. It is derived from
std::vector<int> and used to identify multivariate monomials. For instance the exponent vector containing the
sequence [3,2,4] corresponds to the trivariate monomial xgx%x‘z‘. Note that a vector with negative exponents is
considered as invalid. However, we decided to in principal allow negative exponents as they may appear as

intermediate results, in particular we did not derive from std::vector<unsigned int>.

7.3 Constructing a multivariate polynomial

First of all the concept Polynomial_d requires that the model is constructible from int. This is due to the fact that
Polynomial_d refines IntegralDomainWithoutDivision which in turn refines FromintConstructible. Of course
this allows only the construction of constant polynomials.
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In general a polynomial is constructed using the functor CGAL::Polynomial_traits_d<Polynomial_d>
::Construct_polynomial a model of PolynomialTraits_d::ConstructPolynomial. Basically there are two options:

e The polynomial is constructed from an iterator range with value type CGAL::Polynomial_traits_d<

Polynomial_d>::Coefficient_type, where the begin iterator refers to the constant term (constant with re-

spect to the outermost variable).

o The polynomial is constructed from an iterator range with value type std::pair< CGAL:: Exponent_vector,

CGAL::Polynomial_traits_d<Polynomial_d>::Innermost_coefficient_type>, where each pair defines the

coefficient for the monomial defined by the exponent vector.

However, in some cases it might be more convenient to just construct the polynomials representing the different
variables and to obtain the final polynomial using algebraic expressions. The most elegant way to construct

a certain variable is CGAL::Polynomial_traits_d<Polynomial_d>::Shift being a model of PolynomialTraits_
d::Shift.

7.3.1 Examples

The following example illustrates different ways to construct a bivariate polynomial:

#include <CGAL/config.h>

#include <CGAL/Polynomial.h>

#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial_type_generator.h>

int main () {
CGAL: :set_pretty mode (std: :cout);

typedef CGAL: :Polynomial_ type generator<int,2>::Type Poly_2;

typedef CGAL: :Polynomial_ traits_d<Poly_ 2> PT_2;
typedef PT 2::Coefficient_type Poly 1;
typedef PT_2::Innermost_coefficient_type Integer;

PT_2::Construct_polynomial construct_polynomial;

// constructing a constant polynomial from int
Poly 2 two(2); // = 2
std::cout << "A constant polynomial: " << two << std::endl;

// construction from an iterator range of univariate polynomials

std::1list<Poly_ 1> univariate_coeffs;
univariate_coeffs.push_back (Poly 1(3));
univariate_coeffs.push_back (Poly_1(0));
univariate_coeffs.push back (Poly 1(5));
Poly 2 F = // 5xy"2 + 3

construct_polynomial (univariate_coeffs.begin(),univariate_coeffs.end())|

std::cout << "The bivariate polynomial F: " << F << std::endl;
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// construction from an iterator range over monomials
std: :list<std: :pair<CGAL: :Exponent_vector, Integer> > innermost_coeffs;
innermost_coeffs.push_back (std: :make_pair (CGAL: :Exponent_vector (0,0),-2

innermost_coeffs.push_back (std: :make_pair (CGAL: :Exponent_vector (3,5),2)
Poly 2 G = // (2%x"3)#y"5 + (-2)

construct_polynomial (innermost_coeffs.begin (), innermost_coeffs.end());
std: :cout << "The bivariate polynomial G: " << G << std::endl;

//construction using shift

PT 2::Shift shift;

Poly 2 x = shift (Poly 2(1),1,0); // 'multiply’ 1 by x 071
Poly 2 y shift (Poly 2(1),1,1); // 'multiply’ 1 by x 171

Poly 2 H=5 % x *xy + 3 xy *xvy; // =3+xy"2 + (5+x)*y
std: :cout << "The bivariate polynomial H: " << H << std::endl;

File: examples/Polynomial/construction.cpp

7.4 Coefficient Access

In order to obtain a certain coefficient the traits class provides several functors. Note that the functors do not
allow a write access to the coefficients.

o PolynomialTraits_d::GetCoefficient: a model of this concept provides access to a coefficient in the uni-
variate view, that is, it returns elements of R[xo, . .., X4_2]-

o PolynomialTraits_d::GetInnermostCoefficient: a model of this concept provides access to a coefficient in
the multivariate view, that is, it returns elements of R.

e PolynomialTraits_d::LeadingCoefficient: a model of this concept provides access to the leading coeffi-
cient in the univariate view.

o PolynomialTraits_d::InnermostLeadingCoefficient: a model of this concept provides access to the leading
coefficient in the multivariate view, that is, it returns the (innermost) coefficient of the leading multivariate
monomial. See also PolynomialTraits_d::DegreeVector.

7.4.1 Examples

The following example illustrates the application of the functors discussed above:

#include <CGAL/config.h>

#include <CGAL/Polynomial.h>

#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial_type_generator.h>
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int main () {
CGAL: : set_pretty mode (std: :cout);
typedef CGAL: :Polynomial_type_generator<int, 2>::Type Poly_2;
typedef CGAL: :Polynomial_traits_d<Poly_2> PT_2;

//construction using shift
Poly 2 x = PT_2::Shift () (Poly 2(1),1,0); // = x"1
Poly 2 y = PT_2::Shift () (Poly 2(1),1,1); // y 1

Poly 2 F // = (11*x"2 + 5x*x)*y"4 + (7%x"2)*y"3
= 11 * CGAL::ipower(y,4) * CGAL: :ipower (x,2)
+ 5 % CGAL: :ipower(y,4) * CGAL: :ipower (x,1)
+ 7 * CGAL: :ipower(y,3) * CGAL: :ipower (x,2);
std::cout << "The bivariate polynomial F: " << F <<"\n"<< std::endl;

PT_2::Get_coefficient get_coefficient;
std::cout << "Coefficient of y"0: "<< get_coefficient (F,0) <<

std: :endl;

std::cout << "Coefficient of y"1: "<< get_coefficient (F,1) <<
std: :endl;

std::cout << "Coefficient of y"2: "<< get_coefficient (F,2) <<
std: :endl;

std::cout << "Coefficient of y“"3: "<< get_coefficient (F,3) <<
std: :endl;

std::cout << "Coefficient of y"4: "<< get_coefficient (F,4) <<
std: :endl;

std::cout << "Coefficient of y"5: "<< get_coefficient (F,5) <<
std: :endl;

std::cout << std::endl;

PT_2::Leading coefficient lcoeff;

std::cout << "Leading coefficient with respect to y: "
<< lcoeff (F) // = 11*x"2 + 5xx
<< std::endl;

PT_2::Get_innermost_coefficient get_icoeff;

std: :cout << "Innermost coefficient of monomial x"1ly~4: "
<< get_icoeff (F,CGAL: :Exponent_vector(1,4)) // = 5
<< std::endl;

PT_2::Innermost_leading coefficient ilcoeff;

std::cout << "Innermost leading coefficient with respect to y: "
<< ilcoeff(F) // = 11
<< std::endl;

File: examples/Polynomial/coefficient_access.cpp

7.5 Degree, total degree and degree vector

There are three functors in PolynomialTraits_d related to the degree of a polynomial.
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o PolynomialTraits_d::Degree: a model of this concept returns the degree of the polynomial in the univari-
ate view. By default this is the degree with respect to the outermost variable, but it is also possible to
select another variable.

e PolynomialTraits_d::TotalDegree: a model of this concept returns the total degree of a polynomial. The
polynomial is considered as a multivariate polynomial. The total degree is the maximum over the sums
of the exponents of each multivariate monomial.

o PolynomialTraits_d::DegreeVector: a model of this concept returns the exponent vector of the leading
monomial, where the monomial order is lexicographic and starts with the outermost variable. See also
PolynomialTraits_d::InnermostLeading Coefficient.

7.5.1 Examples

The following example illustrates the application of the functors discussed above:

r#include <CGAL/config.h>
#include <CGAL/Polynomial.h>
#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial_type_generator.h>

int main () {
CGAL: : set_pretty mode (std: :cout);
typedef CGAL: :Polynomial_type_generator<int, 2>::Type Poly_2;
typedef CGAL: :Polynomial_traits_d<Poly_2> PT_2;

//construction using shift
Poly 2 x = PT_2::Shift () (Poly 2(1),1,0); // x 0°1
Poly 2 y = PT_2::Shift () (Poly 2(1),1,1); // x 11

Poly 2 F // = (11*x"2 + 5x*x)*y 4 + (7%x"2)*y"3
= 11 * CGAL::ipower(y,4) * CGAL: :ipower (x,2)
+ 5 % CGAL: :ipower(y,4) * CGAL: :ipower (x,1)
+ 7 * CGAL: :ipower(y,3) * CGAL::ipower (x,2);
std::cout << "The bivariate polynomial F: " << F <<"\n"<< std::endl;

PT_2::Degree degree;
PT_2::Total_degree total_degree;
PT_2::Degree_vector degree_vector;

std::cout << "The degree of F with respect to y: "<< degree (F)
// =4
<< std::endl;
std: :cout << "The degree of F with respect to x: "<< degree (F,0)
// =2
<< std::endl;
std::cout << "The total degree of F : "<< total_degree (F)
// =6
<< std::endl;
std: :cout << "The degree vector of F HEE S 3
degree_vector(F)// = (2,4)
<< std::endl;
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File: examples/Polynomial/degree.cpp

7.6 Changing the order of variables

Given for instance a bivariate polynomial it is conceivable that one wants to interchange the role of x and
y. That is one wants to interpret the x as y and vice versa. For such a case the polynomial traits provides
PolynomialTraits_d::Swap:

Given a polynomial p and to two indices i and j, the functor returns the polynomial in which x; is substituted by
x; and vice versa, that is, the variables swap their positions. The order of the other variables remains untouched.

Another scenario is, that a particular variable should be moved to another position, for instance, it should become
the outermost variable while the relative order of the other variables remains unchanged. For such a case the

polynomial traits provides PolynomialTraits_d::Move.

Of course there is also a general method to interchange the order of variables, namely PolynomialTraits_
d::Permute.

7.6.1 Examples

The following example illustrates the application of the functors discussed above:

#include <CGAL/config.h>

#include <CGAL/Polynomial.h>

#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial_type_generator.h>

int main () {
CGAL: : set_pretty mode(std: :cout);
typedef CGAL: :Polynomial_ type_ generator<int, 3>::Type Poly_3;
typedef CGAL: :Polynomial_ traits_d<Poly 3> PT_3;

//construction using shift

Poly 3 x = PT_3::Shift () (Poly _3(1),1,0); // x 0°1
Poly 3 y = PT_3::Shift() (Poly 3(1),1,1); // x 1°1
Poly 3 z = PT_3::Shift() (Poly_3(1),1,2); // = 2°1

Poly 3 F = X*YXY*Z*Z*Z;
std::cout << "The trivariate polynomial F: " << F << std::endl;
std: :cout << std::endl;

PT_3::Swap swap;
PT_3::Move move;
PT_3::Permute permute;

std::cout << "x and z swapped: "<< swap(F,0,2) // = x"3xy 2#*z
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<< std::endl;

std::cout << "x and y swapped: "<< swap(F,0,1) // = x"2xy#*z"3
<< std::endl << std::endl;

std::cout << "x moved to outermost position "
<< move (F,0,2) // = x°2xy 3%z
<< std::endl;

std::cout << "Same as swap(swap(F,0,1),1,2) "
<< swap(swap(F,0,1),1,2) // = xX"2xy 3%z

<< std::endl;

std: :cout << "Same as the permutation (0,1,2)->(2,0,1): ";

std: :vector<int> perm;

perm.push_back (2) ;perm.push_back (0) ; perm.push_back (1) ;

std: :cout << permute (F,perm.begin(),perm.end())// = x " 2+y 3%z
<< std::endl;

File: examples/Polynomial/swap_move.cpp

7.7 GCD and More

Since the concept PolynomialTraits_d refines the concept AlgebraicStructureTraits the polynomial traits pro-
vides functors for integral division, division with remainder, greatest common divisor, etc. But note that the
algebraic structure of a polynomial depends on the algebraic structure of the innermost coefficient, for in-
stance, a gcd is available if and only if the innermost coefficient is a Field or a UniqueFactorizationDomain.
Hence, we can not provide a ged if the innermost coefficient is just an IntegralDomain since it is simply
not well defined'. However, if we would consider the polynomial over the quotient field of the integral do-
main the ged would be well defined. The only problem is that the result can not be represented over the ring
since it contains denominators. Therefore, the PolynomialTraits_d requires functors such as PolynomialTraits_
d::GcdUpToConstantFactor. This functor computes the gcd of two polynomials up to a constant factor (utcf).
That is, it returns the correct gcd for polynomials over the quotient field, but multiplied by some constant such
that the result is representable with coefficients in the ring.

However, note that these ’utcf’ functions are usually a bit faster than their strict counterparts. This is due to
the fact that the ’utcf’ functions are allowed to skip the computation of the correct constant factor. Note that in
many cases the constant factor is in fact not needed. In particular if the polynomials are supposed to represent
some zero set, that is, an algebraic curve or surface.

The concepts for the related functors are:

o AlgebraicStructureTraits::Ged
PolynomialTraits_d::GedUpToConstantFactor

o AlgebraicStructureTraits::IntegralDivision
PolynomialTraits_d::IntegralDivisionUpToConstantFactor

! An example for such a number type is the template CGAL::Sqrt_extension<NT,ROOT> representing an algebraic extension of degree
two. This is just an IntegralDomain if NT is not a Field.
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o PolynomialTraits_d::UnivariateContent
PolynomialTraits_d::UnivariateContentUpToConstantFactor

o PolynomialTraits_d::SquareFreeFactorize
PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor

Another analog functionality is the pseudo division. The related functors replace the usual division with remain-
der in case the Polynomial is not a EuclideanRing.
The concepts for the related functors are:

e AlgebraicStructureTraits::Div_mod
PolynomialTraits_d:: PseudoDivision

o AlgebraicStructureTraits::Div
PolynomialTraits_d:: PseudoDivisionQuotient

o AlgebraicStructureTraits::Mod
PolynomialTraits_d::PseudoDivisionRemainder

7.7.1 Examples

The following example illustrates the application of some functors discussed above:

(#include <CGAL/config.h>

#include <CGAL/Polynomial.h>

#include <CGAL/Polynomial_ traits_d.h>
#include <CGAL/Polynomial_ type_generator.h>

int main () {
CGAL: :set_pretty mode(std: :cout);
typedef CGAL: :Polynomial_ type generator<int,1l>::Type Poly_1;

typedef CGAL: :Polynomial_traits_d<Poly_ 1> PT 1;
PT 1::Shift shift;

PT 1::Gcd gcd;

PT_1::Gcd _up_to_constant_factor gcd_utcf;
PT_1::Multivariate_content mcontent;

PT 1::Canonicalize canonicalize;

//construction using shift
Poly 1 x = shift(Poly 1(1),1,0); // x"1

// common factor 7 * (x"2-2)

Poly 1 F = 21%(x-5)*(x*x-2); // = 21%x"3 + (-105)#x"2 + (=42)#*x + 210
Poly 1 G = 14x* (x-3)* (x*x-2); // = 14%x"3 + (-42)#*x"2 + (-28)*x + 84
std: :cout << "The univariate polynomial F: " << F << std::endl;
std::cout << "The univariate polynomial G: " << G << std::endl;

std: :cout << "Common multivariate content: "
<< CGAL: :gcd (mcontent (F) ,mcontent (G)) // 7
<< std::endl;
std::cout << "The gcd of F and G: "
<< gcd(F,G) // 7+x"2 + (-14)
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<< std::endl;

std: :cout << "The gcd up to constant factor of F and G: "
<< gecd_utcf (F,G) // = x"2 + (-2)
<< std::endl;

std::cout << "Same as canonicalized gcd of F and G: "
<< canonicalize (gcd _utcf (F,G)) // = x"2 + (-2)
<< std::endl;

File: examples/Polynomial/gcd_up_to_constant_factor.cpp

7.8 Evaluation and Substitution

Of course, it should also be possible to evaluate a polynomial or substitute its variables. We also require a
special functor to determine whether a polynomial is zero at a given point. In case the inner most coefficient is
RealEmbeddable the traits also must provide a function to compute the sign at a given point.

The concepts for the related functors are:

PolynomialTraits_d: :Substitute
PolynomialTraits_d::Evaluate
PolynomialTraits_d::IsZeroAt
PolynomialTraits_d::SignAt

The traits is also required to provide variants of these functors that interpret the polynomial as a homogeneous
polynomial by adding a virtual homogeneous variable such that each term has the same degree, namely the
degree of the polynomial. Of course there is a difference between the univariate and multivariate view. For
instance the polynomial

50 +7x-3

has degree 3, hence it is interpreted as the homogeneous polynomial
5% + Tow? — 3w’

by adding the homogeneous variable w. In case of the multivariate view each term is filled up by the homoge-
neous variable such that the degree of each term is equal to the total degree of the polynomial. Note that these
functors may significantly improve efficiency. For instance, it is possible to determine the sign of a polynomial
over integer coefficients at a rational point without changing the coefficient domain of the polynomial. For more
details have a look at the following concepts:

PolynomialTraits_d: :SubstituteHomogeneous
PolynomialTraits_d:: EvaluateHomogeneous
PolynomialTraits_d::IsZeroAtHomogeneous
PolynomialTraits_d::SignAtHomogeneous

Note that substitute allows the substitution of the variables by any type that is ExplicitInteroperable with the
innermost coefficient type. This is a very powerful tool since it allows the substitution of the variables by poly-
nomials. However, for some standard manipulations such as translation or scaling we require special functors
since they are expected to be faster than their equivalent implementation using substitution:

e PolynomialTraits_d::Shift
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PolynomialTraits_d::Negate
PolynomialTraits_d::Invert
PolynomialTraits_d::Translate
PolynomialTraits_d::TranslateHomogeneous
PolynomialTraits_d::Scale
PolynomialTraits_d::ScaleHomogeneous

7.8.1 Examples

The following example illustrates the application of some functors discussed above:

(#include <CGAL/config.h>
#include <CGAL/Polynomial.h>
#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial_type_generator.h>

int main() {
CGAL: :set_pretty _mode (std: :cout);
typedef CGAL: :Polynomial_type_generator<int, 2>::Type Poly_2;
typedef CGAL: :Polynomial_traits_d<Poly_ 2> PT_2;

//construction using shift
Poly 2 x = PT_2::Shift () (Poly 2(1),1,0); // x"1
Poly 2 y = PT_2::Shift () (Poly 2(1),1,1); // v 1

Poly 2 F = 2xx*xy + 3*CGAL: :ipower (y, 3);
std::cout << "The bivariate polynomial F: " << F // = 3%y 3 + (2#x)*y
<< std::endl << std::endl;

PT 2::Evaluate evaluate;
PT_2::Evaluate_homogeneous hevaluate;

// Evaluation considers a polynomials as univariate:
std::cout << "F(5): " << evaluate(F,5) // = 10*x + 375
<< std::endl;
// Evaluate homogeneous considers F as a homogeneous polynomial in
// the outermost variable only, that is, F is interpreted as
// F(u,v) = 2#+x*usv"2 + 3 * u’3
std::cout << "F(5,7): " << hevaluate(F,5,7) // = 490%x + 375
<< std::endl << std::endl;

PT_2::Substitute substitute;
PT_2::Substitute_homogeneous hsubstitute;

// Substitute considers a polynomials as multivariate, that is, the

// new values for the variables are given by an iterator range

// Note that the value type only has to be interoperable with the
innermost

// coefficient

std: :1list<Poly_ 2> replacements;

replacements.push_back (x-1); // replace x by x-1

replacements.push_back (y) ; // replace y by y, i.e., do nothing
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std::cout << "The bivariate polynomial F: " << F // = 3%y 3 + (2#%x)*y
<< std::endl;
std::cout << "F(x-1,y): " /) = 3xy”3 + (2xx + (-2))*y
<< substitute (F, replacements.begin (), replacements.end())
<< std::endl;
// Substitute_homogeneous considers F as a homogeneous polynomial in
// all variable, that is, F is interpreted as
// F(x,y,w) = 2*x*y*w + 3 * y 3
replacements.push_back(y); // replace z by y

std::cout << "F(x-1,y,y): " // = 3%y 3 + (2#x + (=2))*y "2
<< hsubstitute (F, replacements.begin (), replacements.end())
<< std::endl;

File: examples/Polynomial/substitute.cpp

7.9 Resultants, Subresultants and Sturm-Habicht sequences

The PolynomialTraits_d concept also provides more sophisticated functors for computations with polynomials —
computing the resultant of two polynomials, their polynomial subresultant sequence, with or without cofactors,
and their principal subresultant coefficients.

e PolynomialTraits_d::Resultant. . .......... o e i page 312
e PolynomialTraits_d::PolynomialSubresultants.............. ... ... ... page 314
e PolynomialTraits_d::PolynomialSubresultantsWithCofactors . .......... ... ... .......oo.. page 316
e PolynomialTraits_d::PrincipalSubresultants . ..............c.. i page 318

Moreover, functors to compute the Sturm-Habicht sequence, with or without cofactors, and for the principal
Sturm-Habicht coefficients exist.

e PolynomialTraits_d::SturmHabichtSequence............. ... o i page 319
e PolynomialTraits_d::SturmHabichtSequenceWithCofactors ................ .. ..., page 321
e PolynomialTraits_d::PrincipalSturmHabichtSequence............... ... ..o it page 323

For a formal definition of all used terms, we refer to the corresponding reference pages.

The principal Sturm-Habicht sequence allows to count the number of real roots of a polynomial using the
function

© CGAL::NUMDEr_Of Tl TOOLS . . ... ..ot e e page 377.

As input, this function requires an iterator range that represents the principal Sturm-Habicht coefficients. This
might look complicated at a first sight, as one has to store the principal Sturm-Habicht sequence temporarily.
However, we remark an important property of the (principal) Sturm-Habicht sequence. Having a polynomial
/:(x) that depends on a parameter 7, and its (principal) Sturm-Habicht coefficients sthay(f;), ..., stha,(f;), evalu-
ating sthag ( f;) for r =1, yields a valid (principal) Sturm-Habicht sequence for f;,. The same holds for (principal)
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subresultants. Thus, it is enough in such situations to compute the sequence once for the parameter ¢, and call
CGAL::number_of_real_roots for each specialized parameter value.

We finally remark that computing subresultants and Sturm-Habicht sequences introduces an enormous coeffi-

cient blow-up. An application of the functors therefore does not make sense for built-in integers except for toy
examples. To avoid overflows, one should use arbitrary size integer types in real applications.

7.9.1 Examples

The following example illustrates how two compute resultants of two polynomials, and how to count the number
of distinct real roots of a polynomial using its principal Sturm-Habicht coefficients.

(#include <CGAL/config.h>
#include <CGAL/Polynomial.h>
#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial_type_generator.h>

#include <CGAL/Gmpz.h>

int main() {
CGAL: :set_pretty mode(std: :cout);

typedef CGAL: :Gmpz Int;

typedef CGAL: :Polynomial_ type generator<Int,1l>::Type Poly_1;
typedef CGAL: :Polynomial_ traits_d<Poly_ 1> PT_1;

//construction using shift
Poly 1 x = PT_1::Shift() (Poly 1(1),1); // x"1

Poly 1 F // = (x+1) "2%(x-1)*(2x-1)=2x"4+x"3-3x"2-x+1

CGAL: :ipower(x,4) + 1 * CGAL: :ipower (x, 3)
- CGAL: :ipower(x,2) — 1 * CGAL: :ipower(x,1)
+ CGAL: :ipower (x,0);

std::cout << "F=" << F << std::endl;

R WbhN
* * *

Poly 1 G // = (x+1)#(x+3)=x"2+4%x+3
= 1 » CGAL: :ipower (x,2) + 4 x CGAL::ipower(x,1l) + 3 =*
CGAL: :ipower (x,0);

std::cout << "G=" << G << std::endl;

// Resultant computation:
PT_1::Resultant resultant;

std::cout << "The resultant of F and G is: " << resultant (F,G) <<
std: :endl;

// It is zero, because F and G have a common factor

// Real root counting:

PT_1::Principal_sturm habicht_sequence stha;

std: :vector<Int> psc;

stha (F, std: :back_inserter (psc));
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int roots = CGAL: :number_of_ real_roots (psc.begin(),psc.end());

std: :cout << "The number of real roots of F is: " << roots <<
std::endl; // 3

roots = CGAL: :number_of_ real_ roots(G);

std: :cout << "The number of real roots of G is: " << roots <<
std::endl; // 2

return O0;

File: examples/Polynomial/subresultants.cpp

7.10 Design and Implementation History

This package is the result of the integration process of the NumeriX library of EXACUS [ ] into CGAL.

The class CGAL::Polynomial<Coeff> had been started by Michael Seel within CGAL as part of the Nef_2 pack-
age. As part of the EXACUS project it got significantly improved by Arno Eigenwillig and Michael Hemmer.

However, due to the recursive definition the class was rather restricted to the univariate view. Moreover, it is
clear that depending on the context other classes that are symmetric in all variables or dedicated for sparse
polynomials may be more efficient. As a consequence this package introduced the CGAL::Polynomial_traits_
d<Polynomial_d> giving also the symmetric view on polynomials and the opportunity to introduce and use other
classes representing polynomials within CGAL.
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Polynomial _d

Definition
A model of Polynomial_d is representing a multivariate polynomial in d > 1 variables over some basic ring
R. This type is denoted as the innermost coefficient. A model of Polynomial_d accompanied by a traits class

CGAL::Polynomial _traits_d<Polynomial_d>, which is a model of PolynomialTraits_d. Please have a look at
the concept PolynomialTraits_d, since nearly all functionality related to polynomials is provided by the traits.

Refines

IntegralDomainWithoutDivision

The algebraic structure of Polynomial_d depends on the algebraic structure of Innermost_coefficient_type:

Innermost_coefficient_type Polynomial_d
IntegralDomainWithoutDivision | IntegralDomainWithoutDivision
IntegralDomain IntegralDomain
UniqueFactorizationDomain UniqueFactorizationDomain
EuclideanRing UniqueFactorizationDomain
Field UniqueFactorizationDomain

Note: In case the polynomial is univariate and the innermost coefficient is a Field the polynomial is model of
EuclideanRing.

See Also

AlGebraicSIrUCTUTETTAILS . . ..ottt e e e e e e e et e e page 78
PolynomialTraits_d . ....... .. ... et e e page 262
Has Models

CGAL::Polynomial<Coeff> . . .. .. e e page 324
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Concept

PolynomialTraits_d

Definition

A model of PolynomialTraits_d is associated with a type Polynomial_d. The type Polynomial_d represents a
multivariate polynomial. The number of variables is denoted as the dimension d of the polynomial, it is arbitrary
but fixed for a certain model of this concept. Note that univariate polynomials are not excluded by this concept.
In this case d is just set to one.

PolynomialTraits_d provides two different views on the multivariate polynomial.

e The recursive view: In this view, the polynomial is considered as an element of R[xo,...,xXg—2][x4—1]-
That is, the polynomial is treated as a univariate polynomial over the ring R[xo,...,xs—2].

e The symmetric or multivariate view: This view is symmetric with respect to all variables, considering the
polynomial as an element of R|[xy,...,Xxg—1].

Many functors consider the polynomial as a univariate polynomial in one variable. By default this is the outer-
most variable x;_;. However, in general it is possible to select a certain variable.

Refines

AlgebraicStructureTraits

Constants

static const int d; The dimension and the number of variables respectively.
Types

PolynomialTraits_d:: Polynomial_d Type representing R[xo, ..., X4—1].

PolynomialTraits_d:: Coefficient_type Type representing R[xo, ..., X4—2].

PolynomialTraits_d:: Innermost_coefficient_type

Type representing the base ring R.

PolynomialTraits_d:: Coefficient_const_iterator

Const iterator used to iterate through all coefficients of the
polynomial.

PolynomialTraits_d:: Innermost_coefficient_const_iterator

Const iterator used to iterate through all innermost coeffi-
cients of the polynomial.
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PolynomialTraits_d:: template <typename T, int d> struct Rebind
This nested template class has to define a type Other which

is a model of the concept PolynomialTraits_d, where d is the
number of variables and T the Innermost_coefficient_type.

Functors

In case a functor is not provided it is set to CGAL::Null_functor.

PolynomialTraits_d:: Construct_polynomial A model of PolynomialTraits_d::ConstructPolynomial.
PolynomialTraits_d:: Get_coefficient A model of PolynomialTraits_d::GetCoelfficient.
PolynomialTraits_d:: Get_innermost_coefficient A model of PolynomialTraits _

d::GetlnnermostCoefficient.

PolynomialTraits_d:: Construct_coefficient_const_iterator_range

A model of PolynomialTraits _
d::ConstructCoefficientConstlteratorRange.

PolynomialTraits_d:: Construct_innermost_coefficient_const_iterator_range

A model of PolynomialTraits _
d::ConstructinnermostCoefficientConstlteratorRange.

PolynomialTraits_d:: Swap A model of PolynomialTraits_d::Swap.
PolynomialTraits_d:: Move A model of PolynomialTraits_d::Move.
PolynomialTraits_d:: Degree A model of PolynomialTraits_d::Degree.
PolynomialTraits_d:: Total_degree A model of PolynomialTraits_d::TotalDegree.
PolynomialTraits_d:: Degree_vector A model of PolynomialTraits_d::DegreeVector.
PolynomialTraits_d:: Leading _coefficient A model of PolynomialTraits_d::LeadingCoefficient.

PolynomialTraits_d:: Innermost_leading_coefficient

A model of PolynomialTraits _
d::InnermostLeadingCoefficient.

PolynomialTraits_d:: Canonicalize A model of PolynomialTraits_d::Canonicalize.

PolynomialTraits_d:: Differentiate A model of PolynomialTraits_d::Differentiate.
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PolynomialTraits_d::

PolynomialTraits_d::

PolynomialTraits_d::

PolynomialTraits_d::

PolynomialTraits_d::

PolynomialTraits_d::

PolynomialTraits_d::

PolynomialTraits _d::

PolynomialTraits_d::

PolynomialTraits_d::

PolynomialTraits_d::

PolynomialTraits_d.::
PolynomialTraits_d::
PolynomialTraits_d::

PolynomialTraits_d::
PolynomialTraits_d::

PolynomialTraits_d::
PolynomialTraits_d::

PolynomialTraits_d::
PolynomialTraits_d::

Evaluate

Evaluate_homogeneous

Substitute

Substitute_homogeneous

Is_zero_at

Is_zero_at_homogeneous

Sign_at

Sign_at_homogeneous

Compare

Univariate_content

Multivariate_content

Shift
Negate
Invert

Translate
Translate_homogeneous

Scale
Scale_homogeneous

Make_square_free
Square _free_factorize

A model of PolynomialTraits_d::Evaluate.

A model of PolynomialTraits_d::EvaluateHomogeneous.

A model of PolynomialTraits_d::Substitute.

A model of
d::SubstituteHomogeneous.

PolynomialTraits _

A model of PolynomialTraits_d::1sZeroAt.

A model of PolynomialTraits_d::IsZeroAtHomogeneous.

A model of PolynomialTraits_d::SignAt.
In case Innermost_coefficient_type is not RealEmbed-
dable this is CGAL::Null_functor.

A model of PolynomialTraits_d::SignAtHomogeneous.
In case Innermost_coefficient_type is not RealEmbed-
dable this is CGAL::Null_functor.

A model of PolynomialTraits_d::Compare.
In case Innermost_coefficient_type is not RealEmbed-
dable this is CGAL::Null_functor.

In case PolynomialTraits_d::Coefficient_type is not
a model of UniqueFactorizationDomain, this 1is
CGAL::Null_functor, otherwise this is a model of
PolynomialTraits_d::UnivariateContent.

In case PolynomialTraits_d.::Innermost_coefficient_type
is not a model of UniqueFactorizationDomain, this
is CGAL::Null_functor, otherwise this is a model of
PolynomialTraits_d::Multivariate Content.

A model of PolynomialTraits_d.::Shift.
A model of PolynomialTraits_d::Negate.
A model of PolynomialTraits_d::Invert.

A model of PolynomialTraits_d::Translate.
A model of PolynomialTraits _
d::TranslateHomogeneous.

A model of PolynomialTraits_d::Scale.
A model of PolynomialTraits_d::ScaleHomogeneous.

A model of PolynomialTraits_d::MakeSquareFree.

In case PolynomialTraits:: Polynomial_d is not a model of
UniqueFactorizationDomain, this is of type CGAL::Null_
functor, otherwise this is a model of PolynomialTraits_
d::SquareFreeFactorize.
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PolynomialTraits_d::

PolynomialTraits_d.::

PolynomialTraits_d::

PolynomialTraits_d::

PolynomialTraits_d::

PolynomialTraits_d::

PolynomialTraits_d::

PolynomialTraits_d::

PolynomialTraits_d::

PolynomialTraits_d::

PolynomialTraits_d::

PolynomialTraits_d::

PolynomialTraits_d::

PolynomialTraits_d::

Pseudo_division A model of PolynomialTraits_d::PseudoDivision.
Pseudo_division_remainder A model of PolynomialTraits _
d::PseudoDivisionRemainder.

Pseudo_division_quotient A model of PolynomialTraits_
d::PseudoDivisionQuotient.

Gced_up_to_constant_factor A model of PolynomialTraits_
d::GedUpToConstantFactor.

Integral_division_up_to_constant_factor

A model of PolynomialTraits_
d::IntegralDivisionUpToConstantFactor.

Content_up_to_constant_factor

A model of PolynomialTraits_
d::UnivariateContentUpToConstantFactor.

Square_free_factorize_up_to_constant_factor
A model of PolynomialTraits_

d::SquareFreeFactorizeUpToConstantFactor.

Resultant A model of PolynomialTraits_d::Resultant.

Polynomial_subresultants Either = CGAL::Null functor or a model of
PolynomialTraits_d::PolynomialSubresultants.

Polynomial_subresultants_with_cofactors

Either = CGAL::Null_functor or a model of
PolynomialTraits_d::PolynomialSubresultants_with_
cofactors.

Principal_subresultants Either  CGAL::Null_functor or a model of
PolynomialTraits_d:: PrincipalSubresultants.

Sturm_habicht_sequence Either = CGAL::Null_functor ~or a model of
PolynomialTraits_d::SturmHabichtSequence.

Sturm_habicht_sequence_with_cofactors

Either CGAL::Null_functor or
a model of PolynomialTraits_
d::SturmHabichtSequence WithCofactors.

Principal_sturm_habicht_sequence

Either  CGAL::Null_functor or a model of
PolynomialTraits_d:: PrincipalSturmHabichtSequence.
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See Also

Polynomial _d. . ....... ... . . page 261
Has Models
CGAL::Polynomial _traits_d<Polynomial_d>. .......... .. .. . . . i i, page 326
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PolynomialTraits_d::ConstructPolynomial

Definition

This AdaptableFunctor provides several operators to construct objects of type PolynomialTraits_
d::Polynomial _d.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Polynomial_d

result_type;

Operations

result_type fo() Construct the zero polynomial.

result_type fo(inti) Construct the constant polynomial equal to i.

result_type fo( PolynomialTraits_d::Innermost_coefficient_type a)
Construct the constant polynomial equal to a.

result_type fo( PolynomialTraits_d:: Coefficient_type a)

Construct the polynomial equal to a.

template < class Inputlterator >
result_type fo( Inputlterator begin, Inputlterator end)

Precondition: The value type of Inputlterator is PolynomialTraits_
d::Coefficient_type.

The operator constructs the a polynomial from the iterator range, with
respect to the outermost variable, x;_1.

The range starts with the coefficient for xg_l.

In case the range is empty, the zero polynomial is constructed.

template < class Inputlterator >
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result_type fo( Inputlterator begin, Inputlterator end, bool is_sorted= false)

Constructs a Polynomial_d from a given iterator range of std::pair<
Exponent_vector, PolynomialTraits_d::Innermost_coefficient_type>.
The optional parameter is_sorted indicates whether the given iterator
range is already sorted.

Precondition: The value type of Inputlterator is std::pair<Exponent_
vector, PolynomialTraits_d::Innermost_coefficient _type>.
Precondition: Each Exponent_vector must have size d.

Precondition: All appearing Exponent_vectors are different.

See Also
Polynomial _d. . ....... ... . . page 261
PolynomialTraits_d . ........ ... e page 262
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PolynomialTraits_d::GetCoefficient

Definition

This AdaptableBinaryFunction provides access to coefficients of a PolynomialTraits_d::Polynomial_d.

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Types
typedef PolynomialTraits_d::Coefficient_type

result_type;

typedef PolynomialTraits_d::Polynomial_d

first_argument _type;

typedef int second_argument_type;
Operations
result_type fo( first_argument_type p, second_argument_type e)

For given polynomial p this operator returns the coefficient of x;_,
where x;_; is the outermost variable.

See Also
PolynomiaGl_d. ........ ... .. e e page 261
PolynomialTraits_d . ....... ... . et e page 262
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Concept

PolynomialTraits_d::GetInnermostCoefficient

Definition

For the given PolynomialTraits_d::Polynomial_d this AdaptableBinaryFunction returns the coefficient of the
(multivariate) monomial specified by the given Exponent_vector.

Refines

AdaptableBinaryFunction

CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Innermost_coefficient_type

result_type;
typedef PolynomialTraits_d::Polynomial_d

first_argument_type;
typedef Exponent_vector

second_argument_type;

Operations
result_type fo( first_argument_type p, second_argument_type v)
For given polynomial p this operator returns the innermost coefficient
of the monomial corresponding to the given Exponent_vector v.
See Also
Polynomial_d. ........ ... .. e page 261
PolynomialTraits_d . ............. .. e e page 262
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PolynomialTraits_d::MonomialRepresentation

Definition

This Functor outputs the monomial representation of the given polynomial, that is, it writes all non zero terms
of the polynomial as std::pair<CGAL::Exponent_vector, PolynomialTraits_d::Innermost_coefficient_type> into
the given output iterator.

Refines

Assignable
CopyConstructible
DefaultConstructible

Operations

template<class Outputlterator>
Outputlterator fo( PolynomialTraits_d::Polynomial_d p, Outputlterator it)

Writes the monom representation of p into the given out-
put iterator it.

Precondition: std::iterator_traits<  Qutputlter-
ator >::value_type must be constructible from
std::pair<CGAL::Exponent_vector, PolynomialTraits_
d::Innermost_coefficient_type>.

See Also

Polynomial_d.......... . .. . . . page 261
PolynomialTraits_d . ........ ... . e page 262
PolynomialTraits_d::ConstructPolynomial . ......... ... ... . . i i, page 267
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Concept

PolynomialTraits_d::ConstructCoefficientConstIteratorRange

Definition

This AdaptableUnaryFunction returns a const iterator range over the coefficients of the given polynomial, with
respect to the outermost variable, x;_;. The range starts with the coefficient for ngl .

Refines
AdaptableUnaryFunction

CopyConstructible
DefaultConstructible

Types

typedef std::pair< PolynomialTraits_d::Coefficient_const_iterator, PolynomialTraits_d::Coefficient_const._
iterator >

result_type;
typedef PolynomialTraits_d::Polynomial_d argument_type;

Operations
result_type fo( argument_type p)

Returns a const iterator range over the coefficients of p.
See Also
PolynomiGl_d. ....... ... ... e page 261
PolynomialTraits_d . ....... .. ... e e e page 262
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PolynomialTraits_d::ConstructinnermostCoefficientConstIteratorRange

Definition

This AdaptableUnaryFunction returns a const iterator range over all innermost coefficients of the given polyno-
mial.

Refines
AdaptableUnaryFunction

CopyConstructible
DefaultConstructible

Types

typedef std::pair< PolynomialTraits_d::Innermost_coefficient_const_iterator, PolynomialTraits_d.::Innermost_
coefficient_const_iterator >

result_type;
typedef PolynomialTraits_d::Polynomial_d argument_type;

Operations
result_type fo( argument_type p)
Returns a const iterator range over all innermost coeffi-
cients of p.
See Also
Polynomial d. ... ..... . ... . . page 261
PolynomialTraits d . ........ ... e page 262
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Concept

PolynomialTraits_d::Permute

Definition

This AdaptableFunctor permutes the variables of the given polynomial with respect to a permutation G, that is,
each monomial []x{" will be mapped to the monomial ng(l.). The permutation G is given by the iterator range
of length PolynomialTraits_d::d, which is supposed to contain the second row of the permutation.

For instance, let p be a polynomial in 4 variables and it is intended to change the order of the variables such that
X0 — X2, X] — X, X — x] and x3 — x3. In this case the iterator range should contain the sequence [2,0, 1,3].

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Polynomial_d result_type;

Operations

Operations

template<class Input_iterator>

result_type fo.operator()( PolynomialTraits_d::Polynomial_d p,
Input _iterator begin,
Input_iterator end)

Returns p with interchanged variables as defined by the
iterator range.

Precondition: (end-begin == PolynomialTraits_d::d)
Precondition:  std::iterator_traits< Inputlterator >
::value_type is convertible to int.

Precondition: The iterator range contains each value in
{0,...,d — 1} exactly once.

See Also
PolynomiGl_d. ........ ... ..o e e page 261
PolynomialTraits_d . ....... .. ... e e e page 262
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PolynomialTraits_d::Swap

Definition

This AdaptableFunctor swaps two variables of a multivariate polynomial.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Polynomial_d

Operations

result_type

See Also

Polynomial d.............................
PolynomialTraits_ d .......................

result_type;

fo( PolynomialTraits_d::Polynomial_d p, int i, int j)

Returns polynomial p with interchanged variables x;,x;.
Precondition: 0 <i<d
Precondition: 0 < j <d

................................................... page 261
................................................... page 262
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Concept

PolynomialTraits_d::Move

Definition
This AdaptableFunctor moves a variable at position i to a new position j. The relative order of the other
variables is preserved, that is, the variables between x; and x; (including x;) are moved by one position while x;

is moved to the former position of x;.

This function may be used to make a certain variable the outer most variable.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Polynomial_d result_type;

Operations
result_type fo( PolynomialTraits_d::Polynomial_d, int i, int j)
This function moves the variable at position i to its new
position j and returns the new polynomial. The relative
order of the other variables is preserved.
Precondition: 0 <i<d
Precondition: 0 < j <d
See Also
Polynomial d.......... . .. . . page 261
PolynomialTraits_d . ......... ... e page 262
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PolynomialTraits_d::Degree

Definition

This AdaptableUnaryFunction computes the degree of a PolynomialTraits_d::Polynomial_d with respect to a

certain variable.

The degree of p with respect to a certain variable x;, is the highest power e of x; such that the coefficient of x{ in

p is not zero.

For instance the degree of p = x%x? +x‘1t with respect to x is 4.

The degree of the zero polynomial is set to 0. From the mathematical point of view this should be —in finity,
but this would imply an inconvenient return type.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types
typedef int
typedef PolynomialTraits_d::Polynomial_d

Operations

result_type

result_type

See Also

Polynomial d.............................
PolynomialTraits d .......................
PolynomialTraits_d::TotalDegree . .........
PolynomialTraits_d::DegreeVector . ........

result_type;
argument_type;

fo( argument_type p)

Computes the degree of p with respect to the outermost
variable x;_1.

fo( argument_type p, int i)

Computes the degree of p with respect to variable x;.
Precondition: 0 <i<d

................................................... page 261
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Concept

PolynomialTraits_d::TotalDegree

Definition
This AdaptableUnaryFunction computes the total degree of a PolynomialTraits_d::Polynomial_d.

Given a (multivariate) monomial the sum of all appearing exponents is the total degree of this monomial. The
total degree of a polynomial p is the maximum of the total degrees of all appearing (multivariate) monomials in
p.

For instance the total degree of p = x3x} +x{ is 5.

The total degree of the zero polynomial is set to 0. From the mathematical point of view this should be —inf,
but this would imply an inconvenient return type.

Refines

AdaptableUnaryFunction

CopyConstructible
DefaultConstructible

Types

typedef int result_type;
typedef PolynomialTraits_d::Polynomial_d argument_type;

Operations
result_type fo( argument_type p)

Computes the total degree of p.
See Also
Polynomial _d. . ....... ... . . page 261
PolynomilTraits_d ........ ... .ot e et et e e page 262
PolynomialTraits _d::Degree . .......... .ottt e page 277
PolynomialTraits_d::DegreeVector . ....... .. .o page 279

278



PolynomialTraits_d::DegreeVector

Definition

For a given PolynomialTraits_d::Polynomial_d p this AdaptableUnaryFunction returns the degree vector, that
is, it returns the exponent vector of the monomial of highest order in p, where the monomial order is the
lexicographic order giving outer variables a higher priority. In particular, this is the monomial that belongs to
the innermost leading coefficient of p.

Refines
AdaptableUnaryFunction

CopyConstructible
DefaultConstructible

Types

typedef Exponent_vector result_type;
typedef PolynomialTraits_d::Polynomial_d argument_type;

Operations
result_type fo( argument_type p)

Returns the degree vector.
See Also
Polynomial d. .. ..... ... .. . . page 261
PolynomialTraits d . ....... ... e page 262
PolynomialTraits_d::Degree ... ........ ..ot page 277
PolynomialTraits_d::TotalDegree . ............ ..ot page 278
PolynomialTraits_d::InnermostLeadingCoeffiCient . . ... page 281
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Concept

PolynomialTraits_d::LeadingCoefficient

Definition

This AdaptableUnaryFunction computes the leading coefficient of a PolynomialTraits_d::Polynomial _d.

Refines
AdaptableUnaryFunction

CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Coefficient_type

result_type;
typedef PolynomialTraits_d::Polynomial_d argument_type;

Operations
result_type fo( argument_type p)
Computes the leading coefficient of p with respect to the
outermost variable x;_ 1.
See Also
PolynomiGl_d. ....... ... ... e e e page 261
PolynomialTraits_d . ....... ... .o e e e page 262
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PolynomialTraits_d::InnermostLeadingCoefficient

Definition

This AdaptableUnaryFunction computes the innermost leading coefficient of a PolynomialTraits_
d::Polynomial_d p. The innermost leading coefficient is recursively defined as the innermost leading coefficient
of the leading coefficient of p. In case p is univariate it coincides with the leading coefficient.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Innermost_coefficient_type

result_type;
typedef PolynomialTraits_d::Polynomial_d argument_type;
Operations
result_type fo( argument_type p)

Computes the innermost leading coefficient of p.

See Also
Polynomial_d......... .. .. . . . page 261
PolynomialTraits_d . ........ ... .. page 262
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Concept

PolynomialTraits_d::Canonicalize

Definition

For a given polynomial p this AdaptableUnaryFunction computes the unique representative of the set
P:={q|Axq=p for some A € R},

where R is the base of the polynomial ring.

In case PolynomialTraits::Innermost_coefficient_type is a model of Field, the computed polynomial is the monic

polynomial in P, that is, the innermost leading coefficient equals one.

In case PolynomialTraits::Innermost_coefficient_type is a model of UniqueFactorizationDomain, the computed

polynomial is the one with a multivariate content of one.

For all other cases the notion of uniqueness is up to the concrete model.

Note that the computed polynomial has the same zero set as the given one.

Refines
AdaptableUnaryFunction

CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Polynomial_d result_type;
typedef PolynomialTraits_d::Polynomial_d argument_type;

Operations
result_type fo( first_argument_type p)
Returns the canonical representative of p.
See Also
Polynomial_d. ........ ... o e page 261
PolynomialTraits_d . ............ e e page 262
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PolynomialTraits_d::Differentiate

Definition

This AdaptableUnaryFunction computes the derivative of a PolynomialTraits_d::Polynomial_d with respect to

one variable.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types
typedef PolynomialTraits_d::Polynomial_d
typedef PolynomialTraits_d::Polynomial_d

Operations

result_type

result_type

See Also

Polynomial_d.............................
PolynomialTraits d .......................

result_type;
argument_type;

fo( argument_type p)

Returns p’, with respect to the outermost variable.

fo( argument_type p, int i)

Returns p’, with respect to variable x;.
Precondition: 0 <i<d

................................................... page 261
................................................... page 262
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Concept

PolynomialTraits_d::Evaluate

Definition

This AdaptableBinaryFunction evaluates PolynomialTraits_d::Polynomial_d with respect to one variable.

Refines
AdaptableBinaryFunction

CopyConstructible
DefaultConstructible

Types
typedef PolynomialTraits_d::Coefficient_type
result_type;
typedef PolynomialTraits_d::Polynomial_d  first_argument_type;
typedef PolynomialTraits_d::Coefficient_type

second_argument_type;

Operations
result_type fo( first_argument_type p, second_argument_type x)

Returns p(x), with respect to the outermost variable.
See Also
Polynomial_d. ...... ... ... e page 261
PolynomialTraits_d . ........ ... ... page 262
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PolynomialTraits_d::EvaluateHomogeneous

Definition

This AdaptableFunctor provides evaluation of a PolynomialTraits_d::Polynomial_d interpreted as a homoge-
neous polynomial in one variable.

For instance the polynomial p = 5x?y? +y is interpreted as the homogeneous polynomial p[x](u,v) = 5x*u> +uv?
and evaluated as such.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Coefficient_type

result_type;
Operations
result_type fo.operator()( PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d:: Coefficient _type u,
PolynomialTraits_d::Coefficient_type v)
Returns p(u,v), with respect to the outermost variable.
See Also
Polynomial_d. ...... .. ... o e page 261
PolynomialTraits d ........ ... .. e page 262
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Concept

PolynomialTraits_d::Substitute

Definition

This Functor substitutes all variables of a given multivariate PolynomialTraits_d::Polynomial_d by the values
given in the iterator range, where begin refers the value for the innermost variable.

Refines

Assignable
CopyConstructible
DefaultConstructible

Types

Note that the result_type is the coercion type of the value type of the given iterator range and PolynomialTraits_
d::Innermost_coefficient_type. In particular std::iterator_traits<Input_iterator>::value_type must be Explicit-
Interoperable with PolynomialTraits_d::Innermost_coefficient_type. Hence, it can not be provided as a public
type in advance.

Operations

template<class Input_iterator>

result_type fo.operator()( PolynomialTraits_d::Polynomial_d p,
Input _iterator begin,
Input_iterator end)

Substitutes each variable of p by the values given in the
iterator range, where begin refers to the innermost vari-
able xg.

Precondition: (end-begin == PolynomialTraits_d::d)

See Also

Polynomial d. . ....... . ... . . page 261
PolynomialTraits d . ....... ... e page 262
PolynomialTraits_d::Substitute HOMOZENEOUS . . . . . ..ottt ettt ettt e page 287
e T e 1o 1 I 7 17 page ??
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PolynomialTraits_d::SubstituteHomogeneous

Definition

This Functor substitutes all variables of a given multivariate PolynomialTraits_d::Polynomial_d p by the
values given in the iterator range, where begin refers the value for the innermost variable. In contrast to
PolynomialTraits_d::Substitute the given polynomial p is interpreted as a homogeneous polynomial. Hence
the iterator range is required to be of length PolynomialTraits_d::d+1.

For instance the polynomial p(xp,x;) = x%x? +x41' is interpreted as the homogeneous polynomial p(xg,x;,w) =
x(z)x? +x‘1‘w1.

Refines

Assignable
CopyConstructible
DefaultConstructible

Types

Note that the result_type is the coercion type of the value type of the given iterator range and PolynomialTraits_
d::Innermost_coefficient _type. In particular std::iterator_traits<Input_iterator>::value_type must be Explicit-
Interoperable with PolynomialTraits_d::Innermost_coefficient_type. Hence, it can not be provided as a public
type in advance.

Operations

template<class Input_iterator>

result_type fo.operator()( PolynomialTraits_d::Polynomial_d p,
Input_iterator begin,
Input_iterator end)

Substitutes each variable of p by the values given in the
iterator range, where p is interpreted as a homogeneous
polynomial in all variables. The begin iterator refers to
the innermost variable x.

Precondition: (end-begin == PolynomialTraits_d::d)+1

See Also

Polynomial _d. .. ..... ... . . page 261
PolynomialTraits d . ....... ... e page 262
PolynomialTraits _d::SUDSTITULE . . . . ... ..ottt e e et et et page 286
COCTCIONTTAILS . ..o v ettt ettt e et e e e et e e e e e e ettt et i page ??
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Concept

PolynomialTraits_d::IsZeroAt

Definition

This AdaptableFunctor returns whether a PolynomialTraits_d::Polynomial_d p is zero at a given Cartesian

point, which is represented as an iterator range.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef bool

Operations

template <class Inputlterator>
result_type

See Also

Polynomial_d........................ccooo...
PolynomialTraits_.d ....................cccoou..

result_type;

fo.operator()( PolynomialTraits_d::Polynomial_d p,

Inputlterator begin,
Inputlterator end)

Computes whether p is zero at the Cartesian point given
by the iterator range, where begin is referring to the in-
nermost variable.

Precondition: (end-begin == PolynomialTraits_d::d)
Precondition: std::iterator_traits<  Inputltera-
tor >::value_type is  Explicitinteroperable  with
PolynomialTraits_d::Innermost_coefficient _type.

............................................... page 261
.............................................. page 262
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PolynomialTraits_d::IsZeroAtHomogeneous

Definition

This AdaptableFunctor returns whether a PolynomialTraits_d::Polynomial_d p is zero at a given homogeneous
point, which is given by an iterator range.

The polynomial is interpreted as a homogeneous polynomial in all variables.

For instance the polynomial p(xg,x;) = x%x? +x‘1‘ is interpreted as the homogeneous polynomial p(xo,x;,w) =

x%x% +x‘l‘wl.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef bool result_type;

Operations

template <class Inputlterator>

result_type fo.operator()( PolynomialTraits_d::Polynomial_d p,
Inputlterator begin,
Inputlterator end)

Computes whether p is zero at the homogeneous point
given by the iterator range, where begin is referring to
the innermost variable.

Precondition: (end-begin==PolynomialTraits_d::d+1)
Precondition: std::iterator_traits<  Inputltera-
tor >::value_type is  Explicitlnteroperable  with
PolynomialTraits_d::Innermost_coefficient _type.

See Also
Polynomial d. ... .... .. ... . . page 261
PolynomialTraits d . ........ ... e page 262
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Concept

PolynomialTraits_d::SignAt

Definition

This AdaptableFunctor returns the sign of a PolynomialTraits_d::Polynomial_d p at given Cartesian point rep-

resented as an iterator range.

This functor is well defined if PolynomialTraits_d::Innermost_coefficient_type is RealEmbeddable.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef CGAL::Sign

Operations

template <class Inputlterator>
result_type

See Also

Polynomial_d................................
PolynomialTraits d ..........................

result_type;

fo.operator()( PolynomialTraits_d::Polynomial_d p,

Inputlterator begin,
Inputlterator end)

Returns the sign of p at the given Cartesian point, where
begin is referring to the innermost variable.
Precondition: (end-begin == PolynomialTraits_d::d)
Precondition: std::iterator_traits<  Inputltera-
tor >::value_type is  Explicitlnteroperable  with
PolynomialTraits_d::Innermost_coefficient _type.

................................................ page 261
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PolynomialTraits_d::SignAtHomogeneous

Definition

This AdaptableFunctor returns the sign of a PolynomialTraits_d::Polynomial_d p at a given homogeneous
point, which is given by an iterator range.

The polynomial is interpreted as a homogeneous polynomial in all variables.

For instance the polynomial p(xg,x;) = x%x? +x‘1‘ is interpreted as the homogeneous polynomial p(xo,x;,w) =

x%x% +x‘l‘wl.

This functor is well defined if PolynomialTraits_d::Innermost_coefficient_type is RealEmbeddable.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef CGAL::Sign result_type;

Operations

template <class Inputlterator>

result_type fo.operator()( PolynomialTraits_d::Polynomial_d p,
Inputlterator begin,
Inputlterator end)

Returns the sign of p at the given homogeneous point,
where begin is referring to the innermost variable.
Precondition: (end-begin==PolynomialTraits_d::d+1)
Precondition: std::iterator_traits<  Inputltera-
tor >::value_type is  Explicitnteroperable  with
PolynomialTraits_d::Innermost_coefficient _type.

See Also
PolynomiaGl_d. ........ ... ..o e e e page 261
PolynomialTraits_d ......... ... e e e page 262
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Concept

PolynomialTraits_d::Compare

Definition

This AdaptableBinaryFunction compares two polynomials, with respect to the lexicographic order with prefer-
ence to the outermost variable.

This functor is well defined if PolynomialTraits_d::Innermost_coefficient_type is RealEmbeddable.

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Types

typedef CGAL::Comparison_result result_type;
typedef PolynomialTraits_d::Polynomial_d  first_argument_type;
typedef PolynomialTraits_d::Polynomial_d second_argument_type;

Operations
result_type fo( first_argument_type f, second_argument_type g)
Compares two polynomials.
See Also
Polynomial _d. . ......... .. . page 261
PolynomialTraits_d . ........ ... ettt e e page 262
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PolynomialTraits_d::UnivariateContent

Definition
This AdaptableUnaryFunction computes the content of a PolynomialTraits_d::Polynomial_d with respect to the
univariate (recursive) view on the polynomial, that is, it computes the gcd of all coefficients with respect to one

variable.

This functor is well defined if PolynomialTraits_d::Coefficient_type is a Field or a UniqueFactorizationDomain.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Coefficient_type

result_type;
typedef PolynomialTraits_d::Polynomial_d argument_type;
Operations
result_type fo( argument_type p)
Computes the content of p with respect to the outermost
variable x;_1.
See Also
PolynomiGl_d. ........ ... .. e e page 261
PolynomialTraits_d . ....... .. ... et e e page 262
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Concept

PolynomialTraits_d::MultivariateContent

Definition

This AdaptableUnaryFunction computes the content of a PolynomialTraits_d::Polynomial_d with respect to the
symmetric view on the polynomial, that is, it computes the gcd of all innermost coefficients.

This functor is well defined if PolynomialTraits_d::Innermost_coefficient_type is a Field or a UniqueFactoriza-
tionDomain.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Innermost_coefficient_type

result_type;
typedef PolynomialTraits_d::Polynomial_d argument_type;
Operations
result_type fo( argument_type p)
Computes the ged of all innermost coefficients of
p-
See Also
Polynomial_d. ........ ... ..o e page 261
PolynomialTraits_d . ......... ... e e page 262
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PolynomialTraits_d::SquareFreeFactorize

Definition
This Functor computes a square-free factorization of a PolynomialTraits_d::Polynomial_d.

A polynomial p is factored into square-free and pairwise coprime non-constant factors g; with multiplicities m;
and a constant factor a, such that p =a- g|" - ...- g/,

The pairs (g;,m;) are written into the given output iterator.

This functor is well defined if PolynomialTraits_d::Polynomial_d is a UniqueFactorizationDomain.

Refines

Assignable
CopyConstructible
DefaultConstructible

Operations

template<class Outputlterator>
Outputlterator fo.operator()( PolynomialTraits_d::Polynomial_d p,
Outputlterator it,
PolynomialTraits_d:: Innermost_coefficient
types a)

Computes the square-free factorization of p and returns
the past-the-end iterator of the written range.
Precondition:  std::iterator_traits< Outputlterator >
::value_type must be constructible from std::pair<
PolynomialTraits_d:: Polynomial_d,int>.

template<class Outputlterator>
Outputlterator fo( PolynomialTraits_d::Polynomial_d p, Outputlterator it)

As the first operator, just not computing the factor a.

See Also

Polynomial_d. . ........ ... . . . e page 261
PolynomialTraits_d . ........ ... .. page 262
PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor. ..............couuiiiiieniiienan.. page 304
PolynomialTraits_d::MakeSqUareFTee . .. ...... ... . oot e aiiiee s page 296
PolynomialTraits_d::ISSQUATEFTee . ........ ... e page 297
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Concept

PolynomialTraits_d::MakeSquareFree

Definition

This AdaptableBinaryFunction computes the square-free part of a polynomial of type PolynomialTraits_
d::Polynomial_d up to a constant factor.

A polynomial p can be factored into square-free and pairwise coprime non-constant factors g; with multiplicities

m; and a constant factor a, such that p =a- g’ln1 -...-gm, where all g; are canonicalized.

Given this decomposition, the square free part is defined as the product gi - ... - g,, which is computed by this
functor.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Polynomial_d result_type;
typedef PolynomialTraits_d::Polynomial_d argument_type;

Operations
result_type fo( argument_type p)

Returns the square-free part of p.
See Also
Polynomial d. ... ..... . ... . . page 261
PolynomialTraits d . ....... ... e page 262
PolynomialTraits _d::Canonicalize . .. ....... ...ttt page 282
PolynomialTraits_d::SquareFreeFactorize . .. ... ... .ot page 295
PolynomialTraits_d::ISSQUATEFTEe . .. .......... et page 297
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PolynomialTraits_d::IsSquareFree

Definition

This AdaptableBinaryFunction computes whether the given a polynomial of type PolynomialTraits_
d::Polynomial_d is square free.

Note that this statement does cover constant factors, i.e., whether the multivariate content contains a square.

Refines
AdaptableUnaryFunction

CopyConstructible
DefaultConstructible

Types

typedef bool result_type;
typedef PolynomialTraits_d::Polynomial_d argument_type;

Operations
result_type fo( argument_type p)

Returns whether the p is square free.
See Also
Polynomial _d. . ...... ... . . . page 261
PolynomialTraits_d . ....... ... e page 262
PolynomialTraits_d::SquareFreeFactorize . .. ... ... .ottt page 295
PolynomialTraits_d::MakeSquareFTree . .. ....... ... o page 296
PolynomialTraits_d::MultivariateCOntent . . .......... ... .. it page 294
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Concept

PolynomialTraits_d::PseudoDivision

Definition
This AdaptableFunctor computes the pseudo division of two polynomials f and g.

Given f and g # 0 this functor computes quotient g and remainder r such that D- f = g- g+ r and degree(r) <
degree(g), where D = leading_coef ficient (g)"e(0degree(f)—degree(g)+1)

This functor is useful if the regular division is not available, which is the case if PolynomialTraits_
d::Coefficient_type is not a Field. Hence in general it is not possible to invert the leading coefficient of g.
Instead f is extended by D allowing integral divisions in the internal computation.

Refines

AdaptableFunctor

CopyConstructible

DefaultConstructible

Types

typedef void result_type;

Operations

result_type fo.operator()( PolynomialTraits_d::Polynomial_d f,
PolynomialTraits_d::Polynomial_d g,
PolynomialTraits_d::Polynomial _d & q,
PolynomialTraits_d::Polynomial_d & r,
PolynomialTraits_d:: Coefficient _type & D)

Computes the pseudo division with respect to the outer-
most variable x;_1.

See Also

Polynomial _d. . ...... ... .. page 261

PolynomialTraits d . ........ ... e page 262

PolynomialTraits_d::PSeUudoDIVISION . ... ...ttt et page 298

PolynomialTraits_d::PseudoDivisionRemainder . ............ ... . i, page 300

PolynomialTraits_d::PseudoDiviSionQUOTIENt . .. ...... ... ... ..o, page 299
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PolynomialTraits_d::PseudoDivisionQuotient

Definition
This AdaptableBinaryFunction computes the quotient of the pseudo division of two polynomials f and g.

Given f and g # 0 one can compute quotient ¢ and remainder r such that D- f = g- g+ r and degree(r) <
degree(g), where D = leading_coef ficient (g)"e(0.degree(f)—degree(g)+1)

This functor computes q.

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Polynomial_d result_type;
typedef PolynomialTraits_d::Polynomial_d  first_argument_type;
typedef PolynomialTraits_d::Polynomial_d second_argument_type;

Operations
result_type fo( first_argument_type f, second_argument_type g)
Returns the quotient g of the pseudo division of f and g
with respect to the outermost variable x;_;.
See Also
Polynomial d.......... . .. . . . page 261
PolynomialTraits d . ....... ... .. e e page 262
PolynomialTraits_d::PseudoDIVISION ... ..... ... ... it page 298
PolynomialTraits_d::PseudoDivisionRemainder . ..............c..o o uiuuiiiieiiiieennnnnn.. page 300
PolynomialTraits_d:: PseudoDiviSiOnQUOTIENT . ... ..ottt page 299
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Concept

PolynomialTraits_d::PseudoDivisionRemainder

Definition
This AdaptableBinaryFunction computes the remainder of the pseudo division of two polynomials f and g.

Given f and g # 0 one can compute quotient ¢ and remainder r such that D- f = g- g+ r and degree(r) <
degree(g), where D = leading_coef ficient (g)"e(0.degree(f)—degree(g)+1)

This functor computes r.

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Polynomial_d result_type;
typedef PolynomialTraits_d::Polynomial_d  first_argument_type;
typedef PolynomialTraits_d::Polynomial_d second_argument_type;

Operations
result_type fo( first_argument_type f, second_argument_type g)
Returns the remainder r of the pseudo division of f and
g with respect to the outermost variable x;_.
See Also
Polynomial d.......... . .. . . page 261
PolynomialTraits d . ....... ... .. e e page 262
PolynomialTraits_d::PseudoDIVISION ... ......... ... it page 298
PolynomialTraits_d::PseudoDivisionRemainder . ..............c..o e uiiiieniiieennnnnn.. page 300
PolynomialTraits_d:: PseudoDiviSiONQUOTIENT . ... ..ottt ettt page 299
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PolynomialTraits_d::GedUpToConstantFactor

Definition

This AdaptableBinaryFunction computes the ged up to a constant factor (utcf) of two polynomials of type
PolynomialTraits_d:: Polynomial_d.

In case the base ring R (PolynomialTraits_d::Innermost_coefficient_type) is not a UniqueFactorizationDomain
or not a Field the polynomial ring R[xo, . .., X4—1] (PolynomialTraits_d:: Polynomial_d) may not possesses great-
est common divisors. However, since R is an integral domain one can consider its quotient field Q(R) for which
geds of polynomials exist.

This functor computes gcd-utcf(f,g) = D * gcd(f,g), for some D € R such that ged_utcf(f,g) €
R[xo,...,x4—1]. Hence, ged_utcf(f,g) may not be a divisor of f and g in R[xo, ...,x4—1].
Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Polynomial_d result_type;
typedef PolynomialTraits_d::Polynomial_d  first_argument_type;
typedef PolynomialTraits_d::Polynomial_d second_argument_type;

Operations
result_type fo( first_argument_type f, second_argument_type g)

Computes ged(f,g) up to a constant factor.
See Also
Polynomial_d. ........ ... ..o e page 261
PolynomialTraits_d . ......... ... e e page 262
PolynomialTraits_d::IntegralDivisionUpToConstantFactor ... .............ouieuiiiiuiinnnieann.. page 302
PolynomialTraits_d::UnivariateContentUpToConstantFactor . ...............ccouiiiiiniiiann.. page 303
PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor. .............couuiiiieeeniinnnnn. page 304
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Concept

PolynomialTraits_d::IntegralDivisionUpToConstantFactor

Definition

This AdaptableBinaryFunction computes the integral division of two polynomials of type PolynomialTraits_
d::Polynomial_d up to a constant factor (utcf) .

Precondition: g divides f in Q(R)[xo,...,xs—1], where Q(R) is the quotient field of the base ring R,
PolynomialTraits_d::Innermost_coefficient _type.
Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Polynomial_d result_type;
typedef PolynomialTraits_d::Polynomial_d  first_argument_type;
typedef PolynomialTraits_d::Polynomial_d second_argument_type;

Operations
result_type fo( first_argument_type f, second_argument_type g)

Computes f/g up to a constant factor.
See Also
Polynomial_d. ....... ... ... e page 261
PolynomialTraits_d . ....... .. ... e e e page 262
PolynomialTraits_d::GedUpToConstantFactor .. ...............uuuiuiaiiiii .. page 301
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PolynomialTraits_d::UnivariateContentUpToConstantFactor

Definition

This AdaptableUnaryFunction computes the content of a PolynomialTraits_d::Polynomial_d with respect to the
univariate (recursive) view on the polynomial up fo a constant factor (utcf), that is, it computes the ged _utcf of
all coefficients with respect to one variable.

Remark: This is called UnivariateContentUpToConstantFactor for symmetric reasons with respect to
PolynomialTraits_d::UnivariateContent and PolynomialTraits_d::MultivariateContent. However, a concept
PolynomialTraits_d::Multivariate ContentUpToConstantFactor does not exist since the result is trivial.
Refines

AdaptableUnaryFunction

CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d:: Coefficient_type

result_type;
typedef PolynomialTraits_d::Polynomial_d argument_type;

Operations
result_type fo( first_argument_type p)
Computes the content up to a constant factor of p with
respect to the outermost variable x;_ ;.
See Also
Polynomial _d. . ......... .. . page 261
PolynomiGlTraits_d . ....... ... ettt et et e page 262
PolynomialTraits_d::GcdUpTOCORSIANIFACIOT . . ... v ittt ettt eaiee e page 301
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Concept

PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor

Definition

This AdaptableFunctor computes a square-free factorization up to a constant factor (utcf) of a

PolynomialTraits_d:: Polynomial_d.

A polynomial p is factored into square-free and pairwise coprime non-constant factors g; with multiplicities m;,
such thata-p = grln1 -...- g where a is some constant factor.

The pairs (g;,m;) are written into the given output iterator.

The constant factor a is not computed.

This functor is well defined even though PolynomialTraits_d::Innermost_coefficient _type may not be a Unique-

FactorizationDomain.

Refines

Assignable
CopyConstructible
DefaultConstructible

Operations

template<class Outputlterator>
Outputlterator

See Also

Polynomial d...........................
PolynomialTraits d .....................

PolynomialTraits_d::SquareFreeFactorize

fo( PolynomialTraits_d::Polynomial_d p, Outputlterator it)

Computes the square-free factorization of p and returns
the past-the-end iterator of the written range.
Precondition:  std::iterator_traits< Outputlterator >
::value_type must be constructible from std::pair<
PolynomialTraits_d::Polynomial_d,int>.

..................................................... page 261
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PolynomialTraits_d::Shift

Definition

This AdaptableBinaryFunction multiplies a PolynomialTraits_d::Polynomial_d by the given power of the spec-

ified variable.

This functor is provided for efficiency reasons, since multiplication by some variable will in general correspond
to a shift of coefficients in the internal representation.

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Polynomial_d

typedef PolynomialTraits_d::Polynomial_d

typedef int

Operations

result_type

result_type

See Also

Polynomial d.............................
PolynomialTraits d .......................

result_type;
first_argument_type;

second_argument_type;

fo( first_argument_type p, second_argument_type e)
Returns p+x5_ .
Precondition: 0 <e

fo( first_argument_type p, second_argument_type e, int i)
Returns p *x5.

Precondition: 0 < e
Precondition: 0 <i<d

................................................... page 261
................................................... page 262
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Concept

PolynomialTraits_d::Negate

Definition

This AdaptableUnaryFunction computes p(—x) for a given polynomial p.

Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as
a univariate polynomial in one specific variable.

This functor is provided for efficiency reasons, since this operation just flips the sign of all odd coefficients with

respect to the specified variable.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Polynomial_d
typedef PolynomialTraits_d::Polynomial_d

Operations

result_type

result_type

See Also

Polynomial d.............................
PolynomialTraits d .......................

result_type;
argument_type;

fo( argument_type p)

Returns p(—x), with respect to the outermost variable.

fo( argument_type p, int i)

Returns p(—x), with respect to variable x;.
Precondition: 0 <i<d

................................................... page 261
................................................... page 262
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PolynomialTraits_d::Invert

Definition

This AdaptableUnaryFunction inverts one variable in a given PolynomialTraits_d::Polynomial_d, that is, for a
given polynomial p it computes x¢"¢¢() p(1/x).

Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as
a univariate polynomial in one specific variable.

This functor is provided for efficiency reasons, since this operation just inverts the order of the coefficients with

respect to the specified variable.

Refines

AdaptableUnaryFunction
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Polynomial_d
typedef PolynomialTraits_d::Polynomial_d

Operations

result_type

result_type

See Also

Polynomial d.............................
PolynomialTraits d .......................

result_type;
argument_type;

fo( argument_type p)

Returns x%¢7¢¢(P) p(1 /x), where x refers to the outermost
variable x;_1.

fo( argument_type p, int i)

Return x%¢"¢¢(P) p(1 /x), where x refers to the variable
Xi.
Precondition: 0 <i<d

................................................... page 261
................................................... page 262
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Concept

PolynomialTraits_d::Translate

Definition

This AdaptableBinaryFunction translates a PolynomialTraits_d:: Polynomial_d with respect to one variable, that
is, for a given polynomial p and constant c it computes p(x +c).

Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as
a univariate polynomial in one specific variable.

Refines
AdaptableBinaryFunction

CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d:
typedef PolynomialTraits_d:
typedef PolynomialTraits_d::

Operations

result_type

result_type

See Also

Polynomial d.............

PolynomialTraits d . ... ....

:Polynomial_d result_type;
:Polynomial_d  first_argument_type;

Innermost_coefficient_type

second_argument_type;

fo( first_argument_type p, second_argument_type c)

Returns p(x+ ¢), with respect to the outermost variable.

fo( first_argument_type p, second_argument_type c, int i)

Same as first operator but for variable x;.
Precondition: 0 <i<d

................................................................... page 261
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PolynomialTraits_d::TranslateHomogeneous

Definition

Given numerator a and denominator b this AdaptableFunctor translates a PolynomialTraits_d::Polynomial_d p
with respect to one variable by a/b, that is, it computes b%¢™¢(P) . p(x4a/b).

Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as
a univariate homogeneous polynomial in one specific variable.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Polynomial_d

Operations

result_type
a,

b)

result_type

See Also

Polynomial d.............................
PolynomialTraits_d .......................

result_type;

fo.operator()( PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Innermost_coefficient_type

PolynomialTraits_d:: Innermost_coefficient _type

Returns b%¢7¢¢(P) . p(x +a/b), with respect to the outer-
most variable.

fo.operator()( PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d:: Innermost_coefficient _type

PolynomialTraits_d::Innermost_coefficient _type
inti)

Same as first operator but for variable x;.
Precondition: 0 <i<d
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Concept

PolynomialTraits_d::Scale

Definition

Given a constant c this AdaptableBinaryFunction scales a PolynomialTraits_d::Polynomial_d p with respect to
one variable, that is, it computes p(c - x).

Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as
a univariate polynomial in one specific variable.

Refines
AdaptableBinaryFunction

CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d:
typedef PolynomialTraits_d:
typedef PolynomialTraits_d::

Operations

result_type

result_type

See Also

Polynomial d.............

PolynomialTraits d . ... ....

:Polynomial_d result_type;
:Polynomial_d  first_argument_type;

Innermost_coefficient_type

second_argument_type;

fo( first_argument_type p, second_argument_type c)

Returns p(c-x), with respect to the outermost variable.

fo( first_argument_type p, second_argument_type c, int i)

Same as first operator but for variable x;.
Precondition: 0 <i<d

................................................................... page 261
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PolynomialTraits_d::ScaleHomogeneous

Definition

Given a numerator a and a denominator b this AdaptableFunctor scales a PolynomialTraits_d::Polynomial_d p
with respect to one variable, that is, it computes b%¢°¢(") . p(a/b - x).

Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as
a univariate homogeneous polynomial in one specific variable.

Refines

AdaptableFunctor
CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Polynomial_d

Operations

result_type
a,

b)

result_type

See Also

Polynomial d.............................
PolynomialTraits d .......................

result_type;

fo.operator()( PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d:: Innermost_coefficient _type

PolynomialTraits_d::Innermost_coefficient_type

Returns b%8™¢ . p(a/b - x), with respect to the outermost
variable.

fo.operator()( PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Innermost_coefficient_type

PolynomialTraits_d:: Innermost_coefficient _type
int i)

Same as first operator but for variable x;.
Precondition: 0 <i<d

................................................... page 261
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Concept

PolynomialTraits_d::Resultant

Definition

This AdaptableBinaryFunction computes the resultant of two polynomials f and g of type PolynomialTraits_
d::Polynomial_d with respect to a certain variable.

Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as
a univariate polynomial in one specific variable.

Let f and g be two univariate polynomials over some commutative ring A, where

f=fm"+...+fo

and
g=guX"+...+go-

The resultant of f and g is defined as the determinant of the Sylvester matrix:

Sfm o Jo
S oo Jo
S oo So
&n -+ 80
8n 80
&n -+ 80

Note that this is a (n+m) x (n+m) matrix as there are n rows for f and m rows that are used for g. The blank
spaces are supposed to be filled with zeros.

advanced
Let L be the algebraic closure of A, and write f and g as
m
fi= me(x—ocl-), o; €L
i=1
and

g:= gnf[(x—ﬁj), BieL,
j=1

then the resultant of f and g is (up to leading coefficients) the product of all pairwise differences of the roots of
f and g, namely

res(f.g) = £ TTTT (o4 —By).

i=1j=1
In particular, res(f,g) # 0 iff f and g have a common factor with a positive degree in X.

advanced
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There are various ways to compute the resultant. Naive options are the computation of the resultant as the deter-
minant of the Sylvester Matrix or the Bezout Matrix as well as the so called subresultant algorithm, which is a
variant of the Euclidean Algorithm. More sophisticated methods may use modular arithmetic and interpolation.
For more information we refer to, e.g., [ 1.

Refines
AdaptableBinaryFunction

CopyConstructible
DefaultConstructible

Types

typedef PolynomialTraits_d::Coefficient_type

result_type;
typedef PolynomialTraits_d::Polynomial_d  first_argument_type;
typedef PolynomialTraits_d::Polynomial_d second_argument_type;

Operations
result_type fo( first_argument_type f, second_argument_type g)
Computes the resultant of f and g, with respect to the
outermost variable.
See Also
Polynomial_d. . ........ ... .. page 261
PolynomialTraits d . ....... ... .. e e page 262
PolynomialTraits_d::UnivariateCORLENt . . .. ... ...ttt et page 293
PolynomialTraits_d:: PolynomialSubresultants . . .......... ...t page 314
PolynomialTraits_d:: PrincipalSubreSultants . . ....... ...ttt page 318
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Concept

PolynomialTraits_d::PolynomialSubresultants

Note: This functor is optional!

Definition

Computes the polynomial subresultant of two polynomials p and g of type PolynomialTraits_d::Polynomial_d
with respect to outermost variable. Letp=3,_ ,pix'andg=3,_ _, q:x', where xis the outermost variable.
The i-th subresultant (with i = 0,...,min{n,m}) is defined by

Do ... o Daicmi2 X" lp
Pn .- Pi+1 P
Sres;(p, = det —i—
z(P Q) qm .- cee Qieng2 X lq
qm - qi+1 q

where p; and g; are set to zero if i < 0. In the case that n = m, Sres, is set to g.

The result is written in an output range, starting with the 0-th subresultant Sresy(p,q) (aka as the resultant of p
and q).

Refines

AdaptableBinaryFunction

CopyConstructible
DefaultConstructible

Operations

template<typename Outputlterator>
Outputlterator fo( Polynomial_d p, Polynomial_d g, Outputlterator out)

computes the polynomial subresultants of p and ¢, with re-

spect to the outermost variable. Each element is of type
PolynomialTraits_d::Polynomial_d.

template<typename Outputlterator>
Outputlterator fo( Polynomial_d p, Polynomial_d q, Outputlterator out, int i)

computes the polynomial subresultants of p and ¢, with re-
spect to the variable x;.
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See Also

Polynomial _d. . ....... ... . . page 261
PolynomialTraits_d . ........ ... e e e e page 262
PolynomialTraits_d::ReSUIIant . . .......... e e i page 312
PolynomialTraits_d::PrincipalSubresultants . . ........ ... . ... . . i page 318
PolynomialTraits_d::PolynomialSubresultantsWithCofactors. . ............. ... i, page 316
PolynomialTraits_d::SturmHabichtSequence . ........... ... ... ... page 319
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Concept

PolynomialTraits_d::PolynomialSubresultantsWithCofactors

Note: This functor is optional!

Definition

Computes the polynomial subresultant of two polynomials p and g of degree n and m, respectively, as defined
in the documentation of PolynomialTraits_d::PolynomialSubresultants. Moreover, for Sres;(p,q), polynomials
u; and v; with degu; <m —i— 1 and degv; < n—i— 1 are computed such that Sres;(p,q) = u;p+ viq. u; and v;
are called the cofactors of Sres;(p,q).

The result is written in three output ranges, each of length min{n,m} + 1, starting with the 0-th subresultant and
the corresponding cofactors.

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Operations

template< typename Outputlteratorl, typename Outputlterator2, typename Outputlterator3 >
Outputlteratorl fo.operator()( Polynomial_d p,

Polynomial_d q,

Outputlteratorl sres,

Outputlterator2 co_p,

Outputlterator3 co_q)

computes the subresultants of p and g, and the cofactors, with
respect to the outermost variable. Each element is of type
PolynomialTraits_d::Polynomial_d.

template< typename Outputlteratorl, typename Outputlterator2, typename Outputlterator3 >
Outputlteratorl fo.operator()( Polynomial_d p,
Polynomial_d q,
Outputlteratorl sres,
Outputlterator2 co_p,
Outputlterator3 co_gq,
inti)
computes the subresultants of p and g, and the cofactors,

with respect to x;. Each element is of type PolynomialTraits_
d::Polynomial_d.
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See Also

Polynomial _d. . ....... ... . . page 261
PolynomialTraits_d . ........ ... e e e e page 262
PolynomialTraits_d::ReSUIIant . . .......... e e i page 312
PolynomialTraits_d::PolynomialSubresultants . ....... ... ... . . .. . .. i i, page 314
PolynomialTraits_d::PrincipalSubresultants . . ...... ... ... .o e page 318
PolynomialTraits_d::SturmHabichtSequenceWithCofactors . . ............couuuiiieeiiiiieennn. page 321
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Concept

PolynomialTraits_d::PrincipalSubresultants
Note: This functor is optional!

Definition

Computes the principal subresultant of two polynomials p and g of type PolynomialTraits_d::Coefficient_type
with respect to the outermost variable. The i-th principal subresultant, sres;(p,q), is defined as the coefficient at
¢! of the i-th polynomial subresultant Sres;(p,q). Thus, it is either the leading coefficient of Sres;, or zero in the
case where its degree is below i.

The result is written in an output range, starting with the 0-th principal subresultant sreso(p,q) ,aka as the
resultant of p and ¢g. (Note that sresy(p,q) = Sresy(p, q) by definition)

Refines

AdaptableBinaryFunction

CopyConstructible
DefaultConstructible

Operations

template<typename Outputlterator>
Outputlterator fo( Polynomial_d p, Polynomial_d g, Outputlterator out)

computes the principal subresultants of p and ¢, with re-
spect to the outermost variable. Each element is of type
PolynomialTraits_d::Coefficient_type.

template<typename Outputlterator>
Outputlterator fo( Polynomial_d p, Polynomial_d g, Outputlterator out, int i)

computes the principal subresultants of p and ¢, with respect
to the variable x;.

See Also

Polynomial_d. ....... ... ... e page 261
PolynomialTraits d ......... .. .. e e page 262
PolynomialTraits_d::ReSUltant . . .. ....... .. . e page 312
PolynomialTraits_d::PolynomialSubresultants . . ........ ... .o i page 314
PolynomialTraits_d:: PrincipalSturmHabichtSequence . . ..............couuuuiiiiieiniiieennnnn.. page 323
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PolynomialTraits_d::SturmHabichtSequence

Note: This functor is optional!

Definition

Computes the Sturm-Habicht sequence (aka the signed subresultant sequence) of a polynomial f of type
PolynomialTraits_d::Polynomial_d with respect to a certain variable x;. The Sturm-Habicht sequence is similar

to the polynomial subresultant sequence of f and its derivative f' := % with respect to x;. The implementation
is based on the following definition:

Let n:=deg f and & := (—1)***1)/2_For k € {0,...,n}, the k-th Sturm-Habicht polynomial of f is defined as:
f ifk=n
Sthay(f) = f ifk=n—1
Sn_r_1Sresi(f, f) if0<k<n-—-2
where Sresg(f, f7) is defined as in the concept PolynomialTraits_d::PolynomialSubresultants.

The result is written in an output range, starting with the 0-th Sturm-Habicht polynomial (which is equal to the
discriminant of f up to a multiple of the leading coefficient).

Refines
AdaptableBinaryFunction

CopyConstructible
DefaultConstructible

Operations

template<typename Outputlterator>
Outputlterator fo( Polynomial_d f, Outputlterator out)

computes the Sturm-Habicht sequence of f, with respect

to the outermost variable. = Each element is of type
PolynomialTraits_d::Polynomial_d.

template<typename Outputlterator>
Outputlterator fo( Polynomial_d f, Outputlterator out, int i)

computes the Sturm-Habicht sequence of f with respect to
the variable x;.
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See Also

Polynomial _d. . ....... ... . . page 261
PolynomialTraits_d . ........ ... e e e e page 262
PolynomialTraits_d::ReSUIIant . . .......... e e i page 312
PolynomialTraits_d::PrincipalSturmHabichtSequence . . . ........ ... ... ... . ... i, page 323
PolynomialTraits_d::SturmHabichtSequenceWithCofactors . . ............c.c.ouuiiiieeiiiiieeeann. page 321
PolynomialTraits_d::PolynomialSubresultants . . ........ ... ..o i page 314
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PolynomialTraits_d::SturmHabichtSequenceWithCofactors
Note: This functor is optional!

Definition

Computes the Sturm-Habicht polynomials of a polynomial f of degree n, as defined in the documentation
of PolynomialTraits_d::SturmHabichtSequence. Moreover, for Stha;(f), polynomials u; and v; with degu; <
n—i—2and degv; <n—i—1 are computed such that Sres;(p,q) = u;f +v;f’. u; and v; are called the cofactors
of Stha;(f).

The result is written in three output ranges, each of length min{n,m} + 1, starting with the 0-th Sturm-Habicht
polynomial Sthay(f) and the corresponding cofactors.

Refines

AdaptableBinaryFunction
CopyConstructible
DefaultConstructible

Operations

template<typename Outputlteratorl, typename Outputlterator2, typename Outputlterator3>
Outputlteratorl fo.operator()( Polynomial_d f,

Outputlteratorl stha,

Outputlterator2 co_f,

Outputlterator3 co_fx)

computes the Sturm-Habicht sequence of f, and the cofac-
tors, with respect to the outermost variable. Each element is
of type PolynomialTraits_d::Polynomial_d.

template< typename Outputlteratorl, typename Outputlterator2, typename Outputlterator3 >
Outputlteratorl fo.operator()( Polynomial_d f,

Outputlteratorl stha,

Outputlterator2 co_f,

Outputlterator3 co_fx,

int i)
computes the Sturm-Habicht sequence of f, and the co-
factors, with respect to x;. Each element is of type
PolynomialTraits_d::Polynomial_d.
See Also
Polynomial_d. ........ ... ..o e page 261
PolynomialTraits_d . ......... ... .. e e e page 262




PolynomialTraits_d::ReSUltant . ........... ... . . i e page 312

PolynomialTraits_d::SturmHabichtSequence ... ............ ..o uu i, page 319
PolynomialTraits_d:: PrincipalSturmHabichtSequence . ...............couuuiiieeiniiieennnnn.. page 323
PolynomialTraits_d:: PolynomialSubresultantsWithCofactors. .............ouuuuiiiiieeeniienn.n. page 316
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PolynomialTraits_d::PrincipalSturmHabichtSequence

Note: This functor is optional!

Definition

Computes the principal leading coefficients of the Sturm-Habicht sequence of a polynomials f of type
PolynomialTraits_d::Polynomial_d with respect a certain variable x;. This means that for the j-th Sturm-Habicht
polynomial, this methods returns the coefficient of x!.

Note that the degree of the j-th Sturm-Habicht polynomial is at most j, but the principal coefficient might be
zero, thus, this functor does not necessarily give the leading coefficient of the Sturm-Habicht polynomials.

In case that PolynomialTraits_d::Coefficient_type is RealEmbeddable, the function CGAL::number_of_real_
roots can be used on the resulting sequence to count the number of distinct real roots of the polynomial f.

Refines
AdaptableBinaryFunction

CopyConstructible
DefaultConstructible

Operations

template<typename Outputlterator>
Outputlterator fo( Polynomial_d f, Outputlterator out)

computes the principal coefficients of the Sturm-Habicht se-
quence of f, with respect to the outermost variable. Each
element is of type PolynomialTraits_d::Coefficient_type.

template<typename Outputlterator>
Outputlterator fo( Polynomial_d f, Outputlterator out, int i)

computes the principal coefficients of the Sturm-Habicht se-
quence of f with respect to the variable x;.

See Also

Polynomial d. ... .... ... .. . . page 261
PolynomialTraits d . ........ ... e e e page 262
CGAL::nUMDET_Of -T€AL_TOOLS . . . ..ottt e et e e e et e et it page 377
PolynomialTraits _d::ReSUIIANt . . ........ .ot page 312
PolynomialTraits_d::SturmHabichtSequence . ........... ... .. . ... i, page 319
PolynomialTraits_d::PrincipalSubresultants . .. ....... ... ... .. .. page 318
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Class

CGAL::Polynomial<Coeff>

Definition

An instance of the data type Polynomial represents a polynomial p = ag + aj * x + ...a; * x' from the ring
Coef f[x]. Coeff can itself be an instance of Polynomial, yielding a form of multivariate polynomials.

The template argument Coeff must be at least a model of IntegralDomainWithoutDivision. For all operations
naturally involving division, an IntegralDomain is required. Polynomial offers a full set of algebraic operators,
i.e. binary +, -, *, / as well as +=, —=, *=, /=; not only for polynomials but also for a polynomial and a number
of the coefficient type. (The / operator must only be used for integral divisions, i.e. those with remainder zero.)
The operations are implemented naively: + and - need a number of Coeff operations which is linear in the
degree while * is quadratic. Unary + and - and (in)equality ==, != are provided as well.

Polynomial is a model of LessThanComparable if Coeff is a model of LessThanComparable. In this case Poly-
nomial provides comparison operators <, >, <=, >=, where the comparison amounts to lexicographic comparison
of the coefficient sequence, with the coefficient of the highest power taking precedence over those of lower
powers.

Polynomial is a model of Fraction if Coeff is a model of Fraction. In this case Polynomial may be decomposed
into a (scalar) denominator and a compound numerator with a simpler coefficient type. Often operations can be
performed faster on these denominator-free multiples.

Polynomial is a model of Modularizable if Coeff is a model of Modularizable, where the homomorphic map on
the polynomials is simply defined as the canonical extension of the homomorphic map which is defined on the
coefficient type.

Implementation

Inexact and limited-precision types can be used as coefficients, but at the user’s risk. The algorithms imple-
mented were written with exact number types in mind.

This data type is implemented as a handle type with value semantics using CGAL::Handle_with_policy, where
HandlePolicy is Handle_policy_no_union. An important invariant to be preserved by all methods is that the
coefficient sequence does not contain leading zero coefficients (where leading means at the high-degree end),
with the exception that the zero polynomial is represented by a single zero coefficient.

Is Model for the Concepts

Polynomial_d

Assignable

CopyConstructible
DefaultConstructible
EqualityComparable
Implicitinteroperable ~ with int
Implicitinteroperable ~ with Coeff

Fraction if Coeff is model of Fraction
LessThanComparable if Coeff is model of LessThanComparable
Modularizable if Coeff is model of Modularizable.
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Creation

Polynomial<Coeff> poly;
Polynomial<Coeff> poly( Polynomial x);
Polynomial<Coeff> poly(int i),
Polynomial<Coeff> poly( Coeff x);
template <class Forward_iterator>
Polynomial<Coeff> poly( Forward_iterator first, Forward _iterator last);

Types

Operations

const_iterator

const_iterator

int

NT

NT
std::ostreams

std: :istreams

poly.begin() const
poly.end() const

poly.degree() const

Introduces an variable initialized with 0.
copy constructor.

Constructor from int.

Constructor from type Coeff.

Constructor from iterator range with value type Coeff.

A const random access iterator pointing to the constant coef-
ficient.

A const random access iterator pointing beyond the leading
coefficient.

The degree of the polynomial in x. The degree of the zero
polynomial is 0.

poly.operator[]( unsigned int i) const

poly.lcoeff() const

Const access to the coefficient of x'.

Const access to the leading coefficient.

operator<<( std::ostreams os, poly)

Writes poly to ostream os. The format depends on
the CGAL::10::MODE of os. In case the mode is
CGAL::10::ASCII the format is P[d(0,a0)(1,ay)...(d,aq)],
where d is the degree of the polynomial. The format is output
sensitive, that is, coefficients that are zero are not reported. In
case the mode is CGAL::10::PRETTY the format is human
readable.

operator>>( std::istreams is, poly)

Reads poly from istream is in format
Pld(0,a0)(1,a1)...(d,aq)], the output format in mode
CGAL::10::ASCII.
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Class

CGAL::Polynomial_traits_d<Polynomial_d>

Definition
A model of concept PolynomialTraits_d

#include <CGAL/Polynomial_traits_d.h>

Is Model for the Concepts

PolynomialTraits_d
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CGAL::Exponent_vector

Definition

For a given (multivariate) monomial the vector of its exponents is called the exponent vector. The class is meant
to represent such a vector.

A vector is considered as valid, in case it represents a valid monomial. that is, it should not contain negative
exponents. We decided to use int as the value type, since negative exponents may appear in intermediate results.
The set of exponent vectors with elementwise addition forms an Abelian Group.

Beside the constructors has almost the same interface as an std::vector<int>. Moreover the comparison is
changed such that the lexicographic order starts the comparison at the last entry. This reflects the fact that the

last entry corresponds to the outermost variable of a multivariate polynomial.

#tinclude <CGAL/Exponent_vector.h>

Is Model for the Concepts

Random Access Container
Back Insertion Sequence

DefaultConstructible

Assignable

CopyConstructible

EqualityComparable

LessThanComparable

Creation

Exponent_vector fo; introduces an uninitialized variable fo.
Exponent_vector fo( ev_); The copy constructor

Exponent_vector fo( int el); Creates a vector containing the given element.
Exponent_vector fo( int el, int e2); Creates a vector containing the given elements.
Exponent_vector fo( int el, int e2, int e3); Creates a vector containing the given elements.

Exponent_vector fo( int el, int e2, int 3, int e4);

Creates a vector containing the given elements.

template < class Inputlterator >
Exponent_vector fo( Inputlterator begin, Inputlterator end);

Creates a vector with a copy of the given range.
Precondition: Inputlterator must allow the value type int.
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g)(}?ﬁrations

Operations

Group Operation:

is_valid( ev)

Returns true if all entries of ev are not negative.

Exponent_vector +evl

Exponent_vector —evl

Exponent_vector evl +ev2 Precondition: evl.size() == ev2.size()
Exponent_vector evl —ev2 Precondition: evl.size() == ev2.size()
Exponent_vector fo+=ev2 Precondition: fo.size() == ev2.size()

Exponent_vector fo—=ev2 Precondition: fo.size() == ev2.size()
EqualityComparable:

bool evl ==ev2

bool evl !=ev2

LessThanComparable:

bool evl <ev2 Lexicographic compare, starting with the last variable.
See Also

PolynomiGl_d. ........ ... .. e page 261

PolynomialTraits_d . ........ ... e e e
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CGAL::Polynomial_type_generator<T,d>

Definition

This class template provides a convenient way to obtain the type representing a multivariate polynomial with d
variables, where T is the innermost coefficient type. In case T happens to be a CGAL::Polynomial the generator
will add d variables to T.

T must be a model of IntegralDomainWithoutDivision.
d must be of type int.

Types

Polynomial_type_generator<T,d>:: Type The generated type.

#include <CGAL/Polynomial_type_generator.h>

See Also

CGAL::Polynomial<Coeff> . .. ... ..o e e page 324
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Function

CGAL::get_coefficient
#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function get_coefficient adapts the according functor in Polynomial_traits_d<
Polynomial_d>.

For more details see the concept PolynomialTraits_d::GetCoefficient.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::get_coefficient: :result_type

get_coefficient( Polynomial_d p, int i)

Adapts Polynomial_traits_d<Polynomial_d>
::GetCoefficient.
See Also
Polynomial d. .. ... page 261
Polynomial TraitS_d . . .. ..ottt e e e e page 262
PolynomialTraits_d::GetCoefficient ... ... ...t e page 269
PolynomialTraits_d::GetlnnermostCoefficient . .......... ... . ... . . i i, page 270
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CGAL::get_innermost_coefficient
#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function get_innermost_coefficient adapts the according functor in Polynomial
traits_d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::GetInnermostCoefficient.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::get_innermost_coefficient: :result_type

get_innermost_coefficient( Polynomial_d p, Exponent_vector ev)

Adapts Polynomial_traits_d<Polynomial_d>
::GetlnnermostCoelfficient.

See Also

Polynomial d. ... ... page 261
Polynomial TraitS_d . . .. ..ottt e e e e page 262
PolynomialTraits_d::GetCoefficient ... ... ...t e page 269
PolynomialTraits_d::GetlnnermostCoefficient . .......... ... . ... . . i i, page 270
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Function

CGAL::permute

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function permute adapts the according functor in Polynomial_traits_d<
Polynomial_d>.

For more details see the concept PolynomialTraits_d::Permute.

template <class Polynomial_d, class Inputlterator >
Polynomial_traits_d<Polynomial_d>::Permute::result_type

permute( Polynomial_d p, Inputlterator begin, Inputlterator end)

Adapts Polynomial_traits_d<Polynomial_d>::Permute.

See Also

Polynomial_d. ... ... e e e page 261
Polynomial Traits_d . . . . ...t e page 262
PolynomialTraits_d::Permute . ... ... ... e page 274
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CGAL::swap
#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function swap adapts the according functor in Polynomial_traits_d<Polynomial
d>.

For more details see the concept PolynomialTraits_d::Swap.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Swap::result_type

swap( Polynomial_d p, int i, int j)

Adapts Polynomial_traits_d<Polynomial_d>::Swap.

See Also

Polynomial_d. ... ... e e page 261
Polynomial Traits_d . . . . ... e page 262
Polynomial Traits _d:iSWap . . . ..ottt e page 275
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Function

CGAL::move

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function move adapts the according functor in Polynomial_traits_d<Polynomial
d>.

For more details see the concept PolynomialTraits_d::Move.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Move::result_type

move( Polynomial_d p, int i, int j)

Adapts Polynomial_traits_d<Polynomial_d>::Move.

See Also

Polynomial_d. ... ... e e page 261
Polynomial Traits_d . . . . ... e page 262
Polynomial Traits _d::XMOVE . . . ...ttt et e e e e e page 276
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CGAL::degree
#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function degree adapts the according functor in Polynomial_traits_d<Polynomial
d>.

For more details see the concept PolynomialTraits_d::Degree.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Degree::result_type

degree( Polynomial_d p, int i, index = Polynomial_traits_d<Polynomial_d>::d-1)

Adapts Polynomial_traits_d<Polynomial_d>::Degree.

See Also

Polynomial_d. ... ... e e page 261
Polynomial Traits_d . . . . ... e page 262
PolynomialTraits_d::Degree . . ... ..ot e e e page 277
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Function

CGAL::total_degree

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function fotal_degree adapts the according functor in Polynomial_traits_d<
Polynomial_d>.

For more details see the concept PolynomialTraits_d::TotalDegree.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Total_degree::result_type

total_degree( Polynomial_d p)

Adapts Polynomial_traits_d<Polynomial_d>::Total_degree.

See Also

Polynomial_d. .. ... e e e page 261
Polynomial Traits_d . . . . ... e page 262
PolynomialTraits_d::TotalDegree . . . . . ..ottt et e e e et e page 278
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CGAL::degree_vector

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function degree_vector adapts the according functor in Polynomial_traits_d<
Polynomial_d>.

For more details see the concept PolynomialTraits_d::DegreeVector.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Degree_vector::result_type

degree_vector( Polynomial_d p)

Adapts Polynomial_traits_d<Polynomial_d>
::DegreeVector.
See Also
Polynomial d. ... ... page 261
Polynomial TraitS_d . . .. ..ottt e e e e page 262
Polynomial Traits _d::Degree_VECIOT . . . ..ottt ettt et e et e page ??
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Function

CGAL::leading_coefficient

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function leading_coefficient adapts the according functor in Polynomial_traits_
d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::LeadingCoefficient.

template <class Polynomial_d>
Polynomial _traits_d<Polynomial_d>::Leading_coefficient: :result_type

leading_coefficient( Polynomial_d p)

Adapts Polynomial_traits_d<Polynomial_d>::Leading _

coefficient.
See Also
Polynomial d. .. ... page 261
Polynomial TraitS_d . . .. ..ottt e e e e page 262
PolynomialTraits_d::LeadingCoefficient .. ..........o i e page 280
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CGAL::innermost_leading_coefficient
#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function innermost_leading_coefficient adapts the according functor in
Polynomial_traits_d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::InnermostLeading Coefficient.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Innermost_leading _coefficient: :result_type

innermost_leading _coefficient( Polynomial_d p)

Adapts Polynomial_traits_d<Polynomial_d>
::InnermostLeading Coefficient.

See Also

Polynomial d. .. ... page 261
Polynomial TraitS_d . . .. ..ottt e e e e page 262
PolynomialTraits_d::InnermostLeadingCoefficient . ......... ... . i page 281
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Function

CGAL::canonicalize

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function canonicalize adapts the according functor in Polynomial_traits_d<
Polynomial_d>.

For more details see the concept PolynomialTraits_d::Canonicalize.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Canonicalize: :result_type

canonicalize( Polynomial_d p)

Adapts Polynomial_traits_d<Polynomial_d>::Canonicalize.

See Also

Polynomial_d. .. ... e page 261
Polynomial Traits_d . . . . ...t e page 262
PolynomialTraits_d::Canonicalize . . . ...ttt e page 282
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CGAL::differentiate

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function differentiate adapts the according functor in Polynomial_traits_d<
Polynomial_d>.

For more details see the concept PolynomialTraits_d::Differentiate.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Differentiate::result_type

differentiate( Polynomial_d p, index = Polynomial_traits_d<Polynomial_d>::d-1)

Adapts Polynomial_traits_d<Polynomial_d>::Differentiate.

See Also

Polynomial_d. .. ... e e e page 261
Polynomial Traits_d . . . . ... e page 262
PolynomialTraits_d::Differentiate .. ... ......... ..o it e page 283
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Function

CGAL::evaluate

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function evaluate adapts the according functor in Polynomial_traits_d<
Polynomial_d>.

For more details see the concept PolynomialTraits_d::Evaluate.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Evaluate::result_type

evaluate( Polynomial_d p, Polynomial_traits_d<Polynomial_d>::Coefficient_type x)

Adapts Polynomial_traits_d<Polynomial_d>::Evaluate.

See Also

Polynomial_d. .. ... e page 261
Polynomial Traits_d . . . . ...t e page 262
PolynomialTraits_d::Evaluate . . .. ... . e page 284
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CGAL::evaluate_homogeneous

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function evaluate_homogeneous adapts the according functor in Polynomial_
traits_d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::EvaluateHomogeneous.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Evaluate_homogeneous::result_type

evaluate_homogeneous( Polynomial_d p,
Polynomial_traits_d<Polynomial_d>::Coefficient_type u,
Polynomial _traits_d<Polynomial_d>::Coefficient_type v)

Adapts Polynomial_traits_d<Polynomial_d>::Evaluate_

homogeneous.
See Also
Polynomial_d. .. ... e e e page 261
Polynomial Traits_d . . . ... ..o page 262
PolynomialTraits_d::EvaluateHomogeneous . . . . ...... ...t page 285
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Function

CGAL::substitute

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function substitute adapts the according functor in Polynomial_traits_d<
Polynomial_d>.

For more details see the concept PolynomialTraits_d::Substitute.

template < class Polynomial_d, class Inputlterator >
CGAL::Coercion_traits<  Polynomial_traits_d<Polynomial_d>::Innermost_coefficient,  std::iterator_traits<
Input_iterator>::value_type >::Type

substitute( Polynomial_d p, Inputlterator begin, Inputlterator end)

Adapts Polynomial_traits_d<Polynomial_d>::Substitute.

See Also

Polynomial_d. ... ... e page 261
PolynomialTraits_d . . .. ...t e e e page 262
PolynomialTraits_d::SUbSHIULE . . . . ..ottt e page 286
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CGAL::is_zero_at

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function is_zero_at adapts the according functor in Polynomial_traits_d<
Polynomial_d>.

For more details see the concept PolynomialTraits_d::IsZeroAt.

template < class Polynomial_d, class Inputlterator >
Polynomial_traits_d<Polynomial_d>::Is_zero_at::result_type

is_zero_at( Polynomial_d p, Inputlterator begin, Inputlterator end)

Adapts Polynomial_traits_d<Polynomial_d>::Is_zero_at.

See Also

Polynomial_d. .. ... e e e page 261
Polynomial Traits_d . . . . ... e page 262
PolynomialTraits_d::ISZErOAL. . . ..ottt e e e page 288
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Function

CGAL::sign_at

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function sign_at adapts the according functor in Polynomial_traits_d<Polynomial
d>.

For more details see the concept PolynomialTraits_d::SignAt.

template < class Polynomial_d, class Inputlterator >
Polynomial_traits_d<Polynomial_d>::Sign_at::result_type

sign_at( Polynomial_d p, Inputlterator begin, Inputlterator end)

Adapts Polynomial_traits_d<Polynomial_d>::Sign_at.

See Also

Polynomial_d. ... ... e e page 261
Polynomial Traits_d . . . . ... e page 262
PolynomialTraits _d::SIZNAL. . ..o e it e e e e page 290
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CGAL::substitute_homogeneous

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function substitute_homogeneous adapts the according functor in Polynomial_
traits_d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::SubstituteHomogeneous.

template < class Polynomial_d, class Inputlterator >
CGAL::Coercion_traits<  Polynomial_traits_d<Polynomial_d>::Innermost_coefficient,  std::iterator_traits<
Input_iterator>::value_type >::Type

substitute_homogeneous( Polynomial_d p, Inputlterator begin, Inputlterator end)

Adapts  Polynomial_traits_d<Polynomial_d>::Substitute _

homogeneous.
See Also
Polynomial_d. .. ... e page 261
Polynomial TraitS_d . . .. ...t e e e e page 262
PolynomialTraits_d::SubstituteHOmogeneous . . . .. ... ...t page 287
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Function

CGAL::is_zero_at_homogeneous

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function is_zero_at_homogeneous adapts the according functor in Polynomial_
traits_d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::1sZeroAtHomogeneous.

template < class Polynomial_d, class Inputlterator >
Polynomial_traits_d<Polynomial_d>::Is_zero_at_homogeneous: :result_type

is_zero_at_homogeneous( Polynomial_d p, Inputlterator begin, Inputlterator end)

Adapts  Polynomial_traits_d<Polynomial_d>::Is_zero_at_

homogeneous.
See Also
Polynomial d. .. ... page 261
Polynomial TraitS_d . . .. ..ottt e e e e page 262
PolynomialTraits_d::IsSZero AtHOMOZENEOUS . . . . ..ottt ettt et page 289
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CGAL::sign_at_homogeneous
#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function sign_at_homogeneous adapts the according functor in Polynomial_
traits_d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::SignAtHomogeneous.

template < class Polynomial_d, class Inputlterator >
Polynomial_traits_d<Polynomial_d>::Sign_at_homogeneous::result_type

sign_at_homogeneous( Polynomial_d p, Inputlterator begin, Inputlterator end)

Adapts Polynomial_traits_d<Polynomial_d>::Sign_at_
homogeneous.
See Also
Polynomial d. .. ... page 261
Polynomial TraitS_d . . .. ..ottt e e e e page 262
PolynomialTraits_d::Sign AtHOMOZENEOUS . . ... ..ottt e page 291

349

-
O
)

O

-

)
LL




Function

CGAL::compare

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function compare adapts the according functor in Polynomial_traits_d<
Polynomial_d>.

For more details see the concept PolynomialTraits_d::Compare.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Compare::result_type

compare( Polynomial_d p, Polynomial_d q)

Adapts Polynomial_traits_d<Polynomial_d>::Compare.

See Also

Polynomial_d. .. ... e page 261
Polynomial Traits_d . . . . ...t e page 262
Polynomial Traits _d::COMPATE. . ... ..ovuttt ittt ettt e page 292
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CGAL::univariate_content

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function univariate_content adapts the according functor in Polynomial_traits_d<
Polynomial_d>.

For more details see the concept PolynomialTraits_d::UnivariateContent.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Univariate_content::result_type

univariate_content( Polynomial_d p)

Adapts Polynomial_traits_d<Polynomial_d>
::UnivariateContent.
See Also
Polynomial d. .. ... ..o page 261
PolynomialTraits d . . .. ..ot page 262
PolynomialTraits_d::Univariate_CONtENt . . . ......uuutttt ettt ettt eeaeeens page ??
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Function

CGAL::multivariate_content

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function multivariate_content adapts the according functor in Polynomial_traits_
d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::MultivariateContent.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Multivariate_content::result_type

multivariate_content( Polynomial_d p)

Adapts Polynomial_traits_d<Polynomial_d>::Multivariate

content.
See Also
Polynomial d. ... ... page 261
Polynomial TraitS_d . . .. ...ttt e e e e e e page 262
PolynomialTraits_d::MultivariateContent. . . ... .....ounutt ettt i eenns page 294
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CGAL::square_free_factorize

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function square_free_factorize adapts the according functor in Polynomial_traits_
d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::SquareFreeFactorize.

template <class Polynomial_d, class Outputlterator >

Outputlterator square_free_factorize( Polynomial_d p,
Outputlterator it,
Polynomial_traits_d<Polynomial>::Innermost_coefficients a)

Adapts Polynomial_traits_d<Polynomial_d>::Square_free_
factorize.

template <class Polynomial_d, class Outputlterator >
Outputlterator square_free_factorize( Polynomial_d p, Outputlterator it)

Adapts Polynomial_traits_d<Polynomial_d>::Square_free_

factorize.
See Also
Polynomial d. ... ... page 261
PolynomialTraits _d . . .. ...t e e page 262
PolynomialTraits_d::SquareFreeFactorize . ... page 295
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Function

CGAL::make_square_free

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function make_square_free adapts the according functor in Polynomial_traits_d<
Polynomial_d>.

For more details see the concept PolynomialTraits_d::MakeSquareFree.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Make_square_free::result_type

make_square_free( Polynomial_d p)

Adapts Polynomial_traits_d<Polynomial_d>::Make_square _

free.
See Also
Polynomial d. ... ... page 261
Polynomial TraitS_d . . .. ..ottt e e e e page 262
PolynomialTraits_d::MakeSquareFree . ........... i e e page 296
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CGAL::is_square_free
#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function is_square_free adapts the according functor in Polynomial_traits_d<
Polynomial_d>.

For more details see the concept PolynomialTraits_d::IsSquareFree.

template <class Polynomial_d>
Polynomial _traits_d<Polynomial_d>::Is_square_free::result_type

is_square_free( Polynomial_d p)

Adapts Polynomial_traits_d<Polynomial_d>::Is_square_

free.
See Also
Polynomial d. ... ... page 261
Polynomial TraitS_d . . .. ..ottt e e e e page 262
PolynomialTraits_d::IsSquareFree . . . ... i page 297
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Function

CGAL::pseudo_division

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function pseudo_division adapts the according functor in Polynomial_traits_d<
Polynomial_d>.

For more details see the concept PolynomialTraits_d::PseudoDivision.

template <class Polynomial_d>
void pseudo_division( Polynomial_d f,
Polynomial_d g,
Polynomial_ds g,
Polynomial_ds r,
Polynomial_traits_d<Polynomial_d>::Coefficient_types D)

Adapts Polynomial_traits_d<Polynomial_d>::Pseudo_
division.
See Also
Polynomial_d. ... ... page 261
Polynomial TraitS_d . . .. ..ottt e e e e e page 262
Polynomial Traits_d::PseudoDiviSion. . .. ...ttt e e page 298
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CGAL::pseudo_division_quotient
#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function pseudo_division_quotient adapts the according functor in Polynomial
traits_d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::PseudoDivisionQuotient.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Pseudo_division_quotient: :result_type

pseudo_division_quotient( Polynomial_d p, Polynomial_d q)

Adapts Polynomial_traits_d<Polynomial_d>::Pseudo_
division_quotient.

See Also

Polynomial d. .. ... page 261
Polynomial TraitS_d . . .. ..ottt e e e e page 262
PolynomialTraits_d::PseudoDivisionQuotient . . . . ...ttt page 299
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Function

CGAL::pseudo_division_remainder

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function pseudo_division_remainder adapts the according functor in Polynomial
traits_d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::PseudoDivisionRemainder.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Pseudo_division_remainder: :result_type

pseudo_division_remainder( Polynomial_d p, Polynomial_d q)

Adapts Polynomial_traits_d<Polynomial_d>::Pseudo_
division_remainder.

See Also

Polynomial d. ... ... page 261
PolynomialTraits d . . .. ... e e page 262
PolynomialTraits_d::PseudoDivisionRemainder. . ... page 300
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CGAL::gcd_up_to_constant_factor

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function gcd_up_to_constant_factor adapts the according functor in Polynomial_
traits_d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::GedUpToConstantFactor.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Gcd_up_to_constant_factor::result_type

ged_up_to_constant_factor( Polynomial_d p, Polynomial_d q)

Adapts  Polynomial_traits_d<Polynomial_d>::Gcd_up _to_
constant_factor.

See Also

Polynomial d. .. ... page 261
Polynomial TraitS_d . . .. ..ottt e e e e page 262
PolynomialTraits_d::GedUpToConstantFactor . . ....... ..o page 301
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Function

CGAL::integral_division_up_to_constant_factor

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function integral_division_up_to_constant_factor adapts the according functor in
Polynomial_traits_d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::IntegralDivisionUpToConstantFactor.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Integral_division_up_to_constant_factor::result_type

integral_division_up_to_constant_factor( Polynomial_d p, Polynomial_d q)

Adapts Polynomial_traits_d<Polynomial_d>::Integral_
division_up_to_constant_factor.

See Also

Polynomial d. .. ... page 261
Polynomial TraitS_d . . .. ..ottt e e e e page 262
PolynomialTraits_d::IntegralDivisionUpToConstantFactor. ...t nn. page 302
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CGAL::univariate_content_up_to_constant_factor

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function univariate_content_up_to_constant_factor adapts the according functor
in Polynomial _traits_d<Polynomial_d>.

For more details see the concept PolynomialTraits_d:: Univariate ContentUpToConstantFactor.

template <class Polynomial_d>
Polynomial _traits_d<Polynomial_d>::Univariate_content_up_to_constant_factor::result_type

univariate_content_up_to_constant_factor( Polynomial_d p)

Adapts  Polynomial_traits_d<Polynomial_d>::Univariate _
content_up_to_constant_factor.

See Also

Polynomial d. ... ... page 261
Polynomial TraitS_d . . .. ..ottt e e e e page 262
PolynomialTraits_d::UnivariateContentUpToConstantFactor . ............ ... .o, page 303
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Function

CGAL::square_free_factorize_up_to_constant_factor

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function square_free_factorize_up_to_constant_factor adapts the according
functor in Polynomial_traits_d<Polynomial _d>.

For more details see the concept PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor.

template <class Polynomial_d, class Outputlterator >
Outputlterator square_free_factorize_up_to_constant_factor( Polynomial_d p, Outputlterator it)

Adapts Polynomial_traits_d<Polynomial_d>::Square_free_
factorize_up_to_constant_factor.

See Also

Polynomial_d. ... ... e e page 261
PolynomialTraits_d . . .. ...t et page 262
PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor . .. ........ ..., page 304
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CGAL::shift

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function shift adapts the according functor in Polynomial_traits_d<Polynomial
d>.

For more details see the concept PolynomialTraits_d::Shift.

template <class Polynomial_d>
Polynomial _traits_d<Polynomial_d>::Shift: :result_type

shift( Polynomial_d p, int i, int index = Polynomial_traits_d<Polynomial_d>::d-1)

Adapts Polynomial_traits_d<Polynomial_d>::Shift.

See Also

Polynomial_d. ... ... e e page 261
Polynomial Traits_d . . . . ... e page 262
PolynomialTraits_d::Shift. ... ... .o page 305
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Function

CGAL::negate

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function negate adapts the according functor in Polynomial_traits_d<Polynomial
d>.

For more details see the concept PolynomialTraits_d::Negate.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Negate::result_type

negate( Polynomial_d p, int index = Polynomial_traits_d<Polynomial_d>::d-1)

Adapts Polynomial_traits_d<Polynomial_d>::Negate.

See Also

Polynomial_d. .. ... e e e page 261
Polynomial Traits_d . . . . ... e page 262
Polynomial Traits _d::NE@ate. . ... ..ottt ettt et page 306
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CGAL::invert

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function invert adapts the according functor in Polynomial_traits_d<Polynomial
d>.

For more details see the concept PolynomialTraits_d::Invert.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Invert::result_type

invert( Polynomial_d p, int index = Polynomial_traits_d<Polynomial_d>::d-1)

Adapts Polynomial_traits_d<Polynomial_d>::Invert.

See Also

Polynomial_d. ... ... e e page 261
Polynomial Traits_d . . . . ... e page 262
PolynomialTraits_d::InVert. . . ... ..o e page 307
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Function

CGAL::translate

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function translate adapts the according functor in Polynomial_traits_d<
Polynomial_d>.

For more details see the concept PolynomialTraits_d::Translate.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Translate::result_type

translate( Polynomial_d p,
Polynomial_traits_d<Polynomial_d>::Innermost_coefficient_type a,

int index = Polynomial_traits_d<Polynomial_d>::d-1)

Adapts Polynomial_traits_d<Polynomial_d>::Translate.

See Also

Polynomial d. ... ... page 261
PolynomialTraits_d . . .. ...t page 262
PolynomialTraits_d::Translate. . .. ... e page 308
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CGAL::translate_homogeneous

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function translate_homogeneous adapts the according functor in Polynomial_
traits_d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::TranslateHomogeneous.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Translate_homogeneous: :result_type

translate_homogeneous( Polynomial_d p,
Polynomial _traits_d<Polynomial_d>::Innermost_coefficient _

type u,
Polynomial_traits_d<Polynomial_d>::Innermost_coefficient_
type v,
int index = Polynomial_traits_d<Polynomial_d>::d-1)
Adapts Polynomial_traits_d<Polynomial_d>::Translate_
homogeneous.
See Also
Polynomial d. ... ... page 261
Polynomial Traits _d . . .. ..o e page 262
PolynomialTraits_d:: TranslateHOmMOZENEOUS . ... ...ttt i page 309
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Function

CGAL::scale

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function scale adapts the according functor in Polynomial_traits_d<Polynomial
d>.

For more details see the concept PolynomialTraits_d::Scale.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Scale::result_type

scale( Polynomial_d p,
Polynomial_traits_d<Polynomial_d>::Innermost_coefficient_type a,

int index = Polynomial_traits_d<Polynomial_d>::d-1)

Adapts Polynomial_traits_d<Polynomial_d>::Scale.

See Also

Polynomial d. ... ... page 261
PolynomialTraits_d . . .. ..ot page 262
PolynomialTraits_d::Scale . . ... ...t page 310
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CGAL::scale_homogeneous

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function scale_homogeneous adapts the according functor in Polynomial_traits_
d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::ScaleHomogeneous.

template <class Polynomial_d>
Polynomial _traits_d<Polynomial_d>::Scale_homogeneous: :result_type

scale_homogeneous( Polynomial_d p,
Polynomial_traits_d<Polynomial_d>::Innermost_coefficient_

type u,
Polynomial_traits_d<Polynomial_d>::Innermost_coefficient_
type v,
int index = Polynomial_traits_d<Polynomial_d>::d-1)
Adapts Polynomial_traits_d<Polynomial_d>::Scale_
homogeneous.
See Also
Polynomial d. ... ... page 261
Polynomial Traits _d . . .. ..o e page 262
PolynomialTraits_d::ScaleHOmogeneous . . ... ....out e e page 311
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Function

CGAL::resultant

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function resultant adapts the according functor in Polynomial_traits_d<
Polynomial_d>.

For more details see the concept PolynomialTraits_d::Resultant.

template <class Polynomial_d>
Polynomial_traits_d<Polynomial_d>::Resultant::result_type

resultant( Polynomial_d p, Polynomial_d q)

Adapts Polynomial_traits_d<Polynomial_d>::Resultant.

See Also

Polynomial_d. .. ... e page 261
Polynomial Traits_d . . . . ...t e page 262
PolynomialTraits_d::Resultant ... ......... .. i page 312
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CGAL::polynomial_subresultants

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function polynomial_subresultants adapts the according functor in Polynomial
traits_d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::PolynomialSubresultants.

template<typename Polynomial_d,typename Outputlterator>

Outputlterator polynomial_subresultants( Polynomial_d p, Polynomial_d q, Outputlterator out)

computes the polynomial subresultants of p and g, with re-
spect to the outermost variable. Each element is of type
Polynomial_d.

See Also

Polynomial_d. .. ... e page 261
PolynomialTraits _d . . .. ...t page 262
PolynomialTraits_d::PolynomialSubresultants . ............ ..., page 314
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Function

CGAL::polynomial_subresultants_with_cofactors

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function polynomial_subresultants_with_cofactors adapts the according functor
in Polynomial _traits_d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::PolynomialSubresultantsWithCofactors.

template<typename Polynomial_d, typename Outputlteratorl, typename Outputlterator2, typename Out-

putlterator3>
Outputlteratorl polynomial_subresultants_with_cofactors( Polynomial_d p,
Polynomial_d q,
Outputlteratorl sres_out,
Outputlterator2 coP _out,
Outputlterator3 coQ_out)
computes the polynomial subresultants of p and g, sres_out,
with respect to the outermost variable, and the cofactors for
P, coP_out and Q, coQ_out. The elements of each output
range are of type Polynomial_d.
See Also
Polynomial_d. .. ...t e e page 261
Polynomial Traits_d . . . .. ..ot e e page 262
PolynomialTraits_d::PolynomialSubresultantsWithCofactors............... ... ... ... ... ... page 316
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CGAL::principal_subresultants
#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function principal_subresultants adapts the according functor in Polynomial_
traits_d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::PrincipalSubresultants.

template<typename Polynomial_d,typename Outputlterator>

Outputlterator principal_subresultants( Polynomial_d p, Polynomial_d q, Outputlterator out)

computes the principal subresultants of p and ¢, with re-
spect to the outermost variable. Each element is of type
Polynomial_traits_d<Polynomial_d>::Coefficient_type.

See Also

Polynomial_d. .. ... page 261
PolynomialTraits _d . . .. ...t page 262
PolynomialTraits_d::PrincipalSubresultants. . ...t page 318
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Function

CGAL::sturm_habicht_sequence

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function sturm_habicht_sequence adapts the according functor in Polynomial_
traits_d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::SturmHabichtSequence.

template<typename Polynomial_d,typename Outputlterator>

Outputlterator sturm_habicht_sequence( Polynomial_d f, Outputlterator out)

computes the Sturm-Habicht-sequence of f with respect to
the outermost variable. Each element is of type Polynomial_

d.
See Also
Polynomial_d. .. ... e page 261
PolynomialTraits _d . . .. ..ot e e page 262
PolynomialTraits_d::SturmHabichtSequence. .......... ... .. . i page 319

374



CGAL::sturm_habicht_sequence_with_cofactors

#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function sturm_habicht_sequence_with_cofactors adapts the according functor in
Polynomial_traits_d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::SturmHabichtSequenceWithCofactors.

template<typename Polynomial_d, typename Outputlteratorl, typename Outputlterator2, typename Out-

putlterator3>
Outputlteratorl sturm_habicht_sequence_with_cofactors( Polynomial_d f,
Outputlteratorl stha_out,
Outputlterator2 cof_out,
Outputlterator3 cofx_out)
computes the Sturm-Habicht sequence of f stha_out, with
respect to the outermost variable, and the cofactors for f,
cof-out and f’, cofx_out. The elements of each output range
are of type Polynomial_d.
See Also
Polynomial d. .. ... page 261
Polynomial TraitS_d . . .. ..ottt e e e e e e page 262
PolynomialTraits_d::SturmHabichtSequenceWithCofactors .. ..., page 321
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Function

CGAL::principal_sturm_habicht_sequence
#include <CGAL/polynomial_utils.h>

Definition

For a given Polynomial_d the function principal_sturm_habicht_sequence adapts the according functor in
Polynomial_traits_d<Polynomial_d>.

For more details see the concept PolynomialTraits_d::PrincipalSturmHabichtSequence.

template <typename Polynomial_d,typename Outputlterator>

inline Outputlterator  principal_sturm_habicht_sequence( typename Polynomial_d f, Outputlterator out)

computes the principal Sturm-Habicht coefficients of f with
respect to the outermost variable. Each element is of type
Polynomial_traits_d<Polynomial_d>::Coefficient_type.

See Also

Polynomial_d. ... ... e page 261
PolynomialTraits_d . . .. ...t e e page 262
PolynomialTraits_d::PrincipalSturmHabichtSequence ............ . ... .o .. page 323
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CGAL::number _of_real_roots
#include <CGAL/polynomial_utils.h>
Definition

Given a polynomial f, or a range of values that is interpreted as the principal Sturm-Habicht coefficients of f,
the function computes

-
O
)

O

-

)
LL

m:=#{oeR| f(a) =0}

that is, the number of distinct real roots of f.

The coefficient type of the polynomial, or the value type of the iterator range, respectively must be a model of
RealEmbeddable. In the second version, it is not required to pass the exact princiapl Sturm-Habicht coefficients
to the functions; it is only required that the sign of each element corresponds to the sign of the actual principal
Sturm-Habicht coefficient.

li advanced ——

We explain the internals of this function. For a sequence I := (ay, ..., a,) of real numbers with ag # 0, define

S
C(I) = Z €;
i=1
where s is the number of subsequences of [ of the form
(a,0,...,0,b)
——
k
witha #0,b # 0,k > 0.
For the i-th subsequence of , define
0 if k is odd,

&= (—1)*2sign(ab) if k is even.

For f € R[x] with deg f = n, we have:

C(stha,(f),...,sthag(f)) =#{a e R | f(a) =0}

In other words, the signs of the principal Sturm-Habicht coefficients determine the number of distinct real roots
of f.

Ii advanced ——

Operations

template<typename Polynomial_d>
int number_of_real_roots( Polynomial_d f)

computes the number of distinct real roots of f

template<typename Inputlterator>
377



int number_of_real_roots( Inputlterator start, Inputlterator end)

computes the number of distinct real roots of f whose prin-
cipal Sturm-Habicht coefficients are passed by the iterator

range.
See Also

Polynomial d. ... ... page 261
Polynomial TraitS_d . . .. ..ottt e e e e e e e page 262
PolynomialTraits_d::PrincipalSturmHabichtSequence . ............ ...t page 323
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Chapter 8

Algebraic Kernel

Eric Berberich, Michael Hemmer, Michael Kerber, Sylvain Lazard, Luis Pefiaranda, and Monique Teillaud
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8.1 Introduction

Real solving of polynomials is a fundamental problem with a wide application range. This package is targeted
at providing black-box implementations of state-of-the-art algorithms to determine, compare, and approximate
real roots of univariate polynomials and bivariate polynomial systems. Such a black-box is called an Algebraic
Kernel. Since this package is aimed at providing more than one implementation, the interface of the algebraic
kernels is expressed in concepts. The main concepts provided by this package are the AlgebraicKernel_d_I
for univariate polynomial systems and AlgebraicKernel_d_2 for bivariate polynomial systems, the latter being a
refinement of the first.
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8.2 Algebraic Kernel Concepts

8.2.1 Univariate Algebraic Kernel
Major types

First of all, the univariate algebraic kernel provides construction, comparison and approximation of real roots
of univariate polynomials. Thus, the major public types the AlgebraicKernel_d_I provides are:
AlgebraicKernel_d_I::Polynomial_I — the type representing univariate polynomials,
AlgebraicKernel_d_I::Coefficient — the coefficient type of these polynomials,
AlgebraicKernel_d_I::Algebraic_real_I — the type representing real roots,

AlgebraicKernel_d_I::Bound — the type which is used to approximate these algebraic reals, in particular, it is
used to represent the boundaries of isolating intervals.

Construction of Algebraic Real Numbers

The kernel provides two different function objects to construct an AlgebraicKernel_d_1::Algebraic_real_1. The
most general way is to use AlgebraicKernel_d_I::Isolate_I; The function object takes a univariate polynomial
and writes all real roots into a given output iterator. It is also possible to retrieve the multiplicity of each
root. The second option is to construct one particular algebraic real using AlgebraicKernel_d_I::Construct._
algebraic_real_I. This function object provides construction from the native int type, the coefficient type as
well as the bound type. Moreover, it is possible to construct an algebraic real by giving a polynomial and either
an isolating interval or the index of the root. A related function object is AlgebraicKernel_d_I::Number_of-
solutions_1 computing the number of real roots of a polynomial.

Comparison and Approximation of Algebraic Real Numbers

An AlgebraicKernel_d_1::Algebraic_real_I is model of RealEmbeddable, for instance, it is possible to compare
two algebraic reals, to determine the sign of an algebraic real or to ask for its double approximation, see also
section 4.3. Moreover, AlgebraicKernel_d_I::Compare_I provides comparison with int, the coefficient type
and the bound type.

There are several ways to approximate an AlgebraicKernel_d_I::Algebraic_real_I:
AlgebraicKernel_d_I::Approximate_absolute_I — provides an approximation that is better than the passed ab-
solute error bound,

AlgebraicKernel_d_I::Approximate_relative_I — provides an approximation that is better than the passed rela-
tive error bound,

AlgebraicKernel_d_I::Isolate_l — returns an isolating interval with respect to a given univariate polynomial,

A related function object is AlgebraicKernel_d_I::Bound_between_I, which computes a number that isolates
two algebraic real numbers.

Interplay with Polynomials

It is also possible to retrieve a representing polynomial from an algebraic real using AlgebraicKernel_d_
1::Compute_polynomial_I, which guarantees that the algebraic real is a root of the returned polynomial. As
the name already indicates, this operation may be very costly since the polynomial may not be computed yet.
Moreover, it is not guaranteed that the returned polynomial is the minimal polynomial of the number. Together
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with AlgebraicKernel_d_I::Isolate_I, it is possible to retrieve the traditional representation of an algebraic real
as a square free polynomial and an isolating interval.

Though the AlgebraicKernel_d_I does not provide arithmetic operations on AlgebraicKernel_d_I::Algebraic_
real_l, it is possible to compute the sign of a polynomial at a given algebraic real using AlgebraicKernel_d_
1::Sign_at_1. Or alternatively, just compute whether the polynomial is zero at an algebraic real number using
AlgebraicKernel_d_I::Is_zero_at_I. Note that this operation can be significantly less expensive, in particular if
the polynomial is not zero at the given algebraic real.

Auxiliary Functionality for Polynomials

First of all the type AlgebraicKernel_d_I::Polynomial_I is required to be a model of the concept Polynomial_I,
which is defined in the Polynomial package (see chapter 7). This implies that all essential functionality is pro-
vided via CGAL::Polynomial_traits_d. However, the algebraic kernel also provides several function objects to
handle polynomials:

AlgebraicKernel_d_I::Is_square_free_I — determines whether a polynomial is square free,
AlgebraicKernel_d_1::Make_square_free_l — computes the square free part of a polynomial,
AlgebraicKernel_d_I::Square_free_factorize_1 — computes a square free factorization of a polynomial,
AlgebraicKernel_d_I::1s_coprime_l — computes whether a pair of polynomials is square free,
AlgebraicKernel_d_I::Make_coprime_l — decomposes two polynomials into the coprime factors and their com-
mon factor.

Though the polynomial package provides similar functionality we suggest to use the function objects provided
by the kernel, since the design of the algebraic kernel allows for instance internal caching by the kernel.

Also note that AlgebraicKernel _d_I::Square_free_factorize_I only computes the square free factorization up to
a constant factor. This is a slight modification with respect to its counterpart in CGAL::Polynomial_traits_d.
In this way it was possible that the concepts just require the coefficient type to be a model of IntegralDomain,
instead of Field or UniqueFactorizationDomain. For more details see also:

PolynomialTraits_d::SquareFreeFactorize . .. ... ...t page 295
PolynomialTraits_d::SquareFreeFactorizeUpToConstantFactor. ............ccouuiiieiiniiieeann. page 304

Design Rationale

Most implementations of an AlgebraicKernel_d_I will represent an algebraic real number by the root of a square
free polynomial and an isolating interval, that is, the number is defined as the only root of the polynomial within
the interval. Usually, one will refrain from computing the minimal polynomial since the computation of the
minimal polynomial is much more expensive and does not pay of. However, besides the representation by a
polynomial and an isolating interval one can also imagine the representation by a polynomial and the index of
the root, e.g., as the ith real root when enumerated from minus to plus infinity. Moreover, it may very well
be that the kernel just computes an approximation of the number, whereas the representing polynomial is not
computed yet. This is in particular relevant in relation to the AlgebraicKernel_d_2, where AlgebraicKernel_
d_I1::Algebraic_real_1 is used to represent coordinates of solutions of bivariate systems. Hence, the design
does not allow a direct access to any, seemingly obvious, members of an AlgebraicKernel_d_1::Algebraic_real
1. Instead there is, e.g., AlgebraicKernel_d_I::Compute_polynomial_I which emphasizes that the requested
polynomial may not be computed yet. Similarly, there is no way to directly ask for the refinement of the current
isolating interval since this would impose a state to every object of an AlgebraicKernel_d_1::Algebraic_real 1.
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8.2.2 Bivariate Algebraic Kernel

The concept AlgebraicKernel_d_2 is a refinement of AlgebraicKernel_d_1I, that is, a model of AlgebraicKernel
d_2 is also a model of AlgebraicKernel_d_I. Hence, the AlgebraicKernel_d_2 concept is designed such that
occurring names and functionalities are as similar as possible to those in the AlgebraicKernel_d_I concept. The
following are a direct generalization of their univariate counterparts:

AlgebraicKernel_d_2::Polynomial 2,
AlgebraicKernel_d_2::Algebraic_real_2,
AlgebraicKernel_d_2::Construct_algebraic_real 2,
AlgebraicKernel_d_2::Isolate_2,
AlgebraicKernel_d_2::Is_square_free_2,
AlgebraicKernel_d_2::Make_square _free_2,
AlgebraicKernel_d_2::Square_free_factorize_2,
AlgebraicKernel_d_2::Is_coprime_2,
AlgebraicKernel_d_2::Make_coprime_2,
AlgebraicKernel_d_2::Solve_2,
AlgebraicKernel_d_2::Number_of_solutions_2,
AlgebraicKernel_d_2::Compare_xy_2,
AlgebraicKernel_d_2::Sign_at_2,
AlgebraicKernel_d_2::Is_zero_at_2.

For instance, AlgebraicKernel_d_2::Solve_2 provides the solution for a bivariate polynomial system. However,
it is also possible to obtain the coordinates of these solutions with the additional functors:

AlgebraicKernel_d_2::Compute_x_2,
AlgebraicKernel_d_2::Compute_y_2.

In principal this would be sufficient generalization, since functions such as isolating, approximating algebraic
real numbers could be implemented using these access functions ant the corresponding functionalities in the
univariate algebraic kernel. However, one should be aware that an AlgebraicKernel_d_2::Algebraic_real_2 is
not necessarily represented as a pair of univariate solutions, that is, using AlgebraicKernel_d_2::Compute_y_2
may entail considerable computations. Therefore, the concept also requires the following additional functors
that may allow a model to bypass this issue:

AlgebraicKernel_d_2::Compute_polynomial _x_2,
AlgebraicKernel_d_2::Compute_polynomial_y_2,
AlgebraicKernel_d_2::Isolate_x_2,
AlgebraicKernel_d_2::Isolate_y_2,
AlgebraicKernel_d_2::Compare_x_2,
AlgebraicKernel_d_2::Compare_y_2,
AlgebraicKernel_d_2::Approximate_absolute_x_2,
AlgebraicKernel_d_2::Approximate_relative_x_2,
AlgebraicKernel_d_2::Approximate_absolute_y_2,
AlgebraicKernel_d_2::Approximate_relative__y_2,
AlgebraicKernel_d_2::Bound_between_x_2,
AlgebraicKernel_d_2::Bound_between_y_2.
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8.3 Models

8.3.1 Generic Algebraic Kernels

The package provides generic models of the univariate and bivariate algebraic kernel, namely
CGAL::Algebraic_kernel_d_I1<Coeff> and CGAL::Algebraic_kernel_d_2<Coeff>, respectively. Both kernels
support a large set of number types as their template argument, which defines the supported coefficient type.
The supported types are, for instance, Gmpz and Gmpq as well as the corresponding types of LEDA and CORE.

The CGAL::Algebraic_kernel_d_I1<Coeff> represents an algebraic real root by a square free polynomial and an
isolating interval that uniquely defines the root. The current method to isolate roots is the Bitstream Descartes
method [ ]. The used method to refine the approximation of an algebraic real root is a slightly modified
(filtered) version of the one presented in [Abb]. The method has quadratic convergence.

CGAL::Algebraic_kernel_d_2<Coeff> is based on an algorithm computing a geometric-topological analysis of
a single curve [ ] and of a pair of curves [ ]. The main idea behind both analyses is to compute the
critical x-coordinates of curves and curve pairs by projection (resultants), and compute additional information
about the critical fibers using subresultants and Sturm-Habicht sequences [ ]. With that information,
the fiber at critical x-coordinates is computed by a variant of the Bitstream Descartes method. See also [ ]
for a comprehensive description of these techniques. Almost all functors in the class that take a Polynomial_2
object as argument trigger such an analysis as a main computation step. For efficiency, these analyses (of single
curves and curve pairs) are therefore cached internally for efficiency. For instance, computing the pairwise
solutions of 10 Polynomial_2 objects requires 10 curve analyses and 45 curve pair analyses to be computed
internally.

A point p of type Algebraic_real_2 is represented by its x-coordinate xq (as described in the Algebraic_kernel_
d_I paragraph above), an algebraic curve where p lies on, and an integer i, denoting that p is the ith point in the
fiber at xg, counted from the bottom (ignoring a possible vertical line at x(). Note that this determines the point
uniquely, but the y-coordinate is not stored internally in terms of an Algebraic_real_I object. Querying such a
representation by calling Compute_y_2 is a time-consuming step, and should be avoided for efficiency reasons
if possible.

8.3.2 Algebraic Kernels Based on RS

The package offers two univariate algebraic kernels that are based on the library Rs [RS], namely
CGAL::Algebraic_kernel_rs_gmpz_d_1 and CGAL::Algebraic_kernel_rs_gmpg_d_I. As the names indicate,
the kernels are based on the library Rs [RS] and support univariate polynomials over CGAL::Gmpz or
CGAL::Gmpgq, respectively.

In general we encourage to use CGAL::Algebraic_kernel_rs_gmpz_d_I instead of CGAL::Algebraic_kernel_
rs_gmpqg_d_I. This is caused by the fact that the most efficient way to compute operations (such as gcd) on
polynomials with rational coefficients is to use the corresponding implementation for polynomials with integer
coefficients. That is, the CGAL::Algebraic_kernel_rs_gmpq_d_I is slightly slower due to overhead caused by
the necessary conversions. However, since this may not always be a major issue, the CGAL::Algebraic_kernel
rs_gmpq_d_I is provided for convenience.

The core of both kernels is the implementation of the interval Descartes algorithm [ ] of the library Rs [RS],
which is used to isolate the roots of the polynomial. The Rs library restricts its attention to univariate integer
polynomials and some substantial gain of efficiency can be made by using a kernel that does not follow the
generic programming paradigm, by avoiding interfaces between layers. Specifically, working with only one
number type allows to optimize some polynomial operations as well as memory handling. The implementation
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of these kernels make heavy use of the MPFR [ ] and MPFI [ ] libraries, and of their CGAL interfaces,
Gmpfr and Gmpfi. The algebraic numbers (roots of the polynomials) are represented in the two Rs kernels by
a Gmpfi interval and a pointer to the polynomial of which they are roots. See [ ] for more details on
the implementation, tests of these kernels, comparisons with other algebraic kernels and discussions about the
efficiency.
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8.4 Examples

Construction of Algebraic Real Numbers

The following example illustrates the construction of AlgebraicKernel d_I::Algebraic_real_I using
AlgebraicKernel_d_I::Construct_algebraic_real_I:

#include <CGAL/basic.h>

#ifdef CGAL_USE_MPFI

#include <CGAL/Algebraic_kernel_d_1.h>
#include <CGAL/Gmpz.h>

#include <vector>

#include <iostream>

typedef CGAL: :Algebraic_kernel_d_1<CGAL: :Gmpz> AK;

typedef AK::Polynomial_ 1 Polynomial_1;
typedef AK::Algebraic_real_1 Algebraic_real_1;
typedef AK::Coefficient Coefficient;
typedef AK::Bound Bound;

typedef AK::Multiplicity type Multiplicity_type;

int main () {
AK ak; // an object of
AK: :Construct_algebraic_real_ 1 construct_algreal 1 =
ak.construct_algebraic _real_ 1 _object();

std: :cout << "Construct from int : " << construct_algreal 1 (int(2)) <<
n \nu ;
std::cout << "Construct from Coefficient : " <<
construct_algreal_1 (Coefficient (2)) << "\n";
std: :cout << "Construct from Bound : " << construct_algreal_1 (Bound(2)) <<
n \n\nn ;

Polynomial_1 x = CGAL: :shift (AK: :Polynomial_1(1),1); // the monomial x
std::cout << "Construct by index S

<< construct_algreal_ 1 (x*x-2,1) << "\n"

<< to_double (construct_algreal_ 1 (x*x-2,1)) << "\n";
std::cout << "Construct by isolating interval : "

<< construct_algreal_1 (x*x-2,Bound(0),Bound(2)) << "\n"

<< to_double (construct_algreal_ 1 (x*x-2,Bound(0),Bound(2))) << "\n\n";

return O;
}
ffelse
int main() {
std::cout << "This example requires CGAL to be configured with library MPFI." <<
std: :endl;
return O0;
}
#endif
N

File: examples/Algebraic_kernel_d/Construct_algebraic_real_l.cpp
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Solving Univariate Polynomials

The following example illustrates the construction of AlgebraicKernel d_1::Algebraic_real_I using
AlgebraicKernel_d_1::Solve_I:

r

#include <CGAL/basic.h>

#ifdef CGAL_USE_MPFI

#include <CGAL/Algebraic_kernel_d_1.h>
#include <CGAL/Gmpz.h>

#include <vector>

typedef CGAL: :Algebraic_kernel d_1<CGAL: :Gmpz> AK;

typedef AK::Polynomial_1 Polynomial_1;
typedef AK::Algebraic_real_ 1 Algebraic_real 1,
typedef AK::Bound Bound;

typedef AK::Multiplicity type Multiplicity_type;

int main () {
AK ak; // an object of
AK::Solve_1 solve_1 = ak.solve_1l_object();
Polynomial_ 1 x = CGAL::shift (AK::Polynomial 1(1),1); // the monomial x

// variant using a bool indicating a square free polynomial
// multiplicities are not computed

std: :vector<Algebraic_real_ 1> roots;

solve_1 (x*xx—-2,true, std::back_inserter (roots));

std: :cout << "Number of roots is : " << roots.size() << "\n";

std::cout << "First root should be -sqrt(2): " << CGAL::to_double(roots[0]) <<
n\nn ;

std: :cout << "Second root should be sqrt(2): " << CGAL::to_double(roots[1l]) <<
n .
\n\n";

roots.clear();

// variant for roots in a given range of a square free polynomial
solve_1((x*x—-2) % (x*x-3) ,true, Bound(0),Bound(10),std: :back_inserter (roots));

std: :cout << "Number of roots is : " << roots.size() << "\n";

std::cout << "First root should be sqrt(2): " << CGAL::to_double(roots[0]) <<
n\nn ;

std: :cout << "Second root should be sqrt(3): " << CGAL::to_double(roots[1l]) <<
n me.
\n\n";

roots.clear();

// variant computing all roots with multiplicities
std: :vector<std: :pair<Algebraic_real_1,Multiplicity_type> > mroots;
solve_1((x*x-2), std::back 1nserter(mroots)),

std: :cout << "Number of roots is : " << mroots.size() << "\n";
std::cout << "First root should be -sqgrt(2): " <<
CGAL: :to_double (mroots[0] .first) << ""
<< " with multiplicity " << mroots[0] .second << "\n";
std::cout << "Second root should be sqgrt(2): " <<
CGAL: :to_double (mroots[1l] .first) << ""
<< " with multiplicity " << mroots[l].second << "\n\n";

mroots.clear();

// variant computing roots with multiplicities for a range
solve 1 ((x*x-2)* (x*x-3),Bound(0),Bound(10), std::back_inserter(mroots));
std: :cout << "Number of roots is : " << mroots.size() << "\n";
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std::cout << "First root should be sqrt(2):

CGAL: :to_double (mroots[0] .first) <<
<< " with multiplicity "

std::cout << "Second root should be sqrt(3):

CGAL: :to_double (mroots[1l].first) <<
<< " with multiplicity "
return O;

nn

nn

]

]

<< mroots[0] .second << "\n";

<< mroots[l].second << "\n\n";

}

ffelse

int main() {

std::cout << "This example requires CGAL to be configured with library MPFI." <<
std: :endl;

return O0;

}

#endif
.

File: examples/Algebraic_kernel_d/Solve_l.cpp
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Comparison and Approximation of Algebraic Real Numbers

The following example illustrates the comparison of AlgebraicKernel_d_1::Algebraic_real_I numbers:

s

#include <CGAL/basic.h>

#ifdef CGAL_USE_MPFI

#include <CGAL/Algebraic_kernel_d_1.h>
#include <CGAL/Gmpz.h>

#include <vector>

typedef CGAL: :Algebraic_kernel_d_1<CGAL: :Gmpz> AK;

typedef AK::Coefficient Coefficient;
typedef AK::Polynomial_l1 Polynomial_1;
typedef AK::Algebraic_real_ 1 Algebraic_real 1,
typedef AK::Bound Bound;

typedef std::pair<Bound, Bound> Interval;

int main () {
AK ak;

AK: :Construct_algebraic_real_1 construct_algebraic real_1 =
ak.construct_algebraic_real_1_object();

Polynomial_1 x = CGAL::shift (AK::Polynomial 1(1),1); // the monomial x

Algebraic_real_1 a = construct_algebraic_real_ 1(x*x-2,1); // sqgrt(2)

Algebraic_real_1 b = construct_algebraic_real_ 1 (x*x-3,1); // sqgrt(3)

// Algebraic real 1 is RealEmbeddable (just some functions:)

std::cout << "sign of a is : " << CGAL: :sign(a) << "\n";

std: :cout << "double approximation of a is : " << CGAL::to_double(a) << "\n";

std: :cout << "double approximation of b is : " << CGAL::to_double(b) << "\n";

std: :cout << "double lower bound of a : " << CGAL: :to_interval(a).first <<
"\n";

std::cout << "double upper bound of a : " << CGAL::to_interval (a) .second <<
"\n";

std: :cout << "LessThanComparable (a<b) : " << (a<b) << "\n\n";

// use compare_1 with int, Bound, Coefficient, Algebraic real 1
AK: :Compare_1 compare_1l = ak.compare_1l_object();

std::cout << " compare with an int : " << compare_1l(a ,int(2))
<< "\n";

std::cout << " compare with an Coefficient : " << compare_1(a
,Coefficient (2)) << "\n";

std::cout << " compare with an Bound : " << compare_1(a
,Bound (2)) << "\n";

std::cout << " compare with another Algebraic real 1: " << compare_1l(a ,b) <<
"\n\n";

// get a value between two roots
AK: :Bound_between_1 bound between_1 = ak.bound between_ 1_object();

std::cout << " wvalue between sqrt(2) and sqrt(3) " << bound_between_1(a,b) <<
"\n";

std::cout << " is larger than sqgrt(2) "<
compare_1l (bound_between_1(a,b),a) << "\n";

std::cout << " is less than sqrt(3) "o<<

compare_1 (bound_between_1(a,b),b) << "\n\n";

// approximate with relative precision
AK: :Approximate_relative_1 approx_r = ak.approximate_relative_ 1_object();
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std::cout << " lower bound of a with at least 100 bits: <<
approx_r(a,100) .first << "\n";

std::cout << " upper bound of a with at least 100 bits: "<<
approx_r(a,100) .second << "\n\n";

// approximate with absolute error
AK: :Approximate_absolute_1 approx_a = ak.approximate_absolute_1_object();

std::cout << " lower bound of b with error less than 27-100: <<
approx_a(b,100) .first << "\n";
std::cout << " upper bound of b with error less than 2°-100: <<

approx_a(b,100) .second << "\n\n";

return 0O;
}
#felse
int main() {
std::cout << "This example requires CGAL to be configured with library MPFI." <<
std: :endl;
return O0;

}
#endif

File: examples/Algebraic_kernel_d/Compare_l.cpp
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Isolation of Algebraic Real Numbers with respect to roots of other polynomials

The following example illustrates the isolation of AlgebraicKernel_d_1::Algebraic_real_I numbers:

s

#include <CGAL/basic.h>

#ifdef CGAL_USE_MPFI

#include <CGAL/Algebraic_kernel_d_1.h>
#include <CGAL/Gmpz.h>

#include <vector>

typedef CGAL: :Algebraic_kernel_d_1<CGAL: :Gmpz> AK;

typedef AK::Polynomial_1 Polynomial_1;
typedef AK::Algebraic_real_l Algebraic_real_1;
typedef AK::Coefficient Coefficient;
typedef AK::Bound Bound;

typedef AK::Multiplicity type Multiplicity_type;

int main () {
AK ak; // an object of
AK: :Construct_algebraic_real_ 1 construct_algreal_ 1 =
ak.construct_algebraic_real_1_object();
AK::Isolate_1 isolate_1 = ak.isolate_1_object();
AK: :Compute_polynomial_1 compute_polynomial 1 =
ak.compute_polynomial_1_object();

// construct an algebraic number from an integer
Algebraic_real_1 frominteger=construct_algreal_1(int (2));
std::cout << "Construct from int: " << frominteger << "\n";

// the constructed algebraic number is root of a polynomial
Polynomial_ 1 pol=compute_polynomial_1 (frominteger);
std: :cout << "The constructed number is root of: " << pol << "\n";

// construct an algebraic number from a polynomial and an isolating interval
Polynomial_1 x = CGAL: :shift (AK: :Polynomial_1(1),1); // the monomial x
Algebraic_real_1 frominterval=construct_algreal_1 (x*x-2,Bound(0),Bound(2));
std::cout << "Construct from isolating interval: " << frominterval << "\n";

// isolate the second algebraic number from the first: this is to say,
// isolating the second algebraic number with respect to the polynomial
// of which the first constructed number is root

std: :pair<Bound, Bound> isolationl = isolate_1 (frominterval, pol);
std::cout << "Isolating the second algebraic number gives: ["
<< isolationl.first << "," << isolationl.second << "]\n";

// isolate again the same algebraic number, this time with respect to
// the polynomial 10#*x-14 (which has root 1.4, close to this algebraic
// number)
std: :pair<Bound, Bound> isolation2 = isolate_1 (frominterval,10*x-14);
std::cout << "Isolating again the second algebraic number gives: ["

<< isolation2.first << "," << isolation2.second << "]\n";

return O;
}
#else
int main() {
std::cout << "This example requires CGAL to be configured with library MPFI." <<
std: :endl;
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return O0;

}
#endif

File: examples/Algebraic_kernel_d/Isolate_l.cpp
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Interplay with Polynomials

The following example illustrates the sign evaluation of AlgebraicKernel_d_I::Algebraic_real_I numbers in
polynomials:

r

#include <CGAL/basic.h>

#ifdef CGAL_USE_MPFI

#include <CGAL/Algebraic_kernel_d_1.h>
#include <CGAL/Gmpz.h>

#include <vector>

typedef CGAL: :Algebraic_kernel d_1<CGAL: :Gmpz> AK;

typedef AK::Polynomial_1 Polynomial_1;
typedef AK::Algebraic_real_ 1 Algebraic_real 1,
typedef AK::Coefficient Coefficient;
typedef AK::Bound Bound;

typedef AK::Multiplicity_ type Multiplicity_type;

int main () {
AK ak;
AK: :Construct_algebraic_real_ 1 construct_algreal_1 =
ak.construct_algebraic_real_1_object();
AK::Solve_1 solve_1 = ak.solve_1l_ object();
AK::Sign_at_1 sign_at_1 = ak.sign_at_1_object();
AK::Is_zero_at_1 is_zero_at_1 = ak.is_zero_at_1_object();

// construct the polynomials p=x"2-5 and g=x-2
Polynomial_1 x = CGAL: :shift (AK: :Polynomial_1(1),1); // the monomial x
Polynomial_ 1 p = x*x-5;

std::cout << "Polynomial p: " << p << "\n";
Polynomial 1 q = x-2;
std::cout << "Polynomial gq: " << q << "\n";

// find the roots of p (it has two roots) and g (one root)
std: :vector<Algebraic_real_ 1> roots_p, roots_q;
solve_1(p,true, std::back_inserter (roots_p));
solve_1l(q,true, std::back_inserter (roots_q));

// evaluate the second root of p in g
std::cout << "Sign of the evaluation of root 2 of p in qgq: "
<< sign_at_1(q, roots_p[l]) << "\n";

// evaluate the root of g in p
std::cout << "Sign of the evaluation of root 1 of q in p: "
<< sign_at_1(p,roots_q[0]) << "\n";

// check whether the evaluation of the first root of p in p is zero
std::cout << "Is zero the evaluation of root 1 of p in p? "
<< is_zero_at_1(p,roots_p[0]) << "\n";

return 0;

#else
int main() {
std::cout << "This example requires CGAL to be configured with library MPFI." <<
std: :endl;
return O0;
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}
#endif

File: examples/Algebraic_kernel_d/Sign_at_1.cpp

8.5 Design and Implementation History

This package is clearly split into a univariate and bivariate kernel. However, with respect to its history the
package splits into a design part and an implementation part.

The concepts, which make up the design part, were written by Eric Berberich, Michael Hemmer, and Monique
Teillaud. The design history of the package is fairly old and several ideas that influenced this package can
already be found in [ ]. Since then, the initial design underwent considerable changes. For instance, it
was decided that the algebraic numbers should be under the control of the algebraic kernel. On the other hand
the initial support for polynomials was extended to a separate and independent package that is not restricted
to a certain number of variables. Thus, the authors want to thank for all the useful feedback and ideas that
was brought to them throughout the last years. In particular, they want to thank Menelaos Karavelas and Elias
Tsigaridas for their initial contributions.

The two generic models where initially developed as part of the EXACUS [ ] project. However, the
models are now fully integrated into the CGAL library, since also the relevant layers of EXACUS are now part of
CGAL. The main authors for CGAL::Algebraic_kernel_d_I<Coeff> and CGAL::Algebraic_kernel_d_2<Coeff>
are Michael Hemmer and Michael Kerber, respectively. Notwithstanding, the authors also want to emphasize the
contribution of all authors of the EXACUS project, particularly the contribution of Arno Eigenwillig, Sebastian
Limbach and Pavel Emeliyanenko.

The two univariate kernels that interface the library Rs [RS] were written by Luis Pefiaranda and Sylvain Lazard.

Both models interface the library Rs [RS] by Fabrice Rouillier. The authors want to thank Fabrice Rouillier and
Elias Tsigaridas for strong support and many useful discussions that lead to the integration of Rs.
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Concept

AlgebraicKernel _d_1

Definition

A model of the AlgebraicKernel_d_I concept is meant to provide the algebraic functionalities on univariate

polynomials of general degree d.
Refines
CopyConstructible

Assignable

A model of AlgebraicKernel_d_I must provide:

Types

AlgebraicKernel_d_I:: Coefficient

AlgebraicKernel_d_1:: Polynomial_I

AlgebraicKernel_d_1:: Algebraic_real_1

AlgebraicKernel_d_I:: Bound

AlgebraicKernel_d_I:: size_type

AlgebraicKernel_d_I:: Multiplicity_type

Functors

A model of IntegralDomain and RealEmbeddable.
Explicitinteroperable with AlgebraicKernel_d_1::Bound.

A univariate polynomial that is a model of Polynomial_
d, where  CGAL::Polynomial_traits_d<Polynomial_1>
::Innermost_coefficient is AlgebraicKernel_d_I :: Coefficient.

A type that is used to represent real roots of univariate poly-
nomials. The type must be a model of DefaultConstructible,
CopyConstructible, Assignable and RealEmbeddable.

A type to represent upper and lower bounds of
AlgebraicKernel_d_1::Algebraic_real 1.

The type is Explicitinteroperable with AlgebraicKernel_
d_1::Coefficient and must be a model IntegralDomain,
RealEmbeddable and dense in R.

Size type (unsigned integral type).

Multiplicity type (unsigned integral type).

AlgebraicKernel_d_I:: Construct_algebraic_real_1

A model of AlgebraicKernel_d_I::ConstructAlgebraicReal _1.

AlgebraicKernel_d_I:: Compute_polynomial_1
AlgebraicKernel_d_1:: Isolate_1

A model of AlgebraicKernel_d_I::ComputePolynomial_l.
A model of AlgebraicKernel_d_1::Isolate_I.
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AlgebraicKernel_d_1:: Is_square_free_I A model of AlgebraicKernel_d_I::IsSquareFree_1.
AlgebraicKernel_d_I:: Make_square_free_I A model of AlgebraicKernel_d_I::MakeSquareFree_1.

AlgebraicKernel_d_l:: Square_free_factorize_1

A model of AlgebraicKernel_d_I::SquareFreeFactorize_I.

AlgebraicKernel_d_1:: Is_coprime_l A model of AlgebraicKernel_d_I::1sCoprime_I.
AlgebraicKernel_d_I:: Make_coprime_l A model of AlgebraicKernel_d_1::MakeCoprime_I.
AlgebraicKernel_d_1:: Solve_1 A model of AlgebraicKernel_d_1::Solve_I.
AlgebraicKernel_d_I:: Number_of_solutions_1 A model of AlgebraicKernel_d_I::NumberOfSolutions_1.
AlgebraicKernel_d_1:: Sign_at_I A model of AlgebraicKernel_d_1::SignAt_1.
AlgebraicKernel_d_I:: Compare_I A model of AlgebraicKernel_d_I::Compare_I.
AlgebraicKernel_d_I:: Bound_between_I A model of AlgebraicKernel_d_I::BoundBetween_I.

AlgebraicKernel_d_I:: Approximate_absolute_1

A model of AlgebraicKernel_d_I::ApproximateAbsolute_1.

AlgebraicKernel_d_I:: Approximate_relative_I

A model of AlgebraicKernel_d_I::ApproximateRelative_l.

Operations
For each of the function objects above, there must exist a member function that requires no arguments and
returns an instance of that function object. The name of the member function is the uncapitalized name of

the type returned with the suffix _object appended. For example, for the function object AlgebraicKernel_d_
1::Bound_between_I the following member function must exist:

AlgebraicKernel_d_I::Bound_between_1I

ak_I.bound_between_I _object() const

Has Models

Algebraic_kernel_rs_gmpz_d_1
Algebraic_kernel_rs_gmpq_d_1

See Also

AlgebraicKernel_d_2......... ... . . page 422
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AlgebraicKernel_d_1::ConstructAlgebraicReal 1

Definition

Constructs AlgebraicKernel_d_1::Algebraic_real_l.

Refines

AdaptableFunctor

Types

typedef AlgebraicKernel_d_I::Algebraic_real_1 result_type;

Operations

result_type

result_type

result_type

result_type

result_type

fo(int a) introduces an AlgebraicKernel_d_I::Algebraic_real_l initialized to a.

fo( AlgebraicKernel_d_I::Bound a)

introduces an AlgebraicKernel_d_1::Algebraic_real_I initialized to a.

fo( AlgebraicKernel_d_I::Coefficient a)

introduces an AlgebraicKernel_d_I::Algebraic_real_I initialized to a.

fo( AlgebraicKernel_d_I::Polynomial_I p, AlgebraicKernel_d_1::size_type i)

introduces an AlgebraicKernel_d_I::Algebraic_real_I initialized to the i-
th real root of p. The index starts at 0, that is, p must have at least i + 1
real roots.

Precondition: p is square free.

Precondition: p has at least i 4 1 real roots.

fo.operator()( AlgebraicKernel_d_I::Polynomial_1 p,
AlgebraicKernel_d_I::Bound |,
AlgebraicKernel_d_I::Bound u)

introduces an AlgebraicKernel_d_I::Algebraic_real_l initialized to the
only real root of p in the open interval I = (I,u).

Precondition: | <u

Precondition: p is square free.

Precondition: p has exactly one real root in /

Precondition: p has no real root on o/
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See Also

AlgebraicKernel_d_2::ConstructAlgebraicReal 2 . .......... ... .. ... i, page 424
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AlgebraicKernel_d_1::ComputePolynomial 1

Definition

Computes a square free univariate polynomial p, such that the given AlgebraicKernel_d_I::Algebraic_real_1I is
aroot of p.

Refines

AdaptableUnaryFunction

Types
typedef AlgebraicKernel_d_I::Polynomial_1 result_type;
typedef AlgebraicKernel_d_I::Algebraic_real_1 argument_type;
Operations
result_type fo( argument_type x)
Computes a square free polynomial p, such that x is a real root of p.
See Also
AlgebraicKernel_d_1::Isolate_1 .......... ... ... . i page 403
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AlgebraicKernel _d_1::Isolate_1

Definition

Computes an open isolating interval for an AlgebraicKernel_d_I::Algebraic_real_I with respect to the real roots
of a given univariate polynomial.

Refines

AdaptableBinaryFunction

Types

typedef std::pair<AlgebraicKernel_d_I::Bound AlgebraicKernel_d_I::Bound>

result_type;
typedef AlgebraicKernel_d_I::Algebraic_real_1 first_argument_type;
typedef AlgebraicKernel_d_I::Polynomial _1 second_argument_type;

Operations
result_type fo( first_argument_type a, second_argument_type p)
Computes an open isolating interval I = (/,u) for a with respect to the real
roots of p. It is not required that a is a root of p.
Postcondition: a € 1.
Postcondition: p(x) # 0|Vx € I\a.
See Also
AlgebraicKernel_d_I::ComputePolynomial_I........... ... .. . . . . . .. iiiiiiiiiiiiiiinia.. page 402
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AlgebraicKernel_d_1::IsSquareFree_1

Definition

Computes whether the given univariate polynomial is square free.

Refines

AdaptableUnaryFunction

Types
typedef bool result_type;
typedef AlgebraicKernel_d_I::Polynomial_1 argument_type;

A model of this type must provide:

Operations
result_type fo( argument_type p)
Returns true if p is square free.
See Also
AlgebraicKernel_d_I::MakeSquareFree_1 .......... ... ... . o, page 405
AlgebraicKernel_d_I::SquareFreeFactorize_l ........... .. .o, page 406
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AlgebraicKernel _d_1::MakeSquareFree_1

Definition

Returns a square free part of a univariate polynomial.

Refines

AdaptableUnaryFunction

Types

typedef AlgebraicKernel_d_I::Polynomial_1 result_type;
typedef AlgebraicKernel_d_I::Polynomial_1 argument_type;

Operations

result_type fo( argument_type p)

Returns a square free part of p

See Also

AlgebraicKernel_d_I::IsSquareFree_1........ ... .. . . . . . . . i page 404
AlgebraicKernel_d_I::SquareFreeFactorize_1 .......... ... ... ... uiiiiiiiiiiiiiiiininnen. page 406
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AlgebraicKernel _d_1::SquareFreeFactorize_1

Definition
Computes a square free factorization of an AlgebraicKernel_d_I::Polynomial_I.

A polynomial p is factored into square free and pairwise coprime non-constant factors ¢g; with multiplicities m;
and a constant factor ¢, such that p =c-¢|" -...- ¢'™.

The factor multiplicity pairs < g;,m; > are written to the given output iterator. The constant factor c is not
computed.

Refines

Assignable

CopyConstructible

Operations

template < class Outputlterator >
Outputlterator fo( AlgebraicKernel_d_I::Polynomial_Il p, Outputlterator res)

Copies in the output iterator the factors of a square
free factorization of p, with their multiplicity, as objects
of type std::pair<AlgebraicKernel_d_I::Polynomial_I,
AlgebraicKernel_d_I::Multiplicity_type>.

See Also
AlgebraicKernel_d_I::IsSquareFree_ 1 .......... ... .. e page 404
AlgebraicKernel_d_1::MakeSquareFree_1 ............ ... uuiie e enaiennn page 405
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AlgebraicKernel _d_1::IsCoprime_1
Definition
Determines whether a given pair of univariate polynomials py, py is coprime, namely if deg(gcd(pi, p2)) = 0.

Refines

AdaptableBinaryFunction

Types
typedef bool result_type;
typedef AlgebraicKernel_d_I::Polynomial_1 first_argument_type;
typedef AlgebraicKernel_d_I::Polynomial_1 second_argument_type;
Operations
result_type fo( first_argument_type pl, second_argument_type p2)
Returns true if p/ and p2 are coprime.
See Also
AlgebraicKernel_d_1::MakeCoprime_1 ............ .. ..o i iiiiiiiiinen, page 408
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AlgebraicKernel _d_1::MakeCoprime_1

Definition

Computes for a given pair of univariate polynomials pj, p, their common part g up to a constant factor and
coprime parts g, g» respectively.

That is, it computes g,q1,g> such that:
c1-p1 = g-q for some constant ¢y and

c2 - p2 = g - q2 for some constant c¢;, such that ¢ and g are coprime.

It returns true if p; and p; are already coprime.

Refines

AdaptableFunctor with five arguments

Types
typedef bool result_type;
Operations
result_type fo.operator()( AlgebraicKernel_d_I::Polynomial_I pl,
AlgebraicKernel_d_I::Polynomial_1 p2,
AlgebraicKernel_d_I::Polynomial_1 & g,
AlgebraicKernel_d_I::Polynomial 1 & ql,
AlgebraicKernel_d_I::Polynomial _1 & q2)
Computes g,q1,¢q» as described above.
Returns whether p; and p, where already coprime.
See Also
AlgebraicKernel_d_1::IsCoprime_1 .. ........ ... .. it page 407
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AlgebraicKernel _d_1::Solve_1

Definition

Computes the real roots of a univariate polynomial.

Refines

Assignable
CopyConstructible

Operations

A model of this type must provide:

template < class Outputlterator >
Outputlterator  fo( AlgebraicKernel_d_I::Polynomial_I p, Outputlterator res)

Computes all real solutions of p with multiplicity, and copies them
as objects of type std::pair<AlgebraicKernel_d_I::Algebraic_real_l,
AlgebraicKernel_d_I::Multiplicity_type> in res.

template < class Outputlterator >

Outputlterator  fo.operator()( AlgebraicKernel_d_I::Polynomial_1I p,
bool known_to_be_square_free,
Outputlterator res)

Computes all real solutions of p, and copies them as objects of type
AlgebraicKernel_d_1::Algebraic_real_I in res. The bqol known_to_be_
square_free indicates whether p is known to be square free. Each root,
though it might be a multiple root, is reported only once.

template < class Outputlterator >

Outputlterator  fo.operator()( AlgebraicKernel_d_I::Polynomial_1I p,
AlgebraicKernel_d_I::Bound I,
AlgebraicKernel_d_I::Bound u,
Outputlterator res)

Computes all real solutions of p in the closed interval [/,u] with multi-
plicity, and copies them as objects of type std::pair<AlgebraicKernel_d_
1::Algebraic_real_l, AlgebraicKernel_d_I::Multiplicity_type> in res.

template < class Outputlterator >

Outputlterator  fo.operator()( AlgebraicKernel_d_I::Polynomial_1I p,
bool known_to_be_square_free,
AlgebraicKernel_d_I::Bound I,
AlgebraicKernel_d_I::Bound u,
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Outputlterator res)

Computes all real solutions of p in the closed interval [/,u], and copies
them as objects of type AlgebraicKernel_d_I::Algebraic_real_I in res.
The bool known_to_be_square_free indicates whether p is known to be
square free. Each root, though it might be a multiple root, is reported only
once.

See Also
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AlgebraicKernel_d_1::NumberOfSolutions_1

Definition

Computes the number of real solutions of the given univariate polynomial.

Refines

AdaptableUnaryFunction

Types
typedef AlgebraicKernel_d_I ::size_type result_type;
typedef AlgebraicKernel_d_I::Polynomial_1 argument_type;

A model of this type must provide:

Operations
result_type fo( argument_type p)
Returns the number of real solutions of p.
Precondition: p is square free.
See Also
AlgebraicKernel_d_I::ConstructAlgebraicReal I ......... ... ... . i, page 400
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AlgebraicKernel _d_1::SignAt_1

Definition

Computes the sign of a univariate polynomial AlgebraicKernel_d_I::Polynomial_I at a real value of type
AlgebraicKernel_d_1::Algebraic_real_1.

Refines

AdaptableBinaryFunction

Types

AlgebraicKernel_d_1::SignAt_I:: result_type Type convertible to CGAL::Sign

typedef AlgebraicKernel_d_I::Polynomial_1 first_argument_type;
typedef AlgebraicKernel_d_1::Algebraic_real 1 second_argument_type;
Operations

result_type fo( first_argument_type p, second_argument_type Xx)

Computes the sign of p at x.

See Also

AlgebraicKernel_d_1::1SZer0At_1 . ....... ..o page 413
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AlgebraicKernel _d_1::IsZeroAt_1

Definition

Computes whether an AlgebraicKernel _d_1::Polynomial_1I is zero at a given AlgebraicKernel_d_I::Algebraic_
real_l.

Refines

AdaptableBinaryFunction

Types

AlgebraicKernel_d_I::IsZeroAt_I:: result_type

Type convertible to bool

typedef AlgebraicKernel_d_I::Polynomial_1 first_argument_type;
typedef AlgebraicKernel_d_I::Algebraic_real_1 second_argument_type;
Operations

result_type fo( first_argument_type p, second_argument_type x)

Computes whether p is zero at x.

See Also

AlgebraicKernel_d_1::SignAt_1 ...... ... page 412
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AlgebraicKernel_d_1::Compare_1

Definition

Compares AlgebraicKernel_d_1::Algebraic_real_I values.

Refines

AdaptableBinaryFunction

Types

AlgebraicKernel_d_I::Compare_l:: result_type

Type convertible to CGAL::Comparison_result

typedef AlgebraicKernel_d_I::Algebraic_real_1 first_argument_type;
typedef AlgebraicKernel_d_I::Algebraic_real_1 second_argument_type;
Operations

The following operators and their symmetric counterparts are required:

result_type fo( AlgebraicKernel_d_I::Algebraic_real_l a, AlgebraicKernel_d_I::Algebraic_real_I b)

Compares a and b.

result_type fo( AlgebraicKernel_d_I::Algebraic_real_1 a, int b)

Compares a and b.

result_type fo( AlgebraicKernel_d_1::Algebraic_real_I a, AlgebraicKernel_d_I::Bound b)

Compares a and b.

result_type fo( AlgebraicKernel_d_I::Algebraic_real_I a, AlgebraicKernel_d_I::Coefficient b)

Compares a and b.
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AlgebraicKernel _d_1::BoundBetween_1

Definition

Computes a number of type AlgebraicKernel_d_I::Bound in-between two AlgebraicKernel_d_I::Algebraic_
real_I values.

Refines

AdaptableBinaryFunction

Types

typedef AlgebraicKernel_d_I::Bound result_type;

typedef AlgebraicKernel_d_I::Algebraic_real_1 first_argument_type;
typedef AlgebraicKernel_d_1::Algebraic_real 1 second_argument_type;
Operations

result_type fo( first_argument_type a, second_argument_type b)

Computes a value r, which is between a and b.
Precondition: a # b

Postcondition: r > min(a,b)
Postcondition: r < max(a,b)
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AlgebraicKernel_d_1::ApproximateAbsolute_1

Definition

A model of AlgebraicKernel _d_1::ApproximateAbsolute_1 is an AdaptableBinaryFunction that computes an
approximation of an AlgebraicKernel_d_I::Algebraic_real_I value with respect to a given absolute precision.

Refines

AdaptableBinaryFunction

Types

typedef std::pair<AlgebraicKernel_d_I::Bound, AlgebraicKernel_d_I::Bound>

result_type;
typedef AlgebraicKernel_d_I::Algebraic_real_1 first_argument_type;
typedef int second_argument_type;

Operations

result_type fo( first_argument_type x, second_argument_type a)

The function computes a pair p of AlgebraicKernel_d_I::Bound, where
p.first represents the lower approximation and p.second represents the
upper approximation. The pair p approximates the given value x with
respect to the given absolute precision a.

Postcondition: p.first <=x

Postcondition: x <= p.second

Postcondition: (x — p.first) <=2"1

Postcondition: (p.second —x) <=271

See Also

AlgebraicKernel_d_I::ApproximateRelative_1 ............ ... ... page 417
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AlgebraicKernel_d_1::ApproximateRelative_1

Definition

A model of AlgebraicKernel _d_1::ApproximateRelative_1 is an AdaptableBinaryFunction that computes an
approximation of an AlgebraicKernel_d_I::Algebraic_real_I value with respect to a given relative precision.

Refines

AdaptableBinaryFunction

Types

typedef std::pair<AlgebraicKernel_d_I::Bound, AlgebraicKernel_d_I::Bound>

result_type;
typedef AlgebraicKernel_d_I::Algebraic_real_1 first_argument_type;
typedef int second_argument_type;

Operations

result_type fo( first_argument_type x, second_argument_type r)

The function computes a pair p of AlgebraicKernel_d_I::Bound, where
p.first represents the lower approximation and p.second represents the
upper approximation. The pair p approximates the given value x with
respect to the given relative precision r.

Postcondition: p.first <=x

Postcondition: x <= p.second

Postcondition: (x — p.first) <=2""x x|

Postcondition: (p.second —x) <=2""x x|

See Also

AlgebraicKernel_d_I::ApproximateAbsolute_1........... ... . . it page 416
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Class

CGAL::Algebraic_kernel_d_1<Coeff>
#include <CGAL/Algebraic_kernel_d_1.h>

Definition

The class represents an algebraic real root by a square free polynomial and an isolating interval that uniquely
defines the root. The template argument Coeff determines the coefficient type of the kernel, which is also the
coefficient type of the supported polynomials.

Currently, the following coefficient types are supported:

— Gmpz, Gmpgq, (requires configuration with external libraries GMP, MPFR and MPFI)
— CORE::Bigint, CORE::BigRat, (requires configuration with external library GMP)
— leda_integer, leda_rational. (requires configuration with external library LEDA)

advanced

The template argument type can also be set to Sqrt_extension<NT,ROOT>, where NT is one of the types listed
above. ROOT should be one of the integer types. See also the documentation of Sqrt_extension<NT,ROOT>.

Ii advanced ——

The current method to isolate roots is the bitstream Descartes method presented in [ ]. The used method
to refine the approximation of an algebraic real root is a slightly modified (filtered) version of the one presented
in [Abb]. The method has quadratic convergence.

Is Model for the Concepts

AlgebraicKernel _d_I.

Types

Algebraic_kernel_d_1<Coeff>:: Coefficient Same type as the template argument Coeff.
Algebraic_kernel_d_I1<Coeff>:: Polynomial_1 A model of AlgebraicKernel_d_I::Polynomial_I.

Algebraic_kernel_d_1<Coeff>:: Algebraic_real_l

A model of AlgebraicKernel_d_1::AlgebraicReal_1.

Algebraic_kernel_d_1<Coeff>:: Bound The choice of Coeff also determines the provided bound,
type. In case of Coeff is:
— Gmpz or Gmpgq this is Gmpgq,
— CORE::BigInt or CORE::Biglnt this is CORE::BigRat,
— leda_integer or leda_integer this is leda_rational.

Algebraic_kernel_d_I1<Coeff>:: Multiplicity_type

The multiplicity type is int.
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See Also

AlgebraicKernel d_1. ... ... . page 398
Polynomial_d. .. ...t e e page 261
CGAL::Algebraic_kernel_d_2<Coeff>. ... ... e e page 451
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Class

CGAL::Algebraic_kernel_rs_gmpz_d_1

#include <CGAL/Algebraic_kernel_rs_gmpz_d_I1.h>

Definition
This univariate algebraic kernel uses the Rs library to perform integer univariate polynomial root isolation. It is
a model of the AlgebraicKernel_d_I concept.

Types

Algebraic_kernel_rs_gmpz_d_1:: Coefficient It is a typedef to CGAL::Gmpz.

Algebraic_kernel_rs_gmpz_d_I:: Polynomial_1

It is defined as CGAL::Polynomial<CGAL::Gmpz>.

Algebraic_kernel_rs_gmpz_d_I:: Algebraic_real_I
Type that represents the real roots of integer univariate poly-
nomials, containing a pointer to the polynomial of which the

represented algebraic number is root and and a CGAL::Gmpfi
isolating interval.

Algebraic_kernel_rs_gmpz_d_1:: Bound Since the isolating intervals of the roots have type
CGAL::Gmpfi, the bounds have type CGAL::Gmpfr.

Algebraic_kernel_rs_gmpz_d_1:: Multiplicity_type

The multiplicity is an int.

Is Model for the Concepts

AlgebraicKernel_d_1.

See Also

Algebraic_kernel_rs_gmpz_d_I
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CGAL::Algebraic_kernel_rs_gmpq_d_1

#include <CGAL/Algebraic_kernel_rs_gmpq_d_I1.h>

Definition
This univariate algebraic kernel uses the Rs library to perform rational univariate polynomial root isolation. It

is a model of the AlgebraicKernel_d_I concept. Due to the fact that RS can only isolate integer polynomials,
the operations of this kernel have the overhead of converting the polynomials to integer.

Types
Algebraic_kernel_rs_gmpq_d_I:: Coefficient It is a typedef to CGAL::Gmpq.

Algebraic_kernel_rs_gmpq_d_I:: Polynomial_l

It is defined as CGAL::Polynomial<CGAL::Gmpg>.

Algebraic_kernel_rs_gmpq_d_I:: Algebraic_real_1
Type that represents the real roots of integer univariate poly-
nomials, containing a pointer to the polynomial of which the

represented algebraic number is root and and a CGAL::Gmpfi
isolating interval.

Algebraic_kernel_rs_gmpq_d_1:: Bound Since the isolating intervals of the roots have type
CGAL::Gmpfi, the bounds have type CGAL::Gmpfr.

Algebraic_kernel_rs_gmpq_d_I:: Multiplicity_type

The multiplicity is an int.

Is Model for the Concepts

AlgebraicKernel_d_1I

See Also

Algebraic_kernel_rs_gmpz_d_I
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Concept

AlgebraicKernel _d_2

Definition

A model of the AlgebraicKernel_d_2 concept gathers necessary tools for solving and handling bivariate poly-
nomial systems of general degree d.

Refines
AlgebraicKernel_d_1I

CopyConstructible
Assignable

Types

AlgebraicKernel_d_2::

Polynomial _2

AlgebraicKernel_d_2:: Algebraic_real_2

Functors

A bivariate polynomial that is a model of Polynomial_
d, where CGAL::Polynomial_traits_d<Polynomial _2>
::Innermost_coefficient is AlgebraicKernel_d_I:: Coefficient.

A type that is used to represent real solutions of bivariate
zero dimensional polynomial systems. A model of Default-
Constructible, CopyConstructible and Assignable.

AlgebraicKernel_d_2:: Construct_algebraic_real_2

A model of AlgebraicKernel_d_2::ConstructAlgebraicReal 2.

AlgebraicKernel_d_2:: Compute_polynomial_x_2

A model of AlgebraicKernel_d_2::ComputePolynomialX_2.

AlgebraicKernel_d_2:: Compute_polynomial_y_2

A model of AlgebraicKernel_d_2::ComputePolynomialY_2.

AlgebraicKernel_d_2::
AlgebraicKernel_d_2::
AlgebraicKernel_d_2::
AlgebraicKernel_d_2::
AlgebraicKernel_d_2::
AlgebraicKernel_d_2::

Isolate 2

Isolate x_2

Isolate_y_2
Is_square_free_2
Make_square_free_2
Square_free_factorize_2

A model of AlgebraicKernel_d_2::Isolate_2.

A model of AlgebraicKernel_d_2::IsolateX_2.

A model of AlgebraicKernel_d_2::IsolateY 2.

A model of AlgebraicKernel_d_2::1sSquareFree_2.

A model of AlgebraicKernel_d_2::MakeSquareFree_2.

A model of AlgebraicKernel_d_2::SquareFreeFactorize 2.
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AlgebraicKernel_d_2:: Is_coprime_2 A model of AlgebraicKernel_d_2::IsCoprime_2.

AlgebraicKernel_d_2:: Make_coprime_2 A model of AlgebraicKernel_d_2::MakeCoprime_2.
AlgebraicKernel_d_2:: Solve_2 A model of AlgebraicKernel_d_2::Solve_2.
AlgebraicKernel_d_2:: Number_of _solutions_2 A model of AlgebraicKernel_d_2::NumberOfSolutions_2.
AlgebraicKernel_d_2:: Sign_at_2 A model of AlgebraicKernel_d_2::SignAt_2.
AlgebraicKernel_d_2:: Compare_x_2 A model of AlgebraicKernel_d_2::CompareX_2.
AlgebraicKernel_d_2:: Compare_y_2 A model of AlgebraicKernel_d_2::CompareY_2.
AlgebraicKernel_d_2:: Compare_xy_2 A model of AlgebraicKernel_d_2::CompareXY_2.
AlgebraicKernel_d_2:: Bound_between_x_2 A model of AlgebraicKernel_d_2::BoundBetweenX_2.
AlgebraicKernel_d_2:: Bound_between_y_2 A model of AlgebraicKernel_d_2::BoundBetweenY_2.

AlgebraicKernel_d_2:: Approximate_absolute_x_2

A model of AlgebraicKernel_d_2::ApproximateAbsoluteX_2.

AlgebraicKernel_d_2:: Approximate_absolute_y_2

A model of AlgebraicKernel_d_2::ApproximateAbsoluteY 2.

AlgebraicKernel_d_2:: Approximate_relative_x_2

A model of AlgebraicKernel_d_2::ApproximateRelativeX_2.

AlgebraicKernel_d_2:: Approximate_relative_y_2

A model of AlgebraicKernel_d_2::ApproximateRelativeY _2.

Operations
For each of the function objects above, there must exist a member function that requires no arguments and
returns an instance of that function object. The name of the member function is the uncapitalized name of

the type returned with the suffix _object appended. For example, for the function object AlgebraicKernel_d_
2::Bound_betweenX_2 the following member function must exist:

AlgebraicKernel_d_2::Bound_between_x_2

ak_2.bound_between_x_2_object() const

See Also

AlgebraicKernel_d_1.......... ... page 398
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AlgebraicKernel_d_2::ConstructAlgebraicReal 2

Definition

Constructs an AlgebraicKernel_d_2::Algebraic_real 2.

Refines
AdaptableFunctor
Types
typedef AlgebraicKernel_d_2::Algebraic_real 2 result_type;
Operations
result_type fo(int x, inty) introduces an AlgebraicKernel_d_2::Algebraic_real_2 initialized to (x,y).
result_type fo( AlgebraicKernel_d_2::Bound x, AlgebraicKernel_d_2::Bound y)
introduces an AlgebraicKernel_d_2::Algebraic_real 2 initialized to (x,y).
result_type fo( AlgebraicKernel_d_2::Coefficient x, AlgebraicKernel_d_2::Coefficient y)
introduces an AlgebraicKernel_d_2::Algebraic_real_2 initialized to (x,y).
result_type fo( AlgebraicKernel_d_2::Algebraic_real_1 x, AlgebraicKernel_d_2::Algebraic_real_1 y)
introduces an AlgebraicKernel_d_2::Algebraic_real 2 initialized to (x,y).
result_type fo.operator()( AlgebraicKernel_d_2::Polynomial_2 f,

AlgebraicKernel_d_2::Polynomial_2 g,
AlgebraicKernel_d_2::size_type i)

introduces an AlgebraicKernel_d_2::Algebraic_real_2 initialized to the i-
th real common solution of f and g, with respect to xy-lexicographic order.
The index starts at 0, that is, the system must have at least i + 1 real solu-
tions.

Precondition: f is square free.

Precondition: g is square free.

Precondition: f and g are coprime.
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result_type fo.operator()( AlgebraicKernel_d_2::Polynomial_2 f,
AlgebraicKernel_d_2::Polynomial_2 g,
AlgebraicKernel_d_2::Bound x_l,
AlgebraicKernel_d_2::Bound x_u,
AlgebraicKernel_d_2::Bound y_l,
AlgebraicKernel_d_2::Bound y_u)

introduces an AlgebraicKernel_d_2::Algebraic_real_2 initialized to the
only real intersection of f and g in the open box B = (x7,x,) X (y1,Yu)-

Precondition:
Precondition:
Precondition:
Precondition:
Precondition:
Precondition:
Precondition:

See Also

AlgebraicKernel_d_I::ConstructAlgebraicReal I . .

x; < Xy

Y <Yu

f is square free.

g is square free.

f and g are coprime.

f and g have exactly one common solution in B
f and g have no common solution on 0B
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AlgebraicKernel_d_2::ComputePolynomialX_2

Definition

Computes a univariate square free polynomial p, such that the first coordinate of a given AlgebraicKernel_d_
2::Algebraic_real_2 is a real root of p.

Refines

AdaptableUnaryFunction

Types

typedef AlgebraicKernel_d_2::Polynomial_1 result_type;

typedef AlgebraicKernel_d_2::Algebraic_real _2 argument_type;

Operations

result_type fo( argument_type a)
Computes a univariate square free polynomial p, such that the first coor-
dinate of a is a real root of p.

See Also

AlgebraicKernel_d_2::ComputePolynomialY 2 ........ ... . i page 427
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AlgebraicKernel_d_2::ComputePolynomial Y _2

Definition

Computes a univariate square free polynomial p, such that the second coordinate of a given AlgebraicKernel_
d_2::Algebraic_real_2 is a real root of p.

Refines

AdaptableUnaryFunction

Types

typedef AlgebraicKernel_d_2::Polynomial_1 result_type;

typedef AlgebraicKernel_d_2::Algebraic_real _2 argument_type;

Operations

result_type fo( argument_type a)
Computes a univariate square free polynomial p, such that the second co-
ordinate of a is a real root of p.

See Also

AlgebraicKernel_d_2::ComputePolynomialX_2 .......... ... i, page 426
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AlgebraicKernel_d_2::Isolate_2

Definition

Computes an isolating box for a given AlgebraicKernel_d_2::Algebraic_real 2.

Refines
AdaptableFunctor
Types
typedef CGAL::cppOx::array<AlgebraicKernel_d_I::Bound, 4> result_type;
Operations
result_type fo( AlgebraicKernel_d_2::Algebraic_real_2 a, AlgebraicKernel_d_2::Polynomial_2 f)
The returned CGAL::cppOx::array [xl,xu,yl,yu] represents an open iso-
lating box B = (xI,xu) x (yl,yu) for a with respect to f.
Precondition: f(a) #0
Postcondition: a € B.
Postcondition: {r|f(r) =0} NB=0.
result_type fo.operator()( AlgebraicKernel_d_2::Algebraic_real_2 a,
AlgebraicKernel_d_2::Polynomial 2 f,
AlgebraicKernel_d_2::Polynomial_2 g)
The returned CGAL::cppOx::array [xl,xu,yl,yu] represents an open isolat-
ing box B = (xI,xu) x (yl,yu) for a with respect to the common solutions
of f and g. It is not necessary that a is a common solution of f and g.
Postcondition: a € B.
Postcondition: {r|f(r)=g(r) =0}NB € {{a},0}.
See Also
AlgebraicKernel_d_2::IsolateX 2. ...... ... . . . page 429
AlgebraicKernel_d_2::IsolateY 2. . ... ... .. . page 430
AlgebraicKernel_d_2::ComputePolynomialX 2 .......... ..ot page 426
AlgebraicKernel_d_2::ComputePolynomialY_2 .......... ..o, page 427
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AlgebraicKernel _d_2::IsolateX 2

Definition

Computes an isolating interval for the first coordinate of an AlgebraicKernel_d_2::Algebraic_real 2 with respect
to the real roots of a univariate polynomial.

Refines

AdaptableBinaryFunction

Types

typedef std::pair<AlgebraicKernel_d_2::Bound AlgebraicKernel_d_2::Bound>

result_type;
typedef AlgebraicKernel_d_2::Algebraic_real _2 first_argument_type;
typedef AlgebraicKernel_d_2::Polynomial_1 second_argument_type;

Operations
result_type fo( first_argument_type a, second_argument_type p)
Computes an open isolating interval / = (/,u) for the first coordinate x of
a with respect to the real roots of p. It is not required that x is a root of p.
Postcondition: x € I.
Postcondition: p(a) # 0|Vo € T\x.
See Also
AlgebraicKernel_d_2::IsolateY 2. ... ... . . page 430
AlgebraicKernel_d_2::ComputePolynomialX 2 .......... ... .. i .. page 426
AlgebraicKernel_d_2::ComputePolynomialY_2 ........... ... i, page 427

429




AlgebraicKernel _d_2::IsolateY_2

Definition

Computes an isolating interval for the second coordinate of an AlgebraicKernel_d_2::Algebraic_real_2 with
respect to the real roots of a univariate polynomial.

Refines

AdaptableBinaryFunction

Types

typedef std::pair<AlgebraicKernel_d_2::Bound AlgebraicKernel_d_2::Bound>

result_type;
typedef AlgebraicKernel_d_2::Algebraic_real _2 first_argument_type;
typedef AlgebraicKernel_d_2::Polynomial_1 second_argument_type;

Operations
result_type fo( first_argument_type a, second_argument_type p)
Computes an open isolating interval I = (I, u) for the second coordinate y
of a with respect to the real roots of p. It is not required that x is a root of
p.
Postcondition: y € I.
Postcondition: p(a) # 0|V € I\y.
See Also
AlgebraicKernel_d_2::1s0lateX 2. ......... ... . i page 429
AlgebraicKernel_d_2::ComputePolynomialX 2 .............o et page 426
AlgebraicKernel_d_2::ComputePolynomialY 2 .......... .. ettt page 427
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AlgebraicKernel_d_2::IsSquareFree_2

Definition

Computes whether the given bivariate polynomial is square free.

Refines

AdaptableUnaryFunction

Types
typedef bool result_type;
typedef AlgebraicKernel_d_2::Polynomial_2 argument_type;
Operations
result_type fo( argument_type p)
Computes whether p is square free.
See Also
AlgebraicKernel_d_2::MakeSquareFree 2 ......... ... ... .. o iuaiiiiiiiiiiiiiiia.. page 432
AlgebraicKernel_d_2::SquareFreeFactorize 2 ..................uuuuiuuiuaiiiiiiiiinnennen. page 433
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AlgebraicKernel_d_2::MakeSquareFree_2

Definition

Returns a square free part of a bivariate polynomial.

Refines

AdaptableUnaryFunction

Types

typedef AlgebraicKernel_d_2::Polynomial _2 result_type;
typedef AlgebraicKernel_d_2::Polynomial_2 argument_type;

Operations

result_type fo( argument_type p)

Returns a square free part of p.

See Also

AlgebraicKernel_d_2::IsSquareFree 2 ........ ... .. . . . . . . i page 431
AlgebraicKernel_d_2::SquareFreeFactorize 2 ..................uuuuiuuiuaiiiiiiiiinnennen. page 433
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AlgebraicKernel _d_2::SquareFreeFactorize_2

Definition
Computes a square free factorization of an AlgebraicKernel_d_2::Polynomial 2.

A polynomial p is factored into square free and pairwise coprime non-constant factors ¢g; with multiplicities m;
and a constant factor ¢, such that p =c-¢|" -...- ¢'™.

The factor multiplicity pairs < g;,m; > are written to the given output iterator. The constant factor c is not
computed.

Refines

Assignable

CopyConstructible

Operations

template < class Outputlterator >
Outputlterator  fo( AlgebraicKernel_d_2::Polynomial_2 p, Outputlterator res)

Copies in the output iterator the factors of a square free factorization of
p, with their multiplicity, as objects of type std::pair<AlgebraicKernel _d_
2::Polynomial_2, AlgebraicKernel_d_2::Multiplicity_type>.

See Also
AlgebraicKernel _d_2::1sSquareFree 2 ........... ... . i page 431
AlgebraicKernel_d_2::MakeSquareFree_2 ............ ... i, page 432

433




AlgebraicKernel _d_2::IsCoprime_2

Definition

Computes whether a given pair of bivariate polynomials is coprime.

Refines

AdaptableBinaryFunction

Types
typedef bool result_type;
typedef AlgebraicKernel_d_2::Polynomial_2 first_argument_type;
typedef AlgebraicKernel_d_2::Polynomial _2 second_argument_type;
Operations
result_type fo( first_argument_type pl, second_argument_type p2)
Computes whether f and g are coprime.
See Also
AlgebraicKernel_d_2::MakeCoprime_2 ............ ... oo iiiiiiinen, page 435
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AlgebraicKernel_d_2::MakeCoprime_2

Definition

Computes for a given pair of bivariate polynomials p{, p, their common part g and coprime parts g1, g2 respec-
tively.

That is, it computes g,q1,g> such that:
c1-p1 = g-q for some constant ¢y and
c2 - p2 = g - q2 for some constant c¢;, such that g and g are coprime.

Refines

AdaptableFunctor with five arguments

Types
typedef bool result_type;
Operations
result_type fo.operator()( AlgebraicKernel_d_2::Polynomial_2 pl,
AlgebraicKernel_d_2::Polynomial 2 p2,
AlgebraicKernel_d_2::Polynomial_2 & g,
AlgebraicKernel_d_2::Polynomial 2 & ql,
AlgebraicKernel_d_2::Polynomial_2 & q2)
Computes g,q1,g> as described above.
Returns whether p; and p, where already coprime.
See Also
AlgebraicKernel_d_2::ISCOPFIME_2 . .. ...t e et page 434
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AlgebraicKernel _d_2::Solve_2

Definition

Computes the real zero-dimensional solutions of a bivariate polynomial system. The multiplicity stored in the
output iterator is the multiplicity in the system.

Refines

Assignable CopyConstructible

Operations

A model of this type must provide:

template < class Outputlterator >

Outputlterator  fo.operator()( AlgebraicKernel_d_2::Polynomial 2 f,
AlgebraicKernel_d_2::Polynomial 2 g,
Outputlterator res)

template < class Outputlterator >

Computes all common solutions of f and g with multiplicity, and copies
them as objects of type std::pair<AlgebraicKernel_d_2::Algebraic_real
2, AlgebraicKernel_d_2::Multiplicity_type> in res.

Precondition: f is square free.

Precondition: g is square free.

Precondition: f and g are coprime.

Outputlterator  fo.operator()( AlgebraicKernel_d_2::Polynomial 2 f,
AlgebraicKernel_d_2::Polynomial_2 g,
AlgebraicKernel_d_2::Bound xl,
AlgebraicKernel_d_2::Bound xu,
AlgebraicKernel_d_2::Bound yl,
AlgebraicKernel_d_2::Bound yu,
Outputlterator res)

Computes all common solutions of f and g in the closed box [x/,xu] x
[vl,yu], and copies them as objects of type std::pair<AlgebraicKernel_d_
2::Algebraic_real 2, AlgebraicKernel_d_2::Multiplicity_type> in res.
Precondition: f is square free.

Precondition: g is square free.

Precondition: f and g are coprime.
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AlgebraicKernel_d_2::NumberOfSolutions_2

Definition

Computes the number of real solutions of the given bivariate polynomial system.

Refines

AdaptableBinaryFunction

Types

typedef AlgebraicKernel_d_2::size_type result_type;

typedef AlgebraicKernel_d_2::Polynomial_2 first_argument_type;
typedef AlgebraicKernel_d_2::Polynomial 2 second_argument_type;

A model of this type must provide:

Operations
result_type fo( first_argument_type f, second_argument_type g)
Returns the number of real solutions of the bivariate polynomial system
(f.8)-
Precondition: f is square free.
Precondition: g is square free.
Precondition: f and g are coprime.
See Also
AlgebraicKernel_d_2::ConstructAlgebraicReal 2 ......... ... . .. . . . . . . i i, page 424
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AlgebraicKernel_d_2::SignAt_2

Definition

Computes the sign of a bivariate polynomial AlgebraicKernel_d_2::Polynomial_2 at a value of type
AlgebraicKernel_d_2::Algebraic_real 2.

Refines

AdaptableBinaryFunction

Types

AlgebraicKernel_d_2::SignAt_2:: result_type Type convertible to CGAL::Sign

typedef AlgebraicKernel_d_2::Polynomial _2 first_argument_type;
typedef AlgebraicKernel_d_2::Algebraic_real 2 second_argument_type;
Operations

result_type fo( first_argument_type p, second_argument_type a)

Computes the sign of a bivariate polynomial p evaluated at a.

See Also
AlgebraicKernel_d_2::1SZer0At 2 . .........o page 439
AlgebraicKernel_d_1::SignAt_I ..... ... page 412
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AlgebraicKernel _d_2::IsZeroAt_2

Definition

Computes whether an AlgebraicKernel_d_2::Polynomial_2 is zero at a given AlgebraicKernel_d_2::Algebraic_
real 2.

Refines

AdaptableBinaryFunction

Types

AlgebraicKernel_d_2::1IsZeroAt_2:: result_type

Type convertible to bool

typedef AlgebraicKernel_d_2::Polynomial_2 first_argument_type;
typedef AlgebraicKernel_d_2::Algebraic_real _2 second_argument_type;
Operations

result_type fo( first_argument_type p, second_argument_type a)

Computes whether p is zero at a.

See Also
AlgebraicKernel_d_2::SignAt_2 ... ... page 438
AlgebraicKernel d_1::IsZer0At_1 .......... . page 413
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AlgebraicKernel_d_2::ComputeX_2

Definition

Computes the first coordinate of an AlgebraicKernel_d_2::AlgebraicReal 2.

Refines

AdaptableUnaryFunction

Types

typedef AlgebraicKernel_d_2::Algebraic_real_1 result_type;
typedef AlgebraicKernel_d_2::Algebraic_real_2 argument_type;
Operations

A model of this type must provide:

result_type fo( argument_type a)

Computes the first coordinate of a.

See Also

AlgebraicKernel_d_2::ComputeY 2. ..... ... .ot page 441
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AlgebraicKernel_d_2::ComputeY _2

Definition

Computes the second coordinate of an AlgebraicKernel_d_2::AlgebraicReal 2.

Refines

AdaptableUnaryFunction

Types

typedef AlgebraicKernel_d_2::Algebraic_real_1 result_type;
typedef AlgebraicKernel_d_2::Algebraic_real_2 argument_type;
Operations

A model of this type must provide:

result_type fo( argument_type a)

Computes the second coordinate of a.

See Also

AlgebraicKernel_d_2::ComputeY 2. ....... ..o .ot page 441
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AlgebraicKernel_d_2::CompareX_2

Definition

Compares the first coordinates of AlgebraicKernel_d_2::Algebraic_real_2s.

Refines

AdaptableBinaryFunction

Types
AlgebraicKernel_d_2::CompareX_2:: result_type

Type convertible to CGAL::Comparison_result

typedef AlgebraicKernel_d_2::Algebraic_real 2 first_argument_type;
typedef AlgebraicKernel_d_2::Algebraic_real 2 second_argument_type;
Operations

The following operators and their symmetric counterparts are required:

result_type fo( first_argument_type a, second_argument_type b)

Compares the first coordinates of a and b.

result_type fo( AlgebraicKernel_d_2::Algebraic_real_2 a, int x)

Compares the first coordinate of a with x.

result_type fo( AlgebraicKernel_d_2::Algebraic_real_2 a, AlgebraicKernel_d_2::Bound x)

Compares the first coordinate of a with x.

result_type fo( AlgebraicKernel_d_2::Algebraic_real_2 a, AlgebraicKernel_d_2::Coefficient x)

Compares the first coordinate of a with x.

result_type fo( AlgebraicKernel_d_2::Algebraic_real_2 a, AlgebraicKernel_d_2::Algebraic_real_l x)

Compares the first coordinate of a with x.

See Also
AlgebraicKernel_d_2::CompareY_2......... ..ottt page 443
AlgebraicKernel_d_2::CompareXY_2 ...... ..o e page 444
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AlgebraicKernel_d_2::CompareY _2

Definition

Compares the second coordinated of AlgebraicKernel_d_2::Algebraic_real _2s.

Refines

AdaptableBinaryFunction

Types
AlgebraicKernel_d_2::CompareY_2:: result_type

Type convertible to CGAL::Comparison_result

typedef AlgebraicKernel_d_2::Algebraic_real 2 first_argument_type;
typedef AlgebraicKernel_d_2::Algebraic_real 2 second_argument_type;
Operations

The following operators and their symmetric counterparts are required:

result_type fo( first_argument_type a, second_argument_type b)

Compares the second coordinates of a and b.

result_type fo( AlgebraicKernel_d_2::Algebraic_real_2 a, int y)

Compares the second coordinate of a with y.

result_type fo( AlgebraicKernel_d_2::Algebraic_real_2 a, AlgebraicKernel_d_2::Bound y)

Compares the second coordinate of a with y.

result_type fo( AlgebraicKernel_d_2::Algebraic_real_2 a, AlgebraicKernel_d_2::Coefficient y)

Compares the second coordinate of a with y.

result_type fo( AlgebraicKernel_d_2::Algebraic_real_2 a, AlgebraicKernel_d_2::Algebraic_real_l y)

Compares the second coordinate of a with y.

See Also
AlgebraicKernel_d_2::CompareX _2 ..........o oottt page 442
AlgebraicKernel_d_2::CompareXY_2 ...... ..o e page 444
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AlgebraicKernel_d_2::CompareXY _2

Definition

Compares AlgebraicKernel_d_2::Algebraic_real_2s lexicographically.

Refines

AdaptableBinaryFunction

Types

AlgebraicKernel_d_2::CompareXY_2:: result_type

Type convertible to CGAL::Comparison_result

typedef AlgebraicKernel_d_2::Algebraic_real 2 first_argument_type;
typedef AlgebraicKernel_d_2::Algebraic_real_2 second_argument_type;
Operations

result_type fo( first_argument_type a, second_argument_type b)

Compares a and b lexicographically.

result_type fo( AlgebraicKernel_d_2::Algebraic_real_2 a, int x, int y)
Compares a with (x,y) lexicographically.
result_type fo.operator()( AlgebraicKernel_d_2::Algebraic_real_2 a,
AlgebraicKernel_d_2::Bound x,
AlgebraicKernel_d_2::Bound y)
Compares a with (x,y) lexicographically.
result_type fo.operator()( AlgebraicKernel_d_2::Algebraic_real_2 a,
AlgebraicKernel_d_2::Coefficient x,

AlgebraicKernel_d_2::Coefficient y)

Compares a with (x,y) lexicographically.

See Also
AlgebraicKernel_d_2::CompareX _2 ..........o ettt page 442
AlgebraicKernel_d_2::CompareY 2. ....... ... oot e page 443
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AlgebraicKernel_d_2::ApproximateAbsoluteX_2

Definition

A model of AlgebraicKernel_d_2::ApproximateAbsoluteX_2 is an AdaptableBinaryFunction that computes an
approximation of the x-coordinate of an AlgebraicKernel_d_2::Algebraic_real_2 value with respect to a given
absolute precision.

Refines

AdaptableBinaryFunction

Types

typedef std::pair<AlgebraicKernel_d_I::Bound, AlgebraicKernel_d_I::Bound>

result_type;
typedef AlgebraicKernel_d_2::Algebraic_real _2 first_argument_type;
typedef int second_argument_type;

Operations
result_type fo( first_argument_type v, second_argument_type a)
The function computes a pair p of AlgebraicKernel_d_I::Bound, where
p.first represents the lower approximation and p.second represents the
upper approximation. The pair p approximates the x-coordinate x of the
AlgebraicKernel_d_2::Algebraic_real_2 value v with respect to the abso-
lute precision a.
Postcondition: p.first <=x
Postcondition: x <= p.second
Postcondition: (x — p.first) <=2
Postcondition: (p.second —x) <=27¢
See Also
AlgebraicKernel_d_2::ApproximateRelativeX 2. ... ... ... e e page 447
AlgebraicKernel_d_I::ApproximateAbsolute_1............. ... e, page 416
AlgebraicKernel_d_I::ApproximateRelative_l ........... ... o i page 417
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AlgebraicKernel_d_2::ApproximateAbsoluteY_2

Definition

A model of AlgebraicKernel_d_2::ApproximateAbsoluteY _2 is an AdaptableBinaryFunction that computes an
approximation of the y-coordinate of an AlgebraicKernel_d_2::Algebraic_real_2 value with respect to a given
absolute precision.

Refines

AdaptableBinaryFunction

Types

typedef std::pair<AlgebraicKernel_d_I::Bound, AlgebraicKernel_d_I::Bound>

result_type;
typedef AlgebraicKernel_d_2::Algebraic_real 2 first_argument_type;
typedef int second_argument_type;

Operations
result_type fo( first_argument_type v, second_argument_type a)
The function computes a pair p of AlgebraicKernel_d_I::Bound, where
p.first represents the lower approximation and p.second represents the
upper approximation. The pair p approximates the y-coordinate y of the
AlgebraicKernel_d_2::Algebraic_real_2 value v with respect to the abso-
lute precision a.
Postcondition: p.first <=y
Postcondition: y <= p.second
Postcondition: (y — p.first) <=271
Postcondition: (p.second —y) <=27¢
See Also
AlgebraicKernel_d_2::ApproximateRelativeY 2 . ........ ... . oo page 448
AlgebraicKernel_d_I::ApproximateAbsolute_1............. ... ittt page 416
AlgebraicKernel_d_I::ApproximateRelative_l ........... ... o i, page 417
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AlgebraicKernel _d_2::ApproximateRelativeX_2

Definition

A model of AlgebraicKernel_d_2::ApproximateRelativeX_2 is an AdaptableBinaryFunction that computes an
approximation of the x-coordinate of an AlgebraicKernel_d_2::Algebraic_real_2 value with respect to a given
relative precision.

Refines

AdaptableBinaryFunction

Types

typedef std::pair<AlgebraicKernel_d_I::Bound, AlgebraicKernel_d_I::Bound>

result_type;
typedef AlgebraicKernel_d_2::Algebraic_real _2 first_argument_type;
typedef int second_argument_type;

Operations
result_type fo( first_argument_type v, second_argument_type a)
The function computes a pair p of AlgebraicKernel_d_I::Bound, where
p.first represents the lower approximation and p.second represents the
upper approximation. The pair p approximates the x-coordinate x of the
AlgebraicKernel_d_2::Algebraic_real_2 value v with respect to the rela-
tive precision a.
Postcondition: p.first <=x
Postcondition: x <= p.second
Postcondition: (x — p.first) <=2"|x|
Postcondition: (p.second —x) <=2"%|x|
See Also
AlgebraicKernel_d_2::ApproximateAbsoluteY 2 . ........ .. e page 446
AlgebraicKernel_d_I::ApproximateAbsolute_1............. ... e, page 416
AlgebraicKernel_d_I::ApproximateRelative_l ........... ... o i page 417
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AlgebraicKernel _d_2::ApproximateRelativeY _2

Definition

A model of AlgebraicKernel_d_2::ApproximateRelativeY _2 is an AdaptableBinaryFunction that computes an
approximation of the y-coordinate of an AlgebraicKernel_d_2::Algebraic_real_2 value with respect to a given
relative precision.

Refines

AdaptableBinaryFunction

Types

typedef std::pair<AlgebraicKernel_d_I::Bound, AlgebraicKernel_d_I::Bound>

result_type;
typedef AlgebraicKernel_d_2::Algebraic_real 2 first_argument_type;
typedef int second_argument_type;

Operations
result_type fo( first_argument_type v, second_argument_type a)
The function computes a pair p of AlgebraicKernel_d_I::Bound, where
p.first represents the lower approximation and p.second represents the
upper approximation. The pair p approximates the y-coordinate y of the
AlgebraicKernel_d_2::Algebraic_real_2 value v with respect to the rela-
tive precision a.
Postcondition: p.first <=y
Postcondition: y <= p.second
Postcondition: (y — p.first) <=2"4|y|
Postcondition: (p.second —y) <=27%y|
See Also
AlgebraicKernel_d_2::ApproximateAbsoluteY 2 . ........ .. e page 446
AlgebraicKernel_d_I::ApproximateAbsolute_1............. ... ittt page 416
AlgebraicKernel_d_I::ApproximateRelative_l ........... ... o i, page 417
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AlgebraicKernel_d_2::BoundBetweenX _2

Definition

Computes a number of type AlgebraicKernel_d_I::Bound in-between the first coordinates of two
AlgebraicKernel_d_2::AlgebraicReal 2.

Refines

AdaptableBinaryFunction

Types

typedef AlgebraicKernel_d_I::Bound result_type;

typedef AlgebraicKernel_d_2::Algebraic_real _2 first_argument_type;

typedef AlgebraicKernel_d_2::Algebraic_real 2 second_argument_type;

Operations

result_type fo( first_argument_type a, second_argument_type b)
Computes a number of type AlgebraicKernel_d_I::Bound in-between the
first coordinates of a and b.
Precondition: ay # by.

See Also

AlgebraicKernel_d_2::BoundBetweenY 2 ....... ..ot e page 450
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AlgebraicKernel _d_2::BoundBetweenY _2

Definition

Computes a number of type AlgebraicKernel_d_I::Bound in-between the second coordinates of two
AlgebraicKernel_d_2::AlgebraicReal 2.

Refines

AdaptableBinaryFunction

Types

typedef AlgebraicKernel_d_I::Bound result_type;

typedef AlgebraicKernel_d_2::Algebraic_real _2 first_argument_type;

typedef AlgebraicKernel_d_2::Algebraic_real 2 second_argument_type;

Operations

result_type fo( first_argument_type a, second_argument_type b)
Computes a number of type AlgebraicKernel_d_I::Bound in-between the
second coordinates of a and b.
Precondition: ay, # by.

See Also

AlgebraicKernel_d_2::BoundBetweenX 2 ........ ... i page 449
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CGAL::Algebraic_kernel_d_2<Coeff>
#include <CGAL/Algebraic_kernel_d_2.h>

Definition

This class is based on an algorithm computing a geometric-topological analysis of a single curve [ ] and
of a pair of curves [ ]. The main idea behind both analyses is to compute the critical x-coordinates of
curves and curve pairs by projection (resultants), and compute additional information about the critical fibers
using subresultants and Sturm-Habicht sequences [ ]. With that information, the fiber at critical x-
coordinates is computed by a variant of the Bitstream Descartes method. See also [ ] for a comprehensive
description of these techniques.

A point p of type Algebraic_real_2 is represented by its x-coordinate xq (as described in the Algebraic_kernel_
d_I paragraph above), an algebraic curve where p lies on, and an integer i, denoting that p is the ith point in
the fiber at xg, counted from the bottom (ignoring a possible vertical line at xg). This determines the point
uniquely, but the y-coordinate is not stored internally in terms of an Algebraic_real_I object. Querying such a
representation by calling Compute_y_2 is a time-consuming step, and should be avoided for efficiency reasons
if possible. Note that this representation is not exposed in the interface.

The template argument Coeff determines the coefficient type of the kernel, which is also the innermost coeffi-
cient type of the supported polynomials.

Currently, the following coefficient types are supported:
— Gmpz, Gmpq, (requires configuration with external libraries GMP, MPFR and MPFI)

— CORE::Biglnt, CORE::BigRat, (requires configuration with external library GMP)
— leda_integer, leda_rational. (requires configuration with external library LEDA)

advanced

The template argument type can also be set to Sqrt_extension<NT,ROOT>, where NT is one of the types listed
above. ROOT should be one of the integer types. See also the documentation of Sqrt_extension<NT,ROOT>.

I— advanced ——

Is Model for the Concepts

AlgebraicKernel _d_2.

Types

Algebraic_kernel_d_2<Coeff>:: Coefficient Same type as the template argument Coeff.

Algebraic_kernel_d_2<Coeff>:: Polynomial 2 A model of AlgebraicKernel_d_2::Polynomial 2

Algebraic_kernel_d_2<Coeff>:: Algebraic_real_2

A model of AlgebraicKernel_d_2::AlgebraicReal 2
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Algebraic_kernel_d_2<Coeff>:: Bound The choice of Coeff also determines the provided bound,
type. In case of Coeff is - Gmpz or Gmpgq this is Gmpqg
- CORE::Biglnt or CORE::Biglnt this is CORE::BigRat
- leda_integer or leda_integer this is leda_rational

Algebraic_kernel_d_2<Coeff>:: Multiplicity_type

The multiplicity type is int.

See Also

AlgebraicKemel _d_1 . ... ... . e page 398
AlgebraicKernel_d_2. ... e page 422
Polynomial d. ... ... page 261
CGAL::Algebraic_kernel _d_2<Coeff>. . ... ... e e e page 451
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Chapter 9

Monotone and Sorted Matrix Search

Michael Hoffmann

CGAL::monotone_matrix_search and CGAL::sorted_matrix_search are techniques that deal with the problem
of efficiently finding largest entries in matrices with certain structural properties. Many concrete problems can
be modelled as matrix search problems, and for some of them we provide explicit solutions that allow you to
solve them without knowing about the matrix search technique. Examples are, the computation of all furthest
neighbors for the vertices of a convex polygon, maximal k-gons inscribed into a planar point set, and computing
rectangular p-centers.
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Monotone and Sorted Matrix Search
Reference Manual

Michael Hoffmann

This chapter describes concepts, classes, and functions for monotone and sorted matrix search.

Assertions

The optimization code uses infix OPTIMISATION in the assertions, e.g. defining the compiler flag CGAL_
OPTIMISATION_NO_PRECONDITIONS switches precondition checking off, cf. Section 2.8.

9.1 Classified References Pages

CGAL::MONOIONE_MALFIX_SCATCH . . . .\ttt ettt et e e et e et e e page 458
CGAL::Dynamic_matrix<M> . ... ... e e e page 460
MonotoneMatrixSearchTIaits . ... ...ttt e e et page 462
BasiCIMAatIiX . . . oottt e e e e e page 464
CGAL::sorted_matrix_search . .......... ... .. . . i page 465
CGAL::Sorted_matrix_search_traits_adaptor<F,M> ... ...... ... i page 468
SortedMatrixSearchTraits. . . ... ... e page 470

9.2 Alphabetical List of Reference Pages

BasicMatrix . . .. ... e page 464
Dynamic_matrix<M> . ... . ... page 460
MonotoneMatrixSearchTraILS . .. ... e et page 462
MONOIONE_MALTIX_SEAVCR . ... .. ... .. . page 458
SortedMatrixSearchTraits .. ....... ... page 470
Sorted_matrix_search_traits_adaptor<F,M> ... .. ... ... . . . page 468
SOPted_MAITIX_SCATCIH . . . ...ttt e et page 465
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Function

CGAL::monotone_matrix_search

li advanced ——

Definition
The function monotone_matrix_search computes the maxima for all rows of a totally monotone matrix.
More precisely, monotony for matrices is defined as follows.

Let K be a totally ordered set, M € K (n:m) 3 matrix over K and for 0 <i<n:

rmaxy (i) :€ { min j ‘M[i, j] = max M[i, k]}

0<j<m 0<k<m
the (leftmost) column containing the maximum entry in row i. M is called monotone, iff
VO <ip <ip<n:rmaxy(i)) < rmaxy(iz) .

M is totally monotone, iff all of its submatrices are monotone (or equivalently: iff all 2 x 2 submatrices are
monotone).

#include <CGAL/monotone_matrix_search.h>

template < class Matrix, class RandomAccessIC, class Compare_strictly >
void  monotone_matrix_search(

Matrix m,

RandomAccessIC t,

Compare_strictly compare_strictly = less< Matrix::Value >())

computes the maximum (as specified by compare_strictly) entry for each row of m and writes the corresponding
column to #, i.e. #[i] is set to the index of the column containing the maximum element in row i. The maximum
m, of a row r is the leftmost element for which compare _strictly(m,, x) is false for all elements x in r.

Precondition: t points to a structure of size at least m.number_of_rows()

Requirement:

1. Matrix is a model for MonotoneMatrixSearchTraits.
2. Value type of RandomAccessIC is int.

3. If compare_strictly is defined, it is an adaptable binary function: Matrix::Value x Matrix::Value — bool
describing a strict (non-reflexive) total ordering on Matrix::Value.

See Also

MonotoneMatrixSearchTIaits . .. ...ttt e e et e page 462
CGAL::all_furthest_neighbors_2 . ........ ... et page 3933
CGAL::maximum_area_inscribed_k_gon_2 ........ ... . ... . .. . . . . . i page 3912
CGAL::maximum_perimeter_inscribed_k_gon_2 ........... ... .. .. .o iiiiiiiiiiiiiiiniiniinn.. page 3914
CGAL::extremal_polygon_2 . .. ... .. ... ottt e et page 3916
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Implementation

The implementation uses an algorithm by Aggarwal et al.[ ]. The runtime is linear in the number of
rows and columns of the matrix.

advanced
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Class

CGAL::Dynamic_matrix<M>

li advanced ———

Definition

The class Dynamic_matrix<M> is an adaptor for an arbitrary matrix class M to provide the dynamic operations
needed for monotone matrix search.

Requirements

M is a model for BasicMatrix.

#include <CGAL/Dynamic_matrix.h>

Is Model for the Concepts

MonotoneMatrixSearchTraits . . . ... ...t e page 462
BaSICIMAAIIX . . o oottt et e e e e e e page 464
Creation

Dynamic_matrix<M> d( M m); initializes d to m. m is not copied, we only store a reference.
Operations

int d.number_of_columns() const

returns the number of columns.

int d.number_of_rows() const

returns the number of rows.

Entry d( int row, int column)
returns the entry at position (row, column).
Precondition:
0 < row < number_of_rows() and
0 < column < number_of_columns().
void d.replace_column( int old, int new)

replace column old with column number new.
Precondition:
0 < old, new < number_of_columns().
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Matrix* d.extract_all_even_rows() const

returns a new Matrix consisting of all rows of d with even
index, (i.e. first row is row O of d, second row is row 2 of d
etc.).

Precondition: number_of_rows() > 0.

void d.shrink_to_quadratic_size()

deletes the rightmost columns, such that d becomes

quadratic.

Precondition:

number_of_columns() > number_of_rows().

Postcondition:

number_of_rows() == number_of_columns().
See Also
CGAL::monotone_matrix_Search . . . ... ... ... o page 458
MonotoneMatrixSearchTIails . .. ...ttt e et page 462
BasiCIMIAIiX . . ..ttt ettt e e e page 464
Implementation

All operations take constant time except for extract_all_even_rows which needs time linear in the number of
TOWS.

advanced
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Concept

MonotoneMatrixSearchTraits

li advanced ——

Definition

The concept MonotoneMatrixSearchTraits is a refinement of BasicMatrix and defines types and operations
needed to compute the maxima for all rows of a totally monotone matrix using the function monotone_matrix_
search.

Types
MonotoneMatrixSearchTraits:: Value The type of a matrix entry.
Operations
int m.number_of_columns() const
returns the number of columns.
int m.number_of_rows() const
returns the number of rows.
Entry m.operator()( int row, int column) const
returns the entry at position (row, column).
Precondition:
0 < row < number_of_rows() and
0 < column < number_of_columns().
void m.replace_column( int old, int new)
replace column old with column number new.
Precondition:
0 < old, new < number_of_columns().
Matrix* m.extract_all_even_rows() const

returns a new Matrix consisting of all rows of m with even
index, (i.e. first row is row O of m, second row is row 2 of m
etc.).

Precondition: number_of_rows() > 0.
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void m.shrink_to_quadratic_size()

deletes the rightmost columns, such that m becomes

quadratic.

Precondition:

number_of_columns() > number_of_rows().
Postcondition:

number_of_rows() == number_of_columns().

Notes

e For the sake of efficiency (and in order to achieve the time bounds claimed for monotone_matrix_search),
all these operations have to be realized in constant time — except for extract_all_even_rows which may
take linear time.

o There is an adaptor Dynamic_matrix that can be used to add most of the functionality described above to
arbitrary matrix classes.

Has Models

CGAL::Dynamic_matrix<M> ... ... ..ottt e e e page 460
See Also

CGAL::monotone_matrix_Search . . ........... ... .. it page 458

Ii advanced ——
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Concept

BasicMatrix

li advanced ——

Definition

A class has to provide the following types and operations in order to be a model for BasicMatrix.

Types
BasicMatrix:: Value The type of a matrix entry. It has to define a copy constructor.
Operations
int m.number_of_columns() const
returns the number of columns.
int m.number_of_rows() const
returns the number of rows.
Entry m.operator()( int row, int column) const
returns the entry at position (row, column).
Precondition:
0 < row < number_of_rows() and
0 < column < number_of_columns().
Has Models
CGAL::Dynamic_matrix<M> .. ... ... e page 460
See Also
MonotoneMatrixSearchTraits . . . ... ...t e page 462
SortedMatrixSearchTIaits . . . . ..ottt e e e page 470

I— advanced ——
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CGAL::sorted_matrix_search

li advanced ——

Definition

The function sorted_matrix_search selects the smallest entry in a set of sorted matrices that fulfills a certain
feasibility criterion.

-
O
)

O

-

)
LL

More exactly, a matrix M = (m; j) e 5™ (over a totally ordered set S) is sorted, iff
Vi<i<nl<j<l: mij < myjip) and

V1§l<r,1§]§lm,j§m(l+1>] .

Now let M be a set of n sorted matrices over S and f be a monotone predicate on S, i.e.

f:S— bool with f(r) = VreS,t>r: f(t).

If we assume there is any feasible element in one of the matrices in &, there certainly is a smallest such element.
This is the one we are searching for.

The feasibility test as well as some other parameters can (and have to) be customized through a traits class.

#include <CGAL/sorted_matrix_search.h>

template < class RandomAccesslterator, class Traits >
Traits::Value sorted_matrix_search( RandomAccesslterator f, RandomAccesslterator I, Traits t)

returns the element x in one of the sorted matrices from the range [f, ), for which t.is_feasible( x) is true and
t.compare( x, y) is true for all other y values from any matrix for which t.is_feasible( y) is true.

Precondition:

1. All matrices in [f, ) are sorted according to Traits::compare_non _strictly.

2. There is at least one entry x in a matrix M € [f, [) for which Traits::is_feasible(x) is true.
Requirement:
1. Traits is a model for SortedMatrixSearchTraits.

2. Value type of RandomAccesslterator is Traits::Matrix.

See Also

SortedMatrixSearchTIaits. . . . ..ottt e et page 470
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Implementation

The implementation uses an algorithm by Frederickson and Johnson[ , Jand runs in O(n-k+ f -log(n-
k)), where n is the number of input matrices, k denotes the maximal dimension of any input matrix and f the
time needed for one feasibility test.

Example
In the following program we build a random vector a = (a;);=1, ... 5 (elements drawn uniformly from {0, ..., 99})
and construct a Cartesian matrix M containing as elements all sums a; +a;, i, j € {1,...,5}. If a is sorted, M

is sorted as well. So we can apply sorted_matrix_search to compute the upper bound for the maximal entry of
ainM.

(#include <CGAL/Random.h>

#include <CGAL/Cartesian_matrix.h>
#include <CGAL/sorted matrix_search.h>
#include <vector>

#include <algorithm>

#include <iterator>

#include <functional>

typedef int Value;

typedef std::vector<Value> Vector;

typedef Vector::iterator Value_iterator;
typedef std::vector<Vector> Vector_cont;

typedef CGAL: :Cartesian_matrix<std::plus<int>,
Value_iterator,
Value_iterator> Matrix;

int main()

{
// set of vectors the matrices are build from:
Vector_cont vectors;

// generate a random vector and sort it:

Vector a;

const int n = §5;

for (int i = 0; i < n; ++1i)
a.push_back (CGAL: :default_random(100));

std::sort (a.begin(), a.end());

std::cout << "a = ( ";

std::copy(a.begin(), a.end(), std::ostream iterator<int>(std::cout,"”
"))

std::cout << ")\n";

// build a Cartesian matrix from a:
Matrix M(a.begin(), a.end(), a.begin(), a.end());

// search for an upper bound for max(a):
Value bound = a[n-1];
Value upper_ bound =
CGAL: :sorted_matrix_search(
&M, &M + 1,
CGAL: :sorted matrix search_traits_adaptor(
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std: :bind2nd (std: :greater_equal<Value> (), bound), M));
std: :cout << "Upper bound for " << bound << " is "
<< uypper_bound << "." << std::endl;

return 0;

File: examples/Matrix_search/sorted_matrix_search.cpp

I— advanced ——
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Class

CGAL::Sorted_matrix_search_traits_adaptor<F,M>

advanced

#include <CGAL/Sorted_matrix_search_traits_adaptor.h>

Definition

The class Sorted_matrix_search_traits_adaptor<F,M> can be used as an adaptor to create sorted matrix search

traits classes for arbitrary feasibility test and matrix classes F resp. M.

Is Model for the Concepts

SortedMatrixSearchTraits.................

Requirements

1. M is a model for BasicMatrix and

2. F defines a copy constructor and a monotone bool operator()( const Values).

Creation

Sorted_matrix_search_traits_adaptor<F,M>

Types

Sorted_matrix_search_traits_adaptor<F,M>::

Sorted_matrix_search_traits_adaptor<F,M>::

Sorted_matrix_search_traits_adaptor<F,M>::

Sorted_matrix_search_traits_adaptor<F,M>::

t( const F& m);

initializes ¢ to use m for feasibility testing.

Matrix

typedef to M.

Value

typedef to Matrix::Value.

Compare _strictly

typedef to std::less<Value>.

Compare_non_strictly

typedef to std::less_equal<Value>.
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Operations

Compare_strictly t.compare_strictly() const

returns the Compare _strictly object to be used for the search.

Compare_non_strictly
t.compare_non_strictly() const

returns the Compare_non_strictly object to be used for the
search.

bool t.is_feasible( const Values a)

uses the feasibility test given during creation.

I— advanced ——
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Concept

SortedMatrixSearchTraits

li advanced ——

Definition

The concept SortedMatrixSearchTraits defines types and operations needed to compute the smallest entry in a
set of sorted matrices that fulfills a certain feasibility criterion using the function sorted_matrix_search.

Types
SortedMatrixSearchTraits:: Matrix The class used for representing matrices. It has to be a model
for BasicMatrix.
typedef Matrix::Value
Value; The class used for representing the matrix elements.

SortedMatrixSearchTraits:: Compare_strictly An adaptable binary function class: Value x Value — bool

defining a non-reflexive total order on Value. This deter-
mines the direction of the search.

SortedMatrixSearchTraits:: Compare_non_strictly

Operations

Compare_strictly

Compare_non_strictly

bool

An adaptable binary function class: Value x Value — bool
defining the reflexive total order on Value corresponding to
Compare _strictly.

t.compare_strictly() const

returns the Compare_strictly object to be used for the search.

t.compare_non_strictly() const
returns the Compare_non _strictly object to be used for the
search.

t.is_feasible( const Values a)

The predicate to determine whether an element a is feasible.
It has to be monotone in the sense that compare( a, b) and
is_feasible( a) imply is_feasible( b).
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Has Models

CGAL::Sorted_matrix_search_traits_adaptor<F,M>

See Also

CGAL::sorted_matrix_search
BasiCMatIiX . . ottt e

I— advanced ——
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10.1 Which Programs can be Solved?

This package lets you solve convex quadratic programs of the general form

(QP) minimize x'Dx+cf'x+ co
subject to  Ax = b,
1<x<u

in n real variables x = (xg,...,x,—1). Here,

e A is an m X n matrix (the constraint matrix),

e b is an m-dimensional vector (the right-hand side),

° z is an m-dimensional vector of relations from {<,= >},

e lis an n-dimensional vector of lower bounds for x, where /; € RU {—oo} for all j

e u is an n-dimensional vector of upper bounds for x, where u; € RU{eo} for all j

e D is a symmetric positive-semidefinite # X n matrix (the quadratic objective function),
e c is an n-dimensional vector (the linear objective function), and

® (( is a constant.

If D =0, the program (QP) is actually a linear program. Section 10.2.2 on robustness briefly discusses the case
of D not being positive-semidefinite and therefore not defining a convex program.

Solving the program means to find an n-vector x* such that Ax* E b,1 < x* < u (afeasible solution), and with
the smallest objective function value x* Dx* + ¢’ x* + ¢y among all feasible solutions.

There might be no feasible solution at all, in which case the quadratic program is infeasible, or there might be
feasible solutions of arbitrarily small objective function value, in which case the program is unbounded.

10.2 Design, Efficiency, and Robustness

The design of the package is quite simple. The linear or quadratic program to be solved is supplied in form of
an object of a class that is a model of the concept QuadraticProgram (or some specialized other concepts, e.g.
for linear programs). CGAL provides a number of easy-to-use and flexible models, see Section 10.3 below. The
input data may be of any given number type, such as double, int, or any exact type.

Then the program is solved using the function solve_quadratic_program (or some specialized other functions,
e.g. for linear programs). For this, you also have to provide a suitable exact number type ET used in the solution
process. In case of input type double, solution methods that use floating-point-filtering are chosen by default
for certain programs (in some cases, this is not appropriate, and the default should be changed; see Section 10.8
for details).

The output of this is an object of Quadratic_program_solution<ET> which you can in turn query for various
things: what is the status of the program (optimally solved, infeasible, or unbounded?), what are the values of
the optimal solution x*, what is the associated objective function value, etc.

You can in particular get certificates for the solution. In short, these are proofs that the output is correct. Thus,

if you don’t believe in the solution (whether it says “optimally solved”, “infeasible”, or “unbounded”), you can
verify it yourself by using the certificates. Section 10.7 says more about this.
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10.2.1 Efficiency

The concept QuadraticProgram (as well as the other specialized ones) require a dense interface of the program,
in terms of random-access iterators over the matrices and vectors of (QP). Zero entries therefore play no special
role and are treated like all other entries by the interface.

This has mainly historical reasons: the original motivation behind this package was low-dimensional geo-
metric optimization where a dense representation is appropriate and efficient. In fact, the CGAL packages
Min_annulus_d<Traits> and Polytope_distance_d<Traits> internally use the linear and quadratic programming
solver.

As a user, however, you don’t necessarily have to provide a dense representation of your program. You do not
pass vectors or matrices to the solution functions, but rather specify the vectors and matrices through iterators.
The iterator abstraction easily allows to build models that convert a sparse representation into a dense interface.
The predefined models Quadratic_program<NT> and Quadratic_program_from_mps<NT> do exactly this; in
using them, you can forget about the dense interface.

Nevertheless, if you care about efficiency, you cannot completely ignore the issue. If you think about a quadratic
program in n variables and m constraints, its dense interface has ®(n? + mn) entries, even if actually very few
of them are nonzero. This has consequences for the complexity of the internal computations. In fact, a single
iteration of the solution process has complexity at least Q(mn), since usually, all entries of the matrix A are
accessed. This implies that problems where min(n,m) is large cannot be solved efficiently, even if the number
of nonzero entries in the problem description is very small.

We can actually be quite precise about performance, in terms of the following parameters.
n : the number of variables (or columns of A),

the number of constraints (or rows of A),

the number of equality constraints,

the rank of the quadratic objective function matrix D.

\NS

The time required to solve the problems is in most cases linear in max(n,m), but with a factor heavily depending
on min(n,e) 4 r. Therefore, the solver will be efficient only if min(#n,e) + r is small.

Here are the scenarios in which this applies:

e Quadratic programs with a small number of variables, but possibly a large number of inequality con-
straints,

e Linear programs with a small number of equality constraints but possibly a large number of variables,

e Quadratic programs with a small number of equality constraints and D of small rank, but possibly with a
large number of variables.

How small is small? If min(n,e) + r is up to 10, the solver will probably be very fast, even if max(n,m) goes
into the millions. If min(n,m) + r is up to a few hundreds, you may still get a solution within reasonable time,
depending on the problem characteristics.

If you have a problem where both n and e are well above 1,000, say, then chances are high that CGAL cannot
solve it within reasonable time.
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10.2.2 Robustness

Given that you use an exact number type in the function solve_quadratic_program (or in the other, specialized
solution functions), the solver will give you exact rational output, for every convex quadratic program. It may
fail to compute a solution only if

1. The quadratic program is too large (see the previous subsection on efficiency).
2. The quadratic objective function matrix D is not positive-semidefinite (see the discussion below).

3. The floating-point filter used by default for certain programs and input type double fails due to a double
exponent overflow. This happens in rare cases only, and it does not pay off to sacrifice the efficiency of
the filtered approach in order to cope with these rare cases. There are means, however, to avoid such
problems by switching to a slower non-filtered variant, see Section 10.8.1.

4. The solver internally cycles. This also happens in rare cases only. However, if you have a hunch that
the solver cycles on your problem, there are means to switch to a slower variant that is guaranteed not to
cycle, see Section 10.8.2.

The second item merits special attention. First, you may ask why the solver does not check that D is positive
semidefinite. But recall that D is given by a dense interface, and it would therefore cost Q(n?) time already
to access all entries of the matrix D. The solver itself gets away with accessing much less entries of D in the
relevant case where r, the rank of D, is small.

Nevertheless, the solver contains some runtime checks that may detect that the matrix D is not positive-
semidefinite. But you may as well get an “optimal solution” in this case, even with valid certificates. The
validity of these certificates, however, depends on D being positive-semidefinite; if this is not the case, the cer-
tificates only prove that the solver has found a “critical point” of your (nonconvex) program, but there are no
guarantees whatsoever that this is a global optimum, or even a local optimum.

10.3 How to Enter and Solve a Program

In this section, we describe how you can supply and solve your problem, using the CGAL program models and
solution functions. There are two essentially different ways to proceed, and we will discuss them in turn. In
short,

e you can let the model take care of your program data; you start from an empty program and then simply
insert the non-zero entries, or read them from a file (more generally, any input stream) in MPSFormat.
You can also change program entries at any time. This is usually the most convenient way if you don’t
want to care about representation issues;

e you can maintain the data yourself and only supply suitable random-access iterators over the matrices
and vectors. This is advantageous if you already have the data (explicitly, or implicitly encoded, for
example through iterators) and want to avoid copying of data. Typically, this happens if you write generic
iterator-based code.
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Our running example is the following quadratic program in two variables:

minimize x> +4(y—4)? (= x>+4y*>—32y+64)
subject to x+y < 7
—x+2y < 4
x > 0
y =2 0
y < 4

Figure 10.1 shows a picture. It depicts the five inequalities of the program, along with the feasible region
(green), the set of points that satisfy all the five constraints. The dashed elliptic curves represent contour lines
of the objective function, i.e., along each dashed curve, the objective function value is constant.

The global minimum of the objective function is attained at the point (0,4), and the minimum within the feasible
region appears at the point (2,3) marked with a black dot. The value of the objective function at this optimal
solution is 22 +4(3 —4)? = 8.

0 2 7

Figure 10.1: A quadratic program in two variables

10.3.1 Constructing a Program from Data

Here is how this quadratic program can be solved in CGAL according to the first way (letting the model take
care of the data). We use int as the input type, and MP_Float or Gmpz (which is faster and preferable if GMP is
installed) as the exact type for the internal computations. In larger examples, it pays off to use double as input
type in order to profit from the automatic floating-point filtering that takes place then.

For examples how to work with the input type double, we refer to Sections 10.5 and 10.8.
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Note: For the quadratic objective function, the entries of the matrix 2D have to be provided, rather than D.
Although this is common to almost all quadratic programming solvers, it can easily be overlooked by a novice.

#include <iostream>

#include <cassert>

#include <CGAL/basic.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>

// choose exact integral type
#ifdef CGAL_USE_GMP

#include <CGAL/Gmpz.h>
typedef CGAL: :Gmpz ET;

#else

#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif

// program and solution types
typedef CGAL: :Quadratic_program<int> Program;
typedef CGAL: :Quadratic_program_solution<ET> Solution;

int main() {
// by default, we have a nonnegative QP with Ax <= b
Program gqp (CGAL::SMALLER, true, 0, false, 0);

// now set the non-default entries:
0;
1;

Q
[¢]
=]
7]
o
[
o]
o
>
]

gqp.set_a(X, 0, 1); gp.set_a(Y, 0, 1); gp.set_b(0, 7); // x +y <=7
gp.set_a(X, 1, -1); gp.set_a(Y, 1, 2); gp.set_b(l, 4); // -x + 2y <= 4
gp.set_u (Y, true, 4); // y <= 4
gqp.set_d(X, X, 2); gqp.set_d (Y, Y, 8); // !!specify 2D!! x"2 + 4 y°2
gp.set_c (Y, -32); // =32y
gp.set_c0(64); // +64

// solve the program, using ET as the exact type
Solution s = CGAL: :solve_quadratic_program(gp, ET());
assert (s.solves_quadratic_program(qp));

// output solution
std::cout << s;
return 0;

File: examples/QP_solver/first_gp.cpp

Asuming that GMP is installed, the output of the of the above program is:

status: OPTIMAL
objective value: 8/1
variable values:
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0: 2/1
1: 3/1

If GMP is not installed, the values are of course the same, but numerator and denominator might have a common
divisor that is not factored out.

10.3.2 Constructing a Program from a Stream

Here, the program data must be available in MPSFormat (the MPSFormat page shows how our running example
looks like in this format, and it briefly explains the format). Assuming that your working directory contains the
file first_gp.mps, the following program will read and solve it, with the same output as before.

#include <iostream>

#include <fstream>

#include <CGAL/basic.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>

// choose exact integral type
#ifdef CGAL_USE_GMP

#include <CGAL/Gmpz.h>
typedef CGAL: :Gmpz ET;

#else

#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif

// program and solution types
typedef CGAL: :Quadratic_program_ from mps<int> Program;
typedef CGAL: :Quadratic_program_solution<ET> Solution;

int main() {
std::ifstream in ("first gp.mps");
Program gp (in) ; // read program from file
assert (gp.is_valid()); // we should have a valid mps file

// solve the program, using ET as the exact type
Solution s = CGAL: :solve_quadratic_program(qgp, ET());

// output solution
std: :cout << s;
return 0;

File: examples/QP_solver/first_qgp_from_mps.cpp

10.3.3 Constructing a Program from Iterators

The following program again solves our running example from above, with the same output, but this time with
iterators over data stored in suitable containers. You can see that we also store zero entries here (in D). For this
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toy problem, the previous two approaches (program from data/stream) are clearly preferable, but Section 10.5
shows an example where it makes sense to use the iterator-based approach.

#include <iostream>

#include <CGAL/basic.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>

// choose exact integral type
#ifdef CGAL_USE_GMP

#include <CGAL/Gmpz.h>
typedef CGAL: :Gmpz ET;

#else

#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif

// program and solution types
typedef CGAL: :Quadratic_program from_ iterators

<int**, // for A
intx, // for b
CGAL: :Const_oneset_iterator<CGAL: :Comparison_result>, // for r
boolx, // for f1
intx*, // for 1
boolx, // for fu
intx*, // for u
intxx, // for D
int*> // for c
Program;
typedef CGAL: :Quadratic_program_solution<ET> Solution;
int main() {
int Ax[] = {1, -1}; // column for x
int Ay[] = {1, 2}; // column for y
int* A[] = {Ax, Ay}; // A comes columnwise
int b[] = {7, 4}; // right-hand side
CGAL: :Const_oneset_iterator<CGAL: :Comparison_result>
r( CGAL: : SMALLER) ; // constraints are '<="
bool f1[] = {true, true}; // both x, y are
lower-bounded
int 1[] = {0, 0};
bool fu[] = {false, true}; // only y is upper-bounded
int ul[] = {0, 4}; // x’s u-entry is ignored
int D1[] = {2}; // 2D_{1,1}
int D2[] = {0, 8}; // 2D {2,1}, 2D {2,2}
int* D[] = {Dl, D2}; // D—entries on/below
diagonal
int c[] = {0, -32};
int <O = 64; // constant term

// now construct the quadratic program; the first two parameters are
// the number of variables and the number of constraints (rows of A)
Program gqp (2, 2, A, b, r, f1, 1, fu, u, D, c, c0);

// solve the program, using ET as the exact type
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Solution s = CGAL: :solve_quadratic_program(qp, ET());

// output solution
std: :cout << s;
return 0;

File: examples/QP_solver/first_qgp_from_iterators.cpp

Note 1: The example shows an interesting feature of this approach: not all data need to come from containers.
Here, the iterator over the vector of relations can be provided through the class Const_oneset_iterator<T>, since
all entries of this vector are equal to CGAL::SMALLER. The same could have been done with the vector f7 for
the finiteness of the lower bounds.

Note 2: The program type looks a bit scary, with its total of 9 template arguments, one for each iterator type. In
Section 10.5.1 we show how the explicit construction of this type can be circumvented.

10.4 Solving Linear and Nonnegative Programs

Let us reconsider the general form of (QP) from Section 10.1 above. If D = 0, the quadratic program is in fact a
linear program, and in the case that the bound vectors / is the zero vector and all entries of u are oo, the program
is said to be nonnegative. The package offers dedicated models and solution methods for these special cases.

From an interface perspective, this is just syntactic sugar: in the model Quadratic_program<NT>, we can easily
set the default bounds so that a nonnegative program results, and a linear program is obtained by simply not
inserting any D-entries. Even in the iterator-based approach (see QP_solver/first_gp_from_iterators.cpp), linear
and nonnegative programs can easily be defined through suitable Const_oneset_iterator<T>-style iterators.

The main reason for having dedicated solution methods for linear and nonnegative programs is efficiency: if
the solver knows that the program is linear, it can save some computations compared to the general solver that
unknowingly has to fiddle around with a zero D-matrix. As in Section 10.2.2 above, we can argue that checking
in advance whether D = 0 is not an option in general, since this may require Q(n?) time on the dense interface.

Similarly, if the solver knows that the program is nonnegative, it will be more efficient than under the general
bounds 1 < x < u. You can argue that nonnegativity is something that could easily be checked in time O(n)
beforehand, but then again nonnegative programs are so frequent that the syntactic sugar aspect becomes some-
what important. After all, we can save four iterators in specifying a nonnegative linear program in terms of the
concept NonnegativeLinearProgram rather than LinearProgram.

Often, there are no bounds at all for the variables, i.e., all entries of 1 are —co, and all entries of u are oo (this is
called a free program). There is no dedicated solution method for this case (a free quadratic or linear program

is treated like a general quadratic or linear program), but all predefined models make it easy to specify all sorts
of default bounds, covering the free case.

10.4.1 The Linear Programming Solver

Let’s go back to our first quadratic program from above and change it into a linear program by simply removing
the quadratic part of the objective function:
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minimize —32y+ 64

subject to x+y <7
—x+2y < 4

x > 0

y =2 0

y < 4

Figure 10.2 shows how this looks like. We will not visualize a linear objective function with contour lines but
with arrows instead. The arrow represents the (direction) of the vector —c, and we are looking for a feasible
solution that is “extreme” in the direction of the arrow. In our small example, this is the unique point “on” the
two constraints x; +x, < 7 and —x; +x < 4, the point (10/3,11/3) marked with a black dot. The optimal
objective function value is —32(11/3) 4+ 64 = —160/3.

0 10/3 7

Figure 10.2: A linear program in two variables

Here is CGAL code for solving it, using the dedicated LP solver, and according to the three ways for constructing
a program that we have already discussed in Section 10.3.

QP _solver/first_Ip.cpp
QP _solver/first_lp_from_mps.cpp
QP _solver/first_lp_from_iterators.cpp

In all cases, the output is

status: OPTIMAL
objective value: -160/3
variable values:

0: 10/3

1: 11/3
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10.4.2 The Nonnegative Quadratic Programming Solver

If we go back to our first quadratic program and remove the constraint y < 4, we arrive at a nonnegative quadratic

program:

minimize x> +4(y —4)?

subject to x+y < 7
—x+2y < 4
xry =2 0

X2+ 4y — 32y +64)

—
Il

Figure 10.3 contains the illustration; since the constraint y < 4 was redundant, the feasible region and the optimal

solution do not change.

0

2 7

Figure 10.3: A nonnegative quadratic program in two variables

The following programs (using the dedicated solver for nonnegative quadratic programs) will therefore again

output

status: OPTIMAL
objective value: 8/1
variable values:

0: 2/1

1: 3/1

QP _solver/first_nonnegative __gp.cpp
QP _solver/first_nonnegative _qp_from_mps.cpp
QP _solver/first_nonnegative _qp_from_iterators.cpp
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10.4.3 The Nonnegative Linear Programming Solver

Finally, a dedicated model and function is available for nonnnegative linear programs as well. Let’s take our
linear program from above and remove the constraint y < 4 to obtain a nonnegative linear program. At the same
time we remove the constant objective function term to get a “minimal” input and a “shortest” program; the
optimal value is —32(11/3) = —352/3.

minimize —32y
subject to x+y <7
—x+2y < 4
xry =2 0

This can be solved by any of the following three programs

QP _solver/first_nonnegative_Ip.cpp
QP _solver/first_nonnegative _lp_from_mps.cpp
QP _solver/first_nonnegative _lp_from_iterators.cpp

The output will always be

status: OPTIMAL
objective value: -352/3
variable values:

0: 10/3

1: 11/3

10.5 Working from Iterators

Here we present a somewhat more advanced example that emphasizes the usefulness of solving linear and
quadratic programs from iterators. Let’s look at a situation in which a linear program is given implicitly, and
access to it is gained through properly constructed iterators.

The problem we are going to solve is the following: given points py,... p, in d-dimensional space and another
point p: is p in the convex hull of {py,...,p,}? In formulas, this is the case if and only if there are real
coefficients A, ..., A, such that p is a convex combination of py,..., p,:

n n
p:lepj, Z}\.jzl, ?»jZOforallj.
Jj=1 j=1

The problem of testing the existence of such A; can be expressed as a linear program. It becomes particularly
easy when we use the homogeneous representations of the points: if g1,...,¢n,q € R‘T" are homogeneous
coordinates for py,..., p,, p with positive homogenizing coordinates hy,...,h,,h, we have

qj=nh;-(p;j|1)forall jandg=h-(p|1).

Now, nonnegative A1, ..., A, are suitable coefficients for a convex combination if and only if

- s 11) = (p1)

J
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equivalently, if there are uy,...,u, (With u; =A;-h/h; for all j) such that

n
Y wjgi=q. p;>0forall;.
j=1

The linear program now tests for the existence of nonnegative u; that satisfy the latter equation. Below is the
code; it defines a function that solves the linear program, given p and py,..., p, (through an iterator range). The
only (mild) trickery involved is the construction of the nested iterator through a fixed column of the constraint
matrix A. We get this from transforming the iterator through the points using a functor that maps a point to an
iterator through its homogeneous coordinates.

(#include <boost/config.hpp>

#include <boost/iterator/transform_iterator.hpp>
#include <CGAL/Kernel traits.h>

#include <CGAL/QP_models.h>

#include <CGAL/QP_functions.h>

// unary function to get homogeneous begin-iterator of point
template <class Point_d>
struct Homogeneous_begin {
typedef typename Point_d::Homogeneous_const_iterator result_type;
result_type operator() (const Point_dé& p) const {
return p.homogeneous_begin();
}
};

// function to solve the LP that tests whether a point is in the

// convex hull of other points; the type ET is an exact type used

// for the internal computations

template <class Point_d, class RandomAccessIterator, class ET>

CGAL: :Quadratic_program_solution<ET>

solve_convex hull_ containment_ lp (const Point_d& p,
RandomAccessIterator begin,
RandomAccessIterator end, const ETé&

dummy)

// Constraint matrix type: A[j][i] is the i-th homogeneous coordinate
of p j
typedef boost::transform iterator
<Homogeneous_begin<Point_d>, RandomAccessIterator> A_it;
// Right-hand side type: b[i] is the i-th homogeneous coordinate of p
typedef typename Point_d::Homogeneous_const_iterator B_it;
// Relation type ("=")
typedef CGAL: :Const_oneset_iterator<CGAL: :Comparison_result> R _it;
// input number type
typedef typename CGAL: :Kernel_traits<Point_d>::Kernel::RT RT;
// Linear objective function type (c=0: we only test feasibility)
typedef CGAL: :Const_oneset_iterator<RT> C_it;
// the nonnegative linear program type
typedef
CGAL: :Nonnegative_linear program from_iterators<A_it, B_it, R_it,
C_it>
Program;
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// ok, we are prepared now: construct program and solve it

Program lp (end-begin, // number of variables
p.dimension()+1l, // number of constraints
A it (begin), B_it (p.homogeneous_begin()),
R_it (CGAL::EQUAL), C_it (0));

return CGAL: :solve_nonnegative_linear program (lp, dummy);

File: examples/QP_solver/solve_convex_hull_containment_lp.h

To see this in action, let us call it with p; = (0,0), p» = (10,0), p3 = (0, 10) fixed (they define a triangle) and all
integral points p in [0, 10]>. We know that p is in the convex hull of {py, p2, p3} if and only if its two coordinates
sum up to 10 at most. As the exact type, we use MP_Float or Gmpzf (which is faster and preferable if GMP is
installed).

r#include <cassert>

#include <vector>

#include <CGAL/Cartesian_d.h>

#include <CGAL/MP_Float.h>

#include "solve_convex hull_ containment_lp.h"

// choose exact floating-point type
#ifdef CGAL_USE_GMP

#include <CGAL/Gmpzf.h>

typedef CGAL: :Gmpzf ET;

#else

#include <CGAL/MP_Float.h>

typedef CGAL::MP_Float ET;

#endif

typedef CGAL: :Cartesian_d<double> Kernel_d;
typedef Kernel d::Point_d Point_d;

bool is_in_convex_hull (const Point_d& p,
std: :vector<Point_d>::const_iterator begin,
std: :vector<Point_d>::const_iterator end)

CGAL: :Quadratic_program solution<ET> s =
solve_convex _hull_containment_lp (p, begin, end, ET(0));
return !s.is_infeasible();

int main()
{
std: :vector<Point_d> points;
// convex hull: simplex spanned by {(0,0), (10,0), (0,10)}
points.push _back (Point_ d ( 0.0, 0.0));
points.push _back (Point_d (10.0, 0.0));
points.push_back (Point_d ( 0.0, 10.0));
for (int i=0; i<=10; ++i)
for (int j=0; j<=10; ++3j) {
// (i,3j) is in the simplex iff i+3j <= 10
bool contained = is_in_convex_hull
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(Point_d (i, j), points.begin(), points.end());
assert (contained == (i+j<=10));

return 0;

File: examples/QP_solver/convex_hull_containment.cpp

10.5.1 Using Makers

You already noticed in the previous example that the actual template arguments for CGAL::Nonnegative _linear_
program_from_iterators<A_it, B_it, R_it, C_it> can be quite elaborate, and this only gets worse if you plug more
iterators into each other. In general, you want to construct a program from given expressions for the iterators,
but the types of these expressions are probably very complicated and difficult to look up.

You can avoid the explicit construction of the type CGAL::Nonnegative_linear_program_from_iterators<A_it,
B_it, R_it, C_it> if you only need an expression of it, e.g. to pass it directly as an argument to the solving
function. Here is an alternative version of QP_solver/solve_convex_hull_containment_Ip.h that shows how this
works. In effect, you get shorter and more readable code.

#include <boost/config.hpp>

#include <boost/iterator/transform_iterator.hpp>
#include <CGAL/Kernel_traits.h>

#include <CGAL/QP_models.h>

#include <CGAL/QP_functions.h>

// unary function to get homogeneous begin-iterator of point
template <class Point_d>
struct Homogeneous_begin {
typedef typename Point_d::Homogeneous_const_iterator result_type;
result_type operator() (const Point_d& p) const {
return p.homogeneous_begin();
}
}i

// function to test whether point is in the convex hull of other points;
// the type ET is an exact type used for the computations
template <class Point_d, class RandomAccessIterator, class ET>
CGAL: :Quadratic_program_solution<ET>
solve_convex hull containment_ lp (const Point_d& p,
RandomAccessIterator begin,
RandomAccessIterator end, const ETé&
dummy)

// construct program and solve it
return CGAL: :solve_nonnegative_linear program
(CGAL: :make_nonnegative_linear program_from_ iterators
(end-begin,
// n
p.dimension () +1,

// m
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boost: :transform_ iterator

<Homogeneous_begin<Point_d>, RandomAccessIterator> (begin),

// A

typename Point_d: :Homogeneous_const_iterator
(p.homogeneous_begin()),// b

CGAL: :Const_oneset_iterator<CGAL: :Comparison_result> (CGAL: :EQUAL),

/7T

CGAL: :Const_oneset_iterator

<typename CGAL: :Kernel_traits<Point_d>::Kernel::RT> (0)), dummy);

// c

File: examples/QP_solver/solve_convex_hull_containment_1lp2.h

10.6 Important Variables and Constraints

If you have a solution x* of a linear or quadratic program, the “important” variables are typically the ones that
are not on their bounds. In case of a nonnegative program, these are the nonzero variables. Going back to the
example of the previous Section 10.5, we can easily interpret their importance: the nonzero variables correspond
to points p; that actually contribute to the convex combination that yields p.

The following example shows how we can access the important variables, using the iterators basic_variable_
indices_begin() and basic_variable_indices_end().

We generate a set of points that form a 4-gon in [0,4]?, and then find the ones that contribute to the convex
combinations of all 25 lattice points in [0,4]2. If the lattice point in question is not in the 4-gon, we simply
output this fact.

(#include <cassert>

#include <vector>

#include <CGAL/Cartesian_d.h>

#include <CGAL/MP_Float.h>

#include "solve_convex_hull_ containment_1lp2.h"

typedef CGAL: :Cartesian_d<double> Kernel d;
typedef Kernel_d::Point_d Point_d;
typedef CGAL: :Quadratic_program solution<CGAL: :MP_Float> Solution;

int main()

{
std: :vector<Point_d> points;
// convex hull: 4-gon spanned by {(1,0), (4,1), (4,4), (2,3)}
points.push_back (Point_d (1, 0)); // point 0
points.push_back (Point_d (4, 1)); // point 1
points.push_back (Point_d (4, 4)); // point 2
points.push_back (Point_d (2, 3)); // point 3

// test all 25 integer points in [0,4]"2
for (int i=0; i<=4; ++i)
for (int j=0; j<=4; ++3j) {
Point_d p (i, 3Jj);
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Solution s = solve_convex_hull containment_lp
(p, points.begin(), points.end(), CGAL::MP_Float());
std: :cout << p;
if (s.is_infeasible())
std::cout << " is not in the convex hull\n";
else {
assert (s.is_optimal());
std::cout << " is a convex combination of the points ";

Solution::Index iterator it = s.basic_variable_indices_begin();
Solution: :Index_iterator end = s.basic_variable_indices_end();
for (; it != end; ++it) std::cout << *it << " ",
std: :cout << std::endl;
}
}
return O0;

File: examples/QP_solver/important_variables.cpp

It turns out that exactly three of the four points contribute to any convex combination, even through there are
lattice points that lie in the convex hull of less than three of the points. This shows that the set of basic variables
that we access in the example does not necessarily coincide with the set of important variables as defined above.
In fact, it is only guaranteed that a non-basic variable attains one of its bounds, but there might be basic variables
that also have this property. In linear and quadratic programming terms, such a situation is called a degeneracy.

There is also the concept of an important constraint: this is typically a constraint in the system Ax E b that
is satisfied with equality at x*. Program QP_solver/first_qp_basic_constraints.cpp shows how these can be

accessed, using the iterators basic_constraint_indices_begin() and basic_constraint_indices_end().

Again, we have a disagreement between “basic” and “important”: it is guaranteed that all basic constraints are
satisfied with equality at x*, but there might be non-basic constraints that are satisfied with equality as well.

10.7 Solution Certificates
Suppose the solver tells you that the problem you have entered is infeasible. Why should you believe this?
Similarly, you can quite easily verify that a claimed optimal solution is feasible, but why is there no better one?

Certificates are proofs that the solver can give you in order to convince you that what it claims is indeed true.
The archetype of such a proof is Farkas Lemma | ].

Farkas Lemma: Either the inequality system

Ax < b
x > 0
has a solution x*, or there exists a vector y such that
y > 0
y'A > 0
y'b < 0,

but not both.
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Thus, if someone wants to convince you that the first system in the Farkas Lemma is infeasible, that person can
simply give you a vector y that solves the second system. Since you can easily verify yourself that the y you
got satisfies this second system, you now have a certificate for the infeasibility of the first system, assuming that
you believe in Farkas Lemma.

Here we show how the solver can convince you. We first set up an infeasible linear program with constraints
of the type Ax < b,x > 0; then we solve it and ask for a certificate. Finally, we verify the certificate by simply
checking the inequalities of the second system in Farkas Lemma.

#include <cassert>

#include <CGAL/basic.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>

// choose exact integral type
#ifdef CGAL_USE_GMP

#include <CGAL/Gmpz.h>
typedef CGAL: :Gmpz ET;

#else

#include <CGAL/MP_Float.h>
typedef CGAL::MP_Float ET;
#endif

// program and solution types
typedef CGAL: :Nonnegative_linear program from_ iterators

<int**, // for A
intx, // for b
CGAL: :Comparison_resultx, // for r
int*> // for c

Program;

typedef CGAL: :Quadratic_program_solution<ET> Solution;

// we demonstrate Farkas Lemma: either the system

// A x <=b
// x >=0
// has a solution, or there exists y such that
// y >= 0

// y TA >= 0

// y'Th < 0

// In the following instance, the first system has no solution,
// since adding up the two inequalities gives x 2 <= -1:

// x 1 -2x 2 <= 1
// -x 1 + 3x 2 <= -2
// x 1, x 2 >= 0

int main() {

int Ax1[] = { 1, -1}; // column for x1
int Ax2[] = {-2, 3}; // column for x2
int* A[] = {Ax1l, Ax2}; // A comes columnwise
int b[]l = {1, -2}; // right-hand side
CGAL: :Comparison_result
r[] = {CGAL::SMALLER, CGAL::SMALLER}; // constraints are '"<="
int c[] = {0, O0}; // zero objective function

// now construct the linear program; the first two parameters are
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// the number of variables and the number of constraints (rows of A)
Program 1lp (2, 2, A, b, r, c);

// solve the program, using ET as the exact type
Solution s = CGAL: :solve_nonnegative_linear_program(lp, ET());

// get certificate for infeasibility

assert (s.is_infeasible());

Solution: :Infeasibility_ certificate_iterator y =
s.infeasibility certificate_begin();

// check y >= 0

assert (y[0] >= 0);

assert (y[1] >= 0);

// check y"T A >= 0

assert (y[0] *= A[O0][O] + y[1l] * A[O][1] >= 0);

assert (y[0] * A[1][O0] + y[1l] * A[1][1] >= 0);

// check y"T b < 0

assert (y[0] * b[0] + y[1] * b[1l] < 0);

return 0;

File: examples/QP_solver/infeasibility_certificate.cpp

There are similar certificates for optimality and unboundedness that you can see in action in the programs
QP _solver/optimality_certificate.cpp and QP _solver/unboundedness_certificate.cpp. The underlying variants
of Farkas Lemma are somewhat more complicated, due to the mixed relations in z and the general bounds.
The certificate section of Quadratic_program_solution<ET> gives the full picture and mathematically proves
the correctness of the certificates.

10.8 Customizing the Solver

Sometimes it is necessary to alter the default behavior of the solver. This can be done by passing a suitably
prepared object of the class Quadratic_program_options to the solution functions. Most options concern “soft”
issues like verbosity, but there are two notable case where it is of critical importance to be able to change the
defaults.

10.8.1 Exponent Overflow in Double Using Floating-Point Filters

The filtered version of the solver that is used for some problems by default on input type double internally
constructs double-approximations of exact multiprecision values. If these exact values are extremely large, this
may lead to infinite double values and incorrect results. In debug mode, the solver will notice this through a
certificate cross-check in the end (or even earlier). In this case, it is advisable to explicitly switch to a non-filtered
pricing strategy, see Quadratic_program_pricing_strategy.

Hint: If you have a program where the number of variables n and the number of constraints m have the same or-
der of magnitude, the filtering will usually have no dramatic effect on the performance, so in that case you might
as well switch to QP_PARTIAL_DANTZIG to be safe from the issue described here (see QP _solver/cycling.cpp
for an example that shows how to change the pricing strategy).
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10.8.2 The Solver Internally Cycles

Consider the following program. It reads a nonnegative linear program from the file cycling.mps (which is in
the example directory as well), and then solves it in verbose mode, using Bland’s rule, see Quadratic_program_

pricing_strategy.

(#include <iostream>

#include <fstream>

#include <CGAL/basic.h>
#include <CGAL/QP_models.h>
#include <CGAL/QP_functions.h>

// choose exact floating-point type
#ifdef CGAL_USE_GMP

#include <CGAL/Gmpzf.h>

typedef CGAL: :Gmpzf ET;

#telse

#include <CGAL/MP_Float.h>

typedef CGAL::MP_Float ET;

#endif

// program and solution types
typedef CGAL: :Quadratic_program_from mps<double> Program;
typedef CGAL: :Quadratic_program_solution<ET> Solution;

int main() {
std::ifstream in ("cycling.mps");

Program lp(in); // read program from file
assert (lp.is_valid()); // we should have a valid mps file. ..
assert (lp.is_linear()); // ... and it should be linear...

assert (lp.is_nonnegative()); // as well as nonnegative

// solve the program, using ET as the exact type
// choose verbose mode and Bland pricing
CGAL: :Quadratic_program options options;

options.set_verbosity(1l); // verbose mode

options.set_pricing strategy (CGAL: :QP_BLAND) ; // Bland’s rule

options.set_auto_validation (true); // automatic
self-check

Solution s = CGAL: :solve_nonnegative_linear program(lp, ET(), options);

assert (s.is_valid()); // did the self-check
succeed?

// output solution
std: :cout << s;
return O0;

~

File: examples/QP_solver/cycling.cpp

If you comment the line

options.set_pricing_strategy (CGAL::QP_BLAND) ; // Bland’s rule
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you will see that the solver cycles: the verbose mode outputs the same sequence of six iterations over and over
again. By switching to QP_BLAND, the solution process typically slows down a bit (it may also speed up in
some cases), but now it is guaranteed that no cycling occurs.

In general, the verbose mode can be of use when you are not sure whether the solver “has died”, or whether
it simply takes very long to solve your problem. We refer to the class Quadratic_program_options for further
details.

10.9 Some Benchmarks for Convex Hull Containment

Here we want to show what you can expect from the solver’s performance in a specific application; we don’t
know whether this application is typical in your case, and we make no claims whatsoever about the performance
in other applications.

Still, the example shows that the performance can be dramatically affected by switching between pricing strate-
gies, and we give some hints on how to achieve good performance in general.

The application is the one already discussed in Section 10.5 above: testing whether a point is in the convex hull
of other points. To be able to switch between pricing strategies, we add another parameter of type Quadratic_
program_options to the function solve_convex_hull_containment_lp that we pass on to the solution function:

#include <boost/config.hpp>

#include <boost/iterator/transform_iterator.hpp>
#include <CGAL/Kernel_ traits.h>

#include <CGAL/QP_options.h>

#include <CGAL/QP_models.h>

#include <CGAL/QP_functions.h>

// unary function to get homogeneous begin-iterator of point
template <class Point_d>
struct Homogeneous_begin {
typedef typename Point_d::Homogeneous_const_iterator result_type;
result_type operator() (const Point_d& p) const {
return p.homogeneous_begin();
}
}i

// function to test whether point is in the convex hull of other points;
// the type ET is an exact type used for the computations
template <class Point_d, class RandomAccessIterator, class ET>
CGAL: :Quadratic_program_solution<ET>
solve_convex hull containment_ lp (const Point_d& p,
RandomAccessIterator begin,
RandomAccessIterator end, const ETé&
dummy,
const CGAL: :Quadratic_program_optionsé&
o)

// construct program and solve it

return CGAL: :solve_nonnegative_linear program
(CGAL: :make_nonnegative_linear program_ from_ iterators
(end-begin,

// n
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p.dimension () +1,

// m

boost: :transform iterator

<Homogeneous_begin<Point_d>, RandomAccessIterator> (begin),

// A

typename Point_d: :Homogeneous_const_iterator
(p.homogeneous_begin()),// b

CGAL: :Const_oneset_iterator<CGAL: :Comparison_result> (CGAL: : EQUAL),

/7"

CGAL: :Const_oneset_iterator

<typename CGAL: :Kernel_ traits<Point_d>::Kernel::RT> (0)),

// c

dummy, o);

File: examples/QP_solver/solve_convex_hull_containment_1p3.h

Now let us test containment of the origin in the convex hull of # random points in [0, 1]¢ (it will most likely not
be contained, and it turns out that this is the most expensive case). In the program below, we use d = 10 and
n = 100,000, and we comment on some other combinations of n and d below (feel free to experiment with still
other values).

#include <vector>

#include <CGAL/Cartesian_d.h>

#include <CGAL/MP_Float.h>

#include <CGAL/Random.h>

#include <CGAL/Timer.h>

#include "solve_convex_hull_containment_1lp3.h"

// choose exact floating-point type
#ifdef CGAL_USE_GMP

#include <CGAL/Gmpzf.h>

typedef CGAL: :Gmpzf ET;

#telse

#include <CGAL/MP_Float.h>

typedef CGAL: :MP_Float ET;

#endif

typedef CGAL: :Cartesian_d<double> Kernel_d;
typedef Kernel_d::Point_d Point_d;

int main()

{
const int d = 10; // change this in order to experiment
const int n 100000; // change this in order to experiment

// generate n random d-dimensional points in [0,1]"d
CGAL: :Random rd;
std: :vector<Point_d> points;
for (int j =0; j<n; ++j) {
std: :vector<double> coords;
for (int i=0; i<d; ++i)
coords .push_back (rd.get_double());
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points.push back (Point_d (d, coords.begin(), coords.end()));
}

// benchmark all pricing strategies in turn
CGAL: :Quadratic_program pricing_strategy strategy[] = {

CGAL: :QP_ CHOOSE_DEFAULT, // OP PARTIAL FILTERED DANTZIG
CGAL: :QP_DANTZIG, // Dantzig’s pivot rule...
CGAL: :QP_PARTIAL_DANTZIG, // ... with partial pricing
CGAL: :QP_BLAND, // Bland’s pivot rule

CGAL: :QP_FILTERED DANTZIG, // Dantzig’s filtered pivot
rule. ..

CGAL: :QP_PARTIAL_FILTERED_DANTZIG // ... with partial pricing

};

CGAL: :Timer t;
for (int i=0; i<6; ++i) {
// test strategy i
CGAL: :Quadratic_program options options;
options.set_pricing strategy (strategyl[i]);
t.reset (); t.start();
// is origin in convex hull of the points? (most likely, not)
solve_convex hull containment_lp
(Point_d (d, CGAL::ORIGIN), points.begin(), points.end(),
ET (0), options);
t.stop();
std::cout << "Time (s) = " << t.time() << std::endl;

}

return 0;

File: examples/QP_solver/convex_hull_containment_benchmarks.cpp

If you compile with the macros NDEBUG or CGAL_QP_NO_ASSERTIONS set (this is essential for good perfor-
mance!!), you will see runtimes that qualitatively look as follows (on your machine, the actual runtimes will
roughly be some fixed multiples of the numbers in the table below, and they might vary with the random
choices). The default choice of the pricing strategy in that case is QP_PARTIAL_FILTERED_DANTZIG.

strategy runtime in seconds
CGAL::QP_CHOOSE_DEFAULT — 032
CGAL::QP_DANTZIG — 107
CGAL::QP_PARTIAL_DANTZIG — 372
CGAL::QP_BLAND — 3.65
CGAL::QP_FILTERED_DANTZIG — 043
CGAL::QP_PARTIAL_FILTERED_DANTZIG — 0.32

We clearly see the effect of filtering: we gain a factor of ten, roughly, compared to the next best non-filtered
variant.
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109.1 d=3,n=1,000,000

The filtering effect is amplified if the points/dimension ratio becomes larger. This is what you might see in
dimension three, with one million points.

strategy runtime in seconds
CGAL::QP_CHOOSE_DEFAULT — 134
CGAL::QP_DANTZIG — 476
CGAL::QP_PARTIAL _DANTZIG — 156
CGAL::QP_BLAND — 16.02
CGAL::QP_FILTERED_DANTZIG — 1.89
CGAL::QP_PARTIAL_FILTERED _DANTZIG — 1.34

In general, if your problem has a high variable/constraint or constraint/variable ratio, then filtering will typically
pay off. In such cases, it might be beneficial to encode your problem using input type double in order to profit
from the filtering (but see the issue discussed in Section 10.8.1).

10.9.2 d =100, n = 100,000

Conversely, the filtering effect deteriorates if the points/dimension ratio becomes smaller.

strategy runtime in seconds
CGAL::QP_CHOOSE_DEFAULT — 3.05
CGAL::QP_DANTZIG — 784
CGAL::QP_PARTIAL_DANTZIG — 459
CGAL::QP_BLAND — 332
CGAL::QP_FILTERED _DANTZIG — 336
CGAL::QP_PARTIAL_FILTERED_DANTZIG — 3.06

10.9.3 d =500,n= 1,000

If the points/dimension ratio tends to a constant, filtering is no longer a clear winner. The reason is that in this
case, the necessary exact calculations with multiprecision numbers dominate the overall runtime.

strategy runtime in seconds
CGAL::QP_CHOOSE_DEFAULT — 2.65
CGAL::QP_DANTZIG — 555
CGAL::QP_PARTIAL_DANTZIG — 56
CGAL::QP_BLAND — 4.46
CGAL::QP_FILTERED _DANTZIG —  2.65
CGAL::QP_PARTIAL_FILTERED_DANTZIG — 2.61

In general, if you have a program where the number of variables and the number of constraints have the same
order of magnitude, then the saving gained from using the filtered approach is typically small. In such a situation,
you should consider switching to a non-filtered variant in order to avoid the rare issue discussed in Section 10.8.1
altogether.
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10.10 Classified Reference Pages

Concepts

QuadratiCPIOZram . . ... ...ttt e page 500
(for quadratic programs with variable bounds 1 < x < u)

LinearProgram . ... ... e page 506
(for linear programs with variable bounds 1 < x < u)

NonnegativeQuadraticProgram . . ........ ... e page 503
(for quadratic programs with variable bounds x > 0)

NonnegativeLinearProgram . . .. ... ..ottt e page 509

(for linear programs with variable bounds x > 0)

MPSFOIMAL . . . o oottt page 511
(the format used for reading and writing linear and quadratic programs)

Classes

There is a class that represents the solution of a linear or quadratic program. An instance of this class is returned
by any of the solution functions below.

CGAL::Quadratic_program_solution<ET> .. .. ...ttt page 514

We offer a number of predefined models for the above program concepts. The following two are simultaneously
models for all four concepts and are probably the most convenient models; they allow you to construct linear or
quadratic programs entry by entry, or from streams in MPSFormat. At any time, you can query these programs
for linearity and nonnegativity and thus select the appropriate solution function.

CGAL::Quadratic_program<INT> . ..... ... e e page 525
(for linear and quadratic programs that own their data and are built entry-wise)
CGAL::Quadratic_program_from_mps<INT> ... . ...ttt page 528

(for linear and quadratic programs read from an input stream in MPSFormat; the constructed program can also
be manipulate entry-wise)
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Then there are specific models for any of the four program concepts above; these are useful if you want to
maintain the program data yourself, since they simply wrap random access iterators over the program data and
involve no further copying of data.

CGAL::Quadratic_program_from _iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, D_it, C_it> .. ... page 532
(for quadratic programs that wrap given iterators, without copying data)

CGAL::Linear_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, C_it>.............. page 534
(for linear programs wrapping given iterators)

CGAL::Nonnegative_quadratic_program_from_iterators<A_it, B_it, R_it, D_it, C_it> ............... page 536
(for nonnegative quadratic programs, wrapping given iterators)

CGAL::Nonnegative_linear_program_from_iterators<A_it, B_it, R_it, C_it> . ... .................... page 538
(for nonnegative linear programs, wrapping given iterators) Functions

In case you want to construct a program from complicated iterators (whose types you don’t know, or simply
don’t want to bother with), we provide four makers.

CGAL::make_quadratic_program _from_iteFarOrs ... ..........uu e ettt e, page 540
CGAL::make _linear_program_from_iterQrOTS . ... .. ... u ettt et aaas page 541
CGAL::make_nonnegative_quadratic_program_from_iterators . ..............ouueeeuiuieeennnnnn.. page 542
CGAL::make_nonnegative_linear_program_from_iterators . .. ............c.euuuuuueeennnieeennnn. page 543

There are four functions to solve a program, one for each program concept.

CGAL::solve_quadratic_program . . .............. ... .ot page 544
CGAL::50lve _lINear_program . . . ...........u e ettt e page 545
CGAL::solve_nonnegative_quadratic_Program .. .............eu et e et eananne.. page 546
CGAL::solve_nonnegative_liNear_Programi. .. ........ ...t page 547

The solution process can customized by passing an object of the class
QUAdratic_Program_0OPHIONS . . ...ttt e e ettt e e e et e e page ??

Programs can be written to an output stream in MPSFormat, using one of the following four functions.

CGAL::print_quadratic_PrOZraML. . . .. .....o ottt ettt et ettt e page 552
CGAL::print_Linear_Programi . . ... ...........uuuuua ettt et page 553
CGAL: :print_nonnegative_quadratic_Programi. . ................eu e e, page 554
CGAL::print_nonnegative _lINeAr_PrOZIaM. . . ... ...ttt ettt et nans page 555

10.11 Alphabetical List of Reference Pages

LiNearProgrami. ... ... ...ttt e e e e e e e e page 506
Linear_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, C_it> .. ................... page 534
make_linear_program_from_iterarOrs . . ...... ...t page 541
make_nonnegative_linear_program_from_iteraAtOTS . ... ........uuuu e e et aaiieeannns page 543
make_nonnegative_quadratic_program_frOm_iterators . .. .........u e e e e et eniieeeannns page 542
make_quadratic_program _frOm_iteratOTS . . .. .....u vttt ettt et page 540
MPSFO QAL . .« oottt e et e e e e e e e e e page 511
NonnegativeLinearProgram . ........... ... o i page 509



NonnegativeQuadraticProgram . .. ....... ... ... ... . page 503

Nonnegative_linear_program_from_iterators<A_it, B_it, R_it, C_it> .. ... ... i, page 538
Nonnegative_quadratic_program_from_iterators<A_it, B_it, R_it, D_it, C_it>..................ccc... page 536
PIINE_LINEAT _PTOZVAML . . .o o ottt et et e e et e e e e et e e ettt e et et page 553
Print_nonnegative_liNear_PrOGraml . .. ...ttt ettt ettt et page 555
print_nonnegative_quadratic _PTOZFAML . . . ... ..o oottt ettt page 554
PYInt_QUAAFALIC_PIOZIAML . . . ..ottt et ettt e e e e e e e e e page 552
QUAdFatiCPTOZIANML. . . ...\t et e e e e page 500
Quadratic_program<NT> . ....... ... e page 525
Quadratic_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, D_it, C_it>............. page 532
Quadratic_program_from_mps<INT > . .. ..o e page 528
Quadratic_program_0OPHONS . . ...... ...t e e page 548
Quadratic_program_priCiNG _SIFALEZY . . . . ..o c e et page 550
Quadratic_program_solution<ET> .. ... ... . e page 514
QUAAratic_PrograAM_STATUS . . .. ..ot ettt et e et e e et ettt et ettt et e e e page 524
SOIVe_lINear_pProgram ... ........ ..o e e e page 545
solve_nonnegative _[INEAr_Program . . .............. ittt page 547
solve_nonnegative_quadratic_Programi. ... ........ ..o page 546
SOIVe_qQUAAIATIC_PTOZTAMI . . . ..o\ttt ettt e e e ettt ettt e et e e page 544
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Concept

QuadraticProgram

Definition

A model of QuadraticProgram describes a convex

quadratic program of the form

(QP) minimize x'Dx+c'x+ co

subjectto Ax g b,

in n real variables x = (xo,...,x,—1). Here,

e A is an m X n matrix (the constraint matrix),

1<x<u

e b is an m-dimensional vector (the right-hand side),

>

e = is an m-dimensional vector of relations from {<,=,>},

<

e lis an n-dimensional vector of lower bounds for x, where /; € RU {—oo} for all j

e u is an n-dimensional vector of upper bounds for x, where u; € RU {eo} for all j

e D is a symmetric positive-semidefinite n X n matrix (the quadratic objective function),

e c is an n-dimensional vector (the linear objective function), and

e (( is a constant.

The description is given by appropriate random-access iterators over the program data, see below. The program
therefore comes in dense representation which includes zero entries.

Has Models

Quadratic_program<NT>
Quadratic_program_from_mps<NT>

Quadratic_program_from_iterators<A_it, B_it, R_i

Types

QuadraticProgram:: A_iterator

QuadraticProgram:: B_iterator

QuadraticProgram:: R_iterator

t, FL_it, L_it, FU_it, U_it, D_it, C_it>

A random access iterator type to go columnwise over the
constraint matrix A. The value type is a random access iter-
ator type for an individual column that goes over the entries
in that column.

A random access iterator type to go over the entries of the
right-hand side b.

A random access iterator type to go over the relations z The
value type of R_iterator is CGAL::Comparison_result.
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QuadraticProgram::

QuadraticProgram::

QuadraticProgram::

QuadraticProgram::

QuadraticProgram::

QuadraticProgram::

Operations

int

int

A_iterator

B_iterator

R_iterator

FL_iterator

L_iterator

FL_iterator

L_iterator

UL _iterator

U_iterator

D_iterator

C_iterator

gp.get_n() const

gp.get_m() const

gp-get_a() const

gp.get_b() const

gp.get_r() const

gp.get_fl() const

gp.get_l() const

A random access iterator type to go over the existence (finite-
ness) of the lower bounds /;, j = 0,...,n— 1. The value type
of FL_iterator is bool.

A random acess iterator type to go over the entries of the
lower bound vector 1.

A random access iterator type to go over the existence (finite-
ness) of the upper bounds u;, j =0,...,n— 1. The value type
of UL _iterator is bool.

A random acess iterator type to go over the entries of the
upper bound vector u.

A random access iterator type to go rowwise over the matrix
2D. The value type is a random access iterator type for an
individual row that goes over the entries in that row, up to
(and including) the entry on the main diagonal.

A random access iterator type to go over the entries of the
linear objective function vector c.

returns the number n of variables (number of columns of A)
in gp.

returns the number m of constraints (number of rows of A) in
qp-

returns an iterator over the columns of A. The corresponding
past-the-end iterator is get_a()+get_n(). For j =0,....n—1,
*(ger_a() +J) is a random access iterator for column j.

returns an iterator over the entries of b. The corresponding
past-the-end iterator is get_b()+get_m().

returns an iterator over the entries of E The correspond-
ing past-the-end iterator is ger_r()+get_m(). The value
CGAL::SMALLER stands for <, CGAL::EQUAL stands for
=, and CGAL::LARGER stands for >.

returns an iterator over the existence of the lower bounds
l;,j=0,...,n—1. The corresponding past-the-end iterator is
get_fl()+get_n(). If *(get_fl()+j) has value true, the variable
x; has a lower bound given by *(ger_I()+j), otherwise it has
no lower bound.

returns an iterator over the entries of 1. The corresponding
past-the-end iterator is ger_I()+get_n(). If *(get_fl()+j) has
value false, the value *(get_I()+j) is not accessed.
Precondition: if both *(get_fl()+j) and *(get_fu()+j) have
value true, then x(ger_I() +j) < *(get_u() +J)
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FU iterator gp.get_fu() const

L _iterator gp-get_u() const
D_iterator qp.get_d() const
C_iterator gp.get_c() const

std: :iterator_traits<C_iterator>::value_type

gp.get_cO() const

Requirements

returns an iterator over the existence of the upper bounds
uj,j=0,...,n—1. The corresponding past-the-end iterator
is get_fu()+get_n(). If *(get_fu()+j) has value true, the vari-
able x; has an upper bound given by *(get_u()+j), otherwise
it has no upper bound.

returns an iterator over the entries of u. The corresponding
past-the-end iterator is get_u()+get_n(). If *(get_fu()+j) has
value false, the value *(get_u()+j) is not accessed.
Precondition: if both *(get_fl()+j) and *(get_fu()+j) have
value true, then x(ger_I() +j) < x(get_u() +J)

returns an iterator over the rows of 2D. The corresponding
past-the-end iterator is ger_d()+get_n(). Fori=0,...,n—1,
*(get_d() +1i) is a random access iterator for the entries in
row i below or on the diagonal. The valid range of this iter-
ator is guaranteed to have length i 4+ 1 but not more. Values
to the right of the diagonal are deduced from the symmetry
requirement on D.

returns an iterator over the entries of ¢. The corresponding
past-the-end iterator is ger_c()+get_n().

returns the constant term cg of the objective function.

The value types of all iterator types (nested iterator types, respectively, for A_iterator and D _iterator) must be

convertible to some common IntegralDomain ET.

See Also
The models

Quadratic_program<NT>
Quadratic_program_from_mps<NT>

Quadratic_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, D_it, C_it>

and the other conepts

NonnegativeQuadraticProgramlnterface
LinearProgramlnterface
NonnegativeLinearProgramlnterface
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NonnegativeQuadraticProgram

Definition

A model of NonnegativeQuadraticProgram describes a convex quadratic program of the form

(QP) minimize X! Dx+c¢'x+c
subject to Ax 2 b,
x>0

in n real variables x = (xo, ..., x,—1). Here,

e A is an m X n matrix (the constraint matrix),

b is an m-dimensional vector (the right-hand side),

=
<

is an m-dimensional vector of relations from {<,=, >},
e D is a symmetric positive-semidefinite n X n matrix (the quadratic objective function),
e c is an n-dimensional vector (the linear objective function), and

® (o is a constant.

The description is given by appropriate random-access iterators over the program data, see below. The program
therefore comes in dense representation which includes zero entries.

Has Models

Quadratic_program<NT>
Quadratic_program_from_mps<NT>
Nonnegative_quadratic_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, D_it, C_it>

Types

NonnegativeQuadraticProgram:: A_iterator A random access iterator type to go columnwise over the
constraint matrix A. The value type is a random access iter-
ator type for an individual column that goes over the entries
in that column.

NonnegativeQuadraticProgram:: B_iterator A random access iterator type to go over the entries of the
right-hand side b.

NonnegativeQuadraticProgram:: R_iterator A random access iterator type to go over the relations z The
value type of R_iterator is CGAL::Comparison_result.

NonnegativeQuadraticProgram:: D_iterator A random access iterator type to go rowwise over the matrix

2D. The value type is a random access iterator type for an
individual row that goes over the entries in that row, up to
(and including) the entry on the main diagonal.
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NonnegativeQuadraticProgram:: C_iterator A random access iterator type to go over the entries of the
linear objective function vector c.

Operations

int gp.get_n() const returns the number n of variables (number of columns of A)
in gp.

int gp.get_m() const returns the number m of constraints (number of rows of A) in
qp-

A _iterator gp-get_a() const returns an iterator over the columns of A. The corresponding
past-the-end iterator is get_a()+get_n(). For j=0,....n—1,
«(get_a() +J) is a random access iterator for column j.

B_iterator gp.get_b() const returns an iterator over the entries of b. The corresponding
past-the-end iterator is ger_b()+get_m().

R_iterator gp.get_r() const returns an iterator over the entries of E The correspond-
ing past-the-end iterator is ger_r()+get_m(). The value
CGAL::SMALLER stands for <, CGAL::EQUAL stands for
=, and CGAL::LARGER stands for >.

D_iterator gp-get_d() const returns an iterator over the rows of 2D. The corresponding
past-the-end iterator is ger_d()+get_n(). Fori =0,...,n—1,
«(get_d() +1i) is a random access iterator for the entries in
row i below or on the diagonal. The valid range of this iter-
ator is guaranteed to have length i 4+ 1 but not more. Values
to the right of the diagonal are deduced from the symmetry
requirement on D.

C_iterator gp.get_c() const returns an iterator over the entries of ¢. The corresponding
past-the-end iterator is get_c()+get_n().

std: :iterator_traits<C_iterator>::value_type

gp.get_cO() const returns the constant term co of the objective function.

Requirements

The value types of all iterator types (nested iterator types, respectively, for A_iterator and D_iterator) must be
convertible to some common IntegralDomain ET.

See Also

The models

Quadratic_program<NT>

Quadratic_program_from_mps<NT>
Nonnegative_quadratic_program_from_iterators<A_it, B_it, R_it, D_it, C_it> and the other concepts
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QuadraticProgram
LinearProgram
NonnegativeLinearProgram
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Concept

LinearProgram

Definition

A model of LinearProgram describes a linear program of the form

(QP) minimize ¢'x+ ¢
subjectto Ax z b,
I1<x<u

in n real variables x = (xo, ..., x,—1). Here,

e A is an m X n matrix (the constraint matrix),

e b is an m-dimensional vector (the right-hand side),

>

= is an m-dimensional vector of relations from {<,=,>}

lis an n-dimensional vector of lower bounds for x, where [; € RU { —eo} for all j

u is an n-dimensional vector of upper bounds for x, where u; € RU {0} for all j

¢ is an n-dimensional vector (the linear objective function), and

e (( is a constant.

The description is given by appropriate random-access iterators over the program data, see below. The program
therefore comes in dense representation which includes zero entries.

Has Models

Quadratic_program<NT>
Quadratic_program_from_mps<NT>
Linear_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, D_it, C_it>

Types

LinearProgram:: A_iterator A random access iterator type to go columnwise over the
constraint matrix A. The value type is a random access iter-
ator type for an individual column that goes over the entries
in that column.

LinearProgram:: B_iterator A random access iterator type to go over the entries of the
right-hand side b.

LinearProgram:: R_iterator A random access iterator type to go over the relations % The
value type of R_iterator is CGAL::Comparison_result.

LinearProgram:: FL_iterator A random access iterator type to go over the existence (finite-

ness) of the lower bounds /;, j = 0,...,n— 1. The value type
of FL_iterator is bool.
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LinearProgram

LinearProgram

LinearProgram

LinearProgram

Operations

int

int

A_iterator

B_iterator

R_iterator

FL_iterator

L_iterator

FU _iterator

:: L_iterator

:: UL_iterator

:: U_iterator

:: Cl_iterator

Ip.get_n() const

Ip.get_m() const

Ip.get_a() const

Ip.get_b() const

Ip.get_r() const

Ip.get_flI() const

Ip.get_l() const

Ip.get_fu() const

A random acess iterator type to go over the entries of the
lower bound vector 1.

A random access iterator type to go over the existence (finite-
ness) of the upper bounds u;, j =0,...,n— 1. The value type
of UL_iterator is bool.

A random acess iterator type to go over the entries of the
upper bound vector u.

A random access iterator type to go over the entries of the
linear objective function vector c.

returns the number 7 of variables (number of columns of A)
in Ip.

returns the number m of constraints (number of rows of A) in
Ip.

returns an iterator over the columns of A. The corresponding
past-the-end iterator is get_a()+get_n(). For j =0,....n—1,
*(get_a() +J) is a random access iterator for column ;.

returns an iterator over the entries of b. The corresponding
past-the-end iterator is get_b()+get_m().

returns an iterator over the entries of Z The correspond-

ing past-the-end iterator is ger_r()+get_m(). The value
CGAL::SMALLER stands for <, CGAL::EQUAL stands for
=, and CGAL::LARGER stands for >.

returns an iterator over the existence of the lower bounds
l;,j=0,...,n—1. The corresponding past-the-end iterator is
get_fl()+get_n(). If *(get_fl()+j) has value true, the variable
x; has a lower bound given by *(get_I()+j), otherwise it has
no lower bound.

returns an iterator over the entries of 1. The corresponding
past-the-end iterator is get_Il()+get_n(). If *(get_fI()+j) has
value false, the value *(get_I()+j) is not accessed.
Precondition: if both *(get_fl()+j) and *(get_fu()+j) have
value true, then x(get_I() +j) < x(get_u() +J)

returns an iterator over the existence of the upper bounds
uj,j=0,...,n—1. The corresponding past-the-end iterator
is get_fu()+get_n(). If *(get_fu()+j) has value true, the vari-
able x; has an upper bound given by *(get_u()+j), otherwise
it has no upper bound.
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L _iterator Ip.get_u() const

C_iterator Ip.get_c() const

std: :iterator_traits<C_iterator>::value_type

Ip.get_cO() const

See Also
The models

Quadratic_program<NT>
Quadratic_program_from_mps<NT>

returns an iterator over the entries of u. The corresponding
past-the-end iterator is get_u()+get_n(). If *(get_fu()+j) has
value false, the value *(get_u()+j) is not accessed.
Precondition: if both *(get_fl()+j) and *(get_fu()+j) have
value 7rue, then *(get_I() +j) < *(get_u() +j)

returns an iterator over the entries of ¢. The corresponding
past-the-end iterator is get_c()+get_n().

returns the constant term ¢y of the objective function.

Linear_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, C_it>

and the other concepts

QuadraticProgram
NonnegativeQuadraticProgram
NonnegativeLinearProgram
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NonnegativeLinearProgram

Definition
A model of NonnegativeLinearProgram describes a linear program of the form

(QP) minimize cIx+ co
subject to Ax E b,
x>0

in n real variables x = (xo, ...,x,—1). Here,

e A is an m X n matrix (the constraint matrix),

e b is an m-dimensional vector (the right-hand side),

; is an m-dimensional vector of relations from {<, = >},
e c is an n-dimensional vector (the linear objective function), and
e (( is a constant.

The description is given by appropriate random-access iterators over the program data, see below. The program
therefore comes in dense representation which includes zero entries.

Has Models

Quadratic_program<NT>
Quadratic_program_from_mps<NT>
Nonnegative_linear_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, D_it, C_it>

Types

NonnegativeLinearProgram:: A_iterator A random access iterator type to go columnwise over the
constraint matrix A. The value type is a random access iter-
ator type for an individual column that goes over the entries
in that column.

NonnegativeLinearProgram:: B_iterator A random access iterator type to go over the entries of the
right-hand side b.

NonnegativeLinearProgram:: R_iterator A random access iterator type to go over the relations E The
value type of R_iterator is CGAL::Comparison _result.

NonnegativeLinearProgram:: C_iterator A random access iterator type to go over the entries of the

linear objective function vector c.
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Operations

int

int

A_iterator

B_iterator

R_iterator

C_iterator

std: :iterator_traits<C_iterator>::value_type

Requirements

Ip.get_n() const

Ip.get_m() const

Ip.get_a() const

Ip.get_b() const

Ip.get_r() const

Ip.get_c() const

Ip.get_cO() const

returns the number n of variables (number of columns of A)
in Ip.

returns the number m of constraints (number of rows of A) in
Ip.

returns an iterator over the columns of A. The corresponding
past-the-end iterator is get_a()+get_n(). For j=0,....n—1,
*(ger_a() +J) is a random access iterator for column j.

returns an iterator over the entries of b. The corresponding
past-the-end iterator is get_b()+get_m().

returns an iterator over the entries of E The correspond-
ing past-the-end iterator is ger_r()+get_m(). The value
CGAL::SMALLER stands for <, CGAL::EQUAL stands for
=, and CGAL::LARGER stands for >.

returns an iterator over the entries of ¢. The corresponding
past-the-end iterator is ger_c()+get_n().

returns the constant term ¢y of the objective function.

The value types of all iterator types (nested iterator types, respectively, for A_iterator) must be convertible to
some common IntegralDomain ET.

See Also

The models

Quadratic_program<NT>
Quadratic_program_from_mps<NT>
Nonnegative_linear_program_from_iterators<A_it, B_it, R_it, C_it>

and the other concepts

QuadraticProgram
LinearProgram

NonnegativeQuadraticProgram
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MPSFormat

MPS is a commonly used file format for storing linear and quadratic programs according to the concepts
QuadraticProgram, LinearProgram, NonnegativeQuadraticProgram, and NonnegativeLinearProgram, see also
http://en.wikipedia.org/wiki/MPS_ (format)

CGAL supports a large subset of this format, but there are MPS files around that we cannot read (for example,
files that encode integrality constraints on the variables). Also, there might be some other MPS-based solvers
that will not be able to read the MPS files written by CGAL, since we do not strictly adhere to the very rigid
layout requirements of the original MPS format.

Let’s look at an example first. The quadratic program

minimize x> +4(y—4)? (= x> +4y>—32y+64)
subject to x+y < 7
—x+2y < 4
x > 0
y =2 0
y < 4

has the following description in MPS format.

NAME first_gp
ROWS

N obj

L c0

L cl
COLUMNS

x0 c0 1

x0 cl -1

x1 obj -32

xl c0 1

xl cl 2
RHS

rhs obj -64

rhs c0 7

rhs cl 4
BOUNDS

UP BND x1 4
QMATRIX

x0 x0 2

xl x1 8
ENDATA

Here comes a semiformal description of the format in general.
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NAME section

This (mandatory) section consists of a single line starting with NAME. Everything starting from the first non-
whitespace after that until the end of the line constitutes the name of the problem.

ROWS section

In the (mandatory) ROW section, you find one line for every constraint, where the letter L indicates relation <,
letter G stands for >, and E for =. In addition, there is a row for the linear objective function (indicated by letter
N). In that section, names are asigned to the constraints (here: c0, c1) and the objective function (here: obj).
An MPS file may encode several linear objective functions by using several rows starting with N, but we ignore
all but the first.

COLUMNS section

The (mandatory) COLUMNS section encodes the constraint matrix A and the linear objective function vector c.
Every line consists of one or two sequences of three tokens jival, where j is the name of a variable (here, we
have variables x0, x1), i is the name of a constraint or the objective function, and val is the value A;; (if i names
a constraint), or ¢; (if i names the linear objective function). Values for pairs (i, j) that are not specified in this
section default to 0. Otherwise, for every pair (i, j), the last specified value determines A;; or c;.

RHS section

This (mandatory) section encodes the right-hand side vector b and the constant term ¢ in the objective function.
The first token in every line is an identifier (here: rhs). An MPS file may encode several right-hand sides b by
using several such identifiers, but we ignore all lines having an identifier different from that of the first line.

The right-hand side identifier is succeeded by one or two sequences of tokens ival, where i names a constraint
or the linear objective function, and val specifies the value b; (if i names a constraint), or —cq (if i names the
linear objective function). Values that are not specified in this section default to 0. Otherwise, for every i, the
last specified value determines b; or —cg.

BOUNDS section

This (optional) section encodes the lower and upper bound vectors [ and u for the variables. The default bounds
for any variable x; are 0 < x; < oo; the BOUNDS section is used to override these defaults. In particular, if there is
no BOUNDS section, the program is nonnegative and actually a model of the concept NonnegativeQuadraticPro-
gram or NonnegativeLinearProgram.

The first token in every line is succeeded by an (optional) identifier (here: BND). An MPS file may encode several
bound vectors / and u by using several such identifiers, but we ignore all lines having an identifier different from
that of the first line. The first token ¢ itself determines the type of the bound, and the token j after the bound
identifier names the variable to which the bound applies In case of bound types FX, LO, and UP, there is another
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token val that specifices the bound value. Here is how bound type and value determine a bound for variable x;.
There may be several bound specifications for a single variable, and they are processed in order of appearance.

bound type | resulting bound

FX xj = val (x; becomes a fixed variable)

LO x; > val (upper bound remains unchanged)

UpP x; < val (lower bound remains unchanged, except if val < 0; then, a zero lower bound is reset to —oo)
FR —o0 < x; < oo (previous bounds are discarded)

MI xj > —oo (upper bound remains unchanged)

PL x;j < oo (lower bound remains unchanged)

QMATRIX / QUADOBJ / DMATRIX section

This (optional) section encodes the quadratic objective function matrix D. Every line is a sequence ijval of
three tokens, where both i and j name variables, and val is the value 2D; ; (in case of QMATRIX or QUADOBJ), or
D;; (in case of DMATRIX).

In case of QMATRIX and DMATRIX, all nonzero entries must be specified: if there is a line ijval, then there must
also be a line jival, since D is required to be symmetric. In case of QUADOBJ, only the entries of 2D on or
below the diagonal must be specified, entries above the diagonal are deduced from symmetry. It is not allowed
to specify two or more different nonzero values for an unordered pair {i, j}.

If this section is missing or does not contain nonzero values, the program is a model of the concept LinearPro-
gram.

Miscellaneous

Our MPS format also supports an (optional) RANGES section, but we don’t explain this here.

See Also

Quadratic_program_from_mps<NT>

513



Class

CGAL::Quadratic_program_solution<ET>

#include <CGAL/QP _solution.h>

Definition

An object of class Quadratic_program_solution<ET> represents the solution of a linear or convex quadratic
program of the general form

(QP) minimize x'Dx+c'x+ co
subject to Ax E b,
1<x<u

in n real variables x = (xp, ..., X,—1).
If D =0, the program is a linear program; if the variable bounds are x > 0, we have a nonnegative pro-
gram. Objects of type Quadratic_program_solution<ET> are returned by any of the four functions solve_

quadratic_program, solve_linear_program, solve_nonnegative_quadratic_program, and solve_nonnegative_
linear_program.

Example

QP _solver/first_gp.cpp

Terminology

If there is no x that satisfies all the (in)equalities, the program is called infeasible, otherwise, it is feasible, and
any x that satisfies all (in)equalities is called a feasible solution.

If the objective function value becomes arbitrarily small over the feasible region (the set of feasible solutions),
the program is called unbounded, and bounded otherwise.

Any program that is both feasible and bounded has at least one feasible solution x* whose objective function
value is not larger than that of any other feasible solution. This is called an optimal solution.

Every convex quadratic program (even if it is infeasible or unbounded) has a ’solution’ in form of an object of
the class Quadratic_program_solution<ET>.

Types

Quadratic_program_solution<ET>:: ET The exact number type that was used to solve the program.

Quadratic_program_solution<ET>:: Variable_value_iterator

An iterator type with value type Quotient<ET> to go over the
values of the variables in the solution.
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Quadratic_program_solution<ET>::

Quadratic_program_solution<ET>::

Quadratic_program_solution<ET>::

Quadratic_program_solution<ET>::

Quadratic_program_solution<ET>::

Quadratic_program_solution<ET>::

Creation

Variable_numerator _iterator

An iterator type with value type ET to go over the numerators
of the variable values with respect to a common denominator.

Index_iterator

An iterator type with value type int to go over the indices of
the basic variables and the basic constraints.

Optimality_certificate_iterator

An iterator type with value type Quotient<ET> to go over an
m-vector A that proves optimality of the solution.

Optimality_certificate_numerator_iterator

An iterator type with value type ET to go over the numerators
of the vector A with respect to a common denominator.

Infeasibility_certificate_iterator

An iterator type with value type ET to go over an m-vector A
that proves infeasibility of the solution.

Unboundedness_certificate _iterator

An iterator type with value type ET to go over an n-vector w
that proves unboundedness of the solution.

Quadratic_program_solution<ET> sol, constructs a void instance of Quadratic_program_solution<

ET> that is associated to no program.

Objects of type Quadratic_program_solution<ET> can be copied and assigned.

Objects of type Quadratic_program_solution<ET> that are associated to an actual program are returned by any
of the four functions solve_quadratic_program, solve_linear_program, solve_nonnegative_quadratic_program,
and solve_nonnegative_linear_program.

Example

QP _solver/first_gp.cpp
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Operations

bool sol.is_void() const returns true iff sol is not associated to a program. The con-
dition !sol.is_void() is a precondition for all access methods
below.

Solution status

Here are the access methods for the status of the solution.

bool sol.is_optimal() const  returns true iff sol is an optimal solution of the associated
program.

bool sol.is_infeasible() const

returns true iff the associated program is infeasible.

bool sol.is_unbounded() const

returns true iff the associated program is unbounded.

Quadratic_program_status

sol.status() const returns the status of the solution; this is one of the values
QP_OPTIMAL, QP_INFEASIBLE, and QP_UNBOUNDED,
depending on whether the program asociated to sol has an
optimal solution, is infeasible, or is unbounded.

int sol.number _of _iterations() const

returns the number of iterations that it took to solve the pro-
gram asociated to sol.

Solution values

The actual solution (variable and objective function values) can be accessed as follows.

Quotient<ET> sol.objective_value() const

returns the objective function value of sol.

ET sol.objective_value_numerator() const

returns the numerator of the objective function value of sol.

ET sol.objective_value_denominator() const

returns the denominator of the objective function value of
sol.
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Variable_value _iterator
sol.variable_values_begin() const
returns a random-access iterator over the values of the vari-

ables in sol. The value type is Quotient<ET>, and the valid
iterator range has length n.

Variable_value _iterator
sol.variable_values_end() const

returns the corresponding past-the-end iterator.

Variable_numerator_iterator
sol.variable_numerators_begin() const
returns a random-access iterator it over the values of the vari-
ables in sol, with respect to a common denominator of all

variables. The value type is ET, and the valid iterator range
has length n.

Variable_numerator _iterator
sol.variable_numerators_end() const

returns the corresponding past-the-end iterator.

ET sol.variables_common_denominator() const

returns the common denominator of the variable values as
referred to by the previous two methods.

Basic variables and constraints

The solution of a linear or quadratic program distinguishes *important’ variables (the ones not attaining one of
their bounds), and ’important’ constraints (the ones being satisfied with equality). The following methods grant
access to them.

Index_iterator sol.basic_variable_indices_begin() const

returns a random access iterator over the indices of the ba-
sic variables. The value type is int. It is guaranteed that any
variable that is not basic in sol attains one of its bounds. In
particular, if the bounds are of type x > 0, all non-basic vari-
ables have value 0.
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Index _iterator sol.basic_variable_indices_end() const

returns the corresponding past-the-end iterator.

int sol.number_of_basic_variables() const

returns the number of basic variables, equivalently the length
of the range determined by the previous two iterators.

Example

QP _solver/important _variables.cpp

Index_iterator sol.basic_constraint_indices_begin() const
returns a random access iterator over the indices of the basic
constraints in the system Ax E b. The value type is int. It is
guaranteed that any basic constraint is satisfied with equality.
In particular, if the system is of type Ax = b, all constraints
are basic.

Index _iterator sol.basic_constraint_indices_end() const

returns the corresponding past-the-end iterator.

int sol.number_of_basic_constraints() const

returns the number of basic constraint, equivalently the
length of the range determined by the previous two iterators.

Example

QP _solver/first_gp_basic_constraints.cpp

Output

template <typename ET>
std::ostreams std::ostreams out << sol

writes the status of sol to the stream out. In case the status
is QP_OPTIMAL, the optimal objective value and the values
of the variables at the optimal solution are output as well.
For more detailed information about the solution (like ba-
sic variables/constraints) please use the dedicated methods
of Quadratic_program_solution<ET>.
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Validity

The following four methods allow you to check whether sol indeed solves the program that you intended to
solve. The methods use the certificates described in the advanced section below and thus save you from validat-
ing the certificates yourself (if you believe in the correctness of these methods; otherwise, you can look at their
implementation to convince yourself).

By passing a suitable option to the solution function, you can make sure that this check is done automatically
after the solution of the program, see Quadratic_program_options. If the check fails, a logfile is generated that
contains the details, and an error message is written to std::cerr (see QP_solver/cycling.cpp for an example that
uses this option).

template <class QuadraticProgram>
bool sol.solves_quadratic_program( QuadraticProgram gp)

returns true iff sol solves the quadratic program gp. If the

result is false, you can get a message that describes the prob-
lem, through the method get_error().

QP _solver/first_gp.cpp

template <class LinearProgram>
bool sol.solves_linear_program( LinearProgram Ilp)

returns true iff sol solves the linear program Ip. If the result

is false, you can get a message that describes the problem,
through the method get_error().

QP _solver/first_Ip.cpp

template <class NonnegativeQuadraticProgram>
bool sol.solves_nonnegative_quadratic_program( NonnegativeQuadraticProgram gp)

returns true iff sol solves the nonnegative quadratic program

gp. If the result is false, you can get a message that describes
the problem, through the method get_error().

QP _solver/first_nonnegative _gp.cpp

template <class NonnegativeLinearProgram>
bool sol.solves_nonnegative_linear_program( NonnegativeLinearProgram Ip)

returns true iff sol solves the nonnegative linear program Ip.
If the result is false, you can get a message that describes the
problem, through the method get_error().

QP _solver/first_nonnegative_Ip.cpp

bool sol.is_valid() const returns false iff the validation through one of the previous
four functions has failed.
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std::string sol.get_error() const returns an error message in case any of the previous four val-
idation functions has returned false.

li advanced ——

Certificates

A certificate is a vector that admits a simple proof for the correctness of the solution. Any non-void object of
Quadratic_program_solution<ET> comes with such a certificate.

Lemma 1 (optimality certificate): A feasible n-vector x* is an optimal solution of (QP) if an m-vector A with
the following properties exist.

1. if the i-th constraint is of type < (>, respectively), then A; > 0 (A; < 0, respectively).
2. M (Ax* —b) =0.
3.
>0, iij- =1;<u;
(" +ATA+2x*"D); =0, ifl; <xj<u,
<0, lflj <uj :x}‘».

Proof: Let x be any feasible solution. We need to prove that

T
cI'x+x"'Dx > eI x* +x* Dx*.

For this, we argue as follows.

cx+2x*TDx cx+2x'TDx+AT(Ax—b)  (by Ax ; band 1.)
(T +ATA+2x* T D)x —ATh
(" + M A4+2x*TD)x* —ATh  (byl<x <uand3.)

ox* 4+ 2x*T Dx* (by 2.)

v I v

After adding x” Dx — x” Dx —x*T Dx* = —x*T Dx* to both sides of this inequality, we get
" x+x"Dx— (x—x)"D(x—x*) > ' x* +x" " Dx*,
and since D is positive semidefinite, we have (x —x*)” D(x — x*) > 0 and the lemma follows.
Optimality_certificate_iterator
sol.optimality_certifcate_begin() const

returns a random access iterator over the optimality certifi-

cate A as given in Lemma 1, with respect to the solution x*

obtained from sol.variable_values_begin(). The value type is

Quotient<ET>, and the valid iterator range has length m.

Precondition: sol.is_optimal()
Optimality_certificate_iterator

sol.optimality_certificate_end() const

returns the corresponding past-the-end iterator.
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Optimality_certificate_numerator _iterator
sol.optimality_certifcate_numerators_begin() const

returns a random access iterator over the numerator val-
ues of the optimality certificate A, with respect to the
common denominator returned by sol.variables_common_
denominator(). The value type is ET, and the valid iterator
range has length m.

Optimality_certificate_numerator _iterator
sol.optimality_certificate_numerators_end() const

returns the corresponding past-the-end iterator.

Example
QP _solver/optimality_certificate.cpp

Lemma 2 (infeasibility certificate): The program (QP) is infeasible if an m-vector A with the following prop-
erties exist.

1. if the i-th constraint is of type < (>, respectively), then A; > 0 (A; < 0, respectively).
2.

>0 ifu;=o0
ATA;
<0 ifl;=—oo.

AMb o< Y Mau; o+ Y Aag,
j:}uTAj<0 j:)uTAj>0

Proof: Let us assume for the purpose of obtaining a contradiction that there is a feasible solution x. Then we
get

0 > A'(Ax—b) (by Ax= band 1.)
= ZJ':7»TA,-<0 MAp;  + Zj;xTAj>o ATAjxj—ATb
):j:xTAj<0 MAu; + ):j:xTAj>0 MA;L;—ATb  (byl<x<wuand2.)
> 0 (by 3.),
and this is the desired contradiction 0 > 0.

v

Infeasibility_certificate_iterator
sol.infeasibility_certificate_begin() const

returns a random access iterator over the infeasibility certifi-
cate A as given in Lemma 2. The value type is ET, and the
valid iterator range has length m.
Precondition: sol.is_infeasible()
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Infeasibility_certificate_iterator
sol.infeasibility_certificate_end() const

returns the corresponding past-the-end iterator.

Example
QP _solver/infeasibility_certificate.cpp

Lemma 3 (unboundedness certificate:) Let x* be a feasible solution of (QP). The program (QP) is unbounded
if an n-vector w with the following properties exist.

1. if the i-th constraint is of type < (>, =, respectively), then (Aw); <0 ((Aw); > 0, (Aw); = 0, respectively).
2.

>0 ifl;is finite

<0 ifu; is finite.

3. w'Dw=0and (¢! +2x*"D)w < 0.

The vector w is called an unbounded direction.

Proof: For a real number ¢, consider the vector x(¢) := x* +tw. By 1. and 2., x(¢) is feasible for all # > 0. The
objective function value of x(¢) is

Ix(t)+x(1)'Dx(t) = 'x* +1e" w4+ x"TDx* +2x* " Dw+ 1w Dw
= Ix*+x"Dx* +1(c" +2x*" " D)w+>w’ Dw.
By condition 3., this tends to —eo for t — oo, so the problem is indeed unbounded.
Unboundedness_certificate _iterator
sol.unboundedness_certificate_begin() const
returns a random acess iterator over the unbounded direction
w as given in Lemma 3,with respect to the solution x* ob-
tained from sol.variable_values_begin(). The value type is
ET, and the valid iterator range has length n.
Precondition: sol.is_unbounded()
Unboundedness_certificate _iterator

sol.unboundedness_certificate_end()

returns the corresponding past-the-end iterator.
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Example

QP _solver/funboundedness_certificate.cpp

I— advanced ——

See Also

The program concepts

QUAdFAtICPTOGIAML. . . ... oot e e e e e e page 500
LinearPrOGramM . . . ..o vttt et e et e e e et e e e e e page 506
NonnegativeQUadratiCPrOZIaM . . . ... .....o ettt et et page 503
NonnegativeLinearProgram . ........... ... o i e page 509

and the functions that compute objects of class Quadratic_program_solution<ET> from models of these con-
cepts:

SOIVe_qQUAAIATIC_PYOZIAM . . ...\ttt ettt e e e et e e e et e page ??
SOIVe_lINeAr_PrOGIAML . . ... ittt et e e e page ??
solve_nonnegative _quadratic_Programl. . ...... ... ettt page ??
solve_nonnegative _[INEAr_Program . . ...........u ettt et et et page ??
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Class

CGAL::Quadratic_program_status

#include <CGAL/QP _solution.h>

Definition

This is an enumeration type containing the values QP_OPTIMAL, QP_INFEASIBLE, and QP _UNBOUNDED.
It indicates the status of a linear or quadratic program solution as represented by an object of type Quadratic_
program_solution<ET>.

See Also

Quadratic_program_solution<ET>
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CGAL::Quadratic_program<NT>
#include <CGAL/QP_models.h>

Definition

An object of class Quadratic_program<NT> describes a convex quadratic program of the form

(QP) minimize x!Dx+c¢'x+c
subject to  Ax = b,
1<x<u

in n real variables x = (xo,...,x,—1). Here,

e A is an m X n matrix (the constraint matrix),
e b is an m-dimensional vector (the right-hand side),

° E is an m-dimensional vector of relations from {<,=, >},

1is an n-dimensional vector of lower bounds for x, where /; € RU {—co} for all j

e u is an n-dimensional vector of upper bounds for x, where u; € RU {eo} for all j

e D is a symmetric positive-semidefinite n x n matrix (the quadratic objective function),
e cis an n-dimensional vector (the linear objective function), and

® (( is a constant.

If D = 0, the program is a linear program; if the variable bounds are x > 0, we have a nonnegative program.
This class allows you to build your program entry by entry, using the set-methods below.

If you only need to wrap existing (random-access) iterators over your own data, then you may use any of the
four models Quadratic_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, D_it, C_it>, Linear_
program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, C_it>, Nonnegative_quadratic_program_from_
iterators<A_it, B_it, R_it, D_it, C_it>, and Nonnegative_linear_program_from_iterators<A_it, B_it, R_it, C_it>.

If you want to read a quadratic program in MPSFormat from a stream, please use the model Quadratic_program_
from_mps<NT>.

Is Model for the Concepts

QuadraticProgram
LinearProgram
NonnegativeQuadraticProgram
NonnegativeLinearProgram

Types

Quadratic_program<NT>:: NT The number type of the program entries.
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Creation

Quadratic_program<NT> qp( CGAL::Comparison_result default_r = CGAL::EQUAL,
bool default_fl = true,

Operations

bool

bool

void

void

void

NT default_l = 0,

bool default_fu = false,

NT default_u = 0)

gp.is_linear() const

constructs a quadratic program with no variables and no con-
straints, ready for data to be added. Unless relations are ex-
plicitly set, they will be of type default_r. Unless bounds are
explicitly set, they will be as specified by default_fl (finite
lower bound?), default_l (lower bound value if lower bound
is finite), default_fu (finite upper bound?), and default_l (up-
per bound value if upper bound is finite). If all parameters
take their default values, we thus get equality constraints and
bounds x > 0 by default. Numerical entries that are not ex-
plicitly set will default to O.

Precondition:  if default fl = default fu = true, then
default_| < default_u

returns frue if and only if gp is a linear program.

gp.is_nonnegative() const

returns frue if and only if gp is a nonnegative program.

gp.set_a( int j, int i, NT val)

gp.set_b( int i, NT val)

sets the entry A;; in column j and row i of the constraint
matrix A of gp to val. An existing entry is overwritten. gp is
enlarged if necessary to accomodate this entry.

sets the entry b; of gp to val. An existing entry is overwritten.
gp is enlarged if necessary to accomodate this entry.

gp.set_r( int i, CGAL::Comparison_result rel)

sets the entry ;,- of gp to rel. CGAL::SMALLER means that
the i-th constraint is of type “<”, CGAL::EQUAL means
“=" and CGAL::LARGER encodes “>". An existing entry
is overwritten. gp is enlarged if necessary to accomodate this
entry.
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void

void

void

void

void

Example

QP _solver/first_gp.cpp
QP _solver/first_Ip.cpp

gp.set_l( int j, bool is_finite, NT val = NT(0))
if is_finite, this sets the entry /; of gp to val, otherwise it sets

lj to —oo. An existing entry is overwritten. gp is enlarged if
necessary to accomodate this entry.

gp.set_u( int j, bool is_finite, NT val = NT(0))
if is_finite, this sets the entry u; of gp to val, otherwise it sets

u; to co. An existing entry is overwritten. gp is enlarged if
necessary to accomodate this entry.

gp.set_c( int j, NT val)

sets the entry c; of gp to val. An existing entry is overwritten.
gp is enlarged if necessary to accomodate this entry.

gp.set_cO( NT val) sets the entry c( of gp to val. An existing entry is overwritten.

gp.set_d( int i, int j, NT val)

sets the entries 2D;; and 2Dj; of gp to val. Existing entries
are overwritten. gp is enlarged if necessary to accomodate
these entries.

Precondition: j <=1

QP _solver/first_nonnegative _gp.cpp
QP _solver/first_nonnegative _Ip.cpp
QP _solver/invert_matrix.cpp See Also

Quadratic_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, D_it, C_it>
Linear_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, C_it>
Nonnegative_quadratic_program_from_iterators<A_it, B_it, R_it, D_it, C_it>
Nonnegative_linear_program_from_iterators<A_it, B_it, R_it, C_it>
Quadratic_program_from_mps<NT>
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Class

CGAL::Quadratic_program_from_mps<NT>

#include <CGAL/QP _models.h>

Definition

An object of class Quadratic_program_from_mps<NT> describes a convex quadratic program of the general
form

(QP) minimize x' Dx+cl'x+ co
subjectto Ax z b,
I<x<u

in n real variables x = (xg,...,x,—1). Here,

A is an m X n matrix (the constraint matrix),

e b is an m-dimensional vector (the right-hand side),

° E is an m-dimensional vector of relations from {<,=, >},

e lis an n-dimensional vector of lower bounds for x, where /; € RU {—co} for all j

e u is an n-dimensional vector of upper bounds for x, where u; € RU {eo} for all j

e D is a symmetric positive-semidefinite n x n matrix (the quadratic objective function),
e c is an n-dimensional vector (the linear objective function), and

e (( is a constant.

If D = 0, the program is a linear program; if the variable bounds are x > 0, we have a nonnegative program.
The program data are read from an input stream in MPSFormat. This is a commonly used format for encoding
linear and quadratic programs that is understood by many solvers. All values are expected to be readable into
type NT. The constructed program can be further manipulated by using the set-methods below.

Is Model for the Concepts

QuadraticProgram

LinearProgram

NonnegativeQuadraticProgram
NonnegativeLinearProgram

Types

Quadratic_program_from_mps<NT>:: NT The number type of the program entries.
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Creation

Quadratic_program_from_mps<NT> gp( std::istreams in);

Operations

bool

std::string

std::string

int

std::string

int

bool

bool

void

reads gp from the input stream in.

qp.is_valid() const returns true if and only if an MPS-encoded quadratic pro-
gram could be extracted from the input stream.

qp.get_error() const if Igp.is_valid(), this method returns an error message ex-
plaining why the input does not conform to the MPSFormat.

gp.variable_name_by_index( int j) const
returns the name of the j-th variable.

Precondition: j must not refer to a variable that has been
added later, using one of the set methods below.

gp.variable_index_by_name( std::string name) const

returns the index of the variable with name name. If there is
no variable with this name, the result is —1.

gp-constraint_name_by_index( int i) const
returns the name of the i-th constraint.

Precondition: 1 must not refer to a constraint that has been
added later, using one of the set methods below.

gp.constraint_index_by_name( std::string name) const
returns the index of the constraint with name name. If there

is no constraint with this name, the result is —1.

qp.is_linear() const returns frue if and only if gp is a linear program.

gp.is_nonnegative() const

returns frue if and only if gp is a nonnegative program.

gp.set_a( int j, int i, NT val)

sets the entry A;; in column j and row i of the constraint
matrix A of gp to val. An existing entry is overwritten. gp is
enlarged if necessary to accomodate this entry.
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void

void

void

void

void

void

void

Example

gp.set_b( int i, NT val)

sets the entry b; of gp to val. An existing entry is overwritten.
gp is enlarged if necessary to accomodate this entry.

gp.set_r( int i, CGAL::Comparison_result rel)

sets the entry Zi of gp to rel. CGAL::SMALLER means that
the i-th constraint is of type “<”, CGAL::EQUAL means
“=", and CGAL::LARGER encodes “>". An existing entry
is overwritten. gp is enlarged if necessary to accomodate this
entry.

gp.set_l( int j, bool is_finite, NT val = NT(0))
if is_finite, this sets the entry /; of gp to val, otherwise it sets

[; to —oo. An existing entry is overwritten. gp is enlarged if
necessary to accomodate this entry.

gp.set_u( int j, bool is_finite, NT val = NT(0))
if is_finite, this sets the entry u; of gp to val, otherwise it sets

uj to oo, An existing entry is overwritten. gp is enlarged if
necessary to accomodate this entry.

gp.set_c( int j, NT val)

sets the entry c; of gp to val. An existing entry is overwritten.
gp is enlarged if necessary to accomodate this entry.

gp.set_cO( NT val) sets the entry cq of gp to val. An existing entry is overwritten.

gp.set_d( int i, int j, NT val)

sets the entries 2D;; and 2D ; of gp to val. Existing entries
are overwritten. gp is enlarged if necessary to accomodate
these entries.

Precondition: j<=i

QP _solver/first_qp_from_mps.cpp
QP _solver/first_lp_from_mps.cpp
QP _solver/first_nonnegative _qp_from_mps.cpp
QP _solver/first_nonnegative _lp_from_mps.cpp
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See Also

Quadratic_program<NT>

Quadratic_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, D_it, C_it>
Linear_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, C_it>
Nonnegative_quadratic_program_from_iterators<A_it, B_it, R_it, D_it, C_it>
Nonnegative_linear_program_from_iterators<A_it, B_it, R_it, C_it>
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Class

CGAL::Quadratic_program_from_iterators<A _it, B_it, R_it, FL_it, L_it,
FU._it, U_it, D_it, C_it>

#include <CGAL/QP_models.h>

Definition

An object of class Quadratic_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, D_it, C_it> de-
scribes a convex quadratic program of the form

(QP) minimize X! Dx+c¢'x+c
subject to Ax E b,
I<x<u

in n real variables x = (xo,...,x,—1). Here,

e A is an m X n matrix (the constraint matrix),

e b is an m-dimensional vector (the right-hand side),

. z is an m-dimensional vector of relations from {<, =, >},

e lis an n-dimensional vector of lower bounds for x, where /; € RU {—oco} for all j

e u is an n-dimensional vector of upper bounds for x, where u; € RU {eo} for all j

e D is a symmetric positive-semidefinite n X n matrix (the quadratic objective function),

e cis an n-dimensional vector (the linear objective function), and

e (( is a constant.

This class is simply a wrapper for existing iterators, and it does not copy the program data.
It frequently happens that all values in one of the vectors from above are the same, for example if the system
Ax E b is actually a system of equations Ax = b. To get an iterator over such a vector, it is not necessary to store

multiple copies of the value in some container; an instance of the class Const_oneset_iterator<T>, constructed
from the value in question, does the job more efficiently.

Is Model for the Concepts

QuadraticProgram

Creation
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Quadratic_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, D_it, C_it> gp( int n,

traits<C_it>value_type c0 = 0)

int m,
Aita,
B_it b,
R_itr,
FL_itfl,
L_itl,
FU_it fu,
U_it u,
D_itd,
C.itc,
std: :iterator_

constructs gp from given random-access iterators and the
constant c0. The passed iterators are merely stored, no copy-
ing of the program data takes place. How these iterators
are supposed to encode the quadratic program is described

in QuadraticProgram.

Example

QP _solver/first_qp_from_iterators.cpp

The following example for the simpler model Nonnegative_linear_program_from_iterators<A_it, B_it, R_it, C_

it> should give you a flavor of the use of this model in practice.

QP _solver/solve_convex_hull_containment_Ip.h
QP _solver/convex_hull_containment.cpp See Also

QuadraticProgram Quadratic_program<NT>
Quadratic_program_from_mps<NT>
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Class

CGAL::Linear_program_from_iterators<A_it, B_it, R_it, FL_it, L._it,
FU._it, U_it, C_it>

#include <CGAL/QP _models.h>

Definition

An object of class Linear_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, C_it> describes a
linear program of the form

(QP) minimize cI'x+ co
subject to Ax E b,

1<x<u

in n real variables X = (xo, ..., x,—1). Here,

A is an m X n matrix (the constraint matrix),

b is an m-dimensional vector (the right-hand side),

z is an m-dimensional vector of relations from {<, = >},

1is an n-dimensional vector of lower bounds for x, where /; € RU{—co} for all j
e u is an n-dimensional vector of upper bounds for x, where u; € RU {eo} for all j
e cis an n-dimensional vector (the linear objective function), and

e (( is a constant.

This class is simply a wrapper for existing iterators, and it does not copy the program data.
It frequently happens that all values in one of the vectors from above are the same, for example if the system
Ax z b is actually a system of equations Ax = b. To get an iterator over such a vector, it is not necessary to store

multiple copies of the value in some container; an instance of the class Const_oneset_iterator<T>, constructed
from the value in question, does the job more efficiently.

Is Model for the Concepts

QuadraticProgram
LinearProgram

Creation
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Linear_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, C_it> Ip( int n,
int m,
A_it a,
B_it b,
R_itr,
FL_itfl,
L_itl,
FU_it fu,
U_it u,
C.itc,
std: :iterator_traits<C_it>

value_type c0 = 0)

constructs Ip from given random-access iterators and the con-
stant c0. The passed iterators are merely stored, no copy-
ing of the program data takes place. How these iterators are

supposed to encode the linear program is described in Lin-
earProgram.

Example
QP _solver/first_lp_from_iterators.cpp

The following example for the simpler model Nonnegative_linear_program_from _iterators<A_it, B_it, R_it, C_
it> should give you a flavor of the use of this model in practice.

QP _solver/solve_convex_hull_containment_Ip.h
QP _solver/convex_hull_containment.cpp

See Also

LinearProgram Quadratic_program<NT>
Quadratic_program_from_mps<NT>

535



Class

CGAL::Nonnegative_quadratic_program_from_iterators<A _it, B_it, R_
it, D_it, C_it>

#include <CGAL/QP_models.h>

Definition

An object of class Nonnegative_quadratic_program_from_iterators<A_it, B_it, R_it, D_it, C_it> describes a con-
vex quadratic program of the form

(QP) minimize x'Dx+cf'x+ co
subject to Ax E b,
x>0

in n real variables x = (xo, ..., x,—1). Here,

e A is an m X n matrix (the constraint matrix),
e b is an m-dimensional vector (the right-hand side),

° E is an m-dimensional vector of relations from {<,=, >},

e D is a symmetric positive-semidefinite n x n matrix (the quadratic objective function),
e c is an n-dimensional vector (the linear objective function), and

® (( is a constant.

This class is simply a wrapper for existing iterators, and it does not copy the program data.

It frequently happens that all values in one of the vectors from above are the same, for example if the system
Ax z b is actually a system of equations Ax = b. To get an iterator over such a vector, it is not necessary to store
multiple copies of the value in some container; an instance of the class Const_oneset_iterator<T>, constructed
from the value in question, does the job more efficiently.

Is Model for the Concepts

QuadraticProgram
NonnegativeQuadraticProgram

Creation

Nonnegative_quadratic_program_from_iterators<A_it, B_it, R_it, D_it, C_it> qp( int n,
int m,
A_ita,
B_it b,
R_itr,
D_itd,
C.itc,
std: :iterator_traits<C_it>
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value_type cO = 0)

Example

constructs gp from given random-access iterators and the
constant c0. The passed iterators are merely stored, no copy-
ing of the program data takes place. How these iterators are
supposed to encode the nonnegative quadratic program is de-
scribed in NonnegativeQuadraticProgram.

QP _solver/first_nonnegative _qp_from_iterators.cpp

The following example for the simpler model Nonnegative_linear_program_from _iterators<A_it, B_it, R_it, C_
it> should give you a flavor of the use of this model in practice.

QP _solver/solve_convex_hull_containment_Ip.h
QP _solver/convex_hull_containment.cpp

See Also

NonnegativeQuadraticProgram Quadratic_program<NT>

Quadratic_program_from_mps<NT>
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Class

CGAL::Nonnegative_linear_program_from_iterators<A _it, B_it, R_it, C_

it>
#include <CGAL/QP_models.h>

Definition

An object of class Nonnegative_linear_program_from_iterators<A_it, B_it, R_it, C_
gram of the form

(QP) minimize ¢ x+¢g

subjectto Ax z b,

x>0

in n real variables x = (xo, . ..,x,—1). Here,

e A is an m X n matrix (the constraint matrix),

b is an m-dimensional vector (the right-hand side),
° ; is an m-dimensional vector of relations from {<,=, >},
e c is an n-dimensional vector (the linear objective function), and

® (( is a constant.

it> describes a linear pro-

This class is simply a wrapper for existing iterators, and it does not copy the program data.

It frequently happens that all values in one of the vectors from above are the same,

Ax E b is actually a system of equations Ax = b. To get an iterator over such a vector,

for example if the system
it is not necessary to store

multiple copies of the value in some container; an instance of the class Const_oneset_iterator<T>, constructed

from the value in question, does the job more efficiently.

Is Model for the Concepts

QuadraticProgram
LinearProgram
NonnegativeQuadraticProgram
NonnegativeLinearProgram

Creation

Nonnegative_linear_program_from_iterators<A_it, B_it, R_it, C_it> Ip( int n,
int m,
A_it a,
B_it b,
R_itr,
C.itc,

std::iterator_traits<C_it>value_type c0
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Example

constructs /p from given random-access iterators and the con-
stant c0. The passed iterators are merely stored, no copying
of the program data takes place. How these iterators are sup-
posed to encode the nonnegative linear program is described
in NonnegativeLinearProgram.

QP _solver/first_nonnegative _lp_from_iterators.cpp

QP _solver/solve_convex_hull_containment_Ip.h
QP _solver/convex_hull_containment.cpp

See Also

NonnegativeLinearProgram Quadratic_program<NT>

Quadratic_program_from_mps<NT>
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Function

CGAL::make_quadratic_program_from_iterators

#include <CGAL/QP_models.h>

This template function creates an instance of Quadratic_program_from_iterators<A_it, B_it, R_it, FL_it, L_it,
FU_it, U_it, D_it, C_it> from given iterators. This function can be useful if the types of these iterators are too
complicated (or of too little interest for you) to write them down explicitly.

template < A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, D_it, C_it >
Quadratic_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, D_it, C_it>

make_quadratic_program_from_iterators( int n,
int m,
Ait a,
B_it b,
R_itr,
FL_itfl,
L.it],
FU_it fu,
U_it u,
D_itd,
C.itc,
std: :iterator_traits<C_it>::value_type c0 =

std: :iterator_traits<C_it>::value_type(0))

returns an instance of Quadratic_program_from_iterators<

A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, D_it, C_it>, con-
structed from the given iterators.

Example

The following example demonstrates the typical usage of makers with the simpler function make_nonnegative_
linear_program_from_iterators.

QP _solver/solve_convex_hull_containment_Ip2.h
QP _solver/convex_hull_containment2.cpp

See Also

Quadratic_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, D_it, C_it>
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CGAL::make_linear_program_from_iterators

#include <CGAL/QP_models.h>

This template function creates an instance of Linear_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it,
U_it, C_it> from given iterators. This function can be useful if the types of these iterators are too complicated
(or of too little interest for you) to write them down explicitly.

template < A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, C_it >
Linear_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, C_it>

make _linear_program_from_iterators( int n,
int m,
Aita,
B_it b,
R_itr,
FL_itfl,
L.itl,
FU_it fu,
U_it u,
C.itc,
std: :iterator_traits<C_it>::value_type c0 =

std: :iterator_traits<C_it>::value_type(0))

returns an instance of Linear_program_from_iterators<A_it,

B_it, R_it, FL_it, L_it, FU_it, U_it, C_it>, constructed from
the given iterators.

Example

The following example demonstrates the typical usage of makers with the simpler function make_nonnegative_
linear_program_from_iterators.

QP _solver/solve_convex_hull_containment_Ip2.h
QP _solver/convex_hull_containment2.cpp

See Also

Linear_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, C_it>
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Function

CGAL::make_nonnegative_quadratic_program_from_iterators

#include <CGAL/QP_models.h>

This template function creates an instance of Nonnegative_quadratic_program_from_iterators<A_it, B_it, R_it,
D_it, C_it> from given iterators. This function can be useful if the types of these iterators are too complicated
(or of too little interest for you) to write them down explicitly.

template < A_it, B_it, R_it, D_it, C_it >
Nonnegative_quadratic_program_from_iterators <A_it, B_it, R_it, D_it, C_it>

make_nonnegative_quadratic_program_from_iterators( int n,
int m,
Alita,
B_it b,
R_itr,
D_itd,
C.itc,
std::iterator_traits<C_it>
::value_type c0 = std: :iterator _traits<C_it>::value_type(0))

returns an instance of Nonnegative_quadratic_program_
from_iterators<A_it, B_it, R_it, D_it, C_it>, constructed from
the given iterators.

Example

The following example demonstrates the typical usage of makers with the simpler function make_nonnegative_
linear_program_from_iterators.

QP _solver/solve_convex_hull_containment_Ip2.h
QP _solver/convex_hull_containment2.cpp

See Also

Nonnegative_quadratic_program_from_iterators<A_it, B_it, R_it, D_it, C_it>

542



CGAL::make_nonnegative_linear_program_from_iterators

#include <CGAL/QP_models.h>

This template function creates an instance of Nonnegative_linear_program_from_iterators<A_it, B_it, R_it, C_
it> from given iterators. This function can be useful if the types of these iterators are too complicated (or of too
little interest for you) to write them down explicitly.

template < A_it, B_it, R_it, C_it >
Nonnegative_linear_program_from_iterators <A_it, B_it, R_it, C_it>

make_nonnegative_linear_program_from_iterators( int n,
int m,
Aita,
B_it b,
R_itr,
C_itc,
std::iterator_traits<C_it>::value_
type c0 = std::iterator_traits<C_it>::value_type(0))

returns an instance of Nonnegative_linear_program_from_

iterators<A_it, B_it, R_it, C_it>, constructed from the given
iterators.

Example

QP _solver/solve_convex_hull_containment_Ip2.h
QP _solver/convex_hull_containment2.cpp

See Also

Nonnegative_linear_program_from_iterators<A_it, B_it, R_it, C_it>
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Function

CGAL::solve_quadratic_program

#include <CGAL/QP _functions.h>

This function solves a quadratic program, using some exact Integral Domain ET for its computations. Various
options may be provided, see Quadratic_program_options.

template <QuadraticProgram, ET>
Quadratic_program_solution<ET>

solve_quadratic_program( QuadraticProgram gp,
ET,
Quadratic_program_options  options =  Quadratic_

program_options())

returns the solution of the quadratic program gp, solved with
exact number type ET.

Requirements

ET is a model of the concepts IntegralDomain and RealEmbeddable; it must be an exact type, and all entries of
gp are convertible to ET.

Here are some recommended combinations of input type (the type of the gp entries) and ET.

input type — ET

double —  MP_Float, Gmpzf, or Gmpq
int —  MP_Float, or Gmpz

any exact type NTT — NT

Note: by default, this function performs a large number of runtime-checks to ensure consistency during the
solution process. However, these checks slow down the computations by a considerable factor. For maximum
efficiency, it is advisable to define the macros CGAL_QP_NO_ASSERTIONS or NDEBUG.

Example

QP _solver/first_gp.cpp

See Also
The models of QuadraticProgram . ........... ... e page 500:
Quadratic_program<NT>

Quadratic_program_from_mps<NT>
Quadratic_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, D_it, C_it>
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CGAL::solve_linear_program

#include <CGAL/QP _functions.h>

This function solves a linear program, using some exact Integral Domain ET for its computations. Various
options may be provided, see Quadratic_program_options.

template <LinearProgram, ET>
Quadratic_program_solution<ET>

solve_linear_program( LinearProgram Ip,
ET,
Quadratic_program_options options = Quadratic_program_

options())

returns the solution of the linear program Ip, solved with ex-
act number type ET.

Requirements

ET is a model of the concepts IntegralDomain and RealEmbeddable; it must be an exact type, and all entries of
gp are convertible to ET.

Here are some recommended combinations of input type (the type of the gp entries) and ET.

input type — ET

double —  MP_Float, Gmpzf, or Gmpq
int —  MP_Float, or Gmpz

any exact type NTT — NT

Note: by default, this function performs a large number of runtime-checks to ensure consistency during the
solution process. However, these checks slow down the computations by a considerable factor. For maximum
efficiency, it is advisable to define the macros CGAL_QP_NO_ASSERTIONS or NDEBUG.

Example

QP _solver/first_Ip.cpp

See Also
The models Of LinearProgram. . . ... ...ttt ettt page 506:
Quadratic_program<NT>

Quadratic_program_from_mps<NT>
Linear_program_from_iterators<A_it, B_it, R_it, FL_it, L_it, FU_it, U_it, C_it>
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Function

CGAL::solve_nonnegative_quadratic_program

#include <CGAL/QP _functions.h>

This function solves a nonnegative quadratic program, using some exact Integral Domain ET for its computa-
tions. Various options may be provided, see Quadratic_program_options.

template <NonnegativeQuadraticProgram, ET>
Quadratic_program_solution<ET>

solve_nonnegative_quadratic_program( NonnegativeQuadraticProgram gp,
ET,

Quadratic_program_options  options =
Quadratic_program_options())

returns the solution of the nonnegative quadratic program gp,
solved with exact number type ET.

Requirements

ET is a model of the concepts IntegralDomain and RealEmbeddable; it must be an exact type, and all entries of
gp are convertible to ET.

Here are some recommended combinations of input type (the type of the gp entries) and ET.

input type — ET

double —  MP_Float, Gmpzf, or Gmpq
int —  MP_Float, or Gmpz

any exact type NTT — NT

Note: by default, this function performs a large number of runtime-checks to ensure consistency during the
solution process. However, these checks slow down the computations by a considerable factor. For maximum
efficiency, it is advisable to define the macros CGAL_QP_NO_ASSERTIONS or NDEBUG.

Example

QP _solver/first_nonnegative __gp.cpp

See Also
The models of NonnegativeQuadraticProgram . ..............c.ouuuuuinie i, page 503:
Quadratic_program<NT>

Quadratic_program_from_mps<NT>
Nonnegative_quadratic_program_from_iterators<A_it, B_it, R_it, D_it, C_it>
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CGAL::solve_nonnegative_linear_program

#include <CGAL/QP _functions.h>

This function solves a nonnegative linear program, using some exact Integral Domain ET for its computations.
Various options may be provided, see Quadratic_program_options.

template <NonnegativeLinearProgram, ET>
Quadratic_program_solution<ET>

solve_nonnegative_linear_program( NonnegativeLinearProgram Ip,
ET,
Quadratic_program_options options =

Quadratic_program_options())

returns the solution of the nonnegative linear program Ip,
solved with exact number type ET.

Requirements

ET is a model of the concepts IntegralDomain and RealEmbeddable; it must be an exact type, and all entries of
gp are convertible to ET.

Here are some recommended combinations of input type (the type of the gp entries) and ET.

input type — ET

double —  MP_Float, Gmpzf, or Gmpq
int —  MP_Float, or Gmpz

any exact type NTT — NT

Note: by default, this function performs a large number of runtime-checks to ensure consistency during the
solution process. However, these checks slow down the computations by a considerable factor. For maximum
efficiency, it is advisable to define the macros CGAL_QP_NO_ASSERTIONS or NDEBUG.

Example

QP _solver/first_nonnegative_lp.cpp

See Also
The models of NonnegativeLinearProgram . . ........ ...ttt page 509:
Quadratic_program<NT>

Quadratic_program_from_mps<NT>
Nonnegative_linear_program_from_iterators<A_it, B_it, R_it, C_it>
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Class

CGAL::Quadratic_program_options

#include <CGAL/QP _options.h>

Definition

This is a class used for passing options to the linear and quadratic programming solvers. Currently, we support

only options referring to

1. the verbosity,

2. the pricing strategy (see Quadratic_program _pricing_strategy),

3. the validation mode (see the Validity section of Quadratic_program_solution)

The idea is that this list grows in the future.

Creation

Quadratic_program_options options, constructs an instance of Quadratic_program_options where
all available options are at their defaults.

Operations

Here we just have set/get pairs for any option type.

Verbosity

void

int

options.set_verbosity( int verbosity)

sets the verbosity of the solver to the value verbosity when
options is passed to any of the four solution functions. The
provided value must be a number between 0 and 5. Verbosity
0 is the default and results in the solver running silently. Ver-
bosity 1 prints a short summary of every iteration. Higher
verbosity values print more information about the solution
process, but these are mainly for debugging purposes and
have no effect if you compile with CGAL_QP_NO_ASSERTIONS
or NDEBUG.

options.get_verbosity() const

returns the verbosity level of options.
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Pricing strategy

void options.set_pricing_strategy( Quadratic_program_pricing_strategy pricing_strategy)

Quadratic_program_pricing_strategy

sets the pricing strategy of the solver to the value pricing_
strategy when options is passed to any of the four solu-
tion functions. The pricing strategy controls how the solver
proceeds from any intermediate solution. For the available
strategies and their behavior, see the documentation of the
class Quadratic_program_pricing_strategy.

options.get_pricing_strategy() const

Validation mode

returns the pricing strategy of options.

void options.set_auto_validation( bool validate)

sets the automatic validation mode of the solver to the value
validate. The default is false. By providing value frue you
can tell the solver to automatically check whether the pro-
gram has correctly been solved, see the Validity section of
the class Quadratic_program_solution.

bool options.get_auto_validation() const

Example

QP _solver/cycling.cpp

See Also

Quadratic_program_solution
solve_quadratic_program
solve_linear_program
solve_nonnegative_quadratic_program
solve_nonnegative_linear_program

returns the validation mode of options.
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Class

CGAL::Quadratic_program_pricing_strategy

#include <CGAL/QP _options.h>

Definition

This is an enumeration type containing the values QP_CHOOSE_DEFAULT, QP_DANTZIG, QP_PARTIAL_
DANTZIG, QP_FILTERED_DANTZIG, QP_PARTIAL_FILTERED _DANTZIG, andQP_BLAND.

It indicates the pricing strategy to be used in solving a linear or quadratic program. This strategy determines
how the solver gets from one intermediate solution to the next during any of its iterations.

Here we briefly describe when to choose which strategy.

QP_CHOOSE_DEFAULT
This is the default value of the pricing strategy in Quadratic_program_options, and it lets the solver choose the

strategy that it thinks is most appropriate for the problem at hand. There are only few reasons to deviate from
this default, but you are free to experiment, of course.

QP_PARTIAL_DANTZIG

If the input type is not double, this is usually the best choice for linear and quadratic programs of medium size.

OP_DANTZIG

If the input type is not double, this can sometimes make a difference (be faster or slowe) than QP_PARTIAL_
DANTZIG for problems with a high variable/constraint or constraint/variable ratio.

QP_PARTIAL_FILTERED _DANTZIG

If the input type is double, this is usually the best choice for linear and quadratic programs of medium size. If
the input type is not double, this choice is equivalent to QP_PARTIAL_DANTZIG.

Note: filtered strategies may in rare cases fail due to double exponent overflows, see Section 10.8.1. In this
case, the slower fallback option is the non-filtered variant QP_PARTIAL_DANTZIG of this strategy.

QP_FILTERED_DANTZIG

If the input type is double, this can sometimes make a difference (be faster or slowe) than QP_PARTIAL_
FILTERED_DANTZIG for problems with a high variable/constraint or constraint/variable ratio. If the input
type is not double, this choice is equivalent to QP_DANTZIG.

Note: filtered strategies may in rare cases fail due to double exponent overflows, see Section 10.8.1. In this
case, the slower fallback option is the non-filtered variant QP_DANTZIG of this strategy.
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OP_BLAND

This is hardly ever the most efficient choice, but it is guaranteed to avoid internal cycling of the solution algo-
rithm, see Section 10.8.2.

See Also

Quadratic_program_options
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Function

CGAL::print_quadratic_program

#include <CGAL/QP _functions.h>

This function writes a quadratic program to an output stream (in MPSFormat). The time complexity is ©(n” +
mn), even if the program is very sparse.

template <QuadraticProgram>
void print_quadratic_program( std::ostreams out,
QuadraticProgram qp,
std::string problem_name = std::string("MY_MPS”))
writes the quadratic program gp to out in MPSFormat. The

name of the program will be the one provided by problem_
name.

Requirements

Output operators are defined for all entry types of gp.

Example

QP _solver/print_first_gp.cpp

See Also
The concept

QuadraticProgram
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CGAL::print_linear_program

#include <CGAL/QP _functions.h>

This function writes a linear program to an output stream (in MPSFormat). The time complexity is @(mn), even
if the program is very sparse.

template <LinearProgram>
void print_linear_program( std::ostreams out,
LinearProgram Ip,
std::string problem_name = std::string("MY_MPS”))

writes the linear program Ip to out in MPSFormat. The name
of the program will be the one provided by problem_name.

Requirements
Output operators are defined for all entry types of Ip.

Example

QP _solver/print_first_Ip.cpp

See Also
The concept

LinearProgram
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Function

CGAL::print_nonnegative_quadratic_program

#include <CGAL/QP _functions.h>

This function writes a nonnegative quadratic program to an output stream (in MPSFormat). The time complexity
is @(n* +mn), even if the program is very sparse.

template <NonnegativeQuadraticProgram>

void print_nonnegative_quadratic_program( std::ostreams out,
NonnegativeQuadraticProgram gp,
std::string problem_name = std::string(”MY_

MPS”))
writes the nonnegative quadratic program gp to out in MPS-
Format. The name of the program will be the one provided
by problem_name.

Requirements

Output operators are defined for all entry types of gp.

Example

QP _solver/print_first_nonnegative_gp.cpp

See Also
The concept

NonnegativeQuadraticProgram
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CGAL::print_nonnegative_linear_program

#include <CGAL/QP _functions.h>

This function writes a nonnegative linear program to an output stream (in MPSFormat). The time complexity is
©(mn), even if the program is very sparse.

template <NonnegativeLinearProgram>

void print_nonnegative_linear_program( std::ostreams out,

NonnegativeLinearProgram Ip,

std::string problem_name = std::string(”MY_
MPS”))

writes the nonnegative linear program Ip to out in MPSFor-
mat. The name of the program will be the one provided by
problem_name.

Requirements

Output operators are defined for all entry types of Ip.

Example

QP _solver/print_first_nonnegative_lp.cpp

See Also
The concept

NonnegativeLinearProgram
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Geometry Kernels
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Chapter 11

2D and 3D Geometry Kernel

Hervé Bronnimann, Andreas Fabri, Geert-Jan Giezeman, Susan Hert, Michael Hoffimann, Lutz Kettner, Sylvain
Pion, and Stefan Schirra
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11.1 Introduction

CGAL, the Computational Geometry Algorithms Library, is written in C++ and consists of three major parts.
The first part is the kernel, which consists of constant-size non-modifiable geometric primitive objects and
operations on these objects. The objects are represented both as stand-alone classes that are parameterized by a
representation class, which specifies the underlying number types used for calculations and as members of the
kernel classes, which allows for more flexibility and adaptability of the kernel. The second part is a collection of
basic geometric data structures and algorithms, which are parameterized by traits classes that define the interface
between the data structure or algorithm and the primitives they use. In many cases, the kernel classes provided
in CGAL can be used as traits classes for these data structures and algorithms. The third part of the library
consists of non-geometric support facilities, such as circulators, random sources, I/O support for debugging and
for interfacing CGAL to various visualization tools.

This part of the reference manual covers the kernel. The kernel contains objects of constant size, such as point,
vector, direction, line, ray, segment, triangle, iso-oriented rectangle and tetrahedron. With each type comes a set
of functions which can be applied to an object of this type. You will typically find access functions (e.g. to the
coordinates of a point), tests of the position of a point relative to the object, a function returning the bounding
box, the length, or the area of an object, and so on. The CGAL kernel further contains basic operations such as
affine transformations, detection and computation of intersections, and distance computations.

11.1.1 Robustness

The correctness proof of nearly all geometric algorithms presented in theory papers assumes exact computation
with real numbers. This leads to a fundamental problem with the implementation of geometric algorithms.
Naively, often the exact real arithmetic is replaced by inexact floating-point arithmetic in the implementation.
This often leads to acceptable results for many input data. However, even for the implementation of the simplest
geometric algorithms this simplification occasionally does not work. Rounding errors introduced by an inac-
curate arithmetic may lead to inconsistent decisions, causing unexpected failures for some correct input data.
There are many approaches to this problem, one of them is to compute exactly (compute so accurate that all
decisions made by the algorithm are exact) which is possible in many cases but more expensive than standard
floating-point arithmetic. C. M. Hoffmann [ , ] illustrates some of the problems arising in the
implementation of geometric algorithms and discusses some approaches to solve them. A more recent overview
is given in [ ]. The exact computation paradigm is discussed by Yap and Dubé [ ] and Yap [ 1.

In CGAL you can choose the underlying number types and arithmetic. You can use different types of arithmetic
simultaneously and the choice can be easily changed, e.g. for testing. So you can choose between implemen-
tations with fast but occasionally inexact arithmetic and implementations guaranteeing exact computation and
exact results. Of course you have to pay for the exactness in terms of execution time and storage space. See the
dedicated chapter for more details on number types and their capabilities and performance.
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11.2 Kernel Representations

Our object of study is the d-dimensional affine Euclidean space. Here we are mainly concerned with cases
d =2 and d = 3. Objects in that space are sets of points. A common way to represent the points is the use of
Cartesian coordinates, which assumes a reference frame (an origin and d orthogonal axes). In that framework, a
point is represented by a d-tuple (co,c1,...,cqs—1), and so are vectors in the underlying linear space. Each point
is represented uniquely by such Cartesian coordinates. Another way to represent points is by homogeneous
coordinates. In that framework, a point is represented by a (d + 1)-tuple (ho,hy,...,hs). Via the formulae

¢; = h;/hy, the corresponding point with Cartesian coordinates (co,cy,...,c4—1) can be computed. Note that
homogeneous coordinates are not unique. For A # 0, the tuples (hg,hy,...,hy) and (A-ho,A-hy,..., A hy)
represent the same point. For a point with Cartesian coordinates (co,ci,...,c4—1) @ possible homogeneous
representation is (co,ci,...,c4—1,1). Homogeneous coordinates in fact allow to represent objects in a more

general space, the projective space PY. In CGAL, we do not compute in projective geometry. Rather, we use
homogeneous coordinates to avoid division operations, since the additional coordinate can serve as a common
denominator.

11.2.1 Genericity Through Parameterization

Almost all the kernel objects (and the corresponding functions) are templates with a parameter that allows the
user to choose the representation of the kernel objects. A type that is used as an argument for this parameter
must fulfill certain requirements on syntax and semantics. The list of requirements defines an abstract kernel
concept. For all kernel objects types, the types CGAL::Type<Kernel> and Kernel::Type are identical.

CGAL offers four families of concrete models for the concept Kernel, two based on the Cartesian representation
of points and two based on the homogeneous representation of points. The interface of the kernel objects is
designed such that it works well with both Cartesian and homogeneous representation. For example, points
in 2D have a constructor with three arguments as well (the three homogeneous coordinates of the point). The
common interfaces parameterized with a kernel class allow one to develop code independent of the chosen
representation. We said “families” of models, because both families are parameterized too. A user can choose
the number type used to represent the coordinates.

For reasons that will become evident later, a kernel class provides two typenames for number types, namely
Kernel::FT and Kernel::RT. The type Kernel::FT must fulfill the requirements on what is called a FieldNum-
berType in CGAL. This roughly means that Kernel::FT is a type for which operations 4+, —, % and / are
defined with semantics (approximately) corresponding to those of a field in a mathematical sense. Note that,
strictly speaking, the built-in type int does not fulfill the requirements on a field type, since ints correspond to
elements of a ring rather than a field, especially operation / is not the inverse of *. The requirements on the
type Kernel::RT are weaker. This type must fulfill the requirements on what is called a RingNumberType in
CGAL. This roughly means that Kernel::RT is a type for which operations +, —, * are defined with semantics
(approximately) corresponding to those of a ring in a mathematical sense.

11.2.2 Cartesian Kernels

With Cartesian<FieldNumberType> you can choose a Cartesian representation of coordinates. When you
choose Cartesian representation you have to declare at the same time the type of the coordinates. A number
type used with the Cartesian representation class should be a FieldNumberType as described above. As men-
tioned above, the built-in type int is not a FieldNumberType. However, for some computations with Cartesian
representation, no division operation is needed, i.e., a RingNumberType is sufficient in this case. With Carte-
sian<FieldNumberType>, both Cartesian<FieldNumberType>::FT and Cartesian<FieldNumberType>::RT are
mapped to FieldNumberType.
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Cartesian<FieldNumberType> uses reference counting internally to save copying costs. CGAL also provides
Simple_cartesian<FieldNumberType>, a kernel that uses Cartesian representation but no reference counting.
Debugging is easier with Simple_cartesian<FieldNumberType>, since the coordinates are stored within the
class and hence direct access to the coordinates is possible. Depending on the algorithm, it can also be slightly
more or less efficient than Cartesian<FieldNumberType>. Again, in Simple_cartesian<FieldNumberType> both
Simple_cartesian<FieldNumberType>::FT and Simple_cartesian<FieldNumberType>::RT are mapped to Field-
NumberType.

11.2.3 Homogeneous Kernels

Homogeneous coordinates permit to avoid division operations in numerical computations, since the additional
coordinate can serve as a common denominator. Avoiding divisions can be useful for exact geometric computa-
tion. With Homogeneous<RingNumberType> you can choose a homogeneous representation for the coordinates
of the kernel objects. As for the Cartesian representation, one has to declare the type used to store the co-
ordinates. Since the homogeneous representation does not use divisions, the number type associated with a
homogeneous representation class must be a model for the weaker concept RingNumberType only. However,
some operations provided by this kernel involve divisions, for example computing squared distances or Carte-
sian coordinates. To keep the requirements on the number type parameter of Homogeneous low, the number
type Quotient<RingNumberType> is used for operations that require divisions. This number type can be viewed
as an adaptor which turns a RingNumberType into a FieldNumberType. It maintains numbers as quotients, i.e., a
numerator and a denominator. With Homogeneous<RingNumberType>, Homogeneous<RingNumberType>::FT
is equal to Quotient<RingNumberType>, while Homogeneous<RingNumberType>::RT is equal to RingNumber-

Type.

Homogeneous<RingNumberType> uses reference counting internally to save copying costs. CGAL also pro-
vides Simple_homogeneous<RingNumberType>, a kernel that uses homogeneous representation but no ref-
erence counting. Debugging is easier with Simple_homogeneous<RingNumberType>, since the coordinates
are stored within the class and hence direct access to the coordinates is possible. Depending on the algo-
rithm, it can also be slightly more or less efficient than Homogeneous<RingNumberType>. Again, in Simple_
homogeneous<RingNumberType> the type Simple_homogeneous<RingNumberType>::FT is equal to Quotient<
RingNumberType> while Simple_homogeneous<RingNumberType>::RT is equal to RingNumberType.

11.2.4 Naming Conventions

The use of kernel classes not only avoids problems, it also makes all CGAL classes very uniform. They always
consist of:

1. The capitalized base name of the geometric object, such as Point, Segment, or Triangle.

2. An underscore followed by the dimension of the object, for example _2, _3, or _d.

3. A kernel class as parameter, which itself is parameterized with a number type, such as Cartesian<double>
or Homogeneous<leda_integer>.

11.2.5 Kernel as a Traits Class

Algorithms and data structures in the basic library of CGAL are parameterized by a traits class that subsumes
the objects on which the algorithm or data structure operates as well as the operations to do so. For most of the
algorithms and data structures in the basic library you can use a kernel as a traits class. For some algorithms
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you even do not have to specify the kernel; it is detected automatically using the types of the geometric objects
passed to the algorithm. In some other cases, the algorithms or data structures needs more than is provided by
the kernel concept. In these cases, a kernel can not be used as a traits class.

11.2.6 Choosing a Kernel and Predefined Kernels

If you start with integral Cartesian coordinates, many geometric computations will involve integral numerical
values only. Especially, this is true for geometric computations that evaluate only predicates, which are tanta-
mount to determinant computations. Examples are triangulation of point sets and convex hull computation. In
this case, the Cartesian representation is probably the first choice, even with a ring type. You might use limited
precision integer types like int or long, use double to present your integers (they have more bits in their mantissa
than an int and overflow nicely), or an arbitrary precision integer type like the wrapper Gmpz for the GMP
integers, leda_integer, or MP_Float. Note, that unless you use an arbitrary precision ring type, incorrect results
might arise due to overflow.

If new points are to be constructed, for example the intersection point of two lines, computation of Cartesian
coordinates usually involves divisions. Hence, one needs to use a FieldNumberType with Cartesian representa-
tion, or alternatively, switch to homogeneous representation. The type double is a — though imprecise — model
for FieldNumberType. You can also put any RingNumberType into the Quotient adaptor to get a field type which
then can be put into Cartesian. But using homogeneous representation on the RingNumberType is usually the
better option. Other valid FieldNumberTypes are leda_rational and leda_real.

If it is crucial for you that the computation is reliable, the right choice is probably a number type that guarantees
exact computation. The Filtered_kernel provides a way to apply filtering techniques [ ] to achieve a
kernel with exact and efficient predicates. Still other people will prefer the built-in type double, because they
need speed and can live with approximate results, or even algorithms that, from time to time, crash or compute
incorrect results due to accumulated rounding errors.

Predefined kernels. For the user’s convenience, CGAL provides 3 typedefs to generally useful kernels.

They are all Cartesian kernels.

They all support constructions of points from double Cartesian coordinates.

All these 3 kernels provide exact geometric predicates.

They handle geometric constructions differently:

— Exact_predicates_exact_constructions_kernel: provides exact geometric constructions, in addition
to exact geometric predicates.

— Exact_predicates_exact_constructions_kernel_with_sqrt: same as Exact_predicates_exact._
constructions_kernel, but the number type it provides (Exact_predicates_exact_constructions_
kernel_with_sqrt::FT) supports the square root operation exactly !

— Exact_predicates_inexact_constructions_kernel: provides exact geometric predicates, but geometric
constructions may be inexact due to round-off errors. It is however enough for most CGAL al-
gorithms, and faster than both Exact_predicates_exact_constructions_kernel and Exact_predicates_
exact_constructions_kernel_with_sqrt.

ICurrently it requires having either LEDA or CORE installed
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11.3 Kernel Geometry

11.3.1 Points and Vectors

In CGAL, we strictly distinguish between points, vectors and directions. A point is a point in the Euclidean
space £, a vector is the difference of two points p», p; and denotes the direction and the distance from p;
to p; in the vector space RY, and a direction is a vector where we forget about its length. They are different
mathematical concepts. For example, they behave different under affine transformations and an addition of two
points is meaningless in affine geometry. By putting them in different classes we not only get cleaner code,
but also type checking by the compiler which avoids ambiguous expressions. Hence, it pays twice to make this
distinction.

CGAL defines a symbolic constant ORIGIN of type Origin which denotes the point at the origin. This constant
is used in the conversion between points and vectors. Subtracting it from a point p results in the locus vector of

p.

Point_2< Cartesian<double> > p(1.0, 1.0), q;
Vector_2< Cartesian<double> > v;

v = p — ORIGIN;

q = ORIGIN + v;

assert( p == q );

In order to obtain the point corresponding to a vector v you simply have to add v to ORIGIN. If you want to
determine the point ¢ in the middle between two points p; and p,, you can write?

qg=pl+ (p2 —pl) /2.0;

Note that these constructions do not involve any performance overhead for the conversion with the currently
available representation classes.

11.3.2 Kernel Objects

Besides points (Point_2<Kernel>, Point_3<Kernel>, Point_d<Kernel>), vectors (Vector_2<Kernel>, Vector_3<
Kernel>), and directions (Direction_2<Kernel>, Direction_3<Kernel>), CGAL provides lines, rays, segments,
planes, triangles, tetrahedra, iso-rectangles, iso-cuboids, circles and spheres.

Lines (Line_2<Kernel>, Line_3<Kernel>) in CGAL are oriented. In two-dimensional space, they induce a parti-
tion of the plane into a positive side and a negative side. Any two points on a line induce an orientation of this
line. A ray (Ray_2<Kernel>, Ray_3<Kernel>) is semi-infinite interval on a line, and this line is oriented from
the finite endpoint of this interval towards any other point in this interval. A segment (Segment_2<Kernel>,
Segment_3<Kernel>) is a bounded interval on a directed line, and the endpoints are ordered so that they induce
the same direction as that of the line.

Planes are affine subspaces of dimension two in E3, passing through three points, or a point and a line, ray, or
segment. CGAL provides a correspondence between any plane in the ambient space E* and the embedding of
[E? in that space. Just like lines, planes are oriented and partition space into a positive side and a negative side.
In CGAL, there are no special classes for half-spaces. Half-spaces in 2D and 3D are supposed to be represented
by oriented lines and planes, respectively.

2you might call midpoint(p_1,p_2) instead
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Concerning polygons and polyhedra, the kernel provides triangles, iso-oriented rectangles, iso-oriented cuboids
and tetrahedra. More complex polygons® and polyhedra or polyhedral surfaces can be obtained from the basic
library (Polygon_2, Polyhedron_3), so they are not part of the kernel. As with any Jordan curves, triangles,
iso-oriented rectangles and circles separate the plane into two regions, one bounded and one unbounded.

11.3.3 Orientation and Relative Position

Geometric objects in CGAL have member functions that test the position of a point relative to the object. Full
dimensional objects and their boundaries are represented by the same type, e.g. half-spaces and hyperplanes are
not distinguished, neither are balls and spheres and discs and circles. Such objects split the ambient space into
two full-dimensional parts, a bounded part and an unbounded part (e.g. circles), or two unbounded parts (e.g.
hyperplanes). By default these objects are oriented, i.e., one of the resulting parts is called the positive side, the
other one is called the negative side. Both of these may be unbounded.

For these objects there is a function oriented_side() that determines whether a test point is on the positive side,
the negative side, or on the oriented boundary. These function returns a value of type Oriented_side.

Those objects that split the space in a bounded and an unbounded part, have a member function bounded _side()
with return type Bounded _side.

If an object is lower dimensional, e.g. a triangle in three-dimensional space or a segment in two-dimensional
space, there is only a test whether a point belongs to the object or not. This member function, which takes a
point as an argument and returns a Boolean value, is called has_on()

11.4 Predicates and Constructions

11.4.1 Predicates

Predicates are at the heart of a geometry kernel. They are basic units for the composition of geometric algorithms
and encapsulate decisions. Hence their correctness is crucial for the control flow and hence for the correctness
of an implementation of a geometric algorithm. CGAL uses the term predicate in a generalized sense. Not only
components returning a Boolean value are called predicates but also components returning an enumeration type
like a Comparison_result or an Orientation. We say components, because predicates are implemented both as
functions and function objects (provided by a kernel class).

CGAL provides predicates for the orientation of point sets (orientation, leftturn, rightturn, collinear, copla-
nar), for comparing points according to some given order, especially for comparing Cartesian coordinates
(e.g. lexicographically_xy_smaller), in-circle and in-sphere tests, and predicates to compare distances.

11.4.2 Constructions

Functions and function objects that generate objects that are neither of type bool nor enum types are called con-
structions. Constructions involve computation of new numerical values and may be imprecise due to rounding
errors unless a kernel with an exact number type is used.

3 Any sequence of points can be seen as a (not necessary simple) polygon or polyline. This view is used frequently in the basic library
as well.
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Affine transformations (Aff_transformation_2<Kernel>, Aff_transformation_3<Kernel>) allow to generate new
object instances under arbitrary affine transformations. These transformations include translations, rotations
(in 2D only) and scaling. Most of the geometric objects in a kernel have a member function transform(Aff-
transformation t) which applies the transformation to the object instance.

CGAL also provides a set of functions that detect or compute the intersection between objects of the 2D kernel,
and many objects in the 3D kernel, and functions to calculate their squared distance. Moreover, some member
functions of kernel objects are constructions.

So there are routines that compute the square of the Euclidean distance, but no routines that compute the distance
itself. Why? First of all, the two values can be derived from each other quite easily (by taking the square root
or taking the square). So, supplying only the one and not the other is only a minor inconvenience for the user.
Second, often either value can be used. This is for example the case when (squared) distances are compared.
Third, the library wants to stimulate the use of the squared distance instead of the distance. The squared distance
can be computed in more cases and the computation is cheaper. We do this by not providing the perhaps more
natural routine, The problem of a distance routine is that it needs the sgrt operation. This has two drawbacks:

e The sqrt operation can be costly. Even if it is not very costly for a specific number type and platform,
avoiding it is always cheaper.

e There are number types on which no sgrt operation is defined, especially integer types and rationals.

11.4.3 Polymorphic Return Values

Some functions can return different types of objects. A typical C++ solution to this problem is to derive all
possible return types from a common base class, to return a pointer to this class and to perform a dynamic cast
on this pointer. The class Object provides an abstraction. An object obj of the class Object can represent an
arbitrary class. The only operations it provides is to make copies and assignments, so that you can put them in
lists or arrays. Note that Object is NOT a common base class for the elementary classes. Therefore, there is no
automatic conversion from these classes to Object. Rather this is done with the global function make_object().
This encapsulation mechanism requires the use of object_cast to access the encapsulated class (a less efficient
way, which is now discouraged, used to be to use the assign function).

Example
In the following example, the object class is used as return value for the intersection computation, as there are

possibly different return values.

typedef Cartesian<double> K;

typedef K::Point_2 Point_2;

typedef K::Segment_2 Segment_2;

Segment_2 segment_l, segment_2;

std::cin > segment_l > segment._2;

Object obj = intersection(segment_l, segment_2);

if (const Point_2 xpoint = object_cast<Point_2>(&obj)) {

A do something with xpoint %/
} else if (const Segment_2 *segment = object_cast<Segment_2> (&obj)) {
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A do something with xsegmentx/

/A there was no intersection */

The intersection routine itself looks roughly as follows:

template < class Kernel >
Object 1intersection(Segment_2<Kernel> sl, Segment_2<Kernel> s2)
{

if (A intersection in a point x/ ) {

Point_2<Kernel> p = ... ;
return make_object (p);

} else if (/A intersection in a segment */ ) {

Segment_2<Kernel> s = ...
return make_object (s);

}

return Object();

11.4.4 Constructive Predicates

For testing where a point p lies with respect to a plane defined by three points g, r and s, one may be tempted
to construct the plane Plane_3<Kernel>(q,r,s) and use the method oriented_side(p). This may pay off if many
tests with respect to the plane are made. Nevertheless, unless the number type is exact, the constructed plane
is only approximated, and round-off errors may lead oriented_side(p) to return an orientation which is different
from the orientation of p, g, r, and s.

In CGAL, we provide predicates in which such geometric decisions are made directly with a reference to the
input points p, g, r, s, without an intermediary object like a plane. For the above test, the recommended way to

get the result is to use orientation(p,q,r,s). For exact number types, the situation is different. If several tests are
to be made with the same plane, it pays off to construct the plane and to use oriented_side(p).

11.5 Extensible Kernel

This manual section describe how users can plug user defined geometric classes in existing CGAL kernels. This
is best illustrated by an example.
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11.5.1 Introduction

CGAL defines the concept of a geometry kernel. Such a kernel provides types, construction objects and general-
ized predicates. Most implementations of Computational Geometry algorithms and data structures in the basic
library of CGAL were done in a way that classes or functions can be parametrized with a geometric traits class.

In most cases this geometric traits class must be a model of the CGAL geometry kernel concept (but there are
some exceptions).

11.5.2 An Extensive Example

Assume you have the following point class, where the coordinates are stored in an array of doubles, where we
have another data member color, which shows up in the constructor.

g
#ifndef MY POINTC2 H
#define MY POINTC2_H

#include <CGAL/Origin.h>
#include <CGAL/Bbox_2.h>
class MyPointC2 ({
private:

double vec[2];

int col;

public:

MyPointC2 ()
col(0)

*vec = 0;
* (vec+l) = 0;

MyPointC2 (const double x, const double y, int c¢ = 0)
col(c)

*vec = X;
* (vec+l) = vy;
const double& x() const { return =*xvec; }
const double& y() const { return x(vec+l); }
double & x() { return *vec; }

double& y() { return *(vec+l); }
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int color() const { return col; 1}

int& color() { return col; }

bool operator==(const MyPointC2 &p) const

{
return ( *vec == x(p.vec) ) && ( *(vect+l) == x(p.vec + 1) && ( col
== p.col) );
}
bool operator!=(const MyPointC2 &p) const
{
return ! (xthis == p);
}

};

#endif // MY POINTC2 H
L

File: examples/Kernel_23/MyPointC2.h

As said earlier the class is pretty minimalistic, for example it has no bbox() method. One might assume that a
basic library algorithm which computes a bounding box (e.g, to compute the bounding box of a polygon), will
not compile. Luckily it will, because it does not use of member functions of geometric objects, but it makes use
of the functor Kernel::Construct_bbox_2.

To make the right thing happen with MyPointC2 we have to provide the following functor.

#ifndef MYCONSTRUCT_ BBOX 2_H
#define MYCONSTRUCT BBOX 2 H

template <class ConstructBbox_2>
class MyConstruct_bbox_2 : public ConstructBbox_2 {
public:

using ConstructBbox_2::operator();

CGAL: :Bbox_2 operator () (const MyPointC2& p) const {
return CGAL: :Bbox_2(p.x(), p-vy(), p.-x(), P-Y());
}
};

#endif //MYCONSTRUCT BBOX 2 H

File: examples/Kernel_ 23/MyConstruct_bbox_2.h

Things are similar for random access to the Cartesian coordinates of a point. As the coordinates are stored in an
array of doubles we can use double* as random access iterator.

(#ifndef MYCONSTRUCT_COORD_ITERATOR_H W

569




#define MYCONSTRUCT_COORD_ITERATOR_H

class MyConstruct_coord_iterator {

public:
const doublex operator () (const MyPointC2& p)
{

return &p.x();

const doublex operator () (const MyPointC2& p, int)
{
const doublex pyptr = &p.y();
pPyptr++;
return pyptr;
}
};

#tendif //MYCONSTRUCT COORD ITERATOR H
-

File: examples/Kernel_ 23/MyConstruct_coord_iterator.h

The last functor we have to provide is the one which constructs points. That is you are not forced to add the
constructor with the Origin as parameter to your class, nor the constructor with homogeneous coordinates. The
functor is a kind of glue layer between the CGAL algorithms and your class.

-
#ifndef MYCONSTRUCT_ POINT_ 2_H
#define MYCONSTRUCT_ POINT_ 2_H

template <typename K, typename OldK>
class MyConstruct_point_2
{

typedef typename K::RT RT;
typedef typename K::Point_2 Point_2;
typedef typename K::Line_2 Line_2;
typedef typename Point_2::Rep Rep;

public:
typedef Point_2 result_type;

// Note : the CGAL: :Return base tag is really internal CGAL stuff.

// Unfortunately it is needed for optimizing away copy-constructions,
// due to current lack of delegating constructors in the C++ standard.
Rep // Point_ 2

operator () (CGAL: :Return_base_tag, CGAL::0Origin o) const

{ return Rep(o); }

Rep // Point_ 2
operator () (CGAL: :Return_base_tag, const RT& x, const RT& y) const
{ return Rep(x, y); }

Rep // Point_2

operator () (CGAL: :Return_base_tag, const RT& x, const RT& y, const RT&
w) const

{ return Rep(x, y, w); }
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Point_2
operator () (CGAL: :Origin o) const
{ return MyPointC2(0, 0, 0); }

Point_2
operator () (const RT& x, const RT& y) const
{
return MyPointC2(x, y, 0);
}

Point_2

operator () (const Line_2& 1) const

{
typename O1ldK: :Construct_point_2 base_operator;
Point_2 p = base_operator(l);
return p;

Point_2

operator () (const Line_2& 1, int i) const

{
typename O1ldK: :Construct_point_2 base_operator;
return base_operator(l, i);

// We need this one, as such a functor is in the Filtered kernel
Point_2
operator () (const RT& x, const RT& y, const RT& w) const
{
if(w !'= 1) {
return MyPointC2 (x/w, y/w, 0);
} else {
return MyPointC2(x,y, 0);

}
};

#endif //MYCONSTRUCT POINT 2 _H
L

File: examples/Kernel_23/MyConstruct_point_2.h

Now we are ready to put the puzzle together. We won’t explain it in detail, but you see that there are typedefs to
the new point class and the functors. All the other types are inherited.

p
#ifndef MYKERNEL_H
#define MYKERNEL_H

#include <CGAL/Cartesian.h>

#include "MyPointC2.h"

#include "MySegmentC2.h"

#include "MyConstruct_bbox_2.h"
#include "MyConstruct_coord iterator.h"
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#include "MyConstruct_point_2.h"

// K_is the new kernel, and K Base is the old kernel
template < typename K_, typename K _Base >
class MyCartesian_base

public K Base::template Base<K_ >::Type

typedef typename K_Base::template Base<K_>::Type Ol1ldK;

public:
typedef K_ Kernel;
typedef MyPointC2 Point_2;
typedef MySegmentC2<Kernel> Segment_2;
typedef MyConstruct_ point_2<Kernel, OldK> Construct_point_2;
typedef const doublex* Cartesian_const_iterator 2;

typedef MyConstruct_coord_ iterator
Construct_cartesian_const_iterator 2;
typedef MyConstruct_bbox_2<typename OldK: :Construct_bbox_ 2>
Construct_bbox 2;

Construct_point_2
construct_point_2_ object () const
{ return Construct_point_2(); }

Construct_bbox_ 2
construct_bbox_2_ object () const
{ return Construct_bbox_2(); }

Construct_cartesian_const_iterator 2
construct_cartesian_const_iterator_2_object () const
{ return Construct_cartesian_const_iterator 2(); }

template < typename Kernel2 >
struct Base { typedef MyCartesian base<Kernel2, K Base> Type; };
};

template < typename FT_ >
struct MyKernel
public CGAL: :Type_ equality wrapper<
MyCartesian_base<MyKernel<FT_>, CGAL::Cartesian<FT_> >,
MyKernel<FT_ > >
{};

#endif // MYKERNEL H
L

File: examples/Kernel 23/MyKernel.h

Finally, we give an example how this new kernel can be used. Predicates and constructions work with the new
point, they can be a used to construct segments and triangles with, and data structures from the Basic Library,
as the Delaunay triangulation work with them.

The kernel itself can be made robust by plugging it in the Filtered_kernel.
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(#include <CGAL/basic.h>

#include <CGAL/Filtered_kernel.h>

#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/squared_distance_2.h>
#include <cassert>

#include "MyKernel.h"

#include "MyPointC2_jostream.h"

typedef MyKernel<double> MK;
typedef CGAL: :Filtered kernel_adaptor<MK> K;
typedef CGAL: :Delaunay_ triangulation 2<K> Delaunay_ triangulation_ 2;

typedef K::Point_2 Point;

typedef K::Segment_2 Segment;
typedef K::Ray_ 2 Ray;

typedef K::Line_ 2 Line;

typedef K::Triangle_2 Triangle;
typedef K::Iso_rectangle_2 Iso_rectangle;

const int RED= 1;
const int BLACK=2;

int main()
{
Point a(0,0), b(1,0), c(1,1), d4(0,1);
a.color ()=RED;
b.color () =BLACK;
d.color ()=RED;

Delaunay_triangulation_2 dt;
dt.insert (a);

K: :Orientation_2 orientation;
orientation(a,b,c);

Point p(1,2), q;

p.color() = RED;

g.color () = BLACK;

std::cout << p << std::endl;

K: :Compute_squared_distance_2 squared_distance;

std: :cout << "squared distance(a, b) == "
<< squared_distance(a, b) << std::endl;

Segment sl(p,q), s2(a, c);
K: :Construct_midpoint_2 construct_midpoint_2;
Point mp = construct_midpoint_2(p,q);

assert (sl.source() .color() == RED);
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K::Intersect_2 intersection;

CGAL: :Object o = intersection(sl, s2);

K: :Construct_cartesian_const_iterator 2 construct_it;
K::Cartesian_const_iterator_2 cit = construct_it(a);
assert (xcit == a.x());

cit = construct_it (a,0);

cit——;
assert (xcit == a.y());

Line 1l1l(a,b), 12(p, q);

intersection(1ll, 12);

intersection(sl, 11);

Ray rl(d,b), r2(d,c);
intersection(rl, r2);

intersection(rl, 11);
squared_distance(rl, r2);
squared_distance(rl, 12);
squared_distance(rl, s2);
Triangle tl(a,b,c), t2(a,c,d);
intersection(tl, t2);
intersection(tl, 11);
intersection(tl, sl);
intersection(tl, rl);
Iso_rectangle il(a,c), i2(d,p);
intersection(il, i2);

intersection(il, sl);

intersection(il, rl);
intersection(il, 11);

tl.orientation();
std: :cout << sl.source() << std::endl;
std: :cout << tl.bbox() << std::endl;

std: :cout << "done" << std::endl;
return 0;
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File: examples/Kernel_23/MyKernel.cpp

11.5.3 Limitations

The point class must have member functions x() and y() (and z() for the 3d point). We will probably introduce
function objects that take care of coordinate access.

As we enforce type equality between MyKernel::Point_2 and Point_2<MyKernel>, the constructor with the
color as third argument is not available.

11.6 Projection Traits Classes

It is sometimes useful to apply 2D algorithms to the projection of 3D points on a plane. Examples are triangu-
lated terrains, which are points with elevation, or surface reconstruction from parallel slices, where one wants
to check the simplicity or orientation of polygons.

For this purpose CGAL provides several projection traits classes, which are a model of traits class concepts of
2D triangulations, 2D polygon and 2D convex hull traits classes. The projection traits classes are listed in the
“Is Model for the Concepts” sections of the concepts.

11.7 Design and Implementation History

At a meeting at Utrecht University in January 1995, Olivier Devillers, Andreas Fabri, Wolfgang Freiseisen,
Geert-Jan Giezeman, Mark Overmars, Stefan Schirra, Otfried Schwarzkopf (now Otfried Cheong), and Sven
Schonherr discussed the foundations of the CGAL kernel. Many design and software engineering issues were
addressed, e.g. naming conventions, coupling of classes (flat versus deep class hierarchy), memory allocation,
programming conventions, mutability of atomic objects, points and vectors, storing additional information,
orthogonality of operations on the kernel objects, viewing non-constant-size objects like polygons as dynamic
data structures (and hence not as part of the (innermost) kernel).

The people attending the meeting delegated the compilation of a draft specification to Stefan Schirra. The
resulting draft specification was intentionally modeled on CGAL’s precursors C++GAL and PLAGEO as well as
on the geometric part of LEDA. The specification already featured coexistence of Cartesian and homogeneous
representation of point/vector data and parameterization by number type(s). During the discussion of the draft
a kernel design group was formed. The members of this group were Andreas Fabri, Geert-Jan Giezeman, Lutz
Kettner, Stefan Schirra, and Sven Schonherr. The work of the kernel design group led to significant changes and
improvements of the original design, e.g. the strong separation between points and vectors. Probably the most
important enhancement was the design of a common superstructure for the previously uncoupled Cartesian and
homogeneous representations. One can say, that the kernel was designed by this group. The kernel was later
revised based on suggestions by Hervé Bronnimann, Bernd Gértner, Michael Hoffmann, and Lutz Kettner.

A first version of the kernel was internally made available at the beginning of the CGAL-project (ESPRIT LTR
IV project number 21957). Since then many more people contributed to the evolution of the kernel through
discussions on the CGAL mailing lists. The implementation based on Cartesian representation was (initially)
provided by Andreas Fabri, the homogeneous representation (initially) by Stefan Schirra. Intersection and
distance computations were implemented by Geert-Jan Giezeman. Further work has been done by Susan Hert
on the overall maintenance of the kernel. Philippe Guigue has provided efficient intersection tests for 3D
triangles. Andreas Fabri, Michael Hoffmann and Sylvain Pion have improved the support for the extensibility
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and adaptability of the kernel. Pedro Machado Manhies de Castro and Monique Teillaud introduced 3D circles.
In 2010, Pierre Alliez, Stéphane Tayeb and Camille Wormser added intersection constructions for 3D triangles
and efficient intersection tests for bounding boxes.
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11.8 Concepts

Kernel

The concept of a kernel is defined by a set of requirements on the provision of certain types and access member
functions to create objects of these types. The types are function object classes to be used within the algorithms
and data structures of CGAL. This allows you to use any model of a kernel as a traits class in the CGAL
algorithms and data structures, unless they require types beyond those provided by a kernel.

A kernel provides types, construction objects, and generalized predicates. The former replace constructors of
the kernel classes and constructive procedures in the kernel. There are also function objects replacing operators,
especially for equality testing.

Has Models

CGAL::Cartesian<FieldNumberType> . ... ... ... e page 588
CGAL::Homogeneous<RingNumberTyPe> . ... ...t et aiiiee s page 1070
CGAL::Simple_cartesian<FieldNumberType> . ... .. ...t page 602
CGAL::Simple_homogeneous<RINGNUmMberTYPe> .. ... ... page 603
CGAL::Filtered_kernel<CK> ... . ... e e e e page 592
CGAL::Exact_predicates_exact_constructions_kernel......... ... ... . ... ... iiiiiiiiiiinn... page 606
CGAL::Exact_predicates_exact_constructions_kernel_with_sqrt .......................ccoiiion.. page 607
CGAL::Exact_predicates_inexact_constructions_kernel ......... ... ... ... . cciiiiiiiiiiiiin... page 608
Types

Kernel:: FT a model of FieldNumberType

Kernel:: RT a model of RingNumberType

The following types describe the return types of predicates. They typically map to bool and CGAL kernel enum
types, except when an interval arithmetic number type is used such as within the filtering kernels, in which case
it is Uncertain<bool> or similar.

Kernel:: Boolean bool or Uncertain<bool>
Kernel:: Sign CGAL::Sign or Uncertain<CGAL::Sign>
Kernel:: Comparison_result CGAL::Comparison_result or Uncertain<

CGAL::Comparison_result>

Kernel:: Orientation CGAL: :Orientation or Uncertain< CGAL::Orientation>

Kernel:: Oriented_side CGAL::Oriented_side or Uncertain<CGAL::Oriented_
side>

Kernel:: Bounded_side CGAL::Bounded_side or Uncertain<CGAL::Bounded_
side>

Kernel:: Angle CGAL::Angle or Uncertain<CGAL::Angle>

Constants
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static const bool

Has _filtered_predicates;

A Boolean value indicating whether the predicates are fil-
tered (as in Filtered_kernel). This helps propagating such
decisions to traits classes which are built on top of a ker-
nel, so that they can decide to filter their own predicates

Coordinate Access

Kernel::

- Cartesian_const_iterator_2

Geometric Objects

Kernel:: Point_2

Kernel:: Vector_2

Kernel:: Direction_2

Kernel:: Line_2

Kernel:: Ray_2

Kernel:: Segment_2

Kernel:: Triangle_2

Kernel:: Iso_rectangle_2

Kernel:: Circle_2

Kernel:: Object_2

Constructions

Kernel:: Construct_point_2

Kernel:: Construct_vector_2

Kernel:: Construct_direction_2

Kernel:: Construct_segment_2

Kernel:: Construct_line_2

Kernel:: Construct_ray_2

Kernel:: Construct_circle_2

Kernel:: Construct_triangle_2

Kernel:: Construct_iso_rectangle_2
Kernel:: Construct_object_2

Kernel:: Construct_scaled_vector_2
Kernel:: Construct_translated_point_2
Kernel:: Construct_point_on_2

Kernel:: Construct_projected_point_2
Kernel:: Construct_projected_xy_point_2
Kernel:: Construct_cartesian_const_iterator_2
Kernel:: Construct_vertex_2

Kernel:: Construct_bbox_2

Kernel:: Construct_perpendicular_vector_2
Kernel:: Construct_perpendicular_direction_2
Kernel:: Construct_perpendicular_line_2
Kernel:: Construct_max_vertex_2
Kernel:: Construct_midpoint_2

or not.

a model of Kernel::

a model of Kernel.::
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel::

a model of Kernel::
a model of Kernel.::
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel.::
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel:
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CartesianConstlterator_2

Point_2
Vector_2
Direction_2
Line_2

:Ray_2
:Segment_2

Triangle_2
IsoRectangle_2
Circle_2
Object_2

ConstructPoint_2
ConstructVector_2

:ConstructDirection_2

ConstructSegment_2
ConstructLine_2
ConstructRay_2
ConstructCircle_2

:ConstructTriangle_2

ConstructlsoRectangle_2
ConstructObject_2
ConstructScaledVector_2

:ConstructTranslatedPoint_2
:ConstructPointOn_2

ConstructProjectedPoint 2
ConstructProjectedXYPoint_2
ConstructCartesianConstlterator_2
ConstructVertex_2

:ConstructBbox_2

ConstructPerpendicularVector_2
ConstructPerpendicularDirection_2
ConstructPerpendicularLine_2
ConstructMaxVertex_2

:ConstructMidpoint 2



Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::

Construct_equidistant _line_3
Construct_min_vertex_2
Construct_center_2
Construct_centroid_2
Construct_circumcenter_2
Construct_bisector_2

Construct_opposite_direction_2

Construct_opposite_segment_2
Construct_opposite_ray_2
Construct_opposite_line_2
Construct_opposite_triangle_2
Construct_opposite_circle_2
Construct_opposite_vector_2

a model of Kernel::
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel::

If the result type is not determined, there is no Construct_ prefix:

Kernel:: Intersect_2

Kernel:: Assign_2

a model of Kernel.::
a model of Kernel:

If the result type is a number type, the prefix is Compute_:

Kernel::
Kernel::
Kernel::
Kernel::
Kernel::

Compute_squared_distance _2
Compute_squared_length_2
Compute_squared_radius_2
Compute_area_2
Compute_determinant 2

Generalized Predicates

Kernel::
Kernel::
Kernel::
Kernel:
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel:
Kernel::
Kernel::
Kernel::
Kernel::
Kernel:

Angle_2
Equal_2
Equal x_2

: Equal_y_2

Less_x_2

Less_y_2

Less_xy_2

Less_yx_2

Compare_x_2
Compare_x_at_y_2
Compare_y_2
Compare_xy_2
Compare_yx_2
Compare_y_at x_2
Compare_distance_2
Compare_angle_with_x_axis_2
Compare_slope_2
Less_distance _to_point_2

: Less_signed_distance_to_line_2

Less_rotate_ccw_2
Left_turn_2
Collinear_2
Orientation_2

: Side_of _oriented_circle_2

a model of Kernel::
a model of Kernel::
a model of Kernel.::
a model of Kernel:
a model of Kernel::

a model of Kernel:
a model of Kernel::
a model of Kernel.::
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel.::
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel:
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel:
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ConstructEquidistantLine 3

:ConstructMinVertex_2

ConstructCenter_2
ConstructCentroid_2
ConstructCircumcenter_2

:ConstructBisector_2
:ConstructOppositeDirection_2

ConstructOppositeSegment 2
ConstructOppositeRay_2
ConstructOppositeLine_2
ConstructOppositeTriangle_2

:ConstructOppositeCircle_2

ConstructOppositeVector_2

Intersect_2

:Assign_2

ComputeSquaredDistance_2
ComputeSquaredLength_2
ComputeSquaredRadius_2

:ComputeArea_2

ComputeDeterminant 2

:Angle_2

Equal 2
EqualX_ 2

:EqualY_2

LessX_2
LessY_2
LessXY_2
LessYX 2

:CompareX 2

CompareXAtY_2
CompareY_2
CompareXY_2

:CompareYX_2
:CompareYAtX 2

CompareDistance_2
CompareAngleWithXAxis_2
CompareSlope_2

:LessDistanceToPoint_2
:LessSignedDistanceToLine_2
:LessRotateCCW_2

LeftTurn_2
Collinear_2
Orientation_2

:SideOfOrientedCircle_2



Kernel:: Side_of_bounded_circle_2
Kernel:: Is_horizontal .2

Kernel:: Is_vertical_2

Kernel:: Is_degenerate_2

Kernel:: Has_on_2

Kernel:: Collinear_has_on_2
Kernel:: Has_on_bounded_side_2
Kernel:: Has_on_unbounded_side_2
Kernel:: Has_on_boundary_2
Kernel:: Has_on_positive_side_2
Kernel:: Has_on_negative_side_2
Kernel:: Oriented_side_2

Kernel:: Bounded_side_2

Kernel:: Are_parallel_2

Kernel:: Are_ordered_along_line_2

a model of Kernel::
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel:
a model of Kernel::
a model of Kernel:
a model of Kernel:

Kernel:: Are_strictly_ordered_along_line_2
Kernel:: Collinear_are_ordered_along _line_2
Kernel:: Collinear_are_strictly_ordered_along_line_2

a model of Kernel:
a model of Kernel:

Kernel:: Counterclockwise_in_between_2
Kernel:: Do_intersect_2

Three-dimensional Kernel

Coordinate Access

Kernel:: Cartesian_const_iterator_3

Geometric Objects

Kernel:: Point_3
Kernel:: Vector_3
Kernel:: Direction_3
Kernel:: Iso_cuboid_3
Kernel:: Line_3
Kernel:: Ray_3
Kernel:: Circle_3
Kernel:: Sphere_3
Kernel:: Segment_3
Kernel:: Plane_3
Kernel:: Triangle_3
Kernel:: Tetrahedron_3
Kernel:: Object_3

Constructions

Kernel:: Construct_point_3
Kernel:: Construct_vector_3

amodel of Kernel.::

2

a model of Kernel.::
a model of Kernel::

a model of Kernel.::

a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel::
a model of Kernel::

a model of Kernel.::
a model of Kernel:
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SideOfBoundedCircle_2

:IsHorizontal .2

IsVertical .2
IsDegenerate_2
HasOn_2

:CollinearHasOn_2
:HasOnBoundedSide_2

HasOnUnboundedSide_2
HasOnBoundary_2
HasOnPositiveSide_2

:HasOnNegativeSide_2
:OrientedSide_2

BoundedSide_2

:AreParallel 2
:AreOrderedAlongLine_2
:AreStrictlyOrderedAlongLine_2
:CollinearAreOrderedAlongLine_2

CollinearAreStrictlyOrderedAlongLine_

CounterclockwiseInBetween_2
Dolntersect_2

CartesianConstlterator_3

Point_3
Vector_3

:Direction_3
:IsoCuboid_3

Line_3
Ray_3
Circle_3

:Sphere_3

Segment_3
Plane_3

:Triangle_3

Tetrahedron_3
Object_3

ConstructPoint_3

:ConstructVector_3



Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::

Construct_direction_3
Construct_plane_3
Construct_iso_cuboid_3
Construct_line_3
Construct_ray_3
Construct_sphere_3
Construct_segment_3
Construct_triangle_3
Construct_tetrahedron_3
Construct_object_3
Construct_scaled_vector_3
Construct_translated_point_3
Construct_point_on_3
Construct_projected_point_3
Construct_lifted_point_3
Construct_cartesian_const_iterator_3
Construct_vertex_3
Construct_bbox_3
Construct_supporting_plane_3
Construct_orthogonal_vector_3
Construct_base_vector_3
Construct_perpendicular_plane_3
Construct_radical_plane_3
Construct_perpendicular_line_3
Construct_midpoint_3
Construct_center_3
Construct_centroid_3
Construct_circumcenter_3
Construct_bisector_3
Construct_cross_product_vector_3
Construct_opposite_direction_3
Construct_opposite_segment_3
Construct_opposite_ray_3
Construct_opposite_line_3
Construct_opposite_plane_3
Construct_opposite_sphere 3
Construct_opposite_vector_3

a model of Kernel::
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel.::
a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel.::
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel.::
a model of Kernel::
a model of Kernel:
a model of Kernel::
a model of Kernel::

If the result type is not determined, there is no Construct_ prefix:

Kernel:: Intersect_3
Kernel:: Assign_3

a model of Kernel:
a model of Kernel:

If the result type is a number type, the prefix is Compute_:

Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::

Compute_area_3
Compute_squared_area_3
Compute_area_divided_by_pi_3
Compute_approximate_area_3
Compute_determinant .3
Compute_squared_distance_3
Compute_squared_length_3

a model of Kernel::
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel:
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ConstructDirection_3

:ConstructPlane_3

ConstructlsoCuboid_3
ConstructLine_3
ConstructRay_3

:ConstructSphere_3
:ConstructSegment_3

ConstructTriangle_3
ConstructTetrahedron_3
ConstructObject_3
ConstructScaledVector_3

:ConstructTranslatedPoint_3

ConstructPointOn_3
ConstructProjectedPoint _3
ConstructLiftedPoint_3
ConstructCartesianConstlterator_3

:ConstructVertex_3

ConstructBbox_3
ConstructSupportingPlane 3
ConstructOrthogonalVector_3
ConstructBaseVector_3
ConstructPerpendicularPlane_3
ConstructRadicalPlane_3
ConstructPerpendicularLine_3

:ConstructMidpoint_3

ConstructCenter_3
ConstructCentroid_3
ConstructCircumcenter_3
ConstructBisector_3
ConstructCrossProductVector_3
ConstructOppositeDirection_3
ConstructOppositeSegment_3
ConstructOppositeRay_3
ConstructOppositeLine_3

:ConstructOppositePlane_3

ConstructOppositeSphere_3
ConstructOppositeVector_3

:Intersect_3
:Assign_3

ComputeArea_3

:ComputeSquaredArea_3

ComputeAreaDividedByPi_3
ComputeApproximateArea_3
ComputeDeterminant_3

ComputeSquaredDistance_3

:ComputeSquaredLength_3



Kernel::

Kernel::

Kernel::
Kernel::

Compute_squared_length_divided_by_pi_square_3

Compute_approximate_squared_length_3

Compute_squared_radius_3
Compute_volume_3

Generalized Predicates

Kernel::
Kernel::
Kernel::
Kernel::
Kernel:
Kernel::
Kernel::
Kernel::
Kernel::
Kernel:
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel:
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::

Angle_3
Equal_3
Equal x_3
Equal_y_3

: Equal_z_3

Equal _xy_3
Less_x_3
Less_y_3
Less_z_3

s Less_xy_3

Less_xyz_3

Compare_x_3

Compare_y_3

Compare_z_3

Compare_xy_3

Compare_xyz_3
Less_signed_distance_to_plane_3
Less_distance _to_point_3
Compare_dihedral_angle_3
Compare_distance_3

Collinear_3

Coplanar_3

Orientation_3
Coplanar_orientation_3
Coplanar_side_of_bounded _circle_3
Side_of _oriented_sphere_3
Side_of_bounded_sphere_3
Is_degenerate_3

Has_on_3

: Has_on_bounded_side_3

Has_on_unbounded _side 3
Has_on_boundary_3
Has_on_positive_side_3
Has_on_negative_side_3
Oriented_side_3

Bounded_side 3

Are_parallel 3
Are_ordered_along_line_3
Are_strictly_ordered_along _line_3
Collinear_are_ordered_along _line_3

amodel of Kernel.:

3

amodel of Kernel.::

3

a model of Kernel.::
a model of Kernel::

a model of Kernel:
a model of Kernel::
a model of Kernel.::
a model of Kernel::
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel::
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel.::
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel.::
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel:
a model of Kernel::
a model of Kernel::
a model of Kernel::
a model of Kernel:
a model of Kernel:
a model of Kernel:
a model of Kernel:
a model of Kernel:
a model of Kernel:
a model of Kernel:
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ComputeSquaredLengthDividedByPiSquare_

ComputeApproximateSquaredLength_

ComputeSquaredRadius_3
ComputeVolume_3

:Angle_3

Equal_3
EqualX_3
EqualY_3

:EqualZ_3

EqualXY_3
LessX_3

:LessY_3
:LessZ_3

LessXY_3
LessXYZ_3
CompareX_3

:CompareY_3

CompareZ_3

:CompareXY_3

CompareXYZ_3
LessSignedDistanceToPlane_3

:LessDistanceToPoint_3

CompareDihedralAngle_3

:CompareDistance_3

Collinear_3
Coplanar_3
Orientation_3
CoplanarOrientation_3

:CoplanarSideOfBoundedCircle_3

SideOfOrientedSphere_3
SideOfBoundedSphere_3
IsDegenerate_3

:HasOn_3
:HasOnBoundedSide_3

HasOnUnboundedSide_3
HasOnBoundary_3
HasOnPositiveSide_3

:HasOnNegativeSide_3
:OrientedSide_3

:BoundedSide _3

:AreParallel 3
:AreOrderedAlongLine_3
:AreStrictlyOrderedAlongLine_3
:CollinearAreOrderedAlongLine_3



Kernel:: Collinear_are_strictly_ordered_along_line_3

amodel of Kernel::CollinearAreStrictlyOrderedAlongLine_
3

Kernel:: Do_intersect_3 a model of Kernel::Dolntersect_3

Operations

For each of the function objects above, there must exist a member function that requires no arguments and
returns an instance of that function object. The name of the member function is the uncapitalized name of the
type returned with the suffix _object appended. For example, for the function object Kernel::Construct_vector_2
the following member function must exist:

Kernel::Construct_vector_2 kernel.construct_vector_2_object() const

See Also
Kernel_d
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Class

11.9 Kernel Classes and Operations

CGAL::Cartesian<FieldNumberType>
#include <CGAL/Cartesian.h>

Definition

A model for Kernel that uses Cartesian coordinates to represent the geometric objects. In order for Cartesian<
FieldNumberType> to model Euclidean geometry in E? and/or E3, for some mathematical field E (e.g., the
rationals Q or the reals R), the template parameter FieldNumberType must model the mathematical field E.
That is, the field operations on this number type must compute the mathematically correct results. If the number
type provided as a model for FieldNumberType is only an approximation of a field (such as the built-in type
double), then the geometry provided by the kernel is only an approximation of Euclidean geometry.

Is Model for the Concepts

Kermel . . e page 581
Types

typedef FieldNumberType FT;

typedef FieldNumberType RT;

Implementation

All geometric objects in Cartesian<FieldNumberType> are reference counted.

See Also

CGAL::Simple_cartesian<FieldNumberType> . ......... oot page 602
CGAL::Homogeneous<RingNUmberType> . ...... ... ... page 1070
CGAL::Simple_homogeneous<RINgNUmberTYPe> . ... ...t page 603
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CGAL::Cartesian_converter<K1, K2, NTConverter>

Definition

Cartesian_converter<Kl1, K2, NTConverter>converts objects from the kernel traits K7 to the kernel traits K2
using Converter to do the conversion. Those traits must be of the form Cartesian<FTI1> and Cartesian<FT12>
(or the equivalent with Simple_cartesian). It then provides the following operators to convert objects from K/
to K2.

The third template parameter NTConverter is a function object that must provide K2::FT operator()(K1::FT n)
that converts n to an K2::FT which has the same value.

The default value of this parameter is CGAL::NT_converter<KI::FT, K2::FT>.

#include <CGAL/Cartesian_converter.h>

Creation

Cartesian_converter<K1, K2, NTConverter> conv;

Default constructor.

Operations

K2::Point_2 conv.operator()( K1::Point_2 p)

returns a K2::Point_2 which coordinates are those of p,
converted by NTConverter.

Similar operators are defined for the other kernel traits types Point_3, Vector_2...

Example

In the following example, we compute exactly the intersection point between a line and a triangle, and we then

create a double approximation of this point.
-

#include <CGAL/Simple_cartesian.h>
#include <CGAL/Quotient.h>

#include <CGAL/MP_Float.h>

#include <CGAL/Cartesian_converter.h>

typedef CGAL: :Simple_cartesian<double> IK;
typedef CGAL: :Simple_cartesian<CGAL: :Quotient<CGAL: :MP_Float> > EK;
typedef CGAL: :Cartesian_converter<IK, EK>

IK to_EK;
typedef CGAL: :Cartesian_converter<EK, IK>

EK_to_IK;
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int main () {

IK: :Triangle_3 t1(
IK::Point_3(0.,0.,0.),
IK::Point_3(1.,0.,-1.),
IK: :Point_3(0.,1.,3.)

)i

IK::Line_3 11(
IK::Point_3(0.2,0.25,-7),
IK: :Point_3(0.25,0.3,4)

)i

IK to_EK to_exact;

EK: :Triangle_3 t2=to_exact (tl);
EK: :Line_3 12=to_exact (11);

CGAL: :Object inter=CGAL: :intersection(t2,12);
const EK::Point_3& exact_pt=CGAL: :object_cast<EK: :Point_3> (inter);

EK to_IK to_inexact;

IK: :Point_3 inexact_pt = to_inexact (exact_pt);
return 0;

File: examples/Kernel_23/cartesian_converter.cpp

See Also

CGAL::Cartesian<FieldNUmberType> . ... ... ..ottt e et neiens
CGAL::Simple_cartesian<FieldNumberType> . ... .. ...ttt
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CGAL::cartesian_to_homogeneous

#include <CGAL/cartesian_homogeneous_conversion.h>

Point_2< Homogeneous<RT> >  cartesian_to_homogeneous( Point_2< Cartesian<RT> > cp)

converts 2d point c¢p with Cartesian representation into a 2d
point with homogeneous representation with the same num-
ber type.

Point_3< Homogeneous<RT> >  cartesian_to_homogeneous( Point_3< Cartesian<RT> > cp)

converts 3d point cp with Cartesian representation into a 3d
point with homogeneous representation with the same num-

ber type.

See Also

CGAL::Cartesian<FieldNUmberType> . ... ...ttt i page 588
CGAL::Cartesian_converter<KI, K2, NTCONVETIEr> .. ... ...ttt page 589
CGAL::Homogeneous<RingNUmberType> . ........ ... page 1070
CGAL::Homogeneous_converter<KI, K2, RTConverter, FTConverter>..................cccuuuu... page 598
CGAL::homOZeneoUSs_t0_CATTESIAMN . . .. ... ..v vttt e et e e e page 599
CGAL::homogeneous_to_qUOTIENE_CATTESTAN . . . .. ..o v v vt ettt et ettt e et page 600
CGAL::quotient_cartesian_toO_NOMOZENEOUS . . . .. ...ttt ettt page 764
CGAL::Simple_cartesian<FieldNumberType> .. ........ ... oo page 602
CGAL::Simple_homogeneous<RIngNumberTYPe> . ... ... page 603
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Class

CGAL::Filtered_kernel<CK>

Definition

Filtered_kernel<CK>is a kernel that uses the filtering technique based on interval arithmetic from [ ] to
achieve exact and efficient predicates. In addition, a few selected important predicates are implemented using
the formally proved, semi-static, filtering techniques from [ ].

The geometric constructions are exactly those of the kernel CK, which means that they are not necessarily exact.

#include <CGAL/Filtered_kernel h>

Parameters

The first parameter, CK, is the ”Construction Kernel”, namely the kernel from which are taken the types of the
geometric objects as well as the geometric constructions.

The second parameter, UseStaticFilters, is a Boolean value which activates or not an additional layer of semi-

static filters. It defaults to true (activated), unless the CGAL_NO_STATIC_FILTERS macro is defined. This
option is mostly for debugging and testing, there should be no production use for deactivating static filters.

Is Model for the Concepts

Kernel

Types

typedef EK Exact_kernel; The type of the exact kernel.

typedef FK Approximate_kernel; The type of the approximate “filtering” kernel.

Constants

static const bool Has _static_filters; A Boolean value corresponding to the second template
argument. Tells whether static filters are provided.

Example

The following example shows how to produce a kernel whose geometric objects and constructions are those of
Simple_cartesian<double> but the predicates are exact.

#include <CGAL/Simple_cartesian.h>
#include <CGAL/Filtered kernel.h>

typedef CGAL::Simple_cartesian<double> CK;
typedef CGAL::Filtered_kernel<CK> K;
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Implementation

The implementation uses CGAL::Filtered_predicate<EP, FP, C2E, C2F> over each predicate of the kernel traits
interface. Additionally, faster static filters may be used for a few selected critical predicates.
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Class

CGAL::Filtered _kernel _adaptor<CK>

Definition
Filtered_kernel_adaptor<CK>is a kernel that uses the filtering technique [ ] to obtain a kernel with exact
and efficient predicate functors. The geometric constructions are exactly those of the kernel CK, which means

that they are not necessarily exact.

In contrast to Filtered_kernel, the global functions are those of CK.

Is Model for the Concepts
Kernel

#include <CGAL/Filtered_kernel.h>

Example

The following example shows how to produce a kernel whose geometric objects and constructions are those of
Simple_cartesian<double> The predicate functors of the kernel are exact, the global functions are not.

#include <CGAL/Simple_cartesian.h>
#include <CGAL/Filtered_kernel.h>

typedef CGAL::Simple_cartesian<double> CK;

typedef CGAL::Filtered_kernel_adaptor<CK> K;

typedef K::Point_2 p(0,0), a(1,1), r(l,5);
CGAL::orientation(p,q,r); // not exact

typedef K::Orientation_2 orientation;
orientation(p,q,r); // exact
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CGAL::Filtered_predicate<EP, FP, C2E, C2F>

Definition

Filtered_predicate<EP, FP, C2E, C2F>is an adaptor for predicate function objects that allows one to produce
efficient and exact predicates. It is used to build CGAL::Filtered_kernel<CK> and can be used for other predi-
cates too.

EP is the exact but supposedly slow predicate that is able to evaluate the predicate correctly. It will be called
only when the filtering predicate, FP, cannot compute the correct result. This failure of FP must be done by
throwing an exception.

To convert the geometric objects that are the arguments of the predicate, we use the function objects C2E and
C2F, which must be of the form Cartesian_converter or Homogeneous_converter.

#include <CGAL/Filtered_predicate.h>

Types

typedef FP::result_type result_type; The return type of the function operators. It must also be
the same type as EP::result_type.

Creation

Filtered_predicate<EP, FP, C2E, C2F> fo; Default constructor.

Operations

template <class A1>
result_type fo.operator()( Al al)  The unary function operator for unary predicates.

template <class Al, class A2>
result_type fo.operator()( Al al, A2 a2)

The binary function operator for binary predicates.

Similar function operators are defined for up to 7 arguments.

Example

The following example defines an efficient and exact version of the orientation predicate over three points
using the Cartesian representation with double coordinates and without reference counting (Simple_cartesian<
double>::Point_2). Of course, the orientation predicate can already be found in the kernel, but you can follow
this example to filter your own predicates. It uses the fast but inexact predicate based on interval arithmetic for
filtering and the slow but exact predicate based on multi-precision floats when the filtering predicate fails.
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(#include <CGAL/Simple_cartesian.h>
#include <CGAL/Filtered_predicate.h>
#include <CGAL/MP_Float.h>

#include <CGAL/Cartesian_converter.h>

typedef CGAL: :Simple_ cartesian<double> K;

typedef CGAL: :Simple_cartesian<CGAL: :Interval_nt_advanced> FK;
typedef CGAL: :Simple_cartesian<CGAL: :MP_Float> EK;

typedef CGAL: :Cartesian_converter<K, EK> C2E;

typedef CGAL: :Cartesian_converter<K, FK> C2F;

// Define my predicate, parameterized by a kernel.
template < typename K >
struct My_orientation_2
{
typedef typename K::RT RT;
typedef typename K::Point_ 2 Point_2;

typedef typename K::Orientation result_type;
result_type

operator () (const Point_2 &p, const Point_2 &q, const Point_2 &r)

{

RT prx = p.x() - r.x();
RT pry = p.y() - r.y();
RT gqrx = gq.x() - r.x();

RT qry = q.y() - r.y();
return CGAL: :sign( prx*gry — Jqrxxpry );
}
};

typedef CGAL::Filtered predicate<My_ orientation_ 2<EK>,
My_orientation_2<FK>, C2E, C2F>
Orientation_2;

int main()

{
K::Point_2 p(1,2), gq(2,3), r(3,4);
Orientation_2 orientation;
orientation(p, q, r);
return 0;

const

File: examples/Filtered_kernel/Filtered_predicate.cpp

596




CGAL::Homogeneous<RingNumberType>

#include <CGAL/Homogeneous.h>

Definition

A model for a Kernel using homogeneous coordinates to represent the geometric objects. In order for Homoge-
neous<RingNumberType> to model Euclidean geometry in E? and/or E3, for some mathematical ring E (e.g.,
the integers Z or the rationals QQ), the template parameter RingNumberType must model the mathematical ring
E. That is, the ring operations on this number type must compute the mathematically correct results. If the

number type provided as a model for RingNumberType is only an approximation of a ring (such as the built-in
type double), then the geometry provided by the kernel is only an approximation of Euclidean geometry.

Is Model for the Concepts

Types

typedef Quotient<RingNumberType>  FT;
typedef RingNumberType RT;

Implementation

This model of a kernel uses reference counting.

See Also

CGAL::Cartesian<FieldNumberType> ... ...... ... e page 588
CGAL::Simple_cartesian<FieldNumberType> . ... .. ...ttt page 602
CGAL::Simple_homogeneous<RINGNumberTYPe> .. ... ... page 603
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Class

CGAL::Homogeneous_converter<K1, K2, RTConverter, FTConverter>

Definition
Homogeneous_converter<Kl1, K2, RTConverter, FTConverter>converts objects from the kernel traits K/ to the
kernel traits K2. Those traits must be of the form Homogeneous<RT1> and Homogeneous<RT2> (or the equiv-

alent with Simple_homogeneous). It then provides the following operators to convert objects from K/ to K2.

The third template parameter RT_Converter is a function object that must provide K2::RT operator()(const
KI1::RT &n); that converts n to an K2::RT that has the same value.

The default value of this parameter is CGAL::NT_converter<KI1::RT, K2::RT>, which uses the conversion op-
erator from K1::RT to K2::RT.

Similarly, the fourth template parameter must provide K2::FT operator()(const K1::FT &n); that converts n to
an K2::FT that has the same value. Its default value is CGAL::NT_converter<KI::FT, K2::FT>.

#include <CGAL/Homogeneous_converter.h>

Creation

Homogeneous_converter<K1, K2, RTConverter, FTConverter> conv;

Default constructor.

Operations

K2::Point_2 conv.operator()( K1::Point_2 p)

returns a K2::Point_2 which coordinates are those of p,
converted by RTConverter.

Similar operators are defined for the other kernel traits geometric types Point_3, Vector_2...

See Also
CGAL::Homogeneous<RINgGNUMbBerTyPe> . ... ...t page 1070
CGAL::Simple_homogeneous<RingNumberType> . . ......... .. o e page 603
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CGAL::homogeneous_to_cartesian

#include <CGAL/cartesian_homogeneous_conversion.h>

Point_2< Cartesian<FT> > homogeneous_to_cartesian( Point_2< Homogeneous<FT> > hp)

converts 2d point p with homogeneous representation into a
2d point with Cartesian representation with the same number

type.

Point_3< Cartesian<FT> > homogeneous_to_cartesian( Point_3< Homogeneous<FT> > hp)

converts 3d point #p with homogeneous representation into a
3d point with Cartesian representation with the same number

type.

See Also

See Also

CGAL::Cartesian<FieldNumberType> . ... ........ .ot page 588
CGAL::Cartesian_converter<KI, K2, NTCONVETIEr> .. ...ttt page 589
CGAL::cartesian_to_ROMOZENEOUS . . . ..o vttt et ettt e et e page 591
CGAL::Homogeneous<RINngNUmMberTyPe> ... ...ttt page 1070
CGAL::Homogeneous_converter<KI, K2, RTConverter, FTConverter>.................c.couuuuun... page 598
CGAL::homogeneous_to_qUOTIENt _CATTESIAMN . . . . ... ..o uu ettt ettt page 600
CGAL::quotient_cartesian_toO_NOMOZENEOUS . . . .. ...vuu ettt ettt e e page 764
CGAL::Simple_cartesian<FieldNumberTyPe> . .... ...t page 602
CGAL::Simple_homogeneous<RINgNumberTYPe> . ... ...t page 603
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Function

CGAL::homogeneous_to_quotient_cartesian

#include <CGAL/cartesian_homogeneous_conversion.h>

Point_2< Cartesian<Quotient<RT> > >

homogeneous_to_quotient_cartesian( Point_2<Homogeneous<RT> > hp)

converts the 2d point Ap with homogeneous representa-
tion with number type RT into a 2d point with Cartesian
representation with number type Quotient<RT>.

Point_3< Cartesian<Quotient<RT> > >

homogeneous_to_quotient_cartesian( Point_3<Homogeneous<RT> > hp)

converts the 3d point hp with homogeneous representa-
tion with number type RT into a 3d point with Cartesian
representation with number type Quotient<RT>.

See Also

CGAL::Cartesian<FieldNumberType> ... ......... . page 588
CGAL::Cartesian_converter<KI, K2, NTCONVErter> ............uuuuuue i page 589
CGAL::cartesian_to_ROMOZENEOUS . . . ..o vttt ettt e ettt et page 591
CGAL::Homogeneous<RINgNUMbBerTyPe> . ... ...t page 1070
CGAL::Homogeneous_converter<KI, K2, RTConverter, FTConverter>.................c.ccuuuuun... page 598
CGAL::homMOZeneous_tO_CATLESIAN . . ... .......uuui ittt e e e page 599
CGAL::quotient_cartesian_to_NOMOZENEOUS . . . .. ........uuuuu ettt page 764
CGAL::Simple_cartesian<FieldNumberTyPe> . ..... ...ttt page 602
CGAL::Simple_homogeneous<RINgGNumberTYPe> . ... ... page 603
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CGAL::Kernel_traits<T>

#include <CGAL/Kernel_traits.h>

Definition

The class Kernel _traits<T> provides access to the kernel model to which the argument type 7 belongs. (Provided
T belongs to some kernel model.) The default implementation assumes there is a local type T::Kernel referring
to the kernel model of 7. If this type does not exist, a specialization of Kernel_traits<T> can be used to provide
the desired information.

This class is, for example, useful in the following context. Assume you want to write a generic function that
accepts two points p and g as argument and constructs the line segment between p and g. In order to specify
the return type of this function, you need to know what is the segment type corresponding to the Point type
representing p and g. Using Kernel_traits<T>, this can be done as follows.

template < class Point >
typename Kernel traits<Point>::Kernel::Segment
construct_segment (Point p, Point q)

{ ...}

Types

typedef T::R Kernel; If T is atype K::Point_2 of some kernel model K, then Kernel
is equal to K.

601




Class

CGAL::Simple_cartesian<FieldNumberType>
#include <CGAL/Simple_cartesian.h>

Definition

A model for a Kernel using Cartesian coordinates to represent the geometric objects. In order for Simple_
cartesian<FieldNumberType> to model Euclidean geometry in E? and/or E3, for some mathematical field £
(e.g., the rationals Q or the reals R), the template parameter FieldNumberType must model the mathematical
field E. That is, the field operations on this number type must compute the mathematically correct results. If the
number type provided as a model for FieldNumberType is only an approximation of a field (such as the built-in
type double), then the geometry provided by the kernel is only an approximation of Euclidean geometry.

Is Model for the Concepts

Types

typedef FieldNumberType

FT;
typedef FieldNumberType

RT;

Implementation

In contrast to Cartesian, no reference counting is used internally. This eases debugging, but may slow down
algorithms that copy objects intensively.

See Also

CGAL::Cartesian<FieldNumberType> ... .......... ot page 588
CGAL::Homogeneous<RiNgGNUMbBerTyPe> ... .. ...ttt et eiiie e page 1070
CGAL::Simple_homogeneous<RINGNumberTYPe> . ... ... oot page 603
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CGAL::Simple_homogeneous<RingNumberType>

#include <CGAL/Simple_homogeneous.h>

Definition

A model for a Kernel using homogeneous coordinates to represent the geometric objects. In order for Simple_
homogeneous<RingNumberType> to model Euclidean geometry in E2 and/or E3, for some mathematical ring E
(e.g., the integers Z or the rationals Q), the template parameter RingNumberType must model the mathematical
ring E. That is, the ring operations on this number type must compute the mathematically correct results. If the
number type provided as a model for RingNumberType is only an approximation of a ring (such as the built-in
type double), then the geometry provided by the kernel is only an approximation of Euclidean geometry.

Is Model for the Concepts

Types
typedef Quotient<RingNumberType>  FT;
typedef RingNumberType RT;

Implementation

In contrast to Homogeneous, no reference counting is used internally. This eases debugging, but may slow down
algorithms that copy objects intensively, or slightly speed up others.

See Also

CGAL::Cartesian<FieldNumberType> . ........... .ot page 588
CGAL::Homogeneous<RiNgGNUMbBerTyPe> .. .. ...ttt eiiiee e page 1070
CGAL::Simple_cartesian<FieldNumberType> . ........ .ot page 602
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Class

CGAL::Projection_traits_xy_3<K>

Definition

The class Projection_traits_xy_3<K> is an adapter to apply 2D algorithms to the projections of 3D data on the
xy-plane.

CGAL provides also predefined geometric traits classes Projection_traits_yz_3<K> and Projection_traits_xz_3<
K> to deal with projections on the zx- and the zy-plane, respectively.

Parameters

The template parameter K has to be instantiated by a model of the Kernel concept. Projection_traits_xy_3<K>
uses types and predicates defined in K.

#include <CGAL/Projection_traits_xy_3.h>

Is Model for the Concepts

The class is a model of several 2D triangulation traits class concepts, except that it does not provide the
type and constructors required to build the dual Voronoi diagram. The class is also a model of the concepts
PolygonTraits_2 and ConvexHullTraits_2.

TriangulationTraits_2 . . .. ... e page 2541
DelaunayTriangulationTraits 2. ... ... ...ttt page 2513
ConstrainedTriangulationTraits 2 . . ... ...ttt et page 2495
POLYZONTIAILS 2 . . oottt e ettt et e e e e e e page 1470
ConVexXHUIITIAILS L2 . ..ottt et e e e e e et e e et e page 1381
Types

typedef Point_3<K> Point_2;

typedef Segment_3<K> Segment_2;
typedef Triangle_3<K> Triangle_2;
typedef Line_3<K> Line_2;

typedef K::Object_3 Object_2;

The functors provided by this class are those listed in the concepts, except that it does not provide the type and
constructors required to build the dual Voronoi diagram. The functors operate on the 2D projection of their
arguments. They come with preconditions that projections of the arguments are non-degenerate, eg. a line
segment does not project on a single point, two points do not project on the same point, etc.

In the following, we specify the choice of the z-coordinate in case a new point is constructed.
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Projection_traits_xy_3<K>:: Intersect_2

A construction object. Provides the operator :

Object_2 operator()(Segment_2 sl, Segment_2 s2); which returns a 3D object whose
projection on the xy-plane is the intersection of the projections of s/ and s2. If non
empty, the returned object is either a segment or a point. Its embedding in 3D is
computed as the interpolation between s/ and s2, meaning that any point p of the
returned object is the midpoint of segment pIp2 where pl and p2 are the two points
of s1 and s2 respectively, both projecting on p.

Precondition: The projection of s/ and the projection of s2 are non-degenerate 2D
segments.

Creation

Projection_traits_xy_3<K> traits;

default constructor.

Projection_traits_xy_3<K> traits( Projection_traits_xy_3 tr);

Copy constructor.

Projection_traits_xy_3 traits.operator=( Projection_traits_xy_3 tr)

Assignment operator.
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Class

11.10 Predefined Kernels

CGAL::Exact_predicates_exact_constructions_kernel

Definition

A typedef to a kernel which has the following properties:

e It uses Cartesian representation.
e It supports constructions of points from double Cartesian coordinates.

e It provides both exact geometric predicates and exact geometric constructions.

#include <CGAL/Exact_predicates_exact_constructions_kernel.h>

Is Model for the Concepts

Kernel

See Also

CGAL::Exact_predicates_exact_constructions_kernel_with_sqrt
CGAL::Exact_predicates_inexact_constructions_kernel
CGAL::Cartesian
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CGAL::Exact_predicates_exact_constructions_kernel_with_sqrt

Definition

A typedef to a kernel which has the following properties:

It uses Cartesian representation.

It supports constructions of points from double Cartesian coordinates.

It provides both exact geometric predicates and exact geometric constructions.

Its FT nested type supports the square root operation sqr().

Note that it requires CORE or LEDA installed.

#tinclude <CGAL/Exact_predicates_exact_constructions_kernel_with_sqrt.h>

Is Model for the Concepts

Kernel

See Also
CGAL::Exact_predicates_exact_constructions_kernel

CGAL::Exact_predicates_inexact_constructions_kernel
CGAL::Cartesian
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Class

CGAL::Exact_predicates_inexact_constructions_kernel

Definition

A typedef to a kernel which has the following properties:

e [t uses Cartesian representation.
e It supports constructions of points from double Cartesian coordinates.

e It provides exact geometric predicates, but inexact geometric constructions.

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

Is Model for the Concepts

Kernel

See Also
CGAL::Exact_predicates_exact_constructions_kernel

CGAL::Exact_predicates_exact_constructions_kernel_with_sqrt
CGAL::Cartesian
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11.11 Kernel Objects

11.11.1 Two-dimensional Objects

CGAL::Aff_transformation_2<Kernel>

Definition

The class Aff_transformation_2<Kernel> represents two-dimensional affine transformations. The general form
of an affine transformation is based on a homogeneous representation of points. Thereby all transformations
can be realized by matrix multiplications.

Multiplying the transformation matrix by a scalar does not change the represented transformation. Therefore,
any transformation represented by a matrix with rational entries can be represented by a transformation matrix
with integer entries as well. (Multiply the matrix with the common denominator of the rational entries.) Hence,
it is sufficient to use the number type Kernel::RT to represent the entries of the transformation matrix.

CGAL offers several specialized affine transformations. Different constructors are provided to create them. They
are parameterized with a symbolic name to denote the transformation type, followed by additional parameters.

The symbolic name tags solve ambiguities in the function overloading and they make the code more readable,
i.e., what type of transformation is created.

Since two-dimensional points have three homogeneous coordinates, we have a 3 x 3 matrix (m; j)i.jzo.“z'
If the homogeneous representations are normalized (the homogenizing coordinate is 1), then the upper left 2 x 2
matrix realizes linear transformations. In the matrix form of a translation, the translation vector (v, v, 1)

appears in the last column of the matrix. The entries myo and my; are always zero and therefore do not appear
in the constructors.

Creation

Aff_transformation_2<Kernel> t( Identity_transformation);

introduces an identity transformation.

Aff_transformation_2<Kernel> t( const Translation, Vector_2<Kernel> v);

introduces a translation by a vector v.

Aff_transformation_2<Kernel> t( const Rotation,
Direction_2<Kernel> d,
Kernel::RT num,
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Kernel::RT den = RT(1))

Aff_transformation_2<Kernel> t( const Rotation,
Kernel::RT sine_rho,
Kernel::RT cosine_rho,
Kernel::RT hw = RT(1))

approximates the rotation over the angle indicated by di-
rection d, such that the differences between the sines and
cosines of the rotation given by d and the approximating
rotation are at most num/den each.

Precondition: num/den > 0 and d! = 0.

introduces a rotation by the angle rho.
Precondition: sine_rho* + cosine_rho* == hw?.

Aff_transformation_2<Kernel> t( const Scaling, Kernel::RT s, Kernel::RT hw = RT(1));

Aff_transformation_2<Kernel> t( Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::
Kernel::

Aff_transformation_2<Kernel> t( Kernel::
Kernel::
Kernel:
Kernel::
Kernel::

RT m00,
RT m0O1,
RT m02,
RT ml10,
RT mll,
RT mli2,

introduces a scaling by a scale factor s/hw.

RT hw = RT(1))

RT m00,
RT mO1,

RTmlO,

RT mlil,

introduces a general affine transformation in the 3 x
moo  Mo1 Mo

3 matrix form myg my; myy |. The sub-matrix
0 0 hw

1 moo  mo
hw\ myg mn

mation, the vector ﬁ ( ZOZ ) contains the translational
12

) contains the scaling and rotation infor-

part of the transformation.

RT hw = RT(1))

introduces a general linear  transformation

0 0 hw
part.

moo mop 0
myg my;p O , 1l.e. there is no translational
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Operations

The main thing to do with transformations is to apply them on geometric objects. Each class Class_2<Kernel>
representing a geometric object has a member function:

Class_2<Kernel> transform(Aff_transformation_2<Kernel> t).

The transformation classes provide a member function transform() for points, vectors, directions, and lines:

Point_2<Kernel> t.transform( Point_2<Kernel> p) const
Vector_2<Kernel> t.transform( Vector_2<Kernel> p) const
Direction_2<Kernel> t.transform( Direction_2<Kernel> p) const
Line_2<Kernel> t.transform( Line_2<Kernel> p) const

CGAL provides function operators for these member functions:

Point_2<Kernel> t.operator()( Point_2<Kernel> p) const
Vector_2<Kernel> t.operator()( Vector_2<Kernel> p) const
Direction_2<Kernel> t.operator()( Direction_2<Kernel> p) const
Line_2<Kernel> t.operator()( Line_2<Kernel> p) const
Miscellaneous

Aff_transformation_2<Kernel>

t.operator®( s) const composes two affine transformations.

Aff_transformation_2<Kernel>

t.inverse() const gives the inverse transformation.
bool t.is_even() const returns true, if the transformation is not reflecting, i.e. the
determinant of the involved linear transformation is non-
negative.
bool t.is_odd() const returns true, if the transformation is reflecting.

The matrix entries of a matrix representation of a Aff_transformation_2<Kernel> can be accessed trough the
following member functions:

Kernel::FT t.cartesian( int i, int j) const

Kernel::FT t.m( int i, int j) const returns entry m;; in a matrix representation in which mj,
is 1.

Kernel::RT t.homogeneous( int i, int j) const

Kernel::RT t.hm( int i, int j) const  returns entry m;; in some fixed matrix representation.

For affine transformations no I/O operators are defined.
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See Also

Identity_transformation, Rotation, Scaling, Translation
rational_rotation_approximation

Example
typedef Cartesian<double> K;
typedef Aff_transformation_2<K> Transformation;
typedef Point_2<K> Point;
typedef Vector_ 2<K> Vector;
typedef Direction_2<K> Direction;

Transformation rotate (ROTATION, sin(pi), cos(pi));
Transformation rational_rotate (ROTATION,Direction(1,1), 1, 100);
Transformation translate (TRANSLATION, Vector(—2, 0));
Transformation scale (SCALING, 3);

Point g(0, 1);

q=

rational_rotate(q);

Point p(1, 1);

o
I

rotate(p);

translate(p);

scale(p);

The same would have been achieved with

Transformation transform = scale % (translate * rotate);

p = transform(Point (1.0, 1.0));

See Also

CGAL::Aff _transformation_3<Kernel> ... ...... ... .. e e page 641
CGAL::1dentity_transformation . ........... ..ottt page 686
CGAL:IREfleCtion . . .. ..o e e e e e page 686
CGAL:IROTATION . . oo ettt e e e et e e et e et et e e e et e e e et e e ee s page 687
CGAL::SCALING . . ..o oot e e et e e e page 687
CGAL::Translation . ............. ..o e et page 688

612



CGAL::Bbox 2
#include <CGAL/Bbox_2.h>

Definition
An object b of the class Bbox_2 is a bounding box in the two-dimensional Euclidean plane E2. This class is not

templated.

Creation

Bbox_2 b( double x_min, double y_min, double x_max, double y_max);

introduces a bounding box b with lower left corner at
(xmin, ymin) and with upper right corner at (xmax, ymax).

Operations
bool b.operator==( c) const
Test for equality.
bool b.operator!=( q) const
Test for inequality.
int b.dimension() const Returns 2.
double b.xmin() const
double b.ymin() const
double b.xmax() const
double b.ymax() const
double b.min( int i) const Returns xmin() if i==0 or ymin() if i==1.
Precondition: i==0 or i==
double b.max( int i) const Returns xmax() if i==0 or ymax() if i==1.
Precondition: i==0 or i==
Bbox_2 b.operator+( c) const  returns a bounding box of b and c.
See Also
CGAL::BDOX_3 . . oo oo e e e et e e e page 639
CGAL::do_0Verlap . . . ... e e e e e e page 732
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Class

CGAL::Circle_2<Kernel>

Definition

An object of type Circle_2<Kernel> is a circle in the two-dimensional Euclidean plane E. The circle is oriented,
i.e. its boundary has clockwise or counterclockwise orientation. The boundary splits E? into a positive and a
negative side, where the positive side is to the left of the boundary. The boundary also splits E? into a bounded
and an unbounded side. Note that the circle can be degenerated, i.e. the squared radius may be zero.

Creation

Circle_2<Kernel> c¢( Point_2<Kernel> center,

Kernel::FT squared_radius,
Orientation ori = COUNTERCLOCKWISE)

introduces a variable ¢ of type Circle_2<Kernel>. 1t is
initialized to the circle with center center, squared radius
squared_radius and orientation ori.

Precondition: ori # COLLINEAR, and further, squared_
radius > 0.

Circle_2<Kernel> c( Point_2<Kernel> p, Point_2<Kernel> g, Point_2<Kernel> r);

introduces a variable ¢ of type Circle_2<Kernel>. 1t is
initialized to the unique circle which passes through the
points p, g and r. The orientation of the circle is the ori-
entation of the point triple p, g, r.

Precondition: p, g, and r are not collinear.

Circle_2<Kernel> c( Point_2<Kernel> p, Point_2<Kernel> g, Orientation ori = COUNTERCLOCKWISE);

introduces a variable ¢ of type Circle_2<Kernel>. It is
initialized to the circle with diameter pq and orientation
ori.

Precondition: ori # COLLINEAR.

Circle_2<Kernel> c( Point_2<Kernel> center, Orientation ori = COUNTERCLOCKWISE);

Access Functions

Point_2<Kernel>

c.center() const

introduces a variable ¢ of type Circle_2<Kernel>. It is
initialized to the circle with center center, squared radius
zero and orientation ori.

Precondition: ori # COLLINEAR.

Postcondition: c.is_degenerate() = true.

returns the center of c.
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Kernel::FT

Orientation

bool operator

bool operator

Predicates

bool

Oriented_side

Bounded_side

bool
bool
bool
bool
bool

Miscellaneous

Circle_2<Kernel>

Circle_2<Kernel>

c.squared_radius() const

returns the squared radius of c.

c.orientation() const returns the orientation of c.

c.==( circle2) const returns true, iff ¢ and circle2 are equal, i.e. if they have
the same center, same squared radius and same orienta-
tion.

c.!=( circle2) const returns true, iff ¢ and circle2 are not equal.

c.is_degenerate() const

returns frue, iff c is degenerate, i.e. if ¢ has squared radius
ZEero.

c.oriented_side( Point_2<Kernel> p) const

returns  either the constant ON_ORIENTED_
BOUNDARY, ON_POSITIVE _SIDE, or ON_
NEGATIVE _SIDE, iff p lies on the boundary, properly
on the positive side, or properly on the negative side of c,
resp.

c.bounded_side( Point_2<Kernel> p) const

returns ON_BOUNDED_SIDE, ON_BOUNDARY, or
ON_UNBOUNDED _SIDE iff p lies properly inside, on
the boundary, or properly outside of ¢, resp.

c.has_on_positive_side( Point_2<Kernel> p) const
c.has_on_negative_side( Point_2<Kernel> p) const
c.has_on_boundary( Point_2<Kernel> p) const
c.has_on_bounded_side( Point_2<Kernel> p) const
c.has_on_unbounded_side( Point_2<Kernel> p) const

c.opposite() const returns the circle with the same center and squared radius

as ¢ but with opposite orientation.

c.orthogonal_transform( Aff_transformation_2<Kernel> at) const

returns the circle obtained by applying at on c.
Precondition: at is an orthogonal transformation.
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Bbox_2 c.bbox() const returns a bounding box containing c.

See Also

KerneliCircle_2 . ... e page 783
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CGAL::Direction_2<Kernel>

Definition

An object of the class Direction_2<Kernel> is a vector in the two-dimensional vector space R? where we forget
about its length. They can be viewed as unit vectors, although there is no normalization internally, since this is
error prone. Directions are used whenever the length of a vector does not matter. They also characterize a set of
parallel oriented lines that have the same orientations. For example, you can ask for the direction orthogonal to
an oriented plane, or the direction of an oriented line. Further, they can be used to indicate angles. The slope of
a direction is dy()/dx().

Creation

Direction_2<Kernel> d( Vector_2<Kernel> v); introduces the direction d of vector v.
Direction_2<Kernel> d( Line_2<Kernel> l); introduces the direction d of line /.
Direction_2<Kernel> d( Ray_2<Kernel> r); introduces the direction d of ray r.
Direction_2<Kernel> d( Segment_2<Kernel> s); introduces the direction d of segment s.

Direction_2<Kernel> d( Kernel::RT x, Kernel::RT y);

introduces a direction d passing through the origin and
the point with Cartesian coordinates (x,y).

Operations

Kernel::RT d.delta( int i) const returns values, such that d== Direction_2<Kernel>
(delta(0),delta(1)).
Precondition: : 0 <i<1.

Kernel::RT d.dx() const returns delta(0).

Kernel::RT d.dy() const returns delta(1).

There is a total order on directions. We compare the angles between the positive x-axis and the directions in
counterclockwise order.

bool d.operator==( e) const
bool d.operator!=( e) const
bool d.operator<( e) const
bool d.operator>( e) const
bool d.operator<=( e) const
bool d.operator>=( e) const
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Furthermore, we have

bool

Direction_2<Kernel>

Miscellaneous

Vector_2<Kernel>

Direction_2<Kernel>

See Also

Kernel::Direction_2 . . ..

d.counterclockwise_in_between( dl, d2) const
returns true, iff d is not equal to d/, and while rotating
counterclockwise starting at d1, d is reached strictly be-

fore d2 is reached. Note that true is returned if d/ ==
d2, unless also d == d1.

d.operator-() const The direction opposite to d.

d.vector() const returns a vector that has the same direction as d.

d.transform( Aff_transformation_2<Kernel> t) const

returns the direction obtained by applying ¢ on d.

...................................................................... page 785
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CGAL::Iso_rectangle_2<Kernel>

Definition

An object s of the data type Iso_rectangle_2<Kernel> is a rectangle in the Euclidean plane E? with sides parallel
to the x and y axis of the coordinate system.

Although they are represented in a canonical form by only two vertices, namely the lower left and the up-
per right vertex, we provide functions for “accessing” the other vertices as well. The vertices are returned in
counterclockwise order.

Iso-oriented rectangles and bounding boxes are quite similar. The difference however is that bounding boxes
have always double coordinates, whereas the coordinate type of an iso-oriented rectangle is chosen by the user.

Creation

Iso_rectangle_2<Kernel> r( Point_2<Kernel> p, Point_2<Kernel> q);

introduces an iso-oriented rectangle r with diagonal op-
posite vertices p and g. Note that the object is brought in
the canonical form.

Iso_rectangle_2<Kernel> r( Point_2<Kernel> p, Point_2<Kernel> q, int);

introduces an iso-oriented rectangle r with diagonal op-
posite vertices p and g. The int argument value is only
used to distinguish the two overloaded functions.
Precondition: p.x() <= q.x() and p.y() <= ¢.y().

Iso_rectangle_2<Kernel> r( Point_2<Kernel> left,
Point_2<Kernel> right,
Point_2<Kernel> bottom,
Point_2<Kernel> top)

introduces an iso-oriented rectangle r whose minimal x
coordinate is the one of left, the maximal x coordinate is
the one of right, the minimal y coordinate is the one of
bottom, the maximal y coordinate is the one of fop.

Iso_rectangle_2<Kernel> r( Kernel::RT min_hx,
Kernel::RT min_hy,
Kernel::RT max_hx,
Kernel::RT max_hy,
Kernel::RT hw = RT(1))

introduces an iso-oriented rectangle » with diagonal op-
posite vertices (min_hx/hw, min_hy/hw) and (max_hx/hw,
max_hy/hw).

Precondition: hw # 0.
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Operations

bool

bool

Point_2<Kernel>

Point_2<Kernel>

Point_2<Kernel>

Point_2<Kernel>

Kernel::FT
Kernel::FT
Kernel::FT
Kernel::FT

Kernel::FT

Kernel::FT

Predicates

bool

r.operator==( r2) const

r.operator!=( r2) const

r.vertex( int i) const

r.operator[ ]( int i) const

r.min() const

r.max() const

r.xmin() const
r.ymin() const
r.xmax() const
r.ymax() const

r.min_coord( int i) const

r.max_coord( int i) const

r.is_degenerate() const

Test for equality: two iso-oriented rectangles are equal,
iff their lower left and their upper right vertices are equal.

Test for inequality.

returns the i’th vertex modulo 4 of r in counterclockwise
order, starting with the lower left vertex.

returns vertex(i).

returns the lower left vertex of r (= vertex(0)).

returns the upper right vertex of r (= vertex(2)).

returns the x coordinate of lower left vertex of r.
returns the y coordinate of lower left vertex of r.
returns the x coordinate of upper right vertex of r.
returns the y coordinate of upper right vertex of r.

returns the i’th Cartesian coordinate of the lower left ver-
tex of r.
Precondition: 0 <i<1.

returns the i’th Cartesian coordinate of the upper right
vertex of r.
Precondition: 0 <i<1.

r is degenerate, if all vertices are collinear.
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Bounded _side

bool
bool
bool

Miscellaneous

Kernel::FT

Bbox

Iso_rectangle_2<Kernel>

See Also

Kernel::IsoRectangle_2. . .

r.bounded_side( Point_2<Kernel> p) const

returns either ON_UNBOUNDED_SIDE, ON_
BOUNDED_SIDE, or the constant ON_BOUNDARY,
depending on where point p is.

r.has_on_boundary( Point_2<Kernel> p) const
r.has_on_bounded_side( Point_2<Kernel> p) const
r.has_on_unbounded_side( Point_2<Kernel> p) const

r.area() const returns the area of r.

r.bbox() const returns a bounding box containing r.

r.transform( Aff_transformation_2<Kernel> t) const

returns the iso-oriented rectangle obtained by applying ¢
on the lower left and the upper right corner of r.
Precondition: The angle at a rotation must be a multiple
of m/2, otherwise the resulting rectangle does not have
the same side length. Note that rotating about an arbi-
trary angle can even result in a degenerate iso-oriented
rectangle.
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Class

CGAL::Line_2<Kernel>

Definition

An object [ of the data type Line_2<Kernel> is a directed straight line in the two-dimensional Euclidean plane
2. Tt is defined by the set of points with Cartesian coordinates (x,y) that satisfy the equation

l:ax+by+c=0.

The line splits [E? in a positive and a negative side. A point p with Cartesian coordinates (px, py) is on the
positive side of [, iff a px+ b py+ ¢ > 0, it is on the negative side of /, iff a px + b py + ¢ < 0. The positive side
is to the left of /.

Creation

Line_2<Kernel> I( Kernel::RT a, Kernel::RT b, Kernel::RT c);
introduces a line [ with the line equation in Cartesian co-
ordinates ax+by+c = 0.

Line_2<Kernel> I( Point_2<Kernel> p, Point_2<Kernel> q);
introduces a line [ passing through the points p and gq.
Line [ is directed from p to q.

Line_2<Kernel> I( Point_2<Kernel> p, Direction_2<Kernel> d);

introduces a line / passing through point p with direction
d.

Line_2<Kernel> l( Point_2<Kernel> p, Vector_2<Kernel> v);
introduces a line / passing through point p and oriented

by v.

Line_2<Kernel> I( Segment_2<Kernel> s); introduces a line / supporting the segment s, oriented
from source to target.

Line_2<Kernel> I( Ray_2<Kernel> r); introduces a line [ supporting the ray r, with same orien-
tation.

Operations

bool l.operator==( h) const Test for equality: two lines are equal, iff they have a

non empty intersection and the same direction.
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bool l.operator!=( h) const Test for inequality.

Kernel::RT La() const returns the first coefficient of .

Kernel::RT L.b() const returns the second coefficient of /.

Kernel::RT L.c() const returns the third coefficient of /.

Point_2<Kernel> l.point( int i) const returns an arbitrary point on /. It holds point(i) ==

point(j), iff i==j. Furthermore, [ is directed from
point(i) to point(j), for all i < j.

Point_2<Kernel> l.projection( Point_2<Kernel> p) const

returns the orthogonal projection of p onto /.

Kernel::FT Lx_at_y( Kernel::FTy) const
returns the x-coordinate of the point at / with given
y-coordinate.
Precondition: 1 is not horizontal.

Kernel::FT Ly_at_x( Kernel::FT x) const
returns the y-coordinate of the point at / with given
x-coordinate.
Precondition: 1 is not vertical.

Predicates

bool Lis_degenerate() const line / is degenerate, if the coefficients a and b of the
line equation are zero.

bool Lis_horizontal() const

bool Lis_vertical() const

Oriented_side Loriented_side( Point_2<Kernel> p) const

returns ON_ORIENTED_BOUNDARY , ON_
NEGATIVE_SIDE, or the constant ON_POSITIVE_
SIDE, depending on the position of p relative to the
oriented line /.

For convenience we provide the following Boolean functions:

bool Lhas_on( Point_2<Kernel> p) const
bool Lhas_on_positive_side( Point_2<Kernel> p) const
bool Lhas_on_negative_side( Point_2<Kernel> p) const
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Miscellaneous

Vector_2<Kernel>

Direction_2<Kernel>

Line_2<Kernel>

Line_2<Kernel>

Line_2<Kernel>

Example

Lto_vector() const returns a vector having the direction of /.
Ldirection() const returns the direction of /.
l.opposite() const returns the line with opposite direction.

l.perpendicular( Point_2<Kernel> p) const
returns the line perpendicular to / and passing

through p, where the direction is the direction of /
rotated counterclockwise by 90 degrees.

L.transform( Aff_transformation_2<Kernel> t) const

returns the line obtained by applying ¢ on a point on
[ and the direction of /.

Let us first define two Cartesian two-dimensional points in the Euclidean plane E>. Their dimension and the
fact that they are Cartesian is expressed by the suffix _2 and the representation type Cartesian.

Point_2< Cartesian<double> > p(1.0,1.0), g(4.0,7.0);

To define a line / we write:

Line_2< Cartesian<double> > 1l(p,q);

See Also

Kernel::Line 2 ........
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CGAL::Point_2<Kernel>

Definition
An object of the class Point_2<Kernel> is a point in the two-dimensional Euclidean plane E2.
Remember that Kernel::RT and Kernel::FT denote a RingNumberType and a FieldNumberType, respectively.

For the kernel model Cartesian<T>, the two types are the same. For the kernel model Homogeneous<T>,
Kernel::RT is equal to T, and Kernel::FT is equal to Quotient<T>.

Types

Point_2<Kernel>:: Cartesian_const_iterator

An iterator for enumerating the Cartesian coordinates of a point.

Creation

Point_2<Kernel> p( Origin ORIGIN),

introduces a variable p with Cartesian coordinates (0,0).

Point_2<Kernel> p( int x, int y); introduces a point p initialized to (x,y).

Point_2<Kernel> p( double x, double y);

introduces a point p initialized to (x,y) provided RT supports construction
from double.

Point_2<Kernel> p( Kernel::RT hx, Kernel::RT hy, Kernel::RT hw = RT(1));
introduces a point p initialized to (hx/hw,hy/hw).
Precondition: hw # Kernel::RT(0)
Point_2<Kernel> p( Kernel::FT x, Kernel::FTy);

introduces a point p initialized to (x,y).

Operations

bool p.operator==( q) const

Test for equality. Two points are equal, iff their x and y coordinates are
equal. The point can be compared with ORIGIN.
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bool p.operator!=( q) const
Test for inequality. The point can be compared with ORIGIN.

There are two sets of coordinate access functions, namely to the homogeneous and to the Cartesian coordinates.
They can be used independently from the chosen kernel model.

Kernel::RT p.hx() const

returns the homogeneous x coordinate.

Kernel::RT p.hy() const

returns the homogeneous y coordinate.

Kernel::RT p.hw() const
returns the homogenizing coordinate.

Note that you do not loose information with the homogeneous representation, because the FieldNumberType is
a quotient.

Kernel::FT p.x() const

returns the Cartesian x coordinate, that is Ax/hw.

Kernel::FT p.y() const
returns the Cartesian y coordinate, that is hy/hw.

The following operations are for convenience and for compatibility with higher dimensional points. Again they
come in a Cartesian and in a homogeneous flavor.

Kernel::RT p.homogeneous( int i) const
returns the i’th homogeneous coordinate of p, starting with 0.
Precondition: 0 <i<?2.

Kernel::FT p.cartesian( int i) const
returns the i’th Cartesian coordinate of p, starting with 0.
Precondition: 0 <i<1.

Kernel::FT p.operator[ ]( int i) const
returns cartesian(i).
Precondition: 0 <i< 1.

Cartesian_const_iterator  p.cartesian_begin() const

returns an iterator to the Cartesian coordinates of p, starting with the Oth
coordinate.
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Cartesian_const_iterator

int

Bbox_2

Point_2<Kernel>

Operators

p.cartesian_end() const

returns an off the end iterator to the Cartesian coordinates of p.

p.dimension() const

returns the dimension (the constant 2).

p.bbox() const
returns a bounding box containing p. Note that bounding boxes are not
parameterized with whatsoever.

p-transform( Aff_transformation_2<Kernel> t) const

returns the point obtained by applying ¢ on p.

The following operations can be applied on points:

bool

bool

bool

bool

Vector_2<Kernel>

Point_2<Kernel>

operator<( p, q)

returns true iff p is lexicographically smaller than ¢, i.e. either if p.x() <
g-x() or if p.x() == g.x() and p.y() < q.y().
operator>(p, q)

returns true iff p is lexicographically greater than q.

operator<=(p, q)

returns true iff p is lexicographically smaller or equal to g.

operator>=(p, q)

returns true iff p is lexicographically greater or equal to g.

operator-( p, q)

returns the difference vector between g and p. You can substitute ORIGIN
for either p or g, but not for both.

operator+( p, Vector_2<Kernel> v)

returns the point obtained by translating p by the vector v.
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Point_2<Kernel> operator-( p, Vector_2<Kernel> v)

returns the point obtained by translating p by the vector -v.

Example

The following declaration creates two points with Cartesian double coordinates.

Point_2< Cartesian<double> > p, q(l1.0, 2.0);

The variable p is uninitialized and should first be used on the left hand side of an assignment.

p=q

std::cout € p.x() < " " KL p.y() K std::endl;

See Also

Kernel:iPoInt_2 . . ..o page 794
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CGAL::Ray_2<Kernel>

Definition

An object r of the data type Ray_2<Kernel> is a directed straight ray in the two-dimensional Euclidean plane
2. It starts in a point called the source of r and goes to infinity.

Creation

Ray_2<Kernel>

Ray_2<Kernel>

Ray_2<Kernel>

Ray_2<Kernel>

r( Point_2<Kernel> p, Point_2<Kernel> q);
introduces a ray r with source p and passing through
point g.

r( Point_2<Kernel> p, Direction_2<Kernel> d);

introduces a ray r starting at source p with direction d.

r( Point_2<Kernel> p, Vector_2<Kernel> v);
introduces a ray r starting at source p with the direction
of v.

r( Point_2<Kernel> p, Line_2<Kernel> l);

introduces a ray r starting at source p with the same di-
rection as /.

Operations

bool r.operator==( h) const
Test for equality: two rays are equal, iff they have the
same source and the same direction.

bool r.operator!=( h) const
Test for inequality.

Point_2<Kernel> r.source() const returns the source of r.

Point_2<Kernel> r.point( int i) const returns a point on r. point(0) is the source, point(i), with

i > 0, is different from the source.
Precondition: i > 0.
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Direction_2<Kernel>

Vector_2<Kernel>

Line_2<Kernel>

Ray_2<Kernel>

Predicates

bool

bool
bool

bool

bool

Miscellaneous

Ray_2<Kernel>

See Also

Kernel::Ray_2.........

r.direction() const returns the direction of r.

r.to_vector() const returns a vector giving the direction of r.

r.supporting_line() const

returns the line supporting » which has the same direction.

r.opposite() const returns the ray with the same source and the opposite di-
rection.

r.is_degenerate() const

ray r is degenerate, if the source and the second defining
point fall together (that is if the direction is degenerate).

r.is_horizontal() const
r.is_vertical() const

r.has_on( Point_2<Kernel> p) const
A point is on r, iff it is equal to the source of r, or if it is
in the interior of r.

r.collinear_has_on( Point_2<Kernel> p) const
checks if point p is on r. This function is faster than func-

tion has_on() if the precondition checking is disabled.
Precondition: p is on the supporting line of r.

r.transform( Aff_transformation_2<Kernel> t) const

returns the ray obtained by applying ¢ on the source and
on the direction of r.
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CGAL::Segment_2<Kernel>

Definition

An object s of the data type Segment_2<Kernel> is a directed straight line segment in the two-dimensional Eu-
clidean plane E?ie.a straight line segment [p, ¢] connecting two points p,q € R>. The segment is topologically
closed, i.e. the end points belong to it. Point p is called the source and g is called the farget of s. The length
of s is the Euclidean distance between p and g. Note that there is only a function to compute the square of the
length, because otherwise we had to perform a square root operation which is not defined for all number types,
which is expensive, and may not be exact.

Creation

Segment_2<Kernel> s( Point_2<Kernel> p, Point_2<Kernel> q);

introduces a segment s with source p and target g. The
segment is directed from the source towards the target.

Operations

bool s.operator==( q) const Test for equality: Two segments are equal, iff their
sources and targets are equal.

bool s.operator!=( q) const Test for inequality.

Point_2<Kernel> s.source() const returns the source of s.

Point_2<Kernel> s.target() const returns the target of s.

Point_2<Kernel> s.min() const returns the point of s with lexicographically smallest
coordinate.

Point_2<Kernel> s.max() const returns the point of s with lexicographically largest
coordinate.

Point_2<Kernel> s.vertex( int i) const returns source or target of s: vertex(0) returns the
source of s, vertex(1) returns the target of s. The pa-
rameter i is taken modulo 2, which gives easy access
to the other vertex.

Point_2<Kernel> s.point( int i) const returns vertex(i).

Point_2<Kernel> s.operator[]( int i) const returns vertex(i).

Kernel::FT s.squared_length() const returns the squared length of s.

Direction_2<Kernel> s.direction() const returns the direction from source to target of s.
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Vector_2<Kernel>

Segment_2<Kernel>

Line_2<Kernel>

Predicates

bool

bool
bool

bool

bool

Miscellaneous

Bbox_2

Segment_2<Kernel>

See Also

Kernel::Segment_2. ...

s.to_vector() const returns the vector s.target() - s.source().

s.opposite() const returns a segment with source and target point inter-
changed.

s.supporting _line() const returns the line / passing through s. Line / has the

same orientation as segment s.

s.is_degenerate() const segment s is degenerate, if source and target are equal.

s.is_horizontal() const
s.is_vertical() const

s.has_on( Point_2<Kernel> p) const
A point is on s, iff it is equal to the source or target of
s, or if it is in the interior of s.

s.collinear_has_on( Point_2<Kernel> p) const
checks if point p is on segment s. This function is

faster than function has_on().
Precondition: p is on the supporting line of s.

s.bbox() const returns a bounding box containing s.

s.transform( Aff_transformation_2<Kernel> t) const

returns the segment obtained by applying ¢ on the
source and the target of s.

....................................................................... page 800
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CGAL::Triangle_2<Kernel>

Definition

An object ¢ of the class Triangle_2<Kernel> is a triangle in the two-dimensional Euclidean plane E2. Triangle ¢
is oriented, i.e., its boundary has clockwise or counterclockwise orientation. We call the side to the left of the
boundary the positive side and the side to the right of the boundary the negative side.

The boundary of a triangle splits the plane in two open regions, a bounded one and an unbounded one.

Creation

Triangle_2<Kernel> t( Point_2<Kernel> p, Point_2<Kernel> q, Point_2<Kernel> r);

introduces a triangle ¢ with vertices p, g and r.

Operations
bool t.operator==( t2) const
Test for equality: two triangles are equal, iff there exists
a cyclic permutation of the vertices of 12, such that they
are equal to the vertices of 7.
bool t.operator!=( t2) const
Test for inequality.
Point_2<Kernel> t.vertex( int i) const returns the i’th vertex modulo 3 of 7.
Point_2<Kernel> t.operator(]( int i) const
returns vertex(i).
Predicates
bool t.is_degenerate() const
triangle ¢ is degenerate, if the vertices are collinear.
Orientation t.orientation() const returns the orientation of z.
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Oriented_side t.oriented_side( Point_2<Kernel> p) const

returns ON_ORIENTED _BOUNDARY, or POSITIVE_
SIDE, or the constant ON_NEGATIVE_SIDE, determined
by the position of point p.

Precondition: t is not degenerate.

Bounded_side t.bounded_side( Point_2<Kernel> p) const

returns the constant ON_BOUNDARY, ON_BOUNDED _
SIDE, or else ON_UNBOUNDED_SIDE, depending on
where point p is.

Precondition: t is not degenerate.

For convenience we provide the following Boolean functions:

bool t.has_on_positive_side( Point_2<Kernel> p) const
bool t.has_on_negative_side( Point_2<Kernel> p) const
bool t.has_on_boundary( Point_2<Kernel> p) const

bool t.has_on_bounded_side( Point_2<Kernel> p) const
bool t.has_on_unbounded_side( Point_2<Kernel> p) const

Precondition: t is not degenerate.

Miscellaneous

Triangle_2<Kernel> t.opposite() returns a triangle where the boundary is oriented the other
way round (this flips the positive and the negative side,
but not the bounded and unbounded side).

Kernel::FT t.area() const returns the signed area of ¢.

Bbox_2 t.bbox() const returns a bounding box containing ¢.

Triangle_2<Kernel> t.transform( Aff_transformation_2<Kernel> at) const
returns the triangle obtained by applying at on the three
vertices of ¢.

See Also

Kernel::Triangle_2 . . ... e e e page 804
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CGAL::Vector_2<Kernel>

Definition

An object of the class Vector_2<Kernel> is a vector in the two-dimensional vector space R?. Geometrically
spoken, a vector is the difference of two points p,, p; and denotes the direction and the distance from p; to p,.

CGAL defines a symbolic constant NULL_VECTOR. We will explicitly state where you can pass this constant
as an argument instead of a vector initialized with zeros.

Types

Vector_2<Kernel>:: Cartesian_const_iterator

An iterator for enumerating the Cartesian coordinates of a vector.

Creation

Vector_2<Kernel> v( Point_2<Kernel> a, Point_2<Kernel> b),

introduces the vector b — a.

Vector_2<Kernel> v( Segment_2<Kernel> s);

introduces the vector s.target () — s.source().

Vector_2<Kernel> v( Ray_2<Kernel> r);

introduces the vector having the same direction as r.

Vector_2<Kernel> v( Line_2<Kernel> 1),

introduces the vector having the same direction as /.

Vector_2<Kernel> v( Null_vector NULL_VECTOR),

introduces a null vector v.

Vector_2<Kernel> v( int x, inty);  introduces a vector v initialized to (x,y).

Vector_2<Kernel> v( double x, double y);

introduces a vector v initialized to (x,y).
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Vector_2<Kernel> v( Kernel::RT hx, Kernel::RT hy, Kernel::RT hw = RT(1));

introduces a vector v initialized to (hx/hw, hy/hw).
Precondition: hw # 0

Vector_2<Kernel> v( Kernel::FT x, Kernel::FTy);

introduces a vector v initialized to (x,y).

Operations

bool v.operator==( w) const
Test for equality: two vectors are equal, iff their x and y coordinates are
equal. You can compare a vector with the NULL_VECTOR.

bool v.operator!=( w) const

Test for inequality. You can compare a vector with the NULL_VECTOR.

There are two sets of coordinate access functions, namely to the homogeneous and to the Cartesian coordinates.
They can be used independently from the chosen kernel model.

Kernel::RT v.hx() const

returns the homogeneous x coordinate.

Kernel::RT v.hy() const

returns the homogeneous y coordinate.

Kernel::RT v.hw() const

returns the homogenizing coordinate.

Note that you do not loose information with the homogeneous representation, because the FieldNumberType is
a quotient.

Kernel::FT v.x() const

returns the x-coordinate of v, that is hx/hw.

Kernel::FT v.y() const

returns the y-coordinate of v, that is hy/hw.

The following operations are for convenience and for compatibility with higher dimensional vectors. Again
they come in a Cartesian and homogeneous flavor.
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Kernel::RT

Kernel::FT

Kernel::FT

Cartesian_const_iterator

Cartesian_const_iterator

int

Direction_2<Kernel>

Vector_2<Kernel>

Vector_2<Kernel>

Operators

v.homogeneous( int i) const

returns the i’th homogeneous coordinate of v, starting with 0.
Precondition: 0 <i<2.

v.cartesian( int i) const

returns the i’th Cartesian coordinate of v, starting at 0.
Precondition: 0 <i<1.

v.operator[]( int i) const
returns cartesian(i).
Precondition: 0 <i<1.
v.cartesian_begin() const
returns an iterator to the Cartesian coordinates of v, starting with the Oth
coordinate.
v.cartesian_end() const

returns an off the end iterator to the Cartesian coordinates of v.

v.dimension() const

returns the dimension (the constant 2).

v.direction() const

returns the direction which passes through v.

v.transform( Aff_transformation_2<Kernel> t) const

returns the vector obtained by applying ¢ on v.

v.perpendicular( Orientation o) const

returns the vector perpendicular to v in clockwise or counterclockwise
orientation.

The following operations can be applied to vectors:

Vector_2<Kernel>

v.operator+( w) const

Addition.
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Vector_2<Kernel> v.operator-( w) const

Subtraction.

Vector_2<Kernel> v.operator-() const

returns the opposite vector.

Kernel::FT v.operator®( w) const

returns the scalar product (= inner product) of the two vectors.

Vector_2<Kernel> operator*( v, Kernel::RT s)

Multiplication with a scalar from the right.

Vector_2<Kernel> operator*( v, Kernel::FT s)

Multiplication with a scalar from the right.

Vector_2<Kernel> operator*( Kernel::RT s, v)

Multiplication with a scalar from the left.

Vector_2<Kernel> operator*( Kernel::FT s, v)

Multiplication with a scalar from the left.

Vector_2<Kernel> v.operator/( Kernel::RT s) const

Division by a scalar.

Kernel::FT v.squared_length() const

returns the squared length of v.

See Also

Kernel::VECtor_2 . . ..o e page 806
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11.11.2 Three-dimensional Objects

CGAL::Bbox_3
#include <CGAL/Bbox_3.h>

Definition

An object b of the class Bbox_3 is a bounding box in the three-dimensional Euclidean space E3.

Creation

Bbox_3 b( double x_min, double y_min, double z_min, double x_max, double y_max, double z_max);

introduces a bounding box b with lexicographically
smallest corner point at (xmin, ymin, zmin) lexicographi-
cally largest corner point at (xmax, ymax, zmax).

Operations

bool b.operator==( c) const
Test for equality.

bool b.operator!=( q) const
Test for inequality.

int b.dimension() const Returns 3.

double b.xmin() const

double b.ymin() const

double b.zmin() const

double b.xmax() const

double b.ymax() const

double b.zmax() const

double b.min( int i) const Returns xmin() if i==0 or ymin() if i==1 or zmin() if
==
Precondition: 1j=0 and 1;=2

double b.max( int i) const Returns xmax() if i==0 or ymax() if i==1 or zmax() if
==
Precondition: i==0 and ij=2

Bbox_3 b.operator+( c¢) const  returns a bounding box of b and c.
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See Also

CGAL::BDOX_ 2 . .o e e page 613
CGAL::do_0Verlap . . . ...t e e e e page 732
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CGAL::Aff_transformation_3<Kernel>

Definition

The class Aff_transformation_3<Kernel> represents three-dimensional affine transformations. The general form
of an affine transformation is based on a homogeneous representation of points. Thereby all transformations
can be realized by matrix multiplication.

Multiplying the transformation matrix by a scalar does not change the represented transformation. Therefore,
any transformation represented by a matrix with rational entries can be represented by a transformation matrix
with integer entries as well. (Multiply the matrix with the common denominator of the rational entries.) Hence,
it is sufficient to use the number type Kernel::RT to represent the entries of the transformation matrix.

CGAL offers several specialized affine transformations. Different constructors are provided to create them. They
are parameterized with a symbolic name to denote the transformation type, followed by additional parameters.
The symbolic name tags solve ambiguities in the function overloading and they make the code more readable,
i.e., what type of transformation is created.

In three-dimensional space we have a 4 x 4 matrix (m; j)i,j=o...3' Entries m3g, m31, and m3; are always zero and
therefore do not appear in the constructors.

Creation

Aff_transformation_3<Kernel> t( Identity_transformation);

introduces an identity transformation.

Aff_transformation_3<Kernel> t( const Translation, Vector_3<Kernel> v);

introduces a translation by a vector v.

Aff-transformation_3<Kernel> t( const Scaling, Kernel::RT s, Kernel::RT hw = RT(1));

introduces a scaling by a scale factor s/hw.

Aff_transformation_3<Kernel> t( Kernel::RT m0O0,
Kernel::RT m01,
Kernel::RT m02,
Kernel::RT m03,
Kernel::RT ml0,
Kernel::RT ml1,
Kernel::RT m12,
Kernel::RT mi3,
Kernel::RT m20,
Kernel::RT m21,
Kernel::RT m22,
Kernel::RT m23,
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Kernel::RT hw = RT(1))

introduces a general affine transformation of the ma-
Mmoo Mop Moz 13
miy mpy o mpp m3
myo mp) My M3
0 0 0 hw
moo Mol M2
myp my; myy | defines the scaling and rotational

The part -

trix form s

mpo  m21p M2

mo3
part of the transformation, while the vector ﬁ ( mi3 )

ma3
contains the translational part.

Aff-transformation_3<Kernel> t( Kernel::RT m00,
Kernel::RT m01,
Kernel::RT m02,
Kernel::RT m10,
Kernel::RT ml1,
Kernel::RT mi2,
Kernel::RT m20,
Kernel::RT m21,
Kernel::RT m22,
Kernel::RT hw = RT(1))

introduces a general linear transformation of the matrix
moy  mor moz O
myp my om0
my my my 0

0 0 0 hw
mation without translational part.

form , 1.e. an affine transfor-

Operations
Each class Class_3<Kernel> representing a geometric object in 3D has a member function:
Class_3<Kernel> transform(Aff_transformation_3<Kernel> t).

The transformation classes provide a member function transform() for points, vectors, directions, and planes:

Point_3<Kernel> t.transform( Point_3<Kernel> p) const
Vector_3<Kernel> t.transform( Vector_3<Kernel> p) const
Direction_3<Kernel> t.transform( Direction_3<Kernel> p) const
Plane_3<Kernel> t.transform( Plane_3<Kernel> p) const

CGAL provides four function operators for these member functions:

Point_3<Kernel> t.operator()( Point_3<Kernel> p) const
Vector_3<Kernel> t.operator()( Vector_3<Kernel> p) const
Direction_3<Kernel> t.operator()( Direction_3<Kernel> p) const
Plane_3<Kernel> t.operator()( Plane_3<Kernel> p) const
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Aff_transformation_3<Kernel>

t.operator®( s) const composes two affine transformations.

Aff_transformation_3<Kernel>

t.inverse() const gives the inverse transformation.
bool t.is_even() const returns frue, if the transformation is not reflecting, i.e. the
determinant of the involved linear transformation is non-
negative.
bool t.is_odd() const returns frue, if the transformation is reflecting.

The matrix entries of a matrix representation of a Aff_transformation_3<Kernel> can be accessed trough the
following member functions:

Kernel::FT t.cartesian( int i, int j) const

Kernel::FT t.m( int i, int j) const returns entry m;; in a matrix representation in which ms;3
is 1.

Kernel::RT t.homogeneous( int i, int j) const

Kernel::RT t.hm( int i, int j) const  returns entry m;; in some fixed matrix representation.

For affine transformations no I/O operators are defined.

See Also

CGAL::Aff_transformation 2<Kernel> ... ...... ... .. e e page 609
CGAL::Identity transformation . .. ............ ...t page 686
CGAL:IREfleCtion . . .. ..o e e e page 686
CGAL:IROIATION . . ..o v e ettt et e et et e e et e e e e et e et e e page 687
CGAL::SCAlING . . ..o oo e e e e e page 687
CGAL::Translation . ............. .. e page 688
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Class

CGAL::Direction_3<Kernel>

Definition

An object of the class Direction_3<Kernel> is a vector in the three-dimensional vector space R3 where we forget
about their length. They can be viewed as unit vectors, although there is no normalization internally, since this
is error prone. Directions are used whenever the length of a vector does not matter. They also characterize a
set of parallel lines that have the same orientation or the direction normal to parallel planes that have the same
orientation. For example, you can ask for the direction orthogonal to an oriented plane, or the direction of an
oriented line.

Creation

Direction_3<Kernel> d( Vector_3<Kernel> v); introduces a direction d initialized with the direction of
vector v.

Direction_3<Kernel> d( Line_3<Kernel> |); introduces the direction d of line /.

Direction_3<Kernel> d( Ray_3<Kernel> r); introduces the direction d of ray r.

Direction_3<Kernel> d( Segment_3<Kernel> s); introduces the direction d of segment s.

Direction_3<Kernel> d( Kernel::RT x, Kernel::RT'y, Kernel::RT z);

introduces a direction d initialized with the direction from
the origin to the point with Cartesian coordinates (x,y,z).

Operations

Kernel::RT d.delta( int i) const returns values, such that d== Direction_3<Kernel>
(delta(0),delta(1),delta(2)).
Precondition: : 0 <i<2.

Kernel::RT d.dx() const returns delta(0).

Kernel::RT d.dy() const returns delta(1).

Kernel::RT d.dz() const returns delta(2).

bool d.operator==( e) const Test for equality.

bool d.operator!=( e) const Test for inequality.

Direction_3<Kernel> d.operator-() const The direction opposite to d.

Vector_3<Kernel> d.vector() const returns a vector that has the same direction as d.

Direction_3<Kernel> d.transform( Aff_transformation_3<Kernel> t) const

returns the direction obtained by applying ¢ on d.
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See Also

Kernel::DireCtion_3 . . . ... page 786
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Class

CGAL::Iso_cuboid_3<Kernel>

Definition

An object s of the data type Iso_cuboid_3<Kernel> is a cuboid in the Euclidean space E* with edges parallel to
the x, y and z axis of the coordinate system.

Although they are represented in a canonical form by only two vertices, namely the lexicographically smallest
and largest vertex with respect to Cartesian xyz coordinates, we provide functions for “accessing” the other
vertices as well.

Iso-oriented cuboids and bounding boxes are quite similar. The difference however is that bounding boxes have
always double coordinates, whereas the coordinate type of an iso-oriented cuboid is chosen by the user.

Creation

Iso_cuboid_3<Kernel> c( Point_3<Kernel> p, Point_3<Kernel> q);

introduces an iso-oriented cuboid ¢ with diagonal oppo-
site vertices p and g. Note that the object is brought in
the canonical form.

Iso_cuboid_3<Kernel> c( Point_3<Kernel> p, Point_3<Kernel> q, int);

introduces an iso-oriented cuboid ¢ with diagonal oppo-
site vertices p and g. The int argument value is only used
to distinguish the two overloaded functions.
Precondition:  p.x() <= q.x(), py() <= gq.y() and
p2() <=q.z().

Iso_cuboid_3<Kernel> c( Point_3<Kernel> left,
Point_3<Kernel> right,
Point_3<Kernel> bottom,
Point_3<Kernel> top,
Point_3<Kernel> far,
Point_3<Kernel> close)

introduces an iso-oriented cuboid ¢ whose minimal x co-
ordinate is the one of left, the maximal x coordinate is
the one of right, the minimal y coordinate is the one of
bottom, the maximal y coordinate is the one of fop, the
minimal z coordinate is the one of far, the maximal z co-
ordinate is the one of close.

Iso_cuboid_3<Kernel> c( Kernel::RT min_hx,
Kernel::RT min_hy,
Kernel::RT min_hz,
Kernel::RT max_hx,
Kernel::RT max_hy,
Kernel::RT max_hz,
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Kernel::RT hw = RT(1))

introduces an iso-oriented cuboid ¢ with diagonal op-
posite vertices (min_hx/hw, min_hy/hw, min_hz/hw) and
(max_hx/hw, max_hy/hw, max_hz/hw).

Precondition: hw # 0.

Operations
bool c.operator==( c2) const
Test for equality: two iso-oriented cuboid are equal, iff
their lower left and their upper right vertices are equal.
bool c.operator!=( c2) const
Test for inequality.
Point_3<Kernel> c.vertex( int i) const returns the i’th vertex modulo 8 of c. starting with the
lower left vertex.
Point_3<Kernel> c.operator(]( int i) const
returns vertex(i), as indicated in the figure below:
N
5 6
z 3 2
Y.
“0 1
Point_3<Kernel> c.min() const returns the smallest vertex of ¢ (= vertex(0)).
Point_3<Kernel> c.max() const returns the largest vertex of ¢ (= vertex(7)).
Kernel::FT c.xmin() const returns smallest Cartesian x-coordinate in c.
Kernel::FT c.ymin() const returns smallest Cartesian y-coordinate in c.
Kernel::FT c.zmin() const returns smallest Cartesian z-coordinate in c.
Kernel::FT c.xmax() const returns largest Cartesian x-coordinate in c.
Kernel::FT c.ymax() const returns largest Cartesian y-coordinate in c.
Kernel::FT c.zmax() const returns largest Cartesian z-coordinate in c.
Kernel::FT c.min_coord( int i) const

returns i-th Cartesian coordinate of the smallest vertex of
c.
Precondition: 0 <i<2.
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Kernel::FT

Predicates

bool

Bounded_side

bool
bool
bool

Miscellaneous

Kernel::FT

Bbox_3

Iso_cuboid_3<Kernel>

See Also

Kernel::IsoCuboid_3 . ...

c.max_coord( int i) const

returns i-th Cartesian coordinate of the largest vertex of
c.
Precondition: 0 <i<?2.

c.is_degenerate() const

c is degenerate, if all vertices are coplanar.

c.bounded_side( Point_3<Kernel> p) const

returns  either ~ ON_UNBOUNDED_SIDE, ON_
BOUNDED_SIDE, or the constant ON_BOUNDARY,
depending on where point p is.

c.has_on_boundary( Point_3<Kernel> p) const
c.has_on_bounded_side( Point_3<Kernel> p) const
c.has_on_unbounded _side( Point_3<Kernel> p) const

c.volume() const returns the volume of c.

c.bbox() const returns a bounding box containing c.

c.transform( Aff_transformation_3<Kernel> t) const

returns the iso-oriented cuboid obtained by applying ¢ on
the smallest and the largest of c.

Precondition: The angle at a rotation must be a multiple
of m/2, otherwise the resulting cuboid does not have the
same size. Note that rotating about an arbitrary angle can
even result in a degenerate iso-oriented cuboid.
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CGAL::Line_3<Kernel>

Definition

An object [ of the data type Line_3<Kernel> is a directed straight line in the three-dimensional Euclidean space

E3.

Creation

Line_3<Kernel>

Line_3<Kernel>

Line_3<Kernel>

Line_3<Kernel>

Line_3<Kernel>

Operations

bool

bool

Point_3<Kernel>

Point_3<Kernel>

l( Point_3<Kernel> p, Point_3<Kernel> q);
introduces a line [ passing through the points p and q.
Line [ is directed from p to q.

l( Point_3<Kernel> p, Direction_3<Kernel> d);

introduces a line / passing through point p with direction
d.

l( Point_3<Kernel> p, Vector_3<Kernel> v);

introduces a line / passing through point p and oriented
by v.

l( Segment_3<Kernel> s); returns the line supporting the segment s, oriented from
source to target.

I( Ray_3<Kernel> r); returns the line supporting the ray r, with the same orien-
tation.

Loperator==( h) const

Test for equality: two lines are equal, iff they have a non
empty intersection and the same direction.

Loperator!=( h) const  Test for inequality.

Lprojection( Point_3<Kernel> p) const

returns the orthogonal projection of p on /.

Lpoint( int i) const returns an arbitrary point on /. It holds point(i) = point(j), iff
i=j.
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Predicates

bool

bool

Miscellaneous

Plane_3<Kernel>

Line_3<Kernel>

Vector_3<Kernel>

Direction_3<Kernel>

Line_3<Kernel>

See Also

Kernel::Line_3 .......

Lis_degenerate() const

returns frue iff line [ is degenerated to a point.

Lhas_on( Point_3<Kernel> p) const

returns true iff p lies on [.

L.perpendicular_plane( Point_3<Kernel> p) const

returns the plane perpendicular to / passing through p.

Lopposite() const returns the line with opposite direction.
Lto_vector() const returns a vector having the same direction as /.
Ldirection() const returns the direction of /.

Ltransform( Aff_transformation_3<Kernel> t) const

returns the line obtained by applying ¢ on a point on / and the
direction of /.
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CGAL::Plane_3<Kernel>

Definition

An object / of the data type Plane_3<Kernel> is an oriented plane in the three-dimensional Euclidean space E>.
It is defined by the set of points with Cartesian coordinates (x,y,z) that satisfy the plane equation

h: ax+by+cz+d=0.

The plane splits E?ina positive and a negative side. A point p with Cartesian coordinates (px, py, pz) is on the
positive side of &, iff a px+ b py+ c pz+d > 0. It is on the negative side, iff apx+bpy +cpz+d < 0.

Creation

Plane_3<Kernel> h( Kernel::RT a, Kernel::RT b, Kernel::RT c, Kernel::RT d);
creates a plane /& defined by the equation a px + b py +
¢ pz+d = 0. Notice that 4 is degenerate if a = b = ¢ = 0.
Plane_3<Kernel> h( Point_3<Kernel> p, Point_3<Kernel> q, Point_3<Kernel> r);
creates a plane h passing through the points p, ¢ and r.
The plane is oriented such that p, g and r are oriented in a
positive sense (that is counterclockwise) when seen from

the positive side of h. Notice that / is degenerate if the
points are collinear.

Plane_3<Kernel> h( Point_3<Kernel> p, Vector_3<Kernel> v);

introduces a plane & that passes through point p and that
is orthogonal to v.

Plane_3<Kernel> h( Point_3<Kernel> p, Direction_3<Kernel> d);

introduces a plane & that passes through point p and that
has as an orthogonal direction equal to d.

Plane_3<Kernel> h( Line_3<Kernel> I, Point_3<Kernel> p);
introduces a plane /4 that is defined through the three
points Lpoint(0), L.point(1) and p.

Plane_3<Kernel> h( Ray_3<Kernel> r, Point_3<Kernel> p);

introduces a plane A that is defined through the three
points r.point(0), r.point(1) and p.
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Plane_3<Kernel> h( Segment_3<Kernel> s, Point_3<Kernel> p);

introduces a plane /4 that is defined through the three
points s.source(), s.target() and p.

Plane_3<Kernel> h( Circle_3<Kernel> c); introduces a plane % that is defined as the plane containing
the circle.

Operations

bool h.operator==( h2) const

bool

Kernel::RT
Kernel::RT
Kernel::RT
Kernel::RT

Line_3<Kernel>

Point_3<Kernel>

Plane_3<Kernel>

Point_3<Kernel>

Vector_3<Kernel>

Direction_3<Kernel>

Test for equality: two planes are equal, iff they have a
non empty intersection and the same orientation.

h.operator!=( h2) const

Test for inequality.

h.a() const returns the first coefficient of 4.
h.b() const returns the second coefficient of A.
h.c() const returns the third coefficient of A.
h.d() const returns the fourth coefficient of A.

h.perpendicular_line( Point_3<Kernel> p) const
returns the line that is perpendicular to / and that passes

through point p. The line is oriented from the negative to
the positive side of A.

h.projection( Point_3<Kernel> p) const

returns the orthogonal projection of p on A.

h.opposite() const returns the plane with opposite orientation.

h.point() const returns an arbitrary point on A.

h.orthogonal__vector() const

returns a vector that is orthogonal to % and that is directed
to the positive side of 4.

h.orthogonal_direction() const

returns the direction that is orthogonal to A and that is
directed to the positive side of A.
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Vector_3<Kernel> h.basel() const returns a vector orthogonal to orthogonal_vector().

Vector_3<Kernel> h.base2() const returns a vector that is both orthogonal to basel(), and to
orthogonal_vector(), and such that the result of orienta-
tion( point(), point() + basel(), point()+base2(), point()
+ orthogonal_vector() ) is positive.

2D Conversion
The following functions provide conversion between a plane and CGAL’s two-dimensional space. The transfor-

mation is affine, but not necessarily an isometry. This means, the transformation preserves combinatorics, but
not distances.

Point_2<Kernel> h.to_2d( Point_3<Kernel> p) const
returns the image point of the projection of p under an

affine transformation, which maps & onto the xy-plane,
with the z-coordinate removed.

Point_3<Kernel> h.to_3d( Point_2<Kernel> p) const

returns a point ¢, such that to_2d( to_3d( p )) is equal to
P

Predicates

Oriented_side h.oriented_side( Point_3<Kernel> p) const

returns either ON_ORIENTED_BOUNDARY, or the
constant ON_POSITIVE_SIDE, or the constant ON_
NEGATIVE_SIDE, determined by the position of p rel-
ative to the oriented plane 4.

For convenience we provide the following Boolean functions:

bool h.has_on( Point_3<Kernel> p) const

bool h.has_on_positive_side( Point_3<Kernel> p) const
bool h.has_on_negative_side( Point_3<Kernel> p) const
bool h.has_on( Line_3<Kernel> 1) const

bool h.has_on( Circle_3<Kernel> 1) const

bool h.is_degenerate() const

Plane £ is degenerate, if the coefficients a, b, and ¢ of the
plane equation are zero.
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Miscellaneous

Plane_3<Kernel> h.transform( Aff_transformation_3<Kernel> t) const

returns the plane obtained by applying ¢ on a point of &
and the orthogonal direction of A.

See Also

Kernel: i Plane 3. .. ... e page 793
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CGAL::Point_3<Kernel>

Definition
An object of the class Point_3<Kernel> is a point in the three-dimensional Euclidean space E>.
Remember that Kernel::RT and Kernel::FT denote a RingNumberType and a FieldNumberType, respectively.

For the kernel model Cartesian<T>, the two types are the same. For the kernel model Homogeneous<T>,
Kernel::RT is equal to T, and Kernel::FT is equal to Quotient<T>.

Types

Point_3<Kernel>:: Cartesian_const_iterator

An iterator for enumerating the Cartesian coordinates of a point.

Creation

Point_3<Kernel> p( Origin ORIGIN);

introduces a point with Cartesian coordinates(0,0,0).

Point_3<Kernel> p(int x, int y, int z);

introduces a point p initialized to (x,y,z).

Point_3<Kernel> p( double x, double y, double z);

introduces a point p initialized to (x,y,z) provided RT supports it.

Point_3<Kernel> p( Kernel::RT hx, Kernel::RT hy, Kernel::RT hz, Kernel::RT hw = RT(1));

introduces a point p initialized to (hx/hw, hy/hw, hz/hw).
Precondition: hw # 0.

Point_3<Kernel> p( Kernel::FT x, Kernel::FTy, Kernel::FT z);

introduces a point p initialized to (x,y,z).

Operations

bool p.operator==( q) const

Test for equality: Two points are equal, iff their x, y and z coordinates are
equal.
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bool p.operator!=( q) const

Test for inequality.

There are two sets of coordinate access functions, namely to the homogeneous and to the Cartesian coordinates.
They can be used independently from the chosen kernel model.

Kernel::RT p.hx() const

returns the homogeneous x coordinate.

Kernel::RT p.hy() const

returns the homogeneous y coordinate.

Kernel::RT p.hz() const

returns the homogeneous z coordinate.

Kernel::RT p.hw() const
returns the homogenizing coordinate.

Note that you do not loose information with the homogeneous representation, because the FieldNumberType is
a quotient.

Kernel::FT p.x() const

returns the Cartesian x coordinate, that is x/hw.

Kernel::FT p.y() const

returns the Cartesian y coordinate, that is hy/hw.

Kernel::FT p.z() const
returns the Cartesian z coordinate, that is hz/hw.

The following operations are for convenience and for compatibility with code for higher dimensional points.
Again they come in a Cartesian and in a homogeneous flavor.

Kernel::RT p.homogeneous( int i) const
returns the i’th homogeneous coordinate of p, starting with 0.
Precondition: 0 <i<3.

Kernel::FT p.cartesian( int i) const
returns the i’th Cartesian coordinate of p, starting with 0.
Precondition: 0 <i<?2.

Kernel::FT p.operator[]( int i) const

returns cartesian(i).
Precondition: 0 <i<2.
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Cartesian_const_iterator

Cartesian_const_iterator

int

Bbox_3

Point_3<Kernel>

Operators

p.cartesian_begin() const

returns an iterator to the Cartesian coordinates of p, starting with the Oth
coordinate.

p.cartesian_end() const

returns an off the end iterator to the Cartesian coordinates of p.

p.dimension() const

returns the dimension (the constant 3).

p.bbox() const

returns a bounding box containing p.

p-transform( Aff_transformation_3<Kernel> t) const

returns the point obtained by applying ¢ on p.

The following operations can be applied on points:

bool

bool

bool

bool

Vector_3<Kernel>

operator<( p, q)

returns true iff p is lexicographically smaller than ¢ (the lexicographical
order being defined on the Cartesian coordinates).

operator>( p, q)

returns true iff p is lexicographically greater than g.

operator<=(p, q)

returns true iff p is lexicographically smaller or equal to g.

operator>=(p, q)

returns true iff p is lexicographically greater or equal to g.

operator-( p, q)

returns the difference vector between ¢ and p. You can substitute ORIGIN
for either p or g, but not for both.
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Point_3<Kernel> operator+( p, Vector_3<Kernel> v)

returns the point obtained by translating p by the vector v.

Point_3<Kernel> operator-( p, Vector_3<Kernel> v)

returns the point obtained by translating p by the vector -v.

See Also

Kernel POINt 3 . . oo e page 796
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CGAL::Ray_3<Kernel>

Definition

An object r of the data type Ray_3<Kernel> is a directed straight ray in the three-dimensional Euclidean space
[E3. It starts in a point called the source of r and it goes to infinity.

Creation

Ray_3<Kernel>

Ray_3<Kernel>

Ray_3<Kernel>

Ray_3<Kernel>

r( Point_3<Kernel> p, Point_3<Kernel> q);
introduces a ray r with source p and passing through
point g.

r( Point_3<Kernel> p, Direction_3<Kernel> d);

introduces a ray r with source p and with direction d.

r( Point_3<Kernel> p, Vector_3<Kernel> v);
introduces a ray r with source p and with a direction given
by v.

r( Point_3<Kernel> p, Line_3<Kernel> l);

introduces a ray r starting at source p with the same di-
rection as /.

Operations

bool r.operator==( h) const
Test for equality: two rays are equal, iff they have the
same source and the same direction.

bool r.operator!=( h) const
Test for inequality.

Point_3<Kernel> r.source() const returns the source of r

Point_3<Kernel>

r.point( int i) const returns a point on r. point(0) is the source. point(i), with
i > 0, is different from the source.
Precondition: i > 0.
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Direction_3<Kernel>

Vector_3<Kernel>

Line_3<Kernel>

Ray_3<Kernel>

bool

bool

Ray_3<Kernel>

See Also

Kernel::Ray 3..........

r.direction() const returns the direction of r.
r.to_vector() const returns a vector giving the direction of r.

r.supporting_line() const

returns the line supporting » which has the same direction.

r.opposite() const returns the ray with the same source and the opposite di-
rection.

r.is_degenerate() const
ray r is degenerate, if the source and the second defining
point fall together (that is if the direction is degenerate).
r.has_on( Point_3<Kernel> p) const

A point is on r, iff it is equal to the source of r, or if it is
in the interior of r.

r.transform( Aff_transformation_3<Kernel> t) const

returns the ray obtained by applying ¢ on the source and
on the direction of r.
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CGAL::Segment_3<Kernel>

Definition

An object s of the data type Segment_3<Kernel> is a directed straight line segment in the three-dimensional
Euclidean space E°, i.e. a straight line segment [P, ¢q] connecting two points p,qg € R3. The segment is topolog-
ically closed, i.e. the end points belong to it. Point p is called the source and ¢ is called the rarget of s. The
length of s is the Euclidean distance between p and g. Note that there is only a function to compute the square
of the length, because otherwise we had to perform a square root operation which is not defined for all number
types, which is expensive, and may not be exact.

Creation

Segment_3<Kernel> s( Point_3<Kernel> p, Point_3<Kernel> q);

introduces a segment s with source p and target ¢g. It is
directed from the source towards the target.

Operations

bool s.operator==( q) const
Test for equality: Two segments are equal, iff their
sources and targets are equal.

bool s.operator!=( q) const
Test for inequality.

Point_3<Kernel> s.source() const returns the source of s.

Point_3<Kernel> s.target() const returns the target of s.

Point_3<Kernel> s.min() const returns the point of s with smallest coordinate (lexico-
graphically).

Point_3<Kernel> s.max() const returns the point of s with largest coordinate (lexico-
graphically).

Point_3<Kernel> s.vertex( int i) const returns source or target of s: vertex(0) returns the source,
vertex(1) returns the target. The parameter i is taken mod-
ulo 2, which gives easy access to the other vertex.

Point_3<Kernel> s.point( int i) const returns vertex(i).

Point_3<Kernel> s.operator[]( int i) const

returns vertex(i).
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Kernel::FT s.squared_length() const

returns the squared length of s.

Vector_3<Kernel> s.to_vector() const returns the vector s.target() - s.source().
Direction_3<Kernel> s.direction() const returns the direction from source to target.
Segment_3<Kernel> s.opposite() const returns a segment with source and target interchanged.
Line_3<Kernel> s.supporting _line() const

returns the line / passing through s. Line / has the same
orientation as segment s, that is from the source to the
target of s.

bool s.is_degenerate() const
segment s is degenerate, if source and target fall together.
bool s.has_on( Point_3<Kernel> p) const
A point is on s, iff it is equal to the source or target of s,
or if it is in the interior of s.
Bbox_3 s.bbox() const returns a bounding box containing s.
Segment_3<Kernel> s.transform( Aff-transformation_3<Kernel> t) const
returns the segment obtained by applying ¢ on the source
and the target of s.
See Also
Kernel::Segment 3. .. ... e page 801
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CGAL::Circle_3<Kernel>

Definition

An object of type Circle_3<Kernel> is a circle in the three-dimensional Euclidean space E*. Note that the circle
can be degenerate, i.e. the squared radius may be zero.

Creation

Circle_3<Kernel> c( Point_3<Kernel> center, Kernel::FT sq_r, Plane_3<Kernel> plane);

introduces a variable ¢ of type Circle_3<Kernel>. It is
initialized to the circle of center center and squared radius
sq_r in plane plane.

Precondition: center lies in plane and sq_r > 0.

Circle_3<Kernel> c( Point_3<Kernel> center, Kernel::FT sq_r, Vector_3<Kernel> n);

introduces a variable ¢ of type Circle_3<Kernel>. 1t is
initialized to the circle of center center and squared radius
sq_r in a plane normal to the vector n.

Precondition: sq_r > 0.

Circle_3<Kernel> c( Point_3<Kernel> p, Point_3<Kernel> g, Point_3<Kernel> r);

introduces a variable ¢ of type Circle_3<Kernel>. It is
initialized to the circle passing through the three points.
Precondition: The three points are not collinear.

Circle_3<Kernel> c( Sphere_3<Kernel> spherel, Sphere_3<Kernel> sphere2);

introduces a variable ¢ of type Circle_3<Kernel>. It is
initialized to the circle along which the two spheres inter-
sect.

Precondition: The two spheres intersect along a circle.

Circle_3<Kernel> c( Sphere_3<Kernel> sphere, Plane_3<Kernel> plane);

introduces a variable ¢ of type Circle_3<Kernel>. 1t is
initialized to the circle along which the sphere and the
plane intersect.

Precondition: The sphere and the plane intersect along a
circle.
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Circle_3<Kernel> c¢( Plane_3<Kernel> plane, Sphere_3<Kernel> sphere);

Access Functions

Point_3<Kernel>
Kernel::FT

Plane_3<Kernel>

Sphere_3<Kernel>

Kernel::FT

double

Kernel::FT

double

Predicates

bool

Operations

bool operator

bool operator

introduces a variable ¢ of type Circle_3<Kernel>. 1t is
initialized to the circle along which the sphere and the
plane intersect.

Precondition: The sphere and the plane intersect along a
circle.

c.center() const returns the center of c.

c.squared_radius() const

returns the squared radius of c.

c.supporting_plane() const

returns the supporting plane of c.

c.diametral_sphere() const

returns the diametral sphere of c.

c.area_divided_by_pi() const

returns the area of ¢, divided by 7.

c.approximate_area() const

returns an approximation of the area of c.

c.squared_length_divided_by_pi_square() const

returns the squared length of ¢, divided by 7%.

c.approximate_squared_length() const

returns an approximation of the squared length (i.e.
perimeter) of c.

c.has_on( Point_3<Kernel> p) const

==(cl, c2) returns true, iff ¢/ and c2 are equal, i.e. if they have the
same center, the same squared radius and the same sup-
porting plane.

I=(cl, c2)
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Bbox_3 c.bbox() const returns a bounding box containing c.

See Also

Kernel i Carcle 3 . .. page 784
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Class

CGAL::Sphere_3<Kernel>

Definition

An object of type Sphere_3<Kernel> is a sphere in the three-dimensional Euclidean space E°. The sphere is
oriented, i.e. its boundary has clockwise or counterclockwise orientation. The boundary splits E? into a positive
and a negative side, where the positive side is to the left of the boundary. The boundary also splits E* into a
bounded and an unbounded side. Note that the sphere can be degenerated, i.e. the squared radius may be zero.

Creation

Sphere_3<Kernel> c( Point_3<Kernel> center,
Kernel::FT squared_radius,
Orientation orientation = COUNTERCLOCKWISE)

introduces a variable ¢ of type Sphere_3<Kernel>. It is
initialized to the sphere with center center, squared radius
squared_radius and orientation orientation.
Precondition: orientation # COPLANAR, and further-
more, squared_radius > 0.

Sphere_3<Kernel> c¢( Point_3<Kernel> p, Point_3<Kernel> q, Point_3<Kernel> r, Point_3<Kernel> s);

introduces a variable ¢ of type Sphere_3<Kernel>. 1t is
initialized to the unique sphere which passes through the
points p, ¢, r and s. The orientation of the sphere is the
orientation of the point quadruple p, g, r, s.
Precondition: p, g, r, and s are not coplanar.

Sphere_3<Kernel> c( Point_3<Kernel> p,
Point_3<Kernel> g,
Point_3<Kernel> r,
Orientation o = COUNTERCLOCKWISE)

introduces a variable ¢ of type Sphere_3<Kernel>. It is
initialized to the smallest sphere which passes through
the points p, g, and r. The orientation of the sphere is o.
Precondition: o is not COPLANAR.

Sphere_3<Kernel> c( Point_3<Kernel> p, Point_3<Kernel> q, Orientation o = COUNTERCLOCKWISE);

introduces a variable ¢ of type Sphere_3<Kernel>. It is
initialized to the smallest sphere which passes through
the points p and g. The orientation of the sphere is o.
Precondition: o is not COPLANAR.
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Sphere_3<Kernel> c( Point_3<Kernel> center, Orientation orientation = COUNTERCLOCKWISE);

Sphere_3<Kernel> c( Circle_3<Kernel> c);

Access Functions

Point_3<Kernel>
Kernel::FT

Orientation

bool operator

bool operator

Predicates

bool

Oriented_side

Bounded_side

bool
bool
bool

introduces a variable ¢ of type Sphere_3<Kernel>. It is
initialized to the sphere with center center, squared radius
zero and orientation orientation.

Precondition: orientation # COPLANAR.
Postcondition: c.is_degenerate() = true.

introduces a variable ¢ of type Sphere_3<Kernel>. It is
initialized to the diametral sphere of the circle.

c.center() const returns the center of c.

c.squared_radius() const

returns the squared radius of c.

c.orientation() const returns the orientation of c.

c.==( sphere2) const  returns true, iff ¢ and sphere2 are equal, i.e. if they have
the same center, same squared radius and same orienta-
tion.

c.!=( sphere2) const returns true, iff ¢ and sphere2 are not equal.

c.is_degenerate() const

returns true, iff ¢ is degenerate, i.e. if ¢ has squared radius
Zero.

c.oriented_side( Point_3<Kernel> p) const

returns  either the constant ON_ORIENTED_
BOUNDARY, ON_POSITIVE _SIDE, or ON_
NEGATIVE_SIDE, iff p lies on the boundary, properly
on the positive side, or properly on the negative side of c,
resp.

c.bounded_side( Point_3<Kernel> p) const

returns ON_BOUNDED_SIDE, ON_BOUNDARY, or
ON_UNBOUNDED _SIDE ift p lies properly inside, on
the boundary, or properly outside of c, resp.

c.has_on_positive_side( Point_3<Kernel> p) const

c.has_on_negative_side( Point_3<Kernel> p) const

c.has_on_boundary( Point_3<Kernel> p) const
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bool
bool

bool
bool

Miscellaneous

Sphere_3<Kernel>

Sphere_3<Kernel>

Bbox_3

See Also

Kernel::Sphere 3 .. ...

c.has_on_bounded_side( Point_3<Kernel> p) const
c.has_on_unbounded_side( Point_3<Kernel> p) const

c.has_on( Point_3<Kernel> p) const
c.has_on( Circle_3<Kernel> p) const

c.opposite() const returns the sphere with the same center and squared ra-
dius as ¢ but with opposite orientation.

c.orthogonal_transform( Aff_transformation_3<Kernel> at) const
returns the sphere obtained by applying at on c.

Precondition: at is an orthogonal transformation.

c.bbox() const returns a bounding box containing c.
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CGAL::Tetrahedron_3<Kernel>

Definition

An object ¢ of the class Tetrahedron_3<Kernel> is an oriented tetrahedron in the three-dimensional Euclidean
3
space E°.

It is defined by four vertices pg, p1, p2 and p3. The orientation of a tetrahedron is the orientation of its four
vertices. That means it is positive when p3 is on the positive side of the plane defined by pg, p and p».

The tetrahedron itself splits the space E? in a positive and a negative side.

The boundary of a tetrahedron splits the space in two open regions, a bounded one and an unbounded one.

Creation

Tetrahedron_3<Kernel> t( Point_3<Kernel> p0,
Point_3<Kernel> pl,
Point_3<Kernel> p2,
Point_3<Kernel> p3)

introduces a tetrahedron ¢ with vertices pg, p1, p2 and ps.

Operations

bool t.operator==( t2) const
Test for equality: two tetrahedra ¢ and 2 are equal, iff ¢
and 12 have the same orientation and their sets (not se-
quences) of vertices are equal.

bool t.operator!=( t2) const
Test for inequality.

Point_3<Kernel> t.vertex( int i) const returns the i’th vertex modulo 4 of ¢.

Point_3<Kernel> t.operator(]( int i) const
returns vertex(int i).

Predicates

bool t.is_degenerate() const

Tetrahedron ¢ is degenerate, if the vertices are coplanar.
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Orientation t.orientation() const

Oriented_side t.oriented_side( Point_3<Kernel> p) const

Precondition: : t is not degenerate.

Bounded _side t.bounded_side( Point_3<Kernel> p) const

Precondition: : t is not degenerate.

For convenience we provide the following Boolean functions:

bool t.has_on_positive_side( Point_3<Kernel> p) const

bool t.has_on_negative_side( Point_3<Kernel> p) const

bool t.has_on_boundary( Point_3<Kernel> p) const

bool t.has_on_bounded_side( Point_3<Kernel> p) const

bool t.has_on_unbounded_side( Point_3<Kernel> p) const
Miscellaneous

Kernel::FT t.volume() const returns the signed volume of 7.
Bbox_3 t.bbox() const returns a bounding box containing .
Tetrahedron_3<Kernel> t.transform( Aff_transformation_3<Kernel> at) const

returns the tetrahedron obtained by applying at on the
three vertices of ¢.

See Also

Kernel::Tetrahedron_3 . . ... .. e et e e page 803
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CGAL::Triangle_3<Kernel>

Definition

An object ¢ of the class Triangle_3<Kernel> is a triangle in the three-dimensional Euclidean space E*. As the
triangle is not a full-dimensional object there is only a test whether a point lies on the triangle or not.

Creation

Triangle_3<Kernel> t( Point_3<Kernel> p, Point_3<Kernel> q, Point_3<Kernel> r);

Operations

bool

bool

Point_3<Kernel>

Point_3<Kernel>

Plane_3<Kernel>

Predicates

bool

bool

introduces a triangle ¢ with vertices p, g and r.

t.operator==( t2) const

Test for equality: two triangles t and #, are equal, iff there
exists a cyclic permutation of the vertices of 12, such that
they are equal to the vertices of 7.

t.operator!=( t2) const

Test for inequality.

t.vertex( int i) const returns the i’th vertex modulo 3 of .

t.operator( ]( int i) const

returns vertex(int i).

t.supporting_plane() returns the supporting plane of ¢, with same orientation.

t.is_degenerate() const

t is degenerate if its vertices are collinear.

t.has_on( Point_3<Kernel> p) const

A point is on ¢, if it is on a vertex, an edge or the face of
t.
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Miscellaneous

Kernel::FT

Bbox_3

Triangle_3<Kernel>

See Also

Kernel::Triangle 3 ... ..

t.squared_area() const

returns a square of the area of 7.

t.bbox() const returns a bounding box containing ¢.

t.transform( Aff_transformation_3<Kernel> at) const

returns the triangle obtained by applying at on the three
vertices of ¢.

...................................................................... page 805
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CGAL::Vector_3<Kernel>

Definition

An object of the class Vector_3<Kernel> is a vector in the three-dimensional vector space R®. Geometrically
spoken a vector is the difference of two points p;, p; and denotes the direction and the distance from p; to p».

CGAL defines a symbolic constant NULL_VECTOR. We will explicitly state where you can pass this constant
as an argument instead of a vector initialized with zeros.

Types

Vector_3<Kernel>:: Cartesian_const_iterator

An iterator for enumerating the Cartesian coordinates of a vector.

Creation

Vector_3<Kernel> v( Point_3<Kernel> a, Point_3<Kernel> b);

introduces the vector b — a.

Vector_3<Kernel> v( Segment_3<Kernel> s);

introduces the vector s.target () — s.source().

Vector_3<Kernel> v( Ray_3<Kernel> r);

introduces a vector having the same direction as r.

Vector_3<Kernel> v( Line_3<Kernel> l);

introduces a vector having the same direction as /.

Vector_3<Kernel> v( Null_vector NULL_VECTOR);

introduces a null vector v.

Vector_3<Kernel> v( int x, int y, int z);

introduces a vector v initialized to (x,y,z).
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Vector_3<Kernel> v( double x, double y, double z);

introduces a vector v initialized to (x,y,z).

Vector_3<Kernel> v( Kernel::RT hx, Kernel::RT hy, Kernel::RT hz, Kernel::RT hw = RT(1));

introduces a vector v initialized to (hx/hw, hy/hw, hz/hw).

Vector_3<Kernel> v( Kernel::FT x, Kernel::FTy, Kernel::FT z);

introduces a vector v initialized to (x,y,z).

Operations

bool v.operator==( w) const
Test for equality: two vectors are equal, iff their x, y and z coordinates are
equal. You can compare a vector with the NULL_VECTOR.

bool v.operator!=( w) const

Test for inequality. You can compare a vector with the NULL_VECTOR.

There are two sets of coordinate access functions, namely to the homogeneous and to the Cartesian coordinates.
They can be used independently from the chosen kernel model.

Kernel::RT v.hx() const

returns the homogeneous x coordinate.

Kernel::RT v.hy() const

returns the homogeneous y coordinate.

Kernel::RT v.hz() const

returns the homogeneous z coordinate.

Kernel::RT v.hw() const
returns the homogenizing coordinate.

Note that you do not loose information with the homogeneous representation, because the FieldNumberType is
a quotient.

Kernel::FT v.x() const

returns the x-coordinate of v, that is Ax/hw.

Kernel::FT v.y() const

returns the y-coordinate of v, that is hy/hw.
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Kernel::FT

v.z() const

returns the z coordinate of v, that is hz/hw.

The following operations are for convenience and for compatibility with higher dimensional vectors. Again
they come in a Cartesian and homogeneous flavor.

Kernel::RT

Kernel::FT

Kernel::FT

Cartesian_const_iterator

Cartesian_const_iterator

int

Vector_3<Kernel>

Direction_3<Kernel>

Operators

v.homogeneous( int i) const
returns the i’th homogeneous coordinate of v, starting with 0.
Precondition: 0 <i<3.

v.cartesian( int i) const
returns the i’th Cartesian coordinate of v, starting at 0.
Precondition: 0 <i<?2.

v.operator(]( int i) const
returns cartesian(i).
Precondition: 0 <i< 2.

v.cartesian_begin() const
returns an iterator to the Cartesian coordinates of v, starting with the Oth
coordinate.

v.cartesian_end() const

returns an off the end iterator to the Cartesian coordinates of v.

v.dimension() const

returns the dimension (the constant 3).

v.transform( Aff_transformation_3<Kernel> t) const

returns the vector obtained by applying ¢ on v.

v.direction() const

returns the direction of v.

The following operations can be applied on vectors:
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Vector_3<Kernel>

Vector_3<Kernel>

Vector_3<Kernel>

Kernel::FT

Vector_3<Kernel>

Vector_3<Kernel>

Vector_3<Kernel>

Vector_3<Kernel>

Vector_3<Kernel>

Kernel::FT

See Also

Kernel::Vector_3

CGAL::cross_product
CGAL::determinant

v.operator+( w) const

Addition.

v.operator-( w) const

Subtraction.

v.operator-() const

Returns the opposite vector.

v.operator®( w) const

returns the scalar product (= inner product) of the two vectors.

operator*( v, Kernel::RT s)

Multiplication with a scalar from the right.

operator*( v, Kernel::FT s)

Multiplication with a scalar from the right.

operator*( Kernel::RT s, v)

Multiplication with a scalar from the left.

operator*( Kernel::FT s, v)

Multiplication with a scalar from the left.

v.operator/( Kernel::RT s) const

Division by a scalar.

v.squared_length() const

returns the squared length of v.

....................................................................... page 807
........................................................................ page 728
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11.12 Constants and Enumerations

CGAL::Angle

#include <CGAL/enum.h>

enum Angle { OBTUSE, RIGHT, ACUTE};

See Also

CGAL::angle . ... o e page 689

CGAL::Bounded side

#include <CGAL/enum.h>

enum Bounded_side { ON_UNBOUNDED _SIDE, ON_.BOUNDARY, ON_BOUNDED __SIDE},
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Enum

Enum

CGAL::Comparison_result

#include <CGAL/enum.h>

enum Comparison_result { SMALLER, EQUAL, LARGER};

CGAL::Sign

#include <CGAL/enum.h>

enum Sign { NEGATIVE, ZERO, POSITIVE};

See Also

CGAL::OFIENIALION . . . .o oo oottt e ettt e e e et e e e et
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CGAL::Orientation

#include <CGAL/enum.h>

typedef Sign Orientation;

See Also

CGAL::LEFT_TURN . . . . oottt et e e e e e e e e e e e e page 681
CGAL::RIGHT_TURN ... .t e e e e e e e page 681
CGAL::COLLINEAR . . .. ... e e e page 681
CGAL::CLOCKWISE . . ... e e e page 680
CGAL::COUNTERCLOCKWISE . . . . . e e page 680
CGAL::COPLANAR . . . ... s page 682

CGAL::Oriented _side

#include <CGAL/enum.h>

enum Oriented_side { ON_NEGATIVE_SIDE, ON_ORIENTED_BOUNDARY, ON_POSITIVE _SIDE};
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Constant

Constant

CGAL::CLOCKWISE

const Orientation CLOCKWISE = NEGATIVE;

See Also

CGAL::COUNTERCLOCKWISE . . ... e e

CGAL::COUNTERCLOCKWISE

const Orientation COUNTERCLOCKWISE = POSITIVE;

See Also

CGAL::CLOCKWISE . .. . .. e
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CGAL::COLLINEAR

const Orientation COLLINEAR = ZEROy;

See Also

CGAL::LEFT TURN . . . ... e page 681
CGAL::RIGHT_TURN . .. ... . e page 681

Constant

CGAL::LEFT TURN

const Orientation LEFT_TURN = POSITIVE;

See Also

CGAL::COLLINEAR . . ... .. e e page 681
CGAL::RIGHT_TURN ... ... e e page 681

Constant

CGAL::RIGHT _TURN

const Orientation RIGHT_TURN = NEGATIVE;

See Also

CGAL::COLLINEAR . .................... page 681 CGAL::LEFT_TURN ..................... page 681
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CGAL::COPLANAR

const Orientation COPLANAR = ZEROy;

Constant

CGAL::DEGENERATE

const Orientation DEGENERATE = ZERO;
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CGAL::Null_vector

#include <CGAL/Origin.h>

Definition

CGAL defines a symbolic constant NULL_VECTOR to construct zero length vectors. Null_vector is the type of
this constant.

See Also
CGAL::Vector 2<Kernel> . ....... ... e page 635
CGAL::VecCtor_3<Kernel> . .. ...t e e e e page 673

CGAL::NULL_VECTOR

const Null_vector NULL_VECTOR;

Definition

A symbolic constant used to construct zero length vectors.

See Also
CGAL::Vector 2<Kernel> . ....... ... e e e e page 635
CGAL::Vector 3<Kernel> ..........o . e e e page 673
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Class

CGAL::Origin

#include <CGAL/Origin.h>

Definition

CGAL defines a symbolic constant ORIGIN which denotes the point at the origin. Origin is the type of this
constant. It is used in the conversion between points and vectors.

See Also

CGAL::Point 2<Kernel> ....... ... e e page 625
CGAL::Point_3<Kernel> .. ... e e e e page 655
CGAL::Vector 2<Kernel> .. ... ... e e e e page 635
CGAL::Vector_3<Kernel> . ....... .. . e e e e e page 673
CGAL::0peraror+ .. ... ... page 757
CGAL:I0DCTALOT- . .« oo ittt e et et e e e e e e e e page 758
CGAL::ORIGIN

const Origin ORIGIN;

Definition

A symbolic constant which denotes the point at the origin. This constant is used in the conversion between
points and vectors.

Example

Point_2< Cartesian<Exact NT> > p(l1.0, 1.0), q;
Vector2< Cartesian<Exact NT> > v;

v = p — ORIGIN;
q = ORIGIN + v;
assert ( = q);
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See Also

CGAL::Point _2<Kernel> . .........o o e e e page 625
CGAL::Point_3<Kernel> .. ... ...t e e e e page 655
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Class

Class

CGAL::Identity_transformation
#include <CGAL/aff_transformation_tags.h>

Definition

Tag class for affine transformations.

See Also

CGAL: :Aff_transformation _2<Kernel> .. ..... ... .. e e page 609
CGAL: :Aff_transformation_3<Kernel> . .......... .. e page 641
CGAL:IREfIECHION . . .« oo ettt e et e e e e e et e e page 686
CGAL:IROIATION . . .o vttt et e e e e e et e e e et e e e page 687
CGAL::Scaling . . ... e page 687
CGAL::Translation . . ........ ... .. . . e page 688

CGAL::Reflection

#include <CGAL/aff_transformation_tags.h>

Definition

Tag class for affine transformations.

See Also

CGAL: :Aff _transformation_2<Kernel> . ... ....... ... it e page 609
CGAL::Aff transformation_3<Kernel> . ... ....... ... i e page 641
CGAL::Identity transformation . . .............. ..ot page 686
CGAL::ROIQHION . . ... .ot e e e e e page 687
CGAL::SCAliNg . . ..o oot page 687
CGAL::Translation . . ........ ... e page 688
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CGAL::Rotation

#include <CGAL/aff_transformation_tags.h>

Definition

Tag class for affine transformations.

See Also

CGAL: :Aff_transformation _2<Kernel> . . ... ... .. . e page 609
CGAL: :Aff_transformation_3<Kernel> . .......... .. e page 641
CGAL::Identity_transformation . .......... .. ..o ettt et page 686
CGAL:IROIATION . . .o vttt et e e e e e et e e e et e e e page 687
CGAL::Scaling . . ... e page 687
CGAL::Translation . . ........ ... .. . . e page 688

CGAL::Scaling
#include <CGAL/aff_transformation_tags.h>

Definition

Tag class for affine transformations.

See Also

CGAL: :Aff _transformation_2<Kernel> . ... ....... ... ittt page 609
CGAL::Aff transformation_3<Kernel> . ... ....... ... i e page 641
CGAL::Identity transformation . . .............. ..ot page 686
CGAL::REfleCtion. . ... ... e e e page 686
CGAL:IROIATION . . .o vi e et et e e et et e e et page 687
CGAL::Translation . . ........ ... e page 688
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Class

CGAL::Translation

#include <CGAL/aff_transformation_tags.h>

Definition

Tag class for affine transformations.

See Also

CGAL: :Aff_transformation _2<Kernel> .. ..... ... .. e e page 609
CGAL: :Aff_transformation_3<Kernel> . .......... .. e page 641
CGAL::Identity_transformation . .......... .. ..o ettt et page 686
CGAL:IREflECHION . . .« oottt e e e e e e e e e e e page 686
CGAL::ROIQHION . . ... oo oottt e e e page 687
CGAL::Scaling . . ... o page 687
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11.13 Global Functions

CGAL::angle

Angle

Angle

Angle

Angle

angle( Vector_2<Kernel> u, Vector_2<Kernel> v)

returns OBTUSE, RIGHT or ACUTE depending on the
angle formed by the two vectors « and v.

angle( Point_2<Kernel> p, Point_2<Kernel> q, Point_2<Kernel> r)

returns OBTUSE, RIGHT or ACUTE depending on the
angle formed by the three points p, g, r (g being the vertex
of the angle). The returned value is the same as angle(p -

q7-q).

angle( Point_2<Kernel> p,
Point_2<Kernel> g,
Point_2<Kernel> r,
Point_2<Kernel> s)

returns OBTUSE, RIGHT or ACUTE depending on the
angle formed by the two vectors pg, rs. The returned
value is the same as angle(q - p, s - 1).

angle( Point_3<Kernel> p, Point_3<Kernel> q, Point_3<Kernel> r)

returns OBTUSE, RIGHT or ACUTE depending on the
angle formed by the three points p, g, r (g being the vertex
of the angle).
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Function

CGAL::are_ordered_along_line

bool are_ordered_along_line( Point_2<Kernel> p,
Point_2<Kernel> g,
Point_2<Kernel> r)

returns true, iff the three points are collinear and g lies
between p and r. Note that frue is returned, if g==p or

qg==r.

bool are_ordered_along_line( Point_3<Kernel> p,
Point_3<Kernel> g,
Point_3<Kernel> r)

returns frue, iff the three points are collinear and ¢ lies
between p and r. Note that frue is returned, if g==p or

q==r.
See Also

CGAL::are_strictly_ordered_along_liNe . ........... ... it page 691
CGAL::collinear_are_ordered_along_line . .......... ... .. . ... . . i iiiiiiiiiiiiiiiiinnann.. page 701
CGAL::collinear_are_strictly_ordered_along_line . . ....... ... ... .. .. .. iiiiiiiiiiiiiiiiinnon.. page 702
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CGAL::are_strictly_ordered_along_line

bool are_strictly_ordered_along _line( Point_2<Kernel> p,
Point_2<Kernel> q,
Point_2<Kernel> r)

returns true, iff the three points are collinear and g lies
strictly between p and r. Note that false is returned, if

q==p or g==r.

bool are_strictly_ordered_along _line( Point_3<Kernel> p,
Point_3<Kernel> g,
Point_3<Kernel> r)

returns frue, iff the three points are collinear and ¢ lies
strictly between p and r. Note that false is returned, if

g==p or g==r.

See Also

CGAL::are_ordered_along_line . .......... ..o et page 690
CGAL::collinear_are_ordered_along_line . .......... ... .. . ... . . i iiiiiiiiiiiiiiiiinnann.. page 701
CGAL::collinear_are_strictly_ordered_along_line . . ....... ... ... .. .. .. iiiiiiiiiiiiiiiiinnon.. page 702
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CGAL::area

Kernel::FT area( Point_2<Kernel> p, Point_2<Kernel> g, Point_2<Kernel> r)

returns the signed area of the triangle defined by the
points p, g and r.
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CGAL::barycenter

Point_2<Kernel> barycenter( Point_2<Kernel> pl, Kernel::FT wl, Point_2<Kernel> p2)

compute the barycenter of the points pl and p2 with cor-
responding weights wl and 1 —wl.

-
O
)

O

-

)
LL

Point_2<Kernel> barycenter( Point_2<Kernel> pl,
Kernel::FT wi,
Point_2<Kernel> p2,
Kernel::FT w2)

compute the barycenter of the points p1 and p2 with cor-
responding weights w1 and w2.
Precondition: wl+w2 1=0.

Point_2<Kernel> barycenter( Point_2<Kernel> pl,
Kernel::FT wl,
Point_2<Kernel> p2,
Kernel::FT w2,
Point_2<Kernel> p3)

compute the barycenter of the points pl, p2 and p3 with
corresponding weights wl, w2 and 1 —wl —w?2.

Point_2<Kernel> barycenter( Point_2<Kernel> pl,
Kernel::FT wl,
Point_2<Kernel> p2,
Kernel::FT w2,
Point_2<Kernel> p3,
Kernel::FT w3)

compute the barycenter of the points pl, p2 and p3 with
corresponding weights wl, w2 and w3.
Precondition: wl+w2+w3 1= 0.

Point_2<Kernel> barycenter( Point_2<Kernel> pl,
Kernel::FT wl,
Point_2<Kernel> p2,
Kernel::FT w2,
Point_2<Kernel> p3,
Kernel::FT w3,
Point_2<Kernel> p4)

compute the barycenter of the points pl, p2, p3 and p4

with corresponding weights wl, w2, w3 and 1 —wl —
w2 —w3.
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Point_2<Kernel>

Point_3<Kernel>

Point_3<Kernel>

Point_3<Kernel>

Point_3<Kernel>

Point_3<Kernel>

barycenter( Point_2<Kernel> pl,
Kernel::FT wl,
Point_2<Kernel> p2,
Kernel::FT w2,
Point_2<Kernel> p3,
Kernel::FT w3,
Point_2<Kernel> p4,
Kernel::FT w4)

compute the barycenter of the points pl1, p2, p3 and p4
with corresponding weights wl, w2, w3 and w4.
Precondition: wl+w2+w3+w4 = 0.

barycenter( Point_3<Kernel> pl, Kernel::FT wl, Point_3<Kernel> p2)

compute the barycenter of the points p1 and p2 with cor-
responding weights wl and 1 —wl.

barycenter( Point_3<Kernel> pl,
Kernel::FT wl,
Point_3<Kernel> p2,
Kernel::FT w2)

compute the barycenter of the points p1 and p2 with cor-
responding weights w1 and w2.
Precondition: wl+w2 !=0.

barycenter( Point_3<Kernel> pl,
Kernel::FT wi,
Point_3<Kernel> p2,
Kernel::FT w2,
Point_3<Kernel> p3)

compute the barycenter of the points pl, p2 and p3 with
corresponding weights wl, w2 and 1 —wl —w2.

barycenter( Point_3<Kernel> pl,
Kernel::FT wl,
Point_3<Kernel> p2,
Kernel::FT w2,
Point_3<Kernel> p3,
Kernel::FT w3)

compute the barycenter of the points pl, p2 and p3 with

corresponding weights wl, w2 and w3.
Precondition: wl+w2+w3 1=0.

barycenter( Point_3<Kernel> pl,
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Kernel::FT wl,
Point_3<Kernel> p2,
Kernel::FT w2,
Point_3<Kernel> p3,
Kernel::FT w3,
Point_3<Kernel> p4)

compute the barycenter of the points pl, p2, p3 and p4
with corresponding weights wl, w2, w3 and 1 —wl —
w2 —w3.

Point_3<Kernel> barycenter( Point_3<Kernel> pl,
Kernel::FT wl,
Point_3<Kernel> p2,
Kernel::FT w2,
Point_3<Kernel> p3,
Kernel::FT w3,
Point_3<Kernel> p4,
Kernel::FT w4)

compute the barycenter of the points pl1, p2, p3 and p4

with corresponding weights wl, w2, w3 and w4.
Precondition: wl+w2