
A recursive alignment algorithm – pst-tvz

Trees; v.1.02

Timothy Van Zandt
Herbert Voß

January 2, 2026

Contents

I. Using the package 3

1. Overview 4

2. Tree Nodes 4

3. Tree orientation 7

4. The distance between successors 8

5. Spacing between the root and successors 10

6. Edges 10

7. Edge and node labels 13

8. Details 15

9. The scope of parameter changes 16

II. Theory 18

10. Introduction 18

11. The graphics description 18

12. Language requirements 21

13. Accounting 21

14. Horizontal mode 22

15. Vertical mode 25

16. Bells and whistles 26

1

Contents 2

17. The PSTricks implementation 31

18. Examples 31

19. List of all optional arguments for pst-thick 35

References 35

3

Part I.
Using the package

The node and node connections are perfect tools for making trees, but positioning the nodes using
\rput would be rather tedious, unless you have a computer program that generates the coordinates.

The files pst-tvz.tex/pst-tvz.sty contains a high-level interface for making trees.

It should be noted that the correct result is not guaranteed with every dvips driver. This pack­
age was written for Rokicki’s dvips programme, which is practically part of every TEX distribution.
However, with an up-to-date LATEX-distribution you can use lualatex to get directly the PDF output.

thanks to: Olivier Guibé;

•

1. Overview 4

1. Overview

The tree commands are
\pstree{<root>}{<successors>}

TEX version LATEX version
\psTree{<root>} \begin{psTree}{root}

<successors>\\ <successors> \\

<successors>\\ <successors> \\

… …
\endpsTree \end{psTree}

These do the same thing, but just have different syntax. \psTree is the “long” version. These macros make a
box that encloses all the nodes, and whose baseline passes through the center of the root. Most of the nodes has a
variant for use within a tree and are called tree nodes (see Section 2).

Trees and tree nodes are called tree objects. The root of a tree should be a single tree object, and the successors
should be one or more tree objects. Here is an example with only nodes:

A simple tree with \TC* nodes

root

\pstree[radius=3pt]{\Toval{root}}{\TC* \TC* \TC*

\TC*}↪

There is no difference between a terminal node and a root node, other than their position in the \pstree{}

command.
Here is an example where a tree is included in the list of successors, and hence becomes subtree:

A simple tree with a \Tp root

\pstree[radius=3pt]{\Tp}{%

\TC*

\pstree{\TC}{\TC* \TC*}

\TC*}

2. Tree Nodes

In each case, the name of the tree node is formed by omitting ”‘node”’ from the end of the name and adding ”T” at
the beginning. For example, \psovalnode becomes \Toval. Here is the list of such tree nodes:

2. Tree Nodes 5

\Tp* [Options]

\Tc* [Options] {dim}

\TC* [Options]

\Tf* [Options]

\Tdot* [Options]

\Tr* [Options] {stuff }

\TR* [Options] {stuff }

\Tcircle* [Options] {stuff }

\TCircle* [Options] {stuff }

\Toval* [Options] {stuff }

\Tdia* [Options] {stuff }

\Ttri* [Options] {stuff }

The syntax of a tree node is the same as of its corresponding “normal” node, except that:
There is always an optional argument for setting graphics parameters, even if the original node did not have
one;

• There is no argument for specifying the name of the node;
• There is never a coordinate argument for positioning the node; and

• To set the reference point with \Tr, set the ref parameter.
Figure 1 gives a reminder of what the nodes look like.
The difference between \Tr and \TR (variants of \rnode and \Rnode, respectively) is important with trees. Usually,

you want to use \TR with vertical trees because the baselines of the text in the nodes line up horizontally. For
example:

A simple tree

𝑋

̃𝑋̃ 𝑥 𝑦

$\pstree[nodesepB=3pt]{\Tcircle{X}}{%

\TR{\tilde{\tilde{X}}}

\TR{x}

\TR{y}}$

Compare with this example, which uses \Tr:

Example with \Tr node

𝑋

̃𝑋̃ 𝑥 𝑦

$ \pstree[nodesepB=3pt]{\Tcircle{X}}{%

\Tr{\tilde{\tilde{X}}}

\Tr{x}

\Tr{y}} $

There is also a null tree node:
\Tn

It is meant to be just a place holder. Look at the tree in Figure page 6. The bottom row has a node missing in
the middle. \Tn{} was used for this missing node.

There is also a special tree node that doesn’t have a “normal” version and that can’t be used as the root node of
a whole tree:
\Tfan* [Options]

2. Tree Nodes 6

Available node types

\small\psset{armB=1cm, levelsep=3cm, treesep=-3mm,

angleB=-90, angleA=90, nodesepA=3pt, nodesepB=0}

\def\psedge#1#2{\ncangle{#2}{#1}}

\psTree[treenodesize=2.5cm]{\Toval{Tree nodes}} \\

\Tp~{\ttfamily\string\Tp} \Tc{.5}~{\ttfamily\string\Tc} \TC~{\ttfamily\string\TC}

\psTree[levelsep=4cm,armB=2cm]{\Tp[edge=\ncline]} \\

\Tcircle{\ttfamily\string\Tcircle} \Tdot~{\ttfamily\string\Tdot}

\TCircle[radius=1.2]{\ttfamily\string\TCircle} \Tn[name=Tn]\uput[0](Tn){\ttfamily\string\Tn}

\Toval{\ttfamily\string\Toval} \Ttri{\ttfamily\string\Ttri}

\Tdia{\ttfamily\string\Tdia}

\endpsTree%

\Tf~{\ttfamily\string\Tf} \Tr{\ttfamily\string\Tr} \TR{\ttfamily\string\TR}

\endpsTree

Tree nodes

\Tp

\Tc
\TC

\Tcircle b

\Tdot

\TCircle \Tn \Toval \Ttri \Tdia

\Tf

\Tr \TR

Figure 1: The tree nodes.

This draws a triangle whose base is fansize and whose opposite corner is the predecessor node, adjusted by the
value of nodesepA and offsetA. For example:

Using nodesep

11

m

m

m

\pstree[dotstyle=oplus,dotsize=8pt,nodesep=2pt]{\Tcircle{11}}{%

\Tdot

\pstree{\Tfan}{\Tdot}

\pstree{\Tdot}{\Tfan[linestyle=dashed]}}

3. Tree orientation 7

3. Tree orientation

Trees can grow down, up, right or left, depending on the treemode= D, U, R, or L parameter.
Here is what the previous example looks like when it grows to the right:

Right treemode

11

m

m

m

\pstree[dotstyle=oplus,dotsize=8pt,

nodesep=2pt,treemode=R]

{\Tcircle{11}}{%

\Tdot

\pstree{\Tfan}{\Tdot}

\pstree{\Tdot}{\Tfan[linestyle=dashed]}}

You can change the treemode in the middle of the tree. For example, here is a tree that grows up, and that has a
subtree which grows to the left:

Using treemode

n

n

1

2

n

3 4

\footnotesize

\pstree[treemode=U,dotstyle=otimes,dotsize=8pt,nodesep=2pt]

{\Tdot}{%

\pstree[treemode=L]{\Tdot}{\Tcircle{1} \Tcircle{2}}

\pstree{\Tdot}{\Tcircle{3} \Tcircle{4}}}

Since you can change a tree’s orientation, it canmake sense to include a tree (<treeB>) as a root node (of <treeA>).
This makes a single logical tree, whose root is the root of <treeB>, and that has successors going off in different
directions, depending on whether they appear as a successor to <treeA> or to <treeB>.

Using treemode L

rootB

A1 A2

\pstree{\pstree[treemode=L]{\Tcircle{root}}{\Tr{B}}}{%

\Tr{A1}

\Tr{A2}}

On a semi-related theme, note that any node that creates an LR-box can contain a tree. However, nested trees
of this kind are not related in any way to the rest of the tree. Here is an example:

4. The distance between successors 8

Nested trees

b

a b
\psTree{\Tcircle{\pstree[treesep=0.4,levelsep=0.6,

nodesepB=-6pt]{\Tdot}{%

\TR{a} \TR{b}}}}\\

\TC

\TC

\endpsTree

When the tree grows up or down, the successors are lined up from left to right in the order they appear in \pstree.
When the tree grows to the left or right, the successors are lined up from top to bottom. As an afterthought, you
might want to flip the order of the nodes. The keyword treeflip=true/falselet’s you do this. For example:

Using treeflip

n

n

1

2

n

34

\footnotesize

\pstree[treemode=U,dotstyle=otimes,dotsize=8pt,

nodesep=2pt,treeflip=true]{\Tdot}{%

\pstree[treemode=R]{\Tdot}{\Tcircle{1} \Tcircle{2}}

\pstree{\Tdot}{\Tcircle{3} \Tcircle{4}}}

Note that I still have to go back and change the treemode of the subtree that used to grow to the left.

4. The distance between successors

The distance between successors is set by the key treesep. The rest of this section describes ways to fine-tune the
spacing between successors. You can change the method for calculating the distance between subtrees by setting
the treefit=tight/loose parameter. Here are the two methods:
tight When treefit=tight , which is the default, treesep is the minimum distance between each of the levels of

the subtrees.
loose When treefit=loose , treesep is the distance between the subtrees’ bounding boxes. Except when you have large

intermediate nodes, the effect is that the horizontal distance (or vertical distance, for horizontal trees) between all
the terminal nodes is the same (even when they are on different levels).1

Compare:

1 When all the terminal nodes are on the same level, and the intermediate nodes are not wider than the base of their corresponding
subtrees, then there is no difference between the two methods.

4. The distance between successors 9

With treefit=loose , trees take up more space, but sometimes the structure of the tree is emphasized.
Sometimes you want the spacing between the centers of the nodes to be regular even though the nodes have

different sizes. If you set treenodesize to a non-negative value, then PSTricks sets the width (or height+depth for
vertical trees) to treenodesize, for the purpose of calculating the distance between successors.

For example, ternary trees look nice when they are symmetric, as in the following example:

Ternary trees

𝑥 = 𝑦 𝑥1 = 𝑦1 𝑥11 = 𝑦11

\pstree[nodesepB=-8pt,treenodesize=.85]{\Tc{3pt}}{%

\TR{$x=y$}

\TR{$x_1=y_1$}

\TR{$x_{11}=y_{11}$}}%$

Compare with this example, where the spacing varies with the size of the nodes:

ode size

𝑥 = 𝑦 𝑥1 = 𝑦1 𝑥11 = 𝑦11

\pstree[nodesepB=-8pt]{\Tc{3pt}}{%

\TR{$x=y$}

\TR{$x_1=y_1$}

\TR{$x_{11}=y_{11}$}}%$

Finally, if all else fails, you can adjust the distance between two successors by inserting \tspace{length} between
them:

Adjusting with \space

foo and bar

\psTree{\Tc{3pt}}\\

\Tdia{foo}

% \tspace{-0.5}

\Toval{and}

\Ttri{bar}

\endpsTree

5. Spacing between the root and successors 10

5. Spacing between the root and successors

The distance between the center lines of the tree levels is levelsep. If you want the spacing between levels to vary
with the size of the levels, use the * convention. Then levelsep is the distance between the bottom of one level and
the top of the next level (or between the sides of the two levels, for horizontal trees).

Note: PSTricks has to write some information to your .aux file if using LATEX, or to \jobname.pst otherwise, in
order to calculate the spacing. You have to run your input file a few times before PSTricks gets the spacing right.

trees. Compare the following example:

Using varlevelsep

\def\psedge#1#2{\ncdiagg[nodesep=3pt,angleA=180,armA=0]{#2}{#1}}

\pstree[treemode=R,varlevelsep]{\Tr{George Alexander Kopf VII}}{%

\pstree{\Tr{Barry Santos}}{\Tr{James Kyle} \Tr{Ann Ada}}

\pstree{\Tr{Terri Maloney}}{\Tr{Uwe Kopf} \Tr{Vera Kan}}}

George Alexander Kopf VII

Barry Santos
James Kyle

Ann Ada

Terri Maloney
Uwe Kopf

Vera Kan

with this one, were the spacing between levels is fixed:

Using levelsep

\def\psedge#1#2{\ncdiagg[nodesep=3pt,angleA=180,armA=0]{#2}{#1}}

\pstree[treemode=R,levelsep=3cm]{\Tr{George Alexander Kopf VII}}{%

\pstree{\Tr{Barry Santos}}{\Tr{James Kyle} \Tr{Ann Ada}}

\pstree{\Tr{Terri Maloney}}{\Tr{Uwe Kopf} \Tr{Vera Kan}}}

George Alexander Kopf VII

Barry Santos
James Kyle

Ann Ada

Terri Maloney
Uwe Kopf

Vera Kan

6. Edges

Right after you use a tree node command, \pssucc is equal to the name of the node, and \pspred is equal to the
name of the node’s predecessor. Therefore, you can draw a line between the node and its predecessor by inserting,
for example,

\ncline{\pspred}{\pssucc}

To save you the trouble of doing this for every node, each tree node executes

\psedge{\pspred}{\pssucc}

6. Edges 11

The default definition of \psedge is \ncline, but you can redefine it as you please with \def or LATEX’s \renewcom-
mand.

For example, here I use \ncdiag, with armA=0, to get all the node connections to emanate from the same point in
the predecessor. LATEX users can instead type:

\renewcommand{\psedge}{\ncdiag[armA=0,angleB=180,armB=1cm]}

Macro \psedge

K

L

M

N

\def\psedge{\ncdiag[armA=0,angleB=180,armB=1cm]}

\pstree[treemode=R,levelsep=3.5cm,framesep=2pt]{\Tc{6pt}}{%

\small \Tcircle{K} \Tcircle{L} \Tcircle{M} \Tcircle{N}}

Here is an example with \ncdiagg. Note the use of a negative armA value so that the corners of the edges are
vertically aligned, even though the nodes have different sizes:

\ncdiagg and armA

𝑧1 ≤ 𝑦

𝑧1 < 𝑦 ≤ 𝑧2

𝑧2 < 𝑦 ≤ 𝑥

𝑥 < 𝑦

\def\psedge#1#2{\ncdiagg[angleA=180,

armA=1cm,nodesep=4pt]{#2}{#1}}

% Or: \renewcommand{\psedge}[2]{ ... }

$\pstree[treemode=R, levelsep=5cm]{\Tc{3pt}}{%

\Tr{z_1\leq y}

\Tr{z_1<y\leq z_2}

\Tr{z_2<y\leq x}

\Tr{x<y}

}$

Another way to define \psedge{} is with the edge parameter. Be sure to enclose the value in braces ”” if it contains
commas or other parameter delimiters. This gets messy if your command is long, and you can’t use arguments like
in the preceding example, but for simple changes it is useful. For example, if I want to switch between a few node
connections frequently, I might define a command for each node connection, and then use the edge parameter.

edge Parameter

\def\dedge{\ncline[linestyle=dashed]}

\pstree[treemode=U,radius=2pt]{\Tc{3pt}}{%

\TC*[edge=\dedge]

\pstree{\Tc{3pt}}{\TC*[edge=\dedge]

\TC*}

\TC*}

You can also set edge=none to suppress the node connection.

6. Edges 12

If you want to draw a node connection between two nodes that are not direct predecessor and successor, you
have to give the nodes a name that you can refer to, using the name parameter. For example, here I connect two
nodes on the same level:

Macro \Tova

nature

\pstree[nodesep=3pt,radius=2pt]{\Toval{nature}}{%

\pstree{\Tc[name=top]{3pt}}{\TC* \TC*}

\pstree{\Tc[name=bot]{3pt}}{\TC* \TC*}}

\ncline[linestyle=dashed]{top}{bot}

We conclude with the more examples.

Macro \Toval

root

X

Y

Z

\def\psedge{\nccurve[angleB=180, nodesepB=3pt]}

\pstree[treemode=R, treesep=1.5, levelsep=3.5]%

{\Toval{root}}{\Tr{X} \Tr{Y} \Tr{Z}}

Macro \TR

root

x y z

\pstree[nodesepB=3pt, arrows=->, xbbl=15pt,

xbbr=15pt, levelsep=2.5cm]{\Tdia{root}}{%

\TR[edge={\ncbar[angle=180]}]{x}

\TR{y}

\TR[edge=\ncbar]{z}

}

Macro \Ttri

root
\psset{armB=1cm, levelsep=3cm, treesep=1cm,

angleB=-90, angleA=90, arrows=<-, nodesepA=3pt}

\def\psedge#1#2{\ncangle{#2}{#1}}

\pstree[radius=2pt]{\Ttri{root}}{\TC* \TC* \TC* \TC*}

7. Edge and node labels 13

7. Edge and node labels

Right after a node, an edge has typically been drawn, and you can attach labels using \ncput, \tlput, etc. With
\tlput, \trput, \taput, and \tbput, you can align the labels vertically or horizontally, just like the nodes. This can
look nice, at least if the slopes of the node connections are not too different.

Put macros

k r

j i

m
\pstree[radius=2pt]{\Tp}{%

\psset{tpos=.6}

\TC* \tlput{k}

\pstree{\Tc{3pt} \tlput[labelsep=3pt]{r}}{%

\TC* \tlput{j}

\TC* \trput{i}}

\TC* \trput{m}}

Within trees, the tpos parameter measures this distance from the predecessor to the successor, whatever the
orientation of the true. (Outside of trees it measures the distance from the top to bottom or left to right nodes.)

PSTricks also sets shortput=tab within trees. This is a special shortput option that should not be used outside
of trees. It implements the following abbreviations, which depend of the orientation of the true:

Short for:
Char. Vert. Horiz.
^ \tlput \taput

_ \trput \tbput

(The scheme is reversed if treeflip=true .)

thistreesep and thislevelsep

above

left right

above

below

\psset{tpos=.6}

\pstree[treemode=R, thistreesep=1cm,

thislevelsep=3cm,radius=2pt]{\Tc{3pt}}{%

\pstree[treemode=U, xbbr=20pt]{\Tc{3pt}^{above}}{%

\TC*^{left}

\TC*_{right}}

\TC*^{above}

\TC*_{below}}

You can change the character abbreviations with

\MakeShortTab{<char1>}{<char2>}

The \n*put commands can also give good results:
\n?put Macros

abov
e

above

below

\psset{npos=.6,nrot=:U}

\pstree[treemode=R, thistreesep=1cm,

thislevelsep=3cm]{\Tc{3pt}}{%

\Tc{3pt}\naput{above}

\Tc*{2pt}\naput{above}

\Tc*{2pt}\nbput{below}}

7. Edge and node labels 14

You can put labels on the nodes using \nput. However, \pstree won’t take these labels into account when
calculating the bounding boxes.

There is a special node label option for trees that does keep track of the bounding boxes:

˷ * [Options] {stuff }

Call this a “tree node label”.
Put a tree node label right after the node to which it applies, before any node connection labels (but node

connection labels, including the short forms, can follow a tree node label). The label is positioned directly below
the node in vertical trees, and similarly in other trees. For example:

Macro \pssucc

root

ℎ 𝑖 𝑗 𝑘

\pstree[radius=2pt]{\Tc{3pt}\nput{45}{\pssucc}{root}}{%

\TC*~{h} \TC*~{i} \TC*~{j} \TC*~{k}}

Note that there is no “long form” for this tree node label. However, you can change the single character used to
delimit the label with
\MakeShortTnput{<char1>}

If you find it confusing to use a single character, you can also use a command sequence. E.g.,

\MakeShortTnput{\tnput}

You can have multiple labels, but each successive label is positioned relative to the bounding box that includes
the previous labels. Thus, the order in which the labels are placed makes a difference, and not all combinations
will produce satisfactory results.

You will probably find that the tree node label works well for terminal nodes, without your intervention. How­
ever, you can control the tree node labels be setting several parameters.

To position the label on any side of the node (”l”eft, ”r”ight, ”a”bove or ”b”elow), set: tnpos=l/r/a/b

tnpos

root

ℎ 𝑖

\psframebox{%

\pstree{\Tc{3pt}~[tnpos=a,tndepth=0pt,radius=4pt]{root}}{%

\TC*~[tnpos=l]{h}

\TC*~[tnpos=r]{i}}}

When you leave the argument empty, which is the default, PSTricks chooses the label position is automatically.
To change the distance between the node and the label, set tnsep to a dimension When you leave the argument

empty, which is the default, PSTricks uses the value of labelsep. When the value is negative, the distance is
measured from the center of the node.

When labels are positioned below a node, the label is given a minimum height of tnheight. Thus, if you add
labels to several nodes that are horizontally aligned, and if either these nodes have the same depth or tnsep is
negative, and if the height of each of the labels is no more than tnheight, then the labels will also be aligned by
their baselines. The default is \ht\strutbox, which in most TEX formats is the height of a typical line of text in the
current font. Note that the value of tnheight is not evaluated until it is used.

8. Details 15

The positioning is similar for labels that go below a node. The label is given a minimum depth of tndepth. For
labels positioned above or below, the horizontal reference point of the label, i.e., the point in the label directly
above or below the center of the node, is set by the href parameter.

When labels are positioned on the left or right, the right or left edge of the label is positioned distance tnsep

from the node. The vertical point that is aligned with the center of the node is set by tnyref. When you leave this
empty, vref is used instead. Recall that vref gives the vertical distance from the baseline. Otherwise, the tnyref

parameter works like the yref parameter, giving the fraction of the distance from the bottom to the top of the label.

8. Details

PSTricks does a pretty good job of positioning the nodes and creating a box whose size is close to the true bounding
box of the tree. However, PSTricks does not take into account the node connections or labels when calculating the
bounding boxes, except the tree node labels.

If, for this or other reasons, you want to fine tune the bounding box of the nodes, you can set the following
parameters to a dimension:

name default
bbl 0pt
bbr 0pt
bbh 0pt
bbd 0pt
xbbl 0pt
xbbr 0pt
xbbh 0pt
xbbd 0pt
The ”‘x”’ versions increase the bounding box by <dim>, and the others set the bounding box to the dimension.

There is one parameter for each direction from the center of the node, left, right, height, and depth.
These parameters affect trees and nodes, and subtrees that switch directions, but not subtrees that go in the same

direction as their parent tree (such subtrees have a profile rather than a bounding box, and should be adjusted by
changing the bounding boxes of the constituent nodes).

Save any fiddling with the bounding box until you are otherwise finished with the tree.
You can see the bounding boxes by setting the showbbox=true/falseparameter to true. To see the bounding boxes

of all the nodes in a tree, you have to set this parameter before the tree.
In the following example, the labels stick out of the bounding box:

showbox

foo

left

bar

right
\psset{tpos=.6,showbbox=true}

\pstree[treemode=U]{\Tc{5pt}}{%

\TR{foo}^{left}

\TR{bar}_{right}}

Here is how we fix it:

showbbox

foo

left

bar

right
\psset{tpos=.6,showbbox=true}

\pstree[treemode=U,xbbl=8pt,xbbr=14pt]{\Tc{5pt}}{%

\TR{foo}^{left}

\TR{bar}_{right}}

9. The scope of parameter changes 16

Now we can frame the tree:

\psframebox

foo

left

bar

right

\psframebox[fillstyle=solid,fillcolor=lightgray,framesep=14pt,

linearc=14pt,cornersize=absolute,linewidth=1.5pt]{%

\psset{tpos=.6,border=1pt,nodesepB=3pt}

\pstree[treemode=U,xbbl=8pt,xbbr=14pt]{%

\Tc[fillcolor=white,fillstyle=solid]{5pt}}{%

\TR*{foo}^{left}

\TR*{bar}_{right}}}

We would have gotten the same result by changing the bounding box of the two terminal nodes.

9. The scope of parameter changes

edge is the only parameter which, when set in a tree node’s parameter argument, affects the drawing of the node
connection (e.g., if you want to change the nodesep, your edge has to include the parameter change, or you have
to set it before the node).

As noted at the beginning of this section, parameter changes made with \pstree affect all subtrees. However,
there are variants of some of these parameters for making local changes, i.e, changes that affects only the current
level: thistreesep, thistreenodesize, thistreefit=tight/loose, and thislevelsep.

For example:

Macro \TC*

\pstree[thislevelsep=.5cm,thistreesep=2cm,

radius=2pt]{\Tc*{3pt}}{%

\pstree{\TC*}{\TC* \TC*}

\pstree{\TC*}{\TC* \TC*}}

There are some things you may want set uniformly across a level in the tree, such as the levelsep. At level
<n>, the command \pstreehook<roman(n)> (e. g., \pstreehookii) is executed, if it is defined (the root node of the
whole tree is level 0, the successor tree objects and the node connections from the root node to these successors is
level 1, etc.). In the following example, the levelsep is changed for level 2, without having to set the thislevelsep

parameter for each of the three subtrees that make of level 2:

9. The scope of parameter changes 17

Keyword thislevelseo

𝑋1

𝑋2

𝑌1

𝑌2

𝐾1

𝐾2

𝐽1

𝐽2

\[

\def\pstreehookiii{\psset{thislevelsep=3cm}}

\pstree[treemode=R,levelsep=1cm,radius=2pt]{\Tc{4pt}}{%

\pstree{\TC*}{%

\pstree{\TC*}{\Tr{X_1} \Tr{X_2}}

\pstree{\TC*}{\Tr{Y_1} \Tr{Y_2}}}

\pstree{\TC*}{%

\pstree{\TC*}{\Tr{K_1} \Tr{K_2}}

\pstree{\TC*}{\Tr{J_1} \Tr{J_2}}}}

\]

18

Part II.
Theory

This is a description of a recursive alignment algorithm that is useful for drawing trees and tree-like
graphs. It is a generalization of the algorithm in [5]. The purpose of the algorithm is to recursively
construct a description of a tree in a high-level graphics language with the capabilities of PostScript.
Thus, the algorithm is a preprocessor, and the graphics interpreter is a postprocessor. This division
makes the algorithm simpler and more modular. The postprocessing could be implemented internally,
if a low-level graphics description is required.

Thanks to: Ed Reingold

10. Introduction

A tree is a collection of nodes, organized into levels, with each node’s center assigned a coordinate position. The
center of a node is where edges should point to. Trees have ragged left and right profiles, because the widths of
the levels vary. In horizontal mode, the algorithm joins trees side by side, aligned by their top levels and fitted
together tightly. In vertical mode, the algorithm stacks trees so that the nodes at the bottom level of the each tree
are centered above the nodes at the top level of the next tree.

The algorithm is implemented in pst-tvz, which is part of the PSTricks package. PSTricks is a collection of
PostScript extensions to TEX. The examples in this paper use the PSTricks implementation. The syntax of the
input file is:
\psTree

~tree objects~ \\

~tree objects~ \\

...

~tree objects~

\endpsTree

Each row except for the last ends in \\. Each row is processed in horizontal mode, and then the rows are stacked
in vertical mode. See next example.

Stacked nodes

\psTree[radius=2pt,nodesep=3pt]

\TC* \\

\psTree

\TC* \\

\TC* \TC* \\

\TC*

\endpsTree

\psTree

\TC* \TC* \\

\TC* \\

\TC* \TC* \TC*

\endpsTree

\endpsTree

11. The graphics description

The graphics language should have whatever features one needs to draw the nodes, edges and labels, plus the
ability to define procedures and variables for later reference. Furthermore, the graphics state should keep track of

11. The graphics description 19

a current point, which can be manipulated as follows:
1. Operators gsave and grestore, respectively, push the current point onto a stack and pop the top current point

from that stack.
2. The operator 𝑥 𝑦 RMOVETO shifts the current point 𝑥 units to the right and 𝑦 units down.

Note the convention that the 𝑦-direction is down.
The tree graphics description should place (the center of) the top-left node at the current point, and should not

change the current point.
The graphics description consists of these operators plus nodes, node labels, edges and edge labels. Here is what

these objects do:
Node Draws the node, without changing the current point, and defines a procedure, identified by the node’s name,

that can answer queries about where to draw edges. For example, in PSTricks the nodes can report the
coordinate of the center of the node, and the coordinate of the boundary of the node in any direction from
the center.

Node label Draws a label at a node, by querying the node to find out where to position the label.
Edge Draws a line between two nodes, querying the nodes to find out where to connect the lines, and then defines

a procedure for finding the coordinate and slope at any point on the line.
Edge label Puts a label on an edge, using the procedure for finding the coordinate and slope of a point on the last edge

that was drawn.

Labels

\def\sm{\rmfamily\scriptsize}

\footnotesize\sffamily

\psTree[radius=8pt,treesep=2.5cm,levelsep=2.5cm]

\psTree

\TCircle{A}\nput{r}{\pssucc}{\sm $(0,0)$}\TCircle{B}\nput{r}{\pssucc}{\sm $(100,0)$}

\\

\TCircle{C}\nput{r}{\pssucc}{\sm $(50,-100)$}

\endpsTree

\psTree

\TCircle{D}~[tnpos=r]{\sm $(200,0)$}

\\

\TCircle{E}^{l}\nput{r}{\pssucc}{\sm $(150,-100)$}\TCircle{F}~[tnpos=r]{\sm $(250,-100)$}_{r}

\endpsTree

\\

\TCircle{G}~[tnpos=r]{\sm $(200,-200)$}

\endpsTree

A (0, 0) B (100, 0)

C (50, −100)

D (200, 0)

E

𝑙

(150, −100) F (250, −100)

𝑟

G (200, −200)

Suppose we want to draw the graph in the above example. We start by constructing the code for the subgraph
containing nodes A, B and C. The first row (nodes A and B) is:

gsave

11. The graphics description 20

~Node A~

100 0 rmoveto

~Node B~

grestore

and the second row is:
gsave

~Node C~

~Line from Node A to Node C~

~Line from Node B to Node C~

grestore

Then we calculate that the top-left node (node C) of the second row is positioned at (50, 100) from the top-left
node (node A) of the top row. The subgraph is thus:
gsave

gsave

~Node A~

100 0 rmoveto

~Node B~

grestore

50 100 rmoveto

gsave

~Node C~

~Edge from Node A to Node C~

~Edge from Node B to Node C~

grestore

grestore

Similary, the subgraph for nodes D, E and F is:
gsave

gsave

~Node D~

grestore

-50 100 rmoveto

gsave

~Node E~

~Edge from Node A to Node C~

~Edge label~

~Node F~

~Edge from Node B to Node C~

~Edge label~

grestore

grestore

To join these two subgraphs, we calculate that the distance from the top-left node of {𝐴, 𝐵, 𝐶} to the top-left node
of {𝐷, 𝐸, 𝐹 } is (200, 0). Thus, the subgraph {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 } is
gsave

~Subgraph A,B,C~

200 0 rmoveto

~Subgraph D,E,F~

grestore

The code for the the bottom row (node G) is:
gsave

~Node G~

~Edge from Node C to Node G~

~Edge from Node E to Node G~

~Edge from Node F to Node G~

grestore

12. Language requirements 21

This node is positioned distance (150, 200) from the top-left node of subgraph {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 }, and so the code
for the whole graph is

gsave

gsave

~Subgraph A,B,C~

rmoveto(200,0)

~Subgraph D,E,F~

grestore

150 200 rmoveto

gsave

~Node G~

~Edge from Node C to Node G~

~Edge from Node E to Node G~

~Edge from Node F to Node G~

grestore

grestore

12. Language requirements

I assume that the preprocessing language has operators BEGINGROUP and ENDGROUP that keep changes to variables
local to the group, and GLOBAL which make the next change global.

There must be enough memory to hold the entire description of the tree in memory, because the algorithm
constructs the description recursively rather than linearly.

I use the following data types:

integer INT
boolean BOOL
string STRING
dimension DIM
list of strings LOS
list of dimensions LOD

Dimensions might be integers or reals, depending on the implementation. The algorithm only uses integer arith­
metic.

13. Accounting

As seen in Section 11, joining subtrees is mainly a problem of finding the distance between them. If we simply
joined them by inserting a fixed amount of space between their bounding boxes (the way TEX builds boxes from
boxes) then we would only need to know each subtree’s bounding box. Instead, for horizontal mode we need to
keep track of the different sizes of the levels (the profiles). For alignment in vertical mode, we also need to know
the positions of the extreme nodes in the top and bottom levels. For automatic drawing of edges, we need to keep
track of the names of the nodes at the bottom level (which the top nodes of the next level draw edges to). We keep
track of a few more items that are used by some of the special features described in Section 16.

Here is the list of the tree data. (The distance between nodes refers to the distance between the centers of the
nodes.) There is some redundancy, because it can be faster to keep track of information in the form it is needed
rather than extracting it from other information.
treecode The graphics description of the tree. (DIM)
width The distance from the top-left node to the top-right node. (DIM)
leftprofile The horizontal distance from the left edge of the bounding box of each level to the top-left node.

(LOD)
rightprofile The horizontal distance from the top-right node to the right edge of the bounding box of each level.

(LOD)

14. Horizontal mode 22

leftbase The horizontal distance from the bottom-left node to the top-left node. (DIM)
rightbase The horizontal distance from the top-right node to the bottom-right node. (DIM)
center The distance from the top-left node to the center of the top level (for alignment in vertical mode), or NULL

if the center should be the midpoint between the top-left and the top-right nodes. (DIM)
centerbase The distance from the top-left node to the center of the bottom level (for alignment in vertical mode),

or NULL if the center should be the midpoint between the bottom-left and bottom-right nodes. (DIM)
height The vertical distance from the top of the bounding box to the top level. (DIM)
depth The vertical distance from the top level to the bottom of the bounding box. (DIM)
leftsize The horizontal distance from the left side of the bounding box to the top-left node. (DIM)
rightsize The horizontal distance from the top-right node to the right side of the bounding box. (DIM)
rootnodes A list of the names of the top-level nodes. (LOS)
basenodes A list of the names of the bottom-level nodes. (LOS)
cumlevelsep The distance between the first and last levels. (DIM)
numlevels The number of levels in the tree. (INT)

levelsizes The list of the height and depth of the bounding box of each level, plus, for every level except the last, the
vertical distance to the next level.

See Figure 2.

14. Horizontal mode

In horizontal mode, the trees are aligned by their toplevels (i. e., a tree’s baseline is the center of its top level). We
add trees to the row one-by-one, updating the description of the row each time.

A row, while under construction, is itself a tree, and each time we add a tree we update the data for the row.
As we construct the graphics description for the row, the current point is left at the top-left node of the last tree.
We keep track of the width of the last tree (Lastwidth). Each time we add a tree to the row, we face the canonical
problem of determining how much space to leave between the top-right node of the row and the top-left node of
the next tree.

To distinguish the tree data variables of the row from those of the next tree to be added to the row, we begin
the variable names for the row with capital letters. E. g., Leftprofile is the leftprofile of the row, and leftprofile

is the leftprofile of the next tree.
When adding the first tree object, we have to simply initialize the row’s variables:

Treecode = treecode

Width = width

Lastwidth = width

Leftprofile = leftprofile

Rightprofile = rightprofile

Leftbase = leftbase

Rightbase = rightbase

Center = center

Centerbase = centerbase

Height = height

Depth = depth

Leftsize = leftsize

Rightsize = rightsize

Rootnodes = rootnodes

Basenodes = basenodes

Cumlevelsep = cumlevelsep

Numlevels = numlevels

Levelsizes = levelsizes

For subsequent tree object’s, we first find the distance between the top-right node of the current row and the
top-left node of the next object, and we assign the result to sep. We want the minimum distance between the
objects, level-by-level, to be treesep (a parameter):

14. Horizontal mode 23

L1

L2

R1

R2

leftbase rightbase

cumlevelsep

leftprofile = { L1 , L2 }

rightprofile = { R1 , R2 }

leftsize width rightsize

height

depth

H1

D1

H2

D2

levelsep1

levelsizes = { H1 , D1 , levelsep1 , H2 , D2 }

Figure 2: Tree data

14. Horizontal mode 24

sep = MAX { Rightprofile ++ leftprofile } + treesep

where ++ makes a list by adding two lists item-by-item, up to the length of the shortest list.
Now we can add the new tree’s code to the row’s code:

Treecode = CONCAT

{

Treecode

sep + Lastwidth 0 rmoveto

treecode

}

Then we update the row description. First we set Width to the distance from the top-left node of the row to the
top-left node of the next tree (Width+sep) and we set sep to the distance from the top-right node of the previous
tree to the top-right node of the next tree (sep+width), because these quantities are used in the calculations of the
other row variables. At the end, we set Width to the actual width of the row (Width+width).

Width = Width + sep

sep = sep + width

Lastwidth = width

Leftprofile = BIMAX { Leftprofile , leftprofile - Width }

Rightprofile = BIMAX { Rightprofile - sep , rightprofile }

IF Numlevels < numlevels

THEN Leftbase = Leftbase - Width

FI

Rightbase = IF Numlevels > numlevels

THEN Rightbase - sep - width

ELSE rightbase

FI

Height = MAX { Height , height }

Depth = MAX { Depth , depth }

Leftsize = MAX { Leftsize , leftsize - Width }

Rightsize = MAX { Rightsize - sep , rightsize }

Rootnodes = CONCAT { Rootnodes , rootnodes }

IF center = NULL

ELSE Center = center + Width

FI

IF Numlevels < numlevels OR (Numlevels = numlevels

AND NOT centerbase = NULL)

THEN Centerbase = centerbase + Width

FI

IF Numlevels < numlevels

THEN Basenodes = basenodes

ELSE IF Numlevels = numlevels

THEN Basenodes = CONCAT { Basenodes , basenodes }

FI

FI

Numlevels = MAX { Numlevels , numlevels }

Levelsizes = BIMAX { Levelsizes, levelsizes }

Width = Width + width

The updating that depends on Numlevels and numlevels can be summarized:

IF Numlevels < numlevels

THEN Leftbase = leftbase - Width

Centerbase = centerbase + Width

Rightbase = rightbase

Basenodes = basenodes

Cumlevelsep = cumlevelsep

ELSE IF Numlevels = numlevels

THEN Basenodes = CONCAT { Basenodes , basenodes }

Rightbase = rightbase

15. Vertical mode 25

Tree
⎧

⎨
⎩

Row
⎧

⎨
⎩

Top-left node Center of base

centerbase

Center of topTop-left node

Center

sep

Figure 3: Aligning rows in vertical mode.

IF centerbase = NULL

ELSE Centerbase = centerbase + Width

FI

ELSE Rightbase = Rightbase - sep

FI

FI

Nodes are treated in the same way. A node is a trivial tree. It is completely described by its nodeleftsize (distance
from the center to the left side of the bounding box), noderightsize, nodeheight, nodedepth and name. Here is the
value of all the tree object variables in terms of the leftsize, rightsize, height, depth and name:

treecode = {~node~}

width = 0

leftprofile = {nodeleftsize}

rightprofile = {noderightsize}

leftbase = 0

rightbase = 0

center = NULL

centerbase = NULL

height = nodeheight

depth = nodedepth

leftsize = nodeleftsize

rightsize = noderightsize

rootnodes = {name}

basenodes = {name}

cumlevelsep = 0

numlevels = 1

levelsizes = {height,depth}

15. Vertical mode

Here is the description of vertical mode. We also add rows one at a time, updating the description of the tree each
time. Each row is just a tree object, and a partially completed tree is just a tree object. Therefore, the problem of
joining rows is just the canonical problem of stacking two tree objects.

The description variables of the row begin with capital letters, and so we revert to uncapitalized names for the
description variables of the tree.

When adding the first row, we simply have to initialize the tree’s variables, setting treecode=Treecode, etc.
To add the subsequent rows, we first have to find the horizontal displacement of the top-left node of the next

row from the top-left node of the tree. We chose this displacement so that the centerbase of the tree is aligned
with the Center of the row, as shown in Figure 3.

First, calulate centerbase and Center if these are NULL:

16. Bells and whistles 26

IF centerbase = NULL

THEN centerbase = (width + rightbase - leftbase) / 2

FI

IF Center = NULL

THEN Center = width / 2

FI

Then set sep to the horizontal distance between the top-left nodes of the tree and row:

sep = centerbase - Centerbase

Next we calculate the vertical displacement. Each time we add a row, the current point ends up at the top-left
node of the last row. We save the Cumlevelsep of the last row as lastcumlevelsep. The distance from the bottom
level of the tree and the top level of the next row is the canonical distance between levels, levelsep, which is a
parameter. Hence, the total displacement is

lastcumlevelsep + levelsep

Thus, we add the new row’s code to the tree’s code with:

treecode = CONCAT {

treecode

sep lastcumlevelsep+levelsep rmoveto

Treecode

}

Now we have to update the description. At first, cumlevelsep is set to the distance from the top level of the tree
to the top level of the next row (cumlevelsep + levelsep) and rightsep is set to the horizontal distance from the
top-right node of the tree to the top-right node of the next row (sep + Width - width), because these are used when
updating the other variables. At the end, cumlevelsep is set to the actual cumlevelsep (cumlevelsep + Cumlevelsep).

cumlevelsep = cumlevelsep + levelsep

lastcumlevelsep = Cumlevelsep

rightsep = sep + Width - width

leftprofile = CONCAT { leftprofile , Leftprofile - sep }

rightprofile = CONCAT {

rightprofile ,

Rightprofile + rightsep)

}

leftbase = Leftbase - sep

rightbase = Rightbase + rightsep

centerbase = IF Centerbase=NULL

THEN NULL

ELSE Centerbase - sep

FI

height = MAX { height , Height - cumlevelsep }

depth = MAX { depth , Depth + cumlevelsep }

leftsize = MAX { leftsize , Leftsize - sep }

rightsize = MAX { rightsize , Rightsize + rightsep }

rootnodes = rootnodes

numlevels = numlevels + Numlevels

levelsizes = CONCAT { levelsizes , levelsep , Levelsizes }

cumlevelsep = cumlevelsep + Cumlevelsep

16. Bells and whistles

e also need to keep track of the list of nodes in the tree object, and the coordinates of the nodes. We can measure
the coordinates relative to the top-left node. Then when we join two tree objects, we find the top-left node of the
new object, join the lists of nodes, and update the coordinates with respect to the top-left node. This is simplified

16. Bells and whistles 27

by the fact that once a tree object has been formed, the relative position of the nodes within that object does not
change when the object is nested inside another tree object.

I have so far described the algorithm assuming that the objects in a row are joined from left to right, and then
the rows are stacked from top to bottom, and I will continue to use this convention throughout. However, the
algorithm is the same when the tree objects grow in different directions; all that differs in pst-tvz is how one
joins tree objects. For example, after calculating the distance between the top-left nodes of two tree objects, do we
position the second object below, to the right, above or to the left of the first object?

pst-tvz uses a key=value system for controlling the algorithm. Keys are called parameters. Here are the param­
eters that control the direction in which the tree is constructed:
treemode The treemode is the direction in which trees grow (in which rows are stacked). The value is stored as an

integer:

down -> 0

right -> 1

up -> 2

left -> 3

In vertical trees (treemode is even), the rows are horizontal. In horizontal trees (treemode is odd), the rows
are vertical.

treeflip treeflip is a boolean that sets the direction in which rows are constructed. When false, the horizontal rows
of vertical trees are constructed from left to right (in the order in which objects appear in the input file), and the
vertical rows of horizontal trees are constructed from top to bottom. When true, the rows of vertical trees are
constructed from right to left, and the rows of horizontal trees are constructed from bottom to top.

For example:

treemode

First

Second

Third
\psTree[treemode=R,treeflip=true,nodesep=3pt]

\Tc{3pt} \\

\Tr{First} \Tr{Second} \Tr{Third}

\endpsTree

There are several methods for setting this distance.
If the ”treesep*” parameter has been set, then

sep = treesep*

That is, the spacing between the centers of the nodes (and hence between edges) is fixed.
Otherwise, if the treefit parameter equals tight,
If instead treefit=loose , the distance between the tree objects’ bounding boxes be treesep. I. e.,

sep = MAX { Rightprofile } + MAX { leftprofile } + treesep

In summary:

sep = IF treesep* = NULL

THEN IF treefit = tight

THEN MAX { Rightprofile ++ leftprofile } + treesep'

ELSE MAX { Rightprofile } + MAX { leftprofile } + treesep

FI

ELSE treesep*

FI

If both objects have more than one level, then increase sep by xtreesep:

IF Numlevels > 1

THEN IF numlevels > 1

16. Bells and whistles 28

THEN ADVANCE sep BY xtreesep

FI

FI

Positive values of xtreesep can be used to highlight the structure of the trees.
Finally, if the user inserts

\addtreesep{~dim~}

before a tree object, then dim is saved in the addtreesep variable, and we add this to sep:

IF addtreesep = NULL

ELSE ADVANCE sep BY addtreesep

FI

Treecode = CONCAT {

Treecode ,

IFODD Treemode

THEN IF Treeflip=TRUE

THEN 0 sep rmoveto

ELSE 0 -sep rmoveto

FI

ELSE IF Treeflip=TRUE

THEN -sep 0 rmoveto

ELSE sep 0 rmoveto

FI

FI

,

treecode

}

A node calculates its leftsize, rightsize, height, depth and name, and then invokes \node@makecanonical@tree,
which does the assignment given above.

The assignment actually depends on the orientation of the row, because the node calculates its dimensions for
an upright orientation. That is, the assignment given above is correct if the row is part of a horizontal tree that
grows down and if the row adds objects from left to right.

Here is the general assignment of leftprofile, rightprofile, height and depth:

height = IFCASE Treemode

nodeheight

OR leftsize

OR nodedepth

OR rightsize

FI

depth = IFCASE Treemode

nodedepth

OR rightsize

OR nodeheight

OR leftsize

FI

leftsize = IFODD Treemode

THEN IF Treeflip=TRUE

THEN nodedepth

ELSE nodeheight

FI

ELSE IF Treeflip=TRUE

THEN rightsize

ELSE leftsize

FI

FI

rightsize = IFODD Treemode

16. Bells and whistles 29

THEN IF Treeflip=TRUE

THEN nodeheight

ELSE nodedepth

FI

ELSE IF Treeflip=TRUE

THEN leftsize

ELSE rightsize

FI

FI

leftprofile = { leftsize, }

rightprofile = { rightsize, }

However, if the treenodesize is set, then the profile are set using this value as half the “width” of the node. That
is:

IF treenodesize = NULL

THEN leftprofile = { leftsize, }

rightprofile = { rightsize, }

ELSE leftprofile = { treenodesize, }

rightprofile = leftprofile

FI

Tree objects whose orientation is different from the row are given special treatment. If the object has the same
direction, but a different flip, then we simply swap the left and right profiles, and related items:

IF Treemode = treemode

THEN IF Treeflip = treeflip

ELSE temp = leftprofile

leftprofile = rightprofile

rightprofile = temp

temp = leftbase

leftbase = rightbase

rightbase = temp

temp = leftsize

leftsize = rightsize

rightsize = temp

center = IF center = NULL

THEN NULL

ELSE width - center

FI

centerbase = IF centerbase = NULL

THEN NULL

ELSE width - centerbase

FI

FI

FI

If the tree objects has a different direction, then we treat the object like a node, centered at the center of its top
level

IF Treemode = treemode

ELSE tree@makecanonical@node

node@makecanonical@tree

FI

Here is the definition of tree@makecanonical@node:

IF center = NULL

THEN center = width / 2

FI

IF center = 0

ELSE SETBOX box =

IFODD treemode

16. Bells and whistles 30

THEN VBOX TO 0 BEGINBOX VSS

ELSE HBOX TO 0 BEGINBOX HSS

FI

BOX box

KERN IF Treeflip = TRUE THEN - FI center

ENDBOX

FI

IF treeflip = TRUE

THEN tempa = rightsize + width - center

tempb = leftsize + center

ELSE tempa = leftsize + center

tempb = rightsize + width - center

FI

IFODD treemode

THEN nodeheight = tempa

nodedepth = tempb

ELSE leftsize = tempa

rightsize = tempb

FI

IFCASE treemode

nodeheight = height

nodedepth = depth

OR leftsize = height

rightsize = depth

OR nodeheight = depth

nodedepth = height

OR leftsize = depth

rightsize = height

FI

We increase ”sep” by treeshift:
ADVANCE sep BY treeshift

Now we insert levelsep between the trees, move the row by sep, and add an extra space of Cumlevelsep so that
the total size of the the tree is the same as cumlevelsep. With vertical trees we do this in a \vtop and in horizontal
trees we do this in an \hbox. I. e.,
IFODD treemode

THEN HBOX

{

UNHBOX box

IF treeflip = TRUE

THEN KERN - levelsep

LOWER sep BOX hbox

KERN - Cumlevelsep

ELSE KERN levelsep

RAISE sep BOX hbox

KERN Cumlevelsep

FI

}

ELSE VTOP

{

UNVBOX box

IF treeflip = TRUE

THEN KERN - levelsep

MOVELEFT sep BOX hbox

KERN - Cumlevelsep

ELSE KERN levelsep

MOVERIGHT sep BOX hbox

KERN Cumlevelsep

FI

}

17. The PSTricks implementation 31

FI

17. The PSTricks implementation

In pst-tvz, we can let TEX keep track of nodes and node coordinates internally. We store each tree object in a TEX
box with zero size, such that the current point is at the center of the top left node. We create a new tree object in
a TEX box, inserting space between the component objects.

With TEX, we construct the row for both vertical and horizontal trees using an \hbox. In an \hbox, we can insert
horizontal space to separate tree objects in a horizontal row, and we can lower or raise objects below or above to
baseline to separate tree objects in a vertical row. For horizontal rows (vertical trees), the current insertion point
is thus at the top-left node of the last object, and so we also need to know the width of this object. This value
is stored in wsep after adding a tree object, and then wsep is set to the total distance between the top-left node of
the last object and the top-left node of the current object. In vertical rows (horizontal trees). the current insertion
point is at the top-left node of the row, and so we also need to know the width of the current row, but this is already
stored in Width. We set wsep to the total distance between the top-left node of the row and the top-left node of the
new object.

IFODD treemode

THEN wsep = Width + sep

ELSE wsep = wsep + sep

FI

We add the space and the tree object

IFODD treemode

THEN LOWER wsep

ELSE KERN wsep

FI

BOX box

and update the row description:

18. Examples

Here is how this information is used to position the successors. First, all terminal nodes are treated as single-level
trees. Thus, the canonical successor is a subtree (that has the same orientation as the parent tree). The successors
are positioned so that their centers line up horizontally. How the distance between successors is calculate depends
on the values of two parameters:

• When ”treefit=tight”, the subtrees are positioned so that the minimum distance between levels is ”treesep”.
This is calculated by adding the right profile of the current group of successors (this profile is with respect
to the center of the right-most successor) to the left profile of the new successor item by item, finding the
maximum of the resulting list, and then adding ”treesep”.

• When treefit=loose , the subtrees are positioned so that the distance between their bounding boxes is
treesep.

• When also treenodesize is non-negative, the top level of each subtrees is given a width of <dim>, for the purpose
of fitting the subtrees together.

After the row of successors is constructed, and its profiles, height and depth are calculated, the root object is
positioned above the row of successors so that the center of the root object is centered between the centers of
the first and last successors (although this can be modified). The distance between the root object and the row of
successors is levelsep. The profiles, height and depth of the resulting tree are calculated from the dimensions of
the root object and the dimensions of the row of successors.

The treemode parameter determines the direction in which the tree grows, and the treeflip parameter deter­
mines the direction in which successors are added. The values of these parameters together are called the tree’s

18. Examples 32

orientation. The terminology used above is for trees with the default orientation: treemode=D and treeflip=false

(the tree grows down and successors are added from left to right). However, the logical structure of a tree does
not depend on its orientation, and so we can use the same terminology and accounting system for all trees. Here
is the correspondence between

• For a vertical tree that grows up, successors are also added from left to right, and so the profiles are as
described above (although “top” levels are physically at the bottom of the tree). The “height” and “depth” of
tree is the distance from the center to the physical bottom and top, respectively, of the bounding box.

• For a horizontal tree, successors are added from top to bottom. The “left” profiles are the physical top profiles,
and the “right” profiles are the physical bottom profiles. The “height” and “depth” of a horizontal tree that
grows to the right are the distances from the center of the tree to the left and right sides, respectively, of its
bounding box. The opposite holds if the tree grows to the left.

• If treeflip=true, then successors are added in the opposite direction, and so the left and right profiles are switched.
“Right” always refers to the direction in which new successors are added.

A root node can actually be a subtree, and a subtree can have a different orientation from its parent. Here is
how we deal with these special cases:

The canonical root object is a node. Trees are converted to this canonical root object by calculating their bound­
ing box, and thereby determining their height, width, left and right sizes.

The canonical successor is a subtree that has the same orientation as the parent tree. Nodes and trees that grow
in other directions are converted to this canonical succcessor by treating them as single level trees. That is, the
left profile is just the left size of the node or tree (with respect to the orientation of the parent tree), and the right
profile is the right size of the node or tree.

In addition to being a root or successor of a tree, a tree object can be unnested, or “outer”. The canonical outer
object is a node, and it is made into a box whose dimensions are the size of the node. Trees are converted to this
canonical outer. Hence, when a tree is outer, we only need to remember store its bounding box, and can forget
about its profile.

A subtree that grows in the same direction (which is weaker than having the same orientation) is called a proper
subtree. All other trees—outer, root, or subtrees that change directions—are not proper.

The three places a tree object can be found—root, successor or outer—are called modes. By an unfortunate
historical accident, the directions trees grow—down, up, right and left—are also called modes. However, this should
not cause confusion in the code.

The programming implementation of this algorithm ismodular. Tree objects, which are either nodes or (sub)trees,
save their dimensions in designated registers and commands. Then they invoke

\ps<object_type>@makecanonical

<object_type> is node or tree. This translates the object’s dimensions into dimensions of a canonical object for
the current mode. Then the object invokes

\ptr@build

which positions the box (\ptr@box) containing the object, also depending on the current mode.
Here are the registers and commands that a tree object must set before invoking \ps<object_type>@makecanonical

and \ps<object_type>@build:
Nodes These are all dimension registers, and should not be set globally.

\pst@dima left size
\pst@dimb right size
\pst@dimc height
\pst@dimd depth

Trees \PTR@height and \PTR@depth are count registers, measuring sp units. The others are lists. These are set
globally, so that a tree can use these commands and registers while it is being constructed. However, changes
are actually kept local with respect to the structure of trees because he values in effect when the tree is started
are restored at the end of the tree.

18. Examples 33

\PTR@height height
\PTR@depth depth
\PTR@leftprofile left profile
\PTR@rightprofile right profile
\PTR@levelsizes level size

ll

The \ps<object_type>@makecanonical commands translate the values stored in the commands and registers listed
above, and assign the results to the following commands and registers, for use by \ps<object_type>@build:
Outer mode Outer objects use \pst@dima, \pst@dimb, \pst@dimc and \pst@dimd, like nodes. These dimensions refer

to the physical dimensions. I.e., they do not depend on the orientation of the object.

Root mode These are all commands.

\psroot@leftsize left size
\psroot@rightsize right size
\psroot@height height
\psroot@depth depth

Successor objects \ptr@height and \ptr@depth are counters, and the remaining are lists.
\ptr@height height
\ptr@depth depth
\ptr@leftprofile left profile
\ptr@rightprofile right profile
\ptr@levelsizes level size

ll

Except for \pst@dima, etc., used for the dimensions of nodes, root and outer objects, all values are stored as
integers, giving the distance in sp units. Much of the accounting is done using counters and sp units, because this
is more efficient and because counters are not quite as scarce as dimension registers.

When a subtree is made canonical, we need to know the orientation of both the subtree and the parent tree. We
use \psk@Treemode and \if@Treeflip to keep track of the orientation of the parent tree. These are set by the parent
tree when it begins to process the row of successors. This information is not needed by root objects.

When the value of the levelsep parameter is preceded by *, the size of the levels is taken into account when
setting the distance between levels. This information is only known after the tree has been constructed, because
levels extend beyond the recursive structure of the trees. That is, the distance between levels of one subtree will
depend on the distance be levels of other (disjoint) subtrees. Therefore, we write this information to an auxilary
file, to be read the next time the main input file is processed. Each level in a tree must have a unique identifier, so
that a subtree can find the distance between levels by looking up the value for its tree and level. The count register
\ptr@ID is used to indentify trees, and the count register \ptr@levelID is used to identify the levels in a tree.

The logical compenents of a tree do not coincide with the physical components when subtree appears as a root
tree, or as a successor to a parent with a distinct orientation. E. g., there is no point in trying to synchronize
the distance between levels of two subtrees that grow in different directions. Hence, in each of these cases, the
\ptr@ID is advanced so that for the purpose of determining the distance between levels, the subtree has a different
indentifier from its parents. For a subtree that appears as a successor, the identifier should be changed when
\psk@treemode does not equal \psk@Treemode. So that this test works in outer and root mode, the \psk@treemode is
set to −1 in these modes (the treemode is saved as 0, 1, 2 or 3).

Because the value of \ptr@ID can change globally within a tree, a tree’s identifier is saved as \ptr@id immediately
after \ptr@ID is incremented. \ptr@id is an ordinary command.

In addition to not relying on TEX boxes to do all the accounting, we cannot rely on TEX grouping to do keep values
of certain commands and registers local. This is because the successors, which are in their own TEX group, must
communicate information to the parent tree as it constructs the row of successors (e. g., by modifying the parent
tree’s \PTR@height). We get around this by saving and restoring the values of certain commands and paramters just
before and after processing the row of sucessors.

There are some special features whose implementation is incorporated into the makecanonical and build com­
mands, for efficiency:
Adjust bounding boxes Bounding boxes are only adjusted for nodes or for a tree that is an outer or root object or

that changes directions. Such trees are first made into nodes, via \ptr@makecanonical@outer, and it is at the
end of this command that bounding box adjustment is invoked. The bounding box adjustment is invoked

18. Examples 34

by nodes just before \psnode@makecanonical.
Show bounding boxes The show bounding box commands are invoked as follows:

• For nodes, just after the bounding box adjustment.
• For trees that invoke \ptr@makecanonical@outer, just after the bounding box adjustment.

• For subtrees that have the same treemode as their parent, at the beginning of the \ptr@makecanonical@succ

command.
Skip levels The commands for finding the amount of space to be skipped and the profiles of the skipped levels are invoked

at the beginning of the tree macros, or in \psnode@makecanonical@succ. The adjustment of the box and profiles takes
place in \ptr@build@succ.

19. List of all optional arguments for pst-thick 35

19. List of all optional arguments for pst-thick

Key Type Default
treemode ordinary D

treeflip boolean true

root ordinary \TC

treesep ordinary 0.75cm

thistreesep ordinary [none]

xtreesep ordinary 0.75cm

thisxtreesep ordinary [none]

treenodesize ordinary -1pt

thistreenodesize ordinary -1pt

treefit ordinary tight

thistreefit ordinary tight

treerep ordinary 1

bbl ordinary [none]

bbr ordinary [none]

bbh ordinary [none]

bbd ordinary [none]

xbbl ordinary [none]

xbbr ordinary [none]

xbbh ordinary [none]

xbbd ordinary [none]

showbbox boolean true

levelsep ordinary 2cm

thislevelsep ordinary [none]

varlevelsep boolean true

treeshift ordinary 0

skiplevels ordinary 0

unary ordinary middle

thisunary ordinary middle

leafalign ordinary true

edge ordinary \ncline

skipedge ordinary

fansize ordinary 1cm

tnsep ordinary

tnyref ordinary

tnheight ordinary \ht \strutbox

tndepth ordinary \dp \strutbox

tnpos ordinary

References

[1] Denis Girou. “Présentation de PSTricks”. In: Cahier GUTenberg 16 (Apr. 1994), pp. 21–70.

[2] Michel Goosens et al. The LATEX Graphics Companion. second. Boston, Mass.: Addison-Wesley Publishing
Company, 2007.

[3] Michel Goossens et al. The LATEX Graphics Companion: Illustrating Documents with TEX and PostScript. Tools
and Techniques for Computer Typesetting. Reprint of the second edition from Addison Wesley. Heidelberg
and Berlin: Lehmanns Media, 2022, pp. xxi + 975.

References 36

[4] Nikolai G. Kollock. PostScript richtig eingesetzt: vom Konzept zum praktischen Einsatz. Vaterstetten: IWT,
1989.

[5] Edward Reingold and John Tilford. “Tidier Drawings of Trees”. In: IEEE Transactions on Software Engineer­
ing SE-7.2 (1981).

[6] Herbert Voß. PSTricks – Grafik für TEX und LATEX. fifth. Heidelberg/Hamburg: DANTE – lehmanns media,
2010.

[7] Herbert Voß. PSTricks – Graphics for LATEX. 1. Cambridge: UIT, 2011.

[8] Timothy Van Zandt. multido.tex - a loop macro, that supports fixed-point addition. CTAN:/macros/generic/mul
tido.tex, 1997.

[9] Timothy Van Zandt and Denis Girou. “Inside PSTricks”. In: TUGboat 15 (Sept. 1994), pp. 239–246.

CTAN:/macros/generic/multido.tex
CTAN:/macros/generic/multido.tex

Index

Symbols
˷, 14

A
a, 14
armA, 11
.aux, 10

B
b, 14
bbd, 15
bbh, 15
bbl, 15
bbr, 15

D
D, 7, 31
\def, 11

dvips, 3

E

edge, 11, 16

\endpsTree, 4

Environment

- psTree, 4

Extension

- .aux, 10

F

fansize, 6

G

grestore, 19

gsave, 19

H

\hbox, 30

href, 15

\ht, 14

I

Treeflip, 33

J

\jobname, 10

K

Keyvalue

- a, 14

- b, 14

- D, 7

- l, 14

- L, 7

- loose, 8, 16

- r, 14

- R, 7

- tight, 8, 16, 27

- U, 7

Keyword

- armA, 11

- bbd, 15

- bbh, 15

- bbl, 15

- bbr, 15

- edge, 11, 16

- fansize, 6

- href, 15

- labelsep, 14

- levelsep, 10, 16, 25, 30f, 33

- name, 12

- nodesep, 6, 16

- nodesepA, 6

- offsetA, 6

- ref, 5

- shortput, 13

- showbbox, 15

- showbox, 15

- thislevelseo, 17

- thislevelsep, 13, 16

- thistreefit, 16

- thistreenodesize, 16

- thistreesep, 13, 16

- tndepth, 15

- tnheight, 14

- tnpos, 14

- tnsep, 14f

- tnyref, 15

- tpos, 13

- treefit, 8f, 27, 31

- treeflip, 8, 13, 26, 31

- treemode, 7f, 26, 31, 33

- treemode=, 7

- treenodesize, 9, 28, 31

- treesep, 8, 27, 31

- treeshift, 30

- varlevelsep, 10

- vref, 15

- xbbd, 15

- xbbh, 15

37

References 38

- xbbl, 15

- xbbr, 15

- xtreesep, 27

- yref, 15

L

L, 7

l, 14

labelsep, 14

levelsep, 10, 16, 25, 30f, 33

loose, 8f, 16, 27, 31

M

\MakeShortTab, 13

\MakeShortTnput, 14

N

name, 12

\ncdiag, 11

\ncdiagg, 11

\ncline, 11

\ncput, 13

nodesep, 6, 16

nodesepA, 6

none, 11

\nput, 14

O

offsetA, 6

P

Package

- pst-tvz, 18, 26, 30

PostScript

- grestore, 19

- gsave, 19

- RMOVETO, 19

Program

- dvips, 3

\psedge, 11

\psframebox, 16

treemode, 33

Treemode, 33

makecanonical, 33

succ, 33

\psovalnode, 4

\pspred, 10

depth, 32

height, 32

leftsize, 32

rightsize, 32

\pssucc, 10, 14

pst-tvz, 18, 26, 30

dima, 32

dimb, 32

dimc, 32

dimd, 32

\pstree, 4, 8, 14, 16

psTree, 4

\psTree, 4

psTree, 4

\psTree, 4

\pstreehookii, 16

box, 32

succ, 33

depth, 32

height, 32f

id, 33

ID, 33

leftprofile, 32

levelID, 33

levelsizes, 32

outer, 33

succ, 33

rightprofile, 32

R

R, 7

r, 14

ref, 5

\renewcommand, 11

RMOVETO, 19

\rnode, 5

\Rnode, 5

Rokicki, 3

\rput, 3

S

shortput, 13

showbbox, 15

showbox, 15

\space, 9

\strutbox, 14

subtree, 4, 8

Syntax

- ˷, 14

T

tab, 13

\taput, 13

\tbput, 13

\Tc*, 5

\TC*, 4f, 16

References 39

\Tcircle*, 5

\TCircle*, 5

\Tdia*, 5

\Tdot*, 5

\Tf*, 5

\Tfan*, 5

thislevelseo, 17

thislevelsep, 13, 16

thistreefit, 16

thistreenodesize, 16

thistreesep, 13, 16

tight, 8, 16, 27

\tlput, 13

\Tn, 5

tndepth, 15

tnheight, 14

tnpos, 14

tnsep, 14f

tnyref, 15

\Tova, 12

\Toval, 4, 12

\Toval*, 5

\Tp, 4

\Tp*, 5

tpos, 13

\Tr, 5

\TR, 5, 12

\Tr*, 5

\TR*, 5

tree objects, 4

treefit, 8f, 27, 31

treeflip, 8, 13, 26, 31

treemode, 7f, 26, 31, 33

treemode=, 7

treenodesize, 9, 28, 31

treesep, 8, 27, 31

treeshift, 30

\trput, 13

true, 13

\tspace, 9

\Ttri, 12

\Ttri*, 5

U

U, 7

V

Value

- D, 31

- loose, 8f, 27, 31

- none, 11

- tab, 13

- tight, 8

- true, 13

varlevelsep, 10

vref, 15

\vtop, 30

X

xbbd, 15

xbbh, 15

xbbl, 15

xbbr, 15

xtreesep, 27

Y

yref, 15

	Using the package
	Overview
	Tree Nodes
	Tree orientation
	The distance between successors
	Spacing between the root and successors
	Edges
	Edge and node labels
	Details
	The scope of parameter changes

	Theory
	Introduction
	The graphics description
	Language requirements
	Accounting
	Horizontal mode
	Vertical mode
	Bells and whistles
	The PSTricks implementation
	Examples
	List of all optional arguments for pst-thick
	References

