
tkz-grapheur [en]
A grapher, based

on TikZ and xint.
Version 0.2.9 – 12/01/2026

Cédric Pierquet
c pierquet – at – outlook . fr

https://forge.apps.education.fr/pierquetcedric/packages-latex

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

L

M

D E

0.25 1.4 3.3π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π
0

√
2/2

1/2

√
3/2

1

−1
−
√
3/2

−1/2

−
√
2/2

To my Dad.

https://forge.apps.education.fr/pierquetcedric/packages-latex

Contents

1 Introduction 3
1.1 Description and general ideas . 3
1.2 Overall operation . 3
1.3 Packages used, and package options . 3
1.4 Warnings . 4
1.5 Introductory example . 4

2 Basic Styles and Environment Creation 6
2.1 Basic Styles . 6
2.2 Creating the environment . 6

2.2.1 Manual values . 6
2.2.2 With choice of dimensions . 8

2.3 Grids and axes . 9
2.4 Adding values manually . 11

3 Specific definition commands 13
3.1 Draw a line . 13
3.2 Define a function, draw the curve of a function . 14
3.3 Define/draw an interpolation curve (simple) . 15
3.4 Define/draw an interpolation curve (Hermite) . 16
3.5 Define points as nodes . 17
3.6 Mark Points . 19
3.7 Retrieve node coordinates . 20
3.8 Place text . 20

4 Specific commands for using curves 21
4.1 Image placement . 21
4.2 Antecedent determination . 22
4.3 Antecedent construction . 23
4.4 Intersections of two curves . 25
4.5 Extrema . 26
4.6 Integrals (improved version) . 30
4.7 Tangents . 34
4.8 Linear inequality . 37

5 Commands specific to two-variable statistics 39
5.1 Limitations . 39
5.2 The point scatter . 39
5.3 The regression line . 39
5.4 Other regressions . 40

6 Auxiliary commands 44
6.1 Intro . 44
6.2 Formatted rounding . 44
6.3 Random number under constraints . 44
6.4 Monte-Carle method . 46
6.5 Some pgfplots macros . 48

7 History 50

[tkz-grapheur] - 2 -

1 Introduction

1.1 Description and general ideas

With this modest package, far from the capabilities offered by the excellent packages tkz-*1 (by Alain
Matthes) or tzplot2 (by In-Sung Cho), it is possible to work on function graphs, in TikZ language,
in an intuitive and explicit way.
Concerning the overall operation:

• particular styles for the objects used have been defined, but they can be modified locally;

• the name of the commands is in operational form, so that the construction of the graphic elements
has an almost algorithmic form.

1.2 Overall operation

To schematize, it is enough:

• to declare the parameters of the graphics window (units in cm !);

• to display grid/axes/graduations;

• to declare functions or interpolation curves;

• to possibly declare particular points;

• to place a point scatter.

It will then be possible:

• to draw curves;

• to graphically determine images or backgrounds;

• to add elements of derivation (tangents) or integration (domain);

• to draw a linear fit line or the curve of another fit.

1.3 Packages used, and package options

The package uses:

• tikz, with the libraries calc,intersections,patterns,patterns.meta,bbox;

• simplekv, xintexpr, xstring, listofitems;

• xint-regression3 (for regressions, switchable via [noxintreg]).

The package also loads siunitx with the classic options, but it is possible not to load it using the
[nosiunitx] option.
The package also loads the TikZ babel library, but it is possible not to load it using the [notikzbabel]
option.
The different options are obviously cumulative.

1for example tkz-base https://ctan.org/pkg/tkz-base and tkz- fct https://ctan.org/pkg/tkz-fct.
2CTAN: https://ctan.org/pkg/tzplot.
3CTAN: https://ctan.org/pkg/xint-regression.

[tkz-grapheur] - 3 -

https://ctan.org/pkg/tkz-base
https://ctan.org/pkg/tkz-fct
https://ctan.org/pkg/ tzplot
https://ctan.org/pkg/xint-regression

%loading by default, with french setup of siunitx
\usepackage{tkz-grapheur}
%loading by default, with normal setup of siunitx
\usepackage[english]{tkz-grapheur}

%loading without sinuitx, to be loaded manually
\usepackage[nosiunitx]{tkz-grapheur}

%loading without tikz.babel
\usepackage[notikzbabel]{tkz-grapheur}

Also note that certain commands can use packages like nicefrac, which will therefore have to be
loaded if necessary.
Concerning the calculations and plots part, the xint package takes care of it.

1.4 Warnings

It is possible, due to the (multiple) calculations carried out internally, that the compilation time may
be a little long.
The precision of the (determination) results seems to be around 10−4, which should normally guarantee
satisfactory plots and readings. It is still advisable to be cautious about the results obtained and those
expected.

1.5 Introductory example

For example, we can start from the following example to illustrate the flow of the commands for this
package. The commands and syntax will be detailed in the following sections!

\begin{GraphTikz}%
[x=7.5cm,y=7.5cm,Xmin=0,Xmax=1.001,Xgrid=0.1,Xgrids=0.02,
Ymin=0,Ymax=1.001,Ygrid=0.1,Ygrids=0.02]
\DrawAxisGrids[Enlarge=2.5mm,Font=\small]%

{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}
{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}

\DefineCurve[Name=cf,Start=0,End=1]<f>{x*exp(x-1)}
\DefineCurve[Name=delta,Start=0,End=1]<D>{x}
\DrawIntegral[Type=fct/fct]{f(x)}[D(x)]{0}{1}
\DrawCurve[Color=red]{f(x)}
\DrawCurve[Color=teal]{D(x)}
\DrawRanges[Colors=blue/cyan,Lines]{f}{0.8,0.9}
\DrawCounterimage[Colors=green!50!black/olive,Lines]{cf}{0.5}

\end{GraphTikz}

[tkz-grapheur] - 4 -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[tkz-grapheur] - 5 -

2 Basic Styles and Environment Creation

2.1 Basic Styles

The styles used for plots are given below.
For simplicity purposes, only the color of the elements can be configured, but if the user wishes, he
can redefine the proposed styles.

%parameters declared and stored (usable in the environment a posteriori)
\tikzset{

Xmin/.store in=\pflxmin,Xmin/.default=-3,Xmin=-3,
Xmax/.store in=\pflxmax,Xmax/.default=3,Xmax=3,
Ymin/.store in=\pflymin,Ymin/.default=-3,Ymin=-3,
Ymax/.store in=\pflymax,Ymax/.default=3,Ymax=3,
Origx/.store in=\pflOx,Origx/.default=0,Origx=0,
Origy/.store in=\pflOy,Origy/.default=0,Origy=0,
Xgrid/.store in=\pflgrillex,Xgrid/.default=1,Xgrid=1,
Xgrids/.store in=\pflgrillexs,Xgrids/.default=0.5,Xgrids=0.5,
Ygrid/.store in=\pflgrilley,Ygrid/.default=1,Ygrid=1,
Ygrids/.store in=\pflgrilleys,Ygrids/.default=0.5,Ygrids=0.5

}

We therefore find:

• the origin of the mark (Origx/Origy);

• the extreme values of the axes (Xmin/Xmax/Ymin/Ymax);

• the parameters of the main and secondary grids (Xgrid/Xgrids/Ygrid/Ygrids).

Concerning the styles of objects, they are given below.

\tikzset{tkzgrphnode/.style={}}
\tikzset{tkzgrphpoint/.style={line width=0.95pt}}
\tikzset{tkzgrphpointc/.style={radius=1.75pt}}
\tikzset{tkzgrphscatter/.style={radius=1.75pt}}
\tikzset{tkzgrphframe/.style={line width=0.8pt,gray}}
\tikzset{tkzgrphcurve/.style={line width=1.05pt}}
\tikzset{tkzgrphline/.style={line width=0.8pt}}
\tikzset{tkzgrpharrowl/.style={<-,>=latex}}
\tikzset{tkzgrpharrowr/.style={->,>=latex}}
\tikzset{tkzgrpharrowlr/.style={<->,>=latex}}
\tikzset{tkzgrphcounterimage/.style={line width=0.9pt,densely dashed}}
\tikzset{tkzgrphrange/.style={line width=0.9pt,densely dashed,->,>=latex}}
\tikzset{tkzgrphgridp/.style={thin,lightgray}}
\tikzset{tkzgrphgrids/.style={very thin,lightgray}}
\tikzset{tkzgrphaxes/.style={line width=0.8pt,->,>=latex}}

The idea is therefore to be able to redefine styles globally or locally, and possibly add elements, using
mystyle/.append style={...}.

2.2 Creating the environment

2.2.1 Manual values

The proposed environment is based on TikZ, so that any classic command linked to TikZ can be used
alongside the package commands!

[tkz-grapheur] - 6 -

\begin{GraphTikz}[tikz options]<keys>
%code(s)

\end{GraphTikz}

The [tikz options] are the classic options that can be passed to a TikZ environment, as well as the
axes/grids/window keys presented previously.
The specific (and optional) <keys> are:

• ThickGrad: size of the axis graduations (3pt for 3pt above and 3pt below);

• Frame: boolean (false by default) to display a frame which delimits the graphic window (ex-
cluding possible graduations).

\begin{GraphTikz}
[x=0.075cm,y=0.03cm,Xmin=0,Xmax=160,Xgrid=20,Xgrids=10,
Origy=250,Ymin=250,Ymax=400,Ygrid=25,Ygrids=5]
<Frame>

\end{GraphTikz}

\begin{GraphTikz}%
[x=0.9cm,y=0.425cm,Xmin=4,Xmax=20,Origx=4,
Ymin=40,Ymax=56,Ygrid=2,Ygrids=1,Origy=40]
<Frame>

\end{GraphTikz}

It will obviously be more meaningful with the added graphic elements!

[tkz-grapheur] - 7 -

2.2.2 With choice of dimensions

It is also possible (currently being tested) to specify the dimensions of the graph, letting the code
determine the correct units.
In this case, the keys and arguments differ slightly, notably via the key <Size=width/height>:

%fixed dimensions (excluding graduations)
\begin{GraphTikz}%

[Xgrid=10,Xgrids=5,Ygrid=50,Ygrids=25]
%Xgrid(s) and/or Ygrid(s) in this case
<Xmin=0,Xmax=100,Ymin=0,Ymax=250,Size={10cm/5cm}>
\DrawAxisGrids[]{auto}{auto}

\end{GraphTikz}

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

[tkz-grapheur] - 8 -

2.3 Grids and axes

The first command useful will allow you to create the grids, axes and graduations.

%in the GraphiqueTikz environment
\DrawAxisGrids[keys]{gradX}{gradY}

The optional [keys] available are:

• Grid: boolean (true by default) to display the grids (for a single grid, simply set the identical
parameters for Xgrid/Xgrids or Ygrid/Ygrids);

• Enlarge: addition at the end of the axes (0 by default);

• Grads: boolean (true by default) for graduations;

• Font: global font for graduations empty by default;

• Format: special formatting (see below) of the axis values.

Concerning the Format key, it allows you to specify a specific setting for the axis values.
It can be given in the form fmt for combined formatting, or in the form fmtX/fmtY to differentiate the
formatting.
The possible options are:

• num: format with siunitx;

• year: format in year;

• frac: format as fraction frac;

• dfrac: format as fraction dfrac;

• nfrac: format as fraction nicefrac; (to load!)

• trig: format in trig with frac;

• dtrig: format in trig with dfrac;

• ntrig: format in trig with nfrac;

• sqrt: format in root with frac;

• dsqrt: format in root with dfrac;

• nsqrt: format in root with nicefrac.

[tkz-grapheur] - 9 -

\begin{GraphTikz}
[x=0.075cm,y=0.03cm,Xmin=0,Xmax=160,Xgrid=20,Xgrids=10,
Origy=250,Ymin=250,Ymax=400,Ygrid=25,Ygrids=5]
\DrawAxisGrids[Enlarge=2.5mm,Font=\small]{0,10,...,160}{250,275,...,400}

\end{GraphTikz}

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
250

275

300

325

350

375

400

\begin{GraphTikz}%
[x=0.9cm,y=0.425cm,Xmin=4,Xmax=20,Origx=4,
Ymin=40,Ymax=56,Ygrid=2,Ygrids=1,Origy=40]
\DrawAxisGrids[Enlarge=2.5mm,Font=\small]{4,5,...,20}{40,42,...,56}

\end{GraphTikz}

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40

42

44

46

48

50

52

54

56

Note that there are the Boolean keys [Behind] (without the graduations) and [Above] (without the
grid) to display the axes in under/over -printing mode in the case of integrals for example.

[tkz-grapheur] - 10 -

\begin{GraphTikz}%
[x=2.75cm,y=3cm,
Xmin=0,Xmax=3.5,Xgrid=pi/12,Xgrids=pi/24,
Ymin=-1.05,Ymax=1.05,Ygrid=0.2,Ygrids=0.05]
\DrawAxisGrids[Enlarge=2.5mm,Format=dtrig/nsqrt,Font=\footnotesize]%
{pi/6,pi/4,pi/3,pi/2,2*pi/3,3*pi/4,5*pi/6,pi}
{0,sqrt(2)/2,1/2,sqrt(3)/2,1,-1,-sqrt(3)/2,-1/2,-sqrt(2)/2}

\end{GraphTikz}

π

6

π

4

π

3

π

2
2π

3

3π

4

5π

6

π
0

√
2/2

1/2

√
3/2
1

−1
−
√
3/2

−1/2

−
√
2/2

In the case where the formatting does not give satisfactory result(s), it is possible to use a generic
command for placing the graduations.

2.4 Adding values manually

It is also possible to use a specific command to place values on the axes, independently of an automated
formatting system.

in the environment
\AddXvalues[keys]{grads}{formatted values}
\AddYvalues[keys]{grads}{formatted values}

The optional [keys] available are:

• Font: global font for graduations empty by default;

• Lines: boolean to add the tick marks true by default.

The mandatory arguments correspond to the x-coordinates (in TikZ language) and to the labels (in
LATEX language) of the graduations.

[tkz-grapheur] - 11 -

\begin{GraphTikz}%
[x=2.75cm,y=3cm,
Xmin=0,Xmax=3.5,Xgrid=pi/12,Xgrids=pi/24,
Ymin=-1.05,Ymax=1.05,Ygrid=0.2,Ygrids=0.05]
\DrawAxisGrids[Grads=false,Enlarge=2.5mm]{}{}
\AddXvalues

{0.15,0.6,pi/2,2.8284}
{\num{0.15},$\frac35$,$\displaystyle\frac{\pi}{2}$,$\sqrt{8}$}

\AddYvalues
{-1,0.175,0.3,sqrt(3)/2}
{\num{-1},\num{0.175},$\nicefrac{3}{10}$,$\frac{\sqrt{3}}{2}$}

\end{GraphTikz}

0.15 3
5

π

2

√
8

−1

0.175
3/10

√
3
2

[tkz-grapheur] - 12 -

3 Specific definition commands

3.1 Draw a line

The idea is to propose a command to draw a line (or an asymptote), from:

• of two points (or nodes);

• of a point (or node) and the slope.

%in the GraphiqueTikz environment
\DrawLine[keys]{point or node}{point or node or slope}
\DrawAsymptote[keys]{x value}

The optional [keys] available are:

• Name: possible name of the plot (for reuse);

• Slope: boolean to specify that the slope is used (false by default);

• Start: start of the plot (\pflxmin by default);

• End: end of the plot (\pflxmax by default);

• Color: color of the trace (black by default).

\begin{GraphTikz}%
[x=0.8cm,y=1cm,Xmin=-7,Xmax=4,Ymin=-3,Ymax=5]
\DrawAxisGrids[Enlarge=2.5mm]{auto}{auto}
\DefinePts[Mark,Color=gray]{A/-4/3,B/2/0,C/0/-1}
\DrawLine[Color=red]{(-2,-1)}{(2,4)}
\DrawLine[Color=blue,Start=-5,End=3]{(A)}{(B)}
\DrawLine[Color=olive,Slope]{(C)}{0.25}
\DrawAsymptote[Color=brown]{-6}

\end{GraphTikz}

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

5

[tkz-grapheur] - 13 -

3.2 Define a function, draw the curve of a function

The idea is to define a function, for later reuse. This command creates the function, without tracing
it, because in certain cases elements will have to be traced beforehand.
There is also a command to plot the curve of a previously defined function.

%in the GraphiqueTikz environment
\DefineCurve[keys]<fct name>{xint formula}
\DrawCurve[keys]{xint formula}

The optional [keys] for definition or tracing are:

• Start: lower bound of the definition set (\pflxmin by default);

• End: lower bound of the definition set (\pflxmax by default);

• Name: name of the curve (important for the rest!);

• Color: color of the trace (black by default);

• Step: plot step (it is determined automatically at the start but can be modified);

• Trace: boolean to also trace the curve (false by default).

\begin{GraphTikz}%
[x=0.9cm,y=0.425cm,Xmin=4,Xmax=20,Origx=4,
Ymin=40,Ymax=56,Ygrid=2,Ygrids=1,Origy=40]
\DrawAxisGrids[Enlarge=2.5mm,Font=\small]{4,5,...,20}{40,42,...,56}
%definition of the function + drawing of the curve
\DefineCurve[Name=cf,Start=5,End=19]<f>{-2*x+3+24*log(2*x)}
\DrawCurve[Color=red,Start=5,End=19]{f(x)}
%or in a single command if "sufficient"
%\DefineCurve[Name=cf,Start=5,End=19,Trace]<f>{-2*x+3+24*log(2*x)}

\end{GraphTikz}

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40

42

44

46

48

50

52

54

56

[tkz-grapheur] - 14 -

3.3 Define/draw an interpolation curve (simple)

It is also possible to define a curve via support points, therefore a simple interpolation curve.

%in the GraphiqueTikz environment
\DefineInterpoCurve[keys]{list of support points}
\DrawInterpoCurve[keys]{list of support points}

The optional [keys] for definition or tracing are:

• Name: name of the interpolation curve (important for the rest!);

• Color: color of the trace (black by default);

• Tension: setting the tension of the interpolation plot (0.5 by default);

• Trace: boolean to also trace the curve (false by default).

The mandatory argument allows you to specify the list of support points in the form (x1,y1)(x2,y2)....

\begin{GraphTikz}%
[x=0.8cm,y=1cm,Xmin=-7,Xmax=4,Ymin=-3,Ymax=5]
\DrawAxisGrids[Enlarge=2.5mm]{-7,-6,...,4}{-3,-2,...,5}
%simple interpolation curves (with diff tension)
\DefineInterpoCurve[Name=interpotest,Color=blue,Trace]%

{(-6,4)(-2,-2)(3,3.5)}
\DefineInterpoCurve[Name=interpotest,Color=red,Trace,Tension=1]%

{(-6,4)(-2,-2)(3,3.5)}
\end{GraphTikz}

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

5

[tkz-grapheur] - 15 -

3.4 Define/draw an interpolation curve (Hermite)

It is also possible to define a curve via support points, therefore an interpolation curve with derivative
control.
Some operations require different techniques depending on the type of function used, a Boolean key
Spline will allow the code to adapt its calculations depending on the object used.

%in the GraphiqueTikz environment
\DefineSplineCurve[keys]{list of support points}[\macronomspline]
\DrawSplineCurve[keys]{list of support points}[\macronomspline]

The optional [keys] for definition or tracing are:

• Name: name of the interpolation curve (important for the rest!);

• Coeffs: modify (see the ProfLycee4 the coefficients of the spline;

• Color: color of the trace (black by default);

• Trace: boolean to also trace the curve (false by default).

The mandatory argument allows you to specify the list of support points in the form x1/y1/f’1§x2/y2/f’2§...
with:

• xi/yi the coordinates of the point;

• f’i the derivative at the support point.

\begin{GraphTikz}%
[x=0.8cm,y=1cm,Xmin=-7,Xmax=4,Ymin=-3,Ymax=5]
\DrawAxisGrids[Enlarge=2.5mm]{-7,-6,...,4}{-3,-2,...,5}
%definition of the list of spline support points
\def\LISTETEST{-6/4/-2§-5/2/-2§-4/0/-2§-2/-2/0§1/2/2§3/3.5/0.5}
%definition and plot of the cubic spline
\DefineSplineCurve[Name=splinetest,Trace,Color=olive]{\LISTETEST}

\end{GraphTikz}

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

5

4CTAN documentation: https://ctan.org/pkg/proflycee

[tkz-grapheur] - 16 -

https://ctan.org/pkg/proflycee

3.5 Define points as nodes

The second idea is to work with TikZnodes, which could be useful for tangent plots, representations
of integrals. . .
It is also possible to define nodes for image points.
Certain commands (explained later) allow you to determine particular points of curves in the form of
nodes, so it seems interesting to be able to define them directly.

%by coordinates
\DefinePts[keys]{Name1/x1/y1,Name2/x2/y2,...}

The optional [keys] available are:

• Mark: boolean to mark points (false by default);

• Color: color of the points, if Mark=true (black by default).

%as image
\DefineRange[keys]{object}{abscissa}

The optional [keys] available are:

• Name: node name (empty by default);

• Spline: boolean to specify that a spline is used (false by default).

The first mandatory argument is the object considered (name of the curve for the spline, function
otherwise); the second is the abscissa of the point considered.

[tkz-grapheur] - 17 -

\begin{GraphTikz}%
[x=0.9cm,y=0.425cm,Xmin=4,Xmax=20,Origx=4,
Ymin=40,Ymax=56,Ygrid=2,Ygrids=1,Origy=40]
\DrawAxisGrids[Enlarge=2.5mm,Font=\small]{4,5,...,20}{40,42,...,56}
%definition of the function + drawing of the curve
\DefineFunction[Name=cf,Start=5,End=19,Trace,Color=red]<f>{-2*x+3+24*log(2*x)}
%manual nodes
\DefinePts[Mark,Color=brown]{A/7/42,B/16/49}
%imagenode
\DefineRange[Name=IMGf]{f}{14}
\MarkPts*[Style=x,Color=blue]{(IMGf)} %see next section;-)

\end{GraphTikz}

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40

42

44

46

48

50

52

54

56

[tkz-grapheur] - 18 -

3.6 Mark Points

The idea is to offer something to score points with a particular style.

%in the GraphiqueTikz environment
\MarkPts(*)[keys]{list}

The starred version scores the points without the names, while the unstarred version displays them:

• in the case of the starred version, the list should be given in the form (ptA),(ptB),...;

• otherwise, the list should be given in the form (ptA)/poslabelA/labelA,....

The optional [keys] available are:

• Color: color (black by default);

• Style: style of marks (o by default).

\begin{GraphTikz}[x=1.5cm,y=1.5cm,Ymin=-2]
\DrawAxisGrids[Enlarge=2.5mm]{auto}{auto}
\DefinePts{A/1.75,-1.25}\MarkPts[Color=pink]{(A)/below/A} %round (default)
\MarkPts[Color=teal]{(1,1)/below/M}
\MarkPts[Color=red,Style=x]{(1.25,1)/below/A} %cross
\MarkPts[Color=orange,Style=+]<\small\sffamily>{(1.5,1)/below/K} %plus
\MarkPts[Color=blue,Style=c]{(1.75,1)/below/P} %square
\MarkPts[Color=gray,Style=d]{(2,1)/below/P} %diamond
\MarkPts*[Color=orange/yellow]{(2,2),(2.5,2.25)} %two-tone round
\MarkPts*[Style=+,Color=red]{(1,2)}
\MarkPts*[Style=x,Color=blue]{(2.25,1)}
\MarkPts*[Style=c,Color=magenta]{(-2,-1)}
\MarkPts[Color=red,Style=x]{(-1,1)/below/A,(-2,2)/below left/B}

\end{GraphTikz}

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

A

MA K P PA

B

Note that it is also possible to modify the size of the o/x/+/c marks via the [keys]:

• Sizex=... (2pt by default) for points cross;

• Sizeo=... (1.75pt by default) for the points circle;

[tkz-grapheur] - 19 -

• Sizec=... (2pt by default) for the square points.

\begin{GraphTikz}[x=1cm,y=1cm,Xmin=0,Ymin=0]
\DrawAxisGrids[Enlarge=2.5mm]{auto}{auto}
\MarkPts[Color=red,Style=x,Size=3.5pt]{(1.25,1.25)/below/A}
\MarkPts[Color=teal,Size=2.5pt]{(2,2)/right/A}
\MarkPts*[Color=orange,Style=c,Size=4pt]{(0.5,2.5)}

\end{GraphTikz}

0 1 2 3
0

1

2

3

A

A

3.7 Retrieve node coordinates

It is also possible, with a view to reusing coordinates, to recover the coordinates of a node (defined or
determined).
The calculations are carried out by floating according to the (re)calculated units, the values are there-
fore approximated !

%in the GraphiqueTikz environment
\GetXcoord{node}[\macrox]
\GetYcoord{node}[\macroy]
\GetXYcoord{node}[\macrox][\macroy]

3.8 Place text

Note that a text placement command is available.

%in the GraphiqueTikz environment
\DrawTxt[keys]{(node or coordinates)}{text}

The available [keys] are:

• Font=... (\normalsize\normalfont by default) for the font;

• Color=... (black by default) for the color;

• Position=... (empty by default) for the position of the text relative to the coordinates.

\begin{GraphTikz}[x=1cm,y=1cm,Xmin=0,Xmax=5,Ymin=0,Ymax=1]
\DrawAxisGrids[Enlarge=2.5mm]{auto}{auto}
\DrawTxt[Color=red,Font=\LARGE,Position=right]{(1.5,0.5)}{curve C_1}

\end{GraphTikz}

0 1 2 3 4 5
0

1
curve C1

[tkz-grapheur] - 20 -

4 Specific commands for using curves

4.1 Image placement

It is possible to place points (images) on a curve, with possible construction lines.
The function/curve used must have been declared previously for this command to work.

%in the GraphiqueTikz environment
\DrawRanges[keys]{function or curve}{list of abscissa}

The optional [keys] available are:

• Lines: boolean to display construction traits (false by default);

• Colors: color of the points/lines, in the form Couleurs or ColPoint/ColLines;

• Spline: boolean to specify that the curve used is defined as a spline (false by default).

The first mandatory argument allows you to specify:

• the name of the curve in the case Spline=true;

• the name of the function otherwise.

\begin{GraphTikz}%
[x=0.9cm,y=0.425cm,Xmin=4,Xmax=20,Origx=4,
Ymin=40,Ymax=56,Ygrid=2,Ygrids=1,Origy=40]
\DrawAxisGrids[Enlarge=2.5mm,Font=\small]{4,5,...,20}{40,42,...,56}
%definition of the function + drawing of the curve
\DefineCurve[Name=cf,Start=5,End=19,Trace,Color=red]<f>{-2*x+3+24*log(2*x)}
%images
\DrawRanges[Lines,Colors=teal/blue]{f}{6,7,8,9,10}

\end{GraphTikz}

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40

42

44

46

48

50

52

54

56

[tkz-grapheur] - 21 -

4.2 Antecedent determination

It is possible to graphically determine the antecedents of a given reality.
The function/curve used must have been declared previously for this command to work.

%in the GraphiqueTikz environment
\FindCounterimage[keys]{curve}{k}

The optional [keys] available are:

• Name: base of the name of the nodes intersection (S by default, which will give S-1, S-2, etc);

• Disp: boolean to display the points (true by default);

• Color: color of the points (black by default);

• DispLine: boolean to display the horizontal line (false by default).

The first mandatory argument allows you to specify the name of the curve.
The second mandatory argument allows you to specify the value to reach.

\begin{GraphTikz}%
[x=0.9cm,y=0.425cm,Xmin=4,Xmax=20,Origx=4,
Ymin=40,Ymax=56,Ygrid=2,Ygrids=1,Origy=40]
\DrawAxisGrids[Enlarge=2.5mm,Font=\small]{4,5,...,20}{40,42,...,56}
%definition of the function + drawing of the curve
\DefineCurve[Name=cf,Start=5,End=19,Trace,Color=red]<f>{-2*x+3+24*log(2*x)}
%history
\FindCounterimage[Color=teal,DispLine,Disp]{cf}{53}
%the two antecedents are at nodes (S-1) and (S-2)

\end{GraphTikz}

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40

42

44

46

48

50

52

54

56

[tkz-grapheur] - 22 -

4.3 Antecedent construction

It is possible to graphically construct the antecedents.
The function/curve used must have been declared previously for this command to work.

%in the GraphiqueTikz environment
\DrawCounterimage[keys]{curve}{k}

The optional [keys] available are:

• Colors: color of the points/lines, in the form Color or ColPoint/ColLines;

• Name: name possible for the intersection points linked to the antecedents (empty by default);

• Lines: boolean to display construction traits (false by default).

The first mandatory argument allows you to specify the name of the curve.
The second mandatory argument allows you to specify the value to reach.

[tkz-grapheur] - 23 -

\begin{GraphTikz}%
[x=0.9cm,y=0.425cm,Xmin=4,Xmax=20,Origx=4,
Ymin=40,Ymax=56,Ygrid=2,Ygrids=1,Origy=40]
\DrawAxisGrids[Enlarge=2.5mm,Font=\small]{4,5,...,20}{40,42,...,56}
%definition of the function + drawing of the curve
\DefineCurve[Name=cf,Start=5,End=19,Trace,Color=red]<f>{-2*x+3+24*log(2*x)}
%history
\DrawCounterimage[Colors=teal/cyan,Lines,Name=PO]{cf}{53}
\GetXcoord{(PO-1)}[\premsol]
\GetXcoord{(PO-2)}[\deuxsol]

\end{GraphTikz}

Graphically, the antecedents of 53 are (approximately):

\begin{itemize}
\item \num{\premsol}
\item \num{\deuxsol}

\end{itemize}

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40

42

44

46

48

50

52

54

56

Graphically, the antecedents of 53 are (approximately):

• 7.505 389 008 644 637

• 18.007 022 378 275 07

[tkz-grapheur] - 24 -

4.4 Intersections of two curves

It is also possible to determine (in the form of nodes) the possible points of intersection of two previously
defined curves.

%in the GraphiqueTikz environment
\FindIntersections[keys]{curve1}{curve2}

The optional [keys] available are:

• Name: base of the name of the nodes intersection (S by default, which will give S-1, S-2, etc);

• Disp: boolean to display the points (true by default);

• Color: color of the points (black by default).

The first mandatory argument allows you to specify the name of the first curve.
The first mandatory argument allows you to specify the name of the second curve.

\begin{GraphTikz}%
[x=0.9cm,y=0.425cm,Xmin=4,Xmax=20,Origx=4,
Ymin=40,Ymax=56,Ygrid=2,Ygrids=1,Origy=40]
\DrawAxisGrids[Enlarge=2.5mm,Font=\small]{4,5,...,20}{40,42,...,56}
\DefineCurve[Name=cf,Start=5,End=19,Trace,Color=red]<f>{-2*x+3+24*log(2*x)}
\DefineCurve[Name=cg,Start=5,End=19,Trace,Color=blue]<g>{0.25*(x-12)^2+46}
%intersections, named (TT-1) and (TT-2)
\FindIntersections[Name=TT,Color=darkgray,Display,Lines]{cf}{cg}
%recovery of intersection points
\GetXYcoord{(TT-1)}[\alphaA][\betaA]
\GetXYcoord{(TT-2)}[\alphaB][\betaB]

\end{GraphTikz}\\
The solutions of $f(x)=g(x)$ are $\alpha \approx \num{\alphaA}$ and
$\beta \approx \num{\alphaB}$.\\
The points of intersection of the curves of f and g are therefore
$(\RoundNb[2]{\alphaA};\RoundNb[2]{\betaA})$ and
$(\RoundNb[2]{\alphaB};\RoundNb[2]{\betaB})$.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40

42

44

46

48

50

52

54

56

The solutions of f(x) = g(x) are α ≈ 6.977 766 172 581 613 and β ≈ 17.429 687 326 385 03.
The points of intersection of the curves of f and g are therefore (6.98; 52.31) and (17.43; 53.37).

[tkz-grapheur] - 25 -

4.5 Extrema

The idea (still experimental) is to offer commands to extract the extrema of a curve defined by the
package.
The command creates the corresponding node, and it is therefore possible to retrieve its coordinates
for later use.
It is possible, by specifying it, to work on the different curves managed by the package (function,
interpolation, spline).
For singular curves, it is possible that the results are not quite those expected. . .
X For the moment, the limitations are:

• no management of multiple extrema (only the first will be processed). . .

• no management of extrema at the boundaries of the route. . .

• no automatic recovery of curve definition parameters. . .

• compilation time may be longer. . .

%in the GraphiqueTikz environment
\FindMax[keys]{object}[node created]
\FindMin[keys]{object}[node created]

The optional [keys] available are:

• Method: method, among function/interpo/spline for calculations (function by default);

• Start: start of the plot (\pflxmin by default);

• End: end of the plot (\pflxmax by default);

• Step: not in the plot if function (it is determined automatically at the start but can be modified);

• Coeffs: modify the coefficients of the spline if spline;

• Tension: setting the tension of the interpolation plot if interpo(0.5 by default).

[tkz-grapheur] - 26 -

\begin{GraphTikz}[x=1cm,y=1cm,Xmin=-1,Xmax=5,Ymin=-1,Ymax=3]
\DrawAxisGrids[Enlarge=2.5mm]{auto}{auto}
\DefineCurve[Name=cf,Start=0.35,End=4.2,Trace]%

<f>{0.6*cos(4.5*(x-4)+2.1)-1.2*sin(x-4)+0.1*x+0.2}
\FindMax[Start=0.35,End=4.2]{f}[cf-max]
\FindMax[Start=3,End=4]{f}[cf-maxlocal]
\FindMin[Start=1,End=2]{f}[cf-minlocal]
\MarkPts*[Color=red,Lines]{(cf-max)}
\MarkPts*[Color=blue,Lines]{(cf-maxlocal)}
\MarkPts*[Color=olive,Lines]{(cf-minlocal)}
\GetXYcoord{(cf-max)}[\MyMaxX][\MyMaxY]

\end{GraphTikz}\\
The maximum is $M\approx\RoundNb{\MyMaxY}$, reached in $x\approx\RoundNb{\MyMaxX}$

−1 0 1 2 3 4 5

−1

0

1

2

3

The maximum is M ≈ 2.17, reached in x ≈ 2.17

[tkz-grapheur] - 27 -

\begin{GraphTikz}[x=0.8cm,y=1cm,Xmin=-7,Xmax=4,Ymin=-3,Ymax=5]
\DrawAxisGrids[Enlarge=2.5mm]{-7,-6,...,4}{-3,-2,...,5}
\DefineInterpoCurve[Name=interpotest,Color=red,Trace,Tension=1]%

{(-6,4)(-2,-2)(3,3.5)}
\FindMin[Method=interpo,Tension=1]{(-6,4)(-2,-2)(3,3.5)}[interpo-min]
\MarkPts*[Color=blue]{(interpo-min)}
\GetXYcoord{(interpo-min)}[\MinInterpoX][\MinInterpoY]

\end{GraphTikz}\\
The minimum is $M\approx\RoundNb[3]{\MinInterpoY}$, reached at

$x\approx\RoundNb[3]{\MinInterpoX}$↪→

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

5

The minimum is M ≈ −2.003, reached at x ≈ −1.908

[tkz-grapheur] - 28 -

\begin{GraphTikz}%
[x=1.2cm,y=1.6cm,Xmin=-7,Xmax=4,Ymin=-3,Ymax=3,Ygrid=0.5,Ygrids=0.25]
\DrawAxisGrids[Enlarge=2.5mm]{auto}{auto}
\def\LISTETEST{-6/2/0§-1/-2/0§2/1/0§3.5/0/-1}
\DefineSplineCurve[Name=splinetest,Trace]{\LISTETEST}
\FindMin[Method=spline]{\LISTETEST}[spline-min]
\MarkPts*[Color=red]{(spline-min)}

\end{GraphTikz}

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

[tkz-grapheur] - 29 -

4.6 Integrals (improved version)

We can also work with integrals.
In this case it is preferable to highlight the domain before the plots, to avoid overprinting in relation
to the curves/points.
It is possible to:

• represent an integral under a defined curve;

• represent an integral between two curves;

• the integration limits can be x-coordinates and/or nodes.

X Given the differences in processing between formula curves, simple interpolation curves or cubic
interpolation curves, the arguments and keys may differ depending on the configuration!

%in the GraphiqueTikz environment
\DrawIntegral[keys]<specific options>{object1}[object2]{A}{B}

The optional [keys] for definition or tracing are:

• Colors =: colors of the filling, in the form Col or ColBorder/ColBg (gray by default);

• Style: type of filling, among fill/hatch (fill by default);

• Opacity: opacity (0.5 by default) of the filling;

• Hatch: style (north west lines by default) of the hatch filling;

• Type: type of integral among

– fct (default) for an integral under a curve defined by a formula;
– spl for an integral under a curve defined by a cubic spline;
– itp for an integral under a curve defined by interpolation;
– fct/fct for an integral between two curves defined by a formula;
– fct/spl for an integral between a curve (above) defined by a formula and a curve (below)

defined by a spline cubic;
– etc.

• Step: steps (calculated by default otherwise) for the plot;

• Junction: junction of segments (bevel by default);

• Bounds: type of terminals among:

– abs for the limits given by the abscissa;
– nodes for the limits given by the nodes;
– abs/node for the limits given by abscissa and node;
– node/abs for the limits given by node and abscissa;

• Border: boolean (true by default) to display the side lines,

• SplineName: macro (important!) of the spline generated previously for a higher version spline;

• SplineNameB: macro (important!) of the spline generated previously for a lower version spline;

• InterpoName: name (important!) of the interpolation curve generated previously, in higher
version;

[tkz-grapheur] - 30 -

• InterpoBName: name (important!) of the interpolation curve generated previously, in lower
version;

• Tension: Tension for the interpolation curve generated previously, in higher version;

• TensionB: Tension of the interpolation curve generated previously, in lower version.

The first required argument is the spline function or curve or list of interpolation points.
The next optional argument is the spline function or curve or list of interpolation points.
The last two mandatory arguments are the limits of the integral, given in a form consistent with the
key Bounds.

[tkz-grapheur] - 31 -

In the case of curves defined by points, it is necessary to work on intervals on which the first curve is
above the second.
It will undoubtedly be interesting to work with intersections in this case.

\begin{GraphTikz}%
[x=0.6cm,y=0.06cm,
Xmin=0,Xmax=21,Xgrid=1,Xgrids=0.5,
Ymin=0,Ymax=155,Ygrid=10,Ygrids=5]
\DrawAxisGrids[Grads=false,Enlarge=2.5mm]{}{}
\DefineCurve[Name=cf,Start=1,End=20,Color=red]<f>{80*x*exp(-0.2*x)}
\DrawIntegral

[Bounds=abs,Colors=blue/cyan!50]%
{f(x)}{3}{12}

\DrawCurve[Color=red,Start=1,End=20]{f(x)}
\DrawAxisGrids%

[Grid=false,Enlarge=2.5mm,Font=\small]{0,1,...,20}{0,10,...,150}
\end{GraphTikz}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

[tkz-grapheur] - 32 -

\begin{GraphTikz}%
[x=1.2cm,y=1.6cm,Xmin=-7,Xmax=4,Ymin=-3,Ymax=3,Ygrid=0.5,Ygrids=0.25]
\DrawAxisGrids[Grads=false,Enlarge=2.5mm]{}{}
\def\LISTETEST{-6/2/0§-1/-2/0§2/1/0§3.5/0/-1}
\DefineSplineCurve[Name=splinetest]{\LISTETEST}
\DrawIntegral[Type=spl,Style=hatch,Colors=purple]{splinetest}{-5.75}{-4.75}
\DrawIntegral[Type=spl,Colors=blue]{splinetest}{-2}{-1}
\DrawIntegral[Type=spl,Colors=orange]{splinetest}{1}{3}
\DrawSplineCurve[Color=olive]{\LISTETEST}
\DrawAxisGrids[Grid=false,Enlarge=2.5mm]

{-7,-6,...,4}%
{-3,-2.5,...,3}

\end{GraphTikz}

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

[tkz-grapheur] - 33 -

4.7 Tangents

The idea of this command is to draw the tangent to a previously defined curve, specifying:

• the point (abscissa or node) at which we wish to work;

• possibly the direction (in the case of a discontinuity or a terminal);

• possibly the step (h) of the calculation;

• the lateral spacings to draw the tangent.

%in the GraphiqueTikz environment
\DrawTangent[keys]{function or curve}{point}<line options>

The optional [keys] for definition or tracing are:

• Colors =: colors of the plots, in the form Col or ColLine/ColPoint (black by default);

• OffsetL =: left horizontal spacing to start the trace (1 by default);

• OffsetR =: left horizontal spacing to start the trace (1 by default);

• DispPt: boolean to display the support point (false by default);

• Spline: boolean to specify that a spline is used (false by default);

• h: delta h used for calculations (0.01 by default);

• Direction: allows you to specify the direction of the tangent, among lr/l/r (lr by default);

• Node: boolean to specify that a node is used (false by default).

The first required argument is the spline function or curve (if applicable).
The last mandatory argument is the work point (abscissa version or node following the key Node).

[tkz-grapheur] - 34 -

\begin{GraphTikz}%
[x=0.9cm,y=0.425cm,Xmin=4,Xmax=20,Origx=4,
Ymin=40,Ymax=56,Ygrid=2,Ygrids=1,Origy=40]
\DrawAxisGrids[Enlarge=2.5mm,Font=\small]{4,5,...,20}{40,42,...,56}
\DefineCurve[Name=cf,Start=5,End=19,Color=red,Trace]<f>{-2*x+3+24*log(2*x)}
\FindCounterimage[Color=teal,Name=JKL,Disp=false]{cf}{53}
%tangent
\DrawTangent%

[Colors=cyan/gray,OffsetL=2.5,OffsetR=2.5,Node,DispPt]{f}{(JKL-1)}
\end{GraphTikz}

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40

42

44

46

48

50

52

54

56

[tkz-grapheur] - 35 -

\begin{GraphTikz}%
[x=0.8cm,y=1cm,Xmin=-7,Xmax=4,Ymin=-3,Ymax=5]
\DrawAxisGrids[Enlarge=2.5mm]{-7,-6,...,4}{-3,-2,...,5}
\def\LISTETEST{-6/4/-0.5§-5/2/-2§-4/0/-2§-2/-2/0§1/2/2§3/3.5/0.5}
\DefineSplineCurve[Name=splinetest,Trace,Color=olive]{\LISTETEST}
\DrawTangent[Colors=red,Spline,DispPt]{splinetest}{1}
\DrawTangent%
[Colors=blue,Spline,OffsetL=1.5,OffsetR=1.5,DispPt]{splinetest}{-3}%

<tkzgrpharrowlr>
\DrawTangent[Direction=l,Colors=orange,Spline,OffsetL=1.5,DispPt]{splinetest}{3}
\DrawTangent[Direction=r,Colors=purple,Spline,OffsetR=1.5,DispPt]{splinetest}{-6}

\end{GraphTikz}

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

5

[tkz-grapheur] - 36 -

4.8 Linear inequality

%within graphTike environment
\LinearInequality[keys]<function name>{expression}{symbol}

First argument, optional and within [...], gives following keys:

• opacity=... (0.25 by default) ;

• color=... (black by default) ;

• style=... (hatch by default) ;

• hatch (north west lines by default).

\begin{GraphTikz}[x=0.4cm,y=0.4cm,Xmin=-5,Xmax=5,Ymin=-5,Ymax=5]
\DrawAxisGrids[Font=\tiny]{auto}{auto}
\LinearInequality[color=blue]{-3x+2}{>0}

\end{GraphTikz}
~~
\begin{GraphTikz}[x=0.4cm,y=0.4cm,Xmin=-5,Xmax=5,Ymin=-5,Ymax=5]

\DrawAxisGrids[Font=\tiny]{auto}{auto}
\LinearInequality[color=pink]{-x+y+2}{<=0}

\end{GraphTikz}
~~
\begin{GraphTikz}[x=0.4cm,y=0.4cm,Xmin=-5,Xmax=5,Ymin=-5,Ymax=5]

\DrawAxisGrids[Font=\tiny]{auto}{auto}
\LinearInequality[color=teal]{-x+y-4}{>0}

\end{GraphTikz}

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

[tkz-grapheur] - 37 -

\begin{GraphTikz}[x=0.4cm,y=0.4cm,Xmin=-5,Xmax=5,Ymin=-5,Ymax=5]
\DrawAxisGrids[Font=\tiny]{auto}{auto}
\LinearInequality[color=blue]{-4*y+5}{<=0}

\end{GraphTikz}
~~
\begin{GraphTikz}[x=0.4cm,y=0.4cm,Xmin=-5,Xmax=5,Ymin=-5,Ymax=5]

\DrawAxisGrids[Font=\tiny]{auto}{auto}
\LinearInequality[color=pink,hatch={north east lines}]{-x-2y+2}{<=0}

\end{GraphTikz}
~~
\begin{GraphTikz}[x=0.4cm,y=0.4cm,Xmin=-5,Xmax=5,Ymin=-5,Ymax=5]

\DrawAxisGrids[Font=\tiny]{auto}{auto}
\LinearInequality[style=fill,color=teal]{-x-y-4}{>0}

\end{GraphTikz}

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

[tkz-grapheur] - 38 -

5 Commands specific to two-variable statistics

5.1 Limitations

Given the specific features of TikZ, we advise you not to use values that are too large at axis level
(this can cause problems with years, for example), or else you’ll have to transform axis and/or data
values so that everything is displayed as it should be (also beware of regressions, calculations, etc.).

5.2 The point scatter

In addition to commands linked to functions, it is also possible to represent double statistical series.
The following paragraph shows that adding a key allows you to add the linear adjustment line.

%in the GraphiqueTikz environment
\DrawScatter[keys]{ListX}{ListY}

The optional [key] is:

• ColorScatter: color of the cloud points (black by default).

The mandatory arguments allow you to specify:

• the list of x;

• the list of y.

\begin{GraphTikz}%
[x=0.075cm,y=0.03cm,Xmin=0,Xmax=160,Xgrid=20,Xgrids=10,
Origy=250,Ymin=250,Ymax=400,Ygrid=25,Ygrids=5]
%window preparation
\DrawAxisGrids[Enlarge=2.5mm,Font=\small]{0,10,...,160}{250,275,...,400}
%A cloud of dots
\DrawScatter[Style=x,ColorScatter=red]{0,50,100,140}{275,290,315,350}

\end{GraphTikz}

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
250

275

300

325

350

375

400

5.3 The regression line

The linear regression line (obtained by the least squares method) can easily be added, using the key
DrawLine.
In this case, new keys are available:

• ColorLine: color of the line (black by default);

[tkz-grapheur] - 39 -

• Rounds: precision of coefficients (empty by default);

• Start: initial abscissa of the plot (\pflxmin by default);

• End: terminal abscissa of the plot (\pflxmax by default);

• Name: name of the line, for later use (reglin by default).

\begin{GraphTikz}%
[x=0.075cm,y=0.03cm,Xmin=0,Xmax=160,Xgrid=20,Xgrids=10,
Origy=250,Ymin=250,Ymax=400,Ygrid=25,Ygrids=5]
\DrawAxisGrids[Enlarge=2.5mm,Font=\small]{0,10,...,160}{250,275,...,400}
%cloud and right
\DrawScatter%

[ColorScatter=red,ColorLine=brown,DrawLine]%
{0,50,100,140}{275,290,315,350}
%picture
\DrawRanges[Colors=cyan/magenta,Lines]{d}{120}
%history
\DrawCounterimage[Style=x,Colors=blue/green!50!black,Lines]{reglin}{300}

\end{GraphTikz}

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
250

275

300

325

350

375

400

5.4 Other regressions

In partnership with the xint-regression package, loaded by the package (but can be deactivated via
the [noxintreg] option), it is possible to work on other types of regression:

• linear ax+ b ;

• quadratic ax2 + bx+ c ;

• cubic ax3 + bx2 + cx+ d ;

• power axb ;

• exponential abx or eax+b or beax or C + beax ;

• logarithmic a+ b ln(x) ;

• hyperbolic a+
b

x
.

[tkz-grapheur] - 40 -

The command, similar to that of defining a curve, is:

\DrawRegression[keys]<name fct>{type}<rounded>{listex}{listey}

The [keys] available are, classically:

• Start: lower bound of the definition set (\pflxmin by default);

• End: lower bound of the definition set (\pflxmax by default);

• Name: name of the curve (important for the rest!);

• Color: color of the trace (black by default);

• Step: plot step (it is determined automatically at the start but can be modified).

[tkz-grapheur] - 41 -

The second argument, optional and between <...>, allows you to name the regression function.
The third argument, mandatory and between {...} allows you to choose the type of regression, among:

• lin: linear ax+ b ;

• quad: quadratic ax2 + bx+ c ;

• cub: cubic ax3 + bx2 + cx+ d ;

• pow: power axb ;

• expab: exponential abx

• hyp: hyperbolic a+
b

x
;

• log: logarithmic a+ b ln(x) ;

• exp: exponential eax+b ;

• expalt: exponential beax ;

• expoff=C: exponential C + beax .

The fourth argument, optional and between <...>, allows you to specify the rounding(s) for the
coefficients of the regression function.
The last two arguments are the lists of values of X and Y.

[tkz-grapheur] - 42 -

\def\LISTEXX{0,50,100,140}\def\LISTEYY{275,290,315,350}%
ListX:= \LISTEXX\\
ListY:= \LISTEYY

\begin{GraphTikz}
[x=0.05cm,y=0.04cm,Xmin=0,Xmax=160,Xgrid=20,Xgrids=10,
Origy=250,Ymin=250,Ymax=400,Ygrid=25,Ygrids=5]
%window preparation
\DrawAxisGrids[Enlarge=2.5mm,Font=\footnotesize]{auto}{auto}
%A cloud of dots
\DrawScatter[Style=o,ColorScatter=red]{\LISTEXX}{\LISTEYY}
%adjustment expoffset
\DrawRegression[Color=blue,Name=adjust]<adjust>{expoff=250}{\LISTEXX}{\LISTEYY}
%holdings
\DrawRanges[Colors=cyan/magenta,Lines]{adjust}{80}
\DrawCounterimage[Style=x,Colors=blue/green!50!black,Lines]{adjust}{325}

\end{GraphTikz}

\xintexpoffreg[offset=250,round=3/1]{\LISTEXX}{\LISTEYY}%
We obtain $y=250+\num{\expregoffb}\text{e}^{\num{\expregoffa}x}$

ListX:= 0,50,100,140
ListY:= 275,290,315,350

0 20 40 60 80 100 120 140 160
250

275

300

325

350

375

400

We obtain y = 250 + 24.7e0.01x

[tkz-grapheur] - 43 -

6 Auxiliary commands

6.1 Intro

In addition to purely graphic commands, some auxiliary commands are available:

• a to format a number with a given precision;

• one for working on random numbers, with constraints.

6.2 Formatted rounding

The \RoundNb command allows you to format, using the siunitx package, a number (or a calculation),
with a given precision. This can be useful for formatting results obtained using coordinate retrieval
commands, for example.

\RoundNb[precision]{xint calculation}

\RoundNb{1/3}\\
\RoundNb{16.1}\\
\RoundNb[3]{log(10)}\\

0.33
16.1
2.303

6.3 Random number under constraints

The idea of this second command is to be able to determine a random number:

• integer or decimal;

• under constraints (between two fixed values).

This can allow, for example, to work on curves with random points, but respecting certain constraints.

\PickRandomNb(*)[precision (def 0)]{lower limit}{upper limit}[\macro]

The star version takes the constraints in strict form (lower bound < macro < upper bound) while the
normal version takes the constraints in broad form (lower bound) ≤ macro ≤ upper bound).
Note that the terminals can be existing macros!

%a number (2 digits after the decimal point) between 0.75 and 0.95
%a number (2 digits after the decimal point) between 0.05 and 0.25
%a number (2 decimal places) between 0.55 and \YrandMax
%a number (2 decimal places) between \YrandMin and 0.45
\PickRandomNb[2]{0.75}{0.95}[\YrandMax]%
\PickRandomNb[2]{0.05}{0.25}[\YrandMin]%
\PickRandomNb*[2]{0.55}{\YrandMax}[\YrandA]%
\PickRandomNb*[2]{\YrandMin}{0.45}[\YrandB]%
%verification
\num{\YrandMax} \& \num{\YrandMin} \& \num{\YrandA} \& \num{\YrandB}

0.86 & 0.21 & 0.81 & 0.31

[tkz-grapheur] - 44 -

%a number (2 digits after the decimal point) between 0.75 and 0.95
%a number (2 digits after the decimal point) between 0.05 and 0.25
%a number (2 decimal places) between 0.55 and \YrandMax
%a number (2 decimal places) between \YrandMin and 0.45
\PickRandomNb[2]{0.75}{0.95}[\YrandMax]%
\PickRandomNb[2]{0.05}{0.25}[\YrandMin]%
\PickRandomNb*[2]{0.55}{\YrandMax}[\YrandA]%
\PickRandomNb*[2]{\YrandMin}{0.45}[\YrandB]%
%verification
\num{\YrandMax} \& \num{\YrandMin} \& \num{\YrandA} \& \num{\YrandB}

0.8 & 0.09 & 0.73 & 0.22

[tkz-grapheur] - 45 -

%the curve is designed so that there are 3 antecedents
\PickRandomNb[2]{0.75}{0.95}[\YrandMax]%
\PickRandomNb[2]{0.05}{0.25}[\YrandMin]%
\PickRandomNb*[2]{0.55}{\YrandMax}[\YrandA]%
\PickRandomNb*[2]{\YrandMin}{0.45}[\YrandB]%

\begin{GraphTikz}
[x=0.075cm,y=7.5cm,Xmin=0,Xmax=150,Xgrid=10,Xgrids=5,
Ymin=0,Ymax=1,Ygrid=0.1,Ygrids=0.05]
\DrawAxisGrids[Last,Enlarge=2.5mm]{auto}{auto}
\DefineInterpoCurve[Color=red,Trace,Name=functiontest,Tension=0.75]

{(0,\YrandA)(40,\YrandMin)(90,\YrandMax)(140,\YrandB)}
\FindCounterimage[Disp=false,Name=ANTECED]{functiontest}{0.5}
\DrawCounterimage[Colors=blue/teal,Lines]{functiontest}{0.5}
\GetXcoord{(ANTECED-1)}[\Aalpha]
\GetXcoord{(ANTECED-2)}[\Bbeta]
\GetXcoord
{(ANTECED-3)}[\Cgamma]

\end{GraphTikz}

The solutions of $f(x)=\num{0.5}$ are, by graphic reading:
$\begin{cases}

\alpha \approx \RoundNb[0]{\Aalpha} \\
\beta \approx \RoundNb[0]{\Bbeta} \\
\gamma \approx \RoundNb[0]{\Cgamma}

\end{cases}$.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The solutions of f(x) = 0.5 are, by graphic reading:


α ≈ 6

β ≈ 67

γ ≈ 135

.

6.4 Monte-Carle method

%in the GraphiqueTikz environment
\SimulateMonteCarlo[keys]<function>}{number of points}[\nbptsmcok][\nbptsmcko]

[tkz-grapheur] - 46 -

\begin{GraphTikz}%
[x=10cm,y=10cm,Xmin=0,Xmax=1,Xgrid=0.1,Xgrids=0.05,
Ymin=0,Ymax=1,Ygrid=0.1,Ygrids=0.05]
\DrawAxisGrids[Enlarge=2.5mm,Last]{auto}{auto}
\DefineCurve[Trace,Color=teal,Step=0.001]<f>{sqrt(1-x^2)}
\SimulateMonteCarlo<f>{5000}

\end{GraphTikz}

There is \textcolor{blue}{\num{\nbptsmcok}} blue points,
there is \textcolor{red}{\num{\nbptsmcko}} red points.

And $\frac{\num{\nbptsmcok}}{\num{\nbptsmc}}
\approx \RoundNb[4]{\nbptsmcok/\nbptsmc}$
et $\frac{\pi}{4} \approx \RoundNb[4]{pi/4}$.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

There is 3932 blue points, there is 1068 red points.
And 3932

5000 ≈ 0.7864 et π
4 ≈ 0.7854.

[tkz-grapheur] - 47 -

6.5 Some pgfplots macros

In addition to pgfplots/axis, there’s few simple macros in order to work with pgfplots/axis environ-
ment.

%find intersection of two [name path] objects defined
\findintersectionspgf[nodename baises]{object1}{object2}[\myt]
%global extraction of coordinates
\gextractxnodepgf{node}[\myxcoord]
\gextractynodepgf{node}[\myycoord]
\gextractxynodepgf{node}[\myxcoord][\myycoord]
%area between curves
\fillbetweencurvespgf[tikz options]{curve1}{curve2}<soft domain options>
%cubic splines
\addplotspline(*)[tikz options]<coeffs>{list of points}[\myspline]

[tkz-grapheur] - 48 -

%\usepackage{alphalph}

\begin{tikzpicture}
\begin{axis}%

[%
axis y line=center,axis x line=middle, %axis
axis line style={line width=0.8pt,-latex},
x=0.33cm,y=0.55cm,xmin=1985,xmax=2030,ymin=56,ymax=70, %units
grid=both,xtick distance=5,ytick distance=2, %gridp
minor x tick num=4,minor y tick num=1, %grids
extra x ticks={1985},extra x tick style={grid=none}, %origx
extra y ticks={56},extra y tick style={grid=none}, %origy
x tick label style={/pgf/number format/.cd,use comma,1000 sep={}}, %year
major tick length={2*3pt},minor tick length={1.5*3pt}, %grads
every tick/.style={line width=0.8pt},enlargelimits=false, %style
enlarge x limits={abs=2.5mm,upper},enlarge y limits={abs=2.5mm,upper}, %énlarge
]
%spline + y=66
\addplot[name path global=eqtest,mark=none,red,line width=1.05pt,domain=1985:2030]

{66} ;↪→

\def\LISTETEST{1985/60/0§1995/68/0§2015/58/0§2025/69/0§2030/62/-2}
\addplotspline*[line width=1.05pt,violet,name path

global=splinecubtest]{\LISTETEST}[\monsplineviolet]↪→

%equation f(x)=66
\findintersectionspgf[MonItsc]{eqtest}{splinecubtest}
%extraction of coordinates
\gextractxnodepgf{(MonItsc-1)}[\xMonItscA]
\gextractxnodepgf{(MonItsc-2)}[\xMonItscB]
\gextractxnodepgf{(MonItsc-3)}[\xMonItscC]
\gextractxnodepgf{(MonItsc-4)}[\xMonItscD]
%vizualisation
\xintFor* #1 in {\xintSeq{1}{4}}\do{%

\draw[line width=0.9pt,densely dashed,olive,->,>=latex] (MonItsc-#1) -- (\csname
xMonItsc\AlphAlph{#1}\endcsname,56) ;↪→

\filldraw[olive] (MonItsc-#1) circle[radius=1.75pt] ;
}
%area
\path [name path=xaxis] (1985,56) -- (2030,56);
\fillbetweencurvespgf{splinecubtest}{xaxis}<domain={\xMonItscB:\xMonItscA}>
\fillbetweencurvespgf{splinecubtest}{xaxis}<domain={\xMonItscD:\xMonItscC}>

\end{axis}
\end{tikzpicture}

Solutions of $f(x)=66$ are \RoundNb[0]{\xMonItscA} \&\ \RoundNb[0]{\xMonItscB} \&\
\RoundNb[0]{\xMonItscC} \&\ \RoundNb[0]{\xMonItscD}.↪→

[tkz-grapheur] - 49 -

1990 1995 2000 2005 2010 2015 2020 2025 2030

58

60

62

64

66

68

70

1985
56

Solutions of f(x) = 66 are 1992 & 2001 & 2022 & 2028.

7 History

0.2.9: New keys for french version (work in progress)
0.2.7: Ability to specify dimensions for environment (test)
0.2.6: Linear inequality (work in progress)
0.2.5: Lagrange interpolation ([french] for the moment) + enhancements
0.2.4: Bugfiw with [fr] version
0.2.3: Bugfix with a length
0.2.2: Bugfixes
0.2.0: [Alt] key for Hermite spline + few pgfplots macros
0.1.9: Bugfix
0.1.8: New commands [in french doc] (binomial, cabweb,\ldots)
0.1.6: Vertical asymptote + [in french doc] commands for integrals
0.1.5: Initial version [en]

[tkz-grapheur] - 50 -

	Contents
	1 Introduction
	1.1 Description and general ideas
	1.2 Overall operation
	1.3 Packages used, and package options
	1.4 Warnings
	1.5 Introductory example

	2 Basic Styles and Environment Creation
	2.1 Basic Styles
	2.2 Creating the environment
	2.2.1 Manual values
	2.2.2 With choice of dimensions

	2.3 Grids and axes
	2.4 Adding values manually

	3 Specific definition commands
	3.1 Draw a line
	3.2 Define a function, draw the curve of a function
	3.3 Define/draw an interpolation curve (simple)
	3.4 Define/draw an interpolation curve (Hermite)
	3.5 Define points as nodes
	3.6 Mark Points
	3.7 Retrieve node coordinates
	3.8 Place text

	4 Specific commands for using curves
	4.1 Image placement
	4.2 Antecedent determination
	4.3 Antecedent construction
	4.4 Intersections of two curves
	4.5 Extrema
	4.6 Integrals (improved version)
	4.7 Tangents
	4.8 Linear inequality

	5 Commands specific to two-variable statistics
	5.1 Limitations
	5.2 The point scatter
	5.3 The regression line
	5.4 Other regressions

	6 Auxiliary commands
	6.1 Intro
	6.2 Formatted rounding
	6.3 Random number under constraints
	6.4 Monte-Carle method
	6.5 Some pgfplots macros

	7 History

